PIC16LC716T-20E/P [MICROCHIP]

8-Bit CMOS Microcontrollers with A/D Converter and Capture/Compare/PWM; 8位CMOS微控制器与A / D转换器和捕捉/比较/ PWM
PIC16LC716T-20E/P
型号: PIC16LC716T-20E/P
厂家: MICROCHIP    MICROCHIP
描述:

8-Bit CMOS Microcontrollers with A/D Converter and Capture/Compare/PWM
8位CMOS微控制器与A / D转换器和捕捉/比较/ PWM

转换器 微控制器
文件: 总108页 (文件大小:1705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C712/716  
8-Bit CMOS Microcontrollers with A/D Converter  
and Capture/Compare/PWM  
Devices included in this Data Sheet:  
• PIC16C712 • PIC16C716  
Pin Diagrams  
18-pin PDIP, SOIC, Windowed CERDIP  
Microcontroller Core Features:  
RA1/AN1  
RA0/AN0  
RA2/AN2  
RA3/AN3/VREF  
1
2
3
4
5
18  
17  
16  
15  
14  
• High-performance RISC CPU  
• Only 35 single word instructions to learn  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
RA4/T0CKI  
MCLR/VPP  
• All single cycle instructions except for program  
branches which are two cycle  
VSS  
RB0/INT  
RB1/T1OSO/T1CKI  
RB7  
RB6  
6
7
8
9
13  
12  
11  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
RB5  
RB4  
RB2/T1OSI  
RB3/CCP1  
10  
Program  
Memory  
Device  
Data Memory  
PIC16C712  
PIC16C716  
1K  
2K  
128  
128  
20-pin SSOP  
• Interrupt capability  
(up to 7 internal/external interrupt sources)  
RA1/AN1  
RA0/AN0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
RA2/AN2  
RA3/AN3/VREF  
1
20  
19  
18  
17  
16  
2
3
4
5
RA4/T0CKI  
MCLR/VPP  
• Eight level deep hardware stack  
• Direct, indirect and relative addressing modes  
• Power-on Reset (POR)  
VSS  
VSS  
RB0/INT  
VDD  
RB7  
RB6  
6
15  
7
14  
13  
RB1/T1OSO/T1CKI  
8
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
12  
11  
RB5  
RB4  
9
RB2/T1OSI  
RB3/CCP1  
10  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
Peripheral Features:  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Timer1: 16-bit timer/counter with prescaler  
can be incremented during sleep via external  
crystal/clock  
• Low-power, high-speed CMOS EPROM  
technology  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Fully static design  
• Capture, Compare, PWM module  
• In-Circuit Serial Programming (ICSP)  
• Wide operating voltage range: 2.5V to 5.5V  
• High Sink/Source Current 25/25 mA  
• Capture is 16-bit, max. resolution is 12.5 ns,  
Compare is 16-bit, max. resolution is 200 ns,  
PWM maximum resolution is 10-bit  
• 8-bit multi-channel Analog-to-Digital converter  
• Commercial, Industrial and Extended temperature  
ranges  
• Low-power consumption:  
- < 2 mA @ 5V, 4 MHz  
- 22.5 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 1  
PIC16C712/716  
Key Features  
PICmicroMid-Range Reference Manual  
PIC16C712  
PIC16C716  
(DS33023)  
Operating Frequency  
Resets (and Delays)  
Program Memory (14-bit words)  
Data Memory (bytes)  
Interrupts  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR (PWRT, OST)  
POR, BOR (PWRT, OST)  
1K  
2K  
128  
128  
7
7
I/O Ports  
Ports A,B  
Ports A,B  
Timers  
3
3
Capture/Compare/PWM modules  
8-bit Analog-to-Digital Module  
1
1
4 input channels  
4 input channels  
PIC16C7XX FAMILY OF DEVICES  
PIC16C710 PIC16C71 PIC16C711  
PIC16C712  
PIC16C715  
PIC16C716 PIC16C72A PIC16C73B  
Maximum Frequency  
of Operation (MHz)  
20  
20  
20  
20  
20  
20  
20  
20  
Clock  
EPROM Program  
Memory  
(x14 words)  
512  
1K  
1K  
1K  
2K  
2K  
2K  
4K  
Memory  
Data Memory (bytes)  
Timer Module(s)  
36  
36  
68  
128  
128  
128  
128  
192  
TMR0  
TMR0  
TMR0  
TMR0  
TMR1  
TMR2  
TMR0  
TMR0  
TMR1  
TMR2  
TMR0  
TMR1  
TMR2  
TMR0  
TMR1  
TMR2  
Capture/Compare/  
PWM Module(s)  
4
4
4
1
4
4
1
4
1
SPI/I2C  
5
2
Peripherals  
Serial Port(s)  
SPI/I2C,  
USART  
(SPI/I2C, USART)  
A/D Converter (8-bit)  
Channels  
5
Interrupt Sources  
I/O Pins  
4
13  
4
13  
4
13  
7
13  
4
13  
7
13  
8
22  
11  
22  
Voltage Range (Volts)  
2.5-6.0  
Yes  
3.0-6.0  
Yes  
2.5-6.0  
Yes  
2.5-5.5  
Yes  
2.5-5.5  
Yes  
2.5-5.5  
Yes  
2.5-5.5  
Yes  
2.5-5.5  
Yes  
In-Circuit Serial  
Programming  
Features  
Brown-out Reset  
Packages  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
18-pin DIP,  
SOIC;  
18-pin DIP, 18-pin DIP,  
SOIC SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin SDIP, 28-pin SDIP,  
SOIC, SSOP SOIC  
20-pin SSOP  
20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP  
DS41106A-page 2  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
Device Overview.................................................................................................................................................. 5  
Memory Organization .......................................................................................................................................... 9  
I/O Ports ............................................................................................................................................................ 21  
Timer0 Module................................................................................................................................................... 29  
Timer1 Module................................................................................................................................................... 31  
Timer2 Module................................................................................................................................................... 36  
Capture/Compare/PWM (CCP) Module(s) ........................................................................................................ 39  
Analog-to-Digital Converter (A/D) Module......................................................................................................... 45  
Special Features of the CPU............................................................................................................................. 51  
10.0 Instruction Set Summary ................................................................................................................................... 67  
11.0 Development Support........................................................................................................................................ 69  
12.0 Electrical Characteristics ................................................................................................................................... 75  
13.0 DC and AC Characteristics Graphs and Tables................................................................................................ 91  
14.0 Packaging Information....................................................................................................................................... 93  
Revision History ........................................................................................................................................................... 99  
Conversion Considerations .......................................................................................................................................... 99  
Migration from Base-line to Mid-Range Devices .......................................................................................................... 99  
Index ........................................................................................................................................................................... 101  
On-Line Support.......................................................................................................................................................... 105  
Reader Response....................................................................................................................................................... 106  
PIC16C712/716 Product Identification System........................................................................................................... 107  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 3  
PIC16C712/716  
NOTES:  
DS41106A-page 4  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
ommended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information.  
Additional information may be found in the PICmicro™  
Mid-Range Reference Manual, (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip website. The  
Reference Manual should be considered a comple-  
mentary document to this data sheet, and is highly rec-  
There are two devices (PIC16C712, PIC16C716) cov-  
ered by this datasheet.  
Figure 1-1 is the block diagram for both devices. The  
pinouts are listed in Table 1-1.  
FIGURE 1-1: PIC16C712/716 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
EPROM  
Program Counter  
1K X 14  
or  
2K x 14  
Program  
Memory  
RA0/AN0  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RAM  
8 Level Stack  
(13-bit)  
128 x 8  
File  
Registers  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
9
Addr MUX  
RB0/INT  
Instruction reg  
RB1/T1OSO/T1CKI  
RB2/T1OSI  
RB3/CCP1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
RB4  
RB5  
RB6  
RB7  
STATUS reg  
8
3
MUX  
Power-up  
Timer  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
OSC1/CLKIN  
OSC2/CLKOUT  
Timing  
Generation  
Watchdog  
Timer  
W reg  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer1  
Timer0  
Timer2  
CCP1  
A/D  
Note 1: Higher order bits are from the STATUS register.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 5  
PIC16C712/716  
TABLE 1-1  
Pin  
PIC16C712/716 PINOUT DESCRIPTION  
PIC16C712/716  
Pin  
Buffer  
Type  
Name  
DIP, SOIC  
SSOP  
Type  
Description  
Master clear (reset) input. This pin is an  
MCLR/VPP  
MCLR  
4
4
I
ST  
active low reset to the device.  
Programming voltage input  
VPP  
P
OSC1/CLKIN  
OSC1  
16  
18  
17  
I
I
ST  
Oscillator crystal input or external clock  
source input. ST buffer when configured in  
RC mode. CMOS otherwise.  
CLKIN  
CMOS  
External clock source input.  
OSC2/CLKOUT  
OSC2  
15  
O
O
Oscillator crystal output. Connects to  
crystal or resonator in crystal oscillator  
mode.  
In RC mode, OSC2 pin outputs CLKOUT  
which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
CLKOUT  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
17  
18  
1
19  
20  
1
I/O  
I
TTL  
Analog  
Digital I/O  
Analog input 0  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O  
Analog input 1  
AN1  
RA2/AN2  
RA2  
I/O  
I
TTL  
Analog  
Digital I/O  
Analog input 2  
AN2  
RA3/AN3/VREF  
RA3  
2
2
I/O  
TTL  
Digital I/O  
AN3  
VREF  
I
I
Analog  
Analog  
Analog input 3  
A/D Reference Voltage input.  
RA4/T0CKI  
RA4  
3
3
I/O  
I
ST/OD  
ST  
Digital I/O. Open drain when configured  
as output.  
Timer0 external clock input  
T0CKI  
Legend: TTL = TTL-compatible input  
ST = Schmitt Trigger input with CMOS levels  
OD = Open drain output  
SM = SMBus compatible input. An external resistor is required if this pin is used as an output  
CMOS = CMOS compatible input or output  
NPU = N-channel pull-up  
No-P diode = No P-diode to VDD  
I = input  
PU = Weak internal pull-up  
AN = Analog input or output  
O = output  
P = Power  
L = LCD Driver  
DS41106A-page 6  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
TABLE 1-1  
Pin  
PIC16C712/716 PINOUT DESCRIPTION (Cont.d)  
PIC16C712/716  
Pin  
Buffer  
Type  
Name  
DIP, SOIC  
SSOP  
Type  
Description  
PORTB is a bi-directional I/O port. PORTB  
can be software programmed for internal  
weak pull-ups on all inputs.  
RB0/INT  
RB0  
6
7
7
8
I/O  
I
TTL  
ST  
Digital I/O  
External Interrupt  
INT  
RB1/T1OSO/T1CKI  
RB1  
T1OSO  
I/O  
O
TTL  
Digital I/O  
Timer1 oscillator output. Connects to  
crystal in oscillator mode.  
Timer1 external clock input.  
T1CKI  
I
ST  
RB2/T1OSI  
RB2  
8
9
9
I/O  
I
TTL  
Digital I/O  
Timer1 oscillator input. Connects to  
crystal in oscillator mode.  
T1OSI  
RB3/CCP1  
RB3  
10  
I/O  
I/O  
TTL  
ST  
Digital I/O  
CCP1  
Capture1 input, Compare1 output, PWM1  
output.  
RB4  
RB5  
RB6  
10  
11  
12  
12  
12  
13  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
Digital I/O  
Interrupt on change pin.  
Digital I/O  
Interrupt on change pin.  
Digital I/O  
Interrupt on change pin.  
ICSP programming clock.  
I
ST  
RB7  
13  
14  
I/O  
TTL  
Digital I/O  
Interrupt on change pin.  
ICSP programming data.  
I/O  
P
ST  
VSS  
VDD  
5
5, 6  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
14  
15, 16  
P
Legend: TTL = TTL-compatible input  
ST = Schmitt Trigger input with CMOS levels  
OD = Open drain output  
SM = SMBus compatible input. An external resistor is required if this pin is used as an output  
CMOS = CMOS compatible input or output  
NPU = N-channel pull-up  
No-P diode = No P-diode to VDD  
I = input  
PU = Weak internal pull-up  
AN = Analog input or output  
O = output  
P = Power  
L = LCD Driver  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 7  
PIC16C712/716  
NOTES:  
DS41106A-page 8  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
FIGURE 2-2: PROGRAM MEMORY MAP  
AND STACK OF PIC16C716  
2.0  
MEMORY ORGANIZATION  
There are two memory blocks in each of these  
PICmicro® microcontroller devices. Each block (Pro-  
gram Memory and Data Memory) has its own bus so  
that concurrent access can occur.  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Additional information on device memory may be found  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
Stack Level 1  
Stack Level 8  
2.1  
Program Memory Organization  
The PIC16C712/716 has a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space. PIC16C712 has 1K x 14 words of program  
memory and PIC16C716 has 2K x 14 words of program  
memory. Accessing a location above the physically  
implemented address will cause a wraparound.  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
FIGURE 2-1: PROGRAM MEMORY MAP  
AND STACK OF THE  
On-chip Program  
Memory  
PIC16C712  
PC<12:0>  
07FFh  
0800h  
CALL, RETURN  
RETFIE, RETLW  
13  
1FFFh  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
03FFh  
0400h  
1FFFh  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 9  
PIC16C712/716  
2.2  
Data Memory Organization  
FIGURE 2-3: REGISTER FILE MAP  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
File  
Address  
File  
Address  
80h  
(1)  
(1)  
00h  
INDF  
INDF  
OPTION_REG  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
TMR0  
PCL  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
RP1(1)  
RP0  
(STATUS<6:5>)  
STATUS  
FSR  
STATUS  
FSR  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2 (not implemented)  
= 11 Bank3 (not implemented)  
PORTA  
PORTB  
DATACCP  
TRISA  
TRISB  
TRISCCP  
Note 1: Maintain this bit clear to ensure upward compati-  
bility with future products.  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain special  
function registers. Some “high use” special function  
registers from one bank may be mirrored in another  
bank for code reduction and quicker access.  
TMR1L  
TRM1H  
T1CON  
TRM2  
PCON  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
T2CON  
PR2  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 2.5).  
CCPR1L  
CCPR1H  
17h CCP1CON  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
ADRES  
ADCON0  
ADCON1  
General  
Purpose  
Registers  
32 Bytes  
General  
Purpose  
Registers  
96 Bytes  
BFh  
C0h  
7Fh  
FFh  
Bank 0  
Bank 1  
Unimplemented data memory locations,  
read as ’0’.  
Note 1: Not a physical register.  
DS41106A-page 10  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets; core (CPU) and peripheral. Those registers asso-  
ciated with the core functions are described in detail in  
this section. Those related to the operation of the  
peripheral features are described in detail in that  
peripheral feature section.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
give in Table 2-1.  
TABLE 2-1  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(4)  
Bank 0  
00h  
INDF(1)  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
rr01 1xxx rr0q quuu  
xxxx xxxx uuuu uuuu  
--xx xxxx --xu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx xxxx xuxu  
01h  
02h  
PCL(1)  
Program Counter's (PC) Least Significant Byte  
03h  
STATUS(1)  
FSR(1)  
IRP(4)  
RP1(4)  
RP0  
TO  
PD  
Z
DC  
C
04h  
Indirect data memory address pointer  
(7)  
05h  
PORTA(5,6)  
PORTA Data Latch when written: PORTA pins when read  
06h  
PORTB(5,6) PORTB Data Latch when written: PORTB pins when read  
(7)  
(7)  
(7)  
(7)  
(7)  
(7)  
DCCP  
DT1CK  
07h  
DATACCP  
08h-09h  
0Ah  
Unimplemented  
PCLATH(1,2)  
INTCON(1)  
PIR1  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0Bh  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0Ch  
0Dh  
0Eh  
CCP1IF  
TMR2IF  
TMR1IF -0-- 0000 -0-- 0000  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0Fh  
10h  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON --00 0000 --uu uuuu  
11h  
Timer2 module’s register  
0000 0000 0000 0000  
12h  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
13h-14h  
15h  
CCPR1L  
CCPR1H  
CCP1CON  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
18h-1Dh  
1Eh  
Unimplemented  
ADRES  
ADCON0  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
0000 00-0 0000 00-0  
1Fh  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented, read as ’0’,  
Shaded locations are unimplemented, read as ’0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved. Always maintain these bits clear.  
5: On any device reset, these pins are configured as inputs.  
6: This is the value that will be in the port output latch.  
7: Reserved bits; Do Not Use.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 11  
PIC16C712/716  
TABLE 2-1  
SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(4)  
Bank 1  
80h  
INDF(1)  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
OPTION_  
REG  
81h  
RBPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h  
PCL(1)  
STATUS(1)  
FSR(1)  
TRISA  
TRISB  
TRISCCP  
Program Counter’s (PC) Least Significant Byte  
IRP(4) RP1(4)  
RP0 TO  
0000 0000 0000 0000  
rr01 1xxx rr0q quuu  
xxxx xxxx uuuu uuuu  
--x1 1111 --x1 1111  
1111 1111 1111 1111  
xxxx x1x1 xxxx x1x1  
83h  
PD  
Z
DC  
C
84h  
Indirect data memory address pointer  
(7)  
85h  
PORTA Data Direction Register  
86h  
PORTB Data Direction Register  
(7)  
(7)  
(7)  
(7)  
(7)  
(7)  
TT1CK  
TCCP  
87h  
88h-89h  
8Ah  
Unimplemented  
PCLATH(1,2)  
INTCON(1)  
PIE1  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
8Bh  
GIE  
PEIE  
ADIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
8Ch  
CCP1IE  
TMR2IE  
TMR1IE -0-- -000 -0-- -000  
8Dh  
Unimplemented  
8Eh  
PCON  
POR  
BOR  
---- --qq ---- --uu  
8Fh-91h  
92h  
Unimplemented  
PR2  
Timer2 Period Register  
Unimplemented  
1111 1111 1111 1111  
93h-9Eh  
9Fh  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented, read as ’0’,  
Shaded locations are unimplemented, read as ’0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved. Always maintain these bits clear.  
5: On any device reset, these pins are configured as inputs.  
6: This is the value that will be in the port output latch.  
7: Reserved bits; Do Not Use.  
DS41106A-page 12  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
2.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register, shown in Figure 2-4, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: These devices do not use bits IRP and  
RP1 (STATUS<7:6>). Maintain these bits  
clear to ensure upward compatibility with  
future products.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
FIGURE 2-4: STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh) - not implemented, maintain clear  
0 = Bank 0, 1 (00h - FFh) - not implemented, maintain clear  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
Note: RP1 = not implemented, maintain clear  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 13  
PIC16C712/716  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0 and the weak pull-ups on PORTB.  
FIGURE 2-5: OPTION_REG REGISTER (ADDRESS 81h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
DS41106A-page 14  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
FIGURE 2-6: INTCON REGISTER (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1 = Enables all un-masked peripheral interrupts  
0 = Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
IINTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 15  
PIC16C712/716  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
FIGURE 2-7: PIE1 REGISTER (ADDRESS 8Ch)  
U-0  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
CCP1IE  
R
= Readable bit  
W = Writable bit  
bit7  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as ‘0’  
bit 6:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
bit 5-3: Unimplemented: Read as ‘0’  
bit 2:  
bit 1:  
bit 0:  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
DS41106A-page 16  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
FIGURE 2-8: PIR1 REGISTER (ADDRESS 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
CCP1IF  
R
= Readable bit  
W = Writable bit  
bit7  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit  
bit 6:  
1 = An A/D conversion completed (must be cleared in software)  
0 = The A/D conversion is not complete  
bit 5-3: Unimplemented: Read as ‘0’  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 17  
PIC16C712/716  
2.2.2.6  
PCON REGISTER  
Note: If the BODEN configuration bit is set, BOR  
is ’1’ on Power-on Reset. If the BODEN  
configuration bit is clear, BOR is unknown  
on Power-on Reset.  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
These devices contain an additional bit to differentiate  
a Brown-out Reset condition from a Power-on Reset  
condition.  
The BOR status bit is a "don't care" and is  
not necessarily predictable if the brown-out  
circuit is disabled (the BODEN configura-  
tion bit is clear). BOR must then be set by  
the user and checked on subsequent  
resets to see if it is clear, indicating a  
brown-out has occurred.  
FIGURE 2-9: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-q  
POR  
BOR  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as ’0’  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
DS41106A-page 18  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
2.3  
PCL and PCLATH  
2.4  
Program Memory Paging  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13 bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<12:8>  
bits and is not directly readable or writable. All updates  
to the PCH register go through the PCLATH register.  
The CALL and GOTO instructions provide 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper bit of the address is provided by  
PCLATH<3>. When doing a CALLor GOTOinstruction,  
the user must ensure that the page select bit is pro-  
grammed so that the desired program memory page is  
addressed. If a return from a CALLinstruction (or inter-  
rupt) is executed, the entire 13-bit PC is pushed onto  
the stack. Therefore, manipulation of the PCLATH<3>  
bit is not required for the return instructions (which  
POPs the address from the stack).  
2.3.1  
STACK  
The stack allows a combination of up to 8 program calls  
and interrupts to occur. The stack contains the return  
address from this branch in program execution.  
Midrange devices have an 8 level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not modified when the stack is PUSHed or  
POPed.  
After the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 19  
PIC16C712/716  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
2.5  
Indirect Addressing, INDF and FSR  
Registers  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
EXAMPLE 2-2: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
movlw 0x20 ;initialize pointer  
movwf FSR  
clrf  
incf  
;
to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
EXAMPLE 2-1: INDIRECT ADDRESSING  
• Register file 05 contains the value 10h  
• Register file 06 contains the value 0Ah  
• Load the value 05 into the FSR register  
• A read of the INDF register will return the value of  
10h  
NEXT  
btfss FSR,4 ;all done?  
goto  
:
NEXT ;NO, clear next  
;YES, continue  
CONTINUE  
• Increment the value of the FSR register by one  
(FSR = 06)  
• A read of the INDR register now will return the  
value of 0Ah.  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-10. However, IRP is not used in the  
PIC16C712/716.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
FIGURE 2-10: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
(2)  
(2)  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
(3)  
(3)  
Data  
Memory(1)  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
Note 1: For register file map detail see Figure 2-3.  
2: Maintain clear for upward compatibility with future products.  
3: Not implemented.  
DS41106A-page 20  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other RA port pins have TTL input levels and full  
CMOS output drivers.  
3.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
PORTA pins, RA3:0, are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
Additional information on I/O ports may be found in the  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
3.1  
PORTA and the TRISA Register  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
PORTA is a 5-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output, (i.e., put  
the contents of the output latch on the selected pin).  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
EXAMPLE 3-1: INITIALIZING PORTA  
BCF  
CLRF  
STATUS, RP0  
;
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore a write to a port implies that the port pins are  
read, the value is modified, and then written to the port  
data latch.  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xEF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<4> as outputs  
BCF  
STATUS, RP0 ; Return to Bank 0  
FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0  
DATA  
BUS  
D
Q
Q
VDD  
VDD  
WR  
PORT  
CK  
P
N
Data Latch  
I/O pin  
D
Q
WR  
TRIS  
VSS  
VSS  
Q
CK  
Analog  
input  
mode  
TRIS Latch  
TTL  
Input  
Buffer  
RD TRIS  
Q
D
EN  
RD PORT  
To A/D Converter  
1998 Microchip Technology Inc.  
Preliminary  
DS41106A-page 21  
PIC16C712/716  
FIGURE 3-2: BLOCK DIAGRAM OF RA4/T0CKI PIN  
DATA  
D
Q
Q
BUS  
WR  
PORT  
CK  
I/O Pin  
N
Data Latch  
D
Q
VSS  
VSS  
WR  
TRIS  
Schmitt  
Trigger  
Input  
Q
CK  
TRIS Latch  
Buffer  
RD TRIS  
Q
D
EN  
RD PORT  
TMR0 Clock Input  
TABLE 3-1  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
TTL  
TTL  
TTL  
TTL  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input or VREF  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
Input/output or external clock input for Timer0  
Output is open drain type  
RA4/T0CKI  
bit4  
ST  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 3-2  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2  
Bit 1  
Bit 0  
(1)  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA4 RA3  
RA2  
RA1  
RA0  
--xx xxxx  
--11 1111  
--xu uuuu  
--11 1111  
---- -000  
(1)  
PORTA Data Direction Register  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by  
PORTA.  
Note 1: Reserved bits; Do Not Use.  
DS41106A-page 22  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C712/716  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output, (i.e.,  
put the contents of the output latch on the selected pin).  
EXAMPLE 3-1: INITIALIZING PORTB  
BCF  
STATUS, RP0  
;
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
FIGURE 3-3: BLOCK DIAGRAM OF RB0 PIN  
VDD  
RBPU(1)  
VDD  
weak  
P
pull-up  
Data Latch  
DATA BUS  
D
Q
I/O  
pin  
WR PORT  
CK  
TRIS Latch  
D
Q
VSS  
TTL  
Input  
WR TRIS  
CK  
Buffer  
RD TRIS  
Q
D
EN  
RD PORT  
RB0/INT  
Schmitt Trigger  
Buffer  
RD PORT  
Note 1:  
To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 23  
PIC16C712/716  
PORTB pins RB3:RB1 are multiplexed with several  
peripheral functions (Table 3-3). PORTB pins RB3:RB0  
have Schmitt Trigger input buffers.  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTB pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISB as  
destination should be avoided. The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
a) Any read or write of PORTB will end the mis-  
match condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins, RB7:RB4, are  
compared with the old value latched on the last read of  
FIGURE 3-4: BLOCK DIAGRAM OF RB1/T1OSO/T1CKI PIN  
RBPU(1)  
T1OSCEN  
T1CS  
DATA BUS  
RD  
DATACCP  
DATACCP<0>  
VDD  
weak  
D
Q
WR  
VDD  
P
Q
CK  
pull-up  
DATACCP  
TRISCCP<0>  
1
0
D
Q
Q
RB1/T1OSO/T1CKI  
WR  
TRISCCP  
CK  
PORTB<1>  
1
0
D
Q
Q
VSS  
WR  
PORTB  
CK  
TRISB<1>  
D
Q
WR TRISB  
T1OSCEN  
TMR1CS  
CK  
Q
1
0
TTL Buffer  
RD PORTB  
T1CLKIN  
ST  
Buffer  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).  
DS41106A-page 24  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
FIGURE 3-5: BLOCK DIAGRAM OF RB2/T1OSI PIN  
VDD  
RBPU(1)  
weak  
pull-up  
P
T1OSCEN  
VDD  
PORTB<2>  
DATA BUS  
D
Q
Q
RB1/T1OSO/T1CKI  
WR PORTB  
CK  
VSS  
TRISB<2>  
D
Q
WR TRISB  
T1OSCEN  
CK  
Q
RD PORTB  
TTL Buffer  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).  
FIGURE 3-6: BLOCK DIAGRAM OF RB3/CCP1 PIN  
RBPU(1)  
CCPON  
CCPIN  
1
DATA BUS  
RD  
DATACCP  
0
CCPON  
DATACCP<2>  
1
0
D
Q
Q
VDD  
weak  
WR  
DATACCP  
CK  
P
TRISCCP<2>  
pull-up  
VDD  
D
Q
WR  
TRISCCP  
1
0
Q
CK  
RB3/CCP1  
CCP  
Output  
Mode  
PORTB<3>  
1
0
D
Q
Q
VSS  
WR  
PORTB  
CK  
TRISB<3>  
D
Q
WR  
TRISB  
Q
CK  
CCPON  
1
0
RD PORTB  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s)  
TTL Buffer  
and clear the RBPU bit (OPTION_REG<7>).  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 25  
PIC16C712/716  
FIGURE 3-7: BLOCK DIAGRAM OF RB7:RB4 PINS  
VDD  
weak  
RBPU(1)  
VDD  
P
pull-up  
Data Latch  
DATA BUS  
D
Q
I/O  
pin  
WR PORT  
CK  
TRIS Latch  
D
Q
VSS  
WR TRIS  
TTL  
Buffer  
CK  
ST  
Buffer  
RD TRIS  
Latch  
Q
Q
D
EN  
Q1  
RD PORT  
Set RBIF  
D
From other  
RB7:RB4 pins  
RD PORT  
Q3  
EN  
RB7:RB6 in serial programming mode  
Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).  
TABLE 3-3  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
TTL/ST(1)  
RB1/T1OS0/  
T1CKI  
bit1  
Input/output pin or Timer 1 oscillator output, or Timer 1 clock input. Internal  
software programmable weak pull-up. See Timer1 section for detailed  
operation.  
TTL/ST(1)  
TTL/ST(1)  
RB2/T1OSI  
RB3/CCP1  
bit2  
bit3  
Input/output pin or Timer 1 oscillator input. Internal software programmable  
weak pull-up. See Timer1 section for detailed operation.  
Input/output pin or Capture 1 input, or Compare 1 output, or PWM1 output.  
Internal software programmable weak pull-up. See CCP1 section for  
detailed operation.  
RB4  
RB5  
RB6  
RB7  
bit4  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
TTL  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or peripheral input.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
DS41106A-page 26  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
TABLE 3-4  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
06h  
86h  
81h  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
PS1  
RB0  
PS0  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB  
PORTB Data Direction Register  
OPTION_REG RBPU  
INTEDG  
T0CS T0SE PSA  
PS2  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 27  
PIC16C712/716  
NOTES:  
DS41106A-page 28  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Additional information on external clock requirements  
is available in the PICmicro™ Mid-Range Reference  
Manual, (DS33023).  
4.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
4.2  
Prescaler  
• 8-bit timer/counter  
• Readable and writable  
An 8-bit counter is available as a prescaler for the  
Timer0 module or as a postscaler for the Watchdog  
Timer, respectively (Figure 4-2). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available, which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer and  
vice-versa.  
• Internal or external clock select  
• Edge select for external clock  
• 8-bit software programmable prescaler  
• Interrupt on overflow from FFh to 00h  
Figure 4-1 is a simplified block diagram of the Timer0  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
The prescaler is not readable or writable.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
4.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
Setting bit PSA will assign the prescaler to the Watch-  
dog Timer (WDT). When the prescaler is assigned to  
the WDT, prescale values of 1:1, 1:2, ..., 1:128 are  
selectable.  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF  
1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the WDT.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
FIGURE 4-1: TIMER0 BLOCK DIAGRAM  
Data Bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
RA4/T0CKI  
pin  
PSout  
(2)  
Prescaler  
(1)  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
(1)  
(1)  
PS2, PS1, PS0  
PSA  
(1)  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 4-2 for detailed block diagram).  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 29  
PIC16C712/716  
4.2.1  
SWITCHING PRESCALER ASSIGNMENT  
4.3  
Timer0 Interrupt  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP.  
Note: To avoid an unintended device RESET, a  
specific instruction sequence (shown in  
the PICmicro™ Mid-Range Reference  
Manual, DS33023) must be executed  
when changing the prescaler assignment  
from Timer0 to the WDT. This sequence  
must be followed even if the WDT is dis-  
abled.  
FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
TABLE 4-1  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 module’s register  
GIE PEIE T0IE INTE  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh  
81h  
INTCON  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
OPTION_REG RBPU INTEDG T0CS T0SE  
PS0  
1111 1111 1111 1111  
--11 1111 --11 1111  
(1)  
85h  
TRISA  
Bit 4 PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
Note 1: Reserved bit; Do Not Use.  
DS41106A-page 30  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
5.1  
Timer1 Operation  
5.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
Timer1 can operate in one of these modes:  
• As a timer  
• 16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
• As a synchronous counter  
• As an asynchronous counter  
• Readable and writable (Both registers)  
• Internal or external clock select  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
Timer1 has a control register, shown in Figure 5-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RB2/T1OSI and RB1/T1OSO/T1CKI pins  
become inputs. That is, the TRISB<2:1> value is  
ignored.  
Figure 5-2 is a simplified block diagram of the Timer1  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
Timer1 also has an internal “reset input”. This reset can  
be generated by the CCP module (Section 7.0).  
FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1 = External clock from pin RB1/T1OSO/T1CKI (on the rising edge)  
0 = Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 31  
PIC16C712/716  
FIGURE 5-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
clock input  
0
TMR1  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RB1/T1OSO/T1CKI  
RB2/T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
5.2  
Timer1 Module and PORTB Operation  
When Timer1 is configured as timer running from the  
main oscillator, PORTB<2:1> operate as normal I/O  
lines. When Timer1 is configured to function as a  
counter however, the clock source selection may affect  
the operation of PORTB<2:1>. Multiplexing details of  
the Timer1 clock selection on PORTB are shown in Fig-  
ure 3-4 and Figure 3-5.  
The clock source for Timer1 in the counter mode can  
be from one of the following:  
1. External  
circuit  
connected  
to  
the  
RB1/T1OSO/T1CKI pin  
2. Firmware controlled DATACCP<0> bit, DT1CKI  
3. Timer1 oscillator  
Table 5-1 shows the details of Timer1 mode selections,  
control bit settings, TMR1 and PORTB operations.  
DS41106A-page 32  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
TABLE 5-1  
TMR1  
TMR1 MODULE AND PORTB OPERATION  
Module Clock Source  
Mode  
Control Bits  
TMR1 Module Operation  
PORTB<2:1> Operation  
Off  
N/A  
T1CON = --xx 0x00 Off  
PORTB<2:1> function as normal  
I/O  
Timer  
Fosc/4  
T1CON = --xx 0x01 TMR1 module uses the main  
oscillator as clock source.  
PORTB<2:1> function as normal  
I/O  
TMR1ON can turn on or turn off  
Timer1.  
External circuit T1CON = --xx 0x11  
TMR1 module uses the external PORTB<2> functions as normal  
TR1SCCP = ---- -x-1 signal on the  
RB1/T1OSO/T1CKI pin as a  
I/O. PORTB<1> always reads 0  
when configured as input . If  
clock source. TMR1ON can turn PORTB<1> is configured as out-  
on or turn off Timer1. DT1CK  
can read the signal on the  
RB1/T1OSO/T1CKI pin.  
put, reading PORTB<1> will read  
the data latch. Writing to  
PORTB<1> will always store the  
result in the data latch, but not to  
the RB1/T1OSO/T1CKI pin. If  
the TMR1CS bit is cleared  
(TMR1 reverts to the timer  
mode), then pin PORTB<1> will  
be driven with the value in the  
data latch.  
Firmware  
T1CON = --xx 0x11  
DATACCP<0> bit drives  
TR1SCCP = ---- -x-0 RB1/T1OSO/T1CKI and pro-  
duces the TMR1 clock source.  
TMR1ON can turn on or turn off  
Timer1. The DATACCP<0> bit,  
DT1CK, can read and write to  
the RB1/T1OSO/T1CKI pin.  
Counter  
Timer1 oscillator T1CON = --xx 1x11 RB1/T1OSO/T1CKI and  
PORTB<2:1> always read 0  
RB2/T1OSI are configured as a when configured as inputs. If  
2 pin crystal oscillator.  
PORTB<2:1> are configured as  
outputs, reading PORTB<2:1>  
will read the data latches. Writing  
to PORTB<2:1> will always store  
the result in the data latches, but  
RB1/T1OSI/T1CKI is the clock  
input for TMR1. TMR1ON can  
turn on or turn off Timer1.  
DATACCP<1> bit, DT1CK,  
always reads 0 as input and can not to the RB2/T1OSI and  
not write to the  
RB1/T1OSO/T1CK1 pin.  
RB1/T1OSO/T1CKI pins. If the  
TMR1CS and T1OSCEN bits are  
cleared (TMR1 reverts to the  
timer mode and TMR1 oscillator  
is disabled), then pin  
PORTB<2:1> will be driven with  
the value in the data latches.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 33  
PIC16C712/716  
5.3  
Timer1 Oscillator  
5.4  
Timer1 Interrupt  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 5-2 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
5.5  
Resetting Timer1 using a CCP Trigger  
Output  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
If the CCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
TABLE 5-2  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
These values are for design guidance only.  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
TABLE 5-3  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
-0-- -000 -0-- -000  
-0-- -000 -0-- -000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
---- -x-x ---- -u-u  
---- -1-1 ---- -1-1  
0Bh,8Bh INTCON  
GIE PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
07h  
87h  
PIR1  
ADIF  
ADIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
PIE1  
TMR1L  
TMR1H  
T1CON  
DATACCP  
TRISCCP  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
DCCP  
TCCP  
DT1CK  
TT1CK  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
DS41106A-page 34  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
NOTES:  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 35  
PIC16C712/716  
Timer2 has a control register, shown in Figure 6-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
6.0  
TIMER2 MODULE  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
Figure 6-2 is a simplified block diagram of the Timer2  
module.  
• 8-bit period register (PR2)  
• Readable and writable (Both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
FIGURE 6-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
0011= 1:4 Postscale  
0100= 1:5 Postscale  
0101= 1:6 Postscale  
0110= 1:7 Postscale  
0111= 1:8 Postscale  
1000= 1:9 Postscale  
1001= 1:10 Postscale  
1010= 1:11 Postscale  
1011= 1:12 Postscale  
1100= 1:13 Postscale  
1101= 1:14 Postscale  
1110= 1:15 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
FIGURE 6-2: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
bit TMR2IF  
output  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FOSC/4  
Postscaler  
2
Comparator  
1:1 to 1:16  
EQ  
4
PR2 reg  
DS41106A-page 36  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
6.1  
Timer2 Operation  
6.2  
Timer2 Interrupt  
Timer2 can be used as the PWM time-base for PWM  
mode of the CCP module.  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
The TMR2 register is readable and writable, and is  
cleared on any device reset.  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
TABLE 6-1  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
-00- -000 0000 -000  
-0-- -000 0000 -000  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
ADIF  
CCP1IF  
TMR2IF  
TMR1IF  
8Ch  
PIE1  
ADIE  
CCP1IE  
TMR2IE  
TMR1IE  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 37  
PIC16C712/716  
NOTES:  
DS41106A-page 38  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Additional information on the CCP module is available  
in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
7.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE(S)  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register, which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave Duty Cycle register. Table 7-1 shows the  
timer resources of the CCP module modes.  
TABLE 7-1  
CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit, read  
as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: DC1B1:DC1B0: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0: CCP1M3:CCP1M0: CCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP1 module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 and starts an A/D  
conversion (if A/D module is enabled))  
11xx= PWM mode  
FIGURE 7-2: TRISCCP Register (ADDRESS 87h)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TCCP  
R/W-1  
R/W-1  
TT1CK  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit, read  
as ‘0’  
- n =Value at POR reset  
bit 7-3:  
bit 2:  
Reserved bits; Do Not Use  
TCCP - Tri state control bit for CCP  
0 = Output pin driven  
1 = Output pin tristated  
bit 1:  
bit 0:  
Reserved bit; Do Not Use  
TT1CK - Tri state control bit for T1CKI pin  
0 = T1CKI pin is an output  
1 = T1CKI pin is an input  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 39  
PIC16C712/716  
7.1.4  
CCP PRESCALER  
7.1  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RB3/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 7-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
• every 4th rising edge  
• every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
EXAMPLE 7-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
FIGURE 7-3: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
Set flag bit CCP1IF  
; mode value and CCP ON  
;Load CCP1CON with this  
; value  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
MOVWF CCP1CON  
RB3/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
and  
edge detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
7.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the CCP output must be disabled by  
setting the TRISCCP<2> bit.  
Note: If the RB3/CCP1 is configured as an output  
by clearing the TRISCCP<2> bit, a write to  
the DCCP bit can cause a capture condi-  
tion.  
7.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
7.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
DS41106A-page 40  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
7.2.1  
CCP PIN CONFIGURATION  
7.2  
Compare Mode  
The user must configure the RB3/CCP1 pin as the CCP  
output by clearing the TRISCCP<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RB3/CCP1 pin is  
either:  
Note: Clearing the CCP1CON register will force  
the RB3/CCP1 compare output latch to the  
default low level. This is neither the PORTB  
I/O data latch nor the DATACCP latch.  
• driven High  
• driven Low  
• remains Unchanged  
7.2.2  
TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
FIGURE 7-4: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
7.2.3  
SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>)  
which starts an A/D conversion  
7.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
Special Event Trigger  
Set flag bit CCP1IF  
(PIR1<2>)  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RB3/CCP1  
Pin  
The special event trigger output of CCP1 also starts an  
A/D conversion (if the A/D module is enabled).  
TRISCCP<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
Note: The special event trigger from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
TABLE 7-2  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
DATACCP  
GIE  
T0IE  
INTE  
RBIE  
DCCP  
T0IF  
TT1CK xxxx xxxx xxxx xuxu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh  
0Ch  
0Eh  
0Fh  
INTCON  
PIR1  
PEIE  
ADIF  
INTF  
CCP1IF TMR2IF TMR1IF -0-- -000 -0-- -000  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
CCPR1H Capture/Compare/PWM register1 (MSB)  
17h  
CCP1CON  
TRISCCP  
PIE1  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
87h  
TCCP  
TT1CK xxxx x1x1 xxxx x1x1  
8Ch  
ADIE  
CCP1IE TMR2IE TMR1IE -0-- -000 -0-- -000  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by Capture and Timer1.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 41  
PIC16C712/716  
7.3.1  
PWM PERIOD  
7.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTB data latch,  
the TRISCCP<2> bit must be cleared to make the  
CCP1 pin an output.  
PWM period = [(PR2) + 1] 4 TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is neither the PORTB I/O  
data latch nor the DATACCP latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 7-5 shows a simplified block diagram of the CCP  
module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 7.3.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 7-5: SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 6.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
7.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Q
R
S
Comparator  
TMR2  
RB3/CCP1  
(Note 1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
Tosc (TMR2 prescale value)  
TRISCCP<2>  
Comparator  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
PR2  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 7-6) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 7-6: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
Period = PR2+1  
FOSC  
FPWM  
log  
(
)
=
bits  
Duty Cycle  
log(2)  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle (CCPR1H)  
TMR2 = PR2  
For an example PWM period and duty cycle calcula-  
tion, see the PICmicro™ Mid-Range Reference  
Manual, (DS33023).  
DS41106A-page 42  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
7.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISCCP<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 7-3  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 7-4  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
resets  
xxxx xxxx xxxx xuxu  
0000 000x 0000 000u  
07h  
DATACCP  
INTCON  
PIR1  
DCCP  
T0IF  
DT1CK  
0Bh,8Bh  
0Ch  
11h  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
INTF  
RBIF  
ADIF  
CCP1IF TMR2IF TMR1IF -0-- -000 -0-- -000  
TMR2  
Timer2 module’s register  
0000 0000 0000 0000  
12h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TRISCCP  
PIE1  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
15h  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
87h  
TCCP  
TT1CK xxxx x1x1 xxxx x1x1  
8Ch  
92h  
ADIE  
CCP1IE TMR2IE TMR1IE -0-- -000 -0-- -000  
PR2  
Timer2 module’s period register  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 43  
PIC16C712/716  
7.4  
CCP1 Module and PORTB Operation  
When the CCP module is disabled, PORTB<3> oper-  
ates as a normal I/O pin. When the CCP module is  
enabled, PORTB<3> operation is affected. Multiplex-  
ing details of the CCP1 module are shown on  
PORTB<3>, refer to Figure 3.6.  
.
Table 7-5 below shows the effects of the CCP module  
operation on PORTB<3>  
TABLE 7-5  
CCP1 MODULE AND PORTB OPERATION  
CCP1  
Module  
Mode  
Control Bits  
CCP1 Module Operation  
PORTB<3> Operation  
Off  
CCP1CON = --xx 0000 Off  
PORTB<3> functions as normal I/O.  
Capture  
CCP1CON = --xx 01xx The CCP1 module will capture an event PORTB<3> always reads 0 when config-  
TR1SCCP = ---- -1-x on the RB3/CCP1 pin which is driven by ured as input. If PORTB<3> is config-  
an external circuit. The DCCP bit can  
read the signal on the RB3/CCP1 pin.  
ured as output, reading PORTB<3> will  
read the data latch. Writing to  
PORTB<3> will always store the result in  
the data latch, but it does not drive the  
RB3/CCP1 pin.  
CCP1CON = --xx 01xx The CCP1 module will capture an event  
TR1SCCP = ---- -0-x  
on the RB3/CCP1 pin which is driven by  
the DCCP bit. The DCCP bit can read  
the signal on the RB3/CCP1 pin.  
Compare  
PWM  
CCP1CON = --xx 10xx The CCP1 module produces an output  
TR1SCCP = ---- -0-x  
on the RB3/CCP1 pin when a compare  
event occurs. The DCCP bit can read  
the signal on the RB3/CCP1 pin.  
CCP1CON = --xx 11xx The CCP1 module produces the PWM  
TR1SCCP = ---- -0-x  
signal on the RB3/CCP1 pin. The DCCP  
bit can read the signal on the RB3/CCP1  
pin.  
DS41106A-page 44  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Additional information on the A/D module is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
8.0  
ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has four  
inputs.  
The A/D module has three registers. These registers  
are:  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s positive supply voltage (VDD)  
or the voltage level on the RA3/AN3/VREF pin.  
• A/D Result Register (ADRES)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted.  
The ADCON0 register, shown in Figure 8-1, controls  
the operation of the A/D module. The ADCON1 regis-  
ter, shown in Figure 8-2, configures the functions of the  
port pins. The port pins can be configured as analog  
inputs (RA3 can also be a voltage reference) or as dig-  
ital I/O.  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D conversion clock must be derived from  
the A/D’s internal RC oscillator.  
FIGURE 8-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0 R/W-0 R/W-0  
ADCS1 ADCS0 CHS2  
bit7  
R/W-0  
CHS1  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADON  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from the internal ADC RC oscillator)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
1xx= reserved, do not use  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conver-  
sion is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shutoff and consumes no operating current  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 45  
PIC16C712/716  
FIGURE 8-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR  
reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0  
RA0  
RA1  
RA2  
RA3  
VREF  
0x0  
0x1  
100  
101  
11x  
A
A
A
A
VDD  
RA3  
VDD  
RA3  
VDD  
A
A
A
D
A
A
A
D
A
D
D
D
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
DS41106A-page 46  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is complete, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared and the A/D interrupt flag  
bit ADIF is set. The block diagram of the A/D module is  
shown in Figure 8-3.  
1. Configure the A/D module:  
• Configure analog pins/voltage reference/  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
The value that is in the ADRES register is not modified  
for a Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
• Set ADIE bit  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 8.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For the next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
FIGURE 8-3: A/D BLOCK DIAGRAM  
CHS2:CHS0  
VIN  
011  
(Input voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000or  
010or  
VREF  
100or  
110or 111  
(Reference  
voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 47  
PIC16C712/716  
To calculate the minimum acquisition time, TACQ, see  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023). This equation calculates the acquisition  
time to within 1/2 LSb error (512 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified accuracy.  
8.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 8-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD). The  
source impedance affects the offset voltage at the ana-  
log input (due to pin leakage current). The maximum  
recommended impedance for analog sources is 10  
k. After the analog input channel is selected  
(changed) this acquisition must be done before the  
conversion can be started.  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
FIGURE 8-4: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
Rs  
SS  
RIC 1k  
RSS  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
5 pF  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
I leakage = leakage current at the pin due to  
various junctions  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
(k)  
DS41106A-page 48  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
8.2  
Selecting the A/D Conversion Clock  
8.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
The ADCON1 and TRISA registers control the opera-  
tion of the A/D port pins. The port pins that are desired  
as analog inputs must have their corresponding TRIS  
bits set (input). If the TRIS bit is cleared (output), the  
digital output level (VOH or VOL) will be converted.  
• 2TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 8TOSC  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 8-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN3:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
TABLE 8-1  
TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Device Frequency  
Operation  
2TOSC  
ADCS1:ADCS0  
20 MHz  
5 MHz  
1.25 MHz  
1.6 µs  
333.33 kHz  
100 ns(2)  
400 ns(2)  
400 ns(2)  
1.6 µs  
00  
01  
10  
11  
6 µs  
24 µs(3)  
96 µs(3)  
2 - 6 µs(1)  
8TOSC  
6.4 µs  
25.6 µs(3)  
2 - 6 µs(1,4)  
32TOSC  
1.6 µs  
6.4 µs  
RC(5)  
2 - 6 µs(1,4)  
2 - 6 µs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep operation only.  
5: For extended voltage devices (LC), please refer to Electrical Specifications section.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 49  
PIC16C712/716  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead (moving the ADRES to  
the desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
done before the “special event trigger” sets the  
GO/DONE bit (starts a conversion).  
8.4  
A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
8.5  
Use of the CCP Trigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP1 module. This requires that the  
CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
TABLE 8-2  
SUMMARY OF A/D REGISTERS  
Value on  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
--xx xxxx --xu uuuu  
0000 000x 0000 000u  
05h  
PORTA  
RA4  
RA3  
RA2  
T0IF  
RA1  
RA0  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
INTF  
RBIF  
0Bh,8Bh  
0Ch  
1Eh  
PIR1  
ADIF  
CCP1IF  
TMR2IF TMR1IF -0-- -000 -0-- -000  
ADRES  
A/D Result Register  
xxxx xxxx uuuu uuuu  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
1Fh  
(1)  
---1 1111 ---1 1111  
85h  
TRISA  
PIE1  
PORTA Data Direction Register  
ADIE  
CCP1IE TMR2IE TMR1IE -0-- -000 -0-- 0000  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
8Ch  
9Fh  
ADCON1  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Reserved bits; Do Not Use.  
DS41106A-page 50  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
the part in reset while the power supply stabilizes. With  
these two timers on-chip, most applications need no  
external reset circuitry.  
9.0  
SPECIAL FEATURES OF THE  
CPU  
The PIC16C712/716 devices have a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code protec-  
tion. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost, while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
• OSC Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Additional information on special features is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
9.1  
Configuration Bits  
• Watchdog Timer (WDT)  
• SLEEP  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
• Code protection  
• ID locations  
• In-Circuit Serial Programming™ (ICSP)  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
These devices have a Watchdog Timer, which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay on power-up only and is designed to keep  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 51  
PIC16C712/716  
FIGURE 9-1: CONFIGURATION WORD  
CP1 CP0 CP1 CP0 CP1 CP0  
BODEN CP1 CP0 PWRTE WDTE  
FOSC1 FOSC0  
bit0  
Register:CONFIG  
Address2007h  
bit13  
(2)  
bit 13-8, 5-4: CP1:CP0: Code Protection bits  
Code Protection for 2K Program memory (PIC16C716)  
11= Programming code protection off  
10= 0400h - 07FFh code protected  
01= 0200h - 07FFh code protected  
00= 0000h - 07FFh code protected  
bit 13-8, 5-4:  
Code Protection for 1K Program memory (PIC16C712)  
11= Programming code protection off  
10= Programming code protection off  
01= 0200h - 03FFh code protected  
00= 0000h - 03FFh code protected  
bit 7:  
bit 6:  
Unimplemented: Read as ’1’  
BODEN: Brown-out Reset Enable bit  
(1)  
1= BOR enabled  
0= BOR disabled  
PWRTE: Power-up Timer Enable bit  
(1)  
bit 3:  
1= PWRT disabled  
0= PWRT enabled  
bit 2:  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0:  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1:Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2:All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
DS41106A-page 52  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
9.2  
Oscillator Configurations  
TABLE 9-1  
CERAMIC RESONATORS  
9.2.1  
OSCILLATOR TYPES  
Ranges Tested:  
Mode Freq  
XT  
The PIC16CXXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
These values are for design guidance only. See  
notes at bottom of page.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
TABLE 9-2  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
9.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 9-2). The  
PIC16CXXX oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the  
OSC1/CLKIN pin (Figure 9-3).  
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
FIGURE 9-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
20 MHz  
These values are for design guidance only. See  
notes at bottom of page.  
OSC CONFIGURATION)  
C1(1)  
OSC1  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 9-1).  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the start-  
up time.  
To  
internal  
logic  
XTAL  
RS(2)  
RF(3)  
SLEEP  
OSC2  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
4: Rs may be required in HS mode, as well as  
XT mode to avoid overdriving crystals with  
low drive level specification.  
C2(1)  
PIC16C7XX  
Note 1: See Table 9-1 and Table 9-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
FIGURE 9-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16C7XX  
Open  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 53  
PIC16C712/716  
9.2.3  
RC OSCILLATOR  
9.3  
Reset  
For timing insensitive applications, the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 9-4 shows how the R/C combina-  
tion is connected to the PIC16CXXX.  
The PIC16CXXX differentiates between various kinds  
of reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (during normal operation)  
• WDT Wake-up (during SLEEP)  
• Brown-out Reset (BOR)  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, on MCLR reset during SLEEP and  
Brown-out Reset (BOR). They are not affected by a  
WDT Wake-up, which is viewed as the resumption of  
normal operation. The TO and PD bits are set or  
cleared differently in different reset situations as indi-  
cated in Table 9-4. These bits are used in software to  
determine the nature of the reset. See Table 9-6 for a  
full description of reset states of all registers.  
FIGURE 9-4: RC OSCILLATOR MODE  
VDD  
Rext  
Internal  
OSC1  
clock  
Cext  
PIC16C7XX  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 9-6.  
VSS  
OSC2/CLKOUT  
Fosc/4  
The PICmicro microcontrollers have a MCLR noise fil-  
ter in the MCLR reset path. The filter will detect and  
ignore small pulses.  
Recommended values: 3 kΩ ≤ Rext 100 kΩ  
Cext > 20pF  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
DS41106A-page 54  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
9.4  
Power-On Reset (POR)  
9.5  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (to a level of 1.5V - 2.1V). To take  
advantage of the POR, just tie the MCLR pin directly (or  
through a resistor) to VDD. This will eliminate external  
RC components usually needed to create a Power-on  
Reset. A maximum rise time for VDD is specified  
(parameter D004). For a slow rise time, see Figure 9-5.  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33), on power-up only, from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/dis-  
able the PWRT.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the start-up con-  
ditions.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature, and process variation. See DC  
parameters for details.  
9.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This ensures that  
the crystal oscillator or resonator has started and stabi-  
lized.  
FIGURE 9-5: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
VDD VDD  
R
9.7  
Brown-Out Reset (BOD)  
R1  
The PIC16C712/716 members have on-chip Brown-out  
Reset circuitry. A configuration bit, BODEN, can disable  
(if clear/programmed) or enable (if set) the Brown-out  
Reset circuitry. If VDD falls below 4.0V, refer to VBOR  
parameter D005(VBOR) for a time greater than param-  
eter (TBOR) in Table 12-6. The brown-out situation will  
reset the chip. A reset is not guaranteed to occur if VDD  
falls below 4.0V for less than parameter (TBOR).  
MCLR  
PIC16C7XX  
C
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow. The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
On any reset (Power-on, Brown-out, Watchdog, etc.)  
the chip will remain in Reset until VDD rises above  
VBOR. The Power-up Timer will now be invoked and will  
keep the chip in reset an additional 72 ms.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-Up Timer will execute a  
72 ms reset. The Power-up Timer should always be  
enabled when Brown-out Reset is enabled. Figure 9-7  
shows typical Brown-out situations.  
For operations where the desired brown-out voltage is  
other than 4V, an external brown-out circuit must be  
used. Figure 9-8, 9-9 and 9-10 show examples of exter-  
nal brown-out protection circuits.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 55  
PIC16C712/716  
FIGURE 9-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BODEN  
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple counter  
PWRT  
See Table 9-3 for time-out  
situations.  
Enable PWRT  
Enable OST  
BODEN  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
FIGURE 9-7: BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
72 ms  
VDD  
VBOR  
Internal  
<72 ms  
Reset  
72 ms  
VDD  
VBOR  
Internal  
Reset  
72 ms  
DS41106A-page 56  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
FIGURE 9-8: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
FIGURE 9-10: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 3  
VDD  
VDD  
VDD  
33k  
MCP809  
Vss  
VDD  
Q1  
bypass  
capacitor  
10k  
MCLR  
VDD  
40k  
RST  
PIC16C7XX  
MCLR  
PIC16C7XX  
This brown-out protection circuit employs  
Microchip Technology’s MCP809 microcontroller  
supervisor. The MCP8XX and MCP1XX families  
of supervisors provide push-pull and open  
collector outputs with both high and low active  
reset pins. There are 7 different trip point  
selections to accommodate 5V and 3V systems  
Note 1: This circuit will activate reset when VDD  
goes below (Vz + 0.7V) where  
Vz = Zener voltage.  
2: Internal Brown-out Reset circuitry  
should be disabled when using this cir-  
cuit.  
9.8  
Time-out Sequence  
FIGURE 9-9: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after the POR time delay has  
expired. Then OST is activated. The total time-out will  
vary based on oscillator configuration and the status of  
the PWRT. For example, in RC mode with the PWRT  
disabled, there will be no time-out at all. Figure 9-11,  
Figure 9-12, and Figure 9-13 depict time-out  
sequences on power-up.  
VDD  
VDD  
R1  
Q1  
MCLR  
R2  
40k  
PIC16C7XX  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 9-13). This is useful for testing purposes or to  
synchronize more than one PIC16CXXX device operat-  
ing in parallel.  
Note 1: This brown-out circuit is less expensive,  
albeit less accurate. Transistor Q1 turns  
Table 9-5 shows the reset conditions for some special  
function registers, while Table 9-6 shows the reset con-  
ditions for all the registers.  
off when VDD is below a certain level  
such that:  
R1  
= 0.7 V  
VDD x  
R1 + R2  
9.9  
Power Control/Status Register  
(PCON)  
2: Internal brown-out reset should be dis-  
abled when using this circuit.  
3: Resistors should be adjusted for the  
characteristics of the transistor.  
The Power Control/Status Register, PCON has two  
bits.  
Bit0 is Brown-out Reset Status bit, BOR. If the BODEN  
configuration bit is set, BOR is ’1’ on Power-on Reset.  
If the BODEN configuration bit is clear, BOR is  
unknown on Power-on Reset.  
The BOR status bit is a "don't care" and is not neces-  
sarily predictable if the brown-out circuit is disabled (the  
BODEN configuration bit is clear). BOR must then be  
set by the user and checked on subsequent resets to  
see if it is clear, indicating a brown-out has occurred.  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 57  
PIC16C712/716  
TABLE 9-3  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
PWRTE = 0  
Wake-up from  
SLEEP  
Oscillator Configuration  
Brown-out  
PWRTE = 1  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
72 ms + 1024TOSC  
1024TOSC  
72 ms  
TABLE 9-4  
STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 9-5  
RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
Interrupt wake-up from SLEEP  
PC + 1(1)  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
DS41106A-page 58  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
TABLE 9-6  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16C712/716  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
PC + 1(2)  
000q quuu(3)  
uuuu uuuu  
--xx xxxx  
uuuq quuu(3)  
uuuu uuuu  
--xu uuuu  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--0x 0000  
PORTA(4)  
PORTB(5)  
DATACCP  
PCLATH  
INTCON  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
---- -x-x  
---0 0000  
0000 -00x  
---- -u-u  
---0 0000  
0000 -00u  
---- -u-u  
---u uuuu  
uuuu -uuu(1)  
---- uuuu(1)  
---- 0000  
-0-- 0000  
---- 0000  
-0-- 0000  
PIR1  
-u-- uuuu(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
xxxx xuxu  
---- uuuu  
-u-- uuuu  
---- --uq  
1111 1111  
---- -uuu  
TMR1L  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
xxxx x1x1  
---- 0000  
-0-- 0000  
---- --0q  
1111 1111  
---- -000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
xxxx x1x1  
---- 0000  
-0-- 0000  
---- --uq  
1111 1111  
---- -000  
TMR1H  
T1CON  
TMR2  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRES  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISCCP  
PIE1  
PCON  
PR2  
ADCON1  
Legend:  
u
= unchanged,  
x = unknown, -= unimplemented bit, read as ’0’, q= value depends on condition  
Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
3: See Table 9-5 for reset value for specific condition.  
4: On any device reset, these pins are configured as inputs.  
5: This is the value that will be in the port output latch.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 59  
PIC16C712/716  
FIGURE 9-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 9-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 9-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS41106A-page 60  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
The peripheral interrupt flags are contained in the spe-  
cial function registers, PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers, PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister, INTCON.  
9.10  
Interrupts  
The PIC16C712/716 devices have up to 7 sources of  
interrupt. The interrupt control register (INTCON)  
records individual interrupt requests in flag bits. It also  
has individual and global interrupt enable bits.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set, regardless of the status of  
their corresponding mask bit or the GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
FIGURE 9-14: INTERRUPT LOGIC  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
T0IF  
T0IE  
INTF  
INTE  
ADIF  
ADIE  
RBIF  
RBIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 61  
PIC16C712/716  
9.10.1 INT INTERRUPT  
9.11  
Context Saving During Interrupts  
External interrupt on RB0/INT pin is edge triggered,  
either rising if bit INTEDG (OPTION_REG<6>) is set,  
or falling if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP. The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 9.13 for details on SLEEP mode.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt, (i.e., W register and STATUS  
register). This will have to be implemented in software.  
Example 9-1 stores and restores the W and STATUS  
registers. The register, W_TEMP, must be defined in  
each bank and must be defined at the same offset from  
the bank base address (i.e., if W_TEMP is defined at  
0x20 in bank 0, it must also be defined at 0xA0 in bank  
1).  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register.  
9.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 4.0)  
d) Executes the interrupt service routine code  
(User-generated).  
e) Restores the STATUS register (and bank select  
bit).  
f) Restores the W and PCLATH registers.  
9.10.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 3.2)  
EXAMPLE 9-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
BCF  
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
STATUS, IRP  
FSR, W  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
;Return to Bank 0  
;Copy FSR to W  
MOVF  
MOVWF  
:
FSR_TEMP  
;Copy FSR from W to FSR_TEMP  
:(ISR)  
:
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS41106A-page 62  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
WDT time-out period values may be found in the Elec-  
trical Specifications section under TWDT (parameter  
#31). Values for the WDT prescaler (actually a  
postscaler, but shared with the Timer0 prescaler) may  
be assigned using the OPTION_REG register.  
9.12  
Watchdog Timer (WDT)  
The Watchdog Timer is as a free running, on-chip, RC  
oscillator which does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin. That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device have been stopped,  
for example, by execution of a SLEEPinstruction.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler, if assigned to  
the WDT, and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS register  
will be cleared upon a Watchdog Timer time-out.  
.
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 9.1).  
FIGURE 9-15: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 4-2)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 4-2)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION_REG register.  
FIGURE 9-16: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address Name  
Bits 13:8  
Bit 7  
Bit 6  
BODEN(1) CP1 CP0 PWRTE(1) WDTE FOSC1 FOSC0  
INTEDG T0CS T0SE PSA PS2 PS1 PS0  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
(1)  
OPTION_REG  
81h  
N/A  
RBPU  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 9-1 for operation of these bits.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 63  
PIC16C712/716  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
9.13  
Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and the disable external clocks. Pull all I/O pins,  
that are hi-impedance inputs, high or low externally to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
9.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
9.13.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The device can wake up from SLEEP through one of  
the following events:  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
peripheral interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. CCP capture mode interrupt.  
3. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
DS41106A-page 64  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
FIGURE 9-17: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = ’1’ assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
9.14  
Program Verification/Code Protection  
9.16  
In-Circuit Serial Programming™  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming volt-  
age. This allows customers to manufacture boards with  
unprogrammed devices, and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
9.15  
ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
For complete details on serial programming, please  
refer to the In-Circuit Serial Programming (ICSP™)  
Guide, (DS30277).  
For ROM devices, these values are submitted along  
with the ROM code.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 65  
PIC16C712/716  
NOTES:  
DS41106A-page 66  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
10.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXXX instruc-  
tion set summary in Table 10-2 lists byte-oriented, bit-  
oriented, and literal and control operations. Table 10-  
1 shows the opcode field descriptions.  
Table 10-2 lists the instructions recognized by the  
MPASM assembler.  
Figure 10-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
For byte-oriented instructions, ’f’ represents a file reg-  
ister designator and ’d’ represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
All examples use the following format to represent a  
hexadecimal number:  
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
FIGURE 10-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
TABLE 10-1  
OPCODE FIELD  
DESCRIPTIONS  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
Field  
Description  
7
6
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don’t care location (= 0 or 1)  
Literal and control operations  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
General  
13  
8
7
0
0
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
OPCODE  
k (literal)  
k = 8-bit immediate value  
PC  
TO  
PD  
Z
Program Counter  
Time-out bit  
Power-down bit  
Zero bit  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
DC  
C
Digit Carry bit  
Carry bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 67  
PIC16C712/716  
TABLE 10-2  
PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS41106A-page 68  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
11.3  
ICEPIC: Low-Cost PICmicro  
In-Circuit Emulator  
11.0 DEVELOPMENT SUPPORT  
11.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC12CXXX, PIC16C5X and PIC16CXXX  
families of 8-bit OTP microcontrollers.  
The PICmicro microcontrollers are supported with a  
full range of hardware and software development tools:  
• MPLAB -ICE Real-Time In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 386 through Pentium based  
machines under Windows 3.x, Windows 95, or Win-  
dows NT environment. ICEPIC features real time, non-  
intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
11.4  
PRO MATE II: Universal Programmer  
• SIMICE  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
• MPLAB SIM Software Simulator  
• MPLAB-C17 (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
• KEELOQ® Evaluation Kits and Programmer  
11.2  
MPLAB-ICE: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
gram  
PIC12CXXX,  
PIC14C000,  
PIC16C5X,  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
11.5  
PICSTART Plus Entry Level  
Development System  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). MPLAB-ICE is sup-  
plied with the MPLAB Integrated Development Environ-  
ment (IDE), which allows editing, “make” and  
download, and source debugging from a single envi-  
ronment.  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is not  
recommended for production programming.  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support all new Microchip micro-  
controllers.  
PICSTART Plus supports all PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923, PIC16C924 and PIC17C756 may be sup-  
ported with an adapter socket. PICSTART Plus is CE  
compliant.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC compatible 386 (and higher)  
machine platform and Microsoft Windows 3.x or  
Windows 95 environment were chosen to best make  
these features available to you, the end user.  
MPLAB-ICE  
is  
available  
in  
two  
versions.  
MPLAB-ICE 1000 is a basic, low-cost emulator system  
with simple trace capabilities. It shares processor mod-  
ules with the MPLAB-ICE 2000. This is a full-featured  
emulator system with enhanced trace, trigger, and data  
monitoring features. Both systems will operate across  
the entire operating speed range of the PICmicro MCU.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 69  
PIC16C712/716  
11.6  
SIMICE Entry-Level Hardware  
Simulator  
11.8  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB™-SIM. Both SIM-  
ICE and MPLAB-SIM run under Microchip Technol-  
ogy’s MPLAB Integrated Development Environment  
(IDE) software. Specifically, SIMICE provides hardware  
simulation for Microchip’s PIC12C5XX, PIC12CE5XX,  
and PIC16C5X families of PICmicro 8-bit microcontrol-  
lers. SIMICE works in conjunction with MPLAB-SIM to  
provide non-real-time I/O port emulation. SIMICE  
enables a developer to run simulator code for driving  
the target system. In addition, the target system can  
provide input to the simulator code. This capability  
allows for simple and interactive debugging without  
having to manually generate MPLAB-SIM stimulus  
files. SIMICE is a valuable debugging tool for entry-  
level system development.  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
11.7  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
11.9  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
DS41106A-page 70  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
11.10 MPLAB Integrated Development  
Environment Software  
11.12 Software Simulator (MPLAB-SIM)  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The input/  
output radix can be set by the user and the execution  
can be performed in; single step, execute until break, or  
in a trace mode.  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPASM. The Software Simulator  
offers the low cost flexibility to develop and debug code  
outside of the laboratory environment making it an  
excellent multi-project software development tool.  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
MPLAB allows you to:  
11.13 MPLAB-C17 Compiler  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
The MPLAB-C17 Code Development System is a  
complete ANSI ‘C’ compiler and integrated develop-  
ment environment for Microchip’s PIC17CXXX family of  
microcontrollers. The compiler provides powerful inte-  
gration capabilities and ease of use not found with  
other compilers.  
- absolute listing file  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display.  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
11.14 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
11.11 Assembler (MPASM)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, Edition for imple-  
menting more complex systems.  
The MPASM Universal Macro Assembler is a PC-  
hosted symbolic assembler. It supports all microcon-  
troller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
11.15 SEEVAL Evaluation and  
Programming System  
MPASM allows full symbolic debugging from MPLAB-  
ICE, Microchip’s Universal Emulator System.  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol, and  
special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 71  
PIC16C712/716  
11.16 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS41106A-page 72  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
TABLE 11-1  
DEVELOPMENT TOOLS FROM MICROCHIP  
y
z
u
s t  
o d u P c r o t r u l m a E  
s l o o  
a r e f t T w S o  
s r e m m a o r g P r  
s
B o o a r d D e m  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 73  
PIC16C712/716  
NOTES:  
DS41106A-page 74  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
12.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (†)  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2).......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1)(PDIP and SOIC) ....................................................................................................1.0W  
Total power dissipation (Note 1)(SSOP) .................................................................................................................0.65W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB (combined).................................................................................200 mA  
Maximum current sourced by PORTA and PORTB (combined)............................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 75  
PIC16C712/716  
FIGURE 12-1: PIC16C712/716 VOLTAGE-FREQUENCY GRAPH, -40°C < TA < +125°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 12-2: PIC16LC712/716 VOLTAGE-FREQUENCY GRAPH, 0°C < TA < +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS41106A-page 76  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
12.1  
DC Characteristics:  
PIC16C712/716-04 (Commercial, Industrial, Extended)  
PIC16C712/716-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0°C TA ≤  
-40°C TA ≤  
-40°C TA ≤  
+70°C for commercial  
+85°C for industrial  
+125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Supply Voltage  
Min  
Typ† Max Units  
Conditions  
D001  
D001A  
VDD  
4.0  
VBOR*  
-
-
5.5  
5.5  
V
V
BOR enabled (Note 7)  
(1)  
D002*  
D003  
VDR  
-
-
1.5  
-
-
V
RAM Data Retention Voltage  
VPOR  
VDD Start Voltage to ensure inter-  
VSS  
V
See section on Power-on Reset for details  
nal Power-on Reset signal  
D004*  
D004A*  
SVDD  
VDD Rise Rate to ensure internal  
Power-on Reset signal  
0.05  
TBD  
-
-
-
-
V/ms PWRT enabled (PWRTE bit clear)  
PWRT disabled (PWRTE bit set)  
See section on Power-on Reset for details  
D005  
VBOR  
IDD  
Brown-out Reset  
voltage trip point  
3.65  
-
4.35  
V
BODEN bit set  
(2,5)  
D010  
D013  
-
-
0.8  
4.0  
2.5  
8.0  
mA FOSC = 4 MHz, VDD = 4.0V  
mA FOSC = 20 MHz, VDD = 4.0V  
Supply Current  
(3,5)  
D020  
IPD  
-
-
-
-
10.5  
1.5  
1.5  
42  
16  
19  
19  
µA  
µA  
µA  
µA  
VDD = 4.0V, WDT enabled,-40°C to +85°C  
VDD = 4.0V, WDT disabled, 0°C to +70°C  
VDD = 4.0V, WDT disabled,-40°C to +85°C  
VDD = 4.0V, WDT disabled,-40°C to +125°C  
Power-down Current  
D021  
D021B  
2.5  
(6)  
Module Differential Current  
D022*  
D022A* IBOR  
IWDT  
-
-
6.0  
TBD  
20  
200  
µA  
µA  
WDTE bit set, VDD = 4.0V  
BODEN bit set, VDD = 5.0V  
Watchdog Timer  
Brown-out Reset  
1A  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
4
KHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the  
part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir =  
VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for  
design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base  
IDD or IPD measurement.  
7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to  
this trip point.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 77  
PIC16C712/716  
12.2  
DC Characteristics: PIC16LC712/716-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA ≤  
Max Units  
DC CHARACTERISTICS  
+85°C for industrial  
Param  
No.  
Sym  
Characteristic  
Supply Voltage  
RAM Data Retention Voltage  
Min  
Typ†  
Conditions  
D001  
VDD  
2.5  
VBOR*  
-
-
5.5  
5.5  
V
V
BOR enabled (Note 7)  
(1)  
D002*  
D003  
VDR  
-
-
1.5  
-
-
V
VPOR  
VDD Start Voltage to ensure inter-  
VSS  
V
See section on Power-on Reset for details  
nal Power-on Reset signal  
D004*  
D004A*  
SVDD  
VDD Rise Rate to ensure internal  
Power-on Reset signal  
0.05  
TBD  
-
-
-
-
V/ms PWRT enabled (PWRTE bit clear)  
PWRT disabled (PWRTE bit set)  
See section on Power-on Reset for details  
D005  
VBOR  
IDD  
Brown-out Reset  
voltage trip point  
3.65  
-
4.35  
V
BODEN bit set  
(2,5)  
D010  
-
-
2.0  
3.8  
48  
mA XT, RC osc modes  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
LP osc mode  
Supply Current  
D010A  
22.5  
µA  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
(3,5)  
D020  
D021  
D021A  
IPD  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA  
µA  
µA  
VDD = 3.0V, WDT enabled, -40°C to +85°C  
VDD = 3.0V, WDT disabled, 0°C to +70°C  
VDD = 3.0V, WDT disabled, -40°C to +85°C  
Power-down Current  
(6)  
Module Differential Current  
D022*  
D022A* IBOR  
IWDT  
-
-
6.0  
TBD  
20  
200  
µA  
µA  
WDTE bit set, VDD = 4.0V  
BODEN bit set, VDD = 5.0V  
Watchdog Timer  
Brown-out Reset  
1A FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
4
KHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the  
part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir  
= VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is  
for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base  
IDD or IPD measurement.  
7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to  
this trip point.  
DS41106A-page 78  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
12.3  
DC Characteristics:  
PIC16C712/716-04 (Commercial, Industrial, Extended)  
PIC16C712716-20 (Commercial, Industrial, Extended)  
PIC16LC712/716-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0°C TA ≤  
-40°C TA ≤  
+70°C for commercial  
+85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 12.1  
and Section 12.2  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
with TTL buffer  
VSS  
VSS  
VSS  
Vss  
Vss  
-
-
-
-
-
0.8V  
V
V
V
V
V
4.5V VDD 5.5V  
otherwise  
0.15VDD  
0.2VDD  
0.2VDD  
0.3VDD  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP  
modes)  
Note1  
Input High Voltage  
I/O ports  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
otherwise  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer 0.8VDD  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
MCLR  
0.8VDD  
OSC1 (XT, HS and LP modes) 0.7VDD  
OSC1 (in RC mode)  
Input Leakage Current (Notes  
2, 3)  
0.9VDD  
D060  
IIL  
I/O ports  
-
-
±1  
µA Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD,  
XT, HS and LP osc modes  
µA VDD = 5V, VPIN = VSS  
D070  
D080  
IPURB PORTB weak pull-up current  
50  
-
250  
400  
0.6  
0.6  
0.6  
0.6  
Output Low Voltage  
I/O ports  
VOL  
-
-
-
-
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
-
D083  
OSC2/CLKOUT  
(RC osc mode)  
-
-
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PICmi-  
cro be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 79  
PIC16C712/716  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0°C TA ≤  
-40°C TA ≤  
+70°C for commercial  
+85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 12.1  
and Section 12.2  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Output High Voltage  
D090  
VOH  
I/O ports (Note 3)  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
-
-
-
-
-
-
-
-
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D092  
OSC2/CLKOUT (RC osc  
mode)  
-
-
D150* VOD  
Open-Drain High Voltage  
Capacitive Loading Specs  
on Output Pins  
8.5  
RA4 pin  
D100  
D101  
COSC2 OSC2 pin  
-
-
-
-
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
CIO  
All I/O pins and OSC2 (in RC  
mode)  
pF  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PICmi-  
cro be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
DS41106A-page 80  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
12.4  
AC (Timing) Characteristics  
12.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
using one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 81  
PIC16C712/716  
12.4.2 TIMING CONDITIONS  
The temperature and voltages specified in Table 12-1  
apply to all timing specifications, unless otherwise  
noted. Figure 12-1 specifies the load conditions for the  
timing specifications.  
TABLE 12-1  
TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 12.1 and Section 12.2.  
LC parts operate for commercial/industrial temp’s only.  
FIGURE 12-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
15 pF for OSC2 output  
VSS  
DS41106A-page 82  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
12.4.3 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 12-2: EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q4  
OSC1  
3
3
1
4
4
2
CLKOUT  
TABLE 12-2  
EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
1A  
FOSC  
External CLKIN Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz RC and XT osc modes  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
20  
200  
MHz HS osc mode  
5
kHz LP osc mode  
1
TOSC  
External CLKIN Period  
(Note 1)  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
RC and XT osc modes  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
RC osc mode  
XT osc mode  
10,000  
250  
250  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
5
2
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
DC  
TCY = 4/FOSC  
3*  
TosL,  
TosH  
External Clock in (OSC1) High or  
Low Time  
XT oscillator  
LP oscillator  
HS oscillator  
4*  
TosR,  
TosF  
External Clock in (OSC1) Rise or  
Fall Time  
25  
50  
15  
XT oscillator  
LP oscillator  
HS oscillator  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at "min." values with an external  
clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 83  
PIC16C712/716  
FIGURE 12-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 12-1 for load conditions.  
TABLE 12-3  
CLKOUT AND I/O TIMING REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
10  
10  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
12*  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
13*  
14*  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20 ns  
15*  
Tosc + 200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
16*  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
17*  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
150  
18*  
TosH2ioI  
OSC1(Q2 cycle) to Port input Standard  
100  
200  
0
invalid (I/O in hold time)  
18A*  
19*  
Extended (LC)  
TioV2osH Port input valid to OSC1(I/O in setup time)  
20*  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
Standard  
40  
80  
40  
80  
20A*  
21*  
Extended (LC)  
Standard  
TioF  
21A*  
Extended (LC)  
22††* TINP  
23††* TRBP  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edge.  
Note1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS41106A-page 84  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
FIGURE 12-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 12-1 for load conditions.  
FIGURE 12-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 12-4  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
µs VDD = 5V, -40°C to +125°C  
31*  
TWDT  
Watchdog Timer Time-out Period  
(No Prescaler)  
7
18  
33  
ms  
VDD = 5V, -40°C to +125°C  
32  
33*  
34  
TOST  
Oscillation Start-up Timer Period  
28  
1024 TOSC  
ms  
µs  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
72  
132  
2.1  
VDD = 5V, -40°C to +125°C  
TIOZ  
I/O Hi-impedance from MCLR  
Low or WDT reset  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
VDD BVDD (D005)  
µs  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 85  
PIC16C712/716  
FIGURE 12-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 12-1 for load conditions.  
TABLE 12-5  
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4,..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler =  
2,4,8  
ns  
ns  
Standard  
25  
Extended (LC)  
Asynchronous  
30  
ns  
ns  
Standard  
50  
Extended (LC)  
T1CKI Low Time  
Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler =  
2,4,8  
15  
25  
ns  
ns  
Standard  
Extended (LC)  
Asynchronous  
30  
50  
ns  
ns  
Standard  
Extended (LC)  
Standard  
T1CKI input period Synchronous  
Greater of:  
30 OR TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Greater of:  
50 OR TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Extended (LC)  
Asynchronous  
60  
100  
DC  
ns  
ns  
Standard  
Extended (LC)  
Ft1  
Timer1 oscillator input frequency range  
200  
kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41106A-page 86  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
FIGURE 12-7: CAPTURE/COMPARE/PWM TIMINGS  
CCP1  
(Capture Mode)  
50  
51  
52  
54  
CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 12-1 for load conditions.  
TABLE 12-6  
CAPTURE/COMPARE/PWM REQUIREMENTS  
Param  
No.  
Sym Characteristic  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 input low  
time  
No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
With Prescaler Standard  
10  
Extended (LC)  
20  
51*  
TccH  
No Prescaler  
0.5TCY + 20  
CCP1 input high  
time  
With Prescaler Standard  
10  
20  
Extended (LC)  
52*  
53*  
TccP  
3TCY + 40  
ns N = prescale value  
(1,4, or 16)  
CCP1 input period  
N
TccR CCP1 output rise time  
TccF CCP1 output fall time  
Standard  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
Extended (LC)  
Standard  
54*  
Extended (LC)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 87  
PIC16C712/716  
TABLE 12-7  
A/D CONVERTER CHARACTERISTICS:  
PIC16C712/716-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C712/716-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16LC712/716-04 (COMMERCIAL, INDUSTRIAL)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
8-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02 EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset error  
A10 Monotonicity  
A20 VREF Reference voltage  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
< ± 1  
LSb  
guaranteed  
(Note 3)  
VSS VAIN VREF  
2.5V  
VSS - 0.3  
VDD + 0.3  
VREF + 0.3  
10.0  
V
V
A25  
A30  
VAIN Analog input voltage  
ZAIN Recommended impedance of  
kΩ  
analog voltage source  
A40  
A50  
IAD A/D conversion current Standard  
(VDD)  
180  
90  
µA Average current consump-  
tion when A/D is on.  
(Note 1)  
Extended (LC)  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 9.1.  
10  
µA During A/D Conversion  
cycle  
2:  
3:  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are  
for design guidance only and are not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.  
DS41106A-page 88  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
FIGURE 12-8: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 Tcy  
(TOSC/2) (1)  
134  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This  
allows the SLEEPinstruction to be executed.  
TABLE 12-8  
A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
Standard  
130  
TAD A/D clock period  
1.6  
2.0  
2.0  
3.0  
11  
µs  
µs  
TOSC based, VREF 3.0V  
Extended (LC)  
Standard  
TOSC based, VREF full range  
4.0  
6.0  
6.0  
9.0  
11  
µs A/D RC Mode  
Extended (LC)  
µs A/D RC Mode  
TAD  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
:
* These parameters are characterized but not tested.  
:
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
:
§ This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 9.1 for min conditions.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 89  
PIC16C712/716  
NOTES:  
DS41106A-page 90  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
13.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. ’Typical’ represents the mean of the distribution at 25°C. ’Max’ or ’min’ represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.  
Graphs and Tables not available at this time.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 91  
PIC16C712/716  
NOTES:  
DS41106A-page 92  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
14.0 PACKAGING INFORMATION  
14.1  
Package Marking Information  
18-Lead PDIP  
Example  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
AABBCDE  
PIC16C716-04/P  
9917HAT  
18-Lead CERDIP Windowed  
16C716  
/JW  
XXXXXXXX  
XXXXXXXX  
9917CAT  
AABBCDE  
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C712  
-20/SO  
9910/SAA  
AABBCDE  
20-Lead SSOP  
Example  
PIC16C712  
XXXXXXXXXX  
XXXXXXXXXX  
-20I/SS025  
AABBCDE  
9917SBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line,  
it will be carried over to the next line thus limiting the number of available  
characters for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 93  
PIC16C712/716  
Package Type: K04-007 18-Lead Plastic Dual In-line (P) – 300 mil  
E
D
2
α
n
1
E1  
A1  
L
A
R
c
A2  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
0.100  
0.018  
0.060  
0.005  
0.010  
0.155  
0.095  
0.020  
0.130  
0.895  
0.255  
0.250  
0.349  
10  
2.54  
0.013  
0.023  
0.33  
1.40  
0.46  
1.52  
0.13  
0.25  
3.94  
2.41  
0.51  
3.30  
22.73  
6.48  
6.35  
8.85  
10  
0.58  
0.055  
0.000  
0.005  
0.110  
0.075  
0.000  
0.125  
0.890  
0.245  
0.230  
0.310  
5
0.065  
0.010  
0.015  
0.155  
0.115  
0.020  
0.135  
0.900  
0.265  
0.270  
0.387  
15  
1.65  
0.25  
0.38  
3.94  
2.92  
0.51  
3.43  
22.86  
6.73  
6.86  
9.83  
15  
0.00  
0.13  
2.79  
1.91  
0.00  
3.18  
22.61  
6.22  
5.84  
7.87  
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-001 AC  
DS41106A-page 94  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Package Type: K04-010 18-Lead Ceramic Dual In-line with Window (JW) – 300 mil  
E
D
W2  
2
1
n
W1  
E1  
A
A1  
R
L
c
A2  
B1  
eB  
p
B
Units  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W1  
W2  
0.098  
0.100  
0.019  
0.055  
0.013  
0.010  
0.183  
0.111  
0.023  
0.138  
0.900  
0.298  
0.270  
0.385  
0.140  
0.200  
0.102  
2.49  
0.41  
2.54  
0.47  
1.40  
0.32  
0.25  
4.64  
2.82  
0.57  
3.49  
22.86  
7.56  
6.86  
9.78  
0.14  
0.2  
2.59  
0.016  
0.050  
0.010  
0.008  
0.175  
0.091  
0.015  
0.125  
0.880  
0.285  
0.255  
0.345  
0.130  
0.190  
0.021  
0.060  
0.015  
0.012  
0.190  
0.131  
0.030  
0.150  
0.920  
0.310  
0.285  
0.425  
0.150  
0.210  
0.53  
1.52  
0.38  
0.30  
4.83  
3.33  
0.76  
3.81  
23.37  
7.87  
7.24  
10.80  
0.15  
0.21  
1.27  
0.25  
0.20  
4.45  
2.31  
0.00  
3.18  
22.35  
7.24  
6.48  
8.76  
0.13  
0.19  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Width  
Window Length  
* Controlling Parameter.  
JEDEC equivalent:  
MO-036 AE  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 95  
PIC16C712/716  
Package Type: K04-051 18-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
p
E
D
2
B
1
n
X
α
45°  
L
R2  
c
A
A1  
R1  
φ
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
18  
MAX  
p
n
A
A1  
A2  
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.093  
0.099  
0.058  
0.008  
0.456  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
11.58  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
1.73  
0.28  
11.73  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.048  
0.004  
0.450  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.462  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
0.10  
11.43  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-013 AB  
DS41106A-page 96  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Package Type: K04-072 20-Lead Plastic Shrink Small Outine (SS) – 5.30 mm  
E1  
E
p
D
B
2
1
n
α
L
R2  
c
A
A1  
R1  
φ
L1  
A2  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
20  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
20  
0.073  
0.036  
0.005  
0.283  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.068  
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
7.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.278  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.289  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
7.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
7.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
*
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MO-150 AE  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 97  
PIC16C712/716  
NOTES:  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 98  
PIC16C712/716  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unnecessary  
delays on power-up and wake-up.  
APPENDIX A: REVISION HISTORY  
Version Date  
Revision Description  
A
2/99 This is a new data sheet. However,  
the devices described in this data  
sheet are the upgrades to the  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full eight bit register.  
devices found in the PIC16C6X  
Data Sheet, DS30234, and the  
PIC16C7X Data Sheet, DS30390.  
15. “In-circuit serial programming” is made possible.  
The user can program PIC16CXX devices using  
only five pins: VDD, VSS, MCLR/VPP, RB6 (clock)  
and RB7 (data in/out).  
APPENDIX B: CONVERSION  
CONSIDERATIONS  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
There are no previous versions of this device.  
17. Code protection scheme is enhanced such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
APPENDIX C: MIGRATION FROM  
BASE-LINE TO  
MID-RANGE DEVICES  
This section discusses how to migrate from a baseline  
device (i.e., PIC16C5X) to a mid-range device (i.e.,  
PIC16CXXX).  
18. Brown-out protection circuitry has been added.  
Controlled by configuration word bit BODEN.  
Brown-out reset ensures the device is placed in  
a reset condition if VDD dips below a fixed set-  
point.  
To convert code written for PIC16C5X to PIC16CXXX,  
the user should take the following steps:  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes both in program  
memory (2K now as opposed to 512 before) and  
register file (128 bytes now versus 32 bytes  
before).  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1,  
PA0 are removed from STATUS register.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
5. Change reset vector to 0000h.  
3. Data memory paging is redefined slightly.  
STATUS register is modified.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for compati-  
bility with PIC16C5X.  
5. OPTION_REG and TRIS registers are made  
addressable.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized. Reg-  
isters are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 99  
PIC16C712/716  
NOTES:  
DS41106A-page 100  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Code Protection ........................................................... 51, 65  
CP1:CP0 Bits ............................................................. 52  
Compare (CCP Module) .................................................... 41  
Block Diagram ........................................................... 41  
CCP Pin Configuration .............................................. 41  
CCPR1H:CCPR1L Registers .................................... 41  
Software Interrupt ...................................................... 41  
Special Event Trigger .................................... 34, 41, 50  
Timer1 Mode Selection .............................................. 41  
Configuration Bits .............................................................. 51  
Conversion Considerations ................................................ 99  
INDEX  
A
A/D ..................................................................................... 45  
A/D Converter Enable (ADIE Bit) ............................... 16  
A/D Converter Flag (ADIF Bit) ............................. 17, 47  
A/D Converter Interrupt, Configuring ......................... 47  
ADCON0 Register ................................................ 11, 45  
ADCON1 Register .......................................... 12, 45, 46  
ADRES Register ............................................ 11, 45, 47  
Analog Port Pins, Configuring .................................... 49  
Block Diagram ............................................................ 47  
Block Diagram, Analog Input Model ........................... 48  
Channel Select (CHS2:CHS0 Bits) ............................ 45  
Clock Select (ADCS1:ADCS0 Bits) ............................ 45  
Configuring the Module .............................................. 47  
Conversion Clock (TAD) ............................................. 49  
Conversion Status (GO/DONE Bit) ...................... 45, 47  
Conversions ............................................................... 50  
Converter Characteristics .......................................... 88  
Module On/Off (ADON Bit) ......................................... 45  
Port Configuration Control (PCFG2:PCFG0 Bits) ...... 46  
Sampling Requirements ............................................. 48  
Special Event Trigger (CCP) ................................ 41, 50  
Timing Diagram .......................................................... 89  
Absolute Maximum Ratings ............................................... 75  
ADCON0 Register ........................................................ 11, 45  
ADCS1:ADCS0 Bits ................................................... 45  
ADON Bit ................................................................... 45  
CHS2:CHS0 Bits ........................................................ 45  
GO/DONE Bit ....................................................... 45, 47  
ADCON1 Register .................................................. 12, 45, 46  
PCFG2:PCFG0 Bits ................................................... 46  
ADRES Register .................................................... 11, 45, 47  
Architecture  
D
Data Memory ..................................................................... 10  
Bank Select (RP1:RP0 Bits) ................................ 10, 13  
General Purpose Registers ....................................... 10  
Register File Map ...................................................... 10  
Special Function Registers ........................................ 11  
DC Characteristics ....................................................... 77, 79  
Development Support ........................................................ 69  
Development Tools ............................................................ 69  
Direct Addressing .............................................................. 20  
E
Electrical Characteristics ................................................... 75  
Errata ................................................................................... 3  
External Power-on Reset Circuit ........................................ 55  
F
Family of Devices  
PIC16C7XX ................................................................. 2  
Firmware Instructions ........................................................ 67  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ................... 71  
I
I/O Ports ............................................................................ 21  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ........... 69  
ID Locations ................................................................. 51, 65  
In-Circuit Serial Programming (ICSP) .......................... 51, 65  
Indirect Addressing ............................................................ 20  
FSR Register ................................................. 10, 11, 20  
INDF Register ............................................................ 11  
Instruction Format .............................................................. 67  
Instruction Set .................................................................... 67  
Summary Table ......................................................... 68  
INTCON Register ......................................................... 11, 15  
GIE Bit ....................................................................... 15  
INTE Bit ..................................................................... 15  
INTF Bit ..................................................................... 15  
PEIE Bit ..................................................................... 15  
RBIE Bit ..................................................................... 15  
RBIF Bit ............................................................... 15, 24  
T0IE Bit ...................................................................... 15  
T0IF Bit ...................................................................... 15  
Interrupt Sources ......................................................... 51, 61  
A/D Conversion Complete ......................................... 47  
Block Diagram ........................................................... 61  
Capture Complete (CCP) .......................................... 40  
Compare Complete (CCP) ........................................ 41  
Interrupt on Change (RB7:RB4 ) ............................... 24  
RB0/INT Pin, External ............................................... 62  
TMR0 Overflow .................................................... 30, 62  
TMR1 Overflow .................................................... 31, 34  
TMR2 to PR2 Match .................................................. 37  
TMR2 to PR2 Match (PWM) ................................ 36, 42  
Interrupts, Context Saving During ...................................... 62  
Interrupts, Enable Bits  
PIC16C62B/PIC16C72A Block Diagram ...................... 5  
Assembler  
MPASM Assembler .................................................... 71  
B
Banking, Data Memory ................................................ 10, 13  
Brown-Out Detect (BOD) ................................................... 55  
Brown-out Reset (BOR) ................................... 51, 54, 58, 59  
BOR Enable (BODEN Bit) .......................................... 52  
BOR Status (BOR Bit) ................................................ 18  
Timing Diagram .......................................................... 85  
C
Capture (CCP Module) ...................................................... 40  
Block Diagram ............................................................ 40  
CCP Pin Configuration ............................................... 40  
CCPR1H:CCPR1L Registers ..................................... 40  
Changing Between Capture Prescalers ..................... 40  
Software Interrupt ...................................................... 40  
Timer1 Mode Selection .............................................. 40  
Capture/Compare/PWM (CCP) .......................................... 39  
CCP1CON Register ............................................. 11, 39  
CCPR1H Register ................................................ 11, 39  
CCPR1L Register ................................................ 11, 39  
Enable (CCP1IE Bit) .................................................. 16  
Flag (CCP1IF Bit) ....................................................... 17  
Timer Resources ........................................................ 39  
Timing Diagram .......................................................... 87  
CCP1CON Register ........................................................... 39  
CCP1M3:CCP1M0 Bits .............................................. 39  
CCP1X:CCP1Y Bits ................................................... 39  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 101  
PIC16C712/716  
A/D Converter Enable (ADIE Bit) ...............................16  
CCP1 Enable (CCP1IE Bit) .................................. 16, 40  
Global Interrupt Enable (GIE Bit) ......................... 15, 61  
Interrupt on Change (RB7:RB4)  
Pin Functions  
MCLR/Vpp ................................................................... 6  
RA0/AN0 ...................................................................... 6  
RA1/AN1 ...................................................................... 6  
RA2/AN2 ...................................................................... 6  
RA3/AN3/Vref .............................................................. 6  
RA4/T0CKI .................................................................. 6  
RB0/INT ....................................................................... 7  
RB1 .............................................................................. 7  
RB2 .............................................................................. 7  
RB3 .............................................................................. 7  
RB4 .............................................................................. 7  
RB5 .............................................................................. 7  
RB6 .............................................................................. 7  
RB7 .............................................................................. 7  
Vdd .............................................................................. 7  
Vss ............................................................................... 7  
Enable (RBIE Bit) ................................................. 15, 62  
Peripheral Interrupt Enable (PEIE Bit) .......................15  
RB0/INT Enable (INTE Bit) ........................................15  
TMR0 Overflow Enable (T0IE Bit) ..............................15  
TMR1 Overflow Enable (TMR1IE Bit) ........................16  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................16  
Interrupts, Flag Bits  
A/D Converter Flag (ADIF Bit) ............................. 17, 47  
CCP1 Flag (CCP1IF Bit) ................................ 17, 40, 41  
Interrupt on Change (RB7:RB4)  
Flag (RBIF Bit) ............................................... 15, 24, 62  
RB0/INT Flag (INTF Bit) .............................................15  
TMR0 Overflow Flag (T0IF Bit) ............................ 15, 62  
TMR1 Overflow Flag (TMR1IF Bit) ............................17  
TMR2 to PR2 Match Flag (TMR2IF Bit) .....................17  
Pinout Descriptions  
PIC16C62B/PIC16C72A .............................................. 6  
PIR1 Register .............................................................. 11, 17  
ADIF Bit ..................................................................... 17  
CCP1IF Bit ................................................................. 17  
TMR1IF Bit ................................................................. 17  
TMR2IF Bit ................................................................. 17  
Pointer, FSR ...................................................................... 20  
PORTA  
Initialization ................................................................ 21  
PORTA Register .................................................. 11, 21  
RA3:RA0 and RA5 Port Pins ..................................... 21  
RA4/T0CKI Pin .......................................................... 22  
TRISA Register .................................................... 12, 21  
PORTB  
K
KeeLoq Evaluation and Programming Tools ...................72  
M
Master Clear (MCLR)  
MCLR Reset, Normal Operation ....................54, 58, 59  
MCLR Reset, SLEEP .....................................54, 58, 59  
Memory Organization  
Data Memory .............................................................10  
Program Memory .........................................................9  
MPLAB Integrated Development Environment Software ...71  
O
Initialization ................................................................ 23  
PORTB Register .................................................. 11, 23  
Pull-up Enable (RBPU Bit) ......................................... 14  
RB0/INT Edge Select (INTEDG Bit) .......................... 14  
RB0/INT Pin, External ................................................ 62  
RB3:RB0 Port Pins .................................................... 23  
RB7:RB4 Interrupt on Change ................................... 62  
RB7:RB4 Interrupt on Change Enable (RBIE Bit) 15, 62  
RB7:RB4 Interrupt on Change  
OPCODE Field Descriptions ..............................................67  
OPTION_REG Register ...............................................12, 14  
INTEDG Bit ................................................................14  
PS2:PS0 Bits ....................................................... 14, 29  
PSA Bit ................................................................. 14, 29  
RBPU Bit ....................................................................14  
T0CS Bit ............................................................... 14, 29  
T0SE Bit ............................................................... 14, 29  
Oscillator Configuration ................................................ 51, 53  
HS ........................................................................ 53, 58  
LP ......................................................................... 53, 58  
RC .................................................................. 53, 54, 58  
Selection (FOSC1:FOSC0 Bits) .................................52  
XT ........................................................................ 53, 58  
Oscillator, Timer1 ......................................................... 31, 34  
Oscillator, WDT ..................................................................63  
Flag (RBIF Bit) ............................................... 15, 24, 62  
RB7:RB4 Port Pins .................................................... 26  
TRISB Register .................................................... 12, 23  
PORTC  
Block Diagram ..................................................... 24, 25  
TRISC Register .......................................................... 12  
Postscaler, Timer2  
Select (TOUTPS3:TOUTPS0 Bits) ............................ 36  
Postscaler, WDT ................................................................ 29  
Assignment (PSA Bit) .......................................... 14, 29  
Block Diagram ........................................................... 30  
Rate Select (PS2:PS0 Bits) ................................. 14, 29  
Switching Between Timer0 and WDT ........................ 30  
Power-on Reset (POR) .............................. 51, 54, 55, 58, 59  
Oscillator Start-up Timer (OST) ........................... 51, 55  
POR Status (POR Bit) ............................................... 18  
Power Control (PCON) Register ................................ 57  
Power-down (PD Bit) ........................................... 13, 54  
Power-on Reset Circuit, External ............................... 55  
Power-up Timer (PWRT) ..................................... 51, 55  
PWRT Enable (PWRTE Bit) ...................................... 52  
Time-out (TO Bit) ................................................. 13, 54  
Time-out Sequence ................................................... 57  
Time-out Sequence on Power-up .............................. 60  
Timing Diagram ......................................................... 85  
P
Packaging ..........................................................................93  
Paging, Program Memory ..............................................9, 19  
PCON Register ............................................................ 18, 57  
BOR Bit ......................................................................18  
POR Bit ......................................................................18  
PICDEM-1 Low-Cost PICmicro Demo Board .....................70  
PICDEM-2 Low-Cost PIC16CXX Demo Board ..................70  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ................70  
PICSTART Plus Entry Level Development System ........69  
PIE1 Register ............................................................... 12, 16  
ADIE Bit .....................................................................16  
CCP1IE Bit .................................................................16  
TMR1IE Bit .................................................................16  
TMR2IE Bit .................................................................16  
DS41106A-page 102  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Prescaler, Capture ............................................................. 40  
Prescaler, Timer0 ............................................................... 29  
Assignment (PSA Bit) .......................................... 14, 29  
Block Diagram ............................................................ 30  
Rate Select (PS2:PS0 Bits) ................................. 14, 29  
Switching Between Timer0 and WDT ........................ 30  
Prescaler, Timer1 ............................................................... 32  
Select (T1CKPS1:T1CKPS0 Bits) .............................. 31  
Prescaler, Timer2 ............................................................... 42  
Select (T2CKPS1:T2CKPS0 Bits) .............................. 36  
PRO MATE II Universal Programmer ............................. 69  
Product Identification System .......................................... 107  
Program Counter  
PCL Register ........................................................ 11, 19  
PCLATH Register .......................................... 11, 19, 62  
Reset Conditions ........................................................ 58  
Program Memory ................................................................. 9  
Interrupt Vector ............................................................ 9  
Paging .................................................................... 9, 19  
Program Memory Map ................................................. 9  
Reset Vector ................................................................ 9  
Program Verification .......................................................... 65  
Programming, Device Instructions ..................................... 67  
PWM (CCP Module) .......................................................... 42  
Block Diagram ............................................................ 42  
CCPR1H:CCPR1L Registers ..................................... 42  
Duty Cycle .................................................................. 42  
Example Frequencies/Resolutions ............................ 43  
Output Diagram .......................................................... 42  
Period ......................................................................... 42  
Set-Up for PWM Operation ........................................ 43  
TMR2 to PR2 Match ............................................ 36, 42  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................ 16  
TMR2 to PR2 Match Flag (TMR2IF Bit) ..................... 17  
T
T1CON Register .......................................................... 11, 31  
T1CKPS1:T1CKPS0 Bits ........................................... 31  
T1OSCEN Bit ............................................................ 31  
T1SYNC Bit ............................................................... 31  
TMR1CS Bit ............................................................... 31  
TMR1ON Bit .............................................................. 31  
T2CON Register .......................................................... 11, 36  
T2CKPS1:T2CKPS0 Bits ........................................... 36  
TMR2ON Bit .............................................................. 36  
TOUTPS3:TOUTPS0 Bits ......................................... 36  
Timer0 ............................................................................... 29  
Block Diagram ........................................................... 29  
Clock Source Edge Select (T0SE Bit) ................. 14, 29  
Clock Source Select (T0CS Bit) .......................... 14, 29  
Overflow Enable (T0IE Bit) ........................................ 15  
Overflow Flag (T0IF Bit) ...................................... 15, 62  
Overflow Interrupt ................................................ 30, 62  
Timing Diagram ......................................................... 86  
TMR0 Register .......................................................... 11  
Timer1 ............................................................................... 31  
Block Diagram ........................................................... 32  
Capacitor Selection ................................................... 34  
Clock Source Select (TMR1CS Bit) ........................... 31  
External Clock Input Sync (T1SYNC Bit) ................... 31  
Module On/Off (TMR1ON Bit) ................................... 31  
Oscillator .............................................................. 31, 34  
Oscillator Enable (T1OSCEN Bit) .............................. 31  
Overflow Enable (TMR1IE Bit) .................................. 16  
Overflow Flag (TMR1IF Bit) ....................................... 17  
Overflow Interrupt ................................................ 31, 34  
Special Event Trigger (CCP) ............................... 34, 41  
T1CON Register .................................................. 11, 31  
Timing Diagram ......................................................... 86  
TMR1H Register .................................................. 11, 31  
TMR1L Register .................................................. 11, 31  
Timer2  
Q
Q-Clock .............................................................................. 42  
Block Diagram ........................................................... 36  
PR2 Register ................................................. 12, 36, 42  
T2CON Register .................................................. 11, 36  
TMR2 Register .................................................... 11, 36  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................ 16  
TMR2 to PR2 Match Flag (TMR2IF Bit) .................... 17  
TMR2 to PR2 Match Interrupt ........................ 36, 37, 42  
Timing Diagrams  
Time-out Sequence on Power-up .............................. 60  
Wake-up from SLEEP via Interrupt ........................... 65  
Timing Diagrams and Specifications ................................. 83  
A/D Conversion ......................................................... 89  
Brown-out Reset (BOR) ............................................. 85  
Capture/Compare/PWM (CCP) ................................. 87  
CLKOUT and I/O ....................................................... 84  
External Clock ........................................................... 83  
Oscillator Start-up Timer (OST) ................................. 85  
Power-up Timer (PWRT) ........................................... 85  
Reset ......................................................................... 85  
Timer0 and Timer1 .................................................... 86  
Watchdog Timer (WDT) ............................................. 85  
R
RAM. See Data Memory  
Register File ....................................................................... 10  
Register File Map ............................................................... 10  
Reset ............................................................................ 51, 54  
Block Diagram ............................................................ 56  
Reset Conditions for All Registers ............................. 59  
Reset Conditions for PCON Register ......................... 58  
Reset Conditions for Program Counter ...................... 58  
Reset Conditions for STATUS Register ..................... 58  
Timing Diagram .......................................................... 85  
Revision History ................................................................. 99  
S
SEEVAL Evaluation and Programming System .............. 71  
SLEEP ................................................................... 51, 54, 64  
Software Simulator (MPLAB-SIM) ..................................... 71  
Special Features of the CPU ............................................. 51  
Special Function Registers ................................................ 11  
Speed, Operating ................................................................. 1  
Stack .................................................................................. 19  
STATUS Register .................................................. 11, 13, 62  
C Bit ........................................................................... 13  
DC Bit ......................................................................... 13  
IRP Bit ........................................................................ 13  
PD Bit ................................................................... 13, 54  
RP1:RP0 Bits ............................................................. 13  
TO Bit ................................................................... 13, 54  
Z Bit ............................................................................ 13  
W
W Register ......................................................................... 62  
Wake-up from SLEEP .................................................. 51, 64  
Interrupts ............................................................. 58, 59  
MCLR Reset .............................................................. 59  
Timing Diagram ......................................................... 65  
WDT Reset ................................................................ 59  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 103  
PIC16C712/716  
Watchdog Timer (WDT) ...............................................51, 63  
Block Diagram ............................................................63  
Enable (WDTE Bit) ...............................................52, 63  
Programming Considerations ....................................63  
RC Oscillator ..............................................................63  
Time-out Period .........................................................63  
Timing Diagram ..........................................................85  
WDT Reset, Normal Operation ...................... 54, 58, 59  
WDT Reset, SLEEP .......................................54, 58, 59  
WWW, On-Line Support .......................................................3  
DS41106A-page 104  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 105  
PIC16C712/716  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS41106A  
Device:  
PIC16C712/716  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS41106A-page 106  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C712/716  
PIC16C712/716 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
a) PIC16C716 - 04/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
b)  
PIC16LC712 - 04I/SO = Industrial temp., SOIC  
package, 200 kHz, Extended VDD limits.  
Device  
PIC16C712(1), PIC16C712T(2);VDD range 4.0V to 5.5V  
PIC16LC712(1), PIC16LC712T(2);VDD range 2.5V to 5.5V  
PIC16C716(1), PIC16C716T(2);VDD range 4.0V to 5.5V  
PIC16LC716(1), PIC16LC716T(2);VDD range 2.5V to 5.5V  
c)  
PIC16C712 - 20I/P = Industrial temp., PDIP  
package, 20MHz, normal VDD limits.  
Frequency Range  
04  
20  
= 4 MHz  
= 20 MHz  
Note 1:  
C
= CMOS  
LC = Low Power CMOS  
2:  
3:  
4:  
T
= in tape and reel - SOIC, SSOP  
packages only.  
LC extended temperature device is not  
offered.  
LC is not offered at 20 MHz  
Temperature Range  
blank  
I
E
=
=
=
0°C to  
70°C (Commercial)  
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package  
Pattern  
JW  
SO  
P
=
=
=
=
Windowed CERDIP  
SOIC  
PDIP  
SSOP  
SS  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
Preliminary  
DS41106A-page 107  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY