PIC16F883-I/SSSQTP [MICROCHIP]

28/40/44-Pin, Enhanced Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology; 28 /40/ 44引脚,增强基于闪存的8位CMOS微控制器采用纳瓦技术
PIC16F883-I/SSSQTP
型号: PIC16F883-I/SSSQTP
厂家: MICROCHIP    MICROCHIP
描述:

28/40/44-Pin, Enhanced Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
28 /40/ 44引脚,增强基于闪存的8位CMOS微控制器采用纳瓦技术

闪存 微控制器
文件: 总288页 (文件大小:5120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F882/883/884/886/887  
Data Sheet  
28/40/44-Pin, Enhanced Flash-Based 8-Bit  
CMOS Microcontrollers with  
nanoWatt Technology  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS41291D-page ii  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with  
nanoWatt Technology  
High-Performance RISC CPU:  
Peripheral Features:  
• Only 35 instructions to learn:  
- All single-cycle instructions except branches  
• Operating speed:  
• 24/35 I/O pins with individual direction control:  
- High current source/sink for direct LED drive  
- Interrupt-on-Change pin  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Interrupt capability  
• 8-level deep hardware stack  
• Direct, Indirect and Relative Addressing modes  
- Individually programmable weak pull-ups  
- Ultra Low-Power Wake-up (ULPWU)  
• Analog Comparator module with:  
- Two analog comparators  
- Programmable on-chip voltage reference  
(CVREF) module (% of VDD)  
- Fixed voltage reference (0.6V)  
- Comparator inputs and outputs externally  
accessible  
- SR Latch mode  
- External Timer1 Gate (count enable)  
• A/D Converter:  
- 10-bit resolution and 11/14 channels  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%  
- Software selectable frequency range of  
8 MHz to 31 kHz  
- Software tunable  
- Two-Speed Start-up mode  
- Crystal fail detect for critical applications  
- Clock mode switching during operation for  
power savings  
• Enhanced Timer1:  
- 16-bit timer/counter with prescaler  
- External Gate Input mode  
• Power-Saving Sleep mode  
• Wide operating voltage range (2.0V-5.5V)  
• Industrial and Extended Temperature range  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset (BOR) with software control  
option  
• Enhanced low-current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable  
nominal 268 seconds with full prescaler) with  
software enable  
- Dedicated low-power 32 kHz oscillator  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Enhanced Capture, Compare, PWM+ module:  
- 16-bit Capture, max. resolution 12.5 ns  
- Compare, max. resolution 200 ns  
- 10-bit PWM with 1, 2 or 4 output channels,  
programmable “dead time”, max. frequency  
20 kHz  
- PWM output steering control  
• Capture, Compare, PWM module:  
- 16-bit Capture, max. resolution 12.5 ns  
- 16-bit Compare, max. resolution 200 ns  
- 10-bit PWM, max. frequency 20 kHz  
• Enhanced USART module:  
- Supports RS-485, RS-232, and LIN 2.0  
- Auto-Baud Detect  
- Auto-Wake-Up on Start bit  
• In-Circuit Serial ProgrammingTM (ICSPTM) via two  
pins  
• Multiplexed Master Clear with pull-up/input pin  
• Programmable code protection  
• High Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
• Program memory Read/Write during run time  
• In-Circuit Debugger (on board)  
Low-Power Features:  
• Master Synchronous Serial Port (MSSP) module  
supporting 3-wire SPI (all 4 modes) and I2C™  
Master and Slave Modes with I2C address mask  
• Standby Current:  
- 50 nA @ 2.0V, typical  
• Operating Current:  
- 11 μA @ 32 kHz, 2.0V, typical  
- 220 μA @ 4 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- 1 μA @ 2.0V, typical  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 1  
PIC16F882/883/884/886/887  
Program  
Memory  
Data Memory  
10-bit A/D ECCP/  
Timers  
8/16-bit  
Device  
I/O  
EUSART MSSP Comparators  
(ch)  
CCP  
Flash  
(words)  
SRAM  
(bytes)  
EEPROM  
(bytes)  
PIC16F882  
PIC16F883  
PIC16F884  
PIC16F886  
PIC16F887  
2048  
4096  
4096  
8192  
8192  
128  
256  
256  
368  
368  
128  
256  
256  
256  
256  
28  
24  
35  
24  
35  
11  
11  
14  
11  
14  
1/1  
1/1  
1/1  
1/1  
1/1  
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2/1  
2/1  
2/1  
2/1  
2/1  
DS41291D-page 2  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
Pin Diagrams – PIC16F882/883/886, 28-Pin PDIP, SOIC, SSOP  
28-pin PDIP, SOIC, SSOP  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
8
9
RE3/MCLR/VPP  
RB7/ICSPDAT  
RB6/ICSPCLK  
RB5/AN13/T1G  
RB4/AN11/P1D  
RB3/AN9/PGM/C12IN2-  
RB2/AN8/P1B  
RB1/AN10/P1C/C12IN3-  
RB0/AN12/INT  
VDD  
RA0/AN0/ULPWU/C12IN0-  
RA1/AN1/C12IN1-  
RA2/AN2/VREF-/CVREF/C2IN+  
RA3/AN3/VREF+/C1IN+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
VSS  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/P1A/CCP1  
VSS  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
12  
13  
14  
RC3/SCK/SCL  
TABLE 1:  
PIC16F882/883/886 28-PIN SUMMARY (PDIP, SOIC, SSOP)  
I/O  
Pin  
Analog  
Comparators  
Timers  
ECCP  
EUSART MSSP Interrupt Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RE3  
2
AN0/ULPWU  
AN1  
AN2  
AN3  
C12IN0-  
Y
3
C12IN1-  
4
C2IN+  
VREF-/CVREF  
5
C1IN+  
VREF+  
6
C1OUT  
T0CKI  
7
AN4  
C2OUT  
SS  
10  
9
OSC2/CLKOUT  
OSC1/CLKIN  
21  
22  
23  
24  
25  
26  
27  
28  
11  
12  
13  
14  
15  
16  
17  
18  
1
AN12  
AN10  
AN8  
AN9  
AN11  
AN13  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
C12IN3-  
P1C  
P1B  
Y
Y
C12IN2-  
Y
PGM  
P1D  
Y
T1G  
Y
Y
ICSPCLK  
Y
ICSPDAT  
T1OSO/T1CKI  
T1OSI  
CCP2  
CCP1/P1A  
SCK/SCL  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
(1)  
Y
MCLR/VPP  
VDD  
VSS  
VSS  
20  
8
19  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 3  
PIC16F882/883/884/886/887  
Pin Diagrams – PIC16F882/883/886, 28-Pin QFN  
28-pin QFN  
1
21  
20  
19  
18  
17  
16  
15  
RA2/AN2/VREF-/CVREF/C2IN+  
RB3/AN9/PGM/C12IN2-  
RB2/AN8/P1B  
RB1/AN10/P1C/C12IN3-  
RB0/AN12/INT  
VDD  
2
RA3/AN3/VREF+/C1IN+  
3
RA4/T0CKI/C1OUT  
PIC16F882/883/886  
4
5
6
7
RA5/AN4/SS/C2OUT  
VSS  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
VSS  
RC7/RX/DT  
DS41291D-page 4  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 2:  
PIC16F882/883/886 28-PIN SUMMARY (QFN)  
I/O  
Pin  
Analog  
Comparators  
Timers  
ECCP  
EUSART MSSP Interrupt Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RE3  
27 AN0/ULPWU  
C12IN0-  
Y
28  
1
AN1  
AN2  
AN3  
C12IN1-  
C2IN+  
VREF-/CVREF  
2
C1IN+  
VREF+  
3
C1OUT  
T0CKI  
4
AN4  
C2OUT  
SS  
7
OSC2/CLKOUT  
6
OSC1/CLKIN  
18  
19  
20  
21  
22  
23  
24  
25  
8
AN12  
AN10  
AN8  
AN9  
AN11  
AN13  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
C12IN3-  
P1C  
P1B  
Y
Y
C12IN2-  
Y
PGM  
P1D  
Y
T1G  
Y
Y
ICSPCLK  
Y
ICSPDAT  
T1OSO/T1CKI  
9
T1OSI  
CCP2  
CCP1/P1A  
10  
11  
12  
13  
14  
15  
26  
17  
5
SCK/SCL  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
(1)  
Y
MCLR/VPP  
VDD  
VSS  
VSS  
16  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 5  
PIC16F882/883/884/886/887  
Pin Diagrams – PIC16F884/887, 40-Pin PDIP  
40-pin PDIP  
40  
RE3/MCLR/VPP  
RA0/AN0/ULPWU/C12IN0-  
RA1/AN1/C12IN1-  
RA2/AN2/VREF-/CVREF/C2IN+  
RA3/AN3/VREF+/C1IN+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
RE0/AN5  
RB7/ICSPDAT  
RB6/ICSPCLK  
RB5/AN13/T1G  
RB4/AN11  
RB3/AN9/PGM/C12IN2-  
RB2/AN8  
RB1/AN10/C12IN3-  
RB0/AN12/INT  
VDD  
VSS  
RD7/P1D  
RD6/P1C  
RD5/P1B  
1
2
3
4
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
5
6
7
8
RE1/AN6  
RE2/AN7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
VSS  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/P1A/CCP1  
RC3/SCK/SCL  
RD0  
RD4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
RD3  
RD1  
RD2  
DS41291D-page 6  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 3:  
PIC16F884/887 40-PIN SUMMARY (PDIP)  
I/O  
Pin  
Analog  
Comparators  
Timers  
ECCP  
EUSART MSSP Interrupt Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
2
AN0/ULPWU  
AN1  
AN2  
AN3  
C12IN0-  
Y
3
C12IN1-  
4
C2IN+  
C1IN+  
C1OUT  
C2OUT  
VREF-/CVREF  
5
VREF+  
6
T0CKI  
7
AN4  
SS  
14  
13  
33  
34  
35  
36  
37  
38  
39  
40  
15  
16  
17  
18  
23  
24  
25  
26  
19  
20  
21  
22  
27  
28  
29  
30  
8
OSC2/CLKOUT  
OSC1/CLKIN  
AN12  
AN10  
AN8  
AN9  
AN11  
AN13  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
C12IN3-  
Y
Y
C12IN2-  
Y
PGM  
Y
T1G  
Y
Y
ICSPCLK  
Y
ICSPDAT  
T1OSO/T1CKI  
T1OSI  
CCP2  
CCP1/P1A  
SCK/SCL  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
P1B  
P1C  
P1D  
AN5  
AN6  
AN7  
9
10  
1
(1)  
Y
MCLR/VPP  
VDD  
VDD  
VSS  
VSS  
11  
32  
12  
31  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 7  
PIC16F882/883/884/886/887  
Pin Diagrams – PIC16F884/887, 44-Pin QFN  
44-pin QFN  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
VSS  
VSS  
NC  
VDD  
RE2/AN7  
RE1/AN6  
RE0/AN5  
RC7/RX/DT  
RD4  
RD5/P1B  
RD6/P1C  
RD7/P1D  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
33  
32  
31  
30  
29  
28  
27  
26  
PIC16F884/887  
VDD  
VDD  
RB0/AN12/INT  
RB1/AN10/C12IN3-  
RB2/AN8  
25  
24  
23  
RA5/AN4/SS/C2OUT  
RA4/T0CKI/C1OUT  
DS41291D-page 8  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 4:  
PIC16F884/887 44-PIN SUMMARY (QFN)  
I/O  
Pin  
Analog  
Comparators  
Timers  
ECCP  
EUSART MSSP Interrupt Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
19 AN0/ULPWU  
C12IN0-  
Y
20  
21  
22  
23  
24  
33  
32  
9
AN1  
AN2  
AN3  
C12IN1-  
C2IN+  
C1IN+  
C1OUT  
C2OUT  
VREF-/CVREF  
VREF+  
T0CKI  
AN4  
SS  
OSC2/CLKOUT  
OSC1/CLKIN  
AN12  
AN10  
AN8  
AN9  
AN11  
AN13  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
10  
11  
12  
14  
15  
16  
17  
34  
35  
36  
37  
42  
43  
44  
1
C12IN3-  
Y
Y
C12IN2-  
Y
PGM  
Y
T1G  
Y
Y
ICSPCLK  
Y
ICSPDAT  
T1OSO/T1CKI  
T1OSI  
CCP2  
CCP1/P1A  
SCK/SCL  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
38  
39  
40  
41  
2
3
P1B  
P1C  
P1D  
4
5
25  
26  
27  
18  
7
AN5  
AN6  
AN7  
MCLR/VPP  
VDD  
(1)  
Y
8
VDD  
28  
6
VDD  
VSS  
30  
31  
13  
29  
VSS  
VSS  
NC (no connect)  
NC (no connect)  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 9  
PIC16F882/883/884/886/887  
Pin Diagrams – PIC16F884/887, 44-Pin TQFP  
44-pin TQFP  
NC  
RC7/RX/DT  
RD4  
RD5/P1B  
RD6/P1C  
RD7/P1D  
1
2
3
4
5
6
7
8
9
10  
11  
33  
32  
31  
30  
29  
28  
27  
26  
RC0/T1OSO/T1CKI  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
VSS  
VDD  
RE2/AN7  
RE1/AN6  
RE0/AN5  
RA5/AN4/SS/C2OUT  
RA4/T0CKI/C1OUT  
PIC16F884/887  
VSS  
VDD  
RB0/AN12/INT  
RB1/AN10/C12IN3-  
RB2/AN8  
25  
24  
23  
RB3/AN9/PGM/C12IN2-  
DS41291D-page 10  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 5:  
PIC16F884/887 44-PIN SUMMARY (TQFP)  
I/O  
Pin  
Analog  
Comparators  
Timers  
ECCP  
EUSART MSSP Interrupt Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
19 AN0/ULPWU  
C12IN0-  
Y
20  
21  
22  
23  
24  
31  
31  
8
AN1  
AN2  
AN3  
C12IN1-  
C2IN+  
C1IN+  
C1OUT  
C2OUT  
VREF-/CVREF  
VREF+  
T0CKI  
AN4  
SS  
OSC2/CLKOUT  
OSC1/CLKIN  
AN12  
AN10  
AN8  
AN9  
AN11  
AN13  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
9
C12IN3-  
Y
10  
11  
14  
15  
16  
17  
32  
35  
36  
37  
42  
43  
44  
1
Y
C12IN2-  
Y
PGM  
Y
T1G  
Y
Y
ICSPCLK  
Y
ICSPDAT  
T1OSO/T1CKI  
T1OSI  
CCP2  
CCP1/P1A  
SCK/SCL  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
38  
39  
40  
41  
2
3
P1B  
P1C  
P1D  
4
5
25  
26  
27  
18  
7
AN5  
AN6  
AN7  
(1)  
Y
MCLR/VPP  
VDD  
28  
6
VDD  
VSS  
13  
29  
34  
33  
12  
NC (no connect)  
VSS  
NC (no connect)  
NC (no connect)  
NC (no connect)  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 11  
PIC16F882/883/884/886/887  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 13  
2.0 Memory Organization................................................................................................................................................................. 21  
3.0 I/O Ports ..................................................................................................................................................................................... 39  
4.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 61  
5.0 Timer0 Module ........................................................................................................................................................................... 73  
6.0 Timer1 Module with Gate Control............................................................................................................................................... 76  
7.0 Timer2 Module ........................................................................................................................................................................... 81  
8.0 Comparator Module.................................................................................................................................................................... 83  
9.0 Analog-to-Digital Converter (ADC) Module ................................................................................................................................ 99  
10.0 Data EEPROM and Flash Program Memory Control............................................................................................................... 111  
11.0 Enhanced Capture/Compare/PWM Module ............................................................................................................................. 123  
12.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 149  
13.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 175  
14.0 Special Features of the CPU.................................................................................................................................................... 205  
15.0 Instruction Set Summary.......................................................................................................................................................... 225  
16.0 Development Support............................................................................................................................................................... 235  
17.0 Electrical Specifications............................................................................................................................................................ 239  
18.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 261  
19.0 Packaging Information.............................................................................................................................................................. 263  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 273  
Appendix B: Migrating from other PIC® Devices............................................................................................................................... 273  
Index .................................................................................................................................................................................................. 275  
The Microchip Web Site..................................................................................................................................................................... 283  
Customer Change Notification Service .............................................................................................................................................. 283  
Customer Support.............................................................................................................................................................................. 283  
Reader Response .............................................................................................................................................................................. 284  
Product Identification System............................................................................................................................................................. 285  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-  
mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We wel-  
come your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS41291D-page 12  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
1.0  
DEVICE OVERVIEW  
The PIC16F882/883/884/886/887 is covered by this  
data sheet. The PIC16F882/883/886 is available in 28-  
pin PDIP, SOIC, SSOP and QFN packages. The  
PIC16F884/887 is available in a 40-pin PDIP and 44-  
pin QFN and TQFP packages. Figure 1-1 shows the  
block diagram of PIC16F882/883/886 and Figure 1-2  
shows a block diagram of the PIC16F884/887 device.  
Table 1-1 and Table 1-2 show the corresponding pinout  
descriptions.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 13  
PIC16F882/883/884/886/887  
FIGURE 1-1:  
PIC16F882/883/886 BLOCK DIAGRAM  
Configuration  
13  
PORTA  
PORTB  
PORTC  
PORTE  
8
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
Data Bus  
Program Counter  
Flash  
2K(2)/4K(1)  
8K X 14  
/
RAM  
128(2)/256(1)  
368 Bytes  
File  
Registers  
Program  
Memory  
8-Level Stack  
(13-Bit)  
/
Program  
Bus  
14  
RAM Addr  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
9
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUS Reg  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
RE3  
Brown-out  
Reset  
OSC2/CLKOUT  
CCP2  
CCP2  
Internal  
Oscillator  
Block  
VDD  
VSS  
MCLR  
In-Circuit  
Debugger  
(ICD)  
Timer1  
T1OSI  
32 kHz  
T1OSO  
Oscillator  
T1G  
T1CKI  
T0CKI  
Timer0  
Master Synchronous  
Serial Port (MSSP)  
Timer2  
Timer1  
EUSART  
ECCP  
VREF+  
VREF-  
CVREF  
VREF+  
VREF-  
2 Analog Comparators  
and Reference  
Analog-To-Digital Converter  
(ADC)  
8
EEDATA  
128(2)  
/
256 Bytes  
Data  
EEPROM  
EEADDR  
Note 1:  
2:  
PIC16F883 only.  
PIC16F882 only.  
DS41291D-page 14  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 1-2:  
PIC16F884/PIC16F887 BLOCK DIAGRAM  
Configuration  
PORTA  
PORTB  
PORTC  
13  
8
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
Data Bus  
Program Counter  
Flash  
4K(1)/8K X 14  
Program  
RAM  
256(1)/368 Bytes  
File  
Memory  
8-Level Stack  
(13-Bit)  
Registers  
Program  
Bus  
14  
RAM Addr  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
9
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUS Reg  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
PORTD  
OSC1/CLKIN  
8
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
Timing  
Generation  
Watchdog  
Timer  
W Reg  
CCP2  
CCP2  
Brown-out  
Reset  
OSC2/CLKOUT  
Internal  
Oscillator  
Block  
PORTE  
VDD  
VSS  
MCLR  
RE0  
RE1  
RE2  
RE3  
In-Circuit  
Debugger  
(ICD)  
Timer1  
32 kHz  
T1OSI  
T1OSO  
Oscillator  
T1G  
T1CKI  
T0CKI  
Timer0  
Master Synchronous  
Serial Port (MSSP)  
Timer2  
Timer1  
EUSART  
ECCP  
VREF+  
VREF-  
CVREF  
VREF+  
VREF-  
2 Analog Comparators  
and Reference  
Analog-To-Digital Converter  
(ADC)  
8
EEDATA  
256 Bytes  
Data  
EEPROM  
EEADDR  
Note 1:  
PIC16F884 only.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 15  
PIC16F882/883/884/886/887  
TABLE 1-1:  
PIC16F882/883/886 PINOUT DESCRIPTION  
Input Output  
Function  
Name  
Description  
Type  
Type  
RA0/AN0/ULPWU/C12IN0-  
RA0  
AN0  
TTL  
AN  
AN  
AN  
TTL  
AN  
AN  
TTL  
AN  
AN  
CMOS General purpose I/O.  
A/D Channel 0 input.  
ULPWU  
C12IN0-  
RA1  
Ultra Low-Power Wake-up input.  
Comparator C1 or C2 negative input.  
RA1/AN1/C12IN1-  
CMOS General purpose I/O. Individually enabled pull-up.  
AN1  
A/D Channel 1 input.  
C12IN1-  
RA2  
Comparator C1 or C2 negative input.  
RA2/AN2/VREF-/CVREF/C2IN+  
CMOS General purpose I/O.  
AN2  
AN  
A/D Channel 2.  
VREF-  
CVREF  
C2IN+  
RA3  
A/D Negative Voltage Reference input.  
Comparator Voltage Reference output.  
Comparator C2 positive input.  
General purpose I/O.  
AN  
TTL  
AN  
AN  
AN  
TTL  
ST  
RA3/AN3/VREF+/C1IN+  
AN3  
A/D Channel 3.  
VREF+  
C1IN+  
RA4  
Programming voltage.  
Comparator C1 positive input.  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
CMOS General purpose I/O. Individually enabled pull-up.  
Timer0 clock input.  
T0CKI  
C1OUT  
RA5  
CMOS Comparator C1 output.  
CMOS General purpose I/O.  
TTL  
AN  
ST  
AN4  
A/D Channel 4.  
SS  
Slave Select input.  
C2OUT  
RA6  
CMOS Comparator C2 output.  
CMOS General purpose I/O.  
XTAL Master Clear with internal pull-up.  
CMOS FOSC/4 output.  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
RB0/AN12/INT  
TTL  
OSC2  
CLKOUT  
RA7  
TTL  
XTAL  
ST  
CMOS General purpose I/O.  
OSC1  
CLKIN  
RB0  
Crystal/Resonator.  
External clock input/RC oscillator connection.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN12  
INT  
AN  
ST  
A/D Channel 12.  
External interrupt.  
RB1/AN10/P1C/C12IN3-  
RB1  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN10  
P1C  
AN  
A/D Channel 10.  
CMOS PWM output.  
C12IN3-  
RB2  
AN  
TTL  
Comparator C1 or C2 negative input.  
RB2/AN8/P1B  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN8  
P1B  
AN  
A/D Channel 8.  
CMOS PWM output.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
DS41291D-page 16  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 1-1:  
PIC16F882/883/886 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB3/AN9/PGM/C12IN2-  
RB3  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN9  
PGM  
AN  
ST  
A/D Channel 9.  
Low-voltage ICSP™ Programming enable pin.  
Comparator C1 or C2 negative input.  
C12IN2-  
RB4  
AN  
TTL  
RB4/AN11/P1D  
RB5/AN13/T1G  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN11  
P1D  
RB5  
AN  
A/D Channel 11.  
CMOS PWM output.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN13  
T1G  
AN  
ST  
A/D Channel 13.  
Timer1 Gate input.  
RB6/ICSPCLK  
RB6  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPCLK  
RB7  
ST  
Serial Programming Clock.  
RB7/ICSPDAT  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPDAT  
RC0  
T1OSO  
T1CKI  
RC1  
T1OSI  
CCP2  
RC2  
P1A  
ST  
ST  
CMOS ICSP™ Data I/O.  
RC0/T1OSO/T1CKI  
CMOS General purpose I/O.  
CMOS Timer1 oscillator output.  
ST  
ST  
ST  
ST  
ST  
Timer1 clock input.  
CMOS General purpose I/O.  
Timer1 oscillator input.  
RC1/T1OSI/CCP2  
RC2/P1A/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
CMOS Capture/Compare/PWM2.  
CMOS General purpose I/O.  
CMOS PWM output.  
CCP1  
RC3  
SCK  
SCL  
RC4  
SDI  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
CMOS Capture/Compare/PWM1.  
CMOS General purpose I/O.  
CMOS SPI clock.  
OD  
CMOS General purpose I/O.  
I2C™ clock.  
SPI data input.  
SDA  
RC5  
SDO  
RC6  
TX  
OD  
I2C data input/output.  
RC5/SDO  
CMOS General purpose I/O.  
CMOS SPI data output.  
RC6/TX/CK  
ST  
CMOS General purpose I/O.  
CMOS EUSART asynchronous transmit.  
CMOS EUSART synchronous clock.  
CMOS General purpose I/O.  
CK  
ST  
ST  
ST  
ST  
TTL  
ST  
HV  
Power  
Power  
RC7/RX/DT  
RC7  
RX  
EUSART asynchronous input.  
DT  
CMOS EUSART synchronous data.  
RE3/MCLR/VPP  
RE3  
MCLR  
VPP  
General purpose input.  
Master Clear with internal pull-up.  
Programming voltage.  
Ground reference.  
VSS  
VDD  
VSS  
VDD  
Positive supply.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 17  
PIC16F882/883/884/886/887  
TABLE 1-2:  
PIC16F884/887 PINOUT DESCRIPTION  
Input Output  
Function  
Name  
Description  
Type  
Type  
RA0/AN0/ULPWU/C12IN0-  
RA0  
AN0  
TTL  
AN  
AN  
AN  
TTL  
AN  
AN  
TTL  
AN  
AN  
CMOS General purpose I/O.  
A/D Channel 0 input.  
ULPWU  
C12IN0-  
RA1  
Ultra Low-Power Wake-up input.  
Comparator C1 or C2 negative input.  
RA1/AN1/C12IN1-  
CMOS General purpose I/O.  
AN1  
A/D Channel 1 input.  
C12IN1-  
RA2  
Comparator C1 or C2 negative input.  
RA2/AN2/VREF-/CVREF/C2IN+  
CMOS General purpose I/O.  
AN2  
A/D Channel 2.  
VREF-  
CVREF  
C2IN+  
RA3  
A/D Negative Voltage Reference input.  
Comparator Voltage Reference output.  
Comparator C2 positive input.  
AN  
AN  
TTL  
AN  
AN  
AN  
TTL  
ST  
RA3/AN3/VREF+/C1IN+  
CMOS General purpose I/O.  
AN3  
A/D Channel 3.  
VREF+  
C1IN+  
RA4  
A/D Positive Voltage Reference input.  
Comparator C1 positive input.  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
CMOS General purpose I/O.  
Timer0 clock input.  
T0CKI  
C1OUT  
RA5  
CMOS Comparator C1 output.  
CMOS General purpose I/O.  
TTL  
AN  
ST  
AN4  
A/D Channel 4.  
SS  
Slave Select input.  
C2OUT  
RA6  
CMOS Comparator C2 output.  
CMOS General purpose I/O.  
XTAL Crystal/Resonator.  
CMOS FOSC/4 output.  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
RB0/AN12/INT  
TTL  
OSC2  
CLKOUT  
RA7  
TTL  
XTAL  
ST  
CMOS General purpose I/O.  
OSC1  
CLKIN  
RB0  
Crystal/Resonator.  
External clock input/RC oscillator connection.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN12  
INT  
AN  
ST  
A/D Channel 12.  
External interrupt.  
RB1/AN10/C12IN3-  
RB1  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN10  
C12IN3-  
RB2  
AN  
AN  
A/D Channel 10.  
Comparator C1 or C2 negative input.  
RB2/AN8  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN8  
RB3  
AN  
A/D Channel 8.  
RB3/AN9/PGM/C12IN2-  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN9  
PGM  
AN  
ST  
AN  
A/D Channel 9.  
Low-voltage ICSP™ Programming enable pin.  
Comparator C1 or C2 negative input.  
C12IN2-  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
DS41291D-page 18  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 1-2:  
PIC16F884/887 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB4/AN11  
RB4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN11  
RB5  
AN  
A/D Channel 11.  
RB5/AN13/T1G  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN13  
T1G  
RB6  
AN  
ST  
A/D Channel 13.  
Timer1 Gate input.  
RB6/ICSPCLK  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPCLK  
RB7  
ST  
Serial Programming Clock.  
RB7/ICSPDAT  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPDAT  
RC0  
T1OSO  
T1CKI  
RC1  
T1OSI  
CCP2  
RC2  
P1A  
ST  
ST  
TTL  
ICSP™ Data I/O.  
RC0/T1OSO/T1CKI  
CMOS General purpose I/O.  
XTAL Timer1 oscillator output.  
ST  
ST  
XTAL  
ST  
ST  
ST  
Timer1 clock input.  
CMOS General purpose I/O.  
Timer1 oscillator input.  
RC1/T1OSI/CCP2  
RC2/P1A/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
CMOS Capture/Compare/PWM2.  
CMOS General purpose I/O.  
CMOS PWM output.  
CCP1  
RC3  
SCK  
SCL  
RC4  
SDI  
CMOS Capture/Compare/PWM1.  
CMOS General purpose I/O.  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
CMOS SPI clock.  
2
OD  
I C™ clock.  
CMOS General purpose I/O.  
SPI data input.  
2
SDA  
RC5  
SDO  
RC6  
TX  
OD  
I C data input/output.  
RC5/SDO  
CMOS General purpose I/O.  
CMOS SPI data output.  
RC6/TX/CK  
ST  
CMOS General purpose I/O.  
CMOS EUSART asynchronous transmit.  
CMOS EUSART synchronous clock.  
CMOS General purpose I/O.  
CK  
ST  
ST  
ST  
ST  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
RC7/RX/DT  
RC7  
RX  
EUSART asynchronous input.  
DT  
CMOS EUSART synchronous data.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS PWM output.  
RD0  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
P1B  
RD1  
RD2  
RD3  
RD4  
RD5/P1B  
RD6/P1C  
RD6  
P1C  
TTL  
CMOS General purpose I/O.  
CMOS PWM output.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 19  
PIC16F882/883/884/886/887  
TABLE 1-2:  
PIC16F884/887 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Function  
Name  
Description  
Type  
Type  
RD7/P1D  
RD7  
P1D  
RE0  
AN5  
RE1  
AN6  
RE2  
AN7  
RE3  
MCLR  
VPP  
TTL  
AN  
CMOS General purpose I/O.  
PWM output.  
CMOS General purpose I/O.  
A/D Channel 5.  
CMOS General purpose I/O.  
A/D Channel 6.  
CMOS General purpose I/O.  
RE0/AN5  
TTL  
AN  
RE1/AN6  
ST  
AN  
RE2/AN7  
TTL  
AN  
A/D Channel 7.  
RE3/MCLR/VPP  
TTL  
ST  
General purpose input.  
Master Clear with internal pull-up.  
Programming voltage.  
Ground reference.  
HV  
VSS  
VDD  
VSS  
Power  
Power  
VDD  
Positive supply.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
DS41291D-page 20  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F883/PIC16F884  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The PIC16F882/883/884/886/887 has a 13-bit program  
counter capable of addressing a 2K x 14 (0000h-07FFh)  
for the PIC16F882, 4K x 14 (0000h-0FFFh) for the  
PIC16F883/PIC16F884, and 8K x 14 (0000h-1FFFh) for  
the PIC16F886/PIC16F887 program memory space.  
Accessing a location above these boundaries will cause  
a wraparound within the first 8K x 14 space. The Reset  
vector is at 0000h and the interrupt vector is at 0004h  
(see Figures 2-2 and 2-3).  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Stack Level 8  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F882  
Reset Vector  
0000h  
PC<12:0>  
13  
Interrupt Vector  
Page 0  
0004h  
0005h  
CALL, RETURN  
RETFIE, RETLW  
On-Chip  
Program  
Memory  
07FFh  
0800h  
Page 1  
Stack Level 1  
Stack Level 2  
0FFFh  
FIGURE 2-3:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F886/PIC16F887  
Stack Level 8  
Reset Vector  
0000h  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-Chip  
Program  
Memory  
07FFh  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
07FFh  
0800h  
Page 1  
Page 2  
On-Chip  
Program  
Memory  
0FFFh  
1000h  
17FFh  
1800h  
Page 3  
1FFFh  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 21  
PIC16F882/883/884/886/887  
2.2  
Data Memory Organization  
The data memory (see Figures 2-2 and 2-3) is  
partitioned into four banks which contain the General  
Purpose Registers (GPR) and the Special Function  
Registers (SFR). The Special Function Registers are  
located in the first 32 locations of each bank. The  
General Purpose Registers, implemented as static  
RAM, are located in the last 96 locations of each Bank.  
Register locations F0h-FFh in Bank 1, 170h-17Fh in  
Bank 2 and 1F0h-1FFh in Bank 3, point to addresses  
70h-7Fh in Bank 0. The actual number of General  
Purpose Resisters (GPR) implemented in each Bank  
depends on the device. Details are shown in  
Figures 2-5 and 2-6. All other RAM is unimplemented  
and returns ‘0’ when read. RP<1:0> of the STATUS  
register are the bank select bits:  
RP1 RP0  
0
0
1
1
0
1
0
1
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The register file is organized as 128 x 8 in the  
PIC16F882, 256 x 8 in the PIC16F883/PIC16F884, and  
368 x 8 in the PIC16F886/PIC16F887. Each register is  
accessed, either directly or indirectly, through the File  
Select Register (FSR) (see Section 2.4 “Indirect  
Addressing, INDF and FSR Registers”).  
Note:  
The IRP and RP1 bits of the STATUS reg-  
ister are reserved and should always be  
maintained as ‘0’s.  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Table 2-1). These  
registers are static RAM.  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
DS41291D-page 22  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 2-4:  
PIC16F882 SPECIAL FUNCTION REGISTERS  
File  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
File  
Address  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
File  
Address  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
File  
Address  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
(1)  
(1)  
(1)  
(1)  
Indirect addr.  
TMR0  
Indirect addr.  
Indirect addr.  
TMR0  
Indirect addr.  
OPTION_REG  
PCL  
OPTION_REG  
PCL  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
WDTCON  
PORTB  
SRCON  
TRISB  
TRISB  
TRISC  
CM1CON0  
CM2CON0  
CM2CON1  
PCLATH  
INTCON  
EEDAT  
BAUDCTL  
ANSEL  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISE  
PCLATH  
INTCON  
PIE1  
ANSELH  
PCLATH  
INTCON  
EECON1  
(1)  
PIR2  
PIE2  
EEADR  
EECON2  
TMR1L  
PCON  
EEDATH  
EEADRH  
Reserved  
Reserved  
TMR1H  
T1CON  
TMR2  
OSCCON  
OSCTUNE  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
VRCON  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
SPBRG  
SPBRGH  
PWM1CON  
ECCPAS  
PSTRCON  
ADRESL  
ADCON1  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
32 Bytes  
BFh  
C0h  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 23  
PIC16F882/883/884/886/887  
FIGURE 2-5:  
PIC16F883/PIC16F884 SPECIAL FUNCTION REGISTERS  
File  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
File  
Address  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
File  
Address  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
File  
Address  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
Indirect addr. (1)  
TMR0  
Indirect addr. (1)  
OPTION_REG  
PCL  
Indirect addr. (1)  
TMR0  
Indirect addr. (1)  
OPTION_REG  
PCL  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(2)  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISA  
WDTCON  
PORTB  
SRCON  
TRISB  
TRISB  
TRISC  
TRISD(2)  
CM1CON0  
CM2CON0  
CM2CON1  
PCLATH  
INTCON  
EEDAT  
BAUDCTL  
ANSEL  
TRISE  
ANSELH  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
Reserved  
Reserved  
PCLATH  
INTCON  
PIE1  
PIR2  
PIE2  
EEADR  
TMR1L  
PCON  
EEDATH  
EEADRH  
TMR1H  
T1CON  
TMR2  
OSCCON  
OSCTUNE  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
VRCON  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
SPBRG  
SPBRGH  
PWM1CON  
ECCPAS  
PSTRCON  
ADRESL  
ADCON1  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
80 Bytes  
80 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
96 Bytes  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: PIC16F884 only.  
DS41291D-page 24  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 2-6:  
PIC16F886/PIC16F887 SPECIAL FUNCTION REGISTERS  
File  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
File  
Address  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
File  
Address  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
File  
Address  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
Indirect addr. (1)  
TMR0  
Indirect addr. (1)  
OPTION_REG  
PCL  
Indirect addr. (1)  
TMR0  
Indirect addr. (1)  
OPTION_REG  
PCL  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(2)  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISA  
WDTCON  
PORTB  
SRCON  
TRISB  
TRISB  
TRISC  
TRISD(2)  
CM1CON0  
CM2CON0  
CM2CON1  
PCLATH  
INTCON  
EEDAT  
BAUDCTL  
ANSEL  
TRISE  
ANSELH  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
Reserved  
Reserved  
PCLATH  
INTCON  
PIE1  
PIR2  
PIE2  
EEADR  
TMR1L  
PCON  
EEDATH  
EEADRH  
TMR1H  
T1CON  
TMR2  
OSCCON  
OSCTUNE  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
SSPADD  
SSPSTAT  
WPUB  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
IOCB  
VRCON  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
SPBRG  
SPBRGH  
PWM1CON  
ECCPAS  
PSTRCON  
ADRESL  
ADCON1  
16 Bytes  
16 Bytes  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
3Fh  
40h  
General  
Purpose  
Registers  
80 Bytes  
80 Bytes  
80 Bytes  
6Fh  
70h  
7Fh  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
96 Bytes  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: PIC16F887 only.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 25  
PIC16F882/883/884/886/887  
TABLE 2-1:  
PIC16F882/883/884/886/887 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
---0 0000  
0000 000x  
37,213  
73,213  
37,213  
29,213  
37,213  
39,213  
48,213  
53,213  
57,213  
59,213  
37,213  
31,213  
34,213  
35,213  
76,213  
76,213  
TMR0  
PCL  
Program Counter’s (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
PORTA(3)  
PORTB(3)  
PORTC(3)  
PORTD(3,4)  
PORTE(3)  
RA7  
RB7  
RC7  
RD7  
RA6  
RB6  
RC6  
RD6  
RA5  
RB5  
RC5  
RD5  
RA4  
RB4  
RC4  
RD4  
RA3  
RB3  
RC3  
RD3  
RE3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
RC2  
RC1  
RC0  
RD2  
RE2(4)  
RD1  
RE1(4)  
RD0  
RE0(4)  
0Ah PCLATH  
0Bh INTCON  
0Ch PIR1  
Write Buffer for upper 5 bits of Program Counter  
GIE  
PEIE  
ADIF  
C2IF  
T0IE  
RCIF  
C1IF  
INTE  
TXIF  
EEIF  
RBIE  
SSPIF  
BCLIF  
T0IF  
INTF  
TMR2IF  
RBIF(1)  
CCP1IF  
ULPWUIF  
TMR1IF -000 0000  
0Dh PIR2  
OSFIF  
CCP2IF  
0000 00-0  
xxxx xxxx  
xxxx xxxx  
0Eh TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
0Fh  
TMR1H  
10h  
11h  
12h  
13h  
14h  
T1CON  
T1GINV  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000  
79,213  
81,213  
82,213  
179,213  
177,213  
TMR2  
0000 0000  
T2CON  
SSPBUF  
SSPCON(2)  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
SSPM2  
SSPM1  
SSPM0  
15h  
16h  
17h  
18h  
19h  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
Capture/Compare/PWM Register 1 Low Byte (LSB)  
Capture/Compare/PWM Register 1 High Byte (MSB)  
126,213  
126,213  
124,213  
P1M1  
SPEN  
P1M0  
RX9  
DC1B1  
SREN  
DC1B0  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
159,213  
151,213  
156,213  
126,213  
TXREG  
EUSART Transmit Data Register  
EUSART Receive Data Register  
1Ah RCREG  
1Bh CCPR2L  
Capture/Compare/PWM Register 2 Low Byte (LSB)  
Capture/Compare/PWM Register 2 High Byte (MSB)  
CCPR2H  
1Ch  
1Dh  
126,214  
CCP2CON  
DC2B1  
A/D Result Register High Byte  
ADCS1 ADCS0 CHS3  
DC2B0  
CHS2  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000  
125,214  
99,214  
1Eh ADRESH  
xxxx xxxx  
1Fh  
ADCON0  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 0000  
104,214  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
MCLR and WDT Reset do not affect the previous value data latch. The RBIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
3:  
4:  
When SSPCON register bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK  
register. See Registers • and 13-4 for more detail.  
Port pins with analog functions controlled by the ANSEL and ANSELH registers will read ‘0’ immediately after a Reset even though the  
data latches are either undefined (POR) or unchanged (other Resets).  
PIC16F884/PIC16F887 only.  
DS41291D-page 26  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 2-2:  
PIC16F882/883/884/886/887 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx  
1111 1111  
0000 0000  
37,213  
30,214  
37,213  
81h  
OPTION_REG  
PCL  
RBPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h  
Program Counter’s (PC) Least Significant Byte  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
29,213  
37,213  
39,214  
48,214  
53,214  
57,214  
59,214  
37,213  
31,213  
Indirect Data Memory Address Pointer  
TRISA  
TRISB  
TRISC  
TRISD(3)  
TRISE  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISE3 TRISE2(3) TRISE1(3) TRISE0(3) ---- 1111  
8Ah PCLATH  
8Bh INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF(1)  
8Ch PIE1  
8Dh PIE2  
8Eh PCON  
OSFIE  
ADIE  
C2IE  
RCIE  
C1IE  
TXIE  
EEIE  
SSPIE  
BCLIE  
CCP1IE  
ULPWUIE  
TMR2IE  
TMR1IE  
CCP2IE  
BOR  
-000 0000  
0000 00-0  
--01 --qq  
-110 q000  
---0 0000  
0000 0000  
1111 1111  
0000 0000  
32,214  
33,214  
36,214  
62,214  
66,214  
177,214  
81,214  
185,214  
ULPWUE SBOREN  
POR  
LTS  
8Fh  
90h  
91h  
92h  
93h  
OSCCON  
OSCTUNE  
SSPCON2  
PR2  
IRCF2  
IRCF1  
IRCF0  
TUN4  
OSTS  
TUN3  
RCEN  
HTS  
SCS  
TUN2  
PEN  
TUN1  
RSEN  
TUN0  
SEN  
GCEN  
ACKSTAT  
ACKDT  
ACKEN  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
SSPADD(2)  
SSPMSK(2)  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
MSK7  
SMP  
MSK6  
CKE  
MSK5  
D/A  
MSK4  
P
MSK3  
S
MSK2  
R/W  
MSK1  
UA  
MSK0  
BF  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
0000 0010  
0000 0000  
0000 0000  
0000 0000  
204,214  
185,214  
49,214  
SSPSTAT  
WPUB  
WPUB7  
IOCB7  
VREN  
CSRC  
BRG7  
BRG15  
PRSEN  
WPUB6  
IOCB6  
VROE  
TX9  
WPUB5  
IOCB5  
VRR  
WPUB4  
IOCB4  
VRSS  
SYNC  
BRG4  
BRG12  
PDC4  
WPUB3  
IOCB3  
VR3  
WPUB2  
IOCB2  
VR2  
WPUB1  
IOCB1  
VR1  
WPUB0  
IOCB0  
VR0  
IOCB  
49,214  
VRCON  
TXSTA  
SPBRG  
97,214  
TXEN  
BRG5  
BRG13  
PDC5  
SENDB  
BRG3  
BRG11  
PDC3  
BRGH  
BRG2  
BRG10  
PDC2  
TRMT  
BRG1  
BRG9  
PDC1  
TX9D  
BRG0  
BRG8  
PDC0  
158,214  
161,214  
161,214  
144,214  
141,214  
145,214  
99,214  
BRG6  
BRG14  
PDC6  
9Ah SPBRGH  
9Bh PWM1CON  
9Ch ECCPAS  
9Dh PSTRCON  
9Eh ADRESL  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0  
PSSBD1 PSSBD0 0000 0000  
STRSYNC  
STRD  
STRC  
STRB  
STRA  
---0 0001  
xxxx xxxx  
0-00 ----  
A/D Result Register Low Byte  
ADFM VCFG1  
9Fh  
ADCON1  
VCFG0  
105,214  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
MCLR and WDT Reset do not affect the previous value data latch. The RBIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
3:  
Accessible only when SSPCON register bits SSPM<3:0> = 1001.  
PIC16F884/PIC16F887 only.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 27  
PIC16F882/883/884/886/887  
TABLE 2-3:  
PIC16F882/883/884/886/887 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 2  
100h INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
37,213  
73,213  
37,213  
29,213  
37,213  
101h TMR0  
102h PCL  
Program Counter’s (PC) Least Significant Byte  
103h STATUS  
104h FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
105h WDTCON  
106h PORTB  
107h CM1CON0  
108h CM2CON0  
109h CM2CON1  
10Ah PCLATH  
10Bh INTCON  
WDTPS3  
RB4  
WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000 221,214  
RB7  
RB6  
RB5  
RB3  
RB2  
C1R  
C2R  
RB1  
RB0  
xxxx xxxx  
0000 -000  
0000 -000  
48,213  
88,214  
89,214  
91,215  
37,213  
31,213  
C1ON  
C2ON  
C1OUT  
C2OUT  
C1OE  
C2OE  
C1POL  
C2POL  
C2RSEL  
C1CH1  
C2CH1  
T1GSS  
C1CH0  
C2CH0  
MC1OUT MC2OUT C1RSEL  
C2SYNC 0000 --10  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF(1)  
EEDAT  
EEADR  
EEDAT7  
EEDAT6  
EEDAT5  
EEDAT4  
EEADR4  
EEDAT3  
EEADR3  
EEDAT2  
EEADR2  
EEDAT1  
EEADR1  
EEDAT0 0000 0000 112,215  
EEADR0 0000 0000 112,215  
10Ch  
10Dh  
EEADR7 EEADR6 EEADR5  
EEDATH5 EEDATH4  
EEDATH3 EEDATH2 EEDATH1 EEDATH0  
10Eh EEDATH  
10Fh EEADRH  
--00 0000 112,215  
---- 0000 112,215  
EEADRH4(2) EEADRH3 EEADRH2 EEADRH1 EEADRH0  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
MCLR and WDT Reset does not affect the previous value data latch. The RBIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
PIC16F886/PIC16F887 only.  
TABLE 2-4:  
PIC16F882/883/884/886/887 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 3  
180h INDF  
181h OPTION_REG  
182h PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
37,213  
30,214  
37,213  
RBPU  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
183h STATUS  
184h FSR  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
0000 00-0  
1111 1111  
01-0 0-00  
1111 1111  
--11 1111  
---0 0000  
0000 000x  
x--- x000  
---- ----  
29,213  
37,213  
93,215  
48,214  
160,215  
40,215  
99,215  
37,213  
31,213  
113,215  
111,215  
185h SRCON  
186h TRISB  
SR1  
TRISB7  
ABDOVF  
ANS7(2)  
SR0  
TRISB6  
RCIDL  
ANS6(2)  
C1SEN  
TRISB5  
ANS5(2)  
ANS13  
C2REN  
TRISB4  
SCKP  
PULSS  
TRISB3  
BRG16  
ANS3  
PULSR  
TRISB2  
FVREN  
TRISB0  
ABDEN  
ANS0  
TRISB1  
WUE  
187h BAUDCTL  
188h ANSEL  
189h ANSELH  
18Ah PCLATH  
18Bh INTCON  
18Ch EECON1  
18Dh EECON2  
ANS4  
ANS2  
ANS10  
ANS1  
ANS9  
ANS12  
ANS11  
ANS8  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
WR  
RBIF(1)  
EEPGD  
WRERR  
WREN  
RD  
EEPROM Control Register 2 (not a physical register)  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
MCLR and WDT Reset does not affect the previous value data latch. The RBIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
PIC16F884/PIC16F887 only.  
DS41291D-page 28  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
For example, CLRF STATUS,will clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not affect-  
ing any Status bits, see Section 15.0 “Instruction Set  
Summary”  
• the bank select bits for data memory (GPR and  
SFR)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 29  
PIC16F882/883/884/886/887  
2.2.2.2  
OPTION Register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT by  
setting PSA bit of the OPTION register to  
1’. See Section 6.3 “Timer1 Prescaler”.  
The OPTION register, shown in Register 2-2, is a  
readable and writable register, which contains various  
control bits to configure:  
• Timer0/WDT prescaler  
• External INT interrupt  
• Timer0  
• Weak pull-ups on PORTB  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41291D-page 30  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
The INTCON register, shown in Register 2-3, is a  
readable and writable register, which contains the various  
enable and flag bits for TMR0 register overflow, PORTB  
change and external INT pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE(1,3)  
R/W-0  
T0IF(2)  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: INT External Interrupt Enable bit  
1= Enables the INT external interrupt  
0= Disables the INT external interrupt  
RBIE: PORTB Change Interrupt Enable bit(1,3)  
1= Enables the PORTB change interrupt  
0= Disables the PORTB change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: INT External Interrupt Flag bit  
1= The INT external interrupt occurred (must be cleared in software)  
0= The INT external interrupt did not occur  
RBIF: PORTB Change Interrupt Flag bit  
1 = When at least one of the PORTB general purpose I/O pins changed state (must be cleared in  
software)  
0= None of the PORTB general purpose I/O pins have changed state  
Note 1: IOCB register must also be enabled.  
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
3: Includes ULPWU interrupt.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 31  
PIC16F882/883/884/886/887  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 2-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RCIE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TXIE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
SSPIE: Master Synchronous Serial Port (MSSP) Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: Timer2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
DS41291D-page 32  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
2.2.2.5  
PIE2 Register  
The PIE2 register contains the interrupt enable bits, as  
shown in Register 2-5.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-5:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSFIE  
bit 7  
R/W-0  
C2IE  
R/W-0  
C1IE  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
U-0  
R/W-0  
ULPWUIE  
CCP2IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables oscillator fail interrupt  
0= Disables oscillator fail interrupt  
C2IE: Comparator C2 Interrupt Enable bit  
1= Enables Comparator C2 interrupt  
0= Disables Comparator C2 interrupt  
C1IE: Comparator C1 Interrupt Enable bit  
1= Enables Comparator C1 interrupt  
0= Disables Comparator C1 interrupt  
EEIE: EEPROM Write Operation Interrupt Enable bit  
1= Enables EEPROM write operation interrupt  
0= Disables EEPROM write operation interrupt  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enables Bus Collision interrupt  
0= Disables Bus Collision interrupt  
ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit  
1= Enables Ultra Low-Power Wake-up interrupt  
0= Disables Ultra Low-Power Wake-up interrupt  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables CCP2 interrupt  
0= Disables CCP2 interrupt  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 33  
PIC16F882/883/884/886/887  
2.2.2.6  
PIR1 Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 2-6.  
REGISTER 2-6:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
U-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
bit 5  
bit 4  
bit 3  
RCIF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer is full (cleared by reading RCREG)  
0= The EUSART receive buffer is not full  
TXIF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer is empty (cleared by writing to TXREG)  
0= The EUSART transmit buffer is full  
SSPIF: Master Synchronous Serial Port (MSSP) Interrupt Flag bit  
1= The MSSP interrupt condition has occurred, and must be cleared in software before returning from the  
Interrupt Service Routine. The conditions that will set this bit are:  
SPI  
A transmission/reception has taken place  
I C Slave/Master  
2
A transmission/reception has taken place  
I C Master  
2
The initiated Start condition was completed by the MSSP module  
The initiated Stop condition was completed by the MSSP module  
The initiated restart condition was completed by the MSSP module  
The initiated Acknowledge condition was completed by the MSSP module  
A Start condition occurred while the MSSP module was idle (Multi-master system)  
A Stop condition occurred while the MSSP module was idle (Multi-master system)  
0= No MSSP interrupt condition has occurred  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= A Timer2 to PR2 match occurred (must be cleared in software)  
0= No Timer2 to PR2 match occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The TMR1 register overflowed (must be cleared in software)  
0= The TMR1 register did not overflow  
DS41291D-page 34  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
2.2.2.7  
PIR2 Register  
The PIR2 register contains the interrupt flag bits, as  
shown in Register 2-7.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 2-7:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
R/W-0  
OSFIF  
bit 7  
R/W-0  
C2IF  
R/W-0  
C1IF  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
U-0  
R/W-0  
ULPWUIF  
CCP2IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
C2IF: Comparator C2 Interrupt Flag bit  
1= Comparator output (C2OUT bit) has changed (must be cleared in software)  
0= Comparator output (C2OUT bit) has not changed  
C1IF: Comparator C1 Interrupt Flag bit  
1= Comparator output (C1OUT bit) has changed (must be cleared in software)  
0= Comparator output (C1OUT bit) has not changed  
EEIF: EE Write Operation Interrupt Flag bit  
1= Write operation completed (must be cleared in software)  
0= Write operation has not completed or has not started  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision has occurred in the MSSP when configured for I2C Master mode  
0= No bus collision has occurred  
ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag bit  
1= Wake-up condition has occurred (must be cleared in software)  
0= No Wake-up condition has occurred  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 35  
PIC16F882/883/884/886/887  
2.2.2.8  
PCON Register  
The Power Control (PCON) register (see Register 2-8)  
contains flag bits to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the Ultra Low-Power  
Wake-up and software enable of the BOR.  
REGISTER 2-8:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-1  
SBOREN(1)  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
ULPWUE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ULPWUE: Ultra Low-Power Wake-up Enable bit  
1= Ultra Low-Power Wake-up enabled  
0= Ultra Low-Power Wake-up disabled  
bit 4  
SBOREN: Software BOR Enable bit(1)  
1= BOR enabled  
0= BOR disabled  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: BOREN<1:0> = 01in the Configuration Word Register 1 for this bit to control the BOR.  
DS41291D-page 36  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC16F882/883/884/886/887 devices have an  
8-level x 13-bit wide hardware stack (see Figures 2-2  
and 2-3). The stack space is not part of either program  
or data space and the Stack Pointer is not readable or  
writable. The PC is PUSHed onto the stack when a  
CALLinstruction is executed or an interrupt causes a  
branch. The stack is POPed in the event of a RETURN,  
RETLWor a RETFIEinstruction execution. PCLATH is  
not affected by a PUSH or POP operation.  
The Program Counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 2-7 shows the two  
situations for the loading of the PC. The upper example  
in Figure 2-7 shows how the PC is loaded on a write to  
PCL (PCLATH<4:0> PCH). The lower example in  
Figure 2-7 shows how the PC is loaded during a CALLor  
GOTOinstruction (PCLATH<4:3> PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-7:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
Note 1: There are no Status bits to indicate stack  
12  
8
7
0
PCL as  
overflow or stack underflow conditions.  
Destination  
PC  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions or the vectoring to an  
interrupt address.  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE<10:0>  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register actually  
accesses data pointed to by the File Select Register  
(FSR). Reading INDF itself indirectly will produce 00h.  
Writing to the INDF register indirectly results in a no  
operation (although Status bits may be affected). An  
effective 9-bit address is obtained by concatenating the  
8-bit FSR and the IRP bit of the STATUS register, as  
shown in Figure 2-8.  
2.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<12:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the program counter to be changed by  
writing the desired upper 5 bits to the PCLATH register.  
When the lower 8 bits are written to the PCL register, all  
13 bits of the program counter will change to the values  
contained in the PCLATH register and those being  
written to the PCL register.  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). Care should be  
exercised when jumping into a look-up table or  
program branch table (computed GOTO) by modifying  
the PCL register. Assuming that PCLATH is set to the  
table start address, if the table length is greater than  
255 instructions or if the lower 8 bits of the memory  
address rolls over from 0xFF to 0x00 in the middle of  
the table, then PCLATH must be incremented for each  
address rollover that occurs between the table  
beginning and the target location within the table.  
MOVLW  
MOVWF  
0x20  
FSR  
;initialize pointer  
;to RAM  
NEXT  
CLRF  
INCF  
BTFSS  
GOTO  
INDF  
FSR  
;clear INDF register  
;inc pointer  
FSR,4  
NEXT  
;all done?  
;no clear next  
;yes continue  
CONTINUE  
For more information refer to Application Note AN556,  
Implementing a Table Read” (DS00556).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 37  
PIC16F882/883/884/886/887  
FIGURE 2-8:  
DIRECT/INDIRECT ADDRESSING PIC16F882/883/884/886/887  
Direct Addressing  
From Opcode  
Indirect Addressing  
7
RP1 RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note:  
For memory map detail, see Figures 2-2 and 2-3.  
DS41291D-page 38  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch.  
3.0  
I/O PORTS  
There are as many as thirty-five general purpose I/O  
pins available. Depending on which peripherals are  
enabled, some or all of the pins may not be available as  
general purpose I/O. In general, when a peripheral is  
enabled, the associated pin may not be used as a  
general purpose I/O pin.  
The TRISA register (Register 3-2) controls the PORTA  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISA register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
3.1  
PORTA and the TRISA Registers  
Note:  
The ANSEL register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
PORTA is a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 3-2). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). Example 3-1 shows how to  
initialize PORTA.  
EXAMPLE 3-1:  
INITIALIZING PORTA  
BANKSELPORTA  
;
CLRF  
BANKSELANSEL  
PORTA  
;Init PORTA  
;
CLRF  
BCF  
ANSEL  
STATUS,RP1 ;Bank 1  
;digital I/O  
Reading the PORTA register (Register 3-1) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
BANKSELTRISA  
;
MOVLW  
MOVWF  
0Ch  
TRISA  
;Set RA<3:2> as inputs  
;and set RA<5:4,1:0>  
;as outputs  
REGISTER 3-1:  
PORTA: PORTA REGISTER  
R/W-x  
RA7  
R/W-x  
RA6  
R/W-x  
RA5  
R/W-x  
RA4  
R/W-x  
RA3  
R/W-x  
RA2  
R/W-x  
RA1  
R/W-x  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
RA<7:0>: PORTA I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 3-2:  
TRISA: PORTA TRI-STATE REGISTER  
(1)  
(1)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISA7  
bit 7  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISA<7:0>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<7:6> always reads ‘1’ in XT, HS and LP Oscillator modes.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 39  
PIC16F882/883/884/886/887  
3.2  
Additional Pin Functions  
RA0 also has an Ultra Low-Power Wake-up option. The  
next three sections describe these functions.  
3.2.1  
ANSEL REGISTER  
The ANSEL register (Register 3-3) is used to configure  
the Input mode of an I/O pin to analog. Setting the  
appropriate ANSEL bit high will cause all digital reads  
on the pin to be read as ‘0’ and allow analog functions  
on the pin to operate correctly.  
The state of the ANSEL bits has no affect on digital out-  
put functions. A pin with TRIS clear and ANSEL set will  
still operate as a digital output, but the Input mode will  
be analog. This can cause unexpected behavior when  
executing read-modify-write instructions on the  
affected port.  
REGISTER 3-3:  
ANSEL: ANALOG SELECT REGISTER  
R/W-1  
ANS7(2)  
bit 7  
R/W-1  
ANS6(2)  
R/W-1  
ANS5(2)  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANS<7:0>: Analog Select bits  
Analog select between analog or digital function on pins AN<7:0>, respectively.  
1= Analog input. Pin is assigned as analog input(1)  
0= Digital I/O. Pin is assigned to port or special function.  
.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and  
interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
2: Not implemented on PIC16F883/886.  
DS41291D-page 40  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
A series resistor between RA0 and the external  
capacitor provides overcurrent protection for the  
RA0/AN0/ULPWU/C12IN0- pin and can allow for  
software calibration of the time-out (see Figure 3-1). A  
timer can be used to measure the charge time and  
discharge time of the capacitor. The charge time can  
then be adjusted to provide the desired interrupt delay.  
This technique will compensate for the affects of  
temperature, voltage and component accuracy. The  
Ultra Low-Power Wake-up peripheral can also be  
configured as a simple Programmable Low Voltage  
Detect or temperature sensor.  
3.2.2  
ULTRA LOW-POWER WAKE-UP  
The Ultra Low-Power Wake-up (ULPWU) on RA0 allows  
a slow falling voltage to generate an interrupt-on-change  
on RA0 without excess current consumption. The mode  
is selected by setting the ULPWUE bit of the PCON  
register. This enables a small current sink, which can be  
used to discharge a capacitor on RA0.  
Follow these steps to use this feature:  
a) Charge the capacitor on RA0 by configuring the  
RA0 pin to output (= 1).  
b) Configure RA0 as an input.  
c) Enable interrupt-on-change for RA0.  
Note:  
For more information, refer to AN879,  
Using the Microchip Ultra Low-Power  
Wake-up Module” Application Note  
(DS00879).  
d) Set the ULPWUE bit of the PCON register to  
begin the capacitor discharge.  
e) Execute a SLEEPinstruction.  
When the voltage on RA0 drops below VIL, an interrupt  
will be generated which will cause the device to  
wake-up and execute the next instruction. If the GIE bit  
of the INTCON register is set, the device will then call  
the interrupt vector (0004h). See Section 3.4.3 “Inter-  
rupt-on-Change” for more information.  
EXAMPLE 3-2:  
ULTRA LOW-POWER  
WAKE-UP INITIALIZATION  
BANKSELPORTA  
;
BSF  
PORTA,0  
;Set RA0 data latch  
;
;RA0 to digital I/O  
BANKSELANSEL  
BCF  
ANSEL,0  
This feature provides a low-power technique for  
periodically waking up the device from Sleep. The  
time-out is dependent on the discharge time of the RC  
circuit on RA0. See Example 3-2 for initializing the  
Ultra Low-Power Wake-up module.  
BANKSELTRISA  
;
BCF  
CALL  
TRISA,0  
CapDelay  
;Output high to  
;charge capacitor  
;
BANKSELPIR2  
BCF  
PIR2,ULPWUIF  
;Clear flag  
BSF  
PCON,ULPWUE  
;Enable ULP Wake-up  
;Select RA0 IOC  
;RA0 to input  
;Enable interrupt  
;and clear flag  
;Wait for IOC  
;
BSF  
IOCB,0  
BSF  
TRISA,0  
B’10001000’  
INTCON  
MOVLW  
MOVWF  
SLEEP  
NOP  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 41  
PIC16F882/883/884/886/887  
3.2.3  
PIN DESCRIPTIONS AND  
DIAGRAMS  
3.2.3.1  
RA0/AN0/ULPWU/C12IN0-  
Figure 3-1 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the comparator or the A/D Converter (ADC),  
refer to the appropriate section in this data sheet.  
• a general purpose I/O  
• an analog input for the ADC  
• a negative analog input to Comparator C1 or C2  
• an analog input for the Ultra Low-Power Wake-up  
FIGURE 3-1:  
BLOCK DIAGRAM OF RA0  
VDD  
Data Bus  
D
Q
Q
I/O Pin  
WR  
CK  
PORTA  
VSS  
-
+
VTRG  
D
Q
Q
WR  
TRISA  
CK  
IULP  
0
1
RD  
TRISA  
(1)  
Analog  
Input Mode  
VSS  
ULPWUE  
RD  
PORTA  
To Comparator  
To A/D Converter  
Note 1: ANSEL determines Analog Input mode.  
DS41291D-page 42  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
3.2.3.2  
RA1/AN1/C12IN1-  
3.2.3.3  
RA2/AN2/VREF-/CVREF/C2IN+  
Figure 3-2 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 3-3 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC  
• an analog input for the ADC  
• a negative analog input to Comparator C1 or C2  
• a negative voltage reference input for the ADC  
and CVREF  
FIGURE 3-2:  
BLOCK DIAGRAM OF RA1  
• a comparator voltage reference output  
• a positive analog input to Comparator C2  
Data Bus  
FIGURE 3-3:  
BLOCK DIAGRAM OF RA2  
VDD  
D
Q
Q
Data Bus  
WR  
PORTA  
CK  
VROE  
CVREF  
VDD  
D
Q
Q
I/O Pin  
D
Q
Q
WR  
PORTA  
CK  
WR  
CK  
VSS  
TRISA  
I/O Pin  
Analog(1)  
Input Mode  
D
Q
Q
RD  
TRISA  
WR  
TRISA  
CK  
VSS  
Analog(1)  
Input Mode  
RD  
PORTA  
RD  
TRISA  
To Comparator  
To A/D Converter  
Note 1: ANSEL determines Analog Input mode.  
RD  
PORTA  
To Comparator (positive input)  
To Comparator (VREF-)  
To A/D Converter (VREF-)  
To A/D Converter (analog channel)  
Note 1: ANSEL determines Analog Input mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 43  
PIC16F882/883/884/886/887  
3.2.3.4  
RA3/AN3/VREF+/C1IN+  
3.2.3.5  
RA4/T0CKI/C1OUT  
Figure 3-4 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 3-5 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose input  
• a general purpose I/O  
• an analog input for the ADC  
• a clock input for Timer0  
• a positive voltage reference input for the ADC and  
CVREF  
• a digital output from Comparator C1  
FIGURE 3-5:  
BLOCK DIAGRAM OF RA4  
• a positive analog input to Comparator C1  
Data Bus  
C1OUT  
Enable  
FIGURE 3-4:  
BLOCK DIAGRAM OF RA3  
VDD  
D
Q
Q
Data Bus  
WR  
PORTA  
CK  
VDD  
C1OUT  
1
0
D
Q
Q
WR  
PORTA  
CK  
I/O Pin  
D
Q
Q
WR  
TRISA  
I/O Pin  
CK  
VSS  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
VSS  
Analog(1)  
Input Mode  
RD  
TRISA  
RD  
PORTA  
RD  
To Timer0  
PORTA  
To Comparator (positive input)  
To Comparator (VREF+)  
To A/D Converter (VREF+)  
To A/D Converter (analog channel)  
Note 1: ANSEL determines Analog Input mode.  
DS41291D-page 44  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
3.2.3.6  
RA5/AN4/SS/C2OUT  
3.2.3.7  
RA6/OSC2/CLKOUT  
Figure 3-6 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 3-7 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• a crystal/resonator connection  
• a clock output  
• an analog input for the ADC  
• a slave select input  
• a digital output from Comparator C2  
FIGURE 3-7:  
BLOCK DIAGRAM OF RA6  
FIGURE 3-6:  
BLOCK DIAGRAM OF RA5  
Oscillator  
Circuit  
Data Bus  
Data Bus  
OSC2  
C2OUT  
Enable  
VDD  
VDD  
CLKOUT  
Enable  
D
Q
Q
FOSC/4  
1
0
WR  
PORTA  
CK  
D
Q
Q
C2OUT  
1
0
I/O Pin  
WR  
PORTA  
CK  
I/O Pin  
CLKOUT  
Enable  
D
Q
Q
VSS  
WR  
TRISA  
CK  
D
Q
Q
VSS  
INTOSCIO/  
EXTRCIO/EC(1)  
Analog(1)  
Input Mode  
WR  
TRISA  
CK  
RD  
TRISA  
CLKOUT  
Enable  
RD  
TRISA  
RD  
PORTA  
RD  
PORTA  
To SS Input  
To A/D Converter  
Note 1: With I/O option.  
Note 1: ANSEL determines Analog Input mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 45  
PIC16F882/883/884/886/887  
3.2.3.8  
RA7/OSC1/CLKIN  
Figure 3-8 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a crystal/resonator connection  
• a clock input  
FIGURE 3-8:  
BLOCK DIAGRAM OF RA7  
Oscillator  
Circuit  
Data Bus  
OSC1  
VDD  
D
Q
Q
WR  
PORTA  
CK  
I/O Pin  
D
Q
Q
WR  
TRISA  
CK  
VSS  
INTOSC  
Mode  
RD  
TRISA  
RD  
PORTA  
CLKIN  
TABLE 3-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSEL  
ADCS1  
ANS7  
ADCS0  
ANS6  
CHS3  
ANS5  
C1OE  
C2OE  
CHS2  
ANS4  
CHS1  
ANS3  
CHS0  
ANS2  
C1R  
ADON  
ANS0  
0000 0000  
1111 1111  
0000 -000  
0000 -000  
0000 --10  
--01 --qq  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 -000  
0000 -000  
0000 --10  
--0u --uu  
1111 1111  
uuuu uuuu  
0000 0000  
1111 1111  
GO/DONE  
ANS1  
CM1CON0  
CM2CON0  
CM2CON1  
PCON  
C1ON  
C2ON  
C1OUT  
C2OUT  
C1POL  
C2POL  
C2RSEL  
C1CH1  
C2CH1  
T1GSS  
POR  
C1CH0  
C2CH0  
C2SYNC  
BOR  
C2R  
MC1OUT MC2OUT C1RSEL  
ULPWUE SBOREN  
OPTION_REG  
PORTA  
RBPU  
RA7  
INTEDG  
RA6  
T0CS  
RA5  
T0SE  
RA4  
PSA  
RA3  
SSPM3  
TRISA3  
PS2  
PS1  
PS0  
RA2  
RA1  
RA0  
SSPCON  
TRISA  
WCOL  
TRISA7  
SSPOV  
TRISA6  
SSPEN  
TRISA5  
CKP  
SSPM2  
TRISA2  
SSPM1  
TRISA1  
SSPM0  
TRISA0  
TRISA4  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
DS41291D-page 46  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
3.4.1  
ANSELH REGISTER  
3.3  
PORTB and TRISB Registers  
The ANSELH register (Register 3-4) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELH bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 3-6). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 3-3 shows how to initialize PORTB.  
The state of the ANSELH bits has no affect on digital  
output functions. A pin with TRIS clear and ANSELH  
set will still operate as a digital output, but the Input  
mode will be analog. This can cause unexpected  
behavior  
instructions on the affected port.  
when  
executing  
read-modify-write  
Reading the PORTB register (Register 3-5) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
3.4.2  
WEAK PULL-UPS  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:0> enable or  
disable each pull-up (see Register 3-7). Each weak  
pull-up is automatically turned off when the port pin is  
configured as an output. All pull-ups are disabled on a  
Power-on Reset by the RBPU bit of the OPTION register.  
The TRISB register (Register 3-6) controls the PORTB  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’. Example 3-3 shows how to initialize PORTB.  
3.4.3  
INTERRUPT-ON-CHANGE  
All of the PORTB pins are individually configurable as an  
interrupt-on-change pin. Control bits IOCB<7:0> enable  
or disable the interrupt function for each pin. Refer to  
Register 3-8. The interrupt-on-change feature is  
disabled on a Power-on Reset.  
EXAMPLE 3-3:  
INITIALIZING PORTB  
BANKSELPORTB  
;
CLRF  
PORTB  
;Init PORTB  
;
BANKSELTRISB  
For enabled interrupt-on-change pins, the present value  
is compared with the old value latched on the last read  
of PORTB to determine which bits have changed or  
mismatched the old value. The ‘mismatch’ outputs of  
the last read are OR’d together to set the PORTB  
Change Interrupt flag bit (RBIF) in the INTCON register.  
MOVLW  
MOVWF  
B‘11110000;Set RB<7:4> as inputs  
;and RB<3:0> as outputs  
TRISB  
;
Note:  
The ANSELH register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
This interrupt can wake the device from Sleep. The user,  
in the Interrupt Service Routine, clears the interrupt by:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear the flag bit RBIF.  
3.4  
Additional PORTB Pin Functions  
A mismatch condition will continue to set flag bit RBIF.  
Reading or writing PORTB will end the mismatch  
condition and allow flag bit RBIF to be cleared. The latch  
holding the last read value is not affected by a MCLR nor  
Brown-out Reset. After these Resets, the RBIF flag will  
continue to be set if a mismatch is present.  
PORTB pins RB<7:0> on the device family device have  
an interrupt-on-change option and a weak pull-up  
option. The following three sections describe these  
PORTB pin functions.  
Every PORTB pin on this device family has an  
interrupt-on-change option and a weak pull-up option.  
Note:  
If a change on the I/O pin should occur when  
the read operation is being executed (start of  
the Q2 cycle), then the RBIF interrupt flag  
may not get set. Furthermore, since a read  
or write on a port affects all bits of that port,  
care must be taken when using multiple pins  
in Interrupt-on-Change mode. Changes on  
one pin may not be seen while servicing  
changes on another pin.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 47  
PIC16F882/883/884/886/887  
REGISTER 3-4:  
ANSELH: ANALOG SELECT HIGH REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
ANS11  
R/W-1  
R/W-1  
ANS9  
R/W-1  
ANS8  
ANS13  
ANS12  
ANS10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ANS<13:8>: Analog Select bits  
Analog select between analog or digital function on pins AN<13:8>, respectively.  
1= Analog input. Pin is assigned as analog input(1)  
0= Digital I/O. Pin is assigned to port or special function.  
.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and  
interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
REGISTER 3-5:  
PORTB: PORTB REGISTER  
R/W-x  
RB7  
R/W-x  
RB6  
R/W-x  
RB5  
R/W-x  
RB4  
R/W-x  
RB3  
R/W-x  
RB2  
R/W-x  
RB1  
R/W-x  
RB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RB<7:0>: PORTB I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 3-6:  
TRISB: PORTB TRI-STATE REGISTER  
R/W-1  
TRISB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISB6  
TRISB5  
TRISB4  
TRISB3  
TRISB2  
TRISB1  
TRISB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISB<7:0>: PORTB Tri-State Control bit  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
DS41291D-page 48  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 3-7:  
WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1  
WPUB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2  
WPUB1  
WPUB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
WPUB<7:0>: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
REGISTER 3-8:  
IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER  
R/W-0  
IOCB7  
bit 7  
R/W-0  
IOCB6  
R/W-0  
IOCB5  
R/W-0  
IOCB4  
R/W-0  
IOCB3  
R/W-0  
IOCB2  
R/W-0  
IOCB1  
R/W-0  
IOCB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
IOCB<7:0>: Interrupt-on-Change PORTB Control bit  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 49  
PIC16F882/883/884/886/887  
3.4.4  
PIN DESCRIPTIONS AND  
DIAGRAMS  
FIGURE 3-9:  
BLOCK DIAGRAM OF  
RB<3:0>  
Each PORTB pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C or interrupts, refer to the appropriate  
section in this data sheet.  
Analog(1)  
Input Mode  
Data Bus  
D
Q
Q
VDD  
WR  
CK  
Weak  
WPUB  
RBPU  
RD  
WPUB  
3.4.4.1  
RB0/AN12/INT  
Figure 3-9 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
CCP1OUT Enable  
VDD  
D
Q
Q
• a general purpose I/O  
CCP1OUT  
1
• an analog input for the ADC  
• an external edge triggered interrupt  
WR  
PORTB  
CK  
0
I/O Pin  
3.4.4.2  
RB1/AN10/P1C(1)/C12IN3-  
D
Q
Q
Figure 3-9 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
WR  
TRISB  
CK  
VSS  
• a general purpose I/O  
Analog(1)  
Input Mode  
RD  
TRISB  
• an analog input for the ADC  
(1)  
• a PWM output  
RD  
PORTB  
• an analog input to Comparator C1 or C2  
D
Q
Q
Note 1: P1C is available on PIC16F882/883/886  
Q
Q
D
only.  
CK  
WR  
IOCB  
EN  
Q3  
3.4.4.3  
RB2/AN8/P1B(1)  
RD  
IOCB  
Figure 3-9 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
D
EN  
• a general purpose I/O  
Interrupt-on-  
Change  
• an analog input for the ADC  
(1)  
• a PWM output  
RD PORTB  
Note 1: P1B is available on PIC16F882/883/886  
only.  
RB0/INT  
RB3/PGM  
3.4.4.4  
RB3/AN9/PGM/C12IN2-  
To A/D Converter  
To Comparator (RB1, RB3)  
Note 1: ANSELH determines Analog Input mode.  
Figure 3-9 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• Low-voltage In-Circuit Serial Programming enable  
pin  
• an analog input to Comparator C1 or C2  
DS41291D-page 50  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
3.4.4.5  
RB4/AN11/P1D(1)  
3.4.4.7  
RB6/ICSPCLK  
Figure 3-10 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 3-10 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC  
• In-Circuit Serial Programming clock  
(1)  
• a PWM output  
3.4.4.8  
RB7/ICSPDAT  
Note 1: P1D is available on PIC16F882/883/886  
Figure 3-10 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
only.  
3.4.4.6  
RB5/AN13/T1G  
• a general purpose I/O  
• In-Circuit Serial Programming data  
Figure 3-10 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• a Timer1 gate input  
FIGURE 3-10:  
BLOCK DIAGRAM OF RB<7:4>  
Analog(1) Input Mode  
VDD  
Data Bus  
D
Q
Q
Weak  
WR  
WPUB  
CK  
RBPU  
CCP1OUT Enable  
CCP1OUT  
RD  
WPUB  
VDD  
D
Q
Q
10  
WR  
PORTB  
CK  
I/O Pin  
01  
D
Q
Q
WR  
TRISB  
VSS  
CK  
RD  
TRISB  
Analog(1)  
Input Mode  
RD  
PORTB  
D
Q
Q
Q
Q
D
ICSP™(2)  
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
D
EN  
RD PORTB  
Interrupt-on-  
Change  
To Timer1 T1G(3)  
To A/D Converter  
To ICSPCLK (RB6) and ICSPDAT (RB7)  
Available on PIC16F882/PIC16F883/PIC16F886 only.  
Note 1:  
ANSELH determines Analog Input mode.  
Applies to RB<7:6> pins only).  
Applies to RB5 pin only.  
2:  
3:  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 51  
PIC16F882/883/884/886/887  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELH  
CCP1CON  
CM2CON1  
IOCB  
ANS13  
ANS12  
ANS11  
ANS10  
ANS9  
ANS8  
--11 1111 --11 1111  
0000 0000 0000 0000  
DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
P1M1  
P1M0  
MC1OUT MC2OUT C1RSEL C2RSEL  
IOCB2  
T0IF  
PS2  
T1GSS C2SYNC 0000 --10 0000 --10  
IOCB7  
GIE  
IOCB6  
PEIE  
IOCB5  
T0IE  
IOCB4  
INTE  
T0SE  
RB4  
IOCB3  
RBIE  
PSA  
IOCB1  
INTF  
PS1  
IOCB0 0000 0000 0000 0000  
INTCON  
OPTION_REG  
PORTB  
RBIF  
PS0  
RB0  
0000 000x 0000 000x  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
RBPU  
RB7  
INTEDG  
RB6  
T0CS  
RB5  
RB3  
RB2  
RB1  
TRISB  
TRISB7  
TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 1111 1111  
WPUB  
WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 1111 1111 1111 1111  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used by PORTB.  
Legend:  
DS41291D-page 52  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The TRISC register (Register 3-10) controls the PORTC  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISC register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
3.5  
PORTC and TRISC Registers  
PORTC is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISC  
(Register 3-10). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 3-4 shows how to initialize PORTC.  
EXAMPLE 3-4:  
INITIALIZING PORTC  
BANKSELPORTC  
;
CLRF  
BANKSELTRISC  
PORTC  
;Init PORTC  
;
Reading the PORTC register (Register 3-9) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
MOVLW  
MOVWF  
B‘00001100’ ;Set RC<3:2> as inputs  
TRISC  
;and set RC<7:4,1:0>  
;as outputs  
REGISTER 3-9:  
PORTC: PORTC REGISTER  
R/W-x  
RC7  
R/W-x  
RC6  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x  
RC3  
R/W-x  
RC2  
R/W-x  
RC1  
R/W-x  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 3-10: TRISC: PORTC TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1(1)  
TRISC1  
R/W-1(1)  
TRISC0  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bit  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
Note 1: TRISC<1:0> always reads ‘1’ in LP Oscillator mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 53  
PIC16F882/883/884/886/887  
3.5.1  
RC0/T1OSO/T1CKI  
3.5.3  
RC2/P1A/CCP1  
Figure 3-11 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 3-13 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 oscillator output  
• a Timer1 clock input  
• a general purpose I/O  
• a PWM output  
• a Capture input and Compare output for  
Comparator C1  
FIGURE 3-11:  
BLOCK DIAGRAM OF RC0  
FIGURE 3-13:  
BLOCK DIAGRAM OF RC2  
Data Bus  
Timer1 Oscillator  
Circuit  
T1OSCEN  
Data bus  
CCP1CON  
VDD  
D
Q
Q
VDD  
D
Q
WR  
CK  
PORTC  
WR  
PORTC  
CK  
10  
Q
CCP1/P1A  
I/O Pin  
01  
D
Q
Q
I/O Pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
WR  
TRISC  
CK  
VSS  
RD  
TRISC  
RD  
TRISC  
RD  
PORTC  
RD  
PORTC  
To Enhanced CCP1  
To Timer1 clock input  
3.5.2  
RC1/T1OSI/CCP2  
Figure 3-12 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 oscillator input  
• a Capture input and Compare/PWM output for  
Comparator C2  
FIGURE 3-12:  
BLOCK DIAGRAM OF RC1  
T1OSCEN  
T1OSI  
Timer1 Oscillator  
Circuit  
Data Bus  
CCP2CON  
VDD  
D
Q
Q
WR  
PORTC  
CK  
CCP2  
01  
01  
I/O Pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
T1OSCEN  
RD  
TRISC  
RD  
PORTC  
To CCP2  
DS41291D-page 54  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
3.5.4  
RC3/SCK/SCL  
3.5.6  
RC5/SDO  
Figure 3-14 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 3-16 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a SPI clock  
• a general purpose I/O  
• a serial data output  
• an I2C™ clock  
FIGURE 3-16:  
BLOCK DIAGRAM OF RC5  
FIGURE 3-14:  
BLOCK DIAGRAM OF RC3  
Port/SDO  
Select  
Data Bus  
Data Bus  
10  
SDO  
SSPEN  
VDD  
VDD  
D
Q
01  
D
CK  
Q
Q
10  
SCK  
WR  
PORTC  
CK  
WR  
PORTC  
I/O Pin  
Q
01  
I/O Pin  
D
Q
Q
D
Q
Q
WR  
CK  
WR  
TRISC  
CK  
VSS  
TRISC  
VSS  
RD  
TRISC  
RD  
TRISC  
RD  
PORTC  
RD  
PORTC  
To SSPSR  
3.5.5  
RC4/SDI/SDA  
Figure 3-15 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a SPI data I/O  
• an I2C data I/O  
FIGURE 3-15:  
BLOCK DIAGRAM OF RC4  
Data Bus  
SSPEN  
VDD  
D
Q
SDI/SDA  
10  
WR  
PORTC  
CK  
Q
01  
I/O Pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
RD  
TRISC  
RD  
PORTC  
To SSPSR  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 55  
PIC16F882/883/884/886/887  
3.5.7  
RC6/TX/CK  
3.5.8  
RC7/RX/DT  
Figure 3-17 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 3-18 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an asynchronous serial output  
• a synchronous clock I/O  
• an asynchronous serial input  
• a synchronous serial data I/O  
FIGURE 3-17:  
BLOCK DIAGRAM OF RC6  
FIGURE 3-18:  
BLOCK DIAGRAM OF RC7  
SPEN  
SYNC  
SPEN  
TXEN  
Data Bus  
SYNC  
EUSART  
VDD  
EUSART  
CK  
Data Bus  
D
CK  
Q
Q
10  
DT  
10  
EUSART  
TX  
WR  
PORTC  
0
VDD  
0
D
Q
I/O Pin  
10  
WR  
PORTC  
CK  
D
Q
Q
Q
01  
WR  
TRISC  
CK  
VSS  
I/O Pin  
D
Q
Q
RD  
TRISC  
WR  
TRISC  
CK  
VSS  
RD  
PORTC  
RD  
TRISC  
EUSART RX/DT  
RD  
PORTC  
TABLE 3-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP1CON  
CCP2CON  
PORTC  
P1M1  
P1M0  
DC1B1  
DC2B1  
RC5  
DC1B0  
DC2B0  
RC4  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
0000 0000  
--00 0000  
xxxx xxxx  
---0 0001  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
--00 0000  
uuuu uuuu  
---0 0001  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
RC7  
RC6  
RC3  
RC2  
STRC  
FERR  
SSPM2  
RC1  
STRB  
OERR  
SSPM1  
RC0  
STRA  
RX9D  
SSPM0  
PSTRCON  
RCSTA  
STRSYNC  
CREN  
STRD  
SPEN  
RX9  
SREN  
SSPEN  
ADDEN  
SSPM3  
SSPCON  
T1CON  
WCOL  
SSPOV  
CKP  
T1GINV  
TMR1GE  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TRISC  
TRISC7  
TRISC6  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
DS41291D-page 56  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The TRISD register (Register 3-12) controls the PORTD  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISD register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
3.6  
PORTD and TRISD Registers  
PORTD(1) is a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISD  
(Register 3-12). Setting a TRISD bit (= 1) will make the  
corresponding PORTD pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISD bit (= 0) will make the corresponding  
PORTD pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 3-5 shows how to initialize PORTD.  
EXAMPLE 3-5:  
INITIALIZING PORTD  
BANKSELPORTD  
;
CLRF  
BANKSELTRISD  
PORTD  
;Init PORTD  
;
Reading the PORTD register (Register 3-11) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
MOVLW  
MOVWF  
B‘00001100’ ;Set RD<3:2> as inputs  
TRISD  
;and set RD<7:4,1:0>  
;as outputs  
Note 1: PORTD is available on PIC16F884/887  
only.  
REGISTER 3-11: PORTD: PORTD REGISTER  
R/W-x  
RD7  
R/W-x  
RD6  
R/W-x  
RD5  
R/W-x  
RD4  
R/W-x  
RD3  
R/W-x  
RD2  
R/W-x  
RD1  
R/W-x  
RD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RD<7:0>: PORTD General Purpose I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 3-12: TRISD: PORTD TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISD<7:0>: PORTD Tri-State Control bit  
1= PORTD pin configured as an input (tri-stated)  
0= PORTD pin configured as an output  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 57  
PIC16F882/883/884/886/887  
3.6.1  
RD<4:0>  
3.6.3  
RD6/P1C(1)  
Figure 3-19 shows the diagram for these pins. These  
pins are configured to function as general purpose  
I/O’s.  
Figure 3-20 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a PWM output  
Note:  
RD<4:0> is available on PIC16F884/887  
only.  
Note 1: RD6/P1C is available on PIC16F884/887  
only. See RB1/AN10/P1C/C12IN3- for  
this function on PIC16F882/883/886.  
FIGURE 3-19:  
BLOCK DIAGRAM OF  
RD<4:0>  
3.6.4  
RD7/P1D(1)  
Data Bus  
Figure 3-20 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
VDD  
D
Q
• a general purpose I/O  
• a PWM output  
WR  
PORTD  
CK  
Q
Note 1: RD7/P1D is available on PIC16F884/887  
only. See RB4/AN11/P1D for this function  
on PIC16F882/883/886.  
I/O Pin  
D
Q
Q
WR  
TRISD  
CK  
VSS  
FIGURE 3-20:  
BLOCK DIAGRAM OF  
RD<7:5>  
RD  
TRISD  
Data Bus  
D
PSTRCON  
RD  
PORTD  
VDD  
Q
Q
WR  
CK  
10  
CCP1  
PORTD  
3.6.2  
RD5/P1B(1)  
0
I/O Pin  
Figure 3-20 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
D
Q
Q
WR  
TRISD  
CK  
• a general purpose I/O  
• a PWM output  
VSS  
RD  
TRISD  
Note 1: RD5/P1B is available on PIC16F884/887  
only. See RB2/AN8/P1B for this function  
on PIC16F882/883/886.  
RD  
PORTD  
TABLE 3-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
PSTRCON  
TRISD  
RD7  
RD6  
RD5  
RD4  
RD3  
STRD  
RD2  
STRC  
RD1  
STRB  
RD0  
STRA  
xxxx xxxx  
---0 0001  
1111 1111  
uuuu uuuu  
---0 0001  
1111 1111  
STRSYNC  
TRISD4  
TRISD7  
TRISD6  
TRISD5  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTD.  
DS41291D-page 58  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The TRISE register (Register 3-14) controls the PORTE  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISE register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
3.7  
PORTE and TRISE Registers  
PORTE(1) is a 4-bit wide, bidirectional port. The  
corresponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISE bit (= 0) will  
make the corresponding PORTE pin an output (i.e.,  
enable the output driver and put the contents of the  
output latch on the selected pin). The exception is RE3,  
which is input only and its TRIS bit will always read as  
1’. Example 3-6 shows how to initialize PORTE.  
Note:  
The ANSEL register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
EXAMPLE 3-6:  
INITIALIZING PORTE  
Reading the PORTE register (Register 3-13) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch. RE3 reads ‘0’ when MCLRE =  
1.  
BANKSELPORTE  
;
CLRF  
PORTE  
;Init PORTE  
;
;digital I/O  
;Bank 1  
;
BANKSELANSEL  
CLRF  
BCF  
ANSEL  
STATUS,RP1  
BANKSELTRISE  
MOVLW  
MOVWF  
B‘00001100’ ;Set RE<3:2> as inputs  
TRISE  
;and set RE<1:0>  
;as outputs  
Note 1: RE<2:0> pins are available on  
PIC16F884/887 only.  
REGISTER 3-13: PORTE: PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-x  
R/W-x  
RE2  
R/W-x  
RE1  
R/W-x  
RE0  
RE3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
RD<3:0>: PORTE General Purpose I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 3-14: TRISE: PORTE TRI-STATE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-1(1)  
R/W-1  
R/W-1  
R/W-1  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
TRISE<3:0>: PORTE Tri-State Control bit  
1= PORTE pin configured as an input (tri-stated)  
0= PORTE pin configured as an output  
Note 1: TRISE<3> always reads ‘1’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 59  
PIC16F882/883/884/886/887  
3.7.1  
RE0/AN5(1)  
3.7.4  
RE3/MCLR/VPP  
This pin is configurable to function as one of the  
following:  
Figure 3-22 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose input  
• an analog input for the ADC  
• as Master Clear Reset with weak pull-up  
Note 1: RE0/AN5 is available on PIC16F884/887  
FIGURE 3-22:  
BLOCK DIAGRAM OF RE3  
only.  
VDD  
3.7.2  
RE1/AN6(1)  
MCLRE  
Weak  
This pin is configurable to function as one of the  
following:  
Data Bus  
MCLRE  
Reset  
Input  
Pin  
• a general purpose I/O  
• an analog input for the ADC  
RD  
TRISE  
VSS  
Note 1: RE1/AN6 is available on PIC16F884/887  
MCLRE  
VSS  
RD  
PORTE  
only.  
3.7.3  
RE2/AN7(1)  
This pin is configurable to function as one of the  
following:  
• a general purpose I/O  
• an analog input for the ADC  
Note 1: RE2/AN7 is available on PIC16F884/887  
only.  
FIGURE 3-21:  
BLOCK DIAGRAM OF  
RE<2:0>  
Data Bus  
VDD  
D
Q
WR  
PORTE  
CK  
Q
I/O Pin  
D
Q
Q
WR  
TRISE  
CK  
VSS  
Analog(1)  
Input Mode  
RD  
TRISE  
RD  
PORTE  
To A/D Converter  
Note 1: ANSEL determines Analog Input mode.  
TABLE 3-5:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
POR, BOR  
Value on  
all other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSEL  
PORTE  
TRISE  
ANS7 ANS6 ANS5 ANS4  
ANS3  
RE3  
ANS2  
RE2  
ANS1  
RE1  
ANS0  
RE0  
1111 1111  
---- xxxx  
---- 1111  
1111 1111  
---- uuuu  
---- 1111  
TRISE3 TRISE2 TRISE1 TRISE0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTE  
DS41291D-page 60  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The Oscillator module can be configured in one of eight  
clock modes.  
4.0  
4.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. EC – External clock with I/O on OSC2/CLKOUT.  
2. LP – 32 kHz Low-Power Crystal mode.  
Overview  
3. XT – Medium Gain Crystal or Ceramic Resonator  
Oscillator mode.  
The Oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 4-1  
illustrates a block diagram of the Oscillator module.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of two  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
6. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
7. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
8. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
• Selectable system clock source between external  
or internal via software.  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word Register 1 (CONFIG1).  
The internal clock can be generated from two internal  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
oscillators. The HFINTOSC is  
a
calibrated  
high-frequency oscillator. The LFINTOSC is an  
uncalibrated low-frequency oscillator.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 4-1:  
PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word Register 1)  
External Oscillator  
SCS<0>  
(OSCCON Register)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON Register)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
INTOSC  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
© 2007 Microchip Technology Inc.  
Preliminary  
41291D-page 61  
PIC16F882/883/884/886/887  
4.2  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 4-1)  
controls the system clock and frequency selection  
options. The OSCCON register contains the following  
bits:  
• Frequency selection bits (IRCF)  
• Frequency Status bits (HTS, LTS)  
• System clock control bits (OSTS, SCS)  
REGISTER 4-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-1  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111= 8 MHz  
110= 4 MHz (default)  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (LFINTOSC)  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the external clock defined by FOSC<2:0> of the CONFIG1 register  
0= Device is running from the internal oscillator (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0> of the CONFIG1 register  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
41291D-page 62  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
4.3  
Clock Source Modes  
4.4  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
4.4.1 OSCILLATOR START-UP TIMER (OST)  
If the Oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the Oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 4-1.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: Oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
• Internal clock sources are contained internally  
within the Oscillator module. The Oscillator  
module has two internal oscillators: the 8 MHz  
High-Frequency Internal Oscillator (HFINTOSC)  
and the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bit of the OSCCON register. See Section 4.6  
“Clock Switching” for additional information.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 4.7  
“Two-Speed Clock Start-up Mode”).  
TABLE 4-1:  
Switch From  
OSCILLATOR DELAY EXAMPLES  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
125 kHz to 8 MHz  
DC – 20 MHz  
Sleep/POR  
Oscillator Warm-up Delay (TWARM)  
Sleep/POR  
EC, RC  
2 cycles  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
DC – 20 MHz  
1 cycle of each  
1024 Clock Cycles (OST)  
1 μs (approx.)  
LP, XT, HS  
HFINTOSC  
32 kHz to 20 MHz  
125 kHz to 8 MHz  
LFINTOSC (31 kHz)  
4.4.2  
EC MODE  
FIGURE 4-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 4-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
© 2007 Microchip Technology Inc.  
Preliminary  
41291D-page 63  
PIC16F882/883/884/886/887  
4.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 4-3). The mode selects a low,  
medium or high gain setting of the internal  
inverter-amplifier to support various resonator types  
and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is designed to  
drive only 32.768 kHz tuning-fork type crystals (watch  
crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
Analysis and Design” (DS00943)  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
FIGURE 4-4:  
CERAMIC RESONATOR  
OPERATION  
Figure 4-3 and Figure 4-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
(XT OR HS MODE)  
FIGURE 4-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
C1  
PIC® MCU  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
Sleep  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RF  
Sleep  
RS  
Ceramic  
Resonator  
Note 1: A series resistor (RS) may be required for  
OSC2/CLKOUT  
(1)  
C2  
RS  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
41291D-page 64  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
4.4.4  
EXTERNAL RC MODES  
4.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The Oscillator module has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 4-2).  
In RC mode, the RC circuit connects to OSC1.  
OSC2/CLKOUT outputs the RC oscillator frequency  
divided by 4. This signal may be used to provide a clock  
for external circuitry, synchronization, calibration, test  
or other application requirements. Figure 4-5 shows  
the external RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FIGURE 4-5:  
EXTERNAL RC MODES  
VDD  
PIC® MCU  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit of the OSCCON register. See Section 4.6  
“Clock Switching” for more information.  
REXT  
OSC1/CLKIN  
Internal  
Clock  
CEXT  
VSS  
4.5.1 INTOSC AND INTOSCIO MODES  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the Configuration Word  
Register 1 (CONFIG1).  
(1)  
FOSC/4 or  
I/O  
OSC2/CLKOUT  
(2)  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
CEXT > 20 pF, 2-5V  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO Clock  
mode.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
are available for general purpose I/O.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
4.5.2  
HFINTOSC  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 4-2).  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 4-1). One of seven  
frequencies can be selected via software using the  
IRCF<2:0> bits of the OSCCON register. See  
Section 4.5.4 “Frequency Select Bits (IRCF)” for  
more information.  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz by setting the IRCF<2:0>  
bits of the OSCCON register 000. Then, set the  
System Clock Source (SCS) bit of the OSCCON  
register to ‘1’ or enable Two-Speed Start-up by setting  
the IESO bit in the Configuration Word Register 1  
(CONFIG1) to ‘1’.  
The HF Internal Oscillator (HTS) bit of the OSCCON  
register indicates whether the HFINTOSC is stable or not.  
© 2007 Microchip Technology Inc.  
Preliminary  
41291D-page 65  
PIC16F882/883/884/886/887  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
4.5.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 4-2).  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
REGISTER 4-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
41291D-page 66  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
4.5.3  
LFINTOSC  
4.5.5  
HFINTOSC AND LFINTOSC CLOCK  
SWITCH TIMING  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power (see Figure 4-6). If this is the case,  
there is a delay after the IRCF<2:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The LTS and HTS bits of the  
OSCCON register will reflect the current active status  
of the LFINTOSC and HFINTOSC oscillators. The  
timing of a frequency selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 4-1). Select 31 kHz, via  
software, using the IRCF<2:0> bits of the OSCCON  
register. See Section 4.5.4 “Frequency Select Bits  
(IRCF)” for more information. The LFINTOSC is also the  
frequency for the Power-up Timer (PWRT), Watchdog  
Timer (WDT) and Fail-Safe Clock Monitor (FSCM).  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<2:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bit of the OSCCON  
register = 1), or when any of the following are enabled:  
1. IRCF<2:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• Two-Speed Start-up IESO bit of the Configuration  
Word Register 1 = 1and IRCF<2:0> bits of the  
OSCCON register = 000  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
5. CLKOUT is now connected with the new clock.  
LTS and HTS bits of the OSCCON register are  
updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit of the OSCCON  
register indicates whether the LFINTOSC is stable or  
not.  
6. Clock switch is complete.  
See Figure 4-1 for more details.  
4.5.4  
FREQUENCY SELECT BITS (IRCF)  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and new frequencies are derived from the HFINTOSC  
via the postscaler and multiplexer.  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 4-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
eight frequencies can be selected via software:  
Start-up delay specifications are located in the  
oscillator tables of Section 17.0 “Electrical  
Specifications”.  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz (LFINTOSC)  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘110’ and  
the frequency selection is set to 4 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
© 2007 Microchip Technology Inc.  
Preliminary  
41291D-page 67  
PIC16F882/883/884/886/887  
FIGURE 4-6:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
HFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
HFINTOSC  
2-cycle Sync  
Running  
LFINTOSC  
IRCF <2:0>  
0  
= 0  
System Clock  
LFINTOSC  
HFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC  
= 0  
¼ 0  
IRCF <2:0>  
System Clock  
41291D-page 68  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
When the Oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
4.6  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit of the OSCCON  
register.  
enabled (see Section 4.4.1 “Oscillator Start-up Timer  
(OST)”). The OST will suspend program execution until  
1024 oscillations are counted. Two-Speed Start-up  
mode minimizes the delay in code execution by  
operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCCON register is set, program  
execution switches to the external oscillator.  
4.6.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
4.7.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
• When the SCS bit of the OSCCON register = 0,  
the system clock source is determined by  
configuration of the FOSC<2:0> bits in the  
Configuration Word Register 1 (CONFIG1).  
Two-Speed Start-up mode is configured by the  
following settings:  
• When the SCS bit of the OSCCON register = 1,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<2:0>  
bits of the OSCCON register. After a Reset, the  
SCS bit of the OSCCON register is always  
cleared.  
• IESO (of the Configuration Word Register 1) = 1;  
Internal/External Switchover bit (Two-Speed  
Start-up mode enabled).  
• SCS (of the OSCCON register) = 0.  
• FOSC<2:0> bits in the Configuration Word  
Register 1 (CONFIG1) configured for LP, XT or  
HS mode.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the SCS bit  
of the OSCCON register. The user can  
monitor the OSTS bit of the OSCCON  
register to determine the current system  
clock source.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then  
Two-speed Start-up is disabled. This is because the  
external clock oscillator does not require any  
stabilization time after POR or an exit from Sleep.  
4.6.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCCON register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Word Register 1 (CONFIG1), or from the internal clock  
source. In particular, OSTS indicates that the Oscillator  
Start-up Timer (OST) has timed out for LP, XT or HS  
modes.  
4.7.2  
TWO-SPEED START-UP  
SEQUENCE  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<2:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
4.7  
Two-Speed Clock Start-up Mode  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC  
as the clock source and go back to Sleep without  
waiting for the primary oscillator to become stable.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCCON register to  
remain clear.  
© 2007 Microchip Technology Inc.  
Preliminary  
41291D-page 69  
PIC16F882/883/884/886/887  
4.7.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
Checking the state of the OSTS bit of the OSCCON  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Word Register 1  
(CONFIG1), or the internal oscillator.  
FIGURE 4-7:  
TWO-SPEED START-UP  
HFINTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
PC - N  
PC + 1  
Program Counter  
PC  
System Clock  
41291D-page 70  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
4.8.3  
FAIL-SAFE CONDITION CLEARING  
4.8  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or toggling the SCS bit  
of the OSCCON register. When the SCS bit is toggled,  
the OST is restarted. While the OST is running, the  
device continues to operate from the INTOSC selected  
in OSCCON. When the OST times out, the Fail-Safe  
condition is cleared and the device will be operating  
from the external clock source. The Fail-Safe condition  
must be cleared before the OSFIF flag can be cleared.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Word Register 1 (CONFIG1). The FSCM  
is applicable to all external Oscillator modes (LP, XT,  
HS, EC, RC and RCIO).  
FIGURE 4-8:  
FSCM BLOCK DIAGRAM  
4.8.4  
RESET OR WAKE-UP FROM SLEEP  
Clock Monitor  
Latch  
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
External  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit of the OSCCON register to verify  
the oscillator start-up and that the system  
Sample Clock  
Clock  
Failure  
Detected  
4.8.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 4-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire  
half-cycle of the sample clock elapses before the  
primary clock goes low.  
clock  
completed.  
switchover  
has  
successfully  
4.8.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR2 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE2  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<2:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
© 2007 Microchip Technology Inc.  
Preliminary  
41291D-page 71  
PIC16F882/883/884/886/887  
FIGURE 4-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
(1)  
Resets  
(2)  
CONFIG1  
CPD  
CP  
IRCF2  
MCLRE PWRTE  
WDTE  
OSTS  
TUN3  
BCLIE  
BCLIF  
FOSC2  
HTS  
FOSC1  
LTS  
FOSC0  
SCS  
OSCCON  
OSCTUNE  
PIE2  
IRCF1  
IRCF0  
TUN4  
EEIE  
EEIF  
-110 x000 -110 x000  
---0 0000 ---u uuuu  
TUN2  
TUN1  
TUN0  
OSFIE  
OSFIF  
C2IE  
C2IF  
C1IE  
C1IF  
ULPWUIE  
ULPWUIF  
CCP2IE 0000 00-0 0000 00-0  
CCP2IF 0000 00-0 0000 00-0  
PIR2  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: See Configuration Word Register 1 (Register 14-1) for operation of all register bits.  
41291D-page 72  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
5.1  
Timer0 Operation  
5.0  
TIMER0 MODULE  
When used as a timer, the Timer0 module can be used  
as either an 8-bit timer or an 8-bit counter.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
5.1.1  
8-BIT TIMER MODE  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When used as a timer, the Timer0 module will  
increment every instruction cycle (without prescaler).  
Timer mode is selected by clearing the T0CS bit of the  
OPTION register to ‘0’.  
Figure 5-1 is a block diagram of the Timer0 module.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
5.1.2  
8-BIT COUNTER MODE  
When used as a counter, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin. The incrementing edge is determined by the T0SE  
bit of the OPTION register. Counter mode is selected by  
setting the T0CS bit of the OPTION register to ‘1’.  
FIGURE 5-1:  
TIMER0/WDT PRESCALER BLOCK DIAGRAM  
FOSC/4  
Data Bus  
0
1
8
1
Sync  
TMR0  
2 Tcy  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
WDTE  
SWDTEN  
1
PS<2:0>  
WDT  
Time-out  
16-bit  
Prescaler  
0
16  
31 kHz  
INTOSC  
Watchdog  
Timer  
PSA  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register.  
3: WDTE bit is in the Configuration Word Register1.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 73  
PIC16F882/883/884/886/887  
When changing the prescaler assignment from the  
WDT to the Timer0 module, the following instruction  
sequence must be executed (see Example 5-2).  
5.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;
BANKSEL OPTION_REG  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11110000’ ;Mask TMR0 select and  
OPTION_REG,W ;prescaler bits  
b’00000011’ ;Set prescale to 1:16  
OPTION_REG  
;
5.1.4  
TIMER0 INTERRUPT  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit must be  
cleared in software. The Timer0 interrupt enable is the  
T0IE bit of the INTCON register.  
When the prescaler is assigned to WDT, a CLRWDT  
instruction will clear the prescaler along with the WDT.  
5.1.3.1  
Switching Prescaler Between  
Timer0 and WDT Modules  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
As a result of having the prescaler assigned to either  
Timer0 or the WDT, it is possible to generate an  
unintended device Reset when switching prescaler  
values. When changing the prescaler assignment from  
Timer0 to the WDT module, the instruction sequence  
shown in Example 5-1, must be executed.  
5.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, the  
high and low periods of the external clock source must  
meet the timing requirements as shown in the  
Section 17.0 “Electrical Specifications”.  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
BANKSEL TMR0  
CLRWDT  
;
;Clear WDT  
;Clear TMR0 and  
;prescaler  
CLRF  
TMR0  
BANKSEL OPTION_REG  
;
BSF  
OPTION_REG,PSA ;Select WDT  
CLRWDT  
;
;
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11111000’  
OPTION_REG,W  
b’00000101’  
OPTION_REG  
;Mask prescaler  
;bits  
;Set WDT prescaler  
;to 1:32  
DS41291D-page 74  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 5-1:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 1  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note 1: A dedicated 16-bit WDT postscaler is available. See Section 14.5 “Watchdog Timer (WDT)” for more  
information.  
TABLE 5-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0  
Timer0 Module Register  
GIE PEIE T0IE  
xxxx xxxx uuuu uuuu  
INTCON  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF 0000 000x 0000 000x  
PS0 1111 1111 1111 1111  
OPTION_REG RBPU INTEDG T0CS  
TRISA  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 1111 1111  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 75  
PIC16F882/883/884/886/887  
6.1  
Timer1 Operation  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
When used with an internal clock source, the module is  
a timer. When used with an external clock source, the  
module can be used as either a timer or counter.  
• Optional LP oscillator  
• Synchronous or asynchronous operation  
6.2  
Clock Source Selection  
• Timer1 gate (count enable) via comparator or  
T1G pin  
The TMR1CS bit of the T1CON register is used to select  
the clock source. When TMR1CS = 0, the clock source  
is FOSC/4. When TMR1CS = 1, the clock source is  
supplied externally.  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
• Special Event Trigger (with ECCP)  
Clock Source  
TMR1CS  
• Comparator output synchronization to Timer1  
clock  
FOSC/4  
0
1
T1CKI pin  
Figure 6-1 is a block diagram of the Timer1 module.  
FIGURE 6-1:  
TIMER1 BLOCK DIAGRAM  
TMR1GE  
T1GINV  
TMR1ON  
Set flag bit  
TMR1IF on  
Overflow  
To C2 Comparator Module  
Timer1 Clock  
(2)  
TMR1  
TMR1H  
Synchronized  
clock input  
0
EN  
TMR1L  
1
T1 OSC  
(1)  
T1SYNC  
1
0
T1OSI  
1
(3)  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
T1OSO  
0
2
Sleep input  
T1CKPS<1:0>  
T1OSCEN  
T1CKI  
TMR1CS  
1
0
T1G  
C2OUT  
T1GSS  
Note 1: ST Buffer is low power type when using LP oscillator, or high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
DS41291D-page 76  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
6.2.1  
INTERNAL CLOCK SOURCE  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
When the internal clock source is selected the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
continues to increment asynchronous to the internal  
phase clocks. The timer will continue to run during  
Sleep and can generate an interrupt on overflow,  
which will wake-up the processor. However, special  
precautions in software are needed to read/write the  
timer (see Section 6.5.1 “Reading and Writing  
Timer1 in Asynchronous Counter Mode”).  
6.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
When counting, Timer1 is incremented on the rising  
edge of the external clock input T1CKI. In addition, the  
Counter mode clock can be synchronized to the  
microcontroller system clock or run asynchronously.  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce a single spurious  
increment.  
If an external clock oscillator is needed (and the  
microcontroller is using the INTOSC without CLKOUT),  
Timer1 can use the LP oscillator as a clock source.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge.  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
6.3  
Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TTMR1L register  
pair.  
6.4  
Timer1 Oscillator  
A low-power 32.768 kHz crystal oscillator is built-in  
between pins T1OSI (input) and T1OSO (amplifier  
output). The oscillator is enabled by setting the  
T1OSCEN control bit of the T1CON register. The  
oscillator will continue to run during Sleep.  
6.6  
Timer1 Gate  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Timer1 gate source is software configurable to be the  
T1G pin or the output of Comparator C2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator C2. See the  
CM2CON1 register (Register 8-3) for selecting the  
Timer1 gate source. This feature can simplify the  
software for a Delta-Sigma A/D converter and many  
other applications. For more information on Delta-Sigma  
A/D converters, see the Microchip web site  
(www.microchip.com).  
TRISC0 and TRISC1 bits are set when the Timer1  
oscillator is enabled. RC0 and RC1 bits read as ‘0’ and  
TRISC0 and TRISC1 bits read as ‘1’.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
Note:  
TMR1GE bit of the T1CON register must  
be set to use either T1G or C2OUT as the  
Timer1 gate source. See Register 8-3 for  
more information on selecting the Timer1  
gate source.  
Timer1 gate can be inverted using the T1GINV bit of  
the T1CON register, whether it originates from the T1G  
pin or Comparator C2 output. This configures Timer1 to  
measure either the active-high or active-low time  
between events.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 77  
PIC16F882/883/884/886/887  
In Compare mode, an event is triggered when the value  
CCPRxH:CCPRxL register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
6.7  
Timer1 Interrupt  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
See Section 11.0 “Capture/Compare/PWM Modules  
(CCP1 and CCP2)” for more information.  
• Timer1 interrupt enable bit of the PIE1 register  
• PEIE bit of the INTCON register  
6.10 ECCP Special Event Trigger  
If an ECCP is configured to trigger a special event, the  
trigger will clear the TMR1H:TMR1L register pair. This  
special event does not cause a Timer1 interrupt. The  
ECCP module may still be configured to generate a  
ECCP interrupt.  
• GIE bit of the INTCON register  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
In this mode of operation, the CCPRxH:CCPRxL  
register pair effectively becomes the period register for  
Timer1.  
6.8  
Timer1 Operation During Sleep  
Timer1 should be synchronized to the FOSC to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the ECCP, the write  
will take precedence.  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
For  
more  
information,  
see  
Section 11.0  
“Capture/Compare/PWM Modules (CCP1 and  
The device will wake-up on an overflow and execute  
the next instruction. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
CCP2)”.  
6.11 Comparator Synchronization  
The same clock used to increment Timer1 can also be  
used to synchronize the comparator output. This  
feature is enabled in the Comparator module.  
6.9  
ECCP Capture/Compare Time Base  
The ECCP module uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
When using the comparator for Timer1 gate, the  
comparator output should be synchronized to Timer1.  
This ensures Timer1 does not miss an increment if the  
comparator changes.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPRxH:CCPRxL  
register pair on a configured event.  
For more information, see Section 8.0 “Comparator  
Module”.  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of  
the clock.  
DS41291D-page 78  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
6.12 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 6-1:  
T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
T1GINV(1)  
R/W-0  
TMR1GE(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is not active  
0= Timer1 is on  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
bit 3  
bit 2  
T1OSCEN: LP Oscillator Enable Control bit  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CM2CON1  
register, as a Timer1 gate source.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 79  
PIC16F882/883/884/886/887  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CM2CON1 MC1OUT MC2OUT  
C1RSEL  
T0IE  
C2RSEL  
INTE  
T1GSS  
INTF  
C2SYNC  
RBIF  
0000 --10  
0000 000x  
-000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 --10  
0000 000x  
-000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
RCIE  
TXIE  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
RCIF  
TXIF  
TMR1H  
TMR1L  
T1CON  
Legend:  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS41291D-page 80  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
7.0  
TIMER2 MODULE  
The Timer2 module is an eight-bit timer with the  
following features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
See Figure 7-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
7.1  
Timer2 Operation  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset).  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle  
• The Timer2 postscaler is incremented  
The match output of the Timer2/PR2 comparator is  
then fed into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 81  
PIC16F882/883/884/886/887  
REGISTER 7-1:  
T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 7-1:  
SUMMARY OF ASSOCIATED TIMER2 REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
-000 0000  
-000 0000  
-000 0000  
-000 0000  
PIE1  
PIR1  
PR2  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
1111 1111 1111 1111  
0000 0000 0000 0000  
-000 0000 -000 0000  
TMR2  
T2CON  
Legend:  
TMR2ON  
T2CKPS1  
T2CKPS0  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
DS41291D-page 82  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
8.1  
Comparator Overview  
8.0  
COMPARATOR MODULE  
A single comparator is shown in Figure 8-1 along with  
the relationship between the analog input levels and  
the digital output. When the analog voltage at VIN+ is  
less than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
The comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of the program execution. The analog  
Comparator module includes the following features:  
• Independent comparator control  
• Programmable input selection  
• Comparator output is available internally/externally  
• Programmable output polarity  
• Interrupt-on-change  
FIGURE 8-1:  
SINGLE COMPARATOR  
VIN+  
VIN-  
+
Output  
• Wake-up from Sleep  
• PWM shutdown  
• Timer1 gate (count enable)  
• Output synchronization to Timer1 clock input  
• SR Latch  
VIN-  
VIN+  
• Programmable and fixed voltage reference  
Note:  
Only Comparator C2 can be linked to  
Timer1.  
Output  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 83  
PIC16F882/883/884/886/887  
FIGURE 8-2:  
COMPARATOR C1 SIMPLIFIED BLOCK DIAGRAM  
C1CH<1:0>  
C1POL  
2
To  
Data Bus  
D
Q
Q1  
C12IN0-  
EN  
0
RD_CM1CON0  
Set C1IF  
C12IN1-  
C12IN2-  
C12IN3-  
1
MUX  
2
D
Q
Q3*RD_CM1CON0  
Reset  
EN  
To PWM Logic  
3
CL  
(1)  
C1ON  
C1  
C1R  
C1VIN-  
C1VIN+  
-
C1IN+  
0
MUX  
1
C1OUT  
+
C1OUT (to SR Latch)  
FixedRef  
0
C1POL  
MUX  
1
CVREF  
C1VREF  
C1RSEL  
Note 1: When C1ON = 0, the C1 comparator will produce a ‘0’ output to the XOR Gate.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
FIGURE 8-3:  
COMPARATOR C2 SIMPLIFIED BLOCK DIAGRAM  
C2POL  
To  
D
Q
Data Bus  
Q1  
EN  
RD_CM2CON0  
C2CH<1:0>  
Set C2IF  
2
D
Q
Q3*RD_CM2CON0  
EN  
(1)  
C2ON  
C2  
C12IN0-  
0
CL  
Reset  
C12IN1-  
C2IN2-  
C2IN3-  
1
MUX  
2
C2VIN-  
C2VIN+  
C2OUT  
3
C2SYNC  
C2POL  
0
MUX  
SYNCC2OUT  
C2R  
D
Q
1
To Timer1 Gate, SR Latch  
and other peripherals  
C2IN+  
0
MUX  
1
From Timer1  
Clock  
FixedRef  
0
MUX  
1
CVREF  
C2VREF  
C2RSEL  
Note 1: When C2ON = 0, the C2 comparator will produce a ‘0’ output to the XOR Gate.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
DS41291D-page 84  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
8.2  
Comparator Control  
Note 1: The CxOE bit overrides the PORT data  
latch. Setting the CxON has no impact on  
the port override.  
Each comparator has  
a
separate control and  
configuration register: CM1CON0 for Comparator C1 and  
CM2CON0 for Comparator C2. In addition, Comparator  
C2 has a second control register, CM2CON1, for  
controlling the interaction with Timer1 and simultaneous  
reading of both comparator outputs.  
2: The internal output of the comparator is  
latched with each instruction cycle.  
Unless otherwise specified, external  
outputs are not latched.  
The CM1CON0 and CM2CON0 registers (see Registers  
8-1 and 8-2, respectively) contain the control and Status  
bits for the following:  
8.2.5  
COMPARATOR OUTPUT POLARITY  
Inverting the output of the comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of the comparator output can be inverted by  
setting the CxPOL bit of the CMxCON0 register.  
Clearing the CxPOL bit results in a non-inverted output.  
• Enable  
• Input selection  
• Reference selection  
• Output selection  
• Output polarity  
Table 8-1 shows the output state versus input  
conditions, including polarity control.  
8.2.1  
COMPARATOR ENABLE  
TABLE 8-1:  
COMPARATOR OUTPUT  
STATE VS. INPUT  
CONDITIONS  
Setting the CxON bit of the CMxCON0 register enables  
the comparator for operation. Clearing the CxON bit  
disables the comparator resulting in minimum current  
consumption.  
Input Condition  
CxPOL  
CxOUT  
CxVIN- > CxVIN+  
CxVIN- < CxVIN+  
CxVIN- > CxVIN+  
CxVIN- < CxVIN+  
0
0
1
1
0
1
1
0
8.2.2  
COMPARATOR INPUT SELECTION  
The CxCH<1:0> bits of the CMxCON0 register direct  
one of four analog input pins to the comparator  
inverting input.  
Note:  
To use CxIN+ and CxIN- pins as analog  
inputs, the appropriate bits must be set in  
the ANSEL and ANSELH registers and the  
corresponding TRIS bits must also be set  
to disable the output drivers.  
8.3  
Comparator Response Time  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the  
comparator differs from the settling time of the voltage  
reference. Therefore, both of these times must be  
considered when determining the total response time  
to a comparator input change. See the Comparator and  
Voltage Reference specifications in Section 17.0  
“Electrical Specifications” for more details.  
8.2.3  
COMPARATOR REFERENCE  
SELECTION  
Setting the CxR bit of the CMxCON0 register directs an  
internal voltage reference or an analog input pin to the  
non-inverting input of the comparator. See  
Section 8.10 “Comparator Voltage Reference” for  
more information on the internal Voltage Reference  
module.  
8.2.4  
COMPARATOR OUTPUT  
SELECTION  
The output of the comparator can be monitored by  
reading either the CxOUT bit of the CMxCON0 register  
or the MCxOUT bit of the CM2CON1 register. In order  
to make the output available for an external connection,  
the following conditions must be true:  
• CxOE bit of the CMxCON0 register must be set  
• Corresponding TRIS bit must be cleared  
• CxON bit of the CMxCON0 register must be set  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 85  
PIC16F882/883/884/886/887  
FIGURE 8-4:  
COMPARATOR  
8.4  
Comparator Interrupt Operation  
INTERRUPT TIMING W/O  
CMxCON0 READ  
The comparator interrupt flag can be set whenever  
there is a change in the output value of the comparator.  
Changes are recognized by means of a mismatch  
circuit which consists of two latches and an exclusive-  
or gate (see Figures 8-2 and 8-3). One latch is updated  
with the comparator output level when the CMxCON0  
register is read. This latch retains the value until the  
next read of the CMxCON0 register or the occurrence  
of a Reset. The other latch of the mismatch circuit is  
updated on every Q1 system clock. A mismatch  
condition will occur when a comparator output change  
is clocked through the second latch on the Q1 clock  
cycle. At this point the two mismatch latches have  
opposite output levels which is detected by the  
exclusive-or gate and fed to the interrupt circuitry. The  
mismatch condition persists until either the CMxCON0  
register is read or the comparator output returns to the  
previous state.  
Q1  
Q3  
CxIN+  
TRT  
CxOUT  
Set CxIF (edge)  
CxIF  
reset by software  
FIGURE 8-5:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMxCON0 READ  
Q1  
Q3  
CxIN+  
TRT  
Note 1: A write operation to the CMxCON0  
register will also clear the mismatch  
condition because all writes include a read  
operation at the beginning of the write  
cycle.  
CxOUT  
Set CxIF (edge)  
CxIF  
cleared by CMxCON0 read  
reset by software  
2: Comparator interrupts will operate correctly  
regardless of the state of CxOE.  
The comparator interrupt is set by the mismatch edge  
and not the mismatch level. This means that the inter-  
rupt flag can be reset without the additional step of  
reading or writing the CMxCON0 register to clear the  
mismatch registers. When the mismatch registers are  
cleared, an interrupt will occur upon the comparator’s  
return to the previous state, otherwise no interrupt will  
be generated.  
Note 1: If a change in the CMxCON0 register  
(CxOUT) should occur when a read oper-  
ation is being executed (start of the Q2  
cycle), then the CxIF of the PIR2 register  
interrupt flag may not get set.  
2: When either comparator is first enabled,  
bias circuitry in the Comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is stable.  
Allow about 1 μs for bias settling then clear  
the mismatch condition and interrupt flags  
before enabling comparator interrupts.  
Software will need to maintain information about the  
status of the comparator output, as read from the  
CMxCON0 register, or CM2CON1 register, to determine  
the actual change that has occurred.  
The CxIF bit of the PIR2 register is the comparator  
interrupt flag. This bit must be reset in software by  
clearing it to ‘0’. Since it is also possible to write a ‘1’ to  
this register, an interrupt can be generated.  
The CxIE bit of the PIE2 register and the PEIE and GIE  
bits of the INTCON register must all be set to enable  
comparator interrupts. If any of these bits are cleared,  
the interrupt is not enabled, although the CxIF bit of the  
PIR2 register will still be set if an interrupt condition  
occurs.  
DS41291D-page 86  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
8.5  
Operation During Sleep  
The comparator, if enabled before entering Sleep mode,  
remains active during Sleep. The additional current  
consumed by the comparator is shown separately in the  
Section 17.0 “Electrical Specifications”. If the  
comparator is not used to wake the device, power  
consumption can be minimized while in Sleep mode by  
turning off the comparator. Each comparator is turned off  
by clearing the CxON bit of the CMxCON0 register.  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CxIE bit of the PIE2 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the Sleep instruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the Interrupt Service Routine.  
8.6  
Effects of a Reset  
A device Reset forces the CMxCON0 and CM2CON1  
registers to their Reset states. This forces both  
comparators and the voltage references to their Off  
states.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 87  
PIC16F882/883/884/886/887  
REGISTER 8-1:  
CM1CON0: COMPARATOR C1 CONTROL REGISTER 0  
R/W-0  
C1ON  
R-0  
R/W-0  
C1OE  
R/W-0  
U-0  
R/W-0  
C1R  
R/W-0  
R/W-0  
C1OUT  
C1POL  
C1CH1  
C1CH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
C1ON: Comparator C1 Enable bit  
1= Comparator C1 is enabled  
0= Comparator C1 is disabled  
C1OUT: Comparator C1 Output bit  
If C1POL = 1(inverted polarity):  
C1OUT = 0when C1VIN+ > C1VIN-  
C1OUT = 1when C1VIN+ < C1VIN-  
If C1POL = 0(non-inverted polarity):  
C1OUT = 1when C1VIN+ > C1VIN-  
C1OUT = 0when C1VIN+ < C1VIN-  
bit 5  
bit 4  
C1OE: Comparator C1 Output Enable bit  
1= C1OUT is present on the C1OUT pin(1)  
0= C1OUT is internal only  
C1POL: Comparator C1 Output Polarity Select bit  
1= C1OUT logic is inverted  
0= C1OUT logic is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
C1R: Comparator C1 Reference Select bit (non-inverting input)  
1= C1VIN+ connects to C1VREF output  
0= C1VIN+ connects to C1IN+ pin  
bit 1-0  
C1CH<1:0>: Comparator C1 Channel Select bit  
00= C12IN0- pin of C1 connects to C1VIN-  
01= C12IN1- pin of C1 connects to C1VIN-  
10= C12IN2- pin of C1 connects to C1VIN-  
11= C12IN3- pin of C1 connects to C1VIN-  
Note 1: Comparator output requires the following three conditions: C1OE = 1, C1ON = 1and corresponding port  
TRIS bit = 0.  
DS41291D-page 88  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 8-2:  
CM2CON0: COMPARATOR C2 CONTROL REGISTER 0  
R/W-0  
C2ON  
R-0  
R/W-0  
C2OE  
R/W-0  
U-0  
R/W-0  
C2R  
R/W-0  
R/W-0  
C2OUT  
C2POL  
C2CH1  
C2CH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
C2ON: Comparator C2 Enable bit  
1= Comparator C2 is enabled  
0= Comparator C2 is disabled  
C2OUT: Comparator C2 Output bit  
If C2POL = 1(inverted polarity):  
C2OUT = 0when C2VIN+ > C2VIN-  
C2OUT = 1when C2VIN+ < C2VIN-  
If C2POL = 0(non-inverted polarity):  
C2OUT = 1when C2VIN+ > C2VIN-  
C2OUT = 0when C2VIN+ < C2VIN-  
bit 5  
bit 4  
C2OE: Comparator C2 Output Enable bit  
1= C2OUT is present on C2OUT pin(1)  
0= C2OUT is internal only  
C2POL: Comparator C2 Output Polarity Select bit  
1= C2OUT logic is inverted  
0= C2OUT logic is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
C2R: Comparator C2 Reference Select bits (non-inverting input)  
1= C2VIN+ connects to C2VREF  
0= C2VIN+ connects to C2IN+ pin  
bit 1-0  
C2CH<1:0>: Comparator C2 Channel Select bits  
00= C12IN0- pin of C2 connects to C2VIN-  
01= C12IN1- pin of C2 connects to C2VIN-  
10= C12IN2- pin of C2 connects to C2VIN-  
11= C12IN3- pin of C2 connects to C2VIN-  
Note 1: Comparator output requires the following three conditions: C2OE = 1, C2ON = 1and corresponding port  
TRIS bit = 0.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 89  
PIC16F882/883/884/886/887  
8.7  
Analog Input Connection  
Considerations  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
A simplified circuit for an analog input is shown in  
Figure 8-6. Since the analog input pins share their con-  
nection with a digital input, they have reverse biased  
ESD protection diodes to VDD and VSS. The analog  
input, therefore, must be between VSS and VDD. If the  
input voltage deviates from this range by more than  
0.6V in either direction, one of the diodes is forward  
biased and a latch-up may occur.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
FIGURE 8-6:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
To ADC Input  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
DS41291D-page 90  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
8.8.2  
SYNCHRONIZING COMPARATOR  
C2 OUTPUT TO TIMER1  
8.8  
Additional Comparator Features  
There are three additional comparator features:  
The Comparator C2 output can be synchronized with  
Timer1 by setting the C2SYNC bit of the CM2CON1  
register. When enabled, the C2 output is latched on the  
falling edge of the Timer1 clock source. If a prescaler is  
used with Timer1, the comparator output is latched after  
the prescaling function. To prevent a race condition, the  
comparator output is latched on the falling edge of the  
Timer1 clock source and Timer1 increments on the  
rising edge of its clock source. See the Comparator  
Block Diagram (Figures 8-2 and 8-3) and the Timer1  
Block Diagram (Figure 6-1) for more information.  
• Timer1 count enable (gate)  
• Synchronizing output with Timer1  
• Simultaneous read of comparator outputs  
8.8.1  
COMPARATOR C2 GATING TIMER1  
This feature can be used to time the duration or interval  
of analog events. Clearing the T1GSS bit of the  
CM2CON1 register will enable Timer1 to increment  
based on the output of Comparator C2. This requires  
that Timer1 is on and gating is enabled. See  
Section 6.0 “Timer1 Module with Gate Control” for  
details.  
8.8.3  
SIMULTANEOUS COMPARATOR  
OUTPUT READ  
It is recommended to synchronize the comparator with  
Timer1 by setting the C2SYNC bit when the comparator  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if the comparator changes  
during an increment.  
The MC1OUT and MC2OUT bits of the CM2CON1  
register are mirror copies of both comparator outputs.  
The ability to read both outputs simultaneously from a  
single register eliminates the timing skew of reading  
separate registers.  
Note 1: Obtaining the status of C1OUT or C2OUT  
by reading CM2CON1 does not affect the  
comparator interrupt mismatch registers.  
REGISTER 8-3:  
CM2CON1: COMPARATOR C2 CONTROL REGISTER 1  
R-0  
MC1OUT  
bit 7  
R-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-1  
R/W-0  
MC2OUT  
C1RSEL  
C2RSEL  
T1GSS  
C2SYNC  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
MC1OUT: Mirror Copy of C1OUT bit  
MC2OUT: Mirror Copy of C2OUT bit  
C1RSEL: Comparator C1 Reference Select bit  
1= CVREF routed to C1VREF input of Comparator C1  
0= Absolute voltage reference (0.6) routed to C1VREF input of Comparator C1 (or 1.2V precision  
reference on parts so equipped)  
bit 4  
C2RSEL: Comparator C2 Reference Select bit  
1= CVREF routed to C2VREF input of Comparator C2  
0= Absolute voltage reference (0.6) routed to C2VREF input of Comparator C2 (or 1.2V precision  
reference on parts so equipped)  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit  
1= Timer1 gate source is T1G  
0= Timer1 gate source is SYNCC2OUT.  
C2SYNC: Comparator C2 Output Synchronization bit  
bit 0  
1= Output is synchronous to falling edge of Timer1 clock  
0= Output is asynchronous  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 91  
PIC16F882/883/884/886/887  
8.9.2  
LATCH OUTPUT  
8.9  
Comparator SR Latch  
The SR<1:0> bits of the SRCON register control the  
latch output multiplexers and determine four possible  
output configurations. In these four configurations, the  
CxOUT I/O port logic is connected to:  
The SR Latch module provides additional control of the  
comparator outputs. The module consists of a single  
SR latch and output multiplexers. The SR latch can be  
set, reset or toggled by the comparator outputs. The SR  
latch may also be set or reset, independent of  
comparator output, by control bits in the SRCON control  
register. The SR latch output multiplexers select  
whether the latch outputs or the comparator outputs are  
directed to the I/O port logic for eventual output to a pin.  
• C1OUT and C2OUT  
• C1OUT and SR latch Q  
• C2OUT and SR latch Q  
• SR latch Q and Q  
After any Reset, the default output configuration is the  
unlatched C1OUT and C2OUT mode. This maintains  
compatibility with devices that do not have the SR latch  
feature.  
8.9.1  
LATCH OPERATION  
The latch is a Set-Reset latch that does not depend on a  
clock source. Each of the Set and Reset inputs are  
active-high. Each latch input is connected to a  
comparator output and a software controlled pulse  
generator. The latch can be set by C1OUT or the PULSS  
bit of the SRCON register. The latch can be reset by  
C2OUT or the PULSR bit of the SRCON register. The  
latch is reset-dominant, therefore, if both Set and Reset  
inputs are high the latch will go to the Reset state. Both  
the PULSS and PULSR bits are self resetting which  
means that a single write to either of the bits is all that is  
necessary to complete a latch set or Reset operation.  
The applicable TRIS bits of the corresponding ports  
must be cleared to enable the port pin output drivers.  
Additionally, the CxOE comparator output enable bits of  
the CMxCON0 registers must be set in order to make the  
comparator or latch outputs available on the output pins.  
The latch configuration enable states are completely  
independent of the enable states for the comparators.  
FIGURE 8-7:  
SR LATCH SIMPLIFIED BLOCK DIAGRAM  
SR0  
C1OE  
PULSS  
Pulse  
Gen(2)  
0
MUX  
1
C1OUT (from comparator)  
C1SEN  
S
Q
(3)  
C1OUT pin  
SR  
Latch  
(1)  
C2OE  
SYNCC2OUT (from comparator)  
C2REN  
1
MUX  
R
Q
(3)  
0
C2OUT pin  
PULSR  
Pulse  
SR1  
Gen(2)  
Note 1: If R = 1and S = 1simultaneously, Q = 0, Q = 1  
2: Pulse generator causes a 1/2 Q-state (1 Tosc) pulse width.  
3: Output shown for reference only. See I/O port pin block diagram for more detail.  
DS41291D-page 92  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 8-4:  
SRCON: SR LATCH CONTROL REGISTER  
R/W-0  
SR1(2)  
bit 7  
R/W-0  
SR0(2)  
R/W-0  
R/W-0  
R/S-0  
R/S-0  
U-0  
R/W-0  
C1SEN  
C2REN  
PULSS  
PULSR  
FVREN  
bit 0  
Legend:  
S = Bit is set only -  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
SR1: SR Latch Configuration bit(2)  
1= C2OUT pin is the latch Q output  
0= C2OUT pin is the C2 comparator output  
SR0: SR Latch Configuration bits(2)  
1= C1OUT pin is the latch Q output  
0= C1OUT pin is the C1 Comparator output  
C1SEN: C1 Set Enable bit  
1= C1 comparator output sets SR latch  
0= C1 comparator output has no effect on SR latch  
C2REN: C2 Reset Enable bit  
1= C2 comparator output resets SR latch  
0= C2 comparator output has no effect on SR latch  
PULSS: Pulse the SET Input of the SR Latch bit  
1= Triggers pulse generator to set SR latch. Bit is immediately reset by hardware.  
0= Does not trigger pulse generator  
PULSR: Pulse the Reset Input of the SR Latch bit  
1= Triggers pulse generator to reset SR latch. Bit is immediately reset by hardware.  
0= Does not trigger pulse generator  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
FVREN: Fixed Voltage Reference Enable bit  
1= 0.6V Reference FROM INTOSC LDO is enabled  
0= 0.6V Reference FROM INTOSC LDO is disabled  
Note 1: The CxOUT bit in the CMxCON0 register will always reflect the actual comparator output (not the level on  
the pin), regardless of the SR latch operation.  
2: To enable an SR Latch output to the pin, the appropriate CxOE and TRIS bits must be properly  
configured.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 93  
PIC16F882/883/884/886/887  
8.10.3  
OUTPUT CLAMPED TO VSS  
8.10 Comparator Voltage Reference  
The CVREF output voltage can be set to Vss with no  
power consumption by configuring VRCON as follows:  
The Comparator Voltage Reference module provides  
an internally generated voltage reference for the com-  
parators. The following features are available:  
• VREN = 0  
• VRR = 1  
• Independent from Comparator operation  
• Two 16-level voltage ranges  
• Output clamped to VSS  
• VR<3:0> = 0000  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
• Ratiometric with VDD  
• Fixed Reference (0.6V)  
8.10.4  
OUTPUT RATIOMETRIC TO VDD  
The VRCON register (Register 8-5) controls the  
Voltage Reference module shown in Figure 8-8.  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 17.0  
“Electrical Specifications”.  
The voltage source is selectable through both ends of  
the 16 connection resistor ladder network. Bit VRSS of  
the VRCON register selects either the internal or  
external voltage source.  
8.10.5  
FIXED VOLTAGE REFERENCE  
The PIC16F883/884/886/887 allows the CVREF signal  
to be output to the RA2 pin of PORTA under certain  
configurations only. For more details, see Figure 8-9.  
The fixed voltage reference is independent of VDD, with  
a nominal output voltage of 0.6V. This reference can be  
enabled by setting the FVREN bit of the SRCON  
register to ‘1’. This reference is always enabled when  
the HFINTOSC oscillator is active.  
8.10.1  
INDEPENDENT OPERATION  
The comparator voltage reference is independent of  
the comparator configuration. Setting the VREN bit of  
the VRCON register will enable the voltage reference.  
8.10.6  
FIXED VOLTAGE REFERENCE  
STABILIZATION PERIOD  
8.10.2  
OUTPUT VOLTAGE SELECTION  
When the fixed Voltage Reference module is enabled,  
it will require some time for the reference and its  
amplifier circuits to stabilize. The user program must  
include a small delay routine to allow the module to  
settle. See the electrical specifications section for the  
minimum delay requirement.  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the VRR bit of the VRCON register. The  
16 levels are set with the VR<3:0> bits of the VRCON  
register.  
The CVREF output voltage is determined by the following  
equations:  
8.10.7  
VOLTAGE REFERENCE  
SELECTION  
Multiplexers on the output of the Voltage Reference  
module enable selection of either the CVREF or fixed  
voltage reference for use by the comparators.  
EQUATION 8-1:  
CVREF OUTPUT VOLTAGE  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) × VLADDER  
Setting the C1VREN bit of the VRCON register enables  
current to flow in the CVREF voltage divider and selects  
the CVREF voltage for use by C1. Clearing the C1VREN  
bit selects the fixed voltage for use by C1.  
VRR = 0 (high range):  
CVREF = (VLADDER/4) + (VR<3:0> × VLADDER/32)  
VLADDER = VDD or ([VREF+] - [VREF-]) or VREF+  
Setting the C2VREN bit of the VRCON register enables  
current to flow in the CVREF voltage divider and selects  
the CVREF voltage for use by C2. Clearing the C2VREN  
bit selects the fixed voltage for use by C2.  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 8-8.  
When both the C1VREN and C2VREN bits are cleared,  
current flow in the CVREF voltage divider is disabled  
minimizing the power drain of the voltage reference  
peripheral.  
DS41291D-page 94  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 8-8:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
VREF+  
VRSS = 1  
8R  
R
R
R
R
VRSS = 0  
VRR  
8R  
VDD  
Analog  
MUX  
VREF-  
VRSS = 1  
VRSS = 0  
15  
0
CVREF  
To Comparators  
and ADC Module  
(1)  
VR<3:0>  
VROE  
4
VREN  
C1RSEL  
C2RSEL  
CVREF  
FVREN  
Sleep  
HFINTOSC enable  
EN  
FixedRef  
0.6V  
Fixed Voltage  
Reference  
To Comparators  
and ADC Module  
Note 1: Care should be taken when using VREF- with Comparator.  
FIGURE 8-9:  
COMPARATOR AND ADC VOLTAGE REFERENCE BLOCK DIAGRAM  
VREF+  
1
0
1
0
AVDD  
AVDD  
VCFG0  
VRSS  
CVREF  
Comparator  
ADC  
Voltage  
Reference  
Voltage  
Reference  
VROE  
VCFG1  
VRSS  
AVSS  
0
1
0
AVSS  
VCFG1  
1
VREF-  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 95  
PIC16F882/883/884/886/887  
TABLE 8-2:  
COMPARATOR AND ADC VOLTAGE REFERENCE PRIORITY  
Comp.  
Reference (+)  
Comp.  
Reference (-)  
ADC  
Reference (+)  
ADC  
Reference (-)  
RA3  
RA2  
CFG1  
CFG0  
VRSS  
VROE  
I/O  
I/O  
AVDD  
AVDD  
VREF+  
VREF+  
AVDD  
AVDD  
VREF+  
VREF+  
AVDD  
AVDD  
VREF+  
VREF+  
AVDD  
AVDD  
VREF+  
VREF+  
AVSS  
AVSS  
VREF-  
AVSS  
AVSS  
AVSS  
VREF-  
AVSS  
AVSS  
AVSS  
VREF-  
VREF-  
AVSS  
AVSS  
VREF-  
VREF-  
AVDD  
AVDD  
AVDD  
AVDD  
VREF+  
VREF+  
VREF+  
VREF+  
AVDD  
AVDD  
AVDD  
AVDD  
VREF+  
VREF+  
VREF+  
VREF+  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
I/O  
CVREF  
VREF-  
CVREF  
I/O  
VREF+  
VREF+  
VREF+  
VREF+  
VREF+  
VREF+  
I/O  
CVREF  
VREF-  
CVREF  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
VREF-  
I/O  
VREF+  
VREF+  
VREF+  
VREF+  
VREF+  
VREF+  
DS41291D-page 96  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 8-5:  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
VREN  
R/W-0  
VROE  
R/W-0  
VRR  
R/W-0  
VRSS  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
VREN: Comparator C1 Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
VROE: Comparator C2 Voltage Reference Enable bit  
1= CVREF voltage level is also output on the RA2/AN2/VREF-/CVREF/C2IN+ pin  
0= CVREF voltage is disconnected from the RA2/AN2/VREF-/CVREF/C2IN+ pin  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
VRSS: Comparator VREF Range Selection bit  
1= Comparator Reference Source, CVRSRC = (VREF+) - (VREF-)  
0= Comparator Reference Source, CVRSRC = VDD - VSS  
VR<3:0>: CVREF Value Selection 0 VR<3:0> 15  
When VRR = 1: CVREF = (VR<3:0>/24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD  
TABLE 8-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE  
REFERENCE MODULES  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
ANSEL  
ANS7  
ANS6  
ANS5  
ANS13  
C1OE  
C2OE  
ANS4  
ANS12  
C1POL  
C2POL  
ANS3  
ANS11  
ANS2  
ANS10  
C1R  
C2R  
ANS1  
ANS9  
ANS0  
ANS8  
1111 1111 1111 1111  
--11 1111 --11 1111  
0000 -000 0000 -000  
0000 -000 0000 -000  
ANSELH  
CM1CON0  
CM2CON0  
C1ON  
C2ON  
C1OUT  
C2OUT  
C1CH1  
C2CH1  
C1CH0  
C2CH0  
CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL  
T1GSS C2SYNC 0000 --10 0000 --10  
INTCON  
PIE2  
GIE  
OSFIE  
OSFIF  
RA7  
PEIE  
C2IE  
C2IF  
RA6  
RB6  
SR0  
T0IE  
C1IE  
C1IF  
INTE  
EEIE  
EEIF  
RA4  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
BCLIE ULPWUIE  
BCLIF ULPWUIF  
CCP2IE 0000 00-0 0000 00-0  
CCP2IF 0000 00-0 0000 00-0  
PIR2  
PORTA  
PORTB  
SRCON  
TRISA  
TRISB  
VRCON  
Legend:  
RA5  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RB7  
RB5  
RB4  
SR1  
C1SEN  
C2SEN  
PULSS  
PULSR  
TRISA2  
TRISB2  
VR2  
FVREN 0000 00-0 0000 00-0  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3  
TRISA1 TRISA0 1111 1111 1111 1111  
TRISB1 TRISB0 1111 1111 1111 1111  
VREN  
VROE  
VRR  
VRSS  
VR3  
VR1  
VR0  
0000 0000 0000 0000  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 97  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 98  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESL and ADRESH).  
The ADC voltage reference is software selectable to  
either VDD or a voltage applied to the external reference  
pins.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
Figure 9-1 shows the block diagram of the ADC.  
FIGURE 9-1:  
ADC BLOCK DIAGRAM  
VCFG1 = 0  
AVSS  
VREF-  
VCFG1 = 1  
AVDD  
VCFG0 = 0  
VCFG0 = 1  
VREF+  
0000  
AN0  
AN1  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AN2  
AN3  
AN4  
AN5  
AN6  
ADC  
AN7  
10  
AN8  
GO/DONE  
AN9  
0= Left Justify  
1= Right Justify  
AN10  
AN11  
AN12  
AN13  
CVREF  
Fixed Ref  
ADFM  
ADON  
10  
ADRESH ADRESL  
VSS  
CHS<3:0>  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 99  
PIC16F882/883/884/886/887  
9.1.3  
ADC VOLTAGE REFERENCE  
9.1  
ADC Configuration  
The VCFG bits of the ADCON0 register provide  
independent control of the positive and negative  
voltage references. The positive voltage reference can  
be either VDD or an external voltage source. Likewise,  
the negative voltage reference can be either VSS or an  
external voltage source.  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• Channel selection  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
9.1.4  
CONVERSION CLOCK  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON0 register. There  
are four possible clock options:  
• Results formatting  
9.1.1  
PORT CONFIGURATION  
• FOSC/2  
The ADC can be used to convert both analog and digital  
signals. When converting analog signals, the I/O pin  
should be configured for analog by setting the associated  
TRIS and ANSEL bits. See the corresponding Port  
section for more information.  
• FOSC/8  
• FOSC/32  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11 TAD periods  
as shown in Figure 9-3.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
For correct conversion, the appropriate TAD specification  
must be met. See A/D conversion requirements in  
Section 17.0 “Electrical Specifications” for more  
information. Table 9-1 gives examples of appropriate  
ADC clock selections.  
9.1.2  
CHANNEL SELECTION  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 9.2  
“ADC Operation” for more information.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
DS41291D-page 100  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 9-1:  
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V)  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC Clock Source  
ADCS<2:0>  
20 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
FOSC/8  
FOSC/32  
FRC  
000  
001  
010  
x11  
100 ns(2)  
400 ns(2)  
1.6 μs  
250 ns(2)  
1.0 μs(2)  
4.0 μs  
500 ns(2)  
2.0 μs  
2.0 μs  
8.0 μs(3)  
2-6 μs(1,4)  
8.0 μs(3)  
32.0 μs(3)  
2-6 μs(1,4)  
2-6 μs(1,4)  
2-6 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 4 μs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
FIGURE 9-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is Disconnected from Analog Input (typically 100 ns)  
Set GO/DONE bit  
ADRESH and ADRESL registers are loaded,  
GO bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
9.1.5  
INTERRUPTS  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC interrupt flag is the ADIF bit in the  
PIR1 register. The ADC interrupt enable is the ADIE bit  
in the PIE1 register. The ADIF bit must be cleared in  
software.  
Note:  
The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the global interrupt must be disabled. If the  
global interrupt is enabled, execution will switch to the  
Interrupt Service Routine.  
Please see Section 14.3 “Interrupts” for more  
information.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 101  
PIC16F882/883/884/886/887  
9.1.6  
RESULT FORMATTING  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON0 register controls the output format.  
Figure 9-3 shows the two output formats.  
FIGURE 9-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
(ADFM = 0)  
MSB  
bit 7  
LSB  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
9.2.4  
ADC OPERATION DURING SLEEP  
9.2  
ADC Operation  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
9.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the  
GO/DONE bit of the ADCON0 register to a ‘1’ will start  
the Analog-to-Digital conversion.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 9.2.6 “A/D Conversion  
Procedure”.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
9.2.2  
COMPLETION OF A CONVERSION  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF flag bit  
9.2.5  
SPECIAL EVENT TRIGGER  
• Update the ADRESH:ADRESL registers with new  
conversion result  
The ECCP Special Event Trigger allows periodic ADC  
measurements without software intervention. When  
this trigger occurs, the GO/DONE bit is set by hardware  
and the Timer1 counter resets to zero.  
9.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH:ADRESL registers will not be updated with  
the partially complete Analog-to-Digital conversion  
sample. Instead, the ADRESH:ADRESL register pair  
will retain the value of the previous conversion. Addi-  
tionally, a 2 TAD delay is required before another acqui-  
sition can be initiated. Following this delay, an input  
acquisition is automatically started on the selected  
channel.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
See Section 11.0 “Capture/Compare/PWM Modules  
(CCP1 and CCP2)” for more information.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
DS41291D-page 102  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
9.2.6  
A/D CONVERSION PROCEDURE  
EXAMPLE 9-1:  
A/D CONVERSION  
;This code block configures the ADC  
;for polling, Vdd and Vss as reference, Frc  
clock and AN0 input.  
;
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
1. Configure Port:  
• Disable pin output driver (See TRIS register)  
• Configure pin as analog  
;Conversion start & polling for completion  
; are included.  
;
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Select result format  
BANKSEL  
MOVLW  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON1  
;
B’10000000’ ;right justify  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
ADCON0  
B’11000001’ ;ADC Frc clock,  
ADCON0  
SampleTime  
ADCON0,GO  
ADCON0,GO  
$-1  
;Vdd and Vss as Vref  
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
• Turn on ADC module  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
;AN0, On  
• Enable ADC interrupt  
;Acquisiton delay  
;Start conversion  
;Is conversion done?  
;No, test again  
;
;Read upper 2 bits  
;store in GPR space  
;
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
.
ADRESH  
ADRESH,W  
RESULTHI  
ADRESL  
ADRESL,W  
RESULTLO  
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
;Read lower 8 bits  
;Store in GPR space  
• Polling the GO/DONE bit  
MOVWF  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: See Section 9.3 “A/D Acquisition  
Requirements”.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 103  
PIC16F882/883/884/886/887  
9.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the opera-  
tion of the ADC.  
Note:  
For ANSEL and ANSELH registers, see  
Register 3-3 and Register 3-4, respectively.  
REGISTER 9-1:  
ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
ADCS1  
bit 7  
R/W-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
ADCS0  
GO/DONE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-2  
ADCS<1:0>: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max)  
CHS<3:0>: Analog Channel Select bits  
0000= AN0  
0001= AN1  
0010= AN2  
0011= AN3  
0100= AN4  
0101= AN5  
0110= AN6  
0111= AN7  
1000= AN8  
1001= AN9  
1010= AN10  
1011= AN11  
1100= AN12  
1101= AN13  
1110= CVREF  
1111= Fixed Ref (0.6 volt fixed reference)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
DS41291D-page 104  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 9-2:  
ADCON1: A/D CONTROL REGISTER 1  
R/W-0  
ADFM  
bit 7  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
VCFG1  
VCFG0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Conversion Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VCFG1: Voltage Reference bit  
1= VREF- pin  
0= VSS  
bit 4  
VCFG0: Voltage Reference bit  
1= VREF+ pin  
0= VDD  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 105  
PIC16F882/883/884/886/887  
REGISTER 9-3:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x  
ADRES9  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 9-4:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x  
ADRES1  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
REGISTER 9-5:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 9-6:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x  
ADRES7  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
DS41291D-page 106  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
an A/D acquisition must be done before the conversion  
9.3  
A/D Acquisition Requirements  
can be started. To calculate the minimum acquisition  
time, Equation 9-1 may be used. This equation  
assumes that 1/2 LSb error is used (1024 steps for the  
ADC). The 1/2 LSb error is the maximum error allowed  
for the ADC to meet its specified resolution.  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 9-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD), see Figure 9-4.  
The maximum recommended impedance for analog  
sources is 10 kΩ. As the source impedance is  
decreased, the acquisition time may be decreased.  
After the analog input channel is selected (or changed),  
EQUATION 9-1:  
ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
2047  
= VCHOLD  
-----------  
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 –  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
Tc  
--------  
1
2047  
VAPPLIED 1 eRC = VAPPLIED 1 –  
;combining [1] and [2]  
-----------  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/2047)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.0004885)  
= 1.37µs  
Therefore:  
TACQ = 2µS + 1.37µS + [(50°C- 25°C)(0.05µS/°C)]  
= 4.67µS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 107  
PIC16F882/883/884/886/887  
FIGURE 9-4:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
Rss  
Rs  
CPIN  
5 pF  
VA  
I LEAKAGE  
± 500 nA  
CHOLD = 10 pF  
VSS/VREF-  
VT = 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
SS  
CHOLD  
= Interconnect Resistance  
= Sampling Switch  
= Sample/Hold Capacitance  
5 6 7 8 9 1011  
Sampling Switch  
(kΩ)  
FIGURE 9-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VDD/VREF+  
VSS/VREF-  
DS41291D-page 108  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 9-2:  
SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSEL  
ANSELH  
ADRESH  
ADRESL  
INTCON  
PIE1  
ADCS1  
ADFM  
ANS7  
ADCS0  
CHS3  
VCFG1  
ANS5  
CHS2  
VCFG0  
ANS4  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 0000  
0-00 ----  
1111 1111  
--11 1111  
xxxx xxxx  
xxxx xxxx  
0000 000x  
-000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
-000 ----  
1111 1111  
--11 1111  
uuuu uuuu  
uuuu uuuu  
0000 000x  
-000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
1111 1111  
1111 111  
ANS6  
ANS3  
ANS11  
ANS2  
ANS10  
ANS1  
ANS9  
ANS0  
ANS8  
ANS13  
ANS12  
A/D Result Register High Byte  
A/D Result Register Low Byte  
GIE  
PEIE  
ADIE  
ADIF  
RA6  
T0IE  
RCIE  
RCIF  
RA5  
INTE  
TXIE  
TXIF  
RA4  
RBIE  
SSPIE  
SSPIF  
RA3  
T0IF  
CCP1IE  
CCP1IF  
RA2  
INTF  
TMR2IE  
TMR2IF  
RA1  
RBIF  
TMR1IE  
TMR1IF  
RA0  
PIR1  
PORTA  
PORTB  
PORTE  
TRISA  
RA7  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
RE3  
RE2  
RE1  
RE0  
TRISA7  
TRISB7  
TRISA6  
TRISB6  
TRISA5  
TRISB5  
TRISA4  
TRISB4  
TRISA3  
TRISB3  
TRISE3  
TRISA2  
TRISB2  
TRISE2  
TRISA1  
TRISB1  
TRISE1  
TRISA0  
TRISB0  
TRISE0  
TRISB  
TRISE  
---- 111  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for ADC module.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 109  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 110  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
10.1 EEADR and EEADRH Registers  
10.0 DATA EEPROM AND FLASH  
PROGRAM MEMORY  
CONTROL  
The EEADR and EEADRH registers can address up to  
a maximum of 256 bytes of data EEPROM or up to a  
maximum of 8K words of program EEPROM.  
The Data EEPROM and Flash program memory are  
readable and writable during normal operation (full VDD  
range). These memories are not directly mapped in the  
register file space. Instead, they are indirectly  
addressed through the Special Function Registers  
(SFRs). There are six SFRs used to access these  
memories:  
When selecting a program address value, the MSB of  
the address is written to the EEADRH register and the  
LSB is written to the EEADR register. When selecting a  
data address value, only the LSB of the address is  
written to the EEADR register.  
10.1.1  
EECON1 AND EECON2 REGISTERS  
• EECON1  
EECON1 is the control register for EE memory  
accesses.  
• EECON2  
• EEDAT  
Control bit EEPGD determines if the access will be a pro-  
gram or data memory access. When clear, as it is when  
reset, any subsequent operations will operate on the data  
memory. When set, any subsequent operations will oper-  
ate on the program memory. Program memory can only  
be read.  
• EEDATH  
• EEADR  
• EEADRH (bit 4 on PIC16F886/PIC16F887 only)  
When interfacing the data memory block, EEDAT holds  
the 8-bit data for read/write, and EEADR holds the  
address of the EEDAT location being accessed. These  
devices have 256 bytes of data EEPROM with an  
address range from 0h to 0FFh.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
When accessing the program memory block of the  
PIC16F886/PIC16F887 devices, the EEDAT and  
EEDATH registers form a 2-byte word that holds the  
14-bit data for read/write, and the EEADR and  
EEADRH registers form a 2-byte word that holds the  
12-bit address of the EEPROM location being read.  
The PIC16F882 devices have 2K words of program  
EEPROM with an address range from 0h to 07FFh.  
The PIC16F883/PIC16F884 devices have 4K words of  
program EEPROM with an address range from 0h to  
0FFFh. The program memory allows one-word reads.  
The WREN bit, when set, will allow a write operation to  
data EEPROM. On power-up, the WREN bit is clear.  
The WRERR bit is set when a write operation is  
interrupted by a MCLR or a WDT Time-out Reset  
during normal operation. In these situations, following  
Reset, the user can check the WRERR bit and rewrite  
the location.  
Interrupt flag bit EEIF of the PIR2 register is set when  
write is complete. It must be cleared in the software.  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write).  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
Depending on the setting of the Flash Program  
Memory Self Write Enable bits WRT<1:0> of the  
Configuration Word Register 2, the device may or may  
not be able to write certain blocks of the program  
memory. However, reads from the program memory  
are allowed.  
When the device is code-protected, the CPU may  
continue to read and write the data EEPROM memory  
and Flash program memory. When code-protected, the  
device programmer can no longer access data or  
program memory.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 111  
PIC16F882/883/884/886/887  
REGISTER 10-1: EEDAT: EEPROM DATA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT7  
EEDAT6  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEDAT1  
EEDAT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEDAT<7:0>: 8 Least Significant Address bits to Write to or Read from data EEPROM or Read from program memory  
REGISTER 10-2: EEADR: EEPROM ADDRESS REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADR7  
EEADR6  
EEADR5  
EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(1)  
bit 7-0  
EEADR<7:0>: 8 Least Significant Address bits for EEPROM Read/Write Operation or Read from program memory  
REGISTER 10-3: EEDATH: EEPROM DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDATH5  
EEDATH4  
EEDATH3  
EEDATH2  
EEDATH1  
EEDATH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EEDATH<5:0>: 6 Most Significant Data bits from program memory  
REGISTER 10-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(1)  
EEADRH4  
EEADRH3  
EEADRH2  
EEADRH1  
EEADRH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
EEADRH<4:0>: Specifies the 4 Most Significant Address bits or high bits for program memory reads  
Note 1: PIC16F886/PIC16F887 only.  
DS41291D-page 112  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 10-5: EECON1: EEPROM CONTROL REGISTER  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
Legend:  
S = Bit can only be set  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
EEPGD: Program/Data EEPROM Select bit  
1= Accesses program memory  
0= Accesses data memory  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOR Reset)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only  
be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates a memory read (the RD is cleared in hardware and can only be set, not cleared, in  
software.)  
0= Does not initiate a memory read  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 113  
PIC16F882/883/884/886/887  
10.1.2  
READING THE DATA EEPROM  
MEMORY  
10.1.3  
WRITING TO THE DATA EEPROM  
MEMORY  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD  
control bit of the EECON1 register, and then set control  
bit RD. The data is available at the very next cycle, in  
the EEDAT register; therefore, it can be read in the next  
instruction. EEDAT will hold this value until another  
read or until it is written to by the user (during a write  
operation).  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDAT register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
The write will not initiate if the above sequence is not  
followed exactly (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. Interrupts  
should be disabled during this code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
EXAMPLE 10-1:  
DATA EEPROM READ  
BANKSEL EEADR  
;
;
MOVLW  
MOVWF  
DATA_EE_ADDR  
EEADR  
;Data Memory  
;Address to read  
;
BANKSEL EECON1  
BCF  
BSF  
EECON1, EEPGD ;Point to DATA memory  
EECON1, RD  
;EE Read  
;
;W = EEDAT  
;Bank 0  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
BANKSEL EEDAT  
MOVF  
BCF  
EEDAT, W  
STATUS, RP1  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
EXAMPLE 10-2:  
DATA EEPROM WRITE  
BANKSEL EEADR  
;
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDAT  
;Data Memory Address to write  
;
;Data Memory Value to write  
;
BANKSEL EECON1  
BCF  
BSF  
EECON1, EEPGD ;Point to DATA memory  
EECON1, WREN  
;Enable writes  
BCF  
INTCON, GIE  
INTCON, GIE  
$-2  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
;Disable INTs.  
;SEE AN576  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
;Write 55h  
;
;Write AAh  
;Set WR bit to begin write  
;Enable INTs.  
BSF  
SLEEP  
BCF  
BCF  
;Wait for interrupt to signal write complete  
;Disable writes  
;Bank 0  
EECON1, WREN  
STATUS, RP0  
STATUS, RP1  
BCF  
DS41291D-page 114  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
EEDAT and EEDATH registers will hold this value until  
another read or until it is written to by the user.  
10.1.4  
READING THE FLASH PROGRAM  
MEMORY  
To read a program memory location, the user must  
write the Least and Most Significant address bits to the  
EEADR and EEADRH registers, set the EEPGD con-  
trol bit of the EECON1 register, and then set control bit  
RD. Once the read control bit is set, the program mem-  
ory Flash controller will use the second instruction  
cycle to read the data. This causes the second instruc-  
tion immediately following the “BSF EECON1,RD”  
instruction to be ignored. The data is available in the  
very next cycle, in the EEDAT and EEDATH registers;  
therefore, it can be read as two bytes in the following  
instructions.  
Note 1: The two instructions following a program  
memory read are required to be NOPs.  
This prevents the user from executing a  
two-cycle instruction on the next  
instruction after the RD bit is set.  
2: If the WR bit is set when EEPGD = 1, it  
will be immediately reset to ‘0’ and no  
operation will take place.  
EXAMPLE 10-3:  
FLASH PROGRAM READ  
BANKSELEEADR  
;
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MS_PROG_EE_ADDR  
EEADRH  
LS_PROG_EE_ADDR  
EEADR  
;MS Byte of Program Address to read  
;
;LS Byte of Program Address to read  
BANKSELEECON1  
;
BSF  
BSF  
EECON1, EEPGD  
EECON1, RD  
;Point to PROGRAM memory  
;EE Read  
;
;
;First instruction after BSF EECON1,RD executes normally  
NOP  
NOP  
;Any instructions here are ignored as program  
;memory is read in second cycle after BSF EECON1,RD  
BANKSELEEDAT  
;
MOVF  
MOVWF  
MOVF  
MOVWF  
BCF  
EEDAT, W  
;W = LS Byte of Program Memory  
;
;W = MS Byte of Program EEDAT  
;
LOWPMBYTE  
EEDATH, W  
HIGHPMBYTE  
STATUS, RP1  
;Bank 0  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 115  
PIC16F882/883/884/886/887  
FIGURE 10-1:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
EEADRH,EEADR  
PC + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
EEDATH,EEDAT  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF EECON1,RD  
executed here  
INSTR(PC - 1)  
executed here  
INSTR(PC + 1)  
executed here  
Forced NOP  
executed here  
INSTR(PC + 3)  
executed here  
INSTR(PC + 4)  
executed here  
RD bit  
EEDATH  
EEDAT  
Register  
EERHLT  
DS41291D-page 116  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
After the “BSF EECON1,WR” instruction, the processor  
10.2 Writing to Flash Program Memory  
requires two cycles to set up the erase/write operation.  
The user must place two NOPinstructions after the WR  
bit is set. Since data is being written to buffer registers,  
the writing of the first seven words of the block appears  
to occur immediately. The processor will halt internal  
operations for the typical 4 ms, only during the cycle in  
which the erase takes place (i.e., the last word of the  
sixteen-word block erase). This is not Sleep mode as  
the clocks and peripherals will continue to run. After the  
eight-word write cycle, the processor will resume oper-  
ation with the third instruction after the EECON1 write  
instruction. The above sequence must be repeated for  
the higher eight words.  
Flash program memory may only be written to if the  
destination address is in a segment of memory that is  
not write-protected, as defined in bits WRT<1:0> of the  
Configuration Word Register 2. Flash program memory  
must be written in eight-word blocks (four-word blocks  
for 4K memory devices). See Figures 10-2 and 10-3 for  
more details. A block consists of eight words with  
sequential addresses, with a lower boundary defined by  
an address, where EEADR<2:0> = 000. All block writes  
to program memory are done as 16-word erase by  
eight-word write operations. The write operation is  
edge-aligned and cannot occur across boundaries.  
To write program data, it must first be loaded into the  
buffer registers (see Figure 10-2). This is accomplished  
by first writing the destination address to EEADR and  
EEADRH and then writing the data to EEDATA and  
EEDATH. After the address and data have been set up,  
then the following sequence of events must be  
executed:  
1. Set the EEPGD control bit of the EECON1  
register.  
2. Write 55h, then AAh, to EECON2 (Flash  
programming sequence).  
3. Set the WR control bit of the EECON1 register.  
All eight buffer register locations should be written to  
with correct data. If less than eight words are being writ-  
ten to in the block of eight words, then a read from the  
program memory location(s) not being written to must  
be performed. This takes the data from the program  
location(s) not being written and loads it into the  
EEDATA and EEDATH registers. Then the sequence of  
events to transfer data to the buffer registers must be  
executed.  
To transfer data from the buffer registers to the program  
memory, the EEADR and EEADRH must point to the last  
location in the eight-word block (EEADR<2:0> = 111).  
Then the following sequence of events must be  
executed:  
1. Set the EEPGD control bit of the EECON1  
register.  
2. Write 55h, then AAh, to EECON2 (Flash  
programming sequence).  
3. Set control bit WR of the EECON1 register to  
begin the write operation.  
The user must follow the same specific sequence to  
initiate the write for each word in the program block,  
writing each program word in sequence (000, 001,  
010, 011, 100, 101, 110, 111). When the write is  
performed on the last word (EEADR<2:0> = 111), a  
block of sixteen words is automatically erased and the  
content of the eight word buffer registers are written  
into the program memory.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 117  
PIC16F882/883/884/886/887  
FIGURE 10-2:  
BLOCK WRITES TO 2K AND 4K FLASH PROGRAM MEMORY  
7
5
0
0 7  
Sixteen words of  
Flash are erased,  
then four buffers  
are transferred  
to Flash  
EEDATH  
6
EEDATA  
8
automatically  
after this word  
is written  
First word of block  
to be written  
14  
14  
14  
14  
EEADR<1:0> = 00  
Buffer Register  
EEADR<1:0> = 01  
Buffer Register  
EEADR<1:0> = 10  
Buffer Register  
EEADR<1:0> = 11  
Buffer Register  
Program Memory  
FIGURE 10-3:  
BLOCK WRITES TO 8K FLASH PROGRAM MEMORY  
7
5
0 7  
0
Sixteen words of  
Flash are erased,  
then eight buffers  
are transferred  
to Flash  
EEDATH  
6
EEDATA  
8
automatically  
after this word  
is written  
First word of block  
to be written  
14  
14  
14  
14  
EEADR<2:0> = 000  
Buffer Register  
EEADR<2:0> = 001  
Buffer Register  
EEADR<2:0> = 010  
Buffer Register  
EEADR<2:0> = 111  
Buffer Register  
Program Memory  
DS41291D-page 118  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
An example of the complete eight-word write sequence  
is shown in Example 10-4. The initial address is loaded  
into the EEADRH and EEADR register pair; the eight  
words of data are loaded using indirect addressing.  
EXAMPLE 10-4:  
WRITING TO FLASH PROGRAM MEMORY  
; This write routine assumes the following:  
;
; 1. A valid starting address (the least significant bits = ‘00’)is loaded in ADDRH:ADDRL  
; 2. The 8 bytes of data are loaded, starting at the address in DATADDR  
; 3. ADDRH, ADDRL and DATADDR are all located in shared data memory 0x70 - 0x7f  
;
BSF  
BCF  
STATUS,RP1  
STATUS,RP0  
ADDRH,W  
EEADRH  
ADDRL,W  
EEADR  
DATAADDR,W  
FSR  
INDF,W  
EEDATA  
FSR,F  
INDF,W  
EEDATH  
;
; Bank 2  
; Load initial address  
;
;
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
MOVWF  
INCF  
MOVF  
MOVWF  
INCF  
BSF  
BSF  
BSF  
BCF  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
; Load initial data address  
;
; Load first data byte into lower  
;
; Next byte  
; Load second data byte into upper  
;
;
; Bank 3  
; Point to program memory  
; Enable writes  
; Disable interrupts (if using)  
; See AN576  
LOOP  
FSR,F  
STATUS,RP0  
EECON1,EEPGD  
EECON1,WREN  
INTCON,GIE  
INTCON,GIE  
1-2  
55h  
EECON2  
AAh  
EECON2  
; Start of required write sequence:  
; Write 55h  
;
; Write AAh  
EECON1,WR  
; Set WR bit to begin write  
; Any instructions here are ignored as processor  
; halts to begin write sequence  
; processor will stop here and wait for write complete  
; after write processor continues with 3rd instruction  
; Disable writes  
; Enable interrupts (if using)  
; Bank 2  
; Increment address  
; Check if lower two bits of address are ‘00’  
; Indicates when four words have been programmed  
;
; Exit if more than eight words,  
; Continue if less than eight words  
NOP  
NOP  
BCF  
BSF  
BCF  
INCF  
MOVF  
ANDLW  
XORLW  
BTFSC  
GOTO  
EECON1,WREN  
INTCON,GIE  
STATUS,RP0  
EEADR,F  
EEADR,W  
0x07  
0x07  
STATUS,Z  
LOOP  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 119  
PIC16F882/883/884/886/887  
When the data memory is code-protected, only the  
10.3 Write Verify  
CPU is able to read and write data to the data  
EEPROM. It is recommended to code-protect the pro-  
gram memory when code-protecting data memory.  
This prevents anyone from programming zeroes over  
the existing code (which will execute as NOPs) to reach  
an added routine, programmed in unused program  
memory, which outputs the contents of data memory.  
Programming unused locations in program memory to  
0’ will also help prevent data memory code protection  
from becoming breached.  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM should be verified (see Example 10-5) to the  
desired value to be written.  
EXAMPLE 10-5:  
WRITE VERIFY  
BANKSEL EEDAT  
;
MOVF  
EEDAT, W  
;EEDAT not changed  
;from previous write  
BANKSEL EECON1  
;
BSF  
EECON1, RD  
;YES, Read the  
;value written  
;
BANKSEL EEDAT  
XORWF  
BTFSS  
GOTO  
:
EEDAT, W  
STATUS, Z  
WRITE_ERR  
;
;Is data the same  
;No, handle error  
;Yes, continue  
;Bank 0  
BCF  
STATUS, RP1  
10.3.1  
USING THE DATA EEPROM  
high-endurance, byte  
The data EEPROM is  
a
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated often).  
When variables in one section change frequently, while  
variables in another section do not change, it is possible  
to exceed the total number of write cycles to the  
EEPROM (specification D124) without exceeding the  
total number of write cycles to  
a single byte  
(specifications D120 and D120A). If this is the case,  
then a refresh of the array must be performed. For this  
reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
10.4 Protection Against Spurious Write  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Power-up  
Timer  
(64 ms  
duration)  
prevents  
EEPROM write.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• Brown-out  
• Power Glitch  
• Software Malfunction  
10.5 Data EEPROM Operation During  
Code-Protect  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Word Register 1  
(Register 14-1) to ‘0’.  
DS41291D-page 120  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EECON1  
EECON2  
EEADR  
EEPGD  
WRERR  
WREN  
WR  
RD  
x--- x000  
---- ----  
0000 0000  
0--- q000  
---- ----  
0000 0000  
EEPROM Control Register 2 (not a physical register)  
EEADR7 EEADR6 EEADR5 EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
EEADRH  
EEDAT  
EEDATH  
INTCON  
PIE2  
EEDAT7  
EEDAT6  
EEDAT5  
EEDATH5  
T0IE  
EEADRH4(1) EEADRH3 EEADRH2 EEADRH1 EEADRH0  
---0 0000  
0000 0000  
--00 0000  
0000 000x  
0000 00-0  
0000 00-0  
---0 0000  
0000 0000  
--00 0000  
0000 000x  
0000 00-0  
0000 00-0  
EEDAT4  
EEDATH4  
INTE  
EEDAT3  
EEDAT2  
EEDAT1  
EEDAT0  
EEDATH3 EEDATH2 EEDATH1 EEDATH0  
GIE  
PEIE  
C2IE  
C2IF  
RBIE  
BCLIE  
BCLIF  
T0IF  
INTF  
RBIF  
OSFIE  
OSFIF  
C1IE  
EEIE  
ULPWUIE  
ULPWUIF  
CCP2IE  
CCP2IF  
PIR2  
C1IF  
EEIF  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by data EEPROM module.  
Note 1:  
PIC16F886/PIC16F887 only.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 121  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 122  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
11.0 CAPTURE/COMPARE/PWM  
MODULES (CCP1 AND CCP2)  
This device contains one Enhanced Capture/Compare/  
PWM (CCP1) and Capture/Compare/PWM module  
(CCP2). The CCP1 and CCP2 modules are identical in  
operation, with the exception of the Enhanced PWM  
features available on CCP1 only. See Section 11.6  
“PWM (Enhanced Mode)” for more information.  
Note:  
CCPRx and CCPx throughout this  
document refer to CCPR1 or CCPR2 and  
CCP1 or CCP2, respectively.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 123  
PIC16F882/883/884/886/887  
TABLE 11-1: ECCP MODE – TIMER  
RESOURCES REQUIRED  
11.1 Enhanced Capture/Compare/PWM  
(CCP1)  
ECCP Mode  
Timer Resource  
The Enhanced Capture/Compare/PWM module is a  
peripheral which allows the user to time and control  
different events. In Capture mode, the peripheral  
allows the timing of the duration of an event. The  
Compare mode allows the user to trigger an external  
event when a predetermined amount of time has  
expired. The PWM mode can generate a Pulse-Width  
Modulated signal of varying frequency and duty cycle.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Table 11-1 shows the timer resources required by the  
ECCP module.  
REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
DC1B1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1M1  
R/W-0  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
P1M<1:0>: PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-Bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-Bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins  
11= Full-Bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M<3:0>: ECCP Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 or TMR2  
1100= PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101= PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110= PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111= PWM mode; P1A, P1C active-low; P1B, P1D active-low  
DS41291D-page 124  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 11-2: CCP MODE – TIMER  
RESOURCES REQUIRED  
11.2 Capture/Compare/PWM (CCP2)  
The Capture/Compare/PWM module is a peripheral  
which allows the user to time and control different  
events. In Capture mode, the peripheral allows the  
timing of the duration of an event. The Compare mode  
allows the user to trigger an external event when a  
predetermined amount of time has expired. The PWM  
mode can generate a Pulse-Width Modulated signal of  
varying frequency and duty cycle.  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
The timer resources used by the module are shown in  
Table 11-2.  
Additional information on CCP modules is available in  
the Application Note AN594, “Using the CCP Modules”  
(DS00594).  
REGISTER 11-2: CCP2CON: CCP2 CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
DC2B0  
R/W-0  
R/W-0  
R/W-0  
CCP2M1  
R/W-0  
DC2B1  
CCP2M3  
CCP2M2  
CCP2M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DC2B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR2L.  
bit 3-0  
CCP2M<3:0>: CCP2 Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP2 module)  
0001= Unused (reserved)  
0010= Unused (reserved)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP2IF bit is set)  
1001= Compare mode, clear output on match (CCP2IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP2IF bit is set, CCP2 pin  
is unaffected)  
1011= Compare mode, trigger special event (CCP2IF bit is set, TMR1 is reset and A/D  
conversion is started if the ADC module is enabled. CCP2 pin is unaffected.)  
11xx= PWM mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 125  
PIC16F882/883/884/886/887  
11.3.2  
TIMER1 MODE SELECTION  
11.3 Capture Mode  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
In Capture mode, the CCPRxH, CCPRxL register pair  
captures the 16-bit value of the TMR1 register when an  
event occurs on pin CCPx. An event is defined as one  
of the following and is configured by the CCP1M<3:0>  
bits of the CCP1CON register:  
11.3.3  
SOFTWARE INTERRUPT  
• Every falling edge  
• Every rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit of the PIEx register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCPxIF interrupt flag bit of the PIRx register  
following any change in Operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the Interrupt Request Flag bit  
CCPxIF of the PIRx register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPRxH, CCPRxL register pair  
is read, the old captured value is overwritten by the new  
captured value (see Figure 11-1).  
11.3.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCPxM<3:0> bits of the CCPxCON register. Whenever  
the CCP module is turned off, or the CCP module is not  
in Capture mode, the prescaler counter is cleared. Any  
Reset will clear the prescaler counter.  
11.3.1  
CCP PIN CONFIGURATION  
In Capture mode, the CCPx pin should be configured  
as an input by setting the associated TRIS control bit.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCPxCON register before changing the  
prescaler (see Example 11-1).  
Note:  
If the CCPx pin is configured as an output,  
a write to the port can cause a capture  
condition.  
FIGURE 11-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 11-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
Set Flag bit CCPxIF  
(PIRx register)  
Prescaler  
÷ 1, 4, 16  
CLRF  
CCP1CON  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
CCPx  
pin  
CCPRxH  
CCPRxL  
; move value and CCP ON  
Capture  
Enable  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
and  
Edge Detect  
TMR1H  
TMR1L  
CCPxCON<3:0>  
System Clock (FOSC)  
DS41291D-page 126  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
11.4.2  
TIMER1 MODE SELECTION  
11.4 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPRx register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCPx module may:  
Toggle the CCPx output  
• Set the CCPx output  
11.4.3  
SOFTWARE INTERRUPT MODE  
• Clear the CCPx output  
When Generate Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the CCPx module does not  
assert control of the CCPx pin (see the CCP1CON  
register).  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
The action on the pin is based on the value of the  
CCPxM<3:0> control bits of the CCPx1CON register.  
11.4.4  
SPECIAL EVENT TRIGGER  
All Compare modes can generate an interrupt.  
When Special Event Trigger mode is chosen  
(CCPxM<3:0> = 1011), the CCPx module does the  
following:  
FIGURE 11-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
• Resets Timer1  
• Starts an ADC conversion if ADC is enabled  
CCPxCON<3:0>  
Mode Select  
The CCPx module does not assert control of the CCPx  
pin in this mode (see the CCPxCON register).  
Set CCPxIF Interrupt Flag  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPRxH, CCPRxL  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPRxH, CCPRxL register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
(PIRx)  
4
CCPx  
Pin  
CCPRxH CCPRxL  
Comparator  
Q
S
R
Output  
Logic  
Match  
TMR1H TMR1L  
TRIS  
Output Enable  
Special Event Trigger  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMRxIF of the PIR1 register.  
Special Event Trigger will:  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion.  
2: Removing the match condition by  
changing the contents of the CCPRxH  
and CCPRxL register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
11.4.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the associated TRIS bit.  
Note:  
Clearing the CCP1CON register will force  
the CCPx compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 127  
PIC16F882/883/884/886/887  
The PWM output (Figure 11-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
11.5 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCPx pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 11-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPRxL  
• CCPxCON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPRxL:CCPxCON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCPx pin. Since the CCPx pin is multiplexed  
with the PORT data latch, the TRIS for that pin must be  
cleared to enable the CCPx pin output driver.  
TMR2 = 0  
Note:  
Clearing the CCPxCON register will  
relinquish CCPx control of the CCPx pin.  
Figure 11-3 shows a simplified block diagram of PWM  
operation.  
Figure 11-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 11.5.7  
“Setup for PWM Operation”.  
FIGURE 11-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCPxCON<5:4>  
Duty Cycle Registers  
CCPRxL  
CCPRxH(2) (Slave)  
Comparator  
CCPx  
R
S
Q
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCPx pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPRxH is a read-only register.  
DS41291D-page 128  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
11.5.1  
PWM PERIOD  
11.5.2  
PWM DUTY CYCLE  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 11-1.  
The PWM duty cycle is specified by writing a 10-bit  
value to multiple registers: CCPRxL register and  
DCxB<1:0> bits of the CCPxCON register. The  
CCPRxL contains the eight MSbs and the DCxB<1:0>  
bits of the CCPxCON register contain the two LSbs.  
CCPRxL and DCxB<1:0> bits of the CCPxCON  
register can be written to at any time. The duty cycle  
value is not latched into CCPRxH until after the period  
completes (i.e., a match between PR2 and TMR2  
registers occurs). While using the PWM, the CCPRxH  
register is read-only.  
EQUATION 11-1: PWM PERIOD  
PWM Period = [(PR2) + 1] • 4 TOSC •  
(TMR2 Prescale Value)  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
Equation 11-2 is used to calculate the PWM pulse  
width.  
• TMR2 is cleared  
• The CCPx pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
Equation 11-3 is used to calculate the PWM duty cycle  
ratio.  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH.  
EQUATION 11-2: PULSE WIDTH  
Note:  
The Timer2 postscaler (see Section 7.1  
“Timer2 Operation”) is not used in the  
determination of the PWM frequency.  
Pulse Width = (CCPRxL:CCPxCON<5:4>) •  
TOSC (TMR2 Prescale Value)  
EQUATION 11-3: DUTY CYCLE RATIO  
(CCPRxL:CCPxCON<5:4>)  
Duty Cycle Ratio = ----------------------------------------------------------------------  
4(PR2 + 1)  
The CCPRxH register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
When the 10-bit time base matches the CCPRxH and  
2-bit latch, then the CCPx pin is cleared (see  
Figure 11-3).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 129  
PIC16F882/883/884/886/887  
11.5.3  
PWM RESOLUTION  
EQUATION 11-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log[4(PR2 + 1)]  
Resolution = ----------------------------------------- bits  
log(2)  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 11-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 11-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
DS41291D-page 130  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
11.5.4  
OPERATION IN SLEEP MODE  
11.5.7  
SETUP FOR PWM OPERATION  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCPx  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCPx) output drivers as  
an input by setting the associated TRIS bit.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the CCP module for the PWM mode  
by loading the CCPxCON register with the  
appropriate values.  
11.5.5  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 4.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for additional details.  
4. Set the PWM duty cycle by loading the CCPRxL  
register and DCxB<1:0> bits of the CCPxCON  
register.  
5. Configure and start Timer2:  
• Clear the TMR2IF interrupt flag bit of the  
PIR1 register.  
11.5.6  
EFFECTS OF RESET  
• Set the Timer2 prescale value by loading the  
T2CKPS bits of the T2CON register.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
• Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
6. Enable PWM output after a new PWM cycle has  
started:  
• Wait until Timer2 overflows (TMR2IF bit of  
the PIR1 register is set).  
• Enable the CCPx pin output driver by clearing  
the associated TRIS bit.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 131  
PIC16F882/883/884/886/887  
The PWM outputs are multiplexed with I/O pins and are  
11.6 PWM (Enhanced Mode)  
designated P1A, P1B, P1C and P1D. The polarity of the  
PWM pins is configurable and is selected by setting the  
CCP1M bits in the CCP1CON register appropriately.  
The Enhanced PWM Mode can generate a PWM signal  
on up to four different output pins with up to 10-bits of  
resolution. It can do this through four different PWM  
output modes:  
Table 11-5 shows the pin assignments for each  
Enhanced PWM mode.  
• Single PWM  
Figure 11-5 shows an example of a simplified block  
diagram of the Enhanced PWM module.  
• Half-Bridge PWM  
• Full-Bridge PWM, Forward mode  
• Full-Bridge PWM, Reverse mode  
Note:  
To prevent the generation of an  
incomplete waveform when the PWM is  
first enabled, the ECCP module waits until  
the start of a new PWM period before  
generating a PWM signal.  
To select an Enhanced PWM mode, the P1M bits of the  
CCP1CON register must be set appropriately.  
Note:  
The PWM Enhanced mode is available on  
the Enhanced Capture/Compare/PWM  
module (CCP1) only.  
FIGURE 11-5:  
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE  
DC1B<1:0>  
P1M<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
CCP1/P1A  
P1B  
TRISn  
TRISn  
TRISn  
TRISn  
CCPR1H (Slave)  
Comparator  
P1B  
Output  
Controller  
R
S
Q
P1C  
P1C  
(1)  
TMR2  
P1D  
P1D  
Comparator  
PR2  
Clear Timer2,  
toggle PWM pin and  
latch duty cycle  
PWM1CON  
Note 1: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit  
time base.  
Note 1: The TRIS register value for each PWM output must be configured appropriately.  
2: Clearing the CCPxCON register will relinquish ECCP control of all PWM output pins.  
3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.  
TABLE 11-5: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES  
ECCP Mode  
P1M<1:0>  
CCP1/P1A  
P1B  
P1C  
P1D  
Single  
00  
10  
01  
11  
Yes(1)  
Yes  
Yes(1)  
Yes  
Yes(1)  
No  
Yes(1)  
No  
Half-Bridge  
Full-Bridge, Forward  
Full-Bridge, Reverse  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Note 1: Pulse Steering enables outputs in Single mode.  
DS41291D-page 132  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 11-6:  
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH  
STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
P1A Modulated  
P1B Modulated  
P1A Active  
(Half-Bridge)  
P1B Inactive  
(Full-Bridge,  
Forward)  
01  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.6.6 “Programmable Dead-Band Delay  
Mode”).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 133  
PIC16F882/883/884/886/887  
FIGURE 11-7:  
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
(Half-Bridge)  
(Full-Bridge,  
Forward)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.6.6 “Programmable Dead-Band Delay  
Mode”).  
DS41291D-page 134  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
Since the P1A and P1B outputs are multiplexed with  
the PORT data latches, the associated TRIS bits must  
be cleared to configure P1A and P1B as outputs.  
11.6.1  
HALF-BRIDGE MODE  
In Half-Bridge mode, two pins are used as outputs to  
drive push-pull loads. The PWM output signal is output  
on the CCPx/P1A pin, while the complementary PWM  
output signal is output on the P1B pin (see  
Figure 11-9). This mode can be used for Half-Bridge  
applications, as shown in Figure 11-9, or for Full-Bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
FIGURE 11-8:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
Period  
Period  
Pulse Width  
In Half-Bridge mode, the programmable dead-band delay  
can be used to prevent shoot-through current in  
Half-Bridge power devices. The value of the PDC<6:0>  
bits of the PWM1CON register sets the number of  
instruction cycles before the output is driven active. If the  
value is greater than the duty cycle, the corresponding  
output remains inactive during the entire cycle. See  
Section 11.6.6 “Programmable Dead-Band Delay  
Mode” for more details of the dead-band delay  
operations.  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
FIGURE 11-9:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
-
P1A  
Load  
FET  
Driver  
+
-
P1B  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 135  
PIC16F882/883/884/886/887  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORT data latches. The associated TRIS bits must  
be cleared to configure the P1A, P1B, P1C and P1D  
pins as outputs.  
11.6.2  
FULL-BRIDGE MODE  
In Full-Bridge mode, all four pins are used as outputs.  
An example of Full-Bridge application is shown in  
Figure 11-10.  
In the Forward mode, pin CCP1/P1A is driven to its  
active state, pin P1D is modulated, while P1B and P1C  
will be driven to their inactive state as shown in  
Figure 11-11.  
In the Reverse mode, P1C is driven to its active state,  
pin P1B is modulated, while P1A and P1D will be driven  
to their inactive state as shown Figure 11-11.  
FIGURE 11-10:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
P1B  
Load  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
DS41291D-page 136  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 11-11:  
EXAMPLE OF FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Pulse Width  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Pulse Width  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as active-high.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 137  
PIC16F882/883/884/886/887  
The Full-Bridge mode does not provide dead-band  
delay. As one output is modulated at a time, dead-band  
delay is generally not required. There is a situation  
where dead-band delay is required. This situation  
occurs when both of the following conditions are true:  
11.6.2.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge mode, the P1M1 bit in the CCP1CON  
register allows users to control the forward/reverse  
direction. When the application firmware changes this  
direction control bit, the module will change to the new  
direction on the next PWM cycle.  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
A direction change is initiated in software by changing  
the P1M1 bit of the CCP1CON register. The following  
sequence occurs four Timer2 cycles prior to the end of  
the current PWM period:  
Figure 11-13 shows an example of the PWM direction  
changing from forward to reverse, at a near 100% duty  
cycle. In this example, at time t1, the output P1A and  
P1D become inactive, while output P1C becomes  
active. Since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
will flow through power devices QC and QD (see  
Figure 11-10) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
• The modulated outputs (P1B and P1D) are placed  
in their inactive state.  
• The associated unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite  
direction.  
• PWM modulation resumes at the beginning of the  
next period.  
See Figure 11-12 for an illustration of this sequence.  
If changing PWM direction at high duty cycle is required  
for an application, two possible solutions for eliminating  
the shoot-through current are:  
1. Reduce PWM duty cycle for one PWM period  
before changing directions.  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
FIGURE 11-12:  
EXAMPLE OF PWM DIRECTION CHANGE  
(1)  
Period  
Period  
Signal  
P1A (Active-High)  
P1B (Active-High)  
Pulse Width  
P1C (Active-High)  
P1D (Active-High)  
(2)  
Pulse Width  
Note 1: The direction bit P1M1 of the CCP1CON register is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle. The  
modulated P1B and P1D signals are inactive at this time. The length of this time is four Timer2 counts.  
DS41291D-page 138  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 11-13:  
EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
PW  
P1C  
P1D  
PW  
TON  
External Switch C  
External Switch D  
TOFF  
Potential  
T = TOFF TON  
Shoot-Through Current  
Note 1: All signals are shown as active-high.  
2: TON is the turn on delay of power switch QC and its driver.  
3: TOFF is the turn off delay of power switch QD and its driver.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 139  
PIC16F882/883/884/886/887  
11.6.3  
START-UP CONSIDERATIONS  
When any PWM mode is used, the application  
hardware must use the proper external pull-up and/or  
pull-down resistors on the PWM output pins.  
Note:  
When the microcontroller is released from  
Reset, all of the I/O pins are in the  
high-impedance state. The external cir-  
cuits must keep the power switch devices  
in the Off state until the microcontroller  
drives the I/O pins with the proper signal  
levels or activates the PWM output(s).  
The CCP1M<1:0> bits of the CCP1CON register allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output pins  
(P1A/P1C and P1B/P1D). The PWM output polarities  
must be selected before the PWM pin output drivers are  
enabled. Changing the polarity configuration while the  
PWM pin output drivers are enable is not recommended  
since it may result in damage to the application circuits.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is  
initialized. Enabling the PWM pin output drivers at the  
same time as the Enhanced PWM modes may cause  
damage to the application circuit. The Enhanced PWM  
modes must be enabled in the proper Output mode and  
complete a full PWM cycle before enabling the PWM  
pin output drivers. The completion of a full PWM cycle  
is indicated by the TMR2IF bit of the PIR1 register  
being set as the second PWM period begins.  
DS41291D-page 140  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
A shutdown condition is indicated by the ECCPASE  
(Auto-Shutdown Event Status) bit of the ECCPAS  
register. If the bit is a ‘0’, the PWM pins are operating  
normally. If the bit is a ‘1’, the PWM outputs are in the  
shutdown state.  
11.6.4  
ENHANCED PWM  
AUTO-SHUTDOWN MODE  
The PWM mode supports an Auto-Shutdown mode that  
will disable the PWM outputs when an external  
shutdown event occurs. Auto-Shutdown mode places  
the PWM output pins into a predetermined state. This  
mode is used to help prevent the PWM from damaging  
the application.  
When a shutdown event occurs, two things happen:  
The ECCPASE bit is set to ‘1’. The ECCPASE will  
remain set until cleared in firmware or an auto-restart  
occurs (see Section 11.6.5 “Auto-Restart Mode”).  
The auto-shutdown sources are selected using the  
ECCPAS<2:0> bits of the ECCPAS register. A shutdown  
event may be generated by:  
The enabled PWM pins are asynchronously placed in  
their shutdown states. The PWM output pins are  
grouped into pairs [P1A/P1C] and [P1B/P1D]. The state  
of each pin pair is determined by the PSSAC and  
PSSBD bits of the ECCPAS register. Each pin pair may  
be placed into one of three states:  
• A logic ‘0’ on the INT pin  
• Comparator C1  
• Comparator C2  
• Setting the ECCPASE bit in firmware  
• Drive logic ‘1’  
• Drive logic ‘0’  
• Tri-state (high-impedance)  
REGISTER 11-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE  
ECCPAS2  
ECCPAS1  
ECCPAS0  
PSSAC1  
PSSAC0  
PSSBD1  
PSSBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
0= ECCP outputs are operating  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits  
000= Auto-Shutdown is disabled  
001= Comparator C1 output change  
010= Comparator C2 output change(1)  
011= Either Comparator C1 or C2 change  
100= VIL on INT pin  
101= VIL on INT pin or Comparator C1 change  
110= VIL on INT pin or Comparator C2 change  
111= VIL on INT pin or Comparator C1 or Comparator C2 change  
bit 3-2  
bit 1-0  
PSSACn: Pins P1A and P1C Shutdown State Control bits  
00= Drive pins P1A and P1C to ‘0’  
01= Drive pins P1A and P1C to ‘1’  
1x= Pins P1A and P1C tri-state  
PSSBDn: Pins P1B and P1D Shutdown State Control bits  
00= Drive pins P1B and P1D to ‘0’  
01= Drive pins P1B and P1D to ‘1’  
1x= Pins P1B and P1D tri-state  
Note 1: If C2SYNC is enabled, the shutdown will be delayed by Timer1.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 141  
PIC16F882/883/884/886/887  
Note 1: The auto-shutdown condition is  
a
level-based signal, not an edge-based  
signal. As long as the level is present, the  
auto-shutdown will persist.  
2: Writing to the ECCPASE bit is disabled  
while an auto-shutdown condition  
persists.  
3: Once the auto-shutdown condition has  
been removed and the PWM restarted  
(either through firmware or auto-restart)  
the PWM signal will always restart at the  
beginning of the next PWM period.  
FIGURE 11-14:  
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
ECCPASE  
Cleared by  
Firmware  
Start of  
Shutdown  
Shutdown  
PWM  
PWM Period  
Event Occurs Event Clears  
Resumes  
11.6.5  
AUTO-RESTART MODE  
The Enhanced PWM can be configured to automati-  
cally restart the PWM signal once the auto-shutdown  
condition has been removed. Auto-restart is enabled by  
setting the PRSEN bit in the PWM1CON register.  
If auto-restart is enabled, the ECCPASE bit will remain  
set as long as the auto-shutdown condition is active.  
When the auto-shutdown condition is removed, the  
ECCPASE bit will be cleared via hardware and normal  
operation will resume.  
FIGURE 11-15:  
PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
DS41291D-page 142  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
11.6.6  
PROGRAMMABLE DEAD-BAND  
DELAY MODE  
FIGURE 11-16:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
In Half-Bridge applications where all power switches  
are modulated at the PWM frequency, the power  
switches normally require more time to turn off than to  
turn on. If both the upper and lower power switches are  
switched at the same time (one turned on, and the  
other turned off), both switches may be on for a short  
period of time until one switch completely turns off.  
Period  
Period  
Pulse Width  
(2)  
(2)  
P1A  
td  
td  
During this brief interval,  
a very high current  
P1B  
(shoot-through current) will flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from  
flowing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
In Half-Bridge mode,  
a
digitally programmable  
2: Output signals are shown as active-high.  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Figure 11-16 for  
illustration. The lower seven bits of the associated  
PWM1CON register (Register 11-4) sets the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
FIGURE 11-17:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 143  
PIC16F882/883/884/886/887  
REGISTER 11-4: PWM1CON: ENHANCED PWM CONTROL REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
PDCn = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal  
should transition active and the actual time it transitions active  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
DS41291D-page 144  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
11.6.7  
PULSE STEERING MODE  
In Single Output mode, pulse steering allows any of the  
PWM pins to be the modulated signal. Additionally, the  
same PWM signal can be simultaneously available on  
multiple pins.  
Note:  
The associated TRIS bits must be set to  
output (‘0’) to enable the pin output driver  
in order to see the PWM signal on the pin.  
While the PWM Steering mode is active, CCP1M<1:0>  
bits of the CCP1CON register select the PWM output  
polarity for the P1<D:A> pins.  
Once the Single Output mode is selected  
(CCP1M<3:2> = 11 and P1M<1:0> = 00 of the  
CCP1CON register), the user firmware can bring out  
the same PWM signal to one, two, three or four output  
pins by setting the appropriate STR<D:A> bits of the  
PSTRCON register, as shown in Table 11-5.  
The PWM auto-shutdown operation also applies to  
PWM Steering mode as described in Section 11.6.4  
“Enhanced PWM Auto-shutdown mode”. An  
auto-shutdown event will only affect pins that have  
PWM outputs enabled.  
REGISTER 11-5: PSTRCON: PULSE STEERING CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
STRD  
R/W-0  
STRC  
R/W-0  
STRB  
R/W-1  
STRA  
STRSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
STRSYNC: Steering Sync bit  
1= Output steering update occurs on next PWM period  
0= Output steering update occurs at the beginning of the instruction cycle boundary  
bit 3  
bit 2  
bit 1  
bit 0  
STRD: Steering Enable bit D  
1= P1D pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1D pin is assigned to port pin  
STRC: Steering Enable bit C  
1= P1C pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1C pin is assigned to port pin  
STRB: Steering Enable bit B  
1= P1B pin has the PWM waveform with polarity control from CCPxM<1:0>  
0 = P1B pin is assigned to port pin  
STRA: Steering Enable bit A  
1= P1A pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1A pin is assigned to port pin  
Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11and  
P1M<1:0> = 00.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 145  
PIC16F882/883/884/886/887  
FIGURE 11-18:  
SIMPLIFIED STEERING  
BLOCK DIAGRAM  
STRA  
P1A Signal  
CCP1M1  
P1A pin  
1
PORT Data  
STRB  
0
TRIS  
P1B pin  
CCP1M0  
1
PORT Data  
STRC  
0
TRIS  
P1C pin  
1
CCP1M1  
PORT Data  
0
TRIS  
STRD  
P1D pin  
1
CCP1M0  
PORT Data  
0
TRIS  
Note 1: Port outputs are configured as shown when  
the CCP1CON register bits P1M<1:0> = 00  
and CCP1M<3:2> = 11.  
2: Single PWM output requires setting at least  
one of the STRx bits.  
DS41291D-page 146  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
Figures 11-19 and 11-20 illustrate the timing diagrams  
of the PWM steering depending on the STRSYNC  
setting.  
11.6.7.1  
Steering Synchronization  
The STRSYNC bit of the PSTRCON register gives the  
user two selections of when the steering event will  
happen. When the STRSYNC bit is ‘0’, the steering  
event will happen at the end of the instruction that  
writes to the PSTRCON register. In this case, the  
output signal at the P1<D:A> pins may be an  
incomplete PWM waveform. This operation is useful  
when the user firmware needs to immediately remove  
a PWM signal from the pin.  
When the STRSYNC bit is ‘1’, the effective steering  
update will happen at the beginning of the next PWM  
period. In this case, steering on/off the PWM output will  
always produce a complete PWM waveform.  
FIGURE 11-19:  
EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)  
PWM Period  
PWM  
STRn  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
FIGURE 11-20:  
EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION  
(STRSYNC = 1)  
PWM  
STRn  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 147  
PIC16F882/883/884/886/887  
TABLE 11-6: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP1CON  
CCP2CON  
CCPR1L  
CCPR1H  
CCPR2L  
CCPR2H  
CM2CON1  
INTCON  
PIE1  
P1M1  
P1M0  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
0000 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 --10  
0000 000x  
-000 0000  
0000 00-0  
-000 0000  
0000 00-0  
0000 0000  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0000 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 --10  
0000 000x  
-000 0000  
0000 00-0  
-000 0000  
0000 00-0  
0000 0000  
xxxx xxxx  
xxxx xxxx  
1111 1111  
Capture/Compare/PWM Register 1 Low Byte (LSB)  
Capture/Compare/PWM Register 1 High Byte (MSB)  
Capture/Compare/PWM Register 2 Low Byte (LSB)  
Capture/Compare/PWM Register 2 High Byte (MSB)  
MC1OUT  
GIE  
MC2OUT  
PEIE  
C1RSEL  
T0IE  
C2RSEL  
INTE  
TXIE  
T1GSS  
INTF  
C2SYNC  
RBIF  
RBIE  
T0IF  
ADIE  
RCIE  
C1IE  
SSPIE  
BCLIE  
SSPIF  
BCLIF  
CCP1IE  
ULPWUIE  
CCP1IF  
ULPWUIF  
T1SYNC  
TMR2IE  
TMR1IE  
CCP2IE  
TMR1IF  
CCP2IF  
TMR1ON  
PIE2  
OSFIE  
C2IE  
EEIE  
TXIF  
PIR1  
ADIF  
RCIF  
C1IF  
TMR2IF  
PIR2  
OSFIF  
T1GINV  
C2IF  
EEIF  
T1CON  
TMR1L  
TMR1H  
TRISC  
TMR1GE  
T1CKPS1 T1CKPS0 T1OSCEN  
TMR1CS  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture and  
Compare.  
TABLE 11-7: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
CCP1CON  
CCP2CON  
ECCPAS  
INTCON  
PR2  
P1M1  
P1M0  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
PSSAC1  
RBIE  
CCP1M2  
CCP2M2  
PSSAC0  
T0IF  
CCP1M1  
CCP2M1  
PSSBD1  
INTF  
CCP1M0  
CCP2M0  
PSSBD0  
RBIF  
0000 0000  
--00 0000  
0000 0000  
0000 000x  
1111 1111  
---0 0001  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 000x  
1111 1111  
---0 0001  
0000 0000  
-000 0000  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0  
GIE  
PEIE  
T0IE  
INTE  
Timer2 Period Register  
PSTRCON  
PWM1CON  
T2CON  
TMR2  
PRSEN  
STRSYNC  
PDC4  
STRD  
PDC3  
STRC  
PDC2  
STRB  
PDC1  
STRA  
PDC0  
PDC6  
PDC5  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
TMR2ON  
T2CKPS1 T2CKPS0 -000 0000  
Timer2 Module Register  
0000 0000  
TRISB  
TRISB7  
TRISC7  
TRISD7  
TRISB6  
TRISC6  
TRISD6  
TRISB5  
TRISC5  
TRISD5  
TRISB4  
TRISC4  
TRISD4  
TRISB3  
TRISC3  
TRISD3  
TRISB2  
TRISC2  
TRISD2  
TRISB1  
TRISC1  
TRISD1  
TRISB0  
TRISC0  
TRISD0  
1111 1111  
1111 1111  
1111 1111  
TRISC  
TRISD  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the PWM.  
DS41291D-page 148  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
The EUSART module includes the following capabilities:  
12.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer  
independent of device program execution. The  
EUSART, also known as a Serial Communications  
Interface (SCI), can be configured as a full-duplex  
asynchronous system or half-duplex synchronous  
• Programmable clock polarity in synchronous  
modes  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
system.  
Full-Duplex  
mode  
is  
useful  
for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 12-1 and Figure 12-2.  
FIGURE 12-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
BRG16  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4  
x16 x64  
TX9D  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
SPBRGH  
SPBRG  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 149  
PIC16F822/883/884/886/887  
FIGURE 12-2:  
EUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RCIDL  
RX/DT pin  
RSR Register  
MSb  
Stop (8)  
LSb  
Start  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
0
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
BRG16  
n
+ 1  
Multiplier  
x4  
x16 x64  
SYNC  
BRGH  
BRG16  
1
X
1
1
0
1
0
0
0
1
0
0
0
FIFO  
SPBRGH  
SPBRG  
X
X
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCTL)  
These registers are detailed in Register 12-1,  
Register 12-2 and Register 12-3, respectively.  
DS41291D-page 150  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
12.1 EUSART Asynchronous Mode  
Note 1: When the SPEN bit is set the RX/DT I/O pin  
is automatically configured as an input,  
regardless of the state of the corresponding  
TRIS bit and whether or not the EUSART  
receiver is enabled. The RX/DT pin data  
can be read via a normal PORT read but  
PORT latch data output is precluded.  
The EUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud  
Rate Generator is used to derive standard baud rate  
frequencies from the system oscillator. See Table 12-5  
for examples of baud rate configurations.  
2: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
12.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
12.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
12.1.1.3  
Transmit Interrupt Flag  
The EUSART transmitter block diagram is shown in  
Figure 12-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
12.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
All other EUSART control bits are assumed to be in  
their default state.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the TX/CK I/O pin as an output. If the TX/CK  
pin is shared with an analog peripheral the analog I/O  
function must be disabled by clearing the corresponding  
ANSEL bit.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 151  
PIC16F822/883/884/886/887  
12.1.1.4  
TSR Status  
12.1.1.6  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the desired  
baud rate (see Section 12.3 “EUSART Baud  
Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
12.1.1.5  
Transmitting 9-Bit Characters  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
EUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit. An interrupt will occur immediately  
provided that the GIE and PEIE bits of the  
INTCON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 12.1.2.7 “Address  
Detection” for more information on the Address mode.  
FIGURE 12-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 12-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
DS41291D-page 152  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
TABLE 12-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RBIE  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RBIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
SPEN  
BRG7  
RX9  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
BRG6  
BRG14  
BRG15  
BRG13  
BRG12  
BRG11  
BRG10  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TXREG  
TXSTA  
Legend:  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 153  
PIC16F822/883/884/886/887  
12.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
12.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 12.1.2.4 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode would typically be used in  
RS-232 systems. The receiver block diagram is shown  
in Figure 12-2. The data is received on the RX/DT pin  
and drives the data recovery block. The data recovery  
block is actually a high-speed shifter operating at 16  
times the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to a two character First-In-  
First-Out (FIFO) memory. The FIFO buffering allows  
reception of two complete characters and the start of a  
third character before software must start servicing the  
EUSART receiver. The FIFO and RSR registers are not  
directly accessible by software. Access to the received  
data is via the RCREG register.  
12.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the EUSART. Clearing the SYNC bit  
of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the RX/DT I/O pin as an input. If the RX/DT  
pin is shared with an analog peripheral the analog I/O  
function must be disabled by clearing the corresponding  
ANSEL bit.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 12.1.2.5  
“Receive Overrun Error” for more  
information on overrun errors.  
12.1.2.3  
Receive Interrupts  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
Note:  
When the SPEN bit is set the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or not  
the EUSART transmitter is enabled. The  
PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
RCIF interrupts are enabled by setting the following  
bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the  
INTCON register  
• GIE global interrupt enable bit of the INTCON  
register  
The RCIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
DS41291D-page 154  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
12.1.2.4  
Receive Framing Error  
12.1.2.7  
Address Detection  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit. All other characters will be ignored.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the EUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
12.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated If a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCSTA register.  
12.1.2.6  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 155  
PIC16F822/883/884/886/887  
12.1.2.8  
Asynchronous Reception Set-up:  
12.1.2.9  
9-bit Address Detection Mode Set-up  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 12.3 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 12.3 “EUSART  
Baud Rate Generator (BRG)”).  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
6. The RCIF interrupt flag bit will be set when a  
character is transferred from the RSR to the  
receive buffer. An interrupt will be generated if  
the RCIE interrupt enable bit was also set.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
6. Enable reception by setting the CREN bit.  
7. The RCIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the RSR to the receive buffer. An interrupt  
will be generated if the RCIE interrupt enable bit  
was also set.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 12-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
RCIDL  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS41291D-page 156  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
TABLE 12-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RBIE  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RBIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
TXREG  
TXSTA  
Legend:  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
BRG13  
BRG12  
BRG11  
BRG10  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Reception.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 157  
PIC16F822/883/884/886/887  
The first (preferred) method uses the OSCTUNE  
12.2 Clock Accuracy with  
Asynchronous Operation  
register to adjust the INTOSC output. Adjusting the  
value in the OSCTUNE register allows for fine resolution  
changes to the system clock source. See 4.5 “Internal  
Clock Modes” for more information.  
The factory calibrates the internal oscillator block out-  
put (INTOSC). However, the INTOSC frequency may  
drift as VDD or temperature changes, and this directly  
affects the asynchronous baud rate. Two methods may  
be used to adjust the baud rate clock, but both require  
a reference clock source of some kind.  
The other method adjusts the value in the Baud Rate  
Generator. This can be done automatically with the  
Auto-Baud Detect feature (see Section 12.3.1 “Auto-  
Baud Detect”). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
(1)  
TXEN  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
(1)  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS41291D-page 158  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 159  
PIC16F822/883/884/886/887  
REGISTER 12-3: BAUDCTL: BAUD RATE CONTROL REGISTER  
R-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been received and the receiver is receiving  
Synchronous mode:  
Don’t care  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
1= Transmit inverted data to the RB7/TX/CK pin  
0= Transmit non-inverted data to the RB7/TX/CK pin  
Synchronous mode:  
1= Data is clocked on rising edge of the clock  
0= Data is clocked on falling edge of the clock  
bit 3  
BRG16: 16-bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used  
0= 8-bit Baud Rate Generator is used  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= Receiver is waiting for a falling edge. No character will be received byte RCIF will be set. WUE will  
automatically clear after RCIF is set.  
0= Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care  
DS41291D-page 160  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
12.3 EUSART Baud Rate Generator  
(BRG)  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the  
asynchronous and synchronous EUSART operation.  
By default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDCTL register selects 16-bit  
mode.  
make sure that the receive operation is Idle before  
changing the system clock.  
EXAMPLE 12-1:  
CALCULATING BAUD  
RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The SPBRGH, SPBRG register pair determines the  
period of the free running baud rate timer. In  
Asynchronous mode the multiplier of the baud rate  
period is determined by both the BRGH bit of the TXSTA  
register and the BRG16 bit of the BAUDCTL register. In  
Synchronous mode, the BRGH bit is ignored.  
FOSC  
--------------------------------------------------------------------  
=
Desired Baud Rate  
64([SPBRGH:SPBRG] + 1)  
Solving for SPBRGH:SPBRG:  
FOSC  
---------------------------------------------  
Table 12-3 contains the formulas for determining the  
baud rate. Example 12-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
Desired Baud Rate  
---------------------------------------------  
X =  
=
1  
64  
16000000  
-----------------------  
9600  
64  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 12-3. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
-----------------------  
1  
= [25.042] = 25  
16000000  
64(25 + 1)  
--------------------------  
=
Calculated Baud Rate  
= 9615  
Writing a new value to the SPBRGH, SPBRG register  
pair causes the BRG timer to be reset (or cleared). This  
ensures that the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
Calc. Baud Rate Desired Baud Rate  
--------------------------------------------------------------------------------------------  
Error =  
Desired Baud Rate  
(9615 9600)  
----------------------------------  
=
= 0.16%  
9600  
TABLE 12-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= don’t care, n = value of SPBRGH, SPBRG register pair  
TABLE 12-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
CREN  
BRG4  
BRG12  
SYNC  
BRG16  
ADDEN  
BRG3  
WUE  
OERR  
BRG1  
BRG9  
TRMT  
ABDEN 01-0 0-00 01-0 0-00  
RCSTA  
SPBRG  
SPBRGH  
TXSTA  
SPEN  
BRG7  
BRG15  
CSRC  
RX9  
BRG6  
BRG14  
TX9  
SREN  
BRG5  
BRG13  
TXEN  
FERR  
BRG2  
BRG10  
BRGH  
RX9D  
BRG0  
BRG8  
TX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG11  
SENDB  
Legend:  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 161  
PIC16F822/883/884/886/887  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 11.0592 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
255  
129  
32  
239  
119  
29  
143  
71  
17  
16  
8
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
15  
14  
2
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
0.00  
0.00  
0.00  
0.00  
300  
1200  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
2404  
0.16  
0.16  
0.16  
103  
25  
12  
2
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
10417  
0.00  
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 113.64k -1.36  
10  
DS41291D-page 162  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
300.0  
1200  
-0.01  
-0.03  
-0.03  
0.16  
0.00  
0.16  
-1.36  
4166  
1041  
520  
129  
119  
64  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
299.9  
1199  
2404  
9615  
10417  
19.23k  
55556  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
2399  
2400  
2400  
9615  
9600  
9600  
10417  
19.23k  
56.818  
10378  
19.20k  
57.60k  
115.2k  
10473  
19.20k  
57.60k  
115.2k  
65  
47  
35  
25  
21  
19  
11  
8
115.2k 113.636 -1.36  
10  
9
5
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
Error  
(decimal)  
(decimal)  
(decimal)  
300  
1200  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
299.8  
1202  
2404  
9615  
10417  
-0.108  
0.16  
0.16  
0.16  
0.00  
416  
103  
51  
12  
11  
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
12  
1
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 163  
PIC16F822/883/884/886/887  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 11.0592 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.01  
0.02  
-0.03  
0.00  
0.16  
-0.22  
0.94  
16665  
4166  
2082  
520  
479  
259  
86  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0
6666  
1666  
832  
207  
191  
103  
34  
2400  
2400  
2400  
2400  
2401  
9600  
9597  
9600  
9600  
9615  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.47k  
116.3k  
10425  
19.20k  
57.60k  
115.2k  
10433  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
0.16  
-0.79  
2.12  
42  
39  
23  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2400  
2398  
2400  
2404  
9615  
10417  
19.23k  
55.56k  
9600  
9615  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
47  
23  
51  
47  
25  
12  
16  
15  
8
8
7
DS41291D-page 164  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
and SPBRG registers are clocked at 1/8th the BRG  
base clock rate. The resulting byte measurement is the  
average bit time when clocked at full speed.  
12.3.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud detection will occur on the byte  
following the Break character (see  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”) which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges including the Stop bit edge.  
Section 12.3.2  
“Auto-Wake-up  
on  
Break”).  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system timing  
and communication baud rates must be  
taken into consideration when using the  
Auto-Baud Detect feature.  
Setting the ABDEN bit of the BAUDCTL register starts  
the auto-baud calibration sequence (Figure 12-6).  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. On the first rising edge of  
the receive line, after the Start bit, the SPBRG begins  
counting up using the BRG counter clock as shown in  
Table 12-6. The fifth rising edge will occur on the RX  
pin at the end of the eighth bit period. At that time, an  
accumulated value totaling the proper BRG period is  
left in SPBRGH, SPBRG register pair, the ABDEN bit is  
automatically cleared and the RCIF interrupt flag is set.  
The value in the RCREG needs to be read to clear the  
RCIF interrupt. RCREG content should be discarded.  
When calibrating for modes that do not use the  
SPBRGH register the user can verify that the SPBRG  
register did not overflow by checking for 00h in the  
SPBRGH register.  
3: After completion of the auto-baud  
sequence, the calculated auto-baud  
value will be the baud-rate plus 1.  
TABLE 12-6:  
BRG16 BRGH  
BRG COUNTER CLOCK RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
0
0
0
1
FOSC/64  
FOSC/16  
FOSC/512  
FOSC/128  
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits as shown in Table 12-6. During ABD,  
both the SPBRGH and SPBRG registers are used as a  
16-bit counter, independent of the BRG16 bit setting.  
While calibrating the baud rate period, the SPBRGH  
1
1
0
1
FOSC/16  
FOSC/4  
FOSC/128  
FOSC/32  
Note:  
During the ABD sequence, SPBRG and  
SPBRGH registers are both used as a 16-bit  
counter, independent of BRG16 setting.  
FIGURE 12-6:  
AUTOMATIC BAUD RATE CALIBRATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #5  
Stop bit  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
Edge #4  
bit 7  
bit 6  
RX pin  
Start  
bit 0  
bit 2  
bit 4  
BRG Clock  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXh  
XXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 165  
PIC16F822/883/884/886/887  
12.3.2  
AUTO-WAKE-UP ON BREAK  
12.3.2.1  
Special Considerations  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The Auto-Wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line.  
This feature is available only in Asynchronous mode.  
Break Character  
To avoid character errors or character fragments during  
a wake-up event, the wake-up character must be all  
zeros.  
When the wake-up is enabled the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
The Auto-Wake-up feature is enabled by setting the  
WUE bit of the BAUDCTL register. Once set, the normal  
receive sequence on RX/DT is disabled and the  
EUSART remains in an Idle state, monitoring for a wake-  
up event independent of the CPU mode. A wake-up  
event consists of a high-to-low transition on the RX/DT  
line. (This coincides with the start of a Sync Break or a  
wake-up signal character for the LIN protocol.)  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be 10 or more bit times, 13-bit  
times recommended for LIN bus, or any number of bit  
times for standard RS-232 devices.  
The EUSART module generates an RCIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 12-7), and asynchronously if  
the device is in Sleep mode (Figure 12-8). The interrupt  
condition is cleared by reading the RCREG register.  
Oscillator Startup Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS/PLL mode). The Sync  
Break (or wake-up signal) character must be of  
sufficient length, and be followed by a sufficient  
interval, to allow enough time for the selected oscillator  
to start and provide proper initialization of the EUSART.  
The WUE bit is automatically cleared by the low-to-high  
transition on the RX line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
WUE Bit  
The wake-up event causes a receive interrupt by  
setting the RCIF bit. The WUE bit is cleared in  
hardware by a rising edge on RX/DT. The interrupt  
condition is then cleared in software by reading the  
RCREG register and discarding its contents.  
To ensure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process  
before setting the WUE bit. If a receive operation is not  
occurring, the WUE bit may then be set just prior to  
entering the Sleep mode.  
FIGURE 12-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3Q4  
OSC1  
Auto Cleared  
Bit set by user  
WUE bit  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
DS41291D-page 166  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
FIGURE 12-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3  
Q1  
Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RX/DT Line  
Note 1  
RCIF  
Cleared due to User Read of RCREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal is  
still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
12.3.3  
BREAK CHARACTER SEQUENCE  
12.3.4  
RECEIVING A BREAK CHARACTER  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by 12 ‘0’ bits and a Stop bit.  
The Enhanced EUSART module can receive a Break  
character in two ways.  
The first method to detect a Break character uses the  
FERR bit of the RCSTA register and the Received data  
as indicated by RCREG. The Baud Rate Generator is  
assumed to have been initialized to the expected baud  
rate.  
To send a Break character, set the SENDB and TXEN  
bits of the TXSTA register. The Break character trans-  
mission is then initiated by a write to the TXREG. The  
value of data written to TXREG will be ignored and all  
0’s will be transmitted.  
A Break character has been received when:  
• RCIF bit is set  
• FERR bit is set  
• RCREG = 00h  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The second method uses the Auto-Wake-up feature  
described in Section 12.3.2 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RX/DT, cause an  
RCIF interrupt, and receive the next data byte followed  
by another interrupt.  
The TRMT bit of the TXSTA register indicates when the  
transmit operation is active or idle, just as it does during  
normal transmission. See Figure 12-9 for the timing of  
the Break character sequence.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDCTL register before placing the EUSART in  
Sleep mode.  
12.3.3.1  
Break and Sync Transmit Sequence  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 167  
PIC16F822/883/884/886/887  
FIGURE 12-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXIF bit  
(Transmit  
interrupt Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
DS41291D-page 168  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
the clock Idle state as high. When the SCKP bit is set,  
the data changes on the falling edge of each clock.  
Clearing the SCKP bit sets the Idle state as low. When  
the SCKP bit is cleared, the data changes on the rising  
edge of each clock.  
12.4 EUSART Synchronous Mode  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary cir-  
cuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
12.4.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the EUSART is configured for  
synchronous master transmit operation.  
There are two signal lines in Synchronous mode: a bidi-  
rectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data, but not both simultaneously.  
The EUSART can operate as either a master or slave  
device.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character the new character data is held in the  
TXREG until the last bit of the previous character has  
been transmitted. If this is the first character, or the pre-  
vious character has been completely flushed from the  
TSR, the data in the TXREG is immediately transferred  
to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXREG.  
Start and Stop bits are not used in synchronous  
transmissions.  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
12.4.1  
SYNCHRONOUS MASTER MODE  
The following bits are used to configure the EUSART  
for Synchronous Master operation:  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
• SYNC = 1  
• CSRC = 1  
12.4.1.4  
Synchronous Master Transmission  
Set-up:  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 12.3 “EUSART  
Baud Rate Generator (BRG)”).  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE, GIE and  
PEIE interrupt enable bits.  
12.4.1.1  
Master Clock  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin is automatically configured as an output  
when the EUSART is configured for synchronous  
transmit operation. Serial data bits change on the lead-  
ing edge to ensure they are valid at the trailing edge of  
each clock. One clock cycle is generated for each data  
bit. Only as many clock cycles are generated as there  
are data bits.  
8. Start transmission by loading data to the TXREG  
register.  
12.4.1.2  
Clock Polarity  
A clock polarity option is provided for Microwire  
compatability. Clock polarity is selected with the SCKP  
bit of the BAUDCTL register. Setting the SCKP bit sets  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 169  
PIC16F822/883/884/886/887  
FIGURE 12-10:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 12-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 12-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RBIE  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RBIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
TXREG  
TXSTA  
Legend:  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
BRG13  
BRG12  
BRG11  
BRG10  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Transmission.  
DS41291D-page 170  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
12.4.1.5  
Synchronous Master Reception  
12.4.1.8  
Synchronous Master Reception Set-  
up:  
Data is received at the RX/DT pin. The RX/DT and TX/  
CK pin output drivers are automatically disabled when  
the EUSART is configured for synchronous master  
receive operation.  
1. Initialize the SPBRGH, SPBRG register pair for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If using interrupts, set the GIE and PEIE bits of  
the INTCON register and set RCIE.  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
5. If 9-bit reception is desired, set bit RX9.  
6. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
7. Interrupt flag bit RCIF will be set when reception  
of a character is complete. An interrupt will be  
generated if the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit is set and the char-  
acter is automatically transferred to the two character  
receive FIFO. The Least Significant eight bits of the top  
character in the receive FIFO are available in RCREG.  
The RCIF bit remains set as long as there are un-read  
characters in the receive FIFO.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
12.4.1.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register or by clearing the  
SPEN bit which resets the EUSART.  
12.4.1.7  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 171  
PIC16F822/883/884/886/887  
FIGURE 12-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RBIE  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RBIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
TXREG  
TXSTA  
Legend:  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
BRG13  
BRG12  
BRG11  
BRG10  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Reception.  
DS41291D-page 172  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F822/883/884/886/887  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
12.4.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the interrupt service routine.  
12.4.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. Clear the CREN and SREN bits.  
12.4.2.1  
EUSART Synchronous Slave  
Transmit  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 12.4.1.3  
“Synchronous Master Transmission”), except in the  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
case of the Sleep mode.  
6. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
7. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RBIE  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RBIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
TXREG  
TXSTA  
Legend:  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
BRG10  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
BRG13  
BRG12  
BRG11  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 173  
PIC16F822/883/884/886/887  
12.4.2.3  
EUSART Synchronous Slave  
Reception  
12.4.2.4  
Synchronous Slave Reception Set-  
up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 12.4.1.5 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
RCIE bit.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Set the CREN bit to enable reception.  
• SREN bit, which is a “don’t care” in Slave mode  
5. The RCIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCIE bit was set.  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
6. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
7. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
8. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RBIE  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RBIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
SSPIE  
SSPIF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
TXREG  
TXSTA  
Legend:  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
BRG10  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
BRG13  
BRG12  
BRG11  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 0010 0000 0010  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Reception.  
DS41291D-page 174  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
13.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
13.1 Master SSP (MSSP) Module  
Overview  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated CircuitTM (I2CTM  
)
- Full Master mode  
- Slave mode (with general address call).  
The I2C interface supports the following modes in  
hardware:  
• Master mode  
• Multi-Master mode  
• Slave mode.  
13.2 Control Registers  
The MSSP module has three associated registers.  
These include a STATUS register and two control  
registers.  
Register 13-1 shows the MSSP STATUS register  
(SSPSTAT), Register 13-2 shows the MSSP Control  
Register 1 (SSPCON), and Register 13-3 shows the  
MSSP Control Register 2 (SSPCON2).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 175  
PIC16F882/883/884/886/887  
REGISTER 13-1: SSPSTAT: SSP STATUS REGISTER  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
In I2C Master or Slave mode:  
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select bit  
CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
bit 5  
bit 4  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: Stop bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
bit 3  
bit 2  
S: Start bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
R/W: Read/Write bit information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to  
the next Start bit, Stop bit, or not ACK bit.  
In I2C Slave mode:  
1= Read  
0= Write  
In I2C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
OR-ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in Idle mode.  
bit 1  
bit 0  
UA: Update Address bit (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only):  
1= Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty  
DS41291D-page 176  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 13-2: SSPCON: SSP CONTROL REGISTER 1  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
2
1= A write to the SSPBUF register was attempted while the I C conditions were not valid for a transmission to be started  
0= No collision  
Slave mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR  
is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting  
data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is  
initiated by writing to the SSPBUF register (must be cleared in software).  
0= No overflow  
2
In I C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t care” in Transmit  
mode (must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
2
In I C Slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
2
In I C Master mode:  
Unused in this mode  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
2
0110= I C Slave mode, 7-bit address  
2
0111= I C Slave mode, 10-bit address  
2
1000= I C Master mode, clock = FOSC / (4 * (SSPADD+1))  
1001= Load Mask function  
1010= Reserved  
2
1011= I C firmware controlled Master mode (Slave idle)  
1100= Reserved  
1101= Reserved  
2
1110= I C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
2
1111= I C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 177  
PIC16F882/883/884/886/887  
REGISTER 13-3: SSPCON2: SSP CONTROL REGISTER 2  
R/W-0  
GCEN  
R-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
GCEN: General Call Enable bit (in I2C Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (in I2C Master mode only)  
In Master Transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (in I2C Master mode only)  
In Master Receive mode:  
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (in I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (in I2C Master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: Stop Condition Enable bit (in I2C Master mode only)  
SCK Release Control:  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
bit 1  
bit 0  
RSEN: Repeated Start Condition Enabled bit (in I2C Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enabled bit (in I2C Master mode only)  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, this bit may not be  
set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).  
DS41291D-page 178  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 13-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
13.3 SPI Mode  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received, simultaneously. All four modes  
of SPI are supported. To accomplish communication,  
typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
• Serial Clock (SCK) – RC3/SCK/SCL  
SSPBUF Reg  
Additionally, a fourth pin may be used when in any  
Slave mode of operation:  
SSPSR Reg  
Shift  
SDI  
bit 0  
• Slave Select (SS) – RA5/SS/AN4  
Clock  
13.3.1  
OPERATION  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits SSPCON<5:0> and SSPSTAT<7:6>.  
These control bits allow the following to be specified:  
Control  
Enable  
SS  
SS  
Edge  
Select  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock polarity (Idle state of SCK)  
2
Clock Select  
• Data input sample phase (middle or end of data  
output time)  
SSPM<3:0>  
• Clock edge (output data on rising/falling edge of  
SCK)  
SMP:CKE  
2
4
TMR2 Output  
2
(
)
TOSC  
• Clock rate (Master mode only)  
Edge  
Select  
Prescaler  
4, 16, 64  
• Slave Select mode (Slave mode only)  
SCK  
Figure 13-1 shows the block diagram of the MSSP  
module, when in SPI mode.  
Data to TX/RX in SSPSR  
TRIS bit  
Note: I/O pins have diode protection to VDD and VSS.  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then, the buffer full-detect bit BF of the SSP-  
STAT register and the interrupt flag bit SSPIF of the  
PIR1 register are set. This double buffering of the  
received data (SSPBUF) allows the next byte to start  
reception before reading the data that was just  
received. Any write to the SSPBUF register during  
transmission/reception of data will be ignored, and the  
write collision detect bit WCOL of the SSPCON register  
will be set. User software must clear the WCOL bit so  
that it can be determined if the following write(s) to the  
SSPBUF register completed successfully.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 179  
PIC16F882/883/884/886/887  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. The  
buffer full bit BF of the SSPSTAT register indicates  
when SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the MSSP Interrupt  
is used to determine when the transmission/reception  
has completed. The SSPBUF must be read and/or  
written. If the interrupt method is not going to be used,  
then software polling can be done to ensure that a write  
collision does not occur. Example 13-1 shows the  
loading of the SSPBUF (SSPSR) for data transmission.  
13.3.2  
ENABLING SPI I/O  
To enable the serial port, SSP Enable bit SSPEN of the  
SSPCON register must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers, and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port  
function, some must have their data direction bits (in  
the TRIS register) appropriately programmed. That is:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
The SSPSR is not directly readable or writable, and  
can only be accessed by addressing the SSPBUF  
register. Additionally, the MSSP STATUS register  
(SSPSTAT register) indicates the various status  
conditions.  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISA<5> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
EXAMPLE 13-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
GOTO LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF TXDATA, W  
MOVWF SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS41291D-page 180  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The clock polarity is selected by appropriately program-  
ming the CKP bit of the SSPCON register. This, then,  
13.3.3  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave is to broadcast data by the software  
protocol.  
would give waveforms for SPI communication as  
shown in Figure 13-2, Figure 13-4 and Figure 13-5,  
where the MSb is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
a normal received byte (interrupts and Status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 13-2 shows the waveforms for Master mode.  
When the CKE bit of the SSPSTAT register is set, the  
SDO data is valid before there is a clock edge on SCK.  
The change of the input sample is shown based on the  
state of the SMP bit of the SSPSTAT register. The time  
when the SSPBUF is loaded with the received data is  
shown.  
FIGURE 13-2:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 181  
PIC16F882/883/884/886/887  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. External pull-up/pull-down resistors may be  
desirable, depending on the application.  
13.3.4  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit of the  
PIR1 register is set.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times, as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set (SSPSTAT register), then the SS pin  
control must be enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level, or clearing the SSPEN bit.  
13.3.5  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function),  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control  
enabled (SSPCON<3:0> = 04h). The pin must not  
be driven low for the SS pin to function as an input.  
The Data Latch must be high. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
FIGURE 13-3:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
SSPSR to  
SSPBUF  
after Q2↓  
DS41291D-page 182  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 13-4:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 13-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Required  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 7  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
bit 0  
SDO  
bit 3  
SDI  
(SMP = 0)  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 183  
PIC16F882/883/884/886/887  
13.3.6  
SLEEP OPERATION  
13.3.8  
BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted, and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
normal mode, the module will continue to  
transmit/receive data.  
Table 13-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 13-1: SPI BUS MODES  
In Slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI transmit/receive shift register.  
When all eight bits have been received, the MSSP  
interrupt flag bit will be set and, if enabled, will wake the  
device from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
13.3.7  
EFFECTS OF A RESET  
There is also a SMP bit that controls when the data will  
be sampled.  
A Reset disables the MSSP module and terminates the  
current transfer.  
TABLE 13-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE/GIEH  
PEIE/GIEL  
ADIE  
T0IE  
INTE  
TXIE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 000u  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
RCIE  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE  
PIR1  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON  
SSPSTAT  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
TRISA7  
TRISC7  
TRISA6  
TRISC6  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
TRISA  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
TRISC  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and  
read ‘0’.  
DS41291D-page 184  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The SSPCON register allows control of the I2C  
operation. The SSPM<3:0> mode selection bits  
2
13.4 MSSP I C Operation  
The MSSP module in I2C mode, fully implements all  
master and slave functions (including general call  
support) and provides interrupts on Start and Stop bits in  
hardware, to determine a free bus (Multi-Master mode).  
The MSSP module implements the standard mode  
specifications, as well as 7-bit and 10-bit addressing.  
(SSPCON register) allow one of the following I2C modes  
to be selected:  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address), with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address), with Start and  
Stop bit interrupts enabled  
• I2C firmware controlled master operation, slave is  
idle  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain,  
provided these pins are programmed to be inputs by  
setting the appropriate TRISC bits.  
Two pins are used for data transfer. These are the  
RC3/SCK/SCL pin, which is the clock (SCL), and the  
RC4/SDI/SDA pin, which is the data (SDA). The user  
must configure these pins as inputs or outputs through  
the TRISC<4:3> bits.  
The MSSP module functions are enabled by setting  
MSSP Enable bit SSPEN of the SSPCON register.  
FIGURE 13-6:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
13.4.1  
SLAVE MODE  
Internal  
Data Bus  
In Slave mode, the SCL and SDA pins must be  
configured as inputs (TRISC<4:3> set). The MSSP  
module will override the input state with the output data  
when required (slave-transmitter).  
Read  
Write  
SSPBUF Reg  
RC3/SCK/SCL  
When an address is matched, or the data transfer after  
an address match is received, the hardware  
automatically will generate the Acknowledge (ACK)  
pulse and load the SSPBUF register with the received  
value currently in the SSPSR register.  
Shift  
Clock  
SSPSR Reg  
RC4/  
SDI/  
MSb  
LSb  
If either or both of the following conditions are true, the  
MSSP module will not give this ACK pulse:  
SDA  
Addr Match  
Match Detect  
SSPMSK Reg  
SSPADD Reg  
a) The buffer full bit BF (SSPCON register) was set  
before the transfer was received.  
b) The overflow bit SSPOV (SSPCON register)  
was set before the transfer was received.  
In this event, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF of the PIR1 register is  
set. The BF bit is cleared by reading the SSPBUF  
register, while bit SSPOV is cleared through software.  
Set, Reset  
S, P bits  
(SSPSTAT Reg)  
Start and  
Stop bit Detect  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
Note: I/O pins have diode protection to VDD and VSS.  
The MSSP module has these six registers for I2C  
operation:  
• MSSP Control Register 1 (SSPCON)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP STATUS register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
• MSSP Address register (SSPADD)  
• MSSP Mask register (SSPMSK)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 185  
PIC16F882/883/884/886/887  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT register)  
is set, or bit SSPOV (SSPCON register) is set.  
13.4.1.1  
Addressing  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the eight bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF of the PIR1 register must be  
cleared in software. The SSPSTAT register is used to  
determine the status of the byte.  
13.4.1.3  
Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Then pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON register). The master must  
monitor the SCL pin prior to asserting another clock  
pulse. The slave devices may be holding off the master  
by stretching the clock. The eight data bits are shifted  
out on the falling edge of the SCL input. This ensures  
that the SDA signal is valid during the SCL high time  
(Figure 13-8).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
b) The buffer full bit BF is set.  
c) An ACK pulse is generated.  
d) MSSP interrupt flag bit, SSPIF of the PIR1  
register, is set on the falling edge of the ninth  
SCL pulse (interrupt is generated, if enabled).  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSb) of the first address byte specify if this is a 10-bit  
address. The R/W bit (SSPSTAT register) must specify  
a write so the slave device will receive the second  
address byte. For a 10-bit address, the first byte would  
equal ‘1111 0 A9 A8 0’, where A9and A8are the  
two MSb’s of the address.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
The sequence of events for 10-bit addressing is as  
follows, with steps 7-9 for slave-transmitter:  
1. Receive first (high) byte of address (bit SSPIF of  
the PIR1 register and bits BF and UA of the  
SSPSTAT register are set).  
As a slave-transmitter, the ACK pulse from the  
master-receiver is latched on the rising edge of the  
ninth SCL input pulse. If the SDA line is high (not ACK),  
then the data transfer is complete. When the ACK is  
latched by the slave, the slave logic is reset and the  
slave monitors for another occurrence of the Start bit. If  
the SDA line was low (ACK), the transmit data must be  
loaded into the SSPBUF register, which also loads the  
SSPSR register. Pin RC3/SCK/SCL should be enabled  
by setting bit CKP.  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
13.4.1.2  
Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
DS41291D-page 186  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 13-7:  
I2C™ SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W = 0  
Receiving Data  
Receiving Data  
ACK  
9
Not ACK  
D0  
ACK  
9
SDA  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D7 D6  
D4 D3  
D1  
7
D7 D6  
D4 D3  
D1  
7
1
2
3
4
5
6
9
1
2
3
4
8
5
6
1
2
3
4
5
6
7
8
P
SCL  
S
SSPIF  
Bus Master  
Terminates  
Transfer  
BF  
Cleared in software  
SSPBUF register is read  
SSPOV  
Bit SSPOV is set because the SSPBUF register is still full  
ACK is not sent  
FIGURE 13-8:  
I2C™ SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
R/W = 1  
ACK  
Transmitting Data  
Not ACK  
SDA  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
Sampled  
SSPIF  
BF  
Cleared in software  
SSPBUF is written in software  
From SSP Interrupt  
Service Routine  
CKP  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 187  
PIC16F882/883/884/886/887  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF bit is set (eighth bit),  
and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
13.4.2  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that,  
the first byte after the Start condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT register). If the general call address  
is sampled when the GCEN bit is set, and while the  
slave is configured in 10-bit address mode, then the  
second half of the address is not necessary. The UA bit  
will not be set, and the slave will begin receiving data  
after the Acknowledge (Figure 13-9).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0.  
The general call address is recognized (enabled) when  
the General Call Enable (GCEN) bit is set (SSPCON2  
register). Following a Start bit detect, eight bits are  
shifted into the SSPSR and the address is compared  
against the SSPADD. It is also compared to the general  
call address and fixed in hardware.  
FIGURE 13-9:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT ADDRESS)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF  
Cleared in software  
SSPBUF is read  
SSPOV  
GCEN  
0’  
1’  
DS41291D-page 188  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
13.4.3  
MASTER MODE  
13.4.4  
I2C™ MASTER MODE SUPPORT  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop  
conditions. The Stop (P) and Start (S) bits are cleared  
from a Reset, or when the MSSP module is disabled.  
Control of the I2C bus may be taken when the P bit is  
set, or the bus is idle, with both the S and P bits clear.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. Once Master mode is enabled, the user  
has the following six options:  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
In Master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
4. Generate a Stop condition on SDA and SCL.  
5. Configure the I2C port to receive data.  
• Start condition  
• Stop condition  
6. Generate an Acknowledge condition at the end  
of a received byte of data.  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start condition  
Note: The MSSP module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
imitate transmission, before the Start  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
2
FIGURE 13-10:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM<3:0>  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
End of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
Note: I/O pins have diode protection to VDD and VSS.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 189  
PIC16F882/883/884/886/887  
I2C™ Master Mode Operation  
A typical transmit sequence would go as follows:  
13.4.4.1  
a) The user generates a Start condition by setting  
the Start Enable (SEN) bit (SSPCON2 register).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
b) SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
c) The user loads the SSPBUF with the address to  
transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted eight bits at a time. After each byte is trans-  
mitted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
d) Address is shifted out the SDA pin until all eight  
bits are transmitted.  
e) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit (SSPCON2 register).  
f) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received eight bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. Start and Stop conditions indicate the beginning  
and end of transmission.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) Data is shifted out the SDA pin until all eight bits  
are transmitted.  
i) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit (SSPCON2 register).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode oper-  
ation is now used to set the SCL clock frequency for  
either 100 kHz, 400 kHz, or 1 MHz I2C operation. The  
Baud Rate Generator reload value is contained in the  
lower 7 bits of the SSPADD register. The Baud Rate  
Generator will automatically begin counting on a write  
to the SSPBUF. Once the given operation is complete  
(i.e., transmission of the last data bit is followed by  
ACK), the internal clock will automatically stop counting  
and the SCL pin will remain in its last state.  
k) The user generates a Stop condition by setting  
the Stop Enable bit PEN (SSPCON2 register).  
l) Interrupt is generated once the Stop condition is  
complete.  
DS41291D-page 190  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
13.4.5  
BAUD RATE GENERATOR  
In I2C Master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 13-11). When the BRG is loaded with this  
value, the BRG counts down to 0 and stops until  
another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically. If clock arbitration is taking  
place, for instance, the BRG will be reloaded when the  
SCL pin is sampled high (Figure 13-12).  
FIGURE 13-11:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM<3:0>  
SSPADD<6:0>  
SSPM<3:0>  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKOUT  
FOSC/4  
FIGURE 13-12:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL allowed to transition high  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 191  
PIC16F882/883/884/886/887  
13.4.6  
I2C™ MASTER MODE START  
CONDITION TIMING  
13.4.6.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
To initiate a Start condition, the user sets the Start Con-  
dition Enable bit SEN of the SSPCON2 register. If the  
SDA and SCL pins are sampled high, the Baud Rate  
Generator is reloaded with the contents of  
SSPADD<6:0> and starts its count. If SCL and SDA are  
both sampled high when the Baud Rate Generator  
times out (TBRG), the SDA pin is driven low. The action  
of the SDA being driven low, while SCL is high, is the  
Start condition, and causes the S bit of the SSPSTAT  
register to be set. Following this, the Baud Rate Gener-  
ator is reloaded with the contents of SSPADD<6:0>  
and resumes its count. When the Baud Rate Generator  
times out (TBRG), the SEN bit of the SSPCON2 register  
will be automatically cleared by hardware, the Baud  
Rate Generator is suspended leaving the SDA line held  
low and the Start condition is complete.  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start condi-  
tion is complete.  
Note: If, at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs, the  
Bus Collision Interrupt Flag, BCLIF, is set,  
the Start condition is aborted, and the I2C  
module is reset into its Idle state.  
FIGURE 13-13:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT)  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
SDA  
SCL  
TBRG  
TBRG  
S
DS41291D-page 192  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
13.4.7  
I2C™ MASTER MODE REPEATED  
START CONDITION TIMING  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2 register) is programmed high and the I2C  
Logic module is in the Idle state. When the RSEN bit is  
set, the SCL pin is asserted low. When the SCL pin is  
sampled low, the Baud Rate Generator is loaded with  
the contents of SSPADD<5:0> and begins counting.  
The SDA pin is released (brought high) for one Baud  
Rate Generator count (TBRG). When the Baud Rate  
Generator times out, if SDA is sampled high, the SCL  
pin will be de-asserted (brought high). When SCL is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of SSPADD<6:0> and begins count-  
ing. SDA and SCL must be sampled high for one TBRG.  
This action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG, while SCL is high. Following  
this, the RSEN bit (SSPCON2 register) will be automat-  
ically cleared and the Baud Rate Generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
Start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT register) will be set. The SSPIF bit  
will not be set until the Baud Rate Generator has timed  
out.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data “1”.  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode), or eight bits of data (7-bit  
mode).  
13.4.7.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
FIGURE 13-14:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here,  
SDA = 1,  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clear RSEN bit  
and set SSPIF  
SCL (no change)  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 193  
PIC16F882/883/884/886/887  
13.4.8  
I2C™ MASTER MODE  
TRANSMISSION  
13.4.8.3  
ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2  
register) is cleared when the slave has sent an  
Acknowledge (ACK = 0), and is set when the slave  
does not Acknowledge (ACK = 1). A slave sends an  
Acknowledge when it has recognized its address  
(including a general call), or when the slave has  
properly received its data.  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address, is accomplished by sim-  
ply writing a value to the SSPBUF register. This action  
will set the Buffer Full bit, BF, and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification, parameter  
106). SCL is held low for one Baud Rate Generator roll-  
over count (TBRG). Data should be valid before SCL is  
released high (see data setup time specification,  
parameter 107). When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF bit is cleared and the master releases SDA,  
allowing the slave device being addressed to respond  
with an ACK bit during the ninth bit time, if an address  
match occurs, or if data was received properly. The  
status of ACK is written into the ACKDT bit on the fall-  
ing edge of the ninth clock. If the master receives an  
Acknowledge, the Acknowledge Status bit, ACKSTAT,  
is cleared. If not, the bit is set. After the ninth clock, the  
SSPIF bit is set and the master clock (Baud Rate Gen-  
erator) is suspended until the next data byte is loaded  
into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 13-15).  
13.4.9  
I2C™ MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2 register).  
Note: The MSSP module must be in an Idle state  
before the RCEN bit is set, or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting, and on  
each rollover, the state of the SCL pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPSR. After the falling edge of the eighth clock, the  
RCEN bit is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF bit is set,  
the SSPIF flag bit is set and the Baud Rate Generator  
is suspended from counting, holding SCL low. The  
MSSP is now in Idle state, awaiting the next command.  
When the buffer is read by the CPU, the BF bit is auto-  
matically cleared. The user can then send an Acknowl-  
edge bit at the end of reception, by setting the  
Acknowledge Sequence Enable bit ACKEN  
(SSPCON2 register).  
After the write to the SSPBUF, each bit of the address  
will be shifted out on the falling edge of SCL, until all  
seven address bits and the R/W bit, are completed. On  
the falling edge of the eighth clock, the master will  
de-assert the SDA pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDA pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT Status bit  
(SSPCON2 register). Following the falling edge of the  
ninth clock transmission of the address, the SSPIF is  
set, the BF bit is cleared and the Baud Rate Generator  
is turned off, until another write to the SSPBUF takes  
place, holding SCL low and allowing SDA to float.  
13.4.9.1  
BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
13.4.9.2  
SSPOV Status Flag  
In receive operation, the SSPOV bit is set when eight  
bits are received into the SSPSR and the BF bit is  
already set from a previous reception.  
13.4.9.3  
WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
13.4.8.1  
BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT register) is set  
when the CPU writes to SSPBUF, and is cleared when  
all eight bits are shifted out.  
13.4.8.2  
WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur). WCOL  
must be cleared in software.  
DS41291D-page 194  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
2
FIGURE 13-15:  
I C™ MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 195  
PIC16F882/883/884/886/887  
2
FIGURE 13-16:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
DS41291D-page 196  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
13.4.10  
ACKNOWLEDGE SEQUENCE TIMING  
13.4.11 STOP CONDITION TIMING  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN (SSPCON2  
register). When this bit is set, the SCL pin is pulled low  
and the contents of the Acknowledge Data bit (ACKDT)  
is presented on the SDA pin. If the user wishes to gener-  
ate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG) and  
the SCL pin is de-asserted (pulled high). When the SCL  
pin is sampled high (clock arbitration), the Baud Rate  
Generator counts for TBRG. The SCL pin is then pulled  
low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 13-17).  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2 register). At the end of a  
receive/transmit, the SCL line is held low after the fall-  
ing edge of the ninth clock. When the PEN bit is set, the  
master will assert the SDA line low. When the SDA line  
is sampled low, the Baud Rate Generator is reloaded  
and counts down to 0. When the Baud Rate Generator  
times out, the SCL pin will be brought high, and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be de-asserted. When the SDA pin is sam-  
pled high while SCL is high, the P bit (SSPSTAT regis-  
ter) is set. A TBRG later, the PEN bit is cleared and the  
SSPIF bit is set (Figure 13-18).  
13.4.11.1 WCOL Status Flag  
13.4.10.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 13-17:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
Set SSPIF at the end  
of receive  
Cleared in  
software  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 197  
PIC16F882/883/884/886/887  
FIGURE 13-18:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high, P bit (SSPSTAT) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to set up Stop condition  
Note: TBRG = one Baud Rate Generator period.  
13.4.12 CLOCK ARBITRATION  
13.4.13 SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count, in the  
event that the clock is held low by an external device  
(Figure 13-19).  
While in Sleep mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
13.4.14 EFFECT OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
FIGURE 13-19:  
CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1, load BRG with  
SSPADD<6:0>, and start count  
to measure high time interval  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low  
SCL = 1, BRG starts counting  
clock high interval  
SCL  
SDA  
SCL line sampled once every machine cycle (TOSC*4),  
Hold off BRG until SCL is sampled high  
TBRG  
TBRG  
TBRG  
DS41291D-page 198  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
13.4.15 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset, or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT register) is set, or  
the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP Interrupt will gener-  
ate the interrupt when the Stop condition occurs.  
the Bus Collision Interrupt Flag (BCLIF) and reset the  
I2C port to its Idle state (Figure 13-20).  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF bit is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision interrupt service routine, and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In Multi-Master operation, the SDA line must be moni-  
tored for arbitration, to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user  
services the bus collision interrupt service routine, and  
if the I2C bus is free, the user can resume  
communication by asserting a Start condition.  
Arbitration can be lost in the following states:  
• Address transfer  
• Data transfer  
• A Start condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be  
set.  
• A Repeated Start condition  
• An Acknowledge condition  
13.4.16 MULTI -MASTER  
COMMUNICATION, BUS  
COLLISION, AND BUS  
ARBITRATION  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is idle and the S and P bits are  
cleared.  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA, by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
FIGURE 13-20:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA,  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
While SCL is high, data doesn’t  
match what is driven by the master,  
Bus collision has occurred  
SDA released  
by master  
SDA  
Set bus collision  
interrupt (BCLIF)  
SCL  
BCLIF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 199  
PIC16F882/883/884/886/887  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
13.4.16.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 13-23). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to 0, and during this time, if the SCL pin is  
sampled as ‘0’, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 13-21).  
b) SCL is sampled low before SDA is asserted low  
(Figure 13-22).  
During a Start condition, both the SDA and the SCL  
pins are monitored, if:  
the SDA pin is already low,  
or the SCL pin is already low,  
Note: The reason that bus collision is not a factor  
during a Start condition, is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the Start condition. If the address is the  
same, arbitration must be allowed to con-  
tinue into the data portion, Repeated Start  
or Stop conditions.  
then:  
the Start condition is aborted,  
and the BCLIF flag is set,  
and the MSSP module is reset to its Idle state  
(Figure 13-21).  
The Start condition begins with the SDA and SCL pins  
de-asserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
FIGURE 13-21:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1.  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
DS41291D-page 200  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 13-22:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL = 0before SDA = 0,  
Bus collision occurs, set BCLIF  
SCL =0before BRG time-out,  
Bus collision occurs, set BCLIF  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 13-23:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master  
Reset BRG and assert SDA  
SDA  
SCL  
SEN  
S
SCL pulled low after BRG  
time-out  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
BCLIF  
0’  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1  
Set SSPIF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 201  
PIC16F882/883/884/886/887  
If SDA is low, a bus collision has occurred (i.e, another  
13.4.16.2 Bus Collision During a Repeated  
Start Condition  
master is attempting to transmit a data ‘0’, see  
Figure 13-24). If SDA is sampled high, the BRG is  
reloaded and begins counting. If SDA goes from  
high-to-low before the BRG times out, no bus collision  
occurs because no two masters can assert SDA at  
exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data ’1’.  
If SCL goes from high-to-low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition  
(Figure 13-25).  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted,  
and when sampled high, the SDA pin is sampled.  
If at the end of the BRG time-out, both SCL and SDA are  
still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is complete.  
FIGURE 13-24:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high,  
If SDA = 0, set BCLIF and release SDA and SCL  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 13-25:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
Set BCLIF, release SDA and SCL  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS41291D-page 202  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 13-26). If the SCL pin is sam-  
pled low before SDA is allowed to float high, a bus col-  
lision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 13-27).  
13.4.16.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is  
sampled low before SDA goes high.  
FIGURE 13-26:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
TBRG  
TBRG  
TBRG  
low after TBRG,  
set BCLIF  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 13-27:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 203  
PIC16F882/883/884/886/887  
This register must be initiated prior to setting  
13.4.17 SSP MASK REGISTER  
SSPM<3:0> bits to select the I2C Slave mode (7-bit or  
10-bit address).  
An SSP Mask (SSPMSK) register is available in I2C  
Slave mode as a mask for the value held in the  
SSPSR register during an address comparison  
operation. A zero (‘0’) bit in the SSPMSK register has  
the effect of making the corresponding bit in the  
SSPSR register a “don’t care”.  
This register can only be accessed when the appropriate  
mode is selected by bits (SSPM<3:0> of SSPCON).  
The SSP Mask register is active during:  
• 7-bit Address mode: address compare of A<7:1>.  
This register is reset to all ‘1’s upon any Reset  
condition and, therefore, has no effect on standard  
SSP operation until written with a mask value.  
• 10-bit Address mode: address compare of A<7:0>  
only. The SSP mask has no effect during the  
reception of the first (high) byte of the address.  
REGISTER 13-4: SSPMSK: SSP MASK REGISTER(1)  
R/W-1  
MSK7  
R/W-1  
MSK6  
R/W-1  
MSK5  
R/W-1  
MSK4  
R/W-1  
MSK3  
R/W-1  
MSK2  
R/W-1  
MSK1  
R/W-1  
MSK0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
1= The received address bit n is compared to SSPADD<n> to detect I2C address match  
0= The received address bit n is not used to detect I2C address match  
MSK<0>: Mask bit for I2C Slave mode, 10-bit Address(2)  
I2C Slave mode, 10-bit Address (SSPM<3:0> = 0111):  
1= The received address bit 0 is compared to SSPADD<0> to detect I2C address match  
0= The received address bit 0 is not used to detect I2C address match  
Note 1: When SSPCON bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed  
through the SSPMSK register.  
2: In all other SSP modes, this bit has no effect.  
DS41291D-page 204  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
14.0 SPECIAL FEATURES OF THE  
CPU  
The PIC16F882/883/884/886/887 have a host of fea-  
tures intended to maximize system reliability, minimize  
cost through elimination of external components, pro-  
vide power-saving features and offer code protection.  
These features are:  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Oscillator selection  
• Sleep  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming™  
The PIC16F882/883/884/886/887 have two timers that  
offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in Reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 64 ms (nominal) on power-up only,  
designed to keep the part in Reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs, which can use the Power-  
up Timer to provide at least a 64 ms Reset. With these  
three functions-on-chip, most applications need no  
external Reset circuitry.  
The Sleep mode is designed to offer a very low-current  
Power-Down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer Wake-up  
• An interrupt  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of Configuration bits are used to select  
various options (see Register 14-3).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 205  
PIC16F882/883/884/886/887  
14.1 Configuration Bits  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
configuration memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See “PIC16F88X Memory  
Programming Specification” (DS41287) for  
more information.  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations as shown in Register 14-1.  
These bits are mapped in program memory location  
2007h.  
REGISTER 14-1: CONFIG1: CONFIGURATION WORD REGISTER 1  
DEBUG  
LVP  
FCMEN  
IESO  
BOREN1  
FOSC1  
BOREN0  
bit 8  
bit 15  
CPD  
CP  
MCLRE  
PWRTE  
WDTE  
FOSC2  
FOSC0  
bit 7  
bit 0  
bit 15-14  
bit 13  
Unimplemented: Read as ‘1’  
DEBUG: In-Circuit Debugger Mode bit  
1= In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger  
bit 12  
LVP: Low Voltage Programming Enable bit  
1= RB3/PGM pin has PGM function, low voltage programming enabled  
0= RB3 pin is digital I/O, HV on MCLR must be used for programming  
bit 11  
bit 10  
bit 9-8  
FCMEN: Fail-Safe Clock Monitor Enabled bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
IESO: Internal External Switchover bit  
1= Internal/External Switchover mode is enabled  
0= Internal/External Switchover mode is disabled  
BOREN<1:0>: Brown-out Reset Selection bits(1)  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the PCON register  
00= BOR disabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Data Code Protection bit(2)  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
CP: Code Protection bit(3)  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
MCLRE: RE3/MCLR pin function select bit(4)  
1= RE3/MCLR pin function is MCLR  
0= RE3/MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled and can be enabled by SWDTEN bit of the WDTCON register  
FOSC<2:0>: Oscillator Selection bits  
111= RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN  
110= RCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN  
101= INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
011= EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
Note 1:  
Enabling Brown-out Reset does not automatically enable Power-up Timer.  
The entire data EEPROM will be erased when the code protection is turned off.  
The entire program memory will be erased when the code protection is turned off.  
When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
2:  
3:  
4:  
DS41291D-page 206  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 14-2: CONFIG2: CONFIGURATION WORD REGISTER 2  
WRT1  
WRT0  
BOR4V  
bit 8  
bit 15  
bit 7  
bit 0  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘1’  
WRT<1:0>: Flash Program Memory Self Write Enable bits  
PIC16F883/PIC16F884  
00= 0000h to 07FFh write protected, 0800h to 0FFFh may be modified by EECON control  
01= 0000h to 03FFh write protected, 0400h to 0FFFh may be modified by EECON control  
10= 0000h to 00FFh write protected, 0100h to 0FFFh may be modified by EECON control  
11= Write protection off  
PIC16F886/PIC16F887  
00= 0000h to 0FFFh write protected, 1000h to 1FFFh may be modified by EECON control  
01= 0000h to 07FFh write protected, 0800h to 1FFFh may be modified by EECON control  
10= 0000h to 00FFh write protected, 0100h to 1FFFh may be modified by EECON control  
11= Write protection off  
PIC16F882  
00= 0000h to 03FFh write protected, 0400h to 07FFh may be modified by EECON control  
01= 0000h to 00FFh write protected, 0100h to 07FFh may be modified by EECON control  
11= Write protection off  
bit 8  
BOR4V: Brown-out Reset Selection bit  
0= Brown-out Reset set to 2.1V  
1= Brown-out Reset set to 4.0V  
bit 7-0  
Unimplemented: Read as ‘1’  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 207  
PIC16F882/883/884/886/887  
They are not affected by a WDT Wake-up since this is  
14.2 Reset  
viewed as the resumption of normal operation. TO and  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 14-2. These bits are  
used in software to determine the nature of the Reset.  
See Table 14-5 for a full description of Reset states of  
all registers.  
The  
PIC16F882/883/884/886/887  
differentiates  
between various kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 14-1.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 17.0 “Electrical  
Specifications” for pulse-width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 14-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP pin  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
SBOREN  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1/  
CLKI pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word Register 1 (Register 14-1).  
DS41291D-page 208  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
14.2.1  
POWER-ON RESET (POR)  
FIGURE 14-2:  
RECOMMENDED MCLR  
CIRCUIT  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. A  
maximum rise time for VDD is required. See  
Section 17.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOR (see Section 14.2.4  
“Brown-out Reset (BOR)”).  
VDD  
R1  
PIC16F886  
1 kΩ (or greater)  
MCLR  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To  
re-enable the POR, VDD must reach Vss  
for a minimum of 100 μs.  
C1  
0.1 μF  
(optional, not critical)  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
14.2.3  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the 31 kHz  
LFINTOSC oscillator. For more information, see  
Section 4.5 “Internal Clock Modes”. The chip is kept  
in Reset as long as PWRT is active. The PWRT delay  
allows the VDD to rise to an acceptable level. A  
Configuration bit, PWRTE, can disable (if set) or enable  
(if cleared or programmed) the Power-up Timer. The  
Power-up Timer should be enabled when Brown-out  
Reset is enabled, although it is not required.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
14.2.2  
MCLR  
PIC16F882/883/884/886/887 has a noise filter in the  
MCLR Reset path. The filter will detect and ignore  
small pulses.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
The behavior of the ESD protection on the MCLR pin  
has been altered from early devices of this family.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 14-2, is suggested.  
• VDD variation  
Temperature variation  
• Process variation  
See DC parameters for details (Section 17.0 “Electrical  
Specifications”).  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word Register 1. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RA3/MCLR pin  
becomes an external Reset input. In this mode, the  
RA3/MCLR pin has a weak pull-up to VDD.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 209  
PIC16F882/883/884/886/887  
occur regardless of VDD slew rate. A Reset is not insured  
to occur if VDD falls below VBOR for less than parameter  
(TBOR).  
14.2.4  
BROWN-OUT RESET (BOR)  
The BOREN0 and BOREN1 bits in the Configuration  
Word Register 1 select one of four BOR modes. Two  
modes have been added to allow software or hardware  
control of the BOR enable. When BOREN<1:0> = 01,  
the SBOREN bit (PCON<4>) enables/disables the  
BOR allowing it to be controlled in software. By  
selecting BOREN<1:0>, the BOR is automatically  
disabled in Sleep to conserve power and enabled on  
wake-up. In this mode, the SBOREN bit is disabled.  
See Register 14-3 for the Configuration Word  
definition.  
On any Reset (Power-on, Brown-out Reset, Watchdog  
Timer, etc.), the chip will remain in Reset until VDD rises  
above VBOR (see Figure 14-3). The Power-up Timer  
will now be invoked, if enabled and will keep the chip in  
Reset an additional 64 ms.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word  
Register 1.  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
The BOR4V bit in the Configuration Word Register 2  
selects one of two Brown-out Reset voltages. When  
BOR4B = 1, VBOR is set to 4V. When BOR4V = 0, VBOR  
is set to 2.1V.  
If VDD falls below VBOR for greater than parameter  
(TBOR) (see Section 17.0 “Electrical Specifications”),  
the Brown-out situation will reset the device. This will  
FIGURE 14-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
DS41291D-page 210  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
14.2.5  
TIME-OUT SEQUENCE  
14.2.6  
POWER CONTROL (PCON)  
REGISTER  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator  
configuration and PWRTE bit status. For example, in  
EC mode with PWRTE bit erased (PWRT disabled),  
there will be no time-out at all. Figures 14-4, 14-5  
and 14-6 depict time-out sequences. The device can  
execute code from the INTOSC while OST is active by  
enabling Two-Speed Start-up or Fail-Safe Monitor (see  
Section 4.7.2 “Two-speed Start-up Sequence” and  
Section 4.8 “Fail-Safe Clock Monitor”).  
The Power Control register PCON (address 8Eh) has  
two Status bits to indicate what type of Reset that last  
occurred.  
Bit 0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00 in the Configuration Word  
Register 1).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 14-5). This is useful for testing purposes or  
to synchronize more than one PIC16F882/883/884/  
886/887 device operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Table 14-5 shows the Reset conditions for some  
special registers, while Table 14-4 shows the Reset  
conditions for all the registers.  
For more information, see Section 3.2.2 “Ultra Low-  
Power Wake-up” and Section 14.2.4 “Brown-out  
Reset (BOR)”.  
TABLE 14-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT +  
1024 • TOSC  
TPWRT +  
1024 • TOSC  
1024 • TOSC  
1024 • TOSC  
1024 • TOSC  
LP, T1OSCIN = 1  
TPWRT  
TPWRT  
TPWRT  
TPWRT  
RC, EC, INTOSC  
TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
u
u
u
u
u
x
0
u
u
u
u
1
1
0
0
u
1
1
1
u
0
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PCON  
ULPWUE SBOREN  
RPO TO  
Z
POR  
DC  
BOR  
C
--01 --qq  
0001 1xxx  
--0u --uu  
000q quuu  
IRP  
RP1  
PD  
STATUS  
Legend:  
u= unchanged, x= unknown, = unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are not used by BOR.  
Note 1:  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 211  
PIC16F882/883/884/886/887  
FIGURE 14-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 14-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 14-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41291D-page 212  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER  
Wake-up from Sleep through  
Interrupt  
Wake-up from Sleep through  
WDT Time-out  
MCLR Reset  
WDT Reset  
Power-on  
Reset  
Register  
Address  
Brown-out Reset(1)  
W
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
00h/80h/  
100h/180h  
TMR0  
PCL  
01h/101h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
02h/82h/  
102h/182h  
STATUS  
FSR  
03h/83h/  
103h/183h  
0001 1xxx  
xxxx xxxx  
000q quuu(4)  
uuuu uuuu  
uuuq quuu(4)  
uuuu uuuu  
04h/84h/  
104h/184h  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
05h  
06h/106h  
07h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
---0 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- 0000  
---0 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---u uuuu  
08h  
09h  
0Ah/8Ah/  
10Ah/18Ah  
INTCON  
0Bh/8Bh/  
0000 000x  
0000 000u  
uuuu uuuu(2)  
10Bh/18Bh  
PIR1  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu(2)  
uuuu uuuu(2)  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 14-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Accessible only when SSPCON register bits SSPM<3:0> = 1001.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 213  
PIC16F882/883/884/886/887  
TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)  
Wake-up from Sleep through  
MCLR Reset  
Power-on  
Reset  
Interrupt  
Wake-up from Sleep through  
WDT Time-out (Continued)  
Register  
Address  
WDT Reset (Continued)  
Brown-out Reset(1)  
CCPR2H  
1Ch  
1Dh  
1Eh  
1Fh  
xxxx xxxx  
--00 0000  
xxxx xxxx  
00-0 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
0000 0000  
--01 --0x  
-110 q000  
---0 0000  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---0 0001  
xxxx xxxx  
0-00 ----  
---0 1000  
0000 0-00  
0000 0-00  
uuuu uuuu  
--00 0000  
uuuu uuuu  
00-0 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
0000 0000  
--0u --uu(1, 5)  
-110 q000  
---u uuuu  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---0 0001  
uuuu uuuu  
0-00 ----  
---0 1000  
0000 0-00  
0000 0-00  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uu-u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
--uu --uu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
1111 1111  
uuuu uuuu  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
u-uu ----  
---u uuuu  
uuuu u-uu  
uuuu u-uu  
CCP2CON  
ADRESH  
ADCON0  
OPTION_REG 81h/181h  
TRISA  
85h  
86h/186h  
87h  
TRISB  
TRISC  
TRISD  
88h  
TRISE  
89h  
PIE1  
8Ch  
8Dh  
8Eh  
8Fh  
PIE2  
PCON  
OSCCON  
OSCTUNE  
SSPCON2  
PR2  
SSPADD(6)  
SSPMSK(6)  
SSPSTAT  
WPUB  
90h  
91h  
92h  
93h  
93h  
94h  
95h  
IOCB  
96h  
VRCON  
TXSTA  
97h  
98h  
SPBRG  
SPBRGH  
PWM1CON  
ECCPAS  
PSTRCON  
ADRESL  
ADCON1  
WDTCON  
CM1CON0  
CM2CON0  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
105h  
107h  
108h  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 14-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Accessible only when SSPCON register bits SSPM<3:0> = 1001.  
DS41291D-page 214  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)  
Wake-up from Sleep through  
Interrupt  
Wake-up from Sleep through  
WDT Time-out (Continued)  
MCLR Reset  
Power-on  
Reset  
Register  
Address  
WDT Reset (Continued)  
Brown-out Reset(1)  
CM2CON1  
EEDAT  
109h  
10Ch  
10Dh  
10Eh  
10Fh  
185h  
187h  
188h  
189h  
18Ch  
18Dh  
0000 0--0  
0000 0000  
0000 0000  
--00 0000  
---0 0000  
0000 00-0  
01-0 0-00  
1111 1111  
1111 1111  
---- x000  
---- ----  
0000 0--0  
0000 0000  
0000 0000  
--00 0000  
---0 0000  
0000 00-0  
01-0 0-00  
1111 1111  
1111 1111  
---- q000  
---- ----  
uuuu u--u  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uu-u  
uu-u u-uu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---- ----  
EEADR  
EEDATH  
EEADRH  
SRCON  
BAUDCTL  
ANSEL  
ANSELH  
EECON1  
EECON2  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 14-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Accessible only when SSPCON register bits SSPM<3:0> = 1001.  
TABLE 14-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
Status  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
--01 --0x  
--0u --uu  
--0u --uu  
--0u --uu  
--uu --uu  
--01 --u0  
--uu --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 215  
PIC16F882/883/884/886/887  
The following interrupt flags are contained in the PIR2  
register:  
14.3 Interrupts  
The PIC16F882/883/884/886/887 has multiple inter-  
rupt sources:  
• Fail-Safe Clock Monitor Interrupt  
• 2 Comparator Interrupts  
• External Interrupt RB0/INT  
• Timer0 Overflow Interrupt  
• PORTB Change Interrupts  
• 2 Comparator Interrupts  
• A/D Interrupt  
• EEPROM Data Write Interrupt  
• Ultra Low-Power Wake-up Interrupt  
• CCP2 Interrupt  
When an interrupt is serviced:  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• Enhanced CCP Interrupt  
• EUSART Receive and Transmit Interrupts  
• Ultra Low-Power Wake-up Interrupt  
• MSSP Interrupt  
For external interrupt events, such as the INT pin,  
PORTB change interrupts, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 14-8). The latency is the same for one or two-  
cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt Request Register 1 (PIR1) record individual  
interrupt requests in flag bits. The INTCON register  
also has individual and global interrupt enable bits.  
A Global Interrupt Enable bit, GIE (INTCON<7>),  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in the  
INTCON, PIE1 and PIE2 registers, respectively. GIE is  
cleared on Reset.  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
The following interrupt flags are contained in the  
INTCON register:  
For additional information on Timer1, Timer2,  
comparators, A/D, data EEPROM, EUSART, MSSP or  
Enhanced CCP modules, refer to the respective  
peripheral section.  
• INT Pin Interrupt  
• PORTB Change Interrupts  
• Timer0 Overflow Interrupt  
14.3.1  
RB0/INT INTERRUPT  
The peripheral interrupt flags are contained in the PIR1  
and PIR2 registers. The corresponding interrupt enable  
bits are contained in PIE1 and PIE2 registers.  
External interrupt on RB0/INT pin is edge-triggered;  
either rising if the INTEDG bit (OPTION_REG<6>) is  
set, or falling, if the INTEDG bit is clear. When a valid  
edge appears on the RB0/INT pin, the INTF bit  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing the INTE control bit (INTCON<4>). The INTF  
bit must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The RB0/INT  
interrupt can wake-up the processor from Sleep, if the  
INTE bit was set prior to going into Sleep. The status of  
the GIE bit decides whether or not the processor  
branches to the interrupt vector following wake-up  
(0004h). See Section 14.6 “Power-Down Mode  
(Sleep)” for details on Sleep and Figure 14-10 for  
timing of wake-up from Sleep through RB0/INT  
interrupt.  
The following interrupt flags are contained in the PIR1  
register:  
• A/D Interrupt  
• EUSART Receive and Transmit Interrupts  
• Timer1 Overflow Interrupt  
• Synchronous Serial Port (SSP) Interrupt  
• Enhanced CCP1 Interrupt  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
DS41291D-page 216  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
14.3.2  
TIMER0 INTERRUPT  
14.3.3  
PORTB INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF (INTCON<2>) bit. The interrupt can be  
enabled/disabled by setting/clearing T0IE (INTCON<5>)  
bit. See Section 5.0 “Timer0 Module” for operation of  
the Timer0 module.  
An input change on PORTB change sets the RBIF  
(INTCON<0>) bit. The interrupt can be enabled/  
disabled by setting/clearing the RBIE (INTCON<3>)  
bit. Plus, individual pins can be configured through the  
IOCB register.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set. See  
Section 3.4.3 “Interrupt-on-Change” for  
more information.  
FIGURE 14-7:  
INTERRUPT LOGIC  
IOC-RB0  
IOCB0  
IOC-RB1  
IOCB1  
IOC-RB2  
IOCB2  
BCLIF  
BCLIE  
IOC-RB3  
IOCB3  
SSPIF  
SSPIE  
IOC-RB4  
IOCB4  
TXIF  
TXIE  
IOC-RB5  
IOCB5  
RCIF  
RCIE  
(1)  
Wake-up (If in Sleep mode)  
T0IF  
T0IE  
IOC-RB6  
IOCB6  
TMR2IF  
TMR2IE  
Interrupt to CPU  
INTF  
INTE  
RBIF  
IOC-RB7  
IOCB7  
TMR1IF  
TMR1IE  
RBIE  
C1IF  
C1IE  
PEIE  
GIE  
C2IF  
C2IE  
ADIF  
ADIE  
EEIF  
EEIE  
Note 1: Some peripherals depend upon the  
system clock for operation. Since the  
system clock is suspended during  
Sleep, these peripherals will not wake  
the part from Sleep. See Section 14.6.1  
“Wake-up from Sleep”.  
OSFIF  
OSFIE  
CCP1IF  
CCP1IE  
CCP2IF  
CCP2IE  
ULPWUIF  
ULPWUIE  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 217  
PIC16F882/883/884/886/887  
FIGURE 14-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 17.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 14-6: SUMMARY OF INTERRUPT REGISTERS  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
GIE  
PEIE  
ADIE  
C2IE  
ADIF  
C2IF  
T0IE  
RCIE  
C1IE  
RCIF  
C1IF  
INTE  
TXIE  
EEIE  
TXIF  
EEIF  
RBIE  
SSPIE  
BCLIE  
SSPIF  
BCLIF  
T0IF  
INTF  
TMR2IE  
RBIF  
0000 000x  
-000 0000  
0000 00-0  
-000 0000  
0000 00-0  
0000 000x  
-000 0000  
0000 00-0  
-000 0000  
0000 00-0  
PIE1  
CCP1IE  
ULPWUIE  
CCP1IF  
ULPWUIF  
TMR1IE  
CCP2IE  
TMR1IF  
CCP2IF  
PIE2  
OSFIE  
PIR1  
TMR2IF  
PIR2  
OSFIF  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the Interrupt module.  
DS41291D-page 218  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
14.4 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and STATUS  
registers). This must be implemented in software.  
Since the upper 16 bytes of all GPR banks are com-  
mon in the PIC16F882/883/884/886/887 (see  
Figures 2-2 and 2-3), temporary holding registers,  
W_TEMP and STATUS_TEMP, should be placed in  
here. These 16 locations do not require banking and  
therefore, make it easier to context save and restore.  
The same code shown in Example 14-1 can be used  
to:  
• Store the W register  
• Store the STATUS register  
• Execute the ISR code  
• Restore the Status (and Bank Select Bit register)  
• Restore the W register  
Note:  
The PIC16F882/883/884/886/887 nor-  
mally does not require saving the  
PCLATH. However, if computed GOTO’s  
are used in the ISR and the main code, the  
PCLATH must be saved and restored in  
the ISR.  
EXAMPLE 14-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF W_TEMP  
;Copy W to TEMP register  
SWAPF STATUS,W  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Save status to bank zero STATUS_TEMP register  
MOVWF STATUS_TEMP  
:
:(ISR)  
;Insert user code here  
:
SWAPF STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF STATUS  
SWAPF W_TEMP,F  
SWAPF W_TEMP,W  
;Swap W_TEMP into W  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 219  
PIC16F882/883/884/886/887  
14.5.2  
WDT CONTROL  
14.5 Watchdog Timer (WDT)  
The WDTE bit is located in the Configuration Word  
Register 1. When set, the WDT runs continuously.  
The WDT has the following features:  
• Operates from the LFINTOSC (31 kHz)  
• Contains a 16-bit prescaler  
When the WDTE bit in the Configuration Word  
Register 1 is set, the SWDTEN bit of the WDTCON  
register has no effect. If WDTE is clear, then the  
SWDTEN bit can be used to enable and disable the  
WDT. Setting the bit will enable it and clearing the bit  
will disable it.  
• Shares an 8-bit prescaler with Timer0  
• Time-out period is from 1 ms to 268 seconds  
• Configuration bit and software controlled  
WDT is cleared under certain conditions described in  
Table 14-7.  
The PSA and PS<2:0> bits of the OPTION register  
have the same function as in previous versions of the  
PIC16F882/883/884/886/887 Family of microcontrol-  
lers. See Section 5.0 “Timer0 Module” for more infor-  
mation.  
14.5.1  
WDT OSCILLATOR  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit of the OSCCON register does  
not reflect that the LFINTOSC is enabled.  
The value of WDTCON is ‘---0 1000’ on all Resets.  
This gives a nominal time base of 17 ms.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 14-9:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
1
From TMR0 Clock Source  
Prescaler(1)  
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
To TMR0  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
1
0
PSA  
WDTE from the Configuration Word Register 1  
SWDTEN from WDTCON  
WDT Time-out  
Note 1: This is the shared Timer0/WDT prescaler. See Section 5.4 “Prescaler” for more information.  
TABLE 14-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
Cleared  
CLRWDTCommand  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
DS41291D-page 220  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
REGISTER 14-3: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
SWDTEN(1)  
bit 0  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512 (Reset value)  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16384  
1010 = 1:32768  
1011 = 1:65536  
1100 = reserved  
1101 = reserved  
1110 = reserved  
1111 = reserved  
bit 0  
SWDTEN: Software Enable or Disable the Watchdog Timer(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: If WDTE configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE  
Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.  
TABLE 14-8: SUMMARY OF WATCHDOG TIMER REGISTER  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
(1)  
CONFIG1  
CPD  
CP  
MCLRE PWRTE  
T0SE  
WDTE  
PSA  
FOSC2  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
1111 1111 1111 1111  
OPTION_REG RBPU INTEDG T0CS  
WDTCON  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000  
Legend:  
Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 14-1 for operation of all Configuration Word Register 1 bits.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 221  
PIC16F882/883/884/886/887  
When the SLEEPinstruction is being executed, the next  
14.6 Power-Down Mode (Sleep)  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up  
occurs regardless of the state of the GIE bit. If the GIE  
bit is clear (disabled), the device continues execution at  
the instruction after the SLEEPinstruction. If the GIE bit  
is set (enabled), the device executes the instruction  
after the SLEEPinstruction, then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the STATUS register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the corresponding  
interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
For lowest current consumption in this mode, all I/O pins  
should be either at VDD or VSS, with no external circuitry  
drawing current from the I/O pin and the comparators  
and CVREF should be disabled. I/O pins that are high-  
impedance inputs should be pulled high or low externally  
to avoid switching currents caused by floating inputs.  
The T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip pull-  
ups on PORTA should be considered.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
14.6.2  
WAKE-UP USING INTERRUPTS  
The MCLR pin must be at a logic high level.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
Note:  
It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
14.6.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
2. Watchdog Timer Wake-up (if WDT was enabled).  
3. Interrupt from RB0/INT pin, PORTB change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program exe-  
cution. The TO and PD bits in the STATUS register can  
be used to determine the cause of device Reset. The  
PD bit, which is set on power-up, is cleared when Sleep  
is invoked. TO bit is cleared if WDT Wake-up occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
2. ECCP Capture mode interrupt.  
3. A/D conversion (when A/D clock source is FRC).  
4. EEPROM write operation completion.  
5. Comparator output changes state.  
6. Interrupt-on-change.  
7. External Interrupt from INT pin.  
8. EUSART Break detect, I2C slave.  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
DS41291D-page 222  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 14-10:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIE bit  
(INTCON<7>)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC – 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
3: GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
The device is placed into a Program/Verify mode by  
14.7 Code Protection  
holding the RB6/ICSPCLK and RB7/ICSPDAT pins low,  
while raising the MCLR (VPP) pin from VIL to VIHH. See  
the “PIC16F88X Memory Programming Specification”  
(DS41287) for more information. RB7 becomes the  
programming data and RB0 becomes the programming  
clock. Both RB7 and RB0 are Schmitt Trigger inputs in  
this mode.  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSPfor verification purposes.  
Note:  
The entire data EEPROM and Flash  
program memory will be erased when the  
code protection is switched from on to off.  
See the “PIC16F88X Memory Programming  
After Reset, to place the device into Program/Verify  
mode, the Program Counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14 bits of program data  
are then supplied to or from the device, depending on  
whether the command was a Load or a Read. For  
complete details of serial programming, please refer to  
the “PIC16F88X Memory Programming Specification”  
(DS41287).  
Specification”  
(DS41287)  
for  
more  
information.  
14.8 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are readable  
and writable during Program/Verify mode. Only the  
Least Significant 7 bits of the ID locations are used.  
A typical In-Circuit Serial Programming connection is  
shown in Figure 14-11.  
14.9 In-Circuit Serial Programming™  
The PIC16F882/883/884/886/887 microcontrollers can  
be serially programmed while in the end application cir-  
cuit. This is simply done with two lines for clock and  
data and three other lines for:  
• power  
• ground  
• programming voltage  
This allows customers to manufacture boards with  
unprogrammed devices and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 223  
PIC16F882/883/884/886/887  
FIGURE 14-11:  
TYPICAL IN-CIRCUIT  
SERIAL  
PROGRAMMING™  
CONNECTION  
14.10 In-Circuit Debugger  
The PIC16F882/883/884/886/887-ICD can be used in  
any of the package types. The device will be mounted  
on the target application board, which in turn has a 3 or  
4 wire connection to the ICD tool.  
To Normal  
Connections  
When the debug bit in the Configuration Word  
(CONFIG<13>) is programmed to a ‘0’, the In-Circuit  
Debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB®  
ICD 2. When the microcontroller has this feature  
enabled, some of the resources are not available for  
general use. See Table 14-9 for more detail.  
External  
Connector  
Signals  
PIC16F882/883/  
884/886/887  
*
+5V  
0V  
VDD  
VSS  
VPP  
RE3/MCLR/VPP  
Note: The user’s application must have the  
RB6  
RB7  
CLK  
circuitry  
required  
to  
support  
ICD  
Data I/O  
functionality. Once the ICD circuitry is  
enabled, normal device pin functions on  
RB6/ICSPCLK and RB7/ICSPDAT will not  
be usable. The ICD circuitry uses these pins  
for communication with the ICD2 external  
debugger.  
*
*
*
For more information, see “Using MPLAB® ICD 2”  
(DS51265), available on Microchip’s web site  
(www.microchip.com).  
To Normal  
Connections  
*
Isolation devices (as required)  
14.10.1 ICD PINOUT  
The devices in the PIC16F88X family carry the  
circuitry for the In-Circuit Debugger on-chip and on  
existing device pins. This eliminates the need for a  
separate die or package for the ICD device. The pinout  
for the ICD device is the same as the devices (see  
Section 1.0 “Device Overview” for complete pinout  
and pin descriptions). Table 14-9 shows the location  
and function of the ICD related pins on the 28 and 40  
pin devices.  
TABLE 14-9: PIC16F883/884/886/887-ICD PIN DESCRIPTIONS  
Pin (PDIP)  
Name  
Type Pull-up  
Description  
PIC16F882/883/  
886  
PIC16F884/887  
40  
39  
28  
27  
ICDDATA  
ICDCLK  
MCLR/VPP  
VDD  
TTL  
ST  
HV  
P
In-Circuit Debugger Bidirectional data  
In-Circuit Debugger Bidirectional clock  
Programming voltage  
1
1
11,32  
12,31  
20  
8,19  
VSS  
P
Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, P = Power, HV = High Voltage  
DS41291D-page 224  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 15-1: OPCODE FIELD  
15.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
The PIC16F883/884/886/887 instruction set is highly  
orthogonal and is comprised of three basic categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 15-1, while the various opcode  
fields are summarized in Table 15-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 15-2 lists the instructions recognized by the  
MPASMTM assembler.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 15-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 μs. All instructions are  
executed within a single instruction cycle, unless a  
conditional test is true, or the program counter is  
changed as a result of an instruction. When this occurs,  
the execution takes two instruction cycles, with the  
second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
15.1 Read-Modify-Write Operations  
OPCODE  
k (literal)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (RMW)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTA instruction will read  
PORTA, clear all the data bits, then write the result back  
to PORTA. This example would have the unintended  
consequence of clearing the condition that set the RAIF  
flag.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 225  
PIC16F882/883/884/886/887  
TABLE 15-2: PIC16F883/884/886/887 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract Wfrom literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41291D-page 226  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
15.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is discarded, and a NOP  
is executed instead, making this a  
two-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 227  
PIC16F882/883/884/886/887  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41291D-page 228  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
two-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a two-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 229  
PIC16F882/883/884/886/887  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register ‘f’ is  
moved to a destination dependent  
upon the status of ‘d’. If d = 0,  
destination is W register. If d = 1,  
the destination is file register ‘f’  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41291D-page 230  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight-bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
RETFIE  
;offset value  
TABLE  
;W now has  
;table value  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2 ;  
RETLW kn ;End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 231  
PIC16F882/883/884/886/887  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41291D-page 232  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
SUBWF  
Subtract W from f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - (W) → (destination)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
Subtract (2’s complement method)  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
C = 0  
W > f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
Syntax:  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
Description:  
The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 233  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 234  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
16.1 MPLAB Integrated Development  
Environment Software  
16.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 235  
PIC16F882/883/884/886/887  
16.2 MPASM Assembler  
16.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
16.6 MPLAB SIM Software Simulator  
16.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
16.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41291D-page 236  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
16.7 MPLAB ICE 2000  
High-Performance  
16.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
16.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
16.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 237  
PIC16F882/883/884/886/887  
16.11 PICSTART Plus Development  
Programmer  
16.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
16.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS41291D-page 238  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
17.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias..........................................................................................................-40° to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ............................................................................................................................... 800 mW  
Maximum current out of VSS pin .................................................................................................................... 300 mA  
Maximum current into VDD pin ....................................................................................................................... 250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)............................................................................................................... 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD)......................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by PORTA, PORTB and PORTE (combined)(2)........................................................ 200 mA  
Maximum current sourced by PORTA, PORTB and PORTE (combined)(2) .................................................. 200 mA  
Maximum current sunk by PORTC and PORTD (combined)(2) ..................................................................... 200 mA  
Maximum current sourced by PORTC and PORTD (combined)(2) ................................................................ 200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
2: PORTD and PORTE are implemented on PIC16F886/PIC16F887 only.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 239  
PIC16F882/883/884/886/887  
FIGURE 17-1:  
PIC16F882/883/884/886/887 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 17-2:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
85  
60  
25  
0
± 5%  
± 2%  
± 1%  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
DS41291D-page 240  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
17.1 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial)  
PIC16F882/883/884/886/887-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
No.  
VDD  
Supply Voltage  
2.0  
2.0  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC < = 8 MHz: HFINTOSC, EC  
FOSC < = 4 MHz  
FOSC < = 10 MHz  
D001  
D001C  
D001D  
FOSC < = 20 MHz  
D002* VDR  
RAM Data Retention  
Voltage(1)  
1.5  
V
Device in Sleep mode  
D003 VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 14.2.1 “Power-on Reset  
(POR)” for details.  
D004* SVDD  
VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See Section 14.2.1 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 241  
PIC16F882/883/884/886/887  
17.2 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial)  
PIC16F882/883/884/886/887-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Units  
Device Characteristics  
Min  
Typ†  
Max  
No.  
VDD  
Note  
D010  
Supply Current (IDD)(1, 2)  
11  
18  
23  
38  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
35  
75  
D011*  
D012  
D013*  
D014  
D015  
D016*  
D017  
D018  
D019  
140  
220  
380  
260  
420  
0.8  
250  
400  
650  
380  
670  
1.4  
220  
360  
520  
340  
550  
1.0  
20  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
130  
215  
360  
220  
375  
0.65  
8
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
31  
65  
340  
500  
0.8  
400  
650  
1.2  
0.7  
1
FOSC = 4 MHz  
HFINTOSC mode  
410  
700  
1.30  
230  
400  
0.63  
2.6  
FOSC = 8 MHz  
HFINTOSC mode  
1.8  
580  
950  
1.6  
3.7  
3.8  
FOSC = 4 MHz  
EXTRC mode(3)  
FOSC = 20 MHz  
HS Oscillator mode  
2.8  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
DS41291D-page 242  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
17.3 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Conditions  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D020  
Power-down Base  
Current(IPD)(2)  
0.05  
0.15  
0.35  
150  
1.0  
2.0  
3.0  
42  
1.2  
1.5  
1.8  
500  
2.2  
4.0  
7.0  
60  
μA  
μA  
μA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
3.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
-40°C TA +25°C  
WDT Current(1)  
D021  
D022  
D023  
BOR Current(1)  
85  
122  
45  
32  
Comparator Current(1), both  
comparators enabled  
60  
78  
120  
30  
160  
36  
D024  
D025*  
D026  
D027  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
45  
55  
75  
95  
39  
47  
59  
72  
98  
124  
7.0  
8.0  
12  
4.5  
5.0  
6.0  
0.30  
0.36  
1.6  
1.9  
A/D Current(1), no conversion in  
progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 243  
PIC16F882/883/884/886/887  
17.4 DC Characteristics: PIC16F882/883/884/886/887-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Units  
Param  
No.  
Device Characteristics Min  
Typ†  
Max  
VDD  
Note  
D020E Power-down Base  
0.05  
0.15  
0.35  
1
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
9
11  
Current (IPD)(2)  
15  
D021E  
28  
WDT Current(1)  
BOR Current(1)  
2
30  
3
35  
D022E  
D023E  
42  
85  
32  
60  
120  
30  
45  
75  
39  
59  
98  
4.5  
5
65  
127  
45  
Comparator Current(1), both  
comparators enabled  
78  
160  
70  
D024E  
D025E*  
D026E  
D027E  
CVREF Current(1) (high range)  
CVREF Current(1) (low range)  
T1OSC Current(1), 32.768 kHz  
90  
120  
91  
117  
156  
25  
30  
6
40  
0.30  
0.36  
12  
A/D Current(1), no conversion in  
progress  
16  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41291D-page 244  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
17.5 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial)  
PIC16F882/883/884/886/887-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
VIL  
Input Low Voltage  
I/O Port:  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
Vss  
Vss  
Vss  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
(1)  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
0.3 VDD  
VIH  
D040  
with TTL buffer  
2.0  
0.25 VDD + 0.8  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
D040A  
D041  
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
0.1  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
(3)  
D061  
D063  
MCLR  
0.1  
0.1  
5
5
μA VSS VPIN VDD  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
D070* IPUR  
VOL  
PORTA Weak Pull-up Current  
50  
250  
400  
0.6  
μA VDD = 5.0V, VPIN = VSS  
(5)  
Output Low Voltage  
D080  
I/O ports  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
(5)  
VOH  
Output High Voltage  
D090  
I/O ports  
VDD – 0.7  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 10.3.1 “Using the Data EEPROM” for additional information.  
5: Including OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 245  
PIC16F882/883/884/886/887  
17.5 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial)  
PIC16F882/883/884/886/887-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
D100  
IULP  
Ultra Low-Power Wake-Up  
Current  
200  
nA See Application Note AN879,  
Using the Microchip Ultra  
Low-Power Wake-up Module”  
(DS00879)  
Capacitive Loading Specs on  
Output Pins  
D101* COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(4)  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
4.5  
2
5.5  
2.5  
V
Erase/Write cycle time  
Characteristic Retention  
ms  
40  
Year Provided no other specifications  
are violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 10.3.1 “Using the Data EEPROM” for additional information.  
5: Including OSC2 in CLKOUT mode.  
DS41291D-page 246  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
17.6 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Typ  
Units  
Conditions  
40-pin PDIP package  
TH01  
θJA  
Thermal Resistance  
Junction to Ambient  
47.2  
24.4  
45.8  
60.2  
80.2  
89.4  
29  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C
44-pin QFN package  
44-pin TQFP package  
28-pin PDIP package  
28-pin SOIC package  
28-pin SSOP package  
28-pin QFN package  
40-pin PDIP package  
44-pin QFN package  
44-pin TQFP package  
28-pin PDIP package  
28-pin SOIC package  
28-pin SSOP package  
28-pin QFN package  
For derated power calculations  
PD = PINTERNAL + PI/O  
TH02  
θJC  
Thermal Resistance  
Junction to Case  
24.7  
TBD  
14.5  
29  
23.8  
23.9  
TBD  
150  
TH03  
TH04  
TH05  
TJ  
Junction Temperature  
Power Dissipation  
PD  
W
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
(NOTE 1)  
TH06  
TH07  
PI/O  
I/O Power Dissipation  
Derated Power  
W
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
PDER = (TJ - TA)/θJA  
(NOTE 2, 3)  
PDER  
Legend: TBD = To Be Determined.  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature.  
3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power  
dissipation or derated power (PDER).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 247  
PIC16F882/883/884/886/887  
17.7  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 17-3:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL  
=
50 pF for all pins  
15 pF for OSC2 output  
DS41291D-page 248  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
17.8 AC Characteristics: PIC16F882/883/884/886/887 (Industrial, Extended)  
FIGURE 17-4:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 17-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
(1)  
OS01  
OS02  
OS03  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
4
20  
20  
(1)  
Oscillator Frequency  
32.768  
0.1  
1
4
20  
DC  
27  
250  
50  
50  
4
(1)  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
250  
50  
250  
200  
2
10,000  
1,000  
DC  
(1)  
Instruction Cycle Time  
TCY  
OS04* TosH, External CLKIN High,  
TosL External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05* TosR, External CLKIN Rise,  
TosF External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for  
all devices.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 249  
PIC16F882/883/884/886/887  
TABLE 17-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Freq  
Tolerance  
Characteristic  
Min  
Typ†  
Max  
Units  
TOSC Slowest clock  
ms LFINTOSC/64  
Conditions  
OS06  
OS07  
OS08  
TWARM  
Internal Oscillator Switch  
2
(3)  
when running  
TSC  
Fail-Safe Sample Clock  
21  
(1)  
Period  
HFOSC  
Internal Calibrated  
HFINTOSC Frequency  
1%  
2%  
7.92  
7.84  
8.0  
8.0  
8.08  
8.16  
MHz VDD = 3.5V, 25°C  
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
5%  
7.60  
15  
8.0  
31  
8.40  
45  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS09*  
OS10*  
LFOSC  
Internal Uncalibrated  
LFINTOSC Frequency  
kHz  
TIOSC  
ST  
HFINTOSC Oscillator  
Wake-up from Sleep  
Start-up Time  
5.5  
3.5  
3
12  
7
24  
14  
11  
μs  
μs  
μs  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
6
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock)  
for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the  
device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
DS41291D-page 250  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 17-5:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 17-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
OS11  
OS12  
OS13  
OS14  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
70  
ns VDD = 5.0V  
ns VDD = 5.0V  
ns  
50  
TCKL2IOV  
TIOV2CKH Port input valid before CLKOUT(1)  
CLKOUTto Port out valid(1)  
TOSC + 200 ns  
ns  
OS15* TOSH2IOV FOSC(Q1 cycle) to Port out valid  
ns VDD = 5.0V  
ns VDD = 5.0V  
OS16  
OS17  
OS18  
OS19  
TOSH2IOI  
FOSC(Q2 cycle) to Port input invalid  
(I/O in hold time)  
50  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time(2)  
15  
40  
72  
32  
ns VDD = 2.0V  
VDD = 5.0V  
Port output fall time(2)  
28  
15  
55  
30  
ns VDD = 2.0V  
VDD = 5.0V  
OS20* TINP  
OS21* TRAP  
INT pin input high or low time  
25  
ns  
ns  
PORTA interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 251  
PIC16F882/883/884/886/887  
FIGURE 17-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
FIGURE 17-7:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(due to BOR)  
33*  
*
64 ms delay only if PWRTE bit in the Configuration Word Register 1 is programmed to ‘0’.  
DS41291D-page 252  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
μs VDD = 5V, -40°C to +85°C  
μs VDD = 5V  
31  
32  
TWDT  
TOST  
Watchdog Timer Time-out  
Period (No Prescaler)  
10  
10  
16  
16  
29  
31  
ms VDD = 5V, -40°C to +85°C  
ms VDD = 5V  
Oscillation Start-up Timer  
Period(1, 2)  
1024  
TOSC (NOTE 3)  
33*  
34*  
TPWRT Power-up Timer Period  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
μs  
35  
VBOR  
VBOR  
VHYST  
TBOR  
Brown-out Reset Voltage  
Brown-out Reset Voltage  
Brown-out Reset Hysteresis  
2.0  
TBD  
4.0  
50  
2.2  
TBD  
V
V
BOR4V bit = 0(NOTE 4)  
BOR4V bit = 1(NOTE 4)  
35  
36*  
37*  
mV  
Brown-out Reset Minimum  
Detection Period  
100  
μs VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at “min” values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time  
limit is “DC” (no clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 253  
PIC16F882/883/884/886/887  
FIGURE 17-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
40*  
41*  
42*  
TT0H  
TT0L  
TT0P  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Synchronous, No Prescaler  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.768  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41291D-page 254  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 17-9:  
CAPTURE/COMPARE/PWM TIMINGS (ECCP)  
CCP1  
(Capture mode)  
CC01  
CC02  
CC03  
Note:  
Refer to Figure 17-3 for load conditions.  
TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
CC01* TccL  
CC02* TccH  
CC03* TccP  
CCP1 Input Low Time  
CCP1 Input High Time  
CCP1 Input Period  
No Prescaler  
0.5TCY + 20  
20  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
20  
3TCY + 40  
N
ns N = prescale  
value (1, 4 or  
16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 255  
PIC16F882/883/884/886/887  
TABLE 17-7: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristics  
Min Typ†  
Max  
Units  
Comments  
CM01 VOS  
CM02 VCM  
CM03* CMRR  
CM04* TRT  
Input Offset Voltage  
0
5.0  
10  
VDD - 1.5  
mV (VDD - 1.5)/2  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time  
V
+55  
dB  
Falling  
Rising  
150  
200  
600  
ns  
ns  
μs  
(NOTE 1)  
1000  
10  
CM05* TMC2COV Comparator Mode Change to  
Output Valid  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.  
TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristics  
Min  
Typ†  
Max  
Units  
Comments  
CV01* CLSB  
Step Size(2)  
Absolute Accuracy  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02* CACC  
1/2  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03* CR  
CV04* CST  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
Ω
μs  
10  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2: See Section 8.10 “Comparator Voltage Reference” for more information.  
DS41291D-page 256  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
TABLE 17-9: PIC16F882/883/884/886/887 A/D CONVERTER (ADC) CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10 bits  
±1  
bit  
Integral Error  
LSb VREF = 5.12V  
Differential Error  
±1  
LSb No missing codes to 10 bits  
VREF = 5.12V  
AD04 EOFF Offset Error  
AD07 EGN Gain Error  
AD06 VREF Reference Voltage(3)  
1.5  
±1  
TBD  
TBD  
LSb VREF = 5.12V  
LSb VREF = 5.12V  
2.2  
2.7  
VDD  
V
AD06A  
Absolute minimum to ensure 1 LSb  
accuracy  
AD07 VAIN Full-Scale Range  
VSS  
VREF  
10  
V
AD08 ZAIN Recommended  
Impedance of Analog  
Voltage Source  
kΩ  
AD09* IREF  
VREF Input Current(3)  
10  
1000  
50  
μA During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
μA During A/D conversion cycle.  
Legend: TBD = To Be Determined.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.  
4: When ADC is off, it will not consume any current other than leakage current. The power-down current  
specification includes any such leakage from the ADC module.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 257  
PIC16F882/883/884/886/887  
TABLE 17-10: PIC16F882/883/884/886/887 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
A/D Clock Period  
Min  
Typ†  
Max Units  
Conditions  
AD130* TAD  
1.6  
3.0  
9.0  
9.0  
μs TOSC-based, VREF 3.0V  
μs TOSC-based, VREF full range  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(ADRC mode)  
μs At VDD = 2.5V  
3.0  
1.6  
6.0  
4.0  
11  
9.0  
6.0  
μs At VDD = 5.0V  
AD131 TCNV Conversion Time  
(not including  
TAD Set GO/DONE bit to new data in A/D  
Result register  
Acquisition Time)(1)  
AD132* TACQ Acquisition Time  
11.5  
5
μs  
μs  
AD133* TAMP Amplifier Settling Time  
AD134 TGO Q4 to A/D Clock Start  
TOSC/2  
TOSC/2 + TCY  
If the A/D clock source is selected as  
RC, a time of TCY is added before the  
A/D clock starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.  
2: See Section 9.3 “A/D Acquisition Requirements” for minimum conditions.  
DS41291D-page 258  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
FIGURE 17-10:  
PIC16F882/883/884/886/887 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
AD134  
1 TCY  
(1)  
(TOSC/2  
)
AD131  
Q4  
AD130  
A/D CLK  
A/D Data  
9
8
7
6
3
2
1
0
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 17-11:  
PIC16F882/883/884/886/887 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
Q4  
(1)  
(TOSC/2 + TCY  
)
1 TCY  
AD131  
AD130  
A/D CLK  
A/D Data  
9
8
7
3
2
1
0
6
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 259  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 260  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
18.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs are not available at this time.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 261  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 262  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
19.0 PACKAGING INFORMATION  
19.1 Package Marking Information  
28-Lead PDIP  
Example  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F883  
-I/P  
0510017  
e
3
Example  
28-Lead SOIC (7.50 mm)  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16F886/SO  
0510017  
e
3
YYWWNNN  
Example  
PIC16F883  
28-Lead SSOP  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
-I/SS  
e
3
YYWWNNN  
0510017  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
16F886  
/ML  
0510017  
e
3
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 263  
PIC16F882/883/884/886/887  
19.1 Package Marking Information (Continued)  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
PIC16F885  
-I/P  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
e
3
0510017  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F887  
e
3
-I/ML  
0510017  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F887  
-I/PT  
e
3
0510017  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS41291D-page 264  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
19.2 Package Details  
The following sections give the technical details of the packages.  
28-Lead Skinny Plastic Dual In-Line (SP or PJ) – 300 mil Body [SPDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
INCHES  
NOM  
28  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 265  
PIC16F882/883/884/886/887  
28-Lead Plastic Small Outline (SO or OI) – Wide, 7.50 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
1.27 BSC  
Overall Height  
A
2.65  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
2.05  
0.10  
0.30  
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
7.50 BSC  
17.90 BSC  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
1.40 REF  
Foot Angle Top  
Lead Thickness  
Lead Width  
0°  
0.18  
0.31  
5°  
8°  
c
0.33  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-052B  
DS41291D-page 266  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.75  
2.00  
1.85  
A2  
A1  
E
1.65  
0.05  
7.40  
5.00  
9.90  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
7.80  
5.30  
10.20  
0.75  
1.25 REF  
8.20  
5.60  
10.50  
0.95  
E1  
D
L
Footprint  
L1  
c
Lead Thickness  
Foot Angle  
0.09  
0°  
0.25  
8°  
φ
4°  
Lead Width  
b
0.22  
0.38  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-073B  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 267  
PIC16F882/883/884/886/887  
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S]  
with 0.40 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
E2  
E
b
2
1
2
1
K
N
N
L
NOTE 1  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
N
e
28  
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
6.00 BSC  
3.70  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
3.65  
4.70  
6.00 BSC  
3.70  
D2  
b
3.65  
0.23  
0.30  
0.20  
4.70  
0.43  
0.50  
0.38  
L
0.40  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-124B  
DS41291D-page 268  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
40-Lead Plastic Dual In-Line (P or PL) – 600 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
40  
.100 BSC  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
.250  
.195  
A2  
A1  
E
.125  
.015  
.590  
.485  
1.980  
.115  
.008  
.030  
.014  
.625  
.580  
2.095  
.200  
.015  
.070  
.023  
.700  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-016B  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 269  
PIC16F882/883/884/886/887  
44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
MAX  
Number of Pins  
N
e
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
8.00 BSC  
6.45  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
6.30  
6.80  
8.00 BSC  
6.45  
D2  
b
6.30  
0.25  
0.30  
0.20  
6.80  
0.38  
0.50  
0.30  
L
0.40  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-103B  
DS41291D-page 270  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
MAX  
Number of Leads  
Lead Pitch  
N
e
0.80 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
0.09  
0.30  
11°  
0.20  
0.45  
13°  
b
0.37  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-076B  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 271  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 272  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
APPENDIX A: DATA SHEET  
APPENDIX B: MIGRATING FROM  
REVISION HISTORY  
OTHER PIC®  
DEVICES  
Revision A (5/2006)  
This discusses some of the issues in migrating from  
other PIC devices to the PIC16F88X Family of devices.  
Initial release of this data sheet.  
Revision B (7/2006)  
B.1  
PIC16F87X to PIC16F88X  
Pin Diagrams (44-Pin QFN drawing); Revised Table 2-  
1, Addr. 1DH (CCP2CON); Section 3.0, 3.1; Section  
3.4.4.6; Table 3; Table 3-1 (ANSEL); Table 3-3  
(CCP2CON); Register 3-1; Register 3.2; Register 3-3;  
Register 3-4; Register 3-9; Register 3-10; Register 3-  
11; Register 3-12; Register 3-14; Table 3-5 (ANSEL);  
Figure 3-5; Figure 3-11; Figure 8-2; Figure 8-3; Figure  
9-1; Register 9-1; Section 9.1.4; Example 10-4; Figure  
11-5; Table 11-5 (P1M); Section 11.5.2; Section 11.5.7,  
Number 4; Table 11-7 (CCP2CON); Section 12.3.1  
(Para. 3); Figure 12-6 (Title); Sections 14.2, 14.3 and  
14.4 DC Characteristics (Max); Table 14-4 (OSCCON);  
Section 14.3 (TMR0); Section 14.3.2 (TMR0).  
TABLE B-1:  
FEATURE COMPARISON  
Feature  
PIC16F87X  
PIC16F88X  
Max Operating Speed  
20 MHz  
8192  
20 MHz  
8192  
Max Program  
Memory (Words)  
SRAM (bytes)  
368  
10-bit  
256  
2/1  
4
368  
A/D Resolution  
10-bit  
Data EEPROM (Bytes)  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
256  
2/1  
8
Y (2.1V/4V)  
Y
Y
Software Control Option  
of WDT/BOR  
N
Revision C  
Internal Pull-ups  
RB<7:4>  
RB<7:0>,  
MCLR  
Section 19.0 Packaging Information: Replaced  
package drawings and added note.  
Added PIC16F882 part number.  
Interrupt-on-change  
Comparator  
RB<7:4>  
2
RB<7:0>  
2
Replaced PICmicro with PIC.  
References  
CVREF  
CVREF and  
VP6  
Revision D  
ECCP/CCP  
0/2  
N
1/1  
Y
Replaced Package Drawings (Rev. AM); Replaced  
Development Support Section; Revised Product ID  
Section.  
Ultra Low-Power  
Wake-Up  
Extended WDT  
INTOSC Frequencies  
Clock Switching  
MSSP  
N
Y
N
N
32 kHz-8 MHz  
Y
Standard  
w/Slave  
Address Mask  
USART  
AUSART  
8
EUSART  
14  
ADC Channels  
Note: This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its earlier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 273  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 274  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
INDEX  
Fail-Safe Clock Monitor (FSCM)................................. 71  
In-Circuit Serial Programming Connections ............. 224  
Interrupt Logic........................................................... 217  
A
A/D  
Specifications.................................................... 257, 258  
2
MSSP (I C Master Mode)......................................... 189  
Absolute Maximum Ratings .............................................. 239  
AC Characteristics  
2
MSSP (I C Mode)..................................................... 185  
MSSP (SPI Mode) .................................................... 179  
On-Chip Reset Circuit............................................... 208  
PIC16F883/886 .......................................................... 14  
PIC16F884/887 .......................................................... 15  
PWM (Enhanced) ..................................................... 132  
RA0 Pins..................................................................... 42  
RA1 Pin ...................................................................... 43  
RA2 Pin ...................................................................... 43  
RA3 Pin ...................................................................... 44  
RA4 Pin ...................................................................... 44  
RA5 Pin ...................................................................... 45  
RA6 Pin ...................................................................... 45  
RA7 Pin ...................................................................... 46  
RB0, RB1, RB2, RB3 Pins.......................................... 50  
RB4, RB5, RB6, RB7 Pins.......................................... 51  
RC0 Pin ...................................................................... 54  
RC1 Pin ...................................................................... 54  
RC2 Pin ...................................................................... 54  
RC3 Pin ...................................................................... 55  
RC4 Pin ...................................................................... 55  
RC5 Pin ...................................................................... 55  
RC6 Pin ...................................................................... 56  
RC7 Pin ...................................................................... 56  
RD0, RD1, RD2, RD3, RD4 Pins................................ 58  
RD5, RD6, RD7 Pins.................................................. 58  
RE3 Pin ...................................................................... 60  
Resonator Operation .................................................. 64  
Timer1 ........................................................................ 76  
Timer2 ........................................................................ 81  
TMR0/WDT Prescaler ................................................ 73  
Watchdog Timer (WDT)............................................ 220  
Break Character (12-bit) Transmit and Receive ............... 167  
BRG.................................................................................. 191  
Brown-out Reset (BOR).................................................... 210  
Associated................................................................ 211  
Specifications ........................................................... 253  
Timing and Characteristics....................................... 252  
Bus Collision During a Repeated Start Condition............. 202  
Bus Collision During a Start Condition.............................. 200  
Bus Collision During a Stop Condition.............................. 203  
Industrial and Extended ............................................ 249  
Load Conditions........................................................ 248  
ACKSTAT ......................................................................... 194  
ACKSTAT Status Flag ...................................................... 194  
ADC .................................................................................... 99  
Acquisition Requirements ......................................... 107  
Associated Registers ................................................ 109  
Block Diagram............................................................. 99  
Calculating Acquisition Time..................................... 107  
Channel Selection..................................................... 100  
Configuration............................................................. 100  
Configuring Interrupt ................................................. 103  
Conversion Clock...................................................... 100  
Conversion Procedure .............................................. 103  
Internal Sampling Switch (RSS) Impedance.............. 107  
Interrupts................................................................... 101  
Operation .................................................................. 102  
Operation During Sleep ............................................ 102  
Port Configuration..................................................... 100  
Reference Voltage (VREF)......................................... 100  
Result Formatting...................................................... 102  
Source Impedance.................................................... 107  
Special Event Trigger................................................ 102  
Starting an A/D Conversion ...................................... 102  
ADCON0 Register............................................................. 104  
ADCON1 Register............................................................. 105  
ADRESH Register (ADFM = 0)......................................... 106  
ADRESH Register (ADFM = 1)......................................... 106  
ADRESL Register (ADFM = 0).......................................... 106  
ADRESL Register (ADFM = 1).......................................... 106  
Analog Input Connection Considerations............................ 90  
Analog-to-Digital Converter. See ADC  
ANSEL Register.................................................................. 40  
ANSELH Register ............................................................... 48  
Assembler  
MPASM Assembler................................................... 236  
B
Baud Rate Generator........................................................ 191  
BAUDCTL Register........................................................... 160  
BF ..................................................................................... 194  
BF Status Flag .................................................................. 194  
Block Diagrams  
C
C Compilers  
MPLAB C18.............................................................. 236  
MPLAB C30.............................................................. 236  
Capture Module. See Enhanced  
Capture/Compare/PWM(ECCP)  
Capture/Compare/PWM (CCP)  
(CCP) Capture Mode Operation ............................... 126  
ADC ............................................................................ 99  
ADC Transfer Function ............................................. 108  
Analog Input Model............................................. 90, 108  
Baud Rate Generator................................................ 191  
CCP PWM................................................................. 128  
Clock Source............................................................... 61  
Comparator C1 ........................................................... 84  
Comparator C1 and ADC Voltage Reference............. 95  
Comparator C2 ........................................................... 84  
Compare ................................................................... 127  
Crystal Operation........................................................ 64  
EUSART Receive ..................................................... 150  
EUSART Transmit .................................................... 149  
External RC Mode....................................................... 65  
Associated Registers w/ Capture,  
Compare and Timer1........................................ 148  
Associated Registers w/ PWM and Timer2 .............. 148  
Capture Mode........................................................... 126  
CCP Pin Configuration ............................................. 126  
Compare Mode......................................................... 127  
CCP Pin Configuration ..................................... 127  
Software Interrupt Mode........................... 126, 127  
Special Event Trigger....................................... 127  
Timer1 Mode Selection............................. 126, 127  
Prescaler .................................................................. 126  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 275  
PIC16F882/883/884/886/887  
PWM Mode ...............................................................128  
Duty Cycle.........................................................129  
Effects of Reset.................................................131  
Example PWM Frequencies and  
Comparator Voltage Reference (CVREF)............................ 94  
Effects of a Reset ....................................................... 87  
Specifications ........................................................... 256  
Compare Module. See Enhanced  
Resolutions, 20 MHZ ................................130  
Capture/Compare/PWM (ECCP)  
Example PWM Frequencies and  
CONFIG1 Register ........................................................... 206  
CONFIG2 Register ........................................................... 207  
Configuration Bits ............................................................. 206  
CPU Features................................................................... 205  
Customer Change Notification Service............................. 283  
Customer Notification Service .......................................... 283  
Customer Support............................................................. 283  
Resolutions, 8 MHz...................................130  
Operation in Sleep Mode ..................................131  
Setup for Operation...........................................131  
System Clock Frequency Changes...................131  
PWM Period..............................................................129  
Setup for PWM Operation.........................................131  
Timer Resources.......................................................125  
CCP1CON (Enhanced) Register.......................................124  
CCP2CON Register ..........................................................125  
Clock Accuracy with Asynchronous Operation .................158  
Clock Sources  
External Modes...........................................................63  
EC.......................................................................63  
HS.......................................................................64  
LP........................................................................64  
OST.....................................................................63  
RC.......................................................................65  
XT .......................................................................64  
Internal Modes ............................................................65  
Frequency Selection ...........................................67  
HFINTOSC..........................................................65  
HFINTOSC/LFINTOSC Switch Timing ...............67  
INTOSC ..............................................................65  
INTOSCIO...........................................................65  
LFINTOSC ..........................................................67  
Clock Switching...................................................................69  
CM1CON0 Register ............................................................88  
CM2CON0 Register ............................................................89  
CM2CON1 Register ............................................................91  
Code Examples  
A/D Conversion.........................................................103  
Assigning Prescaler to Timer0 ....................................74  
Assigning Prescaler to WDT .......................................74  
Changing Between Capture Prescalers....................126  
Indirect Addressing .....................................................37  
Initializing PORTA.......................................................39  
Initializing PORTB.......................................................47  
Initializing PORTC.......................................................53  
Initializing PORTD.......................................................57  
Initializing PORTE.......................................................59  
Loading the SSPBUF Register .................................180  
Saving STATUS and W Registers in RAM ...............219  
Ultra Low-Power Wake-up Initialization ......................41  
Write Verify ...............................................................120  
Writing to Flash Program Memory ............................119  
Code Protection ................................................................223  
Comparator  
C2OUT as T1 Gate ...............................................77, 91  
Effects of a Reset........................................................87  
Operation ....................................................................83  
Operation During Sleep ..............................................87  
Response Time...........................................................85  
Specifications............................................................256  
Synchronizing COUT w/Timer1 ..................................91  
Comparator Module ............................................................83  
Associated Registers ..................................................97  
C1 Output State Versus Input Conditions...................85  
Comparator Voltage Reference (CVREF)  
D
Data EEPROM Memory.................................................... 111  
Associated Registers................................................ 121  
Code Protection........................................................ 120  
Reading .................................................................... 114  
Writing ...................................................................... 114  
Data Memory ...................................................................... 22  
DC Characteristics  
Extended .................................................................. 244  
Industrial ................................................................... 243  
Industrial and Extended............................ 241, 242, 245  
Development Support....................................................... 235  
Device Overview................................................................. 13  
E
ECCP. See Enhanced Capture/Compare/PWM  
ECCPAS Register............................................................. 141  
EEADR Register............................................................... 112  
EEADR Registers ............................................................. 111  
EEADRH Registers........................................................... 111  
EECON1 Register..................................................... 111, 113  
EECON2 Register............................................................. 111  
EEDAT Register ............................................................... 112  
EEDATH Register............................................................. 112  
EEPROM Data Memory  
Avoiding Spurious Write ........................................... 120  
Write Verify............................................................... 120  
Effects of Reset  
PWM mode............................................................... 131  
Electrical Specifications.................................................... 239  
Enhanced Capture/Compare/PWM .................................. 123  
Enhanced Capture/Compare/PWM (ECCP)  
Enhanced PWM Mode.............................................. 132  
Auto-Restart ..................................................... 142  
Auto-shutdown.................................................. 141  
Direction Change in Full-Bridge Output Mode.. 138  
Full-Bridge Application...................................... 136  
Full-Bridge Mode .............................................. 136  
Half-Bridge Application..................................... 135  
Half-Bridge Application Examples .................... 143  
Half-Bridge Mode.............................................. 135  
Output Relationships (Active-High and  
Active-Low)............................................... 133  
Output Relationships Diagram.......................... 134  
Programmable Dead Band Delay..................... 143  
Shoot-through Current...................................... 143  
Start-up Considerations.................................... 140  
Specifications ........................................................... 255  
Timer Resources ...................................................... 124  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) .............................. 149  
Errata.................................................................................. 12  
EUSART ........................................................................... 149  
Response Time...........................................................85  
DS41291D-page 276  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
Associated Registers  
Acknowledge .................................................... 199  
Baud Rate Generator........................................ 161  
Asynchronous Mode ................................................. 151  
12-bit Break Transmit and Receive .................. 167  
Associated Registers  
Repeated Start Condition ................................. 202  
Repeated Start Condition Timing (Case1)........ 202  
Repeated Start Condition Timing (Case2)........ 202  
Start Condition.................................................. 200  
Receive..................................................... 157  
Transmit.................................................... 153  
Auto-Wake-up on Break ................................... 166  
Baud Rate Generator (BRG) ............................ 161  
Clock Accuracy................................................. 158  
Receiver............................................................ 154  
Setting up 9-bit Mode with Address Detect....... 156  
Transmitter........................................................ 151  
Baud Rate Generator (BRG)  
Auto Baud Rate Detect..................................... 165  
Baud Rate Error, Calculating ............................ 161  
Baud Rates, Asynchronous Modes .................. 162  
Formulas........................................................... 161  
High Baud Rate Select (BRGH Bit) .................. 161  
Synchronous Master Mode............................... 169, 173  
Associated Registers  
Start Condition Timing.............................. 200, 201  
Stop Condition.................................................. 203  
Stop Condition Timing (Case 1) ....................... 203  
Stop Condition Timing (Case 2) ....................... 203  
Bus Collision timing .................................................. 199  
Clock Arbitration ....................................................... 198  
Clock Arbitration Timing (Master Transmit).............. 198  
Effect of a Reset....................................................... 198  
General Call Address Support.................................. 188  
Master Mode............................................................. 189  
Master Mode 7-bit Reception Timing........................ 196  
Master Mode Operation............................................ 190  
Master Mode Start Condition Timing........................ 192  
Master Mode Support............................................... 189  
Master Mode Transmission ...................................... 194  
Master Mode Transmit Sequence ............................ 190  
Multi-Master Mode.................................................... 199  
Repeat Start Condition Timing Waveform................ 193  
Sleep Operation........................................................ 198  
Stop Condition Receive or Transmit Timing............. 198  
Stop Condition Timing .............................................. 197  
Waveforms for 7-bit Reception................................. 187  
Waveforms for 7-bit Transmission............................ 187  
ID Locations...................................................................... 223  
In-Circuit Debugger........................................................... 224  
In-Circuit Serial Programming (ICSP)............................... 223  
Indirect Addressing, INDF and FSR registers..................... 37  
Instruction Format............................................................. 225  
Instruction Set................................................................... 225  
ADDLW..................................................................... 227  
ADDWF .................................................................... 227  
ANDLW..................................................................... 227  
ANDWF .................................................................... 227  
BCF .......................................................................... 227  
BSF........................................................................... 227  
BTFSC...................................................................... 227  
BTFSS...................................................................... 228  
CALL......................................................................... 228  
CLRF ........................................................................ 228  
CLRW....................................................................... 228  
CLRWDT .................................................................. 228  
COMF....................................................................... 228  
DECF........................................................................ 228  
DECFSZ ................................................................... 229  
GOTO....................................................................... 229  
INCF ......................................................................... 229  
INCFSZ..................................................................... 229  
IORLW...................................................................... 229  
IORWF...................................................................... 229  
MOVF ....................................................................... 230  
MOVLW.................................................................... 230  
MOVWF.................................................................... 230  
NOP.......................................................................... 230  
RETFIE..................................................................... 231  
RETLW..................................................................... 231  
RETURN................................................................... 231  
RLF........................................................................... 232  
RRF .......................................................................... 232  
SLEEP...................................................................... 232  
SUBLW..................................................................... 232  
Receive..................................................... 172  
Transmit.................................................... 170  
Reception.......................................................... 171  
Transmission .................................................... 169  
Synchronous Slave Mode  
Associated Registers  
Receive..................................................... 174  
Transmit.................................................... 173  
Reception.......................................................... 174  
Transmission .................................................... 173  
F
Fail-Safe Clock Monitor....................................................... 71  
Fail-Safe Condition Clearing....................................... 71  
Fail-Safe Detection ..................................................... 71  
Fail-Safe Operation..................................................... 71  
Reset or Wake-up from Sleep..................................... 71  
Firmware Instructions........................................................ 225  
Flash Program Memory .................................................... 111  
Writing....................................................................... 117  
Fuses. See Configuration Bits  
G
General Call Address Support .......................................... 188  
General Purpose Register File............................................ 22  
I
2
I C (MSSP Module)  
ACK Pulse......................................................... 185, 186  
Addressing................................................................ 186  
Read/Write Bit Information (R/W Bit) ........................ 186  
Reception.................................................................. 186  
Serial Clock (RC3/SCK/SCL).................................... 186  
Slave Mode............................................................... 185  
Transmission............................................................. 186  
2
I C Master Mode Reception.............................................. 194  
I C Master Mode Repeated Start Condition Timing.......... 193  
I C Module  
2
2
Acknowledge Sequence Timing................................ 197  
Baud Rate Generator................................................ 191  
BRG Block Diagram.................................................. 191  
BRG Reset Due to SDA Arbitration During  
Start Condition .................................................. 201  
BRG Timing .............................................................. 191  
Bus Collision  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 277  
PIC16F882/883/884/886/887  
SUBWF.....................................................................233  
SWAPF .....................................................................233  
XORLW.....................................................................233  
XORWF.....................................................................233  
Summary Table.........................................................226  
INTCON Register................................................................31  
Inter-Integrated Circuit. See I C  
Internal Oscillator Block ....................................................250  
INTOSC  
Specifications....................................................251  
Internal Sampling Switch (RSS) Impedance......................107  
Internet Address................................................................283  
Interrupts...........................................................................216  
ADC ..........................................................................103  
Associated Registers ................................................218  
Context Saving..........................................................219  
Interrupt-on-Change....................................................47  
PORTB Interrupt-on-Change ....................................217  
RB0/INT ....................................................................216  
Timer0.......................................................................217  
TMR1 ..........................................................................78  
INTOSC  
OPTION_REG Register...................................................... 75  
OSCCON Register.............................................................. 62  
Oscillator  
Associated Registers............................................ 72, 80  
Oscillator Module................................................................ 61  
EC............................................................................... 61  
HFINTOSC ................................................................. 61  
HS............................................................................... 61  
INTOSC ...................................................................... 61  
INTOSCIO .................................................................. 61  
LFINTOSC.................................................................. 61  
LP ............................................................................... 61  
RC .............................................................................. 61  
RCIO........................................................................... 61  
XT ............................................................................... 61  
Oscillator Parameters ....................................................... 250  
Oscillator Specifications.................................................... 249  
Oscillator Start-up Timer (OST)  
2
Specifications ........................................................... 253  
Oscillator Switching  
Fail-Safe Clock Monitor .............................................. 71  
Two-Speed Clock Start-up.......................................... 69  
OSCTUNE Register............................................................ 66  
Specifications............................................................250  
INTOSC Specifications ............................................. 250, 251  
IOCB Register.....................................................................49  
P
P1A/P1B/P1C/P1D.See Enhanced  
L
Capture/Compare/PWM (ECCP).............................. 132  
Packaging......................................................................... 263  
Marking............................................................. 263, 264  
PDIP Details ............................................................. 265  
PCL and PCLATH............................................................... 37  
Stack........................................................................... 37  
PCON Register........................................................... 36, 211  
PICSTART Plus Development Programmer..................... 238  
PIE1 Register...................................................................... 32  
PIE2 Register...................................................................... 33  
Pin Diagram  
PIC16F883/886, 28-pin (PDIP, SOIC, SSOP).............. 3  
PIC16F883/886, 28-pin (QFN)...................................... 4  
PIC16F884/887, 40-Pin (PDIP) .................................... 6  
PIC16F884/887, 44-pin (QFN)...................................... 8  
PIC16F884/887, 44-pin (TQFP).................................. 10  
Pinout Descriptions  
Load Conditions ................................................................248  
M
Master Mode .....................................................................189  
Master Mode Support........................................................189  
Master Synchronous Serial Port. See MSSP  
MCLR................................................................................209  
Internal ......................................................................209  
Memory Organization..........................................................21  
Data ............................................................................22  
Program ......................................................................21  
Microchip Internet Web Site..............................................283  
Migrating from other PIC Devices .....................................273  
MPLAB ASM30 Assembler, Linker, Librarian ...................236  
MPLAB ICD 2 In-Circuit Debugger....................................237  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator ....................................................237  
MPLAB ICE 4000 High-Performance Universal  
PIC16F883/886 .......................................................... 16  
PIC16F884/887 .......................................................... 18  
PIR1 Register ..................................................................... 34  
PIR2 Register ..................................................................... 35  
PORTA ............................................................................... 39  
Additional Pin Functions ............................................. 40  
ANSEL Register ................................................. 40  
Ultra Low-Power Wake-up............................ 40, 41  
Associated Registers.................................................. 46  
Pin Descriptions and Diagrams .................................. 42  
RA0............................................................................. 42  
RA1............................................................................. 43  
RA2............................................................................. 43  
RA3............................................................................. 44  
RA4............................................................................. 44  
RA5............................................................................. 45  
RA6............................................................................. 45  
RA7............................................................................. 46  
Specifications ........................................................... 251  
PORTA Register................................................................. 39  
PORTB ............................................................................... 47  
Additional Pin Functions ............................................. 47  
ANSELH Register............................................... 47  
In-Circuit Emulator ....................................................237  
MPLAB Integrated Development Environment Software ..235  
MPLAB PM3 Device Programmer.....................................237  
MPLINK Object Linker/MPLIB Object Librarian ................236  
MSSP................................................................................175  
Block Diagram (SPI Mode) .......................................179  
2
2
I C Mode. See I C  
SPI Mode ..................................................................179  
SPI Mode. See SPI  
MSSP Module  
Control Registers ......................................................175  
2
I C Operation ............................................................185  
SPI Master Mode ......................................................181  
SPI Slave Mode ........................................................182  
Multi-Master Communication, Bus Collision and Bus Arbitra-  
tion ............................................................................199  
Multi-Master Mode ............................................................199  
O
OPCODE Field Descriptions.............................................225  
OPTION Register................................................................30  
DS41291D-page 278  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
Weak Pull-up ...................................................... 47  
PWM1CON Register......................................................... 144  
Associated Registers .................................................. 52  
Interrupt-on-Change.................................................... 47  
P1B/P1C/P1D.See Enhanced  
R
RCREG............................................................................. 156  
RCSTA Register ............................................................... 159  
Reader Response............................................................. 284  
Read-Modify-Write Operations ......................................... 225  
Register  
Capture/Compare/PWM+ (ECCP+).................... 47  
Pin Descriptions and Diagrams................................... 50  
RB0............................................................................. 50  
RB1............................................................................. 50  
RB2............................................................................. 50  
RB3............................................................................. 50  
RB4............................................................................. 51  
RB5............................................................................. 51  
RB6............................................................................. 51  
RB7............................................................................. 51  
PORTB Register ................................................................. 48  
PORTC ............................................................................... 53  
Associated Registers .................................................. 56  
P1A.See Enhanced Capture/Compare/PWM+  
(ECCP+) ............................................................. 53  
RC0............................................................................. 54  
RC1............................................................................. 54  
RC2............................................................................. 54  
RC3............................................................................. 55  
RC3 Pin..................................................................... 186  
RC4............................................................................. 55  
RC5............................................................................. 55  
RC6............................................................................. 56  
RC7............................................................................. 56  
Specifications............................................................ 251  
PORTC Register................................................................. 53  
PORTD ............................................................................... 57  
Associated Registers .................................................. 58  
P1B/P1C/P1D.See Enhanced  
Capture/Compare/PWM+ (ECCP+).................... 57  
RD0, RD1, RD2, RD3, RD4........................................ 58  
RD5............................................................................. 58  
RD6............................................................................. 58  
RD7............................................................................. 58  
PORTD Register................................................................. 57  
PORTE................................................................................ 59  
Associated Registers .................................................. 60  
RE0............................................................................. 60  
RE1............................................................................. 60  
RE2............................................................................. 60  
RE3............................................................................. 60  
PORTE Register ................................................................. 59  
Power-Down Mode (Sleep)............................................... 222  
Power-on Reset (POR)..................................................... 209  
Power-up Timer (PWRT) .................................................. 209  
Specifications............................................................ 253  
Precision Internal Oscillator Parameters........................... 251  
Prescaler  
Shared WDT/Timer0................................................... 74  
Switching Prescaler Assignment................................. 74  
Program Memory ................................................................ 21  
Map and Stack............................................................ 21  
Map and Stack (PIC16F883/884) ............................... 21  
Map and Stack (PIC16F886/887) ............................... 21  
Programming, Device Instructions .................................... 225  
PSTRCON Register .......................................................... 145  
Pulse Steering................................................................... 145  
PWM (ECCP Module)  
RCREG Register ...................................................... 165  
Registers  
ADCON0 (ADC Control 0)........................................ 104  
ADCON1 (ADC Control 1)........................................ 105  
ADRESH (ADC Result High) with ADFM = 0) .......... 106  
ADRESH (ADC Result High) with ADFM = 1) .......... 106  
ADRESL (ADC Result Low) with ADFM = 0)............ 106  
ADRESL (ADC Result Low) with ADFM = 1)............ 106  
ANSEL (Analog Select) .............................................. 40  
ANSELH (Analog Select High) ................................... 48  
BAUDCTL (Baud Rate Control)................................ 160  
CCP1CON (Enhanced CCP1 Control) ..................... 124  
CCP2CON (CCP2 Control) ...................................... 125  
CM1CON0 (C1 Control) ............................................. 88  
CM2CON0 (C2 Control) ............................................. 89  
CM2CON1 (C2 Control) ............................................. 91  
CONFIG1 (Configuration Word Register 1).............. 206  
CONFIG2 (Configuration Word Register 2).............. 207  
ECCPAS (Enhanced CCP Auto-shutdown Control). 141  
EEADR (EEPROM Address).................................... 112  
EECON1 (EEPROM Control 1) ................................ 113  
EEDAT (EEPROM Data).......................................... 112  
EEDATH (EEPROM Data) ....................................... 112  
INTCON (Interrupt Control) ........................................ 31  
IOCB (Interrupt-on-Change PORTB).......................... 49  
OPTION_REG (OPTION)..................................... 30, 75  
OSCCON (Oscillator Control)..................................... 62  
OSCTUNE (Oscillator Tuning).................................... 66  
PCON (Power Control Register)................................. 36  
PCON (Power Control)............................................. 211  
PIE1 (Peripheral Interrupt Enable 1) .......................... 32  
PIE2 (Peripheral Interrupt Enable 2) .......................... 33  
PIR1 (Peripheral Interrupt Register 1)........................ 34  
PIR2 (Peripheral Interrupt Request 2)........................ 35  
PORTA ....................................................................... 39  
PORTB ....................................................................... 48  
PORTC....................................................................... 53  
PORTD....................................................................... 57  
PORTE ....................................................................... 59  
PSTRCON (Pulse Steering Control)......................... 145  
PWM1CON (Enhanced PWM Control)..................... 144  
RCSTA (Receive Status and Control) ...................... 159  
Reset Values ............................................................ 213  
Reset Values (special registers)............................... 215  
Special Function Register Map  
PIC16F883/884 ............................................ 23, 24  
PIC16F886/887 .................................................. 25  
Special Function Registers......................................... 22  
Special Register Summary  
Bank 0 ................................................................ 26  
Bank 1 ................................................................ 27  
Bank 2 ................................................................ 28  
Bank 3 ................................................................ 28  
SRCON (SR Latch Control)........................................ 93  
SSPCON (MSSP Control 1) ..................................... 177  
SSPCON2 (SSP Control 2) ...................................... 178  
SSPMSK (SSP Mask) .............................................. 204  
SSPSTAT (SSP Status) ........................................... 176  
Pulse Steering........................................................... 145  
Steering Synchronization.......................................... 147  
PWM Mode. See Enhanced Capture/Compare/PWM ...... 132  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 279  
PIC16F882/883/884/886/887  
STATUS......................................................................29  
T1CON........................................................................79  
T2CON........................................................................82  
TRISA (Tri-State PORTA)...........................................39  
TRISB (Tri-State PORTB)...........................................48  
TRISC (Tri-State PORTC) ..........................................53  
TRISD (Tri-State PORTD) ..........................................57  
TRISE (Tri-State PORTE)...........................................59  
TXSTA (Transmit Status and Control) ......................158  
VRCON (Voltage Reference Control) .........................97  
WDTCON (Watchdog Timer Control)........................221  
WPUB (Weak Pull-up PORTB)...................................49  
Reset.................................................................................208  
Revision History ................................................................273  
SSPOV Status Flag .......................................................... 194  
SSPSTAT Register........................................................... 176  
R/W Bit ..................................................................... 186  
STATUS Register ............................................................... 29  
T
T1CON Register ................................................................. 79  
T2CON Register ................................................................. 82  
Thermal Considerations.................................................... 247  
Time-out Sequence .......................................................... 211  
Timer0................................................................................. 73  
Associated Registers.................................................. 75  
External Clock............................................................. 74  
Interrupt ...................................................................... 75  
Operation.............................................................. 73, 76  
Specifications ........................................................... 254  
T0CKI ......................................................................... 74  
Timer1................................................................................. 76  
Associated Registers.................................................. 80  
Asynchronous Counter Mode ..................................... 77  
Reading and Writing........................................... 77  
Interrupt ...................................................................... 78  
Modes of Operation .................................................... 76  
Operation During Sleep .............................................. 78  
Oscillator..................................................................... 77  
Prescaler .................................................................... 77  
Specifications ........................................................... 254  
Timer1 Gate  
S
SCK...................................................................................179  
SDI ....................................................................................179  
SDO ..................................................................................179  
Serial Clock, SCK..............................................................179  
Serial Data In, SDI ............................................................179  
Serial Data Out, SDO........................................................179  
Serial Peripheral Interface. See SPI  
Shoot-through Current ......................................................143  
Slave Mode General Call Address Sequence...................188  
Slave Select Synchronization............................................182  
Slave Select, SS ...............................................................179  
Sleep.................................................................................222  
Wake-up....................................................................222  
Wake-up Using Interrupts .........................................222  
Software Simulator (MPLAB SIM).....................................236  
SPBRG..............................................................................161  
SPBRGH...........................................................................161  
Special Event Trigger........................................................102  
Special Function Registers .................................................22  
SPI  
Master Mode.............................................................181  
Serial Clock...............................................................179  
Serial Data In ............................................................179  
Serial Data Out .........................................................179  
Slave Select..............................................................179  
SPI clock...................................................................181  
SPI Mode ..................................................................179  
SPI Bus Modes .................................................................184  
SPI Mode  
Associated Registers with SPI Operation .................184  
Bus Mode Compatibility ............................................184  
Effects of a Reset......................................................184  
Enabling SPI I/O .......................................................180  
Operation ..................................................................179  
Sleep Operation ........................................................184  
SPI Module  
Inverting Gate..................................................... 77  
Selecting Source .......................................... 77, 91  
SR Latch............................................................. 92  
Synchronizing COUT w/Timer1.......................... 91  
TMR1H Register......................................................... 76  
TMR1L Register.......................................................... 76  
Timer2  
Associated Registers.................................................. 82  
Timers  
Timer1  
T1CON ............................................................... 79  
Timer2  
T2CON ............................................................... 82  
Timing Diagrams  
A/D Conversion......................................................... 259  
A/D Conversion (Sleep Mode).................................. 259  
Acknowledge Sequence Timing ............................... 197  
Asynchronous Reception.......................................... 156  
Asynchronous Transmission..................................... 152  
Asynchronous Transmission (Back to Back) ............ 152  
Auto Wake-up Bit (WUE) During Normal Operation. 166  
Auto Wake-up Bit (WUE) During Sleep .................... 167  
Automatic Baud Rate Calibration.............................. 165  
Baud Rate Generator with Clock Arbitration............. 191  
BRG Reset Due to SDA Arbitration .......................... 201  
Brown-out Reset (BOR)............................................ 252  
Brown-out Reset Situations ...................................... 210  
Bus Collision  
Slave Mode...............................................................182  
Slave Select Synchronization ...................................182  
Slave Synchronization Timing...................................182  
Slave Timing with CKE = 0 .......................................183  
Slave Timing with CKE = 1 .......................................183  
SRCON Register.................................................................93  
SS .....................................................................................179  
SSP  
SSPBUF....................................................................181  
SSPSR......................................................................181  
SSPCON Register.............................................................177  
SSPCON2 Register...........................................................178  
SSPMSK Register.............................................................204  
SSPOV..............................................................................194  
Start Condition Timing...................................... 200  
Bus Collision During a Repeated Start  
Condition (Case 1)............................................ 202  
Bus Collision During a Repeated Start Condition  
(Case2)............................................................. 202  
Bus Collision During a Start Condition (SCL = 0)..... 201  
Bus Collision During a Stop Condition...................... 203  
Bus Collision for Transmit and Acknowledge ........... 199  
CLKOUT and I/O ...................................................... 251  
Clock Timing............................................................. 249  
DS41291D-page 280  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
Comparator Output ..................................................... 83  
V
Enhanced Capture/Compare/PWM (ECCP)............. 255  
Fail-Safe Clock Monitor (FSCM)................................. 72  
Full-Bridge PWM Output........................................... 137  
Half-Bridge PWM Output .................................. 135, 143  
Voltage Reference. See Comparator Voltage  
Reference (CVREF)  
Voltage References  
Associated Registers.................................................. 97  
VP6 Stabilization ........................................................ 94  
VREF. SEE ADC Reference Voltage  
2
I C Master Mode First Start Bit Timing ..................... 192  
2
I C Master Mode Reception Timing.......................... 196  
2
I C Master Mode Transmission Timing..................... 195  
2
I C Module  
W
Bus Collision  
Wake-up on Break............................................................ 166  
Wake-up Using Interrupts................................................. 222  
Watchdog Timer (WDT).................................................... 220  
Associated Registers................................................ 221  
Clock Source ............................................................ 220  
Modes....................................................................... 220  
Period ....................................................................... 220  
Specifications ........................................................... 253  
Waveform for Slave Mode General Call Address  
Sequence ................................................................. 188  
WCOL............................................................... 192, 194, 197  
WCOL Status Flag............................................ 192, 194, 197  
WDTCON Register ........................................................... 221  
WPUB Register................................................................... 49  
WWW Address ................................................................. 283  
WWW, On-Line Support ..................................................... 12  
Transmit Timing........................................ 199  
INT Pin Interrupt........................................................ 218  
Internal Oscillator Switch Timing................................. 68  
Master Mode Transmit Clock Arbitration................... 198  
PWM Auto-shutdown  
Auto-restart Enabled......................................... 142  
Firmware Restart .............................................. 142  
PWM Direction Change ............................................ 138  
PWM Direction Change at Near 100% Duty Cycle... 139  
PWM Output (Active-High)........................................ 133  
PWM Output (Active-Low) ........................................ 134  
Repeat Start Condition.............................................. 193  
Reset, WDT, OST and Power-up Timer ................... 252  
Send Break Character Sequence ............................. 168  
Slave Synchronization .............................................. 182  
SPI Mode Timing (Master Mode) SPI Mode  
Master Mode Timing Diagram .......................... 181  
SPI Mode Timing (Slave Mode with CKE = 0) .......... 183  
SPI Mode Timing (Slave Mode with CKE = 1) .......... 183  
Stop Condition Receive or Transmit ......................... 198  
Synchronous Reception (Master Mode, SREN) ....... 172  
Synchronous Transmission....................................... 170  
Synchronous Transmission (Through TXEN) ........... 170  
Time-out Sequence  
Case 1 .............................................................. 212  
Case 2 .............................................................. 212  
Case 3 .............................................................. 212  
Timer0 and Timer1 External Clock ........................... 254  
Timer1 Incrementing Edge.......................................... 78  
Two Speed Start-up.................................................... 70  
Wake-up from Interrupt............................................. 223  
Timing Parameter Symbology........................................... 248  
TRISA ................................................................................. 39  
TRISA Register ................................................................... 39  
TRISB ................................................................................. 47  
TRISB Register ................................................................... 48  
TRISC ................................................................................. 53  
TRISC Register................................................................... 53  
TRISD ................................................................................. 57  
TRISD Register................................................................... 57  
TRISE ................................................................................. 59  
TRISE Register ................................................................... 59  
Two-Speed Clock Start-up Mode........................................ 69  
TXREG.............................................................................. 151  
TXSTA Register ................................................................ 158  
BRGH Bit .................................................................. 161  
U
Ultra Low-Power Wake-up ................................ 16, 18, 40, 41  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 281  
PIC16F882/883/884/886/887  
NOTES:  
DS41291D-page 282  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 283  
PIC16F882/883/884/886/887  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F882/883/884/886/887  
DS41291D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41291D-page 284  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC16F882/883/884/886/887  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F883-E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301  
b)  
PIC16F883-I/SO  
package, 20 MHz  
= Industrial Temp., SOIC  
Device:  
PIC16F883F(1), PIC16F883FT(1, 2), PIC16F884F(1)  
,
PIC16F884FT(1, 2), PIC16F886F(1), PIC16F886FT(1, 2)  
PIC16F887F(1), PIC16F887FT(1, 2)  
VDD range 2.0V to 5.5V  
,
Temperature  
Range:  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package:  
ML  
P
PT  
SO  
SS  
=
Quad Flat No Leads (QFN)  
Plastic DIP  
Plastic Thin-Quad Flatpack (TQFP)  
Plastic Small Outline (SOIC) (7.50 mm)  
Plastic Shrink Small Outline  
=
=
=
=
Note 1:  
2:  
F
= Standard Voltage Range  
T = in tape and reel SSOP, SOIC and  
QFN packages only.  
Pattern:  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS41291D-page 285  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS41291D-page 286  
Preliminary  
© 2007 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY