PIC16LC717-E/P [MICROCHIP]

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, MS-001, DIP-18;
PIC16LC717-E/P
型号: PIC16LC717-E/P
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, OTPROM, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, MS-001, DIP-18

可编程只读存储器 光电二极管
文件: 总220页 (文件大小:3585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC16C717/770/771  
Data Sheet  
18/20-Pin, 8-Bit CMOS Microcontrollers  
with 10/12-bit A/D  
2002 Microchip Technology Inc.  
DS41120B  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as unbreakable.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART,  
PRO MATE, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microID,  
microPort, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Serialized Quick Term Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
DS41120B - page ii  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D  
M
Microcontroller Core Features:  
Pin Diagram  
20-Pin PDIP, SOIC, SSOP  
High-performance RISC CPU  
Only 35 single word instructions to learn  
All single cycle instructions except for program  
branches which are two cycle  
Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
RB3/CCP1/P1A  
RB2/SCK/SCL  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
VDD  
RA0/AN0  
RA1/AN1/LVDIN  
3
RA4/T0CKI  
RA5/MCLR/VPP  
4
VSS  
AVSS  
5
Memory  
AVDD  
6
A/D  
A/D  
Device  
Pins  
RB7/T1OSI/P1D  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RB0/AN4/INT  
7
Program Data  
Resolution Channels  
x14  
2K  
2K  
4K  
x8  
8
RB6/T1OSO/T1CKI/P1C  
RB5/SDO/P1B  
12  
11  
9
PIC16C717  
PIC16C770  
PIC16C771  
256 18, 20  
10 bits  
12 bits  
12 bits  
6
6
6
10  
RB4/SDI/SDA  
RB1/AN5/SS  
256  
256  
20  
20  
Peripheral Features:  
Interrupt capability (up to 10 internal/external  
interrupt sources)  
Timer0: 8-bit timer/counter with 8-bit prescaler  
Timer1: 16-bit timer/counter with prescaler,  
can be incremented during SLEEP via external  
crystal/clock  
Eight level deep hardware stack  
Direct, indirect and relative addressing modes  
Power-on Reset (POR)  
Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
Enhanced Capture, Compare, PWM (ECCP)  
module  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
- Enhanced PWM:  
Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Selectable oscillator options:  
- INTRC - Internal RC, dual speed (4 MHz and  
37 kHz nominal) dynamically switchable for  
power savings  
- ER - External resistor, dual speed (user  
selectable frequency and 37 kHz nominal)  
dynamically switchable for power savings  
- EC - External clock  
- Single, Half-Bridge and Full-Bridge Output  
modes  
- Digitally programmable deadband delay  
Analog-to-Digital converter:  
- PIC16C770/771 12-bit resolution  
- PIC16C717 10-bit resolution  
- HS - High speed crystal/resonator  
- XT - Crystal/resonator  
- LP - Low power crystal  
On-chip absolute bandgap voltage reference  
generator  
Low power, high speed CMOS EPROM  
technology  
Programmable Brown-out Reset (PBOR)  
circuitry  
In-Circuit Serial Programming(ICSP)  
Wide operating voltage range: 2.5V to 5.5V  
Programmable Low-Voltage Detection (PLVD)  
circuitry  
15 I/O pins with individual control for:  
- Direction (15 pins)  
Master Synchronous Serial Port (MSSP) with two  
modes of operation:  
- Digital/Analog input (6 pins)  
- PORTB interrupt on change (8 pins)  
- PORTB weak pull-up (8 pins)  
- High voltage open drain (1 pin)  
- 3-wire SPI(supports all 4 SPI modes)  
- I2Ccompatible including Master mode  
support  
Program Memory Read (PMR) capability for look-  
up table, character string storage and checksum  
calculation purposes  
Commercial and Industrial temperature ranges  
Low power consumption:  
- < 2 mA @ 4V, 4 MHz  
- 11 µA typical @ 2.5V, 37 kHz  
- < 1 µA typical standby current  
2002 Microchip Technology Inc.  
DS41120B-page 1  
PIC16C717/770/771  
Pin Diagrams  
18-Pin PDIP, SOIC  
20-Pin SSOP  
RA0/AN0  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
RB3/CCP1/P1A  
RB2/SCK/SCL  
18  
17  
16  
15  
14  
13  
12  
11  
10  
RA0/AN0  
1
2
3
4
5
6
7
8
9
RB3/CCP1/P1A  
RB2/SCK/SCL  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
VDD  
RA1/AN1/LVDIN  
RA1/AN1/LVDIN  
RA4/T0CKI  
3
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
RA4/T0CKI  
RA5/MCLR/VPP  
4
RA5/MCLR/VPP  
(1)  
(2)  
VSS  
VDD  
5
VSS  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RB0/AN4/INT  
(1)  
(2)  
VSS  
VDD  
6
RB7/T1OSI/P1D  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RB0/AN4/INT  
RB7/T1OSI/P1D  
RB6/T1OSO/T1CKI/P1C  
RB5/SDO/P1B  
7
RB6/T1OSO/T1CKI/P1C  
RB5/SDO/P1B  
8
9
12  
11  
RB1/AN5/SS  
RB4/SDI/SDA  
RB1/AN5/SS  
10  
RB4/SDI/SDA  
Note 1: VSS pins 5 and 6 must be tied together.  
2: VDD pins 15 and 16 must be tied together.  
Key Features  
PICmicroTM Mid-Range MCU Family  
Reference Manual, (DS33023)  
PIC16C717  
PIC16C770  
PIC16C771  
Operating Frequency  
RESETS (and Delays)  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR, MCLR,  
WDT (PWRT, OST)  
POR, BOR, MCLR,  
WDT (PWRT, OST)  
POR, BOR, MCLR,  
WDT (PWRT, OST)  
Program Memory (14-bit words)  
Data Memory (bytes)  
Interrupts  
2K  
2K  
4K  
256  
256  
256  
10  
10  
10  
I/O Ports  
Ports A,B  
Ports A,B  
Ports A,B  
Timers  
3
1
3
1
3
1
Enhanced Capture/Compare/PWM (ECCP)  
modules  
Serial Communications  
MSSP  
MSSP  
MSSP  
12-bit Analog-to-Digital Module  
6 input channels  
6 input channels  
10-bit Analog-to-Digital Module  
Instruction Set  
6 input channels  
35 Instructions  
35 Instructions  
35 Instructions  
DS41120B-page 2  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Table of Contents  
1.0 Device Overview ...................................................................................................................................................... 5  
2.0 Memory Organization............................................................................................................................................... 9  
3.0 I/O Ports................................................................................................................................................................. 25  
4.0 Program Memory Read (PMR) .............................................................................................................................. 41  
5.0 Timer0 Module....................................................................................................................................................... 45  
6.0 Timer1 Module....................................................................................................................................................... 47  
7.0 Timer2 Module....................................................................................................................................................... 51  
8.0 Enhanced Capture/Compare/PWM (ECCP) Modules............................................................................................ 53  
9.0 Master Synchronous Serial Port (MSSP) Module.................................................................................................. 65  
10.0 Voltage Reference Module and Low-voltage Detect.......................................................................................... 101  
11.0 Analog-to-Digital Converter (A/D) Module.......................................................................................................... 105  
12.0 Special Features of the CPU ............................................................................................................................. 117  
13.0 Instruction Set Summary.................................................................................................................................... 133  
14.0 Development Support ........................................................................................................................................ 141  
15.0 Electrical Characteristics.................................................................................................................................... 147  
16.0 DC and AC Characteristics Graphs and Tables................................................................................................. 179  
17.0 Packaging Information ....................................................................................................................................... 197  
APPENDIX A: Revision History ............................................................................................................................... 207  
APPENDIX B: Device Differences ............................................................................................................................ 208  
Index .......................................................................................................................................................................... 209  
On-Line Support.......................................................................................................................................................... 215  
Reader Response....................................................................................................................................................... 216  
PIC16C717/770/771 Product Identification System.................................................................................................... 217  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2002 Microchip Technology Inc.  
DS41120B-page 3  
PIC16C717/770/771  
NOTES:  
DS41120B-page 4  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
sheet, and is highly recommended reading for a better  
understanding of the device architecture and operation  
of the peripheral modules.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information.  
Additional information may be found in the PICmicroTM  
Mid-Range MCU Family Reference Manual,  
(DS33023), which may be obtained from your local  
Microchip Sales Representative or downloaded from  
the Microchip website. The Reference Manual should  
be considered a complementary document to this data  
There are three devices (PIC16C717, PIC16C770 and  
PIC16C771) covered by this data sheet. The  
PIC16C717 device comes in 18/20-pin packages and  
the PIC16C770/771 devices come in 20-pin packages.  
The following two figures are device block diagrams of  
the PIC16C717 and the PIC16C770/771.  
FIGURE 1-1:  
PIC16C717 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1/LVDIN  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
RA5/MCLR/VPP  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
2K x 14  
256 x 8  
Program  
Bus  
14  
Program Memory  
Read (PMR)  
RAM  
Addr(1)  
9
Addr MUX  
Instruction reg  
PORTB  
7
Indirect  
Addr  
RB0/AN4/INT  
RB1/AN5/SS  
Direct Addr  
8
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
RB5/SDO/P1B  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1D  
FSR reg  
STATUS reg  
8
Internal  
4 MHz, 37 kHz  
and ER mode  
3
MUX  
Instruction  
Decode &  
Control  
Power-up  
Timer  
ALU  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
OSC1/CLKIN  
OSC2/CLKOUT  
Power-on  
Reset  
W reg  
VDD, VSS  
Watchdog  
Timer  
Brown-out  
Reset  
10-bit  
Bandgap  
Low-voltage  
ADC  
Reference  
Detect  
Timer0  
Timer1  
Timer2  
Master  
Synchronous  
Serial Port (MSSP)  
Enhanced CCP  
(ECCP)  
Note 1: Higher order bits are from the STATUS register.  
2002 Microchip Technology Inc.  
DS41120B-page 5  
PIC16C717/770/771  
FIGURE 1-2:  
PIC16C770/771 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
EPROM  
RA1/AN1/LVDIN  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
RA4/T0CKI  
RA5/MCLR/VPP  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
Program  
RAM  
File  
Registers  
Memory(2)  
8 Level Stack  
(13-bit)  
256 x 8  
Program  
Bus  
14  
Program Memory  
Read (PMR)  
RAM  
Addr(1)  
9
Addr MUX  
Instruction reg  
PORTB  
7
Indirect  
Addr  
Direct Addr  
RB0/AN4/INT  
RB1/AN5/SS  
8
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
RB5/SDO/P1B  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1D  
FSR reg  
STATUS reg  
8
Internal  
4 MHz, 37 kHz  
and ER mode  
3
MUX  
Instruction  
Decode &  
Control  
Power-up  
Timer  
ALU  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
OSC1/CLKIN  
OSC2/CLKOUT  
Power-on  
Reset  
W reg  
VDD, VSS  
Watchdog  
Timer  
Brown-out  
Reset  
AVDD  
AVSS  
12-bit  
ADC  
Bandgap  
Reference  
Low-voltage  
Detect  
Timer0  
Timer1  
Timer2  
Master  
Synchronous  
Serial Port (MSSP)  
Enhanced CCP  
(ECCP)  
Note 1: Higher order bits are from the STATUS register.  
2: Program memory for PIC16C770 is 2K x 14. Program memory for PIC16C771 is 4K x 14.  
DS41120B-page 6  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 1-1:  
Name  
PIC16C717/770/771 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Function  
Description  
RA0  
AN0  
ST  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
CMOS  
Bi-directional I/O  
RA0/AN0  
A/D input  
RA1  
CMOS  
Bi-directional I/O  
RA1/AN1/LVDIN  
AN1  
A/D input  
LVDIN  
RA2  
LVD input reference  
Bi-directional I/O  
CMOS  
AN2  
A/D input  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
VREF-  
VRL  
Negative analog reference input  
Internal voltage reference low output  
Bi-directional I/O  
AN  
RA3  
ST  
AN  
AN  
CMOS  
AN3  
A/D input  
VREF+  
VRH  
RA4  
Positive analog reference input  
Internal voltage reference high output  
Bi-directional I/O  
AN  
OD  
ST  
ST  
RA4/T0CKI  
T0CKI  
RA5  
TMR0 clock input  
ST  
Input port  
RA5/MCLR/VPP  
MCLR  
VPP  
ST  
Master clear  
Power  
ST  
Programming voltage  
Bi-directional I/O  
RA6  
CMOS  
XTAL  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
RB0/AN4/INT  
OSC2  
CLKOUT  
RA7  
Crystal/resonator  
CMOS  
CMOS  
FOSC/4 output  
ST  
XTAL  
ST  
Bi-directional I/O  
OSC1  
CLKIN  
RB0  
Crystal/resonator  
External clock input/ER resistor connection  
(1)  
TTL  
AN  
CMOS  
CMOS  
Bi-directional I/O  
AN4  
A/D input  
INT  
ST  
Interrupt input  
(1)  
RB1  
TTL  
AN  
Bi-directional I/O  
RB1/AN5/SS  
AN5  
A/D input  
SS  
ST  
SSP slave select input  
(1)  
RB2  
TTL  
ST  
CMOS  
CMOS  
OD  
Bi-directional I/O  
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
SCK  
SCL  
Serial clock I/O for SPI  
2
ST  
Serial clock I/O for I C  
(1)  
RB3  
TTL  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
Bi-directional I/O  
CCP1  
P1A  
Capture 1 input/Compare 1 output  
PWM P1A output  
(1)  
RB4  
TTL  
ST  
Bi-directional I/O  
SDI  
Serial data in for SPI  
2
SDA  
RB5  
ST  
OD  
Serial data I/O for I C  
(1)  
TTL  
CMOS  
CMOS  
CMOS  
Bi-directional I/O  
RB5/SDO/P1B  
SDO  
P1B  
Serial data out for SPI  
PWM P1B output  
Note 1: Bit programmable pull-ups.  
2: Only in PIC16C770/771 devices.  
2002 Microchip Technology Inc.  
DS41120B-page 7  
PIC16C717/770/771  
TABLE 1-1:  
Name  
PIC16C717/770/771 PINOUT DESCRIPTION (CONTINUED)  
Input  
Type  
Output  
Type  
Function  
Description  
(1)  
RB6  
T1OSO  
T1CKI  
P1C  
TTL  
CMOS  
XTAL  
Bi-directional I/O  
Crystal/Resonator  
TMR1 clock input  
PWM P1C output  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1D  
CMOS  
CMOS  
CMOS  
(1)  
RB7  
TTL  
Bi-directional I/O  
T1OSI  
P1D  
XTAL  
TMR1 crystal/resonator  
PWM P1D output  
CMOS  
VSS  
VDD  
VSS  
Power  
Power  
Power  
Power  
Ground reference for logic and I/O pins  
Positive supply for logic and I/O pins  
Ground reference for analog  
VDD  
(2)  
AVSS  
AVSS  
AVDD  
(2)  
AVDD  
Positive supply for analog  
Note 1: Bit programmable pull-ups.  
2: Only in PIC16C770/771 devices.  
DS41120B-page 8  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 2-2: PROGRAM MEMORY MAP  
AND STACK OF THE  
2.0  
MEMORY ORGANIZATION  
There are two memory blocks in each of these PICmi-  
cro® microcontrollers. Each block (Program Memory  
and Data Memory) has its own bus, so that concurrent  
access can occur.  
PIC16C771  
PC<12:0>  
Additional information on device memory may be found  
in the PICmicroMid-Range MCU Family Reference  
Manual, (DS33023).  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
2.1  
Program Memory Organization  
The PIC16C717/770/771 devices have a 13-bit pro-  
gram counter capable of addressing an 8K x 14 pro-  
gram memory space. The PIC16C717 and the  
PIC16C770 have 2K x 14 words of program memory.  
The PIC16C771 has 4K x 14 words of program mem-  
ory. Accessing a location above the physically imple-  
mented address will cause a wrap-around.  
Stack Level 8  
RESET Vector  
0000h  
The RESET vector is at 0000h and the interrupt vector  
is at 0004h.  
Interrupt Vector  
Page 0  
0004h  
0005h  
FIGURE 2-1: PROGRAM MEMORY MAP  
AND STACK OF THE  
On-chip  
Program  
Memory  
07FFh  
0800h  
PIC16C717 AND PIC16C770  
Page 1  
PC<12:0>  
0FFFh  
1000h  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
3FFFh  
Stack Level 8  
2.2  
Data Memory Organization  
The data memory is partitioned into multiple banks,  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
RESET Vector  
0000h  
RP1 RP0  
(STATUS<6:5>)  
Interrupt Vector  
Page 0  
0004h  
0005h  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2  
= 11 Bank3  
On-chip  
Program  
Memory  
07FFh  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain special  
function registers. Some frequently used special func-  
tion registers from one bank are mirrored in another  
bank for code reduction and quicker access.  
3FFFh  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file can be accessed either directly, or indi-  
rectly, through the File Select Register FSR.  
2002 Microchip Technology Inc.  
DS41120B-page 9  
PIC16C717/770/771  
FIGURE 2-3: REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
TMR0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Indirect addr.(*)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.(*)  
TMR0  
Indirect addr.(*)  
OPTION_REG  
PCL  
80h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
OPTION_REG  
PCL  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
PORTB  
TRISB  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
PCLATH  
INTCON  
PMCON1  
INTCON  
PMDATL  
PIR2  
PMADRL  
PMDATH  
PMADRH  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
P1DEL  
REFCON  
LVDCON  
ANSEL  
ADRESL  
ADCON1  
ADRESH  
ADCON0  
A0h  
1A0h  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
96 Bytes  
1EFh  
1F0h  
EFh  
F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as 0.  
*
Not a physical register.  
DS41120B-page 10  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The special function registers can be classified into two  
sets; core (CPU) and peripheral. Those registers asso-  
ciated with the core functions are described in detail in  
this section. Those related to the operation of the  
peripheral features are described in detail in that  
peripheral feature section.  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Details  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
on  
Page:  
Bank 0  
00h(3)  
01h  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 modules register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
xxxx 0000  
xxxx xx11  
23  
45  
22  
14  
23  
25  
33  
02h(3)  
03h(3)  
04h(3)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
PORTA  
PORTB  
RA7  
RA6  
RB6  
RA5  
RB5  
RA4  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
06h  
RB7  
07h  
Unimplemented  
Unimplemented  
Unimplemented  
08h  
09h  
0Ah(1,3) PCLATH  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
22  
16  
18  
20  
47  
47  
47  
51  
51  
70  
67  
54  
54  
53  
0Bh(3)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
INTE  
RBIE  
SSPIF  
BCLIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
TMR1IF -0---0000  
PIR2  
LVDIF  
0--- 0---  
xxxx xxxx  
xxxx xxxx  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON --00 0000  
Timer2 modules register  
TOUTPS3 TOUTPS2  
Synchronous Serial Port Receive Buffer/Transmit Register  
0000 0000  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
PWM1M1 PWM1M0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000  
ADRESH  
ADCON0  
A/D High Byte Result Register  
ADCS1 ADCS0 CHS2  
xxxx xxxx  
107  
107  
CHS1  
CHS0  
GO/DONE  
CHS3  
ADON  
0000 0000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as 0.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from any bank.  
2002 Microchip Technology Inc.  
DS41120B-page 11  
PIC16C717/770/771  
TABLE 2-1:  
Address Name  
Bank 1  
PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
on  
Page:  
80h(3)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
1111 1111  
1111 1111  
23  
15  
22  
14  
23  
25  
33  
OPTION_REG RBPU  
INTEDG  
Program Counters (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(3)  
83h(3)  
84h(3)  
85h  
PCL  
STATUS  
FSR  
TRISA  
TRISB  
PD  
Z
DC  
C
Indirect data memory address pointer  
PORTA Data Direction Register  
PORTB Data Direction Register  
Unimplemented  
86h  
87h  
88h  
Unimplemented  
89h  
Unimplemented  
8Ah(1,3) PCLATH  
GIE  
PEIE  
ADIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
22  
16  
17  
19  
21  
8Bh(3)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PIE1  
INTE  
RBIE  
SSPIE  
BCLIE  
OSCF  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1IE -0-- 0000  
PIE2  
LVDIE  
0--- 0---  
---- 1-qq  
PCON  
POR  
BOR  
Unimplemented  
Unimplemented  
SSPCON2  
PR2  
GCEN  
ACKSTAT  
ACKDT  
ACKEN  
RCEN  
PEN  
R/W  
RSEN  
UA  
SEN  
BF  
0000 0000  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 0000  
0000 0000  
69  
52  
76  
66  
34  
34  
62  
Timer2 Period Register  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
Synchronous Serial Port (I2C mode) Address Register  
SMP  
CKE  
D/A  
P
S
PORTB Weak Pull-up Control  
PORTB Interrupt on Change Control  
PWM 1 Delay value  
P1DEL  
Unimplemented  
Unimplemented  
Unimplemented  
REFCON  
LVDCON  
ANSEL  
ADRESL  
ADCON1  
VRHEN  
VRLEN  
VRHOEN  
BGST  
VRLOEN  
LVDEN  
0000 ----  
--00 0101  
--11 1111  
xxxx xxxx  
0000 ----  
102  
101  
25  
107  
107  
LVV3  
LVV2  
LVV1  
LVV0  
Analog Channel Select  
A/D Low Byte Result Register  
ADFM VCFG2 VCFG1  
VCFG0  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as 0.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from any bank.  
DS41120B-page 12  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 2-1:  
Address Name  
Bank 2  
PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
on  
Page:  
100h(3)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 modules register  
0000 0000  
xxxx xxxx  
0000 0000  
23  
45  
22  
101h  
TMR0  
PCL  
102h(3)  
103h(3)  
Program Counter's (PC) Least Significant Byte  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
14  
104h(3)  
105h  
106h  
107h  
108h  
109h  
FSR  
Indirect data memory address pointer  
Unimplemented  
xxxx xxxx  
23  
33  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xx11  
Unimplemented  
Unimplemented  
Unimplemented  
10Ah(1,3)  
PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
22  
16  
10Bh(3)  
10Ch  
10Dh  
10Eh  
10Fh  
INTCON  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
GIE  
PEIE  
T0IE  
0000 000x  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---- xxxx  
Program memory read data low  
Program memory read address low  
Program memory read data high  
Program memory read address high  
110h-  
11Fh  
Unimplemented  
Bank 3  
180h(3)  
181h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
23  
15  
22  
14  
23  
OPTION_REG RBPU  
INTEDG  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
182h(3)  
183h(3)  
PCL  
STATUS  
FSR  
PD  
Z
DC  
C
184h(3)  
185h  
186h  
187h  
188h  
189h  
Indirect data memory address pointer  
TRISB  
Unimplemented  
33  
PORTB Data Direction Register  
Unimplemented  
1111 1111  
Unimplemented  
Unimplemented  
18Ah(1,3)  
Write Buffer for the upper 5 bits of the Program Counter  
PCLATH  
INTCON  
PMCON1  
GIE  
PEIE  
T0IE  
---0 0000  
0000 000x  
1--- ---0  
22  
16  
18Bh(3)  
18Ch  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
RD  
Reserved  
18Dh-  
18Fh  
Unimplemented  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as 0.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.  
3: These registers can be addressed from any bank.  
2002 Microchip Technology Inc.  
DS41120B-page 13  
PIC16C717/770/771  
2.2.2.1  
STATUS REGISTER  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
The STATUS register, shown in Register 2-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1: STATUS REGISTER (STATUS: 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity  
is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 14  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2: OPTION REGISTER (OPTION_REG: 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit(1)  
1= PORTB weak pull-ups are disabled  
0= PORTB weak pull-ups are enabled by the WPUB register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Note 1: Individual weak pull-up on RB pins can be enabled/disabled from the weak pull-up  
PORTB Register (WPUB).  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2002 Microchip Technology Inc.  
DS41120B-page 15  
PIC16C717/770/771  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
REGISTER 2-3: INTERRUPT CONTROL REGISTER (INTCON: 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit(1)  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit(1)  
1= At least one of the RB<7:0> pins changed state (must be cleared in software)  
0= None of the RB<7:0> pins have changed state  
Note 1: Individual RB pin interrupt-on-change can be enabled/disabled from the  
Interrupt-on-Change PORTB register (IOCB).  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 16  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
REGISTER 2-4: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1: 8Ch)  
U-0  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as 0’  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5-4  
bit 3  
Unimplemented: Read as 0’  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
bit 2  
bit 1  
bit 0  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS41120B-page 17  
PIC16C717/770/771  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
REGISTER 2-5: PERIPHERAL INTERRUPT REGISTER 1 (PIR1: 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as 0.  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
0= The A/D conversion is not complete  
bit 5-4  
bit 3  
Unimplemented: Read as 0’  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag  
1= The SSP interrupt condition has occurred, and must be cleared in software before returning  
from the Interrupt Service Routine. The conditions that will set this bit are:  
SPI  
A transmission/reception has taken place.  
I2C Slave / Master  
A transmission/reception has taken place.  
I2C Master  
The initiated START condition was completed by the SSP module.  
The initiated STOP condition was completed by the SSP module.  
The initiated Restart condition was completed by the SSP module.  
The initiated Acknowledge condition was completed by the SSP module.  
A START condition occurred while the SSP module was IDLE (Multi-master system).  
A STOP condition occurred while the SSP module was IDLE (Multi-master system).  
0= No SSP interrupt condition has occurred.  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 18  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.6  
PIE2 REGISTER  
This register contains the individual enable bits for the  
SSP bus collision and low voltage detect interrupts.  
REGISTER 2-6: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2: 8Dh)  
R/W-0  
LVDIE  
U-0  
U-0  
U-0  
R/W-0  
BCLIE  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
LVDIE: Low Voltage Detect Interrupt Enable bit  
1= LVD Interrupt is enabled  
0= LVD Interrupt is disabled  
bit 6-4  
bit 3  
Unimplemented: Read as '0'  
BCLIE: Bus Collision Interrupt Enable bit  
1= Bus Collision interrupt is enabled  
0= Bus Collision interrupt is disabled  
bit 2-0  
Unimplemented: Read as '0'  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS41120B-page 19  
PIC16C717/770/771  
.
2.2.2.7  
PIR2 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the SSP Bus Collision and low-  
voltage detect interrupt flag bits.  
REGISTER 2-7: PERIPHERAL INTERRUPT REGISTER 2 (PIR2: 0Dh)  
R/W-0  
LVDIF  
U-0  
U-0  
U-0  
R/W-0  
BCLIF  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
LVDIF: Low Voltage Detect Interrupt Flag bit  
1= The supply voltage has fallen below the specified LVD voltage (must be cleared in software)  
0= The supply voltage is greater than the specified LVD voltage  
bit 6-4  
bit 3  
Unimplemented: Read as '0'  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision has occurred while the SSP module configured in I2C Master was  
transmitting (must be cleared in software)  
0= No bus collision occurred  
bit 2-0  
Unimplemented: Read as '0'  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 20  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
2.2.2.8  
PCON REGISTER  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent RESETS to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a dont care and is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BODEN  
bit in the Configuration word).  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
Those devices with brown-out detection circuitry con-  
tain an additional bit to differentiate a Brown-out Reset  
condition from a Power-on Reset condition.  
The PCON register also contains the frequency select  
bit of the INTRC or ER oscillator.  
REGISTER 2-8: POWER CONTROL REGISTER (PCON: 8Eh)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
OSCF  
U-0  
R/W-q  
POR  
R/W-q  
BOR  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
OSCF: Oscillator Speed bit  
INTRC Mode  
1= 4 MHz nominal  
0= 37 kHz nominal  
ER Mode  
1= Oscillator frequency depends on the external resistor value on the OSC1 pin.  
0= 37 kHz nominal  
All other modes  
x= Ignored  
bit 2  
bit 1  
Unimplemented: Read as '0'  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit (See Section 2.2.2.8 Note)  
1= No Brown-out Reset occurred  
bit 0  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
q = Value depends on conditions  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
2002 Microchip Technology Inc.  
DS41120B-page 21  
PIC16C717/770/771  
2.3  
PCL and PCLATH  
2.4  
Stack  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13 bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<12:8>  
bits and is not directly readable or writable. All updates  
to the PCH register occur through the PCLATH register.  
The stack allows a combination of up to 8 program calls  
and interrupts to occur. The stack contains the return  
address from this branch in program execution.  
Mid-range devices have an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not modified when the stack is PUSHed or  
POPed.  
2.3.1  
PROGRAM MEMORY PAGING  
PIC16C717/770/771 devices are capable of address-  
ing a continuous 8K word block of program memory.  
The CALLand GOTOinstructions provide only 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper 2 bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. A return instruction pops a PC  
address off the stack onto the PC register. Therefore,  
manipulation of the PCLATH<4:3> bits are not required  
for the return instructions (which POPs the address  
from the stack).  
After the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-4:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
12  
PCL  
8 7  
0
Instruction with  
PCL as  
Destination  
8
PCLATH<4:0>  
ALU  
5
PCLATH  
PCL  
PCH  
12 1110  
0
8 7  
GOTO, CALL  
11  
PCLATH<4:3>  
PCLATH  
Opcode <10:0>  
2
DS41120B-page 22  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
EXAMPLE 2-1:  
How to Clear RAM Using  
Indirect Addressing  
movlw  
movwf  
0x20  
;initialize pointer  
FSR  
; to RAM  
NEXT  
clrf  
incf  
btfss  
goto  
INDF  
FSR  
FSR,4  
NEXT  
;clear INDF register  
;inc pointer  
;all done?  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
;NO, clear next  
CONTINUE  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-1.  
:
;YES, continue  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-5.  
FIGURE 2-5: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory(1)  
7Fh  
Bank 0  
FFh  
Bank 1  
17Fh  
Bank 2  
1FFh  
Bank 3  
Note 1: For register file map detail see Figure 2-3.  
2002 Microchip Technology Inc.  
DS41120B-page 23  
PIC16C717/770/771  
NOTES:  
DS41120B-page 24  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
present on a pin, the pin must be configured as an ana-  
log input to prevent unnecessary current draw from the  
power supply. The Analog Select Register (ANSEL)  
allows the user to individually select the Digital/Analog  
mode on these pins. When the Analog mode is active,  
the port pin will always read 0.  
3.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Additional information on I/O ports may be found in the  
PICmicroMid-Range MCU Family Reference Man-  
ual, (DS33023).  
Note 1: On a Power-on Reset, the ANSEL regis-  
ter configures these mixed-signal pins as  
Analog mode.  
2: If a pin is configured as Analog mode, the  
RA pin will always read '0' and RB pin will  
always read '1', even if the digital output is  
active.  
3.1  
I/O Port Analog/Digital Mode  
The PIC16C717/770/771 have two I/O ports: PORTA  
and PORTB. Some of these port pins are mixed-signal  
(can be digital or analog). When an analog signal is  
REGISTER 3-1: ANALOG SELECT REGISTER (ANSEL: 9Dh)  
R/W-1  
R/W-1  
R/W-1  
ANS5  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Reserved: Do not use  
ANS<5:0>: Analog Select between analog or digital function on pins AN<5:0>, respectively.  
0= Digital I/O. Pin is assigned to port or special function.  
1= Analog Input. Pin is assigned as analog input.  
Note: Setting a pin to an analog input disables the digital input buffer on the pin. The cor-  
responding TRIS bit should be set to Input mode when using pins as analog inputs.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
these pins as analog input/output, the ANSEL register  
must have the proper value to individually select the  
Analog mode of the corresponding pins.  
3.2  
PORTA and the TRISA Register  
PORTA is a 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
Hi-impedance mode). Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Note: Upon RESET, the ANSEL register config-  
ures the RA<3:0> pins as analog inputs.  
All RA<3:0> pins will read as '0'.  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
Pin RA5 is multiplexed with the device RESET (MCLR)  
and programming input (VPP) functions. The RA5/  
MCLR/VPP input only pin has a Schmitt Trigger input  
buffer. All other RA port pins have Schmitt Trigger input  
buffers and full CMOS output buffers.  
Pins RA<3:0> are multiplexed with analog functions,  
such as analog inputs to the A/D converter, analog  
VREF inputs, and the onboard bandgap reference out-  
puts. When the analog peripherals are using any of  
Pins RA6 and RA7 are multiplexed with the oscillator  
input and output functions.  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
2002 Microchip Technology Inc.  
DS41120B-page 25  
PIC16C717/770/771  
EXAMPLE 3-1:  
Initializing PORTA  
BCF  
STATUS, RP0  
; Select Bank 0  
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
BSF  
MOVLW  
STATUS, RP0  
0Fh  
; Select Bank 1  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<7:4> as outputs. RA<7:6>availability depends on oscillator selection.  
; Set RA<1:0> as analog inputs, RA<7:2> are digital I/O  
MOVLW  
MOVWF  
BCF  
03  
ANSEL  
STATUS, RP0  
; Return to Bank 0  
FIGURE 3-1: BLOCK DIAGRAM OF RA0/AN0, RA1/AN1/LVDIN  
Data Latch  
Data  
Bus  
D
Q
VDD  
VDD  
P
WR  
PORT  
Q
CK  
TRIS Mode  
N
D
Q
WR  
TRIS  
VSS  
VSS  
Q
CK  
RD  
TRIS  
Analog Select  
Schmitt  
Trigger  
D
Q
WR  
ANSEL  
Q
CK  
Q
D
EN  
RD  
PORT  
To A/D Converter input or LVD Module input  
DS41120B-page 26  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-2: BLOCK DIAGRAM OF RA2/AN2/VREF-/VRL AND RA3/AN3/VREF+/VRH  
Data Latch  
D
Data  
Bus  
Q
VDD  
VDD  
P
WR  
PORT  
Q
CK  
TRIS Mode  
N
D
Q
WR  
TRIS  
VSS  
VSS  
Q
CK  
RD  
TRIS  
Analog Select  
D
Q
Schmitt  
Trigger  
WR  
ANSEL  
Q
CK  
Q
D
EN  
RD  
PORT  
To A/D Converter input  
and VREF+, VREF- inputs  
VRH, VRL outputs  
(From VREF-LVD-BOR Module)  
VRH, VRL output enable  
Sense input for  
VRH, VRL amplifier  
2002 Microchip Technology Inc.  
DS41120B-page 27  
PIC16C717/770/771  
FIGURE 3-3: BLOCK DIAGRAM OF RA4/T0CKI  
Data Latch  
Data  
Bus  
D
Q
WR  
Port  
Q
CK  
TRIS Latch  
N
D
Q
WR  
TRIS  
VSS  
Q
CK  
VSS  
RD  
TRIS  
Schmitt Trigger  
Input Buffer  
Q
D
EN  
RD  
PORT  
TMR0 clock input  
DS41120B-page 28  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-4: BLOCK DIAGRAM OF RA5/MCLR/VPP  
To MCLR Circuit  
MCLR Filter  
Program Mode  
HV Detect  
Data  
Bus  
VSS  
RD  
TRIS  
VSS  
Schmitt  
Trigger  
Q
D
EN  
RD PORT  
2002 Microchip Technology Inc.  
DS41120B-page 29  
PIC16C717/770/771  
FIGURE 3-5: BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN  
(INTRC or ER) and CLKOUT  
From OSC1  
CLKOUT (Fosc/4)  
Oscillator  
Circuit  
1
0
VDD  
Data  
Bus  
VDD  
P
D
Q
Q
WR  
PORTA  
CK  
VSS  
Data Latch  
D
Q
N
WR  
TRISA  
CK  
Q
TRIS Latch  
VSS  
Schmitt Trigger  
Input Buffer  
RD TRISA  
EC or [(ER or INTRC) and CLKOUT]  
Q
D
EN  
RD PORTA  
DS41120B-page 30  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-6: BLOCK DIAGRAM OF RA7/OSC1/CLKIN PIN  
To OSC2  
Oscillator  
Circuit  
VDD  
To Chip Clock Drivers  
VDD  
Schmitt Trigger  
Input Buffer  
Data  
Bus  
D
Q
Q
EC Mode  
P
WR  
PORTA  
CK  
Data Latch  
D
Q
N
WR  
TRISA  
CK  
Q
TRIS Latch  
INTRC  
Vss  
INTRC  
RD TRISA  
Schmitt Trigger  
Input Buffer  
Q
D
EN  
RD PORTA  
2002 Microchip Technology Inc.  
DS41120B-page 31  
PIC16C717/770/771  
TABLE 3-1:  
PORTA FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
RA0  
AN0  
ST  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
CMOS  
Bi-directional I/O  
A/D input  
RA0/AN0  
RA1  
CMOS  
Bi-directional I/O  
A/D input  
RA1/AN1/LVDIN  
AN1  
LVDIN  
RA2  
LVD input reference  
Bi-directional I/O  
A/D input  
CMOS  
AN2  
RA2/AN2/VREF-/VRL  
RA3/AN3/VREF+/VRH  
VREF-  
VRL  
Negative analog reference input  
Internal voltage reference low output  
Bi-directional I/O  
AN  
RA3  
ST  
AN  
AN  
CMOS  
AN3  
A/D input  
VREF+  
VRH  
Positive analog reference input  
Internal voltage reference high output  
Bi-directional I/O  
AN  
OD  
RA4  
ST  
ST  
RA4/T0CKI  
T0CKI  
RA5  
TMR0 clock input  
ST  
Input port  
RA5/MCLR/VPP  
MCLR  
VPP  
ST  
Master clear  
Power  
ST  
Programming voltage  
Bi-directional I/O  
RA6  
CMOS  
XTAL  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
OSC2  
CLKOUT  
RA7  
Crystal/resonator  
CMOS  
CMOS  
FOSC/4 output  
ST  
Bi-directional I/O  
OSC1  
CLKIN  
XTAL  
ST/AN  
Crystal/resonator  
External clock input/ER resistor connection  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
Value on all  
other  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
xxxx 0000 uuuu 0000  
1111 1111 1111 1111  
05h  
85h  
9Dh  
PORTA  
TRISA  
ANSEL  
RA7  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PORTA Data Direction Register  
ANS5 ANS4  
ANS3  
ANS2  
ANS1  
ANS0  
--11 1111 --11 1111  
Legend: x = unknown, u = unchanged, - = unimplemented locations read as 0. Shaded cells are not used by PORTA.  
DS41120B-page 32  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Each of the PORTB pins, if configured as input, also  
has an interrupt-on-change feature, which can be indi-  
vidually selected from the IOCB register. The RBIE bit  
in the INTCON register functions as a global enable bit  
to turn on/off the interrupt-on-change feature. The  
selected inputs are compared to the old value latched  
on the last read of PORTB. The "mismatch" outputs are  
ORed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
3.3  
PORTB and the TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input (i.e., put the corresponding output driver in a  
Hi-impedance mode). Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
EXAMPLE 3-2:  
Initializing PORTB  
BCF  
STATUS, RP0;  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
BSF  
STATUS, RP0; Select Bank 1  
a) Clear flag bit RBIF.  
MOVLW  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
; Set RB<1:0> as analog  
inputs  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
MOVWF  
MOVLW  
TRISB  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
0x30  
MOVWF  
BCF  
ANSEL  
;
STATUS, RP0; Return to Bank 0  
Each of the PORTB pins has an internal pull-up, which  
can be individually enabled from the WPUB register. A  
single global enable bit can turn on/off the enabled pull-  
ups. Clearing the RBPU bit, (OPTION_REG<7>),  
enables the weak pull-up resistors. The weak pull-up is  
automatically turned off when the port pin is configured  
as an output. The pull-ups are disabled on a Power-on  
Reset.  
2002 Microchip Technology Inc.  
DS41120B-page 33  
PIC16C717/770/771  
REGISTER 3-2: WEAK PULL-UP PORTB REGISTER (WPUB: 95h)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WPUB7  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2 WPUB1 WPUB0  
bit 0  
bit 7  
bit 7-0  
WPUB<7:0>: PORTB Weak Pull-Up Control bits  
1= Weak pull-up enabled  
0= Weak pull-up disabled  
Note 1: For the WPUB register setting to take effect, the RBPU bit in the OPTION_REG  
register must be cleared.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode  
(TRIS = 0).  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
REGISTER 3-3: INTERRUPT-ON-CHANGE PORTB REGISTER (IOCB: 96h)  
R/W-1  
IOCB7  
R/W-1  
IOCB6  
R/W-1  
IOCB5  
R/W-1  
IOCB4  
R/W-0  
IOCB3  
R/W-0  
IOCB2  
R/W-0  
IOCB1  
R/W-0  
IOCB0  
bit 7  
bit 0  
bit 7-0  
IOCB<7:0>: Interrupt-on-Change PORTB Control bits  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note: The interrupt enable bits GIE and RBIE in the INTCON Register must be set for indi-  
vidual interrupts to be recognized.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 34  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The RB0 pin is multiplexed with the A/D converter ana-  
log input 4 and the external interrupt input (RB0/AN4/  
INT). When the pin is used as analog input, the ANSEL  
register must have the proper value to select the RB0  
pin as Analog mode.  
The RB1 pin is multiplexed with the A/D converter ana-  
log input 5 and the MSSP module slave select input  
(RB1/AN5/SS). When the pin is used as analog input,  
the ANSEL register must have the proper value to  
select the RB1 pin as Analog mode.  
Note: Upon RESET, the ANSEL register config-  
ures the RB1 and RB0 pins as analog inputs.  
Both RB1 and RB0 pins will read as 1.  
FIGURE 3-7: BLOCK DIAGRAM OF RB0/AN4/INT, RB1/AN5/SS PIN  
WPUB Reg  
Data Bus  
Q
D
WR  
WPUB  
CK  
Q
VDD  
RBPU  
weak  
pull-up  
P
VDD  
PORTB Reg  
D
Q
VDD  
P
WR  
PORT  
CK  
Q
TRIS Reg  
N
D
Q
WR  
TRIS  
VSS  
CK  
Q
RD  
TRIS  
VSS  
Analog Select  
D
Q
Q
WR  
ANSEL  
CK  
TTL  
IOCB Reg  
D
Q
Schmitt  
WR  
IOCB  
Set  
RBIF  
Trigger  
Q
Q
D
CK  
Q
Q1  
From  
RB<7:0> pins  
EN  
Q
D
Q3  
D
EN  
RD  
PORT  
EN  
To INT input or MSSP module  
To A/D Converter  
2002 Microchip Technology Inc.  
DS41120B-page 35  
PIC16C717/770/771  
FIGURE 3-8: BLOCK DIAGRAM OF RB2/SCK/SCL, RB3/CCP1/P1A, RB4/SDI/SDA,  
RB5/SDO/P1B  
WPUB Reg  
Data Bus  
D
Q
WR  
WPUB  
CK  
Q
VDD  
Spec. Func En.  
RBPU  
VDD  
weak  
pull-up  
P
SDA, SDO, SCK, CCP1, P1A, P1B  
PORTB Reg  
VDD  
P
1
0
D
Q
WR  
PORT  
CK  
Q
N
TRIS Reg  
VSS  
D
Q
WR  
TRIS  
VSS  
CK  
Q
RD  
TRIS  
TTL  
IOCB Reg  
Schmitt  
Trigger  
D
Q
WR  
IOCB  
Set  
RBIF  
Q
Q
D
CK  
Q
Q1  
From  
RB<7:0> pins  
EN  
Q
D
D
Q3  
EN  
EN  
RD  
PORT  
SCK, SCL, CC, SDI, SDA inputs  
DS41120B-page 36  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 3-9: BLOCK DIAGRAM OF RB6/T1OSO/T1CKI/P1C  
WPUB Reg  
Data Bus  
VDD  
D
Q
RBPU  
WR  
WPUB  
P
weak pull-up  
CK  
Q
VDD  
P
D
Q
VDD  
WR PORTB  
WR TRISB  
CK  
Q
Data Latch  
D
Q
Q
N
CK  
TRIS Latch  
VSS  
TTL  
RD TRISB  
T1OSCEN  
Input  
Buffer  
RD PORTB  
IOCB Reg  
D
Q
WR  
IOCB  
CK  
Q
CMOS  
TMR1 Clock  
Schmitt  
Trigger  
Serial programming clock  
From RB7  
TMR1 Oscillator  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From  
RB<7:0> pins  
RD Port  
Q3  
EN  
Note: The TMR1 oscillator enable (T1OSCEN = 1) overrides the RB6 I/O port and P1C functions.  
2002 Microchip Technology Inc.  
DS41120B-page 37  
PIC16C717/770/771  
FIGURE 3-10: BLOCK DIAGRAM OF THE RB7/T1OSI/P1D  
VDD  
RBPU  
TMR1 Oscillator  
weak pull-up  
P
To RB6  
WPUB Reg  
Data Bus  
D
Q
T1OSCEN  
WR  
WPUB  
CK  
Q
VDD  
VDD  
P
D
Q
Q
WR PORTB  
WR TRISB  
CK  
Data Latch  
D
Q
Q
N
CK  
TRIS Latch  
VSS  
RD TRISB  
T10SCEN  
TTL  
Input  
Buffer  
RD PORTB  
IOCB Reg  
D
Q
WR  
IOCB  
CK  
Q
Serial programming input  
Q
Q
D
Schmitt Trigger  
Set RBIF  
Q1  
EN  
D
From  
RB<7:0> pins  
RD Port  
Q3  
EN  
Note: The TMR1 oscillator enable (T1OSCEN = 1) overrides the RB7 I/O port and P1D functions.  
DS41120B-page 38  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 3-3:  
PORTB FUNCTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
(1)  
RB0  
AN4  
INT  
TTL  
AN  
ST  
CMOS  
Bi-directional I/O  
RB0/AN4/INT  
RB1/AN5/SS  
A/D input  
Interrupt input  
Bi-directional I/O  
A/D input  
(1)  
RB1  
AN5  
SS  
TTL  
AN  
ST  
CMOS  
SSP slave select input  
(1)  
RB2  
SCK  
SCL  
RB3  
CCP1  
P1A  
TTL  
ST  
CMOS  
CMOS  
OD  
Bi-directional I/O  
RB2/SCK/SCL  
RB3/CCP1/P1A  
RB4/SDI/SDA  
RB5/SDO/P1B  
Serial clock I/O for SPI  
2
ST  
Serial clock I/O for I C  
(1)  
TTL  
ST  
CMOS  
CMOS  
CMOS  
CMOS  
Bi-directional I/O  
Capture 1 input/Compare 1 output  
PWM P1A output  
(1)  
RB4  
SDI  
TTL  
ST  
Bi-directional I/O  
Serial data in for SPI  
2
SDA  
RB5  
SDO  
P1B  
ST  
OD  
Serial data I/O for I C  
(1)  
TTL  
CMOS  
CMOS  
CMOS  
CMOS  
XTAL  
Bi-directional I/O  
Serial data out for SPI  
PWM P1B output  
(1)  
RB6  
T1OSO  
T1CKI  
P1C  
RB7  
T1OSI  
P1D  
TTL  
Bi-directional I/O  
Crystal/Resonator  
TMR1 clock input  
PWM P1C output  
RB6/T1OSO/T1CKI/P1C  
CMOS  
CMOS  
CMOS  
(1)  
TTL  
Bi-directional I/O  
RB7/T1OSI/P1D  
XTAL  
TMR1 crystal/resonator  
PWM P1D output  
CMOS  
Note 1: Bit programmable pull-ups.  
TABLE 3-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
xxxx xx11 uuuu uu11  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 0000 1111 0000  
--11 1111 --11 1111  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
PORTB Data Direction Register  
T0SE  
PORTB Weak Pull-up Control  
PORTB Interrupt on Change Control  
ANS5 ANS4  
81h, 181h OPTION_REG RBPU INTEDG T0CS  
PSA  
PS2  
PS1  
PS0  
95h  
96h  
9Dh  
WPUB  
IOCB  
ANSEL  
ANS3  
ANS2  
ANS1  
ANS0  
Legend: x= unknown, u = unchanged. Shaded cells are not used by PORTB.  
2002 Microchip Technology Inc.  
DS41120B-page 39  
PIC16C717/770/771  
NOTES:  
DS41120B-page 40  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
When interfacing the program memory block, the  
PMDATH & PMDATL registers form a 2-byte word,  
which holds the 14-bit data. The PMADRH & PMADRL  
registers form a 2-byte word, which holds the 12-bit  
address of the program memory location being  
accessed. Mid-range devices have up to 8K words of  
program EPROM with an address range from 0h to  
3FFFh. When the device contains less memory than  
the full address range of the PMADRH:PMARDL regis-  
ters, the Most Significant bits of the PMADRH register  
are ignored.  
4.0  
PROGRAM MEMORY READ  
(PMR)  
Program memory is readable during normal operation  
(full VDD range). It is indirectly addressed through the  
Special Function Registers:  
PMCON1  
PMDATH  
PMDATL  
PMADRH  
PMADRL  
4.1  
PMCON1 REGISTER  
PMCON1 is the control register for program memory  
accesses.  
Control bit RD initiates a read operation. This bit cannot  
be cleared, only set, in software. It is cleared in hard-  
ware at completion of the read operation.  
REGISTER 4-1: PROGRAM MEMORY READ CONTROL REGISTER 1 (PMCON1: 18Ch)  
R-1  
Reserved  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/S-0  
RD  
bit 0  
bit 7  
Reserved: Read as 1’  
bit 6-1  
bit 0  
Unimplemented: Read as '0'  
RD: Read Control bit  
1= Initiates a Program memory read (read takes 2 cycles). RD is cleared in hardware.  
0= Reserved  
Legend:  
S = Settable (cleared in hardware)  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
4.2  
PMDATH AND PMDATL  
REGISTERS  
The PMDATH:PMDATL registers are loaded with the  
contents of program memory addressed by the  
PMADRH and PMADRL registers upon completion of a  
Program Memory Read command.  
2002 Microchip Technology Inc.  
DS41120B-page 41  
PIC16C717/770/771  
REGISTER 4-2: PROGRAM MEMORY DATA HIGH (PMDATH: 10Eh)  
U-0  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
PMD13  
PMD12  
PMD11  
PMD10  
PMD9  
PMD8  
bit 7  
Unimplemented: Read as '0'  
bit 0  
bit 7-6  
bit 5-0  
PMD<13:8>: The value of the program memory word pointed to by PMADRH and PMADRL  
after a Program Memory Read command.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
REGISTER 4-3: PROGRAM MEMORY DATA LOW (PMDATL: 10Ch)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
PMD7  
PMD6  
PMD5  
PMD4  
PMD3  
PMD2  
PMD1  
PMD0  
bit 7  
bit 0  
bit 7-0  
PMD<7:0>: The value of the program memory word pointed to by PMADRH and PMADRL after  
a Program Memory Read command.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
REGISTER 4-4: PROGRAM MEMORY ADDRESS HIGH (PMADRH: 10Fh)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
PMA9  
R/W-x  
PMA8  
PMA11  
PMA10  
bit 7  
bit 0  
bit 7-4  
bit 3-0  
Unimplemented: Read as '0'  
PMA<11:8>: PMR Address bits  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
REGISTER 4-5: PROGRAM MEMORY ADDRESS LOW (PMADRL: 10Dh)  
R/W-x  
PMA7  
R/W-x  
PMA6  
R/W-x  
PMA5  
R/W-x  
PMA4  
R/W-x  
PMA3  
R/W-x  
PMA2  
R/W-x  
PMA1  
R/W-x  
PMA0  
bit 7  
bit 0  
bit 7-0  
PMA<7:0>: PMR Address bits  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 42  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
the BSF PMCON1,RDinstruction to be ignored. The data  
is available, in the very next cycle, in the PMDATH and  
PMDATL registers; therefore it can be read as 2 bytes  
in the following instructions. PMDATH and PMDATL  
registers will hold this value until another Program  
Memory Read or until it is written to by the user.  
4.3  
READING THE EPROM PROGRAM  
MEMORY  
To read a program memory location, the user must  
write 2 bytes of the address to the PMADRH and  
PMADRL registers, then set control bit RD  
(PMCON1<0>). Once the read control bit is set, the  
Program Memory Read (PMR) controller will use the  
second instruction cycle after to read the data. This  
causes the second instruction immediately following  
Note: The two instructions that follow setting the  
PMCON1 read bit must be NOPs.  
EXAMPLE 4-1:  
OTP PROGRAM MEMORY Read  
BSF  
STATUS, RP1  
;
BCF  
STATUS, RP0  
MS_PROG_PM_ADDR  
PMADRH  
LS_PROG_PM_ADDR  
PMADRL  
STATUS, RP0  
PMCON1, RD  
; Bank 2  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; MS Byte of Program Memory Address to read  
;
; LS Byte of Program Memory Address to read  
; Bank 3  
BSF  
; Program Memory Read  
NOP  
NOP  
; This instruction must be an NOP  
; This instruction must be an NOP  
; PMDATH:PMDATL now has the data  
next instruction  
4.4  
OPERATION DURING CODE  
PROTECT  
When the device is code protected, the CPU can still  
perform the Program Memory Read function.  
FIGURE 4-1: PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Program  
Memory  
ADDR  
PMADRH,PMADRL  
PC  
PC+1  
PC+3  
PC+4  
PC+5  
BSF PMCON1,RD  
Executed here  
INSTR(PC-1)  
Executed here  
INSTR(PC+1)  
Executed here  
Forced NOP  
Executed here  
INSTR(PC+3)  
Executed here  
INSTR(PC+4)  
Executed here  
RD bit  
PMDATH  
PMDATL  
register  
2002 Microchip Technology Inc.  
DS41120B-page 43  
PIC16C717/770/771  
TABLE 4-1:  
PROGRAM MEMORY READ REGISTER SUMMARY  
Value on:  
POR,  
Value on all  
other  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
1--- ---0 1--- ---0  
--xx xxxx --uu uuuu  
xxxx xxxx uuuu uuuu  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
18Ch  
10Eh  
10Ch  
10Fh  
10Dh  
PMCON1 Reserved  
RD  
PMDATH  
PMDATL  
PMADRH  
PMADRL  
PMD13 PMD12 PMD11 PMD10 PMD9  
PMD8  
PMD0  
PMA8  
PMA0  
PMD7  
PMD6  
PMD5  
PMD4  
PMD3  
PMA11 PMA10 PMA9  
PMA3 PMA2 PMA1  
PMD2  
PMD1  
PMA7  
PMA6  
PMA5  
PMA4  
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Program Memory Read.  
DS41120B-page 44  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Additional information on external clock requirements  
is available in the PICmicroMid-Range MCU Family  
Reference Manual, (DS33023).  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
5.2  
Prescaler  
8-bit timer/counter  
Readable and writable  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 5-2). For simplicity, this  
counter is being referred to as prescalerthroughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
Internal or external clock select  
Edge select for external clock  
8-bit software programmable prescaler  
Interrupt on overflow from FFh to 00h  
Figure 5-1 is a simplified block diagram of the Timer0  
module.  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual, (DS33023).  
The prescaler is not readable or writable.  
The PSA and PS<2:0> bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
5.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In Timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
Setting bit PSA will assign the prescaler to the Watch-  
dog Timer (WDT). When the prescaler is assigned to  
the WDT, prescale values of 1:1, 1:2, ..., 1:128 are  
selectable.  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In Counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF 1, x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the WDT.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
FIGURE 5-1: TIMER0 BLOCK DIAGRAM  
Data Bus  
Fosc/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 Tcy delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS<2:0> (OPTION_REG<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).  
2002 Microchip Technology Inc.  
DS41120B-page 45  
PIC16C717/770/771  
5.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
5.3  
Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP.  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed on-the-flyduring program  
execution).  
Note: To avoid an unintended device RESET, a  
specific instruction sequence (shown in the  
PICmicroMid-Range Reference Man-  
ual, DS33023) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This sequence must  
be followed even if the WDT is disabled.  
FIGURE 5-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (= Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
Pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS<2:0>  
PSA  
1
0
WDT Enable Bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS<2:0> are (OPTION_REG<5:0>).  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
Timer0 register  
GIE PEIE  
xxxx xxxx uuuu uuuu  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
T0IE INTE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF 0000 000x 0000 000u  
1111 1111 1111 1111  
81h,181h  
85h  
OPTION_REG RBPU INTEDG T0CS T0SE  
TRISA PORTA Data Direction Register  
PS0  
1111 1111 1111 1111  
Legend: x = unknown, u = unchanged, - = unimplemented locations read as 0. Shaded cells are not used by Timer0.  
DS41120B-page 46  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual, (DS33023).  
6.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
6.1  
Timer1 Operation  
16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
Timer1 can operate in one of these modes:  
Readable and writable (Both registers)  
Internal or external clock select  
As a timer  
As a synchronous counter  
As an asynchronous counter  
Interrupt on overflow from FFFFh to 0000h  
RESET from ECCP module trigger  
The Operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Timer1 has a control register, shown in Register 6-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
Figure 6-2 is a simplified block diagram of the Timer1  
module.  
REGISTER 6-1: TIMER1 CONTROL REGISTER (T1CON: 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
Unimplemented: Read as '0'  
bit 7-6  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut off(1)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RB6/T1OSO/T1CKI /P1C (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS41120B-page 47  
PIC16C717/770/771  
6.1.1  
TIMER1 COUNTER OPERATION  
In this mode, Timer1 is being incremented via an exter-  
nal source. Increments occur on a rising edge. After  
Timer1 is enabled in Counter mode, the module must  
first have a falling edge before the counter begins to  
increment.  
FIGURE 6-1: TIMER1 INCREMENTING EDGE  
T1CKI  
(Initially high)  
First falling edge  
of the T1ON enabled  
T1CKI  
(Initially low)  
First falling edge  
of the T1ON enabled  
Note: Arrows indicate counter increments.  
FIGURE 6-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
clock input  
0
TMR1  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RB6/T1OSO/T1CKI/P1C  
RB7/T1OSI/P1D  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator(1)  
Fosc/4  
Internal  
Clock  
0
2
SLEEP input  
T1CKPS<1:0>  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS41120B-page 48  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
6.2  
Timer1 Oscillator  
6.3  
Timer1 Interrupt  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 6-1 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
6.4  
Resetting Timer1 using a CCP  
Trigger Output  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
If the ECCP module is configured in Compare mode to  
generate a special event trigger" (CCP1M<3:0> =  
1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
Timer1 must be configured for either timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
These values are for design guidance only.  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from ECCP, the write will take prece-  
dence.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
-0-- 0000 -0-- 0000  
-0-- 0000 -0-- 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CON  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC TMR1CS TMR1ON  
Legend: x = unknown, u = unchanged, - = unimplemented read as 0. Shaded cells are not used by the Timer1 module.  
2002 Microchip Technology Inc.  
DS41120B-page 49  
PIC16C717/770/771  
NOTES:  
DS41120B-page 50  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
7.1  
Timer2 Operation  
7.0  
TIMER2 MODULE  
Timer2 can be used as the PWM time-base for PWM  
mode of the ECCP module.  
The Timer2 module timer has the following features:  
8-bit timer (TMR2 register)  
The TMR2 register is readable and writable, and is  
cleared on any device RESET.  
8-bit period register (PR2)  
Readable and writable (Both registers)  
Software programmable prescaler (1:1, 1:4, 1:16)  
Software programmable postscaler (1:1 to 1:16)  
Interrupt on TMR2 match of PR2  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4 or 1:16, selected by control bits T2CKPS<1:0>  
(T2CON<1:0>).  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
SSP module optional use of TMR2 output to gen-  
erate clock shift  
Timer2 has a control register, shown in Register 7-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Figure 7-1 is a simplified block diagram of the Timer2  
module.  
a write to the TMR2 register  
a write to the T2CON register  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual, (DS33023).  
any device RESET (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 7-1:  
TIMER2 CONTROL REGISTER (T2CON1: 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS41120B-page 51  
PIC16C717/770/771  
FIGURE 7-1:  
Timer2 Block Diagram  
7.2  
Timer2 Interrupt  
Sets flag  
bit TMR2IF  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
TMR2  
output (1)  
RESET  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
Fosc/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
7.3  
Output of TMR2  
EQ  
4
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
PR2 reg  
Note: TMR2 register output can be software  
selected by the SSP Module as a baud  
clock.  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
-0-- 0000 -0-- 0000  
-0-- 0000 -0-- 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: x = unknown, u = unchanged, - = unimplemented read as 0. Shaded cells are not used by the Timer2 module.  
DS41120B-page 52  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON and P1DEL reg-  
isters control the operation of ECCP. All are readable  
and writable.  
8.0  
ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULES  
The ECCP (Enhanced Capture/Compare/PWM)  
module contains a 16-bit register which can operate as  
a 16-bit capture register, as a 16-bit compare register  
or as a PWM master/slave Duty Cycle register.  
Table 8-1 shows the timer resources of the ECCP mod-  
ule modes.  
REGISTER 8-1: CCP1 CONTROL REGISTER (CCP1CON: 17h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWM1M1 PWM1M0 DC1B1  
bit 7  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7-6  
PWM1M<1:0>: PWM Output Configuration  
CCP1M<3:2> = 00, 01, 10  
xx= P1A assigned as Capture input, Compare output. P1B, P1C, P1D assigned as Port pins.  
CCP1M<3:2> = 11  
00= Single output. P1A modulated. P1B, P1C, P1D assigned as Port pins.  
01= Full-bridge output forward. P1D modulated. P1A active. P1B, P1C inactive.  
10= Half-bridge output. P1A, P1B modulated with deadband control. P1C, P1D assigned as  
Port pins.  
11= Full-bridge output reverse. P1B modulated. P1C active. P1A, P1D inactive.  
bit 5-4  
bit 3-0  
DC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in  
CCPRnL.  
CCP1M<3:0>: ECCP Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is  
unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; ECCP resets TMR1, and starts  
an A/D conversion, if the A/D module is enabled.)  
1100= PWM mode. P1A, P1C active high. P1B, P1D active high.  
1101= PWM mode. P1A, P1C active high. P1B, P1D active low.  
1110= PWM mode. P1A, P1C active low. P1B, P1D active high.  
1111= PWM mode. P1A, P1C active low. P1B, P1D active low.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS41120B-page 53  
PIC16C717/770/771  
TABLE 8-1:  
ECCP MODE - TIMER  
RESOURCE  
EXAMPLE 8-1:  
Changing Between  
Capture Prescalers  
; Turn ECCP module off  
CLRF  
CCP1CON  
ECCP Mode  
Capture  
Compare  
PWM  
Timer Resource  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
Timer1  
Timer1  
Timer2  
; value and ECCP ON  
; Load CCP1CON with  
; this value  
MOVWF CCP1CON  
8.1  
Capture Mode  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
In Capture mode, CCPR1H:CCPR1L captures the 16-  
bit value of the TMR1 register when an event occurs on  
pin CCP1. An event is defined as:  
Set flag bit CCP1IF  
(PIR1<2>)  
• every falling edge  
• every rising edge  
Prescaler  
³ 1, 4, 16  
• every 4th rising edge  
• every 16th rising edge  
RB3/CCP1/  
P1A Pin  
CCPR1H  
CCPR1L  
Capture  
Enable  
and  
edge detect  
An event is selected by control bits CCP1M<3:0>  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Q’s  
8.2  
Compare Mode  
8.1.1  
CCP1 PIN CONFIGURATION  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCP1 pin is:  
In Capture mode, the CCP1 pin should be configured  
as an input by setting the TRISB<3> bit.  
• driven High  
Note: If the RB3/CCP1/P1A pin is configured as  
an output, a write to the port can cause a  
capture condition.  
• driven Low  
• toggle output (High to Low or Low to High)  
• remains Unchanged  
8.1.2  
TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M<3:0>. At the same time, interrupt flag bit  
CCP1IF is set.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode. In Asynchronous Counter mode,  
the capture operation may not work.  
Changing the ECCP mode select bits to the clear out-  
put on Match mode (CCP1M<3.0> = “1000”) presets  
the CCP1 output latch to the logic 1 level. Changing the  
ECCP mode select bits to the clear output on Match  
mode (CCP1M<3:0> = “1001”) presets the CCP1 out-  
put latch to the logic 0 level.  
8.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in Operating mode.  
8.2.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the appropriate TRISB bit.  
8.1.4  
ECCP PRESCALER  
There are three prescaler settings, specified by bits  
CCP1M<3:0>. Whenever the ECCP module is turned  
off or the ECCP module is not in Capture mode, the  
prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
Note: Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the port data  
latch.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
8.2.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the ECCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
DS41120B-page 54  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
8.2.3  
SOFTWARE INTERRUPT MODE  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only an ECCP interrupt is generated  
(if enabled).  
Special event trigger will:  
RESET Timer1, but not set interrupt flag bit  
TMR1IF (PIR1<0>).  
8.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
Special Event Trigger  
The special event trigger output of ECCP resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Set flag bit CCP1IF  
(PIR1<2>)  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
The special event trigger output of ECCP module will  
also start an A/D conversion if the A/D module is  
enabled.  
Comparator  
match  
RB3/CCP1/  
P1A Pin  
TRISB<3>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
Note: The special event trigger will not set the  
interrupt flag bit TMR1IF (PIR1<0>).  
TABLE 8-2:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000u  
0000 0000  
0000 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
PSPIF(1)  
PSPIE(1)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
PIE1  
TRISB  
PORTB Data Direction Register  
TMR1L  
TMR1H  
T1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
T1CKPS  
1
T1CKP  
S0  
T1OSCEN  
T1SYNC  
TMR1CS  
CCP1M1  
TMR1O  
N
CCPR1L  
CCPR1H  
CCP1CON  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx  
xxxx xxxx  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
PWM1M1  
PWM1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M0  
Legend: x = unknown, u = unchanged, - = unimplemented read as 0. Shaded cells are not used by Capture and Timer1.  
2002 Microchip Technology Inc.  
DS41120B-page 55  
PIC16C717/770/771  
8.3  
PWM Mode  
In Pulse Width Modulation (PWM) mode, the ECCP  
module produces up to a 10-bit resolution PWM output.  
Figure 8-3 shows the simplified PWM block diagram.  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK DIAGRAM  
PWM1M1<1:0> CCP1M<3:0>  
CCP1CON<5:4>  
Duty cycle registers  
2
4
CCPR1L  
CCP1/P1A  
P1B  
RB3/CCP1/P1A  
RB5/SDO/P1B  
TRISB<3>  
TRISB<5>  
TRISB<6>  
TRISB<7>  
CCPR1H (Slave)  
Comparator  
OUTPUT  
CONTROLLER  
Q
R
S
RB6/T1OSO/T1CKI/  
P1C  
P1C  
(Note 1)  
TMR2  
P1D  
RB7/T1OSI/P1D  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
P1DEL  
Note: 8-bit timer TMR2 is concatenated with 2-bit internal Q clock or 2 bits of the prescaler to create 10-bit time-base.  
8.3.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
PWM PERIOD = [(PR2) + 1] 4 TOSC •  
(TMR2 PRESCALE VALUE)  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
TMR2 is cleared  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 7.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
DS41120B-page 56  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
8.3.2  
PWM DUTY CYCLE  
FIGURE 8-4:  
SINGLE PWM OUTPUT  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
Period  
CCP1(2)  
Duty Cycle  
(1)  
(1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as asserted high.  
FIGURE 8-5:  
EXAMPLE OF SINGLE  
OUTPUT APPLICATION  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
PIC16C717/770/771  
Using PWM as  
a D/A Converter  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
R
CCP1  
Vout  
Maximum PWM resolution (bits) for a given PWM fre-  
quency:  
C
FOSC   
log ---------------  
FPWM  
= ----------------------------- bits  
Using PWM to  
V+  
log(2)  
Drive a Power  
Load  
PIC16C717/770/771  
CCP1  
L
O
A
D
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
8.3.3  
PWM OUTPUT CONFIGURATIONS  
The PWM1M1 bits in the CCP1CON register allows  
one of the following configurations:  
In the Half-Bridge Output mode, two pins are used as  
outputs. The RB3/CCP1/P1A pin has the PWM output  
signal, while the RB5/SDO/P1B pin has the comple-  
mentary PWM output signal. This mode can be used  
for half-bridge applications, as shown on Figure 8-7, or  
for full-bridge applications, where four power switches  
are being modulated with two PWM signal.  
Single output  
Half-Bridge output  
Full-Bridge output, Forward mode  
Full-Bridge output, Reverse mode  
In the Single Output mode, the RB3/CCP1/P1A pin is  
used as the PWM output. Since the CCP1 output is  
multiplexed with the PORTB<3> data latch, the  
TRISB<3> bit must be cleared to make the CCP1 pin  
an output.  
Since the P1A and P1B outputs are multiplexed with  
the PORTB<3> and PORTB<5> data latches, the  
TRISB<3> and TRISB<5> bits must be cleared to con-  
figure P1A and P1B as outputs.  
In Half-Bridge Output mode, the programmable dead-  
band delay can be used to prevent shoot-through cur-  
rent in bridge power devices. See Section 8.3.5 for  
more details of the deadband delay operations.  
2002 Microchip Technology Inc.  
DS41120B-page 57  
PIC16C717/770/771  
The PWM output polarities must be selected before the  
PWM outputs are enabled. Charging the polarity con-  
figuration while the PWM outputs are active is not rec-  
ommended, since it may result in unpredictable  
operation.  
8.3.4  
OUTPUT POLARITY  
CONFIGURATION  
The CCP1M<1:0> bits in the CCP1CON register allow  
user to choose the logic conventions (asserted high/  
low) for each of the outputs. See Register 8-1 for fur-  
ther details.  
FIGURE 8-6: HALF-BRIDGE PWM OUTPUT  
Period  
Period  
Duty Cycle  
P1A(2)  
P1B(2)  
td  
td  
(1)  
(1)  
(1)  
td = Deadband Delay  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signals are shown as asserted high.  
DS41120B-page 58  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 8-7: EXAMPLE OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
PIC16C717/770/771  
FET  
DRIVER  
+
V
-
P1A  
+
-
LOAD  
FET  
DRIVER  
+
V
-
P1B  
V-  
V+  
PIC16C717/770/771  
FET  
DRIVER  
FET  
DRIVER  
P1A  
+
-
LOAD  
FET  
DRIVER  
FET  
DRIVER  
P1B  
V-  
2002 Microchip Technology Inc.  
DS41120B-page 59  
PIC16C717/770/771  
In Full-Bridge Output mode, four pins are used as out-  
puts; however, only two outputs are active at a time. In  
the Forward mode, RB3/CCP1/P1A pin is continuously  
active, and RB7/T1OSI/P1D pin is modulated. In the  
Reverse mode, RB6/T1OSO/T1CKI/P1C pin is contin-  
uously active, and RB5/SDO/P1B pin is modulated.  
P1A, P1B, P1C and P1D outputs are multiplexed with  
PORTB<3> and PORTB<5:7> data latches. TRISB<3>  
and TRISB<5:7> bits must be cleared to make the P1A,  
P1B, P1C, and P1D pins output.  
FIGURE 8-8: FULL-BRIDGE PWM OUTPUT  
FORWARD MODE  
Period  
(2)  
1
0
P1A  
Duty Cycle  
1
0
(2)  
(2)  
P1B  
1
0
P1C  
1
0
(2)  
P1D  
(1)  
(1)  
REVERSE MODE  
Period  
Duty Cycle  
1
0
(2)  
(2)  
P1A  
P1B  
1
0
1
0
(2)  
(2)  
P1C  
P1D  
1
0
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as asserted high.  
DS41120B-page 60  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 8-9: EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC16C717/770/771  
FET  
DRIVER  
FET  
DRIVER  
P1D  
+
-
LOAD  
P1C  
FET  
DRIVER  
FET  
DRIVER  
P1A  
P1B  
V-  
2002 Microchip Technology Inc.  
DS41120B-page 61  
PIC16C717/770/771  
shorting the bridge supply. To avoid this potentially  
destructive shoot-through current from flowing during  
switching, turning on the power switch is normally  
delayed to allow the other switch to completely turn off.  
8.3.5  
PROGRAMMABLE DEADBAND  
DELAY  
In half-bridge or full-bridge applications, driven by half-  
bridge outputs (see Figure 8-7), the power switches  
normally require longer time to turn off than to turn on.  
If both the upper and lower power switches are  
switched at the same time (one turned on, and the  
other turned off), both switches will be on for a short  
period of time, until one switch completely turns off.  
During this time, a very high current, called shoot-  
through current, will flow through both power switches,  
In the Half-Bridge Output mode, a digitally program-  
mable deadband delay is available to avoid shoot-  
through current from destroying the bridge power  
switches. The delay occurs at the signal transition from  
the non-active state to the active state. See Figure 8-6  
for illustration. The P1DEL register sets the amount of  
delay.  
REGISTER 8-2: PWM DELAY REGISTER (P1DEL: 97H)  
R/W-0  
P1DEL7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
P1DEL0  
bit 0  
P1DEL6  
P1DEL5  
P1DEL4  
P1DEL3  
P1DEL2  
P1DEL1  
bit 7-0  
P1DEL<7:0>: PWM Delay Count for Half-Bridge Output Mode: Number of FOSC/4 (Tosc4)  
cycles between the P1A transition and the P1B transition.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
modulated outputs, P1A and P1C signals, will transition  
to the new direction TOSC, 4TOSC or 16TOSC (for  
Timer2 prescale T2CKRS<1:0> = 00, 01 and 1x  
respectively) earlier, before the end of the period. Dur-  
ing this transition cycle, the modulated outputs, P1B  
and P1D, will go to the inactive state. See Figure 8-10  
for illustration.  
8.3.6  
DIRECTION CHANGE IN FULL-  
BRIDGE OUTPUT MODE  
In the Full-Bridge Output mode, the PWM1M1 bit in the  
CCP1CON register allows user to control the Forward/  
Reverse direction. When the application firmware  
changes this direction control bit, the ECCP module will  
assume the new direction on the next PWM cycle. The  
current PWM cycle still continues, however, the non-  
FIGURE 8-10: PWM DIRECTION CHANGE  
(1)  
PERIOD  
PERIOD  
SIGNAL  
DC  
P1A (Active High)  
P1B (Active High)  
P1C (Active High)  
(2)  
P1D (Active High)  
Note 1: The Direction bit in the ECCP Control Register (CCP1CON<PWM1M1>) is written anytime during the PWM cycle.  
2: The P1A and P1C signals switch TOSC, 4*Tosc or 16*TOSC, depending on the Timer2 prescaler value, earlier when  
changing direction. The modulated P1B and P1D signals are inactive at this time.  
DS41120B-page 62  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Note that in the Full-Bridge Output mode, the ECCP  
module does not provide any deadband delay. In gen-  
eral, since only one output is modulated at a time,  
deadband delay is not required. However, there is a sit-  
uation where a deadband delay might be required. This  
situation occurs when all of the following conditions are  
true:  
example, since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
flows through the power devices, QB and QD, for the  
duration of t= toff-ton. The same phenomenon will occur  
to power devices, QC and QB, for PWM direction  
change from reverse to forward.  
If changing PWM direction at high duty cycle is required  
for the users application, one of the following require-  
ments must be met:  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than turn on time.  
1. Avoid changing PWM output direction at or near  
100% duty cycle.  
2. Use switch drivers that compensate for the slow  
turn off of the power devices. The total turn off  
time (toff) of the power device and the driver  
must be less than the turn on time (ton).  
Figure 8-11 shows an example, where the PWM direc-  
tion changes from forward to reverse at a near 100%  
duty cycle. At time t1, the output P1A and P1D become  
inactive, while output P1C becomes active. In this  
FIGURE 8-11: PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
FORWARD PERIOD  
REVERSE PERIOD  
1
0
P1A  
P1B  
1
0
(PWM)  
1
0
P1C  
1
0
P1D  
(PWM)  
t
on  
1
0
External Switch C  
t
off  
1
0
External Switch D  
Potential  
Shoot Through  
Current  
t = t - t  
1
0
off on  
t
1
Note 1: All signals are shown as active high.  
2: ton is the turn on delay of power switch and driver.  
3: toff is the turn off delay of power switch and driver.  
2002 Microchip Technology Inc.  
DS41120B-page 63  
PIC16C717/770/771  
8.3.7  
SYSTEM IMPLEMENTATION  
8.3.9  
SET UP FOR PWM OPERATION  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external pull-  
up and/or pull-down resistors on the PWM output pins.  
When the microcontroller powers up, all of the I/O pins  
are in the high-impedance state. The external pull-up  
and pull-down resistors must keep the power switch  
devices in the off state until the microcontroller drives  
the I/O pins with the proper signal levels, or activates  
the PWM output(s).  
The following steps should be taken when configuring  
the ECCP module for PWM operation:  
1. Configure the PWM module:  
a) Disable the CCP1/P1A, P1B, P1C and/or  
P1D outputs by setting the respective  
TRISB bits.  
b) Set the PWM period by loading the PR2  
register.  
c) Set the PWM duty cycle by loading the  
CCPR1L register and CCP1CON<5:4>  
bits.  
8.3.8  
START-UP CONSIDERATIONS  
Prior to enabling the PWM outputs, the P1A, P1B, P1C  
and P1D latches may not be in the proper states.  
Enabling the TRISB bits for output at the same time  
with the CCP module may cause damage to the power  
switch devices. The CCP1 module must be enabled in  
the proper Output mode with the TRISB bits enabled as  
inputs. Once the CCP1 completes a full PWM cycle,  
the P1A, P1B, P1C and P1D output latches are prop-  
erly initialized. At this time, the TRISB bits can be  
enabled for outputs to start driving the power switch  
devices. The completion of a full PWM cycle is indi-  
cated by the TMR2IF bit going from a 0to a 1.  
d) Configure the ECCP module for the desired  
PWM operation by loading the CCP1CON  
register. With the CCP1M<3:0> bits select  
the active high/low levels for each PWM  
output. With the PWM1M<1:0> bits select  
one of the available Output modes: Single,  
Half-Bridge, Full-Bridge, Forward or Full-  
Bridge Reverse.  
e) For Half-Bridge Output mode, set the dead-  
band delay by loading the P1DEL register.  
2. Configure and start TMR2:  
a) Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit in the PIR1 register.  
b) Set the TMR2 prescale value by loading the  
T2CKPS<1:0> bits in the T2CON register.  
c) Enable Timer2 by setting the TMR2ON bit  
in the T2CON register.  
3. Enable PWM outputs after a new cycle has  
started:  
a) Wait until TMR2 overflows (TMR2IF bit  
becomes a 1). The new PWM cycle begins  
here.  
b) Enable the CCP1/P1A, P1B, P1C and/or  
P1D pin outputs by clearing the respective  
TRISB bits.  
TABLE 8-3:  
REGISTERS ASSOCIATED WITH PWM  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF -0-- 0000 -0-- 0000  
TMR1IE -0-- 0000 -0-- 0000  
1111 1111 1111 1111  
86h, 186h TRISB  
PORTB Data Direction Register  
Timer2 register  
11h  
TMR2  
PR2  
0000 0000 0000 0000  
92h  
Timer2 period register  
1111 1111 1111 1111  
12h  
T2CON  
CCPR1L  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
15h  
Capture/Compare/PWM register1 (LSB)  
PWM1M0 DC1B1 DC1B0  
PWM1 Delay value  
xxxx xxxx uuuu uuuu  
CCP1M0 0000 0000 0000 0000  
0000 0000 0000 0000  
17h  
CCP1CON PWM1M1  
P1DEL  
CCP1M3  
CCP1M2  
CCP1M1  
97h  
x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by ECCP module in PWM mode.  
Legend:  
DS41120B-page 64  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
9.0  
MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, etc. The MSSP module can operate in one  
of two modes:  
Serial Peripheral Interface (SPI)  
Inter-Integrated Circuit (I2C)  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 65  
PIC16C717/770/771  
REGISTER 9-1: SYNC SERIAL PORT STATUS REGISTER (SSPSTAT: 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master Mode  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in Slave mode  
2
In I C Master or Slave mode:  
1= Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for High Speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select (Figure 9-3, Figure 9-5, and Figure 9-6)  
CKP = 0  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next START bit, STOP bit, or NACK bit.  
2
In I C Slave mode:  
1= Read  
0= Write  
2
In I C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress.  
ORing this bit with SEN, RSEN, PEN, RCEN, or AKEN will indicate if the MSSP is in IDLE mode  
2
bit 1  
bit 0  
UA: Update Address (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1= Data Transmit in progress (does not include the ACK and STOP bits), SSPBUF is full  
0= Data Transmit complete (does not include the ACK and STOP bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 66  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
REGISTER 9-2: SYNC SERIAL PORT CONTROL REGISTER (SSPCON: 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
Master Mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started  
0= No collision  
Slave Mode:  
1 = The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave  
mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting over-  
flow. In Master mode, the overflow bit is not set since each new reception (and transmis-  
sion) is initiated by writing to the SSPBUF register. (Must be cleared in software).  
0= No overflow  
In I2C mode  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a  
"dont care" in Transmit mode. (Must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, the I/O pins must be properly configured as input or output.  
In SPI mode  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port  
pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial  
port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode  
1= IDLE state for clock is a high level  
0= IDLE state for clock is a low level  
In I2C Slave mode SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch) (used to ensure data setup time)  
In I2C Master mode  
Unused in this mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 67  
PIC16C717/770/771  
REGISTER 9-2: SYNC SERIAL PORT CONTROL REGISTER (SSPCON: 14h) (CONTINUED)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1000= I2C Master mode, clock = FOSC / (4 (SSPADD+1) )  
1001= Reserved  
1010= Reserved  
1011= Firmware controlled Master mode (slave idle)  
1100= Reserved  
1101= Reserved  
1110= 7-bit Slave mode with START and STOP condition interrupts  
1111= 10-bit Slave mode with START and STOP condition interrupts  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 68  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
REGISTER 9-3: SYNC SERIAL PORT CONTROL REGISTER2 (SSPCON2: 91h)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
GCEN: General Call Enable bit (In I2C Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR.  
0= General call address disabled.  
ACKSTAT: Acknowledge Status bit (In I2C Master mode only)  
In Master Transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (In I2C Master mode only)  
In Master Receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the end of  
a receive.  
1= Not Acknowledge (NACK)  
0= Acknowledge (ACK)  
ACKEN: Acknowledge Sequence Enable bit (In I2C Master mode only).  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence IDLE  
bit 3  
bit 2  
RCEN: Receive Enable bit (In I2C Master mode only).  
1= Enables Receive mode for I2C  
0= Receive IDLE  
PEN: STOP Condition Enable bit (In I2C Master mode only).  
SCK Release Control  
1= Initiate STOP condition on SDA and SCL pins. Automatically cleared by hardware.  
0= STOP condition IDLE  
bit 1  
bit 0  
RSEN: Repeated START Condition Enabled bit (In I2C Master mode only)  
1= Initiate Repeated START condition on SDA and SCL pins. Automatically cleared by  
hardware.  
0= Repeated START condition IDLE  
SEN: START Condition Enabled bit (In I2C Master mode only)  
1= Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= START condition IDLE  
Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the IDLE  
mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 69  
PIC16C717/770/771  
FIGURE 9-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
9.1  
SPI Mode  
The SPI mode allows eight bits of data to be synchro-  
nously transmitted and received simultaneously. All  
four modes of SPI are supported. To accomplish com-  
munication, typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
Serial Data Out (SDO)  
Serial Data In (SDI)  
Serial Clock (SCK)  
SSPBUF reg  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
SSPSR reg  
Shift  
SDI  
bit0  
Slave Select (SS)  
Clock  
9.1.1  
OPERATION  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
Control  
SS  
Enable  
SS  
Edge  
Select  
Master Mode (SCK is the clock output)  
Slave Mode (SCK is the clock input)  
Clock Polarity (Idle state of SCK)  
2
Clock Select  
Data input sample phase  
(middle or end of data output time)  
SSPM<3:0>  
Clock edge  
(output data on rising/falling edge of SCK)  
SMP:CKE  
2
4
TMR2 Output  
2
Edge  
Select  
Clock Rate (Master mode only)  
Tosc  
Prescaler  
4, 16, 64  
Slave Select Mode (Slave mode only)  
SCK  
Figure 9-1 shows the block diagram of the MSSP mod-  
ule when in SPI mode.  
Data to TX/RX in SSPSR  
Data direction bit  
The MSSP consists of a transmit/receive Shift Register  
(SSPSR) and a Buffer Register (SSPBUF). The  
SSPSR shifts the data in and out of the device, MSb  
first. The SSPBUF holds the data that was written to the  
SSPSR, until the received data is ready. Once the eight  
bits of data have been received, that byte is moved to  
the SSPBUF register. Then the buffer full detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF  
(PIR1<3>), are set. This double buffering of the  
received data (SSPBUF) allows the next byte to start  
reception before reading the data that was just  
received. Any write to the SSPBUF register during  
transmission/reception of data will be ignored, and the  
write collision detect bit WCOL (SSPCON<7>) will be  
set. User software must clear the WCOL bit so that it  
can be determined if the following write(s) to the SSP-  
BUF register completed successfully.  
DS41120B-page 70  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
full bit, BF (SSPSTAT<0>), indicates when the SSP-  
BUF has been loaded with the received data (transmis-  
sion is complete). When the SSPBUF is read, bit BF is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally the MSSP Interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 9-1 shows the loading of the SSP-  
BUF (SSPSR) for data transmission.  
9.1.2  
ENABLING SPI I/O  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
isters, and then set bit SSPEN. This configures the  
SDI, SDO, SCK and SS pins as serial port pins. For the  
pins to behave as the serial port function, some must  
have their data direction bits (in the TRIS register)  
appropriately programmed. That is:  
SDI is automatically controlled by the SPI module  
SDO must have TRISB<5> cleared  
SCK (Master mode) must have TRISB<2>  
cleared  
SCK (Slave mode) must have TRISB<2> set  
EXAMPLE 9-1:  
Loading the SSPBUF  
(SSPSR) Register  
STATUS, RP0 ;Specify Bank 1  
SS must have TRISB<1> set, and ANSEL<5>  
cleared  
BSF  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
LOOP BTFSS SSPSTAT, BF  
;Has data been  
;received  
;(xmit complete)?  
;No  
GOTO LOOP  
BCF  
STATUS, RP0  
;Specify Bank 0  
;Save SSPBUF...  
;...in user RAM  
;Get next TXDATA  
;New data to xmit  
9.1.3  
TYPICAL CONNECTION  
MOVF SSPBUF, W  
MOVWF RXDATA  
MOVF TXDATA, W  
MOVWF SSPBUF  
Figure 9-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite  
edge of the clock. Both processors should be pro-  
grammed to same Clock Polarity (SSPCON<4>), then  
both controllers would send and receive data at the  
same time. Whether the data is meaningful (or dummy  
data) depends on the application software. This leads  
to three scenarios for data transmission:  
The SSPSR is not directly readable or writable, and  
can only be accessed by addressing the SSPBUF reg-  
ister. Additionally, the MSSP STATUS register  
(SSPSTAT) indicates the various status conditions.  
Master sends data Slave sends dummy data  
Master sends data Slave sends data  
Master sends dummy data Slave sends data  
FIGURE 9-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xxb  
SDO  
SPI Slave SSPM<3:0> = 010xb  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
Shift Register  
(SSPSR)  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 71  
PIC16C717/770/771  
Figure 9-3, Figure 9-5 and Figure 9-6, where the MSb  
is transmitted first. In Master mode, the SPI clock rate  
(bit rate) is user programmable to be one of the follow-  
ing:  
9.1.4  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 9-2) is to broad-  
cast data by the software protocol.  
FOSC/4 (or TCY)  
FOSC/16 (or 4 TCY)  
FOSC/64 (or 16 TCY)  
Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI  
module is only going to receive, the SDO output could  
be disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a line activity monitor.  
This allows a maximum bit clock frequency (at 20 MHz)  
of 8.25 MHz.  
Figure 9-3 shows the waveforms for Master mode.  
When CKE = 1, the SDO data is valid before there is a  
clock edge on SCK. The change of the input sample is  
shown based on the state of the SMP bit. The time  
when the SSPBUF is loaded with the received data is  
shown.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then would give  
waveforms for SPI communication as shown in  
FIGURE 9-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41120B-page 72  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
SDO pin is driven. When the SS pin goes high, the  
SDO pin is no longer driven, even if in the middle of  
a transmitted byte, and becomes a floating output.  
External pull-up/ pull-down resistors may be desir-  
able, depending on the application.  
9.1.5  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Note 1: When the SPI module is in Slave mode  
with SS pin control enabled, (SSP-  
CON<3:0> = 0100) the SPI module will  
RESET if the SS pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave Mode with  
CKE = 1, then SS pin control must be  
enabled.  
While in SLEEP mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from SLEEP.  
When the SPI module RESETS, the bit counter is  
forced to 0. This can be done by either forcing the SS  
pin to a high level or clearing the SSPEN bit.  
9.1.6  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control  
enabled (SSPCON<3:0> = 0100). The pin must not  
be driven low for the SS pin to function as an input.  
TRISB<1> must be set. When the SS pin is low,  
transmission and reception are enabled and the  
FIGURE 9-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 73  
PIC16C717/770/771  
FIGURE 9-5:  
SPI SLAVE MODE WAVEFORM (CKE = 0)  
SS  
optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 9-6:  
SPI SLAVE MODE WAVEFORM (CKE = 1)  
SS  
not optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41120B-page 74  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
9.1.7  
SLEEP OPERATION  
9.1.8  
EFFECTS OF A RESET  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from SLEEP. After the device returns to  
Normal mode, the module will continue to transmit/  
receive data.  
A RESET disables the MSSP module and terminates  
the current transfer.  
In Slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in SLEEP mode and data to be  
shifted into the SPI transmit/receive shift register.  
When all eight bits have been received, the SSPIF  
interrupt flag bit will be set and if enabled will wake the  
device from SLEEP.  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR MCLR, WDT  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
13h  
14h  
94h  
9Dh  
86h  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF -0-- 0000 -0-- 0000  
TMR1IE -0-- 0000 -0-- 0000  
xxxx xxxx uuuu uuuu  
SSPBUF  
SSPCON  
SSPSTAT  
ANSEL  
TRISB  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0 0000 0000 0000 0000  
BF  
0000 0000 0000 0000  
--11 1111 --11 1111  
1111 1111 1111 1111  
Legend: x = unknown, u = unchanged, - = unimplemented read as 0. Shaded cells are not used by the MSSP in SPI mode.  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 75  
PIC16C717/770/771  
2
transferred from the SSPSR register to the SSPBUF  
register and flag bit SSPIF is set. If another complete  
byte is received before the SSPBUF register is read a  
receiver overflow occurs, in which case, the SSPOV bit  
(SSPCON<6>) is set and the byte in the SSPSR is lost.  
9.2  
MSSP I C Operation  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on START and STOP bits  
in hardware to determine when the bus is free (multi-  
master function). The MSSP module implements the  
Standard mode specifications, as well as 7-bit and 10-  
bit addressing.  
FIGURE 9-7: I2C SLAVE MODE BLOCK  
DIAGRAM  
Internal  
Data Bus  
Two pins are used to transfer data. They are the SCL  
pin (clock) and the SDA pin (data). The MSSP module  
functions are enabled by setting SSP Enable bit  
SSPEN (SSPCON<5>). The SCL and SDA pins are  
"glitch" filtered when operating as inputs. This filter  
functions in both the 100 kHz and 400 kHz modes.  
When these pins operate as outputs in the 100 kHz  
mode, there is a slew rate control of the pin that is inde-  
pendent of device frequency.  
Before selecting any I2C mode, the SCL and SDA pins  
must be programmed as inputs by setting the appropri-  
ate TRIS bits. This allows the MSSP module to configure  
and drive the I/O pins as required by the I2C protocol.  
Read  
Write  
RB2/SCK/  
SCL  
SSPBUF reg  
SSPSR reg  
Shift  
Clock  
RB4/SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match detect  
SSPADD reg  
The MSSP module has six registers for I2C operation.  
They are listed below.  
Set, RESET  
S, P bits  
START and  
STOP bit detect  
SSP Control Register (SSPCON)  
(SSPSTAT reg)  
SSP Control Register2 (SSPCON2)  
SSP STATUS Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
SSP Shift Register (SSPSR) - Not directly accessible  
SSP Address Register (SSPADD)  
The SSPCON register allows for control of the I2C  
operation. Four mode selection bits (SSPCON<3:0>)  
configure the MSSP as any one of the following I2C  
modes:  
9.2.1  
UPWARD COMPATIBILITY WITH  
SSP MODULE  
The MSSP module includes three SSP modes of oper-  
ation to maintain upward compatibility with the SSP  
module. These modes are:  
Firmware controlled Master mode (slave idle)  
7-bit Slave mode with START and STOP  
I2C Slave mode (7-bit address)  
I2C Slave mode (10-bit address)  
I2C Master mode  
condition interrupts.  
10-bit Slave mode with START and STOP  
condition interrupts.  
SCL Freq = FOSC / [4 (SSPADD + 1)]  
The firmware controlled Master mode enables the  
START and STOP condition interrupts but all other I2C  
functions are generated through firmware including:  
I2C Slave mode with START and STOP interrupts  
(7-bit address)  
I2C Slave mode with START and STOP interrupts  
(10-bit address)  
Generating the START and STOP conditions  
Generating the SCL clock  
Firmware Controlled Master mode  
Supplying the SDA bits in the proper time and  
phase relationship to the SCL signal.  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START (S) or STOP (P) bit. It specifies whether the  
received byte was data or address, if the next byte is  
the completion of 10-bit address, and if this will be a  
read or write data transfer.  
In firmware controlled Master mode, the SCL and SDA  
lines are manipulated by clearing and setting the corre-  
sponding TRIS bits. The output level is always low irre-  
spective of the value(s) in the PORT register. A 1is  
output by setting the TRIS bit and a 0is output by  
clearing the TRIS bit  
SSPBUF is the register to which the transfer data is  
written, and from which the transfer data is read. The  
SSPSR register shifts the data in or out of the device.  
In receive operations, the SSPBUF and SSPSR create  
a doubled, buffered receiver. This allows reception of  
the next byte to begin before reading the last byte of  
received data. When the complete byte is received, it is  
The 7-bit and 10-bit Slave modes with START and  
STOP condition interrupts operate identically to the  
MSSP Slave modes except that START and STOP  
conditions generate SSPIF interrupts.  
DS41120B-page 76  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
For more information about these SSP modes see Sec-  
tion 15 of the PICmicroMid-Range MCU Family Ref-  
erence Manual (DS33023).  
9.2.2.2  
10-BIT ADDRESSING  
In 10-bit mode, the basic receive and transmit opera-  
tions are the same as in the 7-bit mode. However, the  
criteria for address match are more complex.  
9.2.2  
SLAVE MODE  
Two address bytes need to be received by the slave.  
The five Most Significant bits (MSbs) of the first  
address byte specify that this is a 10-bit address. The  
LSb of the first received address byte is the R/W bit,  
which must be zero, specifying a write so the slave  
device will receive the second address byte. For a 10-  
bit address, the first byte equals 11110 A9 A8 0,  
where A9 and A8 are the two MSbs of the address. The  
sequence of events for a 10-bit address is as follows,  
with steps 7 through 9 applicable only to the slave-  
transmitter:  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse.  
Then, it loads the SSPBUF register with the received  
value currently in the SSPSR register.  
Any combination of the following conditions will cause  
the MSSP module to generate a NACK pulse in lieu of  
the ACK pulse:  
a) The buffer full bit BF (SSPSTAT<0>) is set  
before the transfer is received.  
b) The overflow bit SSPOV (SSPCON<6>) is set  
before the transfer is received.  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
If the BF bit is set, the SSPSR register value is not  
loaded into the SSPBUF. However, both the SSPIF and  
SSPOV bits are set. Table 9-2 shows what happens  
when a data transfer byte is received, given the status  
of bits BF and SSPOV. The shaded cells show the con-  
dition where user software did not properly clear the  
overflow condition. The BF flag bit is cleared by reading  
the SSPBUF register. The SSPOV flag bit is cleared  
through software.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of Address. This will clear bit UA and  
release the SCL line.  
The SCL clock input must have a minimum high and  
low time for proper operation. The high and low times  
of the I2C specification as well as the requirements of  
the MSSP module are shown in timing parameters  
#100 and #101 of the Electrical Specifications.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive Repeated START condition.  
8. Receive first (high) byte of Address with R/W bit  
set to 1 (bits SSPIF and BF are set). This also  
puts the MSSP module in the Slave-transmit  
mode.  
9.2.2.1  
7-BIT ADDRESSING  
Once the MSSP module has been enabled  
(SSPEN=1), the slave module waits for a START con-  
dition to occur. Following the START condition, eight  
bits are shifted into the SSPSR register. All incoming  
bits are sampled on the rising edge of the clock (SCL)  
line. The received address (register SSPSR<7:1>) is  
compared to the stored address (register  
SSPADD<7:1>). SSPSR<0> is the R/W bit and is not  
considered in the comparison. Comparison is made on  
the falling edge of the eighth clock (SCL) pulse. If the  
addresses match, and the BF and SSPOV bits are  
clear, the following events occur:  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
Note: Following the Repeated START condition  
(step 7) in 10-bit mode, the user only  
needs to match the first 7-bit address. The  
user does not update the SSPADD for the  
second half of the address.  
a) The SSPSR register value is transferred to the  
SSPBUF register on the falling edge of the  
eighth SCL pulse.  
b) The buffer full bit; BF is set on the falling edge of  
the eighth SCL pulse.  
c) An ACK pulse is generated during the ninth  
clock cycle.  
d) SSP interrupt flag bit; SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 77  
PIC16C717/770/771  
9.2.2.3  
SLAVE RECEPTION  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the received byte.  
When the R/W bit of the address byte is clear  
(SSPSR<0> = 0) and an address match occurs, the R/  
W bit of the SSPSTAT register is cleared. The received  
address is loaded into the SSPBUF register on the fall-  
ing edge of the eighth SCL pulse.  
Note: The SSPBUF will be loaded if the SSPOV  
bit is set and the BF flag is cleared. If a  
read of the SSPBUF was performed, but  
the user did not clear the state of the  
SSPOV bit before the next receive  
occurred, the ACK is not sent and the SSP-  
BUF is updated.  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) or  
bit SSPOV (SSPCON<6>) is set.  
TABLE 9-2:  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
Pulse  
(SSP Interrupt occurs  
if enabled)  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
FIGURE 9-8:  
I2C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address R/W=0 ACK  
A3 A2 A1  
Receiving Data  
Receiving Data  
ACK  
NACK  
A7 A6 A5 A4  
SDA  
D5  
D2  
6
D0  
8
D5  
3
D2  
6
D0  
8
D7 D6  
D4 D3  
D1  
7
D7 D6  
D4 D3  
D1  
7
3
9
7
1
2
4
9
5
4
3
6
9
5
1
2
1
2
4
8
5
P
SCL  
S
SSPIF  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
NACK is sent because of overflow  
DS41120B-page 78  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-9:  
I2C SLAVE MODE FOR RECEPTION (10-BIT ADDRESS)  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 79  
PIC16C717/770/771  
9.2.2.4  
SLAVE TRANSMISSION  
sending a NACK. If the SDA line is high (NACK), then  
the data transfer is complete. When the NACK is  
latched by the slave, the slave logic is RESET which  
also resets the R/W bit to 0. The slave module then  
monitors for another occurrence of the START bit. The  
slave firmware knows not to load another byte into the  
SSPBUF register by sensing that the buffer is empty  
(BF = 0) and the R/W bit has gone low. If the SDA line  
is low (ACK), the R/W bit remains high indicating that  
the next transmit data must be loaded into the SSPBUF  
register.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the SSP-  
STAT register is set. The received address is loaded  
into the SSPBUF register on the falling edge of the  
eighth SCL pulse. The ACK pulse will be sent on the  
ninth bit, and the SCL pin is held low. The slave module  
automatically stretches the clock by holding the SCL  
line low so that the master will be unable to assert  
another clock pulse until the slave is finished preparing  
the transmit data. The transmit data must be loaded  
into the SSPBUF register, which also loads the SSPSR  
register. The CKP bit (SSPCON<4>) must then be set  
to release the SCL pin from the forced low condition.  
The eight data bits are shifted out on the falling edges  
of the SCL input. This ensures that the SDA signal is  
valid during the SCL high time (Figure 9-10).  
An MSSP interrupt (SSPIF flag) is generated for each  
data transfer byte on the falling edge of the ninth clock  
pulse. The SSPIF flag bit must be cleared in software.  
The SSPSTAT register is used to determine the status  
of the byte transfer.  
For more information about the I2C Slave mode, refer  
to Application Note AN734, Using the PICmicro® SSP  
for Slave I2CCommunication.  
The ACK or NACK signal from the master-receiver is  
latched on the rising edge of the ninth SCL input pulse.  
The master-receiver terminates slave transmission by  
FIGURE 9-10:  
I2C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W 0  
Transmitting Data  
Receiving Address  
NACK  
R/W = 1  
SDA  
A7 A6 A5 A4 A3 A2 A1  
ACK  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
P
SCL held low  
Data in  
sampled  
Master terminates transmission  
by responding with NACK  
until SSPBUF  
is written  
SSPIF  
BF (SSPSTAT<0>)  
cleared in software  
SSPBUF is written in software  
From SSP interrupt  
service routine  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS41120B-page 80  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
2
FIGURE 9-11:  
I C SLAVE MODE WAVEFORMS FOR TRANSMISSION (10-BIT ADDRESS)  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 81  
PIC16C717/770/771  
into the SSPSR, and the address is compared against  
SSPADD. It is also compared to the general call  
address, fixed in hardware.  
9.2.3  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit),  
the SSPIF flag is set.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF to determine if the address was device spe-  
cific or a general call address.  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0s with R/W = 0  
If the general call address is sampled with GCEN set  
and the slave configured in 10-bit Address mode, the  
second half of the address is not necessary. The UA bit  
will not be set and the slave will begin receiving data  
after the Acknowledge (Figure 9-12).  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is set (SSPCON2<7> is  
set). Following a START bit detect, eight bits are shifted  
FIGURE 9-12:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7- OR 10-BIT MODE)  
Address is compared to General Call Address  
after ACK, set interrupt flag  
Receiving data  
R/W = 0  
General Call Address  
ACK  
9
ACK  
SDA  
SCL  
D7 D6  
D5 D4  
D3 D2 D1  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
S
SSPIF  
BF  
(SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV  
(SSPCON<6>)  
0’  
1’  
GCEN  
(SSPCON2<7>)  
DS41120B-page 82  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.4  
SLEEP OPERATION  
9.2.6  
MASTER MODE  
While in SLEEP mode, the I2C slave module can  
receive addresses or data. When an address match or  
complete byte transfer occurs, it wakes the processor  
from SLEEP (if the SSP interrupt bit is enabled).  
Master mode operation supports interrupt generation  
on the detection of the START and STOP conditions.  
The STOP (P) and START (S) bits are cleared from a  
RESET or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set or the  
bus is idle with both the S and P bits clear.  
9.2.5  
EFFECTS OF A RESET  
In Master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
A RESET disables the MSSP module and terminates  
the current transfer.  
The following events will cause SSP Interrupt Flag bit  
(SSPIF) to be set (SSP Interrupt, if enabled):  
START condition  
STOP condition  
Data transfer byte transmitted/received  
Acknowledge transmit  
Repeated START  
2
FIGURE 9-13:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM<3:0>,  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
START bit, STOP bit,  
Acknowledge  
Generate  
SCL  
START bit detect,  
STOP bit detect  
Write collision detect  
Clock Arbitration  
State counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/RESET, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
RESET ACKSTAT, PEN (SSPCON2)  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 83  
PIC16C717/770/771  
9.2.7  
MULTI-MASTER OPERATION  
9.2.9  
BAUD RATE GENERATOR  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when bit P (SSPSTAT<4>) is set, or  
the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP Interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
The baud rate generator used for SPI mode operation  
is used in the I2C Master mode to set the SCL clock fre-  
quency. Standard SCL clock frequencies are 100 kHz,  
400 kHz, and 1 MHz. One of these frequencies can be  
achieved by setting the SSPADD register to the appro-  
priate number for the selected Fosc frequency. One  
half of the SCL period is equal to  
[(SSPADD+1) 2]/Fosc.  
The baud rate generator reload value is contained in  
the lower seven bits of the SSPADD register (Figure 9-  
14). When the BRG is loaded with this value, the BRG  
counts down to 0 and stops until another reload occurs.  
The BRG count is decremented twice per instruction  
cycle (TCY) on the Q2 and Q4 clock.  
In multi-master operation, the SDA line must be moni-  
tored for arbitration to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
The states where arbitration can be lost are:  
In I2C Master mode, the BRG is reloaded automatically  
provided that the SCL line is sampled high. For exam-  
ple, if Clock Arbitration is taking place, the BRG reload  
will be suppressed until the SCL line is released by the  
slave allowing the pin to float high (Figure 9-15).  
Address Transfer  
Data Transfer  
A START Condition  
A Repeated START Condition  
An Acknowledge Condition  
FIGURE 9-14:  
BAUD RATE GENERATOR  
BLOCK DIAGRAM  
Refer to Application Note AN578, "Use of the SSP  
Module in the I2CMulti-Master Environment."  
SSPM<3:0>  
SSPADD<6:0>  
9.2.8  
I2C MASTER OPERATION  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. Once Master mode is enabled, the user  
has six options.  
SSPM<3:0>  
SCL  
Reload  
Control  
Reload  
1. Assert a START condition on SDA and SCL.  
Fosc/2  
BRG Down Counter  
BRG CLKOUT  
2. Assert a Repeated START condition on SDA  
and SCL.  
3. Write to the SSPBUF register initiating transmis-  
sion of data/address.  
4. Generate a STOP condition on SDA and SCL.  
5. Configure the I2C port to receive data.  
6. Generate an Acknowledge condition at the end  
of a received byte of data.  
The master device generates all serial clock pulses and  
the START and STOP conditions. A transfer is ended  
with a STOP condition or with a Repeated START con-  
dition. Since the Repeated START condition is also the  
beginning of the next serial transfer, the I2C bus will not  
be released.  
Note: The MSSP Module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a START condition and  
immediately write the SSPBUF register to  
initiate transmission before the START  
condition is complete. In this case, the  
SSPBUF will not be written to, and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
DS41120B-page 84  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 9-15:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL allowed to transition high  
SCL  
BRG decrements  
(on Q2 and Q4 cycles)  
BRG  
value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place, and BRG starts its count.  
BRG  
reload  
9.2.10  
I2C MASTER MODE START  
CONDITION TIMING  
Note: If at the beginning of START condition, the  
SDA and SCL pins are already sampled  
low, or if during the START condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs.  
Thus, the Bus Collision Interrupt Flag  
(BCLIF) is set, the START condition is  
aborted, and the I2C module is RESET into  
its IDLE state.  
To initiate a START condition, the user sets the START  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, indicating that the bus  
is available, the baud rate generator is loaded with the  
contents of SSPADD<6:0> and starts its count. If SCL  
and SDA are both sampled high when the baud rate  
generator times out (TBRG) indicating the bus is still  
available, the SDA pin is driven low. The SDA transition  
from high to low while SCL is high is the START condi-  
tion. This causes the S bit (SSPSTAT<3>) to be set.  
When the S bit is set, the baud rate generator is  
reloaded with the contents of SSPADD<6:0> and  
resumes its count. When the baud rate generator times  
out (TBRG) the START condition is complete, concur-  
rent with the following events:  
9.2.10.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a START  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesnt  
occur).  
Note: Because queueing of events is not  
allowed, writing to the lower five bits of  
SSPCON2 is disabled until the START  
condition is complete.  
The SEN bit (SSPCON2<0>) is automatically  
cleared by hardware,  
The baud rate generator is suspended leaving the  
SDA line held low.  
The SSPIF flag is set.  
FIGURE 9-16:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here.  
SDA = 1,  
At completion of START bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
SDA  
TBRG  
SCL  
TBRG  
S
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 85  
PIC16C717/770/771  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit transition to true,  
the user may write the SSPBUF with the 7-bit address  
in 7-bit mode, or the default first address in 10-bit  
mode. After the first eight bits are transmitted and an  
ACK is received, the user may then perform one of the  
following:  
9.2.11  
A Repeated START condition occurs when the RSEN  
bit (SSPCON2<1>) is set high while the I2C module is  
in the idle state. When the RSEN bit is set, the SCL pin  
is asserted low. When the SCL pin is sampled low, the  
baud rate generator is loaded with the contents of  
SSPADD<6:0> and begins counting. The SDA pin is  
released (brought high) for one baud rate generator  
count (TBRG). When the baud rate generator times out,  
if SDA is sampled high, the SCL pin will be de-asserted  
(brought high). When SCL is sampled high, the baud  
rate generator is reloaded with the contents of  
SSPADD<6:0> and begins counting. SDA and SCL  
must be sampled high for one TBRG period. This action  
is then followed by assertion of the SDA pin (SDA is  
low) for one TBRG period while SCL is high. As soon as  
a START condition is detected on the SDA and SCL  
pins, the S bit (SSPSTAT<3>) will be set. Following  
this, the baud rate generator is reloaded with the con-  
tents of SSPAD<6:0> and begins counting. When the  
BRG times out a third time, the RSEN bit in the  
SSPCON2 register is automatically cleared and SCL is  
pulled low. The SSPIF flag is set, which indicates the  
Restart sequence is complete.  
Transmit an additional eight bits of address (if the  
user transmitted the first half of a 10-bit address  
with R/W = 0),  
Transmit eight bits of data (if the user transmitted  
a 7-bit address with R/W = 0), or  
Receive eight bits of data (if the user transmitted  
either the first half of a 10-bit address or a 7-bit  
address with R/W = 1).  
9.2.11.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a Repeated  
START sequence is in progress, then WCOL is set and  
the contents of the buffer are unchanged (the write  
doesnt occur).  
Note: Because queueing of events is not  
allowed, writing of the lower five bits of  
SSPCON2 is disabled until the Repeated  
START condition is complete.  
Note 1: If RSEN is set while another event is in  
progress, it will not take effect. Queuing of  
events is not allowed.  
2: A bus collision during the Repeated  
START condition occurs if either of the  
following is true:  
a) SDA is sampled low when SCL  
goes from low to high.  
b) SCL goes low before SDA is  
asserted low. This may indicate  
that another master is attempting  
to transmit a data 1.  
FIGURE 9-17:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SDA = 1,  
SCL = 1  
At completion of START bit,  
hardware clears RSEN bit  
and sets SSPIF  
SCL (no change)  
TBRG TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here.  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated START  
DS41120B-page 86  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
I2C MASTER MODE  
TRANSMISSION  
A typical transmit sequence would go as follows:  
9.2.12  
a) The user generates a START Condition by set-  
ting the START enable bit (SEN) in SSPCON2.  
In Master-transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains seven bits of address  
data and the Read/Write (R/W) bit. In this case, the R/  
W bit will be logic 0. Subsequent serial data is trans-  
mitted eight bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. START and STOP  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
b) SSPIF is set at the completion of the START  
sequence.  
c) The user resets the SSPIF bit and loads the  
SSPBUF with seven bits of address plus R/W bit  
to transmit.  
d) Address and R/W is shifted out the SDA pin until  
all eight bits are transmitted.  
e) The MSSP Module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
Transmission of a data byte, a 7-bit address, or either  
half of a 10-bit address is accomplished by simply writ-  
ing a value to the SSPBUF register. This action will set  
the buffer full flag (BF) and allow the baud rate genera-  
tor to begin counting and start the next transmission.  
Each bit of address/data will be shifted out onto the  
SDA pin after the falling edge of SCL is asserted (see  
data hold time spec). SCL is held low for one baud rate  
generator roll over count (TBRG). Data should be valid  
before SCL is released high (see data setup time  
spec). When the SCL pin is released high, it is held that  
way for TBRG, the data on the SDA pin must remain sta-  
ble for that duration and some hold time after the next  
falling edge of SCL. After the eighth bit is shifted out  
(the falling edge of the eighth clock), the BF flag is  
cleared and the master releases SDA. This allows the  
slave device being addressed to respond with an ACK  
bit during the ninth bit time. The status of ACK is read  
into the ACKDT on the rising edge of the ninth clock. If  
the master receives an Acknowledge, the Acknowl-  
edge status bit (ACKSTAT) is cleared. Otherwise, the  
bit is set. The SSPIF is set on the falling edge of the  
ninth clock, and the master clock (baud rate generator)  
is suspended until the next data byte is loaded into the  
SSPBUF leaving SCL low and SDA unchanged  
(Figure 9-18).  
f) The module generates an interrupt at the end of  
the ninth clock cycle by setting SSPIF.  
g) The user resets the SSPIF bit and loads the  
SSPBUF with eight bits of data.  
h) DATA is shifted out the SDA pin until all eight bits  
are transmitted.  
i) The MSSP Module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
k) The user resets the SSPIF bit and generates a  
STOP condition by setting the STOP enable bit  
PEN in SSPCON2.  
l) SSPIF is set when the STOP condition is complete.  
9.2.12.1 BF STATUS FLAG  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all eight bits are shifted out.  
9.2.12.2 WCOL STATUS FLAG  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e. SSPSR is still shifting out a  
data byte), then WCOL is set and the contents of the  
buffer are unchanged (the write doesnt occur).  
WCOL must be cleared in software.  
9.2.12.3 ACKSTAT STATUS FLAG  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0), and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 87  
PIC16C717/770/771  
2
FIGURE 9-18:  
I CMASTERMODEWAVEFORMSFORTRANSMISSION(7OR10-BITADDRESS)  
DS41120B-page 88  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
I2C MASTER MODE RECEPTION  
A typical receive sequence would go as follows:  
9.2.13  
a) The user generates a START Condition by set-  
ting the START enable bit (SEN) in SSPCON2.  
In Master-receive mode, the first byte transmitted con-  
tains seven bits of address data and the R/W bit. In this  
case, the R/W bit will be logic 1. Thus, the first byte  
transmitted is a 7-bit slave address followed by a 1to  
indicate receive. Serial data is received via SDA, while  
SCL outputs the serial clock. Serial data is received  
eight bits at a time. After each byte is received, an  
Acknowledge bit is transmitted. The START condition  
indicates the beginning of a transmission. The master-  
receiver terminates slave transmission by responding  
to the last byte with a NACK Acknowledge and follows  
this with a STOP condition to indicate to other masters  
that the bus is free.  
b) SSPIF is set at the completion of the START  
sequence.  
c) The user resets the SSPIF bit and loads the  
SSPBUF with seven bits of address in the MSbs  
and the LSb (R/W bit) set to '1' for receive.  
d) Address and R/W is shifted out the SDA pin until  
all eight bits are transmitted.  
e) The MSSP Module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
f) The module generates an interrupt at the end of  
the ninth clock cycle by setting SSPIF.  
Master mode reception is enabled by setting the  
receive enable bit, RCEN (SSPCON2<3>), immedi-  
ately following the Acknowledge sequence.  
g) The user resets the SSPIF bit and sets the  
RCEN bit to enable reception.  
Note: The MSSP Module must be in an IDLE  
STATE before the RCEN bit is set or the  
RCEN bit will be disregarded.  
h) DATA is shifted into the SDA pin until all eight  
bits are received.  
i) The MSSP module sets the SSPIF bit and clears  
the RCEN bit at the falling edge of the eighth  
clock.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the following events  
occur:  
j) The user resets the SSPIF bit and sets the  
ACKDT bit to '0' (ACK), if another byte is antici-  
pated. Otherwise, the ACKDT bit is set to '1'  
(NACK) to terminate reception. The user sets  
ADKEN to start the Acknowledge sequence.  
The receive enable bit is automatically cleared.  
The contents of the SSPSR are loaded into the  
SSPBUF.  
k) The MSSP module sets the SSPIF bit at the  
completion of the Acknowledge.  
The BF flag is set.  
The SSPIF is set.  
l) If a NACK was sent in step ( j), then the user pro-  
ceeds with step ( m). Otherwise, reception con-  
tinues by repeating steps ( g) through ( j).  
The baud rate generator is suspended from  
counting, holding SCL low.  
m) The user generates a STOP condition by setting  
the STOP enable bit PEN in SSPCON2.  
The SSP is now in IDLE state, awaiting the next com-  
mand. When the buffer is read by the CPU, the BF flag  
is automatically cleared. The user can then send an  
Acknowledge bit at the end of reception by clearing the  
ACKDT bit (SSPCON2<5>) and setting the Acknowl-  
edge sequence enable bit, ACKEN (SSPCON2<4>).  
n) SSPIF is set when the STOP condition is complete.  
9.2.13.1 BF STATUS FLAG  
In receive operation, BF is set when an address or data  
byte is loaded into SSPBUF from SSPSR. It is cleared  
by hardware when SSPBUF is read.  
9.2.13.2 SSPOV STATUS FLAG  
In receive operation, SSPOV is set when eight bits are  
received into the SSPSR and the BF flag is already set  
from a previous reception.  
9.2.13.3 WCOL STATUS FLAG  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), then WCOL is set and the contents of the buffer  
are unchanged (the write doesnt occur).  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 89  
PIC16C717/770/771  
2
FIGURE 9-19:  
I C MASTER WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
DS41120B-page 90  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
arbitration), the baud rate generator is reloaded and  
counts for another TBRG. At the completion of the TBRG  
period, the following events occur (see Figure 9-20):  
9.2.14  
ACKNOWLEDGE SEQUENCE  
TIMING  
An Acknowledge sequence is enabled by setting the  
Acknowledge sequence enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
ACKDT (SSPCON2<5>) is presented on the SDA pin.  
If the user wishes to generate an Acknowledge (ACK),  
then the ACKDT bit should be cleared. Otherwise, the  
user should set the ACKDT bit (NACK) before starting  
an Acknowledge sequence. The baud rate generator is  
then loaded from SSPADD<6:0> and counts for one  
rollover period (TBRG). The SCL pin is then de-asserted  
(pulled high). When the SCL pin is sampled high (clock  
The SCL pin is pulled low.  
The ACKEN bit is automatically cleared.  
The baud rate generator is turned off.  
The MSSP module goes into IDLE mode.  
9.2.14.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesnt  
occur).  
FIGURE 9-20:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
SSPIF occurs at the  
end of receive  
Cleared in  
software  
SSPIF occurs at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 91  
PIC16C717/770/771  
times out (TBRG) the STOP condition is complete and  
the PEN bit is cleared and the SSPIF bit is set  
(Figure 9-21).  
9.2.15  
STOP CONDITION TIMING  
The master asserts a STOP condition on the SDA and  
SCL pins at the end of a receive/transmit by setting the  
Stop Sequence Enable bit PEN (SSPCON2<2>). At the  
end of a receive/transmit plus Acknowledge, the SCL  
line is held low immediately following the falling edge of  
the ninth SCL pulse. When the PEN bit is set, the mas-  
ter will assert the SDA line low. When the SDA line is  
sampled low, the baud rate generator is loaded from  
SSPADD<6:0> and counts down to 0. When the baud  
rate generator times out, the SCL pin is brought high,  
the BRG is reloaded and one TBRG (baud rate genera-  
tor rollover count) later, the SDA pin is de-asserted.  
The SDA pin transition from low to high while SCL is  
high is the STOP condition and causes the P bit (SSP-  
STAT<4>) to be set. Following this the baud rage gen-  
erator is reloaded with the contents of SSPADD<6:0>  
and resumes its count. When the baud rate generator  
Whenever the firmware decides to take control of the  
bus, it should first determine if the bus is busy by check-  
ing the S and P bits in the SSPSTAT register. When the  
MSSP module detects a START or STOP condition the  
SSPIF flag is set. If the bus is busy (S bit is set), then  
the CPU can be configured to be interrupted when  
when the bus is free by enabling the SSPIF interrupt to  
detect the STOP bit.  
9.2.15.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then WCOL is set and the contents of the  
buffer are unchanged (the write doesnt occur).  
FIGURE 9-21:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
Write to SSPCON2  
Set PEN  
P bit (SSPSTAT<4>) is set  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
TBRG  
SCL  
NACK  
SDA  
P
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup STOP condition.  
Note: TBRG = one baud rate generator period.  
DS41120B-page 92  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count in the event that the clock  
is held low by an external device (Figure 9-22).  
9.2.16  
CLOCK ARBITRATION  
Clock arbitration occurs when the master, during any  
receive, transmit or repeated START/STOP condition,  
de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
FIGURE 9-22:  
CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1 Load BRG with  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
SSPADD<6:0>, and start count  
to measure high time interval  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SCL line sampled once every machine cycle (Tosc 4).  
Hold off BRG until SCL is sampled high.  
SDA  
TBRG  
TBRG  
TBRG  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 93  
PIC16C717/770/771  
A bus collision during a START, Repeated START,  
STOP or Acknowledge condition results in the following  
events:  
9.2.17  
MULTI -MASTER  
COMMUNICATION, BUS  
COLLISION, AND BUS  
ARBITRATION  
The condition is aborted.  
The SDA and SCL lines are de-asserted.  
The respective control bits in the SSPCON2 regis-  
ter are cleared.  
Multi-master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, bus arbitration is initiated when one mas-  
ter outputs a 1on SDA (by letting SDA float high) and  
another master asserts a 0. If the expected data on  
SDA is a 1and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master that  
expected a 1will set the Bus Collision Interrupt Flag,  
BCLIF, and reset the I2C port to its IDLE state.  
(Figure 9-23).  
When the user services the bus collision interrupt ser-  
vice routine, and if the I2C bus is free, the user can  
resume communication by asserting a START condi-  
tion.  
The Master will continue to monitor the SDA and SCL  
pins, and if a STOP condition occurs, the SSPIF bit will  
be set.  
A bus collision during transmit results in the following  
events:  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when bus collision occurred.  
The transmission is halted.  
The BF flag is cleared  
In Multi-Master mode, the interrupt generation on the  
detection of START and STOP conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is idle and the S and P bits are  
cleared.  
The SDA and SCL lines are de-asserted  
The restriction on writing to the SSPBUF during  
transmission is lifted.  
When the user services the bus collision interrupt ser-  
vice routine, and if the I2C bus is free, the user can  
resume communication by asserting a START condi-  
tion.  
FIGURE 9-23:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high  
data doesnt match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt.  
BCLIF  
DS41120B-page 94  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.17.1 BUS COLLISION DURING A START  
CONDITION  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data 1during the START condition.  
During a START condition, a bus collision occurs if:  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 9-26). If however a 1is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pin is  
sampled as 0, a bus collision does not occur. At the  
end of the BRG count the SCL pin is asserted low.  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 9-24).  
b) SCL is sampled low before SDA is asserted low.  
(Figure 9-25).  
During a START condition both the SDA and the SCL  
pins are monitored.  
If:  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, REPEATED  
START or STOP conditions.  
the SDA pin is already low  
or the SCL pin is already low,  
then:  
the START condition is aborted,  
and the BCLIF flag is set,  
and the SSP module is reset to its IDLE state  
(Figure 9-24).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
FIGURE 9-24:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
SDA  
SCL  
SEN  
Set SEN, enable START  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into IDLE state.  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 95  
PIC16C717/770/771  
FIGURE 9-25:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
SCL = 0 before SDA = 0,  
Bus collision occurs, Set BCLIF.  
SCL = 0 before BRG time out,  
Bus collision occurs, Set BCLIF.  
BCLIF  
Interrupts cleared  
in software.  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 9-26:  
BRG RESET DUE TO SDA COLLISION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA  
SDA  
SCL  
SEN  
s
SCL pulled low after BRG  
Time-out  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software.  
SDA = 0, SCL = 1  
Set SSPIF  
DS41120B-page 96  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
9.2.17.2 BUS COLLISION DURING A REPEATED  
START CONDITION  
0). If however SDA is sampled high, then the BRG is  
reloaded and begins counting. If SDA goes from high to  
low before the BRG times out, no bus collision occurs,  
because no two masters can assert SDA at exactly the  
same time.  
During a Repeated START condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If, however, SCL goes from high to low before the BRG  
times out and SDA has not already been asserted, then  
a bus collision occurs. In this case, another master is  
attempting to transmit a data 1during the Repeated  
START condition.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data 1.  
When the master module de-asserts SDA and the pin  
is allowed to float high, the BRG is loaded with  
SSPADD<6:0>, and counts down to 0. The SCL pin is  
then de-asserted, and when sampled high, the SDA pin  
is sampled. If SDA is low, a bus collision has occurred  
(i.e., another master is attempting to transmit a data  
If at the end of the BRG time-out both SCL and SDA are  
still high, the SDA pin is driven low, the BRG is  
reloaded, and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated START condition is com-  
plete (Figure 9-27).  
FIGURE 9-27:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL  
RSEN  
BCLIF  
Cleared in software  
0’  
0’  
0’  
S
0’  
SSPIF  
FIGURE 9-28:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
Set BCLIF. Release SDA and SCL  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
0’  
0’  
0’  
S
SSPIF  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 97  
PIC16C717/770/771  
9.2.17.3 BUS COLLISION DURING A STOP  
CONDITION  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data '0' (Figure 9-29). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master attempt-  
ing to drive a data '0' (Figure 9-30).  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 9-29:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
Set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 9-30:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high  
Set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
DS41120B-page 98  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
example, with a supply voltage of VDD = 5V+10% and  
VOL max = 0.4V at 3 mA, Rp min = (5.5-0.4)/0.003 =  
1.7 kΩ. VDD as a function of Rp is shown in Figure 9-31.  
The desired noise margin of 0.1VDD for the low level  
limits the maximum value of Rs. Series resistors are  
optional and used to improve ESD susceptibility.  
9.2.18  
CONNECTION CONSIDERATIONS  
FOR I2C BUS  
For Standard mode I2C bus devices, the values of  
resistors Rp and Rs in Figure 9-31 depends on the fol-  
lowing parameters  
Supply voltage  
The bus capacitance is the total capacitance of wire,  
connections, and pins. This capacitance limits the max-  
imum value of Rp due to the specified rise time  
(Figure 9-31).  
Bus capacitance  
Number of connected devices (input current +  
leakage current).  
The SMP bit is the slew rate control enabled bit. This bit  
is in the SSPSTAT register, and controls the slew rate  
of the I/O pins when in I2C mode (master or slave).  
The supply voltage limits the minimum value of resistor  
Rp due to the specified minimum sink current of 3 mA  
at VOL max = 0.4V for the specified output stages. For  
FIGURE 9-31:  
SAMPLE DEVICE CONFIGURATION FOR I2C BUS  
VDD + 10%  
DEVICE  
Rp  
Rp  
Rs  
Rs  
SDA  
SCL  
Cb=10 pF to 400 pF  
2
Note: I C devices with input levels related to VDD must have one common supply line to which the pull-up resistor is also  
connected.  
TABLE 9-3:  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR MCLR, WDT  
0Bh, 8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
0Dh  
8Dh  
13h  
14h  
91h  
94h  
93h  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF  
SSPIE  
BCLIF  
BCLIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF -0-- 0000 -0-- 0000  
TMR1IE -0-- 0000 -0-- 0000  
CCP2IF 0--- 0--0 0--- 0--0  
CCP2IE 0--- 0--0 0--- 0--0  
xxxx xxxx uuuu uuuu  
PIR2  
LVDIF  
LVDIE  
PIE2  
SSPBUF  
SSPCON  
SSPCON2  
SSPSTAT  
SSPADD  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
RCEN  
S
SSPM2  
PEN  
SSPM1  
RSEN  
UA  
SSPM0  
SEN  
BF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
GCEN ACKSTAT ACKDT ACKEN  
SMP CKE D/A  
P
R/W  
Synchronous Serial Port (I2C Mode) Address Register  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the MSSP in I2C mode.  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page 99  
PIC16C717/770/771  
NOTES:  
DS41120B-page 100  
AdvanceInformation  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The source for the reference voltages comes from the  
bandgap reference circuit. The bandgap circuit is ener-  
gized anytime the reference voltage is required by the  
other sub-modules, and is powered down when not in  
use. The control registers for this module are LVDCON  
and REFCON, as shown in Register 10-1 and  
Figure 10-2.  
10.0 VOLTAGE REFERENCE  
MODULE AND LOW-VOLTAGE  
DETECT  
The Voltage Reference module provides reference  
voltages for the Brown-out Reset circuitry, the Low-volt-  
age Detect circuitry and the A/D converter.  
REGISTER 10-1: LOW-VOLTAGE DETECT CONTROL REGISTER (LVDCON: 9Ch)  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LV3  
R/W-1  
LV2  
R/W-0  
LV1  
R/W-1  
LV0  
BGST  
LVDEN  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as '0'  
BGST: Bandgap Stable Status Flag bit  
1= Indicates that the bandgap voltage is stable, and LVD interrupt is reliable  
0= Indicates that the bandgap voltage is not stable, and LVD interrupt should not be enabled  
bit 4  
LVDEN: Low-voltage Detect Power Enable bit  
1= Enables LVD, powers up bandgap circuit and reference generator  
0= Disables LVD, powers down bandgap circuit if unused by BOR or VRH/VRL  
bit 3-0  
LV<3:0>: Low Voltage Detection Limit bits(1)  
1111= External analog input is used  
1110= 4.5V  
1101= 4.2V  
1100= 4.0V  
1011= 3.8V  
1010= 3.6V  
1001= 3.5V  
1000= 3.3V  
0111= 3.0V  
0110= 2.8V  
0101= 2.7V  
0100= 2.5V  
0011= Reserved. Do not use.  
0010= Reserved. Do not use.  
0001= Reserved. Do not use.  
0000= Reserved. Do not use.  
Note: These are the minimum trip points for the LVD. See Table 15-8 for the trip point tol-  
erances. Selection of reserved setting may result in an inadvertent interrupt.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
DS41120B-page 101  
PIC16C717/770/771  
REGISTER 10-2: VOLTAGE REFERENCE CONTROL REGISTER (REFCON: 9BH)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
VRHEN  
VRLEN VRHOEN VRLOEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
VRHEN: Voltage Reference High Enable bit (VRH = 4.096V nominal)  
1= Enabled, powers up reference generator  
0= Disabled, powers down reference generator if unused by LVD, BOR, or VRL  
VRLEN: Voltage Reference Low Enable bit (VRL = 2.048V nominal)  
1= Enabled, powers up reference generator  
0= Disabled, powers down reference generator if unused by LVD, BOR, or VRH  
VRHOEN: High Voltage Reference Output Enable bit(1)  
1= Enabled, VRH analog reference is output on RA3 if enabled (VRHEN = 1)  
0= Disabled, analog reference is used internally only(1)  
VRLOEN: Low Voltage Reference Output Enable bit  
1= Enabled, VRL analog reference is output on RA2 if enabled (VRLEN = 1)  
0= Disabled, analog reference is used internally only  
Unimplemented: Read as '0’  
Note 1: RA2 and RA3 must be configured as analog inputs when the VREF output functions  
are enabled (See ANSEL on page 25).  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS41120B-page 102  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The VRL reference is enabled by setting control bit  
VRLEN (REFCON<6>). When this bit is set, the gain  
amplifier is enabled. After a specified start-up time a  
stable reference of 2.048V nominal is generated and  
can be used by the A/D converter as a reference input.  
10.1 Bandgap Voltage Reference  
The bandgap module generates a stable voltage refer-  
ence of over a range of temperatures and device sup-  
ply voltages. This module is enabled anytime any of the  
following are enabled:  
Each voltage reference is available for external use via  
VRL and VRH pins.  
Brown-out Reset  
Low-voltage Detect  
Each reference, if enabled, can be output on an exter-  
nal pin by setting the VRHOEN (high reference output  
enable) or VRLOEN (low reference output enable) con-  
trol bit. If the reference is not enabled, the VRHOEN  
and VRLOEN bits will have no effect on the corre-  
sponding pin. The device specific pin can then be used  
as general purpose I/O.  
Either of the internal analog references (VRH,  
VRL)  
Whenever the above are all disabled, the bandgap  
module is disabled and draws no current.  
10.2 Internal VREF for A/D Converter  
Note: If VRH or VRL is enabled and the other ref-  
erence (VRL or VRH), the BOR, and the  
LVD modules are not enabled, the band-  
gap will require a start-up time before the  
bandgap reference is stable. Before using  
the internal VRH or VRL reference, ensure  
that the bandgap reference voltage is sta-  
ble by monitoring the BGST bit in the LVD-  
CON register. The voltage references will  
not be reliable until the bandgap is stable  
as shown by BGST being set.  
The bandgap output voltage is used to generate two  
stable references for the A/D converter module. These  
references are enabled in software to provide the user  
with the means to turn them on and off in order to min-  
imize current consumption. Each reference can be indi-  
vidually enabled.  
The VRH reference is enabled with control bit VRHEN  
(REFCON<7>). When this bit is set, the gain amplifier  
is enabled. After a specified start-up time a stable ref-  
erence of 4.096V nominal is generated and can be  
used by the A/D converter as a reference input.  
FIGURE 10-1: BLOCK DIAGRAM OF LVD AND VOLTAGE REFERENCE CIRCUIT  
LVDCON  
REFCON  
VDD  
LVDEN  
VRHEN + VRLEN  
generates  
LVDIF  
RA1/AN1/LVDIN  
VRH  
BODEN  
BGAP  
VRL  
LVDEN  
2002 Microchip Technology Inc.  
DS41120B-page 103  
PIC16C717/770/771  
Once the LV bits have been programmed for the spec-  
ified trip voltage, the low-voltage detect circuitry is then  
enabled by setting the LVDEN (LVDCON<4>) bit.  
10.3 Low Voltage Detect (LVD)  
This module is used to generate an interrupt when the  
supply voltage falls below a specified tripvoltage.  
This module operates completely under software  
control. This allows a user to power the module on  
and off to periodically monitor the supply voltage, and  
thus minimize total current consumption.  
If the bandgap reference voltage is previously unused  
by either the brown-out circuitry or the voltage refer-  
ence circuitry, then the bandgap circuit requires a time  
to start-up and become stable before a low voltage con-  
dition can be reliably detected. The low-voltage inter-  
rupt flag is prevented from being set until the bandgap  
has reached a stable reference voltage.  
The LVD module is enabled by setting the LVDEN bit in  
the LVDCON register. The trip pointvoltage is the  
minimum supply voltage level at which the device can  
operate before the LVD module asserts an interrupt.  
When the supply voltage is equal to or less than the trip  
point, the module will generate an interrupt signal set-  
ting interrupt flag bit LVDIF. If interrupt enable bit LVDIE  
was set, then an interrupt is generated. The LVD inter-  
rupt can wake the device from SLEEP. The "trip point"  
voltage is software programmable to any one of 16 val-  
ues, five of which are reserved (See Figure 10-1). The  
trip point is selected by programming the LV<3:0> bits  
(LVDCON<3:0>).  
When the bandgap is stable the BGST (LVDCON<5>)  
bit is set indicating that the low-voltage interrupt flag bit  
is released to be set if VDD is equal to or less than the  
LVD trip point.  
10.3.1 EXTERNAL ANALOG VOLTAGE INPUT  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when  
LV<3:0> = 1111. When these bits are set the compar-  
ator input is multiplexed from an external input pin  
(RA1/AN1/LVDIN).  
Note: The LVDIF bit can not be cleared until the  
supply voltage rises above the LVD trip  
point. If interrupts are enabled, clear the  
LVDIE bit once the first LVD interrupt  
occurs to prevent reentering the interrupt  
service routine immediately after exiting  
the ISR.  
DS41120B-page 104  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The A/D module has four registers. These registers  
are:  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
A/D Result Register Low ADRESL  
A/D Result Register High ADRESH  
A/D Control Register 0 (ADCON0)  
A/D Control Register 1 (ADCON1)  
The analog-to-digital (A/D) converter module has six  
inputs for the PIC16C717/770/771.  
The PIC16C717 analog-to-digital converter (A/D)  
allows conversion of an analog input signal to a corre-  
sponding 10-bit digital value, while the A/D converter  
in the PIC16C770/771 allows conversion to a corre-  
sponding 12-bit digital value. The A/D module has up  
to 6 analog inputs, which are multiplexed into one  
sample and hold. The output of the sample and hold is  
the input into the converter, which generates the result  
via successive approximation. The analog reference  
voltages are software selectable to either the devices  
analog positive and negative supply voltages (AVDD/  
AVSS), the voltage level on the VREF+ and VREF- pins,  
or internal voltage references if enabled (VRH, VRL).  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off and  
any conversion is aborted.  
11.1 Control Registers  
The ADCON0 register, shown in Register 11-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 11-2, configures the func-  
tions of the port pins, the voltage reference configura-  
tion and the result format. The ANSEL register, shown  
in Register 3-1, selects between the Analog or Digital  
Port Pin modes. The port pins can be configured as  
analog inputs or as digital I/O.  
The A/D converter can be triggered by setting the GO/  
DONE bit, or by the special event Compare mode of  
the ECCP module. When conversion is complete, the  
GO/DONE bit returns to 0, the ADIF bit in the PIR1  
register is set, and an A/D interrupt will occur, if  
enabled.  
The combination of the ADRESH and ADRESL regis-  
ters contain the result of the A/D conversion. The reg-  
ister pair is referred to as the ADRES register. When  
the A/D conversion is complete, the result is loaded  
into ADRES, the GO/DONE bit (ADCON0<2>) is  
cleared, and the A/D interrupt flag ADIF is set. The  
block diagram of the A/D module is shown in  
Figure 11-3.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/Ds internal RC oscillator.  
2002 Microchip Technology Inc.  
DS41120B-page 105  
PIC16C717/770/771  
REGISTER 11-1: A/D CONTROL REGISTER 0 (ADCON0: 1Fh).  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
CHS3  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6  
ADCS<1:0>: A/D Conversion Clock Select bits  
If internal VRL and/or VRH are not used for A/D reference (VCFG<2:0> = 000, 001, 011  
or 101):  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from a dedicated RC oscillator)  
If internal VRL and/or VRH are used for A/D reference (VCFG<2:0> = 010, 100, 110or 111):  
00= FOSC/16  
01= FOSC/64  
10= FOSC/256  
11= FRC/8  
bit 5-3,1  
CHS:<3:0>: Analog Channel Select bits  
0000= channel 00 (AN0)  
0001= channel 01 (AN1)  
0010= channel 02 (AN2)  
0011= channel 03 (AN3)  
0100= channel 04 (AN4)  
0101= channel 05 (AN5)  
0110= reserved, do not select  
0111= reserved, do not select  
1000= reserved, do not select  
1001= reserved, do not select  
1010= reserved, do not select  
1011= reserved, do not select  
1100= reserved, do not select  
1101= reserved, do not select  
1110= reserved, do not select  
1111= reserved, do not select  
bit 2  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter is shutoff and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41120B-page 106  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
REGISTER 11-2:  
A/D CONTROL REGISTER 1 (ADCON1: 9Fh)  
R/W-0  
ADFM  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG2  
VCFG1  
VCFG0 Reserved Reserved Reserved Reserved  
bit 0  
bit 7  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6-4  
VCFG<2:0>: Voltage Reference Configuration bits  
A/D VREF+  
A/D VREF-  
(1)  
(2)  
000  
001  
010  
011  
100  
101  
110  
111  
AVDD  
AVSS  
External VREF+  
Internal VRH  
External VREF+  
Internal VRH  
External VREF-  
Internal VRL  
(2)  
AVSS  
(2)  
AVSS  
(1)  
AVDD  
External VREF-  
Internal VRL  
AVSS  
(1)  
AVDD  
Internal VRL  
bit 3-0  
Reserved: Do not use.  
Note 1: This parameter is VDD for the PIC16C717.  
2: This parameter is VSS for the PIC16C717.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
The value that is in the ADRESH and ADRESL regis-  
ters are not modified for a Power-on Reset. The  
ADRESH and ADRESL registers will contain unknown  
data after a Power-on Reset.  
The A/D conversion results can be left justified (ADFM  
bit cleared), or right justified (ADFM bit set).  
Figure 11-1 through Figure 11-2 show the A/D result  
data format of the PIC16C717/770/771.  
FIGURE 11-1: PIC16C770/771 12-BIT A/D RESULT FORMATS  
ADRESH (1Eh)  
ADRESL (9Eh)  
LSB  
Left Justified  
MSB  
(ADFM = 0)  
bit7  
bit7  
12-bit A/D Result  
Unused  
Right Justified  
(ADFM = 1)  
MSB  
LSB  
bit7  
bit7  
Unused  
12-bit A/D Result  
2002 Microchip Technology Inc.  
DS41120B-page 107  
PIC16C717/770/771  
FIGURE 11-2: PIC16C717 10-BIT A/D RESULT FORMAT  
(ADFM = 0)  
MSB  
bit7  
LSB  
bit7  
bit7  
10-bit A/D Result  
MSB  
Unused  
(ADFM = 1)  
LSB  
bit7  
Unused  
10-bit A/D Result  
Unused  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS and ANSEL bits  
selected as an input. To determine acquisition time, see  
Section 11.6. After this acquisition time has elapsed,  
the A/D conversion can be started. The following steps  
should be followed for doing an A/D conversion:  
11.2.2  
CONFIGURING THE REFERENCE  
VOLTAGES  
The VCFG bits in the ADCON1 register configure the  
A/D module reference inputs. The reference high input  
can come from an internal reference (VRH) or (VRL),  
an external reference (VREF+), or AVDD. The low refer-  
ence input can come from an internal reference (VRL),  
an external reference (VREF-), or AVSS. If an external  
reference is chosen for the reference high or reference  
low inputs, the port pin that multiplexes the incoming  
external references is configured as an analog input,  
regardless of the values contained in the A/D port con-  
figuration bits (PCFG<3:0>).  
11.2 Configuring the A/D Module  
11.2.1  
CONFIGURING ANALOG PORT  
PINS  
The ANSEL and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bit  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted. The proper  
ANSEL bits must be set (analog input) to disable the  
digital input buffer.  
The A/D operation is independent of the state of the  
TRIS bits and the ANSEL bits.  
Note 1: When reading the PORTA register, all pins  
configured as analog input channels will  
read as 0.  
2: When reading the PORTB register, all  
pins configured as analog pins on  
PORTB will be read as 1.  
3: Analog levels on any pin that is defined as  
a digital input, including the ANx pins, may  
cause the input buffer to consume current  
that is out of the devices specification.  
DS41120B-page 108  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
After the A/D module has been configured as desired  
and the analog input channels have their correspond-  
ing TRIS bits selected for port inputs, the selected  
channel must be acquired before conversion is  
started. The A/D conversion cycle can be initiated by  
setting the GO/DONE bit. The A/D conversion begins  
and lasts for 13TAD. The following steps should be fol-  
lowed for performing an A/D conversion:  
4. Wait the required acquisition time.  
5. START conversion  
Set GO/DONE bit (ADCON0)  
6. Wait 13TAD until A/D conversion is complete, by  
either:  
Polling for the GO/DONE bit to be cleared  
OR  
1. Configure port pins:  
Waiting for the A/D interrupt  
Configure Analog Input mode (ANSEL)  
Configure pin as input (TRISA or TRISB)  
2. Configure the A/D module  
7. Read A/D Result registers (ADRESH and  
ADRESL), clear ADIF if required.  
8. For next conversion, go to step 1, step 2 or step  
3 as required.  
Configure A/D Result Format / voltage refer-  
ence (ADCON1)  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRESH and  
ADRESL registers will be updated with the partially  
completed A/D conversion value. That is, the  
ADRESH and ADRESL registers will contain the value  
of the current incomplete conversion.  
Select A/D input channel (ADCON0)  
Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
3. Configure A/D interrupt (if required)  
Clear ADIF bit  
Note: Do not set the ADON bit and the GO/  
DONE bit in the same instruction. Doing so  
will cause the GO/DONE bit to be automat-  
ically cleared.  
Set ADIE bit  
Set PEIE bit  
Set GIE bit  
FIGURE 11-3:  
A/D BLOCK DIAGRAM  
CHS<3:0>  
VAIN  
RB1/AN5/SS  
(INPUT VOLTAGE)  
RB0/AN4/INT  
RA3/AN3/VREF+/VRH  
RA2/AN2/VREF-/VRL  
RA1/AN1  
AVDD  
RA0/AN0  
VREF+  
VRH  
VRL  
(REFERENCE  
VOLTAGE +)  
VCFG<2:0>  
A/D  
CONVERTER  
VREF-  
VRL  
(REFERENCE  
VOLTAGE -)  
AVSS  
VCFG<2:0>  
2002 Microchip Technology Inc.  
DS41120B-page 109  
PIC16C717/770/771  
If the VRH or VRL are used for the A/D converter refer-  
ence, then the TAD requirement is automatically  
increased by a factor of 8.  
11.3 Selecting the A/D Conversion  
Clock  
The A/D conversion cycle requires 13TAD: 1 TAD for set-  
tling time, and 12 TAD for conversion. The source of the  
A/D conversion clock is software selected. If neither the  
internal VRH nor VRL are used for the A/D converter,  
the four possible options for TAD are:  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs. Table 11-1 shows the resultant TAD times  
derived from the device operating frequencies and the  
A/D clock source selected.  
2 TOSC  
The ADIF bit is set on the rising edge of the 14th TAD.  
The GO/DONE bit is cleared on the falling edge of the  
14th TAD.  
8 TOSC  
32 TOSC  
A/D RC oscillator  
TABLE 11-1: TAD vs. DEVICE OPERATING FREQUENCIES  
A/D Reference  
A/D Clock Source (TAD)  
Source  
Device Frequency  
Operation  
2 TOSC  
ADCS<1:0>  
20 MHz  
100 ns(2)  
400 ns(2)  
1.6 µs  
5 MHz  
4 MHz  
500 ns(2)  
2.0 µs  
1.25 MHz  
1.6 µs  
6.4 µs  
00  
01  
10  
11  
00  
01  
10  
11  
400 ns(2)  
External VREF or  
Analog Supply  
8 TOSC  
1.6 µs  
32 TOSC  
A/D RC  
6.4 µs(3)  
8.0 µs(3)  
2 - 6 µs(1,4)  
4 µs(2)  
25.6 µs(3)  
2 - 6 µs(1,4)  
12.8 µs  
2 - 6 µs(1,4)  
800 ns(2)  
3.2 µs(2)  
2 - 6 µs(1,4)  
3.2 µs(2)  
Internal VRH or 16 TOSC  
51.2 µs(3)  
204.8 µs(3)  
16 - 48 µs(4,5)  
VRL  
64 TOSC  
12.8 µs  
16 µs  
256 TOSC  
A/D RC  
12.8 µs  
16 - 48 µs(4,5)  
51.2 µs(3)  
16 - 48 µs(4,5)  
64 µs(3)  
16 - 48 µs(4,5)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The A/D RC source has a typical TAD time of 4 µs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be  
performed during SLEEP.  
5: A/D RC clock source has a typical TAD time of 32 µs for VDD > 3.0V.  
DS41120B-page 110  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
11.4 A/D Conversions  
Example 11-1 shows an example that performs an A/D  
conversion. The port pins are configured as analog  
inputs. The analog reference VREF+ is the device AVDD  
and the analog reference VREF- is the device AVSS.  
The A/D interrupt is enabled and the A/D conversion  
clock is TRC. The conversion is performed on the AN0  
channel.  
EXAMPLE 11-1: PERFORMING AN A/D CONVERSION  
BSF  
STATUS, RP0  
;Select Bank 1  
CLRF  
MOVLW  
MOVWF  
MOVWF  
BSF  
ADCON1  
0x01  
ANSEL  
TRISA  
PIE1, ADIE  
STATUS, RP0  
0xC1  
;Configure A/D Voltage Reference  
;disable AN0 digital input buffer  
;RA0 is input mode  
;Enable A/D interrupt  
;Select Bank 0  
;RC clock, A/D is on,  
;Ch 0 is selected  
;
;Clear A/D Int Flag  
;Enable Peripheral  
;Enable All Interrupts  
BCF  
MOVLW  
MOVWF  
BCF  
BSF  
ADCON0  
PIR1, ADIF  
INTCON, PEIE  
INTCON, GIE  
BSF  
;
; Ensure that the required sampling time for the  
; selected input channel has lapsed. Then the  
; conversion may be started.  
BSF  
ADCON0, GO  
:
;Start A/D Conversion  
;The ADIF bit will be  
;set and the GO/DONE bit  
;cleared upon completion-  
;of the A/D conversion.  
:
; Wait for A/D completion and read ADRESH:ADRESL for result.  
2002 Microchip Technology Inc.  
DS41120B-page 111  
PIC16C717/770/771  
11.5 A/D Converter Module Operation  
Figure 11-4 shows the flowchart of the A/D converter  
module.  
FIGURE 11-4: FLOW CHART OF A/D OPERATION  
ADON = 0  
Yes  
ADON = 0?  
No  
Sample  
Selected Channel  
Yes  
GO = 0?  
No  
Yes  
Yes  
Start of A/D  
Conversion Delayed  
1 Instruction Cycle  
Finish Conversion  
GO = 0  
SLEEP  
A/D Clock  
= RC?  
Instruction?  
ADIF = 1  
No  
No  
Yes  
From SLEEP?  
Yes  
Instruction?  
Wake-up  
Abort Conversion  
GO = 0  
Finish Conversion  
GO = 0  
SLEEP  
ADIF = 0  
ADIF = 1  
No  
No  
SLEEP  
Power-down A/D  
Finish Conversion  
GO = 0  
Stay in SLEEP  
Power-down A/D  
ADIF = 1  
DS41120B-page 112  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
EXAMPLE 11-2:  
A/D SAMPLING TIME  
EQUATION  
11.6 A/D Sample Requirements  
11.6.1  
RECOMMENDED SOURCE  
IMPEDANCE  
VREF  
----------------  
VHOLD = VREF –  
16384  
TC  
-------------------------------------------------------------------  
The maximum recommended impedance for ana-  
log sources is 2.5 k. This value is calculated based  
on the maximum leakage current of the input pin. The  
leakage current is 100 nA max., and the analog input  
voltage cannot be varied by more than 1/4 LSb or  
250 µV due to leakage. This places a requirement on  
the input impedance of 250 µV/100 nA = 2.5 k.  
CHOLD(RIC + RSS + RS)  
VREF  
----------------  
16384  
VREF –  
= (VREF) 1 e  
TC  
-------------------------------------------------------------------  
CHOLD(RIC + RSS + RS)  
1
----------------  
= (VREF) 1 e  
VREF1 –  
16384  
Solving for TC:  
TC = CHOLD(1k + RSS + RS)ln  
11.6.2  
SAMPLING TIME CALCULATION  
1
----------------  
16384  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 11-5. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), see  
Figure 11-5. The maximum recommended imped-  
ance for analog sources is 2.5 k. After the analog  
input channel is selected (changed) this sampling must  
be done before the conversion can be started.  
Figure 11-3 shows the calculation of the minimum time  
required to charge CHOLD. This calculation is based on  
the following system assumptions:  
CHOLD = 25 pF  
RS = 2.5 kΩ  
1/4 LSb error  
VDD = 5V RSS = 10 k(worst case)  
Temp (system Max.) = 50°C  
To calculate the minimum sampling time, Equation 11-  
2 may be used. This equation assumes that 1/4 LSb  
error is used (16384 steps for the A/D). The 1/4 LSb  
error is the maximum error allowed for the A/D to meet  
its specified resolution.  
Note 1:The reference voltage (VREF) has no  
effect on the equation, since it cancels  
itself out.  
2:The charge holding capacitor (CHOLD) is  
not discharged after each conversion.  
The CHOLD is assumed to be 25 pF for the 12-bit  
A/D.  
3:The maximum recommended impedance  
for analog sources is 2.5 k. This is  
required to meet the pin leakage specifi-  
cation.  
2002 Microchip Technology Inc.  
DS41120B-page 113  
PIC16C717/770/771  
EXAMPLE 11-3:  
CALCULATING THE  
MINIMUM  
REQUIRED SAMPLE TIME  
TACQ =  
TACQ =  
Amplifier Settling Time  
+ Holding Capacitor Charging Time  
+Temperature offset  
5 µs  
+ TC  
+ [(Temp - 25°C)(0.05 µs/°C)] †  
TC = Holding Capacitor Charging Time  
TC = (CHOLD) (RIC + RSS + RS) In (1/16384)  
TC = -25 pF (1 k+10 k+ 2.5 k) In (1/16384)  
TC = -25 pF (13.5 k) In (1/16384)  
TC = -0.338 (-9.704)µs  
TC = 3.3 µs  
TACQ =  
5 µs  
+ 3.3 µs  
+ [(50°C - 25°C)(0.05 µs / °C)]  
TACQ =  
TACQ =  
8.3 µs + 1.25 µs  
9.55 µs  
The temperature coefficient is only required for  
temperatures > 25°C.  
FIGURE 11-5: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
Vt = 0.6V  
Port Pin  
SS  
RIC ~ 1k  
RSS  
~
RS  
CPIN  
5 pF  
VA  
ILEAKAGE  
± 100 nA  
CHOLD = 25 pF  
VSS  
VT = 0.6V  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
ILEAKAGE = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance  
5 6 7 8 9 10 11  
Sampling Switch (RSS)  
( k)  
DS41120B-page 114  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
11.7 Use of the ECCP Trigger  
11.9 Faster Conversion - Lower  
Resolution Trade-off  
An A/D conversion can be started by the special  
event triggerof the CCP module. This requires that  
the CCP1M<3:0> bits be programmed as 1011band  
that the A/D module is enabled (ADON is set). When  
the trigger occurs, the GO/DONE bit will be set on Q2  
to start the A/D conversion and the Timer1 counter will  
be reset to zero. Timer1 is RESET to automatically  
repeat the A/D conversion cycle, with minimal soft-  
ware overhead (moving the ADRESH and ADRESL to  
the desired location). The appropriate analog input  
channel must be selected before the special event  
triggersets the GO/DONE bit (starts a conversion  
cycle).  
Not all applications require a result with 12 bits of reso-  
lution, but may instead require a faster conversion  
time. The A/D module allows users to make the trade-  
off of conversion speed to resolution. Regardless of  
the resolution required, the acquisition time is the  
same. To speed up the conversion, the A/D module  
may be halted by clearing the GO/DONE bit after the  
desired number of bits in the result have been con-  
verted. Once the GO/DONE bit has been cleared, all  
of the remaining A/D result bits are 0. The equation  
to determine the time before the GO/DONE bit can be  
switched is as follows:  
If the A/D module is not enabled (ADON is cleared),  
then the special event triggerwill be ignored by the  
A/D module, but will still RESET the Timer1 counter.  
Conversion time = (N+1)TAD  
Where: N = number of bits of resolution required,  
and 1TAD is the amplifier settling time.  
Since TAD is based from the device oscillator, the user  
must use some method (a timer, software loop, etc.) to  
determine when the A/D GO/DONE bit may be  
cleared. Table 11-4 shows a comparison of time  
required for a conversion with 4 bits of resolution, ver-  
sus the normal 12-bit resolution conversion. The  
example is for devices operating at 20 MHz. The A/D  
clock is programmed for 32 TOSC.  
11.8 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off, and  
any conversion is aborted. The value that is in the  
ADRESH and ADRESL registers are not modified.  
The ADRESH and ADRESL registers will contain  
unknown data after a Power-on Reset.  
EXAMPLE 11-4:  
4-BIT vs. 12-BIT  
CONVERSION TIME  
Example  
4-Bit Example:  
Conversion Time = (N + 1) TAD  
= (4 + 1) TAD  
= (5)(1.6 µS)  
= 8 µS  
12-Bit Example:  
Conversion Time = (N + 1) TAD  
= (12 + 1) TAD  
= (13)(1.6 µS)  
= 20.8 µS  
2002 Microchip Technology Inc.  
DS41120B-page 115  
PIC16C717/770/771  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
11.10 A/D Operation During SLEEP  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be configured for RC  
(ADCS<1:0> = 11b). With the RC clock source  
selected, when the GO/DONE bit is set the A/D module  
waits one instruction cycle before starting the conver-  
sion cycle. This allows the SLEEPinstruction to be exe-  
cuted, which eliminates all digital switching noise  
during the sample and conversion. When the conver-  
sion cycle is completed the GO/DONE bit is cleared,  
and the result loaded into the ADRESH and ADRESL  
registers. If the A/D interrupt is enabled, the device will  
wake-up from SLEEP. If the A/D interrupt is not  
enabled, the A/D module will then be turned off,  
although the ADON bit will remain set.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be configured to  
RC (ADCS<1:0> = 11).  
11.11 Connection Considerations  
Since the analog inputs employ ESD protection, they  
have diodes to VDD and VSS. This requires that the  
analog input must be between VDD and VSS. If the input  
voltage exceeds this range by greater than 0.3V (either  
direction), one of the diodes becomes forward biased  
and it may damage the device if the input current spec-  
ification is exceeded.  
An external RC filter is sometimes added for anti-alias-  
ing of the input signal. The R component should be  
selected to ensure that the total source impedance is  
kept under the 2.5 krecommended specification. It is  
recommended that any external components con-  
nected to an analog input pin (capacitor, zener diode,  
etc.) have very little leakage current.  
When the A/D clock source is another clock option (not  
RC), a SLEEP instruction causes the present conver-  
sion to be aborted and the A/D module is turned off,  
though the ADON bit will remain set.  
TABLE 11-2: SUMMARY OF A/D REGISTERS  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
-0-- 0000 -0-- 0000  
-0-- 0000 -0-- 0000  
PIR1  
PIE1  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
0Ch  
8Ch  
1Eh  
9Eh  
9Bh  
1Fh  
9Fh  
05h  
06h  
85h  
86h  
9Dh  
17h  
ADRESH  
ADRESL  
REFCON  
ADCON0  
ADCON1  
PORTA  
A/D High Byte Result Register  
A/D Low Byte Result Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 ---- 0000 ----  
0000 0000 0000 0000  
0000 ---- 0000 ----  
000x 0000 000u 0000  
xxxx xx11 uuuu uu11  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
VRHEN VRLEN VRHOEN VRLOEN  
CHS3  
ADON  
ADCS1 ADCS0  
ADFM VCFG2  
CHS2  
CHS1  
CHS0 GO/DONE  
VCFG1  
VCFG0  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTA Data Direction Register  
PORTB  
TRISA  
TRISB  
PORTB Data Direction Register  
ANSEL  
ANS5  
ANS4  
ANS3  
ANS2  
ANS1  
ANS0  
CCP1CON  
Legend: x = unknown, u = unchanged, - = unimplemented read as 0. Shaded cells are not used for A/D conversion.  
DS41120B-page 116  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
12.1 Configuration Bits  
12.0 SPECIAL FEATURES OF THE  
CPU  
These devices have a host of features intended to max-  
imize system reliability, minimize cost through elimina-  
tion of external components, provide power saving  
operating modes and offer code protection. These are:  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
The user will note that address 2007h is beyond the  
user program memory space.  
Oscillator Selection  
RESET  
Some of the core features provided may not be neces-  
sary to each application that a device may be used for.  
The configuration word bits allow these features to be  
configured/enabled/disabled as necessary. These fea-  
tures include code protection, Brown-out Reset and its  
trip point, the Power-up Timer, the watchdog timer and  
the devices Oscillator mode. As can be seen in  
Register 12-1, some additional configuration word bits  
have been provided for Brown-out Reset trip point  
selection.  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
Interrupts  
Watchdog Timer (WDT)  
Low-voltage detection  
SLEEP  
Code protection  
ID locations  
In-circuit serial programming (ICSP)  
These devices have a Watchdog Timer, which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in RESET until the crystal oscillator is stable.  
The other is the Power-up Timer (PWRT), which pro-  
vides a fixed delay of 72 ms (nominal) on power-up  
type RESETS only (POR, BOR), designed to keep the  
part in RESET while the power supply stabilizes. With  
these two timers on-chip, most applications need no  
external RESET circuitry.  
SLEEP mode is designed to offer a very low current  
Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
Wake-up, or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The INTRC and ER oscillator options  
save system cost while the LP crystal option saves  
power. A set of configuration bits are used to select var-  
ious options.  
Additional information on special features is available  
in the PICmicroMid-Range MCU Family Reference  
Manual, (DS33023).  
2002 Microchip Technology Inc.  
DS41120B-page 117  
PIC16C717/770/771  
REGISTER 12-1: CONFIGURATION WORD FOR 16C717/770/771 DEVICE  
CP  
CP  
BORV1 BORV0  
CP  
CP  
BODEN MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0  
bit0  
bit13  
bit 13-12,  
9-8  
CP: Program Memory Code Protection  
1= Code protection off  
(2)  
0= All program memory is protected  
bit 11-10:  
BORV<1:0>: Brown-out Reset Voltage bits  
00= VBOR set to 4.5V  
01= VBOR set to 4.2V  
10= VBOR set to 2.7V  
11= VBOR set to 2.5V  
bit 7:  
bit 6:  
Unimplemented: Read as '1'  
(1)  
BODEN: Brown-out Detect Reset Enable bit  
1= Brown-out Detect Reset enabled  
0= Brown-out Detect Reset disabled  
bit 5:  
MCLRE: RA5/MCLR pin function select  
1= RA5/MCLR pin function is MCLR  
0= RA5/MCLR pin function is digital input, MCLR internally tied to VDD  
(1)  
bit 4:  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 3:  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 2-0:  
FOSC<2:0>: Oscillator Selection bits  
000= LP oscillator: Crystal/Resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
001= XT oscillator: Crystal/Resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
010= HS oscillator: Crystal/Resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
011= EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN function on RA7/OSC1/CLKIN  
100= INTRC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
101= INTRC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
110= ER oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN  
111= ER oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT), regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP bits must be given the same value to enable code protection.  
Legend  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as 0’  
0 = bit is cleared x = bit is unknown  
DS41120B-page 118  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 12-1: CERAMIC RESONATORS  
Ranges Tested:  
12.2 Oscillator Configurations  
12.2.1 OSCILLATOR TYPES  
Mode  
XT  
Freq  
OSC1  
OSC2  
The PIC16C717/770/771 can be operated in eight dif-  
ferent Oscillator modes. The user can program three  
configuration bits (FOSC<2:0>) to select one of these  
eight modes:  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
LP  
XT  
HS  
ER  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
These values are for design guidance only. See  
notes at bottom of page.  
High Speed Crystal/Resonator  
External Resistor (with and without  
CLKOUT)  
All resonators used did not have built-in capacitors.  
INTRC Internal 4 MHz (with and without  
TABLE 12-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
CLKOUT)  
EC  
External Clock  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
12.2.2  
LP, XT AND HS MODES  
In LP, XT or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 12-1). The  
PIC16C717/770/771 oscillator design requires the use  
of a parallel cut crystal. Use of a series cut crystal may  
give a frequency out of the crystal manufacturers spec-  
ifications.  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
FIGURE 12-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
20 MHz  
These values are for design guidance only. See  
notes at bottom of page.  
OSC CONFIGURATION)  
C1(1)  
OSC1  
Note 1: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
2: Higher capacitance increases the stability of  
oscillator but also increases the start-up  
time.  
To  
internal  
logic  
XTAL  
RF(3)  
OSC2  
SLEEP  
PIC16C717/770/771  
RS(2)  
C2(1)  
12.2.3  
EC MODE  
Note1: See Table 12-1 and Table 12-2 for recom-  
mended values of C1 and C2.  
In applications where the clock source is external, the  
PIC16C717/770/771 should be programmed to select  
the EC (External Clock) mode. In this mode, the RA6/  
OSC2/CLKOUT pin is available as an I/O pin. See  
Figure 12-2 for illustration.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the Crystal mode chosen.  
FIGURE 12-2:  
EXTERNAL CLOCK INPUT  
OPERATION (EC OSC  
CONFIGURATION)  
OSC1  
Clock from  
ext. system  
PIC16C717/770/771  
RA6  
I/O  
2002 Microchip Technology Inc.  
DS41120B-page 119  
PIC16C717/770/771  
12.2.6 CLKOUT  
12.2.4  
ER MODE  
For timing insensitive applications, the ER (External  
Resistor) Clock mode offers additional cost savings.  
Only one external component, a resistor connected to  
the OSC1 pin and VSS, is needed to set the operating  
frequency of the internal oscillator. The resistor draws  
a DC bias current which controls the oscillation fre-  
quency. In addition to the resistance value, the oscilla-  
tor frequency will vary from unit to unit, and as a  
function of supply voltage and temperature. Since the  
controlling parameter is a DC current and not a capac-  
itance, the particular package type and lead frame will  
not have a significant effect on the resultant frequency.  
In the INTRC and ER modes, the PIC16C717/770/771  
can be configured to provide a clock out signal by pro-  
gramming the configuration word. The oscillator fre-  
quency, divided by 4, can be used for test purposes or  
to synchronize other logic.  
In the INTRC and ER modes, if the CLKOUT output is  
enabled, CLKOUT is held low during RESET.  
12.2.7  
DUAL SPEED OPERATION FOR ER  
AND INTRC MODES  
A software programmable dual speed oscillator is avail-  
able in either ER or INTRC Oscillator modes. This fea-  
ture allows the applications to dynamically toggle the  
oscillator speed between normal and slow frequencies.  
The nominal slow frequency is 37 kHz. In ER mode, the  
slow speed operation is fixed and does not vary with  
resistor size. Applications that require low current  
power savings, but cannot tolerate putting the part into  
SLEEP, may use this mode.  
Figure 12-3 shows how the controlling resistor is con-  
nected to the PIC16C717/770/771. For REXT values  
below 38 k, the oscillator operation may become  
unstable, or stop completely. For very high REXT values  
(e.g. 1M), the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend keeping  
REXT between 38 kand 1 M.  
The OSCF bit in the PCON register is used to control  
Dual Speed mode. See the PCON Register,  
Register 2-8, for details.  
FIGURE 12-3:  
EXTERNAL RESISTOR  
PIC16C717/770/771  
When changing the INTRC or ER internal oscillator  
speed, there is a period of time when the processor is  
inactive. When the speed changes from fast to slow,  
the processor inactive period is in the range of 100 µS  
to 300 µS. For speed change from slow to fast, the pro-  
cessor is in active for 1.25 µS to 3.25 µS.  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
REXT  
The Electrical Specification section shows the relation-  
ship between the REXT resistance value and the oper-  
ating frequency as well as frequency variations due to  
operating temperature for given REXT and VDD values.  
The ER Oscillator mode has two options that control  
the OSC2 pin. The first allows it to be used as a general  
purpose I/O port. The other configures the pin as CLK-  
OUT. The ER oscillator does not run during RESET.  
12.2.5  
INTRC MODE  
The internal RC oscillator provides a fixed 4 MHz (nom-  
inal) system clock at VDD = 5V and 25°C, see Electri-  
cal Specificationssection for information on variation  
over voltage and temperature. The INTRC oscillator  
does not run during RESET.  
DS41120B-page 120  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Some registers are not affected in any RESET condi-  
tion. Their status is unknown on a Power-up Reset and  
unchanged in any other RESET. Most other registers  
are placed into an initialized state upon RESET, how-  
ever they are not affected by a WDT Reset during  
SLEEP, because this is considered a WDT Wake-up,  
which is viewed as the resumption of normal operation.  
12.3 RESET  
The PIC16C717/770/771 devices have several differ-  
ent RESETS. These RESETS are grouped into two  
classifications; power-up and non-power-up. The  
power-up type RESETS are the Power-on and Brown-  
out Resets which assume the device VDD was below its  
normal operating range for the devices configuration.  
The non power-up type RESETS assume normal oper-  
ating limits were maintained before/during and after the  
RESET.  
Several status bits have been provided to indicate  
which RESET occurred (see Table 12-4). See  
Table 12-6 for a full description of RESET states of all  
registers.  
Power-on Reset (POR)  
A simplified block diagram of the On-Chip Reset circuit  
is shown in Figure 12-4.  
Programmable Brown-out Reset (PBOR)  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
These devices have a MCLR noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
WDT Reset (during normal operation)  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 12-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
RESET  
MCLR  
SLEEP  
Time-out  
WDT  
Module  
VDD rise  
detect  
Power-on Reset  
VDD  
Programmable  
Brown-out  
S
BODEN  
OST/PWRT  
OST  
Chip_Reset  
Q
R
10-bit Ripple counter  
OSC1  
PWRT  
10-bit Ripple counter  
Dedicated  
Oscillator  
Enable PWRT  
Enable OST  
2002 Microchip Technology Inc.  
DS41120B-page 121  
PIC16C717/770/771  
12.4 Power-On Reset (POR)  
12.5 Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when a  
VDD rise is detected (in the range of 1.5V - 2.1V).  
Enable the internal MCLR feature to eliminate external  
RC components usually needed to create a Power-on  
Reset. A maximum rise time for VDD is specified. See  
Electrical Specifications for details. For a long rise time,  
enable external MCLR function and use circuit as  
shown in Figure 12-5.  
The Power-up Timer provides a fixed TPWRT time-out  
on power-up type RESETS only. For a POR, the PWRT  
is invoked when the POR pulse is generated. For a  
BOR, the PWRT is invoked when the device exits the  
RESET condition (VDD rises above BOR trip point).  
The Power-up Timer operates on an internal RC oscil-  
lator. The chip is kept in RESET as long as the PWRT  
is active. The PWRTs time delay is designed to allow  
VDD to rise to an acceptable level. A configuration bit is  
provided to enable/disable the PWRT for the POR only.  
For a BOR the PWRT is always available regardless of  
the configuration bit setting.  
Two delay timers, (PWRT on OST), have been pro-  
vided which hold the device in RESET after a POR  
(dependent upon device configuration) so that all oper-  
ational parameters have been met prior to releasing the  
device to resume/begin normal operation.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameters for details.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature,...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in RESET until the operating conditions  
are met. Brown-out Reset may be used to meet the  
start-up conditions, or if necessary an external POR cir-  
cuit may be implemented to delay end of RESET for as  
long as needed.  
12.6 Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on a power-up type RESET or a wake-  
up from SLEEP.  
FIGURE 12-5:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD RAMP)  
12.7 Programmable Brown-Out Reset  
(PBOR)  
VDD  
VDD  
The Programmable Brown-out Reset module is used to  
generate a RESET when the supply voltage falls below  
a specified trip voltage. The trip voltage is configurable  
to any one of four voltages provided by the BORV<1:0>  
configuration word bits.  
D
R
R1  
MCLR  
PIC16C717/770/771  
C
Configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below the specified trip point for  
longer than TBOR, (parameter #35), the brown-out situ-  
ation will RESET the chip. A RESET may not occur if  
VDD falls below the trip point for less than TBOR. The  
chip will remain in Brown-out Reset until VDD rises  
above VBOR. The Power-up Timer will be invoked at  
that point and will keep the chip in RESET an additional  
TPWRT. If VDD drops below VBOR while the Power-up  
Timer is running, the chip will go back into a Brown-out  
Reset and the Power-up Timer will be re-initialized.  
Once VDD rises above VBOR, the Power-up Timer will  
again begin a TPWRT time delay. Even though the  
PWRT is always enabled when brown-out is enabled,  
the PWRT configuration word bit should be cleared  
(enabled) when brown-out is enabled.  
Note 1: External Power-on Reset circuit is  
required only if VDD power-up slope is too  
slow. The diode D helps discharge the  
capacitor quickly when VDD powers down.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the devices electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
4: External MCLR must be enabled  
(MCLRE = 1).  
DS41120B-page 122  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Table 12-5 shows the RESET conditions for some spe-  
cial function registers, while Table 12-6 shows the  
RESET conditions for all the registers.  
12.8 Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First PWRT time-out is invoked by the POR pulse.  
When the PWRT delay expires, the Oscillator Start-up  
Timer is activated. The total time-out will vary based on  
oscillator configuration and the status of the PWRT.  
For example, in RC mode with the PWRT disabled,  
there will be no time-out at all. Figure 12-6, Figure 12-  
7, Figure 12-8 and Figure 12-9 depict time-out  
sequences on power-up.  
12.9 Power Control/STATUS Register  
(PCON)  
The Power Control/STATUS Register, PCON, has two  
status bits that provide indication of which power-up  
type RESET occurred.  
Bit0 is Brown-out Reset Status bit, BOR. The BOR bit  
is unknown upon a POR. BOR must be set by the user  
and checked on subsequent RESETS to see if bit BOR  
cleared, indicating a BOR occurred.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 12-8). This is useful for testing purposes or to  
synchronize more than one PICmicro® microcontroller  
operating in parallel.  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
SLEEP  
PWRTE = 0  
TPWRT + 1024TOSC  
TPWRT  
PWRTE = 1  
XT, HS, LP  
1024TOSC  
TPWRT + 1024TOSC  
TPWRT  
1024TOSC  
EC, ER, INTRC  
TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
uuu1 0uuu  
---- 1-0x  
---- 1-uu  
---- 1-uu  
---- 1-uu  
---- u-uu  
---- 1-u0  
---- u-uu  
---- u-uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
Interrupt wake-up from SLEEP, GIE = 0  
Interrupt wake-up from SLEEP, GIE = 1  
PC + 1  
0004h  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
2002 Microchip Technology Inc.  
DS41120B-page 123  
PIC16C717/770/771  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Register  
Power-on Reset or  
Brown-out Reset  
MCLR Reset or  
WDT Reset  
Wake-up via WDT or  
Interrupt  
W
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000h  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000h  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
INDF  
TMR0  
PCL  
PC + 1(1)  
000q quuu(2)  
uuuu uuuu  
uuuu 0000  
uuuu uu11  
---0 0000  
0000 000u  
-0-- 0000  
0--- 0---  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
-0-- 0000  
0--- 0---  
---- 1-uu  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 0000  
uuuq quuu(2)  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuqq  
-0-- uuuu  
q--- q---  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
u--- u---  
---- u-uu  
1111 1111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
STATUS  
0001 1xxx  
FSR  
xxxx xxxx  
xxxx 0000  
xxxx xx11  
---0 0000  
0000 000x  
-0-- 0000  
0--- 0---  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
-0-- 0000  
0--- 0---  
---- 1-qq  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 0000  
PORTA  
PORTB  
PCLATH  
INTCON  
PIR1  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
PIE1  
PIE2  
PCON  
PR2  
SSPADD  
SSPSTAT  
WPUB  
IOCB  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
2: See Table 12-5 for RESET value for specific condition.  
DS41120B-page 124  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Register  
Power-on Reset or  
Brown-out Reset  
MCLR Reset or  
WDT Reset  
Wake-up via WDT or  
Interrupt  
P1DEL  
0000 0000  
0000 ----  
--00 0101  
--11 1111  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---- xxxx  
1--- ---0  
0000 0000  
0000 ----  
--00 0101  
--11 1111  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---- uuuu  
1--- ---0  
uuuu uuuu  
uuuu ----  
--uu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---- uuuu  
1--- ---0  
REFCON  
LVDCON  
ANSEL  
ADRESL  
ADCON1  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PMCON1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
2: See Table 12-5 for RESET value for specific condition.  
FIGURE 12-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2002 Microchip Technology Inc.  
DS41120B-page 125  
PIC16C717/770/771  
FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 12-9: SLOW VDD RISE TIME (MCLR TIED TO VDD)  
5V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
(1)  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
Note 1: Time dependent on oscillator circuit  
DS41120B-page 126  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
12.10 Interrupts  
The devices have up to 11 sources of interrupt. The  
interrupt control register (INTCON) records individual  
interrupt requests in flag bits. It also has individual and  
global interrupt enable bits.  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A Global Interrupt Enable bit, GIE (INTCON<7>),  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled and an  
interrupts flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on RESET.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two cycle instructions. Individual  
interrupt flag bits are set regardless of the status of their  
corresponding mask bit or the GIE bit  
The return from interruptinstruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 12-10:  
INTERRUPT LOGIC  
LVDIF  
LVDIE  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
T0IF  
T0IE  
INTF  
INTE  
Interrupt to CPU  
RBIF  
RBIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
PEIE  
GIE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
BCLIF  
BCLIE  
2002 Microchip Technology Inc.  
DS41120B-page 127  
PIC16C717/770/771  
12.10.1 INT INTERRUPT  
12.11 Context Saving During Interrupts  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP. The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 12.13 for details on SLEEP mode.  
During an interrupt, only the PC is saved on the stack.  
At the very least, W and STATUS should be saved to  
preserve the context for the interrupted program. All  
registers that may be corrupted by the ISR, such as  
PCLATH or FSR, should be saved.  
Example 12-1 stores and restores the STATUS, W and  
PCLATH registers. The register, W_TEMP, is defined in  
Common RAM, the last 16 bytes of each bank that may  
be accessed from any bank. The STATUS_TEMP and  
PCLATH_TEMP are defined in bank 0.  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register in bank 0.  
d) Executes the ISR code.  
12.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 2.2.2.3)  
e) Restores the PCLATH register.  
f) Restores the STATUS register  
g) Restores W.  
12.10.3 PORTB INTCON CHANGE  
Note  
that  
W_TEMP,  
STATUS_TEMP  
and  
PCLATH_TEMP are defined in the common RAM area  
(70h - 7Fh) to avoid register bank switching during con-  
text save and restore.  
An input change on PORTB<7:0> sets flag bit RBIF  
(INTCON<0>). The PORTB pin(s) which can individu-  
ally generate interrupt is selectable in the IOCB regis-  
ter. The interrupt can be enabled/disabled by setting/  
clearing  
enable  
bit  
RBIE  
(INTCON<4>).  
(Section 2.2.2.3)  
EXAMPLE 12-1:  
Saving STATUS, W, and PCLATH Registers in RAM  
#define  
#define  
#define  
org  
W_TEMP  
STATUS_TEMP  
PCLATH_TEMP  
0x04  
0x70  
0x71  
0x72  
; start at Interrupt Vector  
; Save W register  
MOVWF  
W_TEMP  
MOVF  
MOVWF  
MOVF  
MOVWF  
:
STATUS,w  
STATUS_TEMP  
PCLATH,w  
PCLATH_TEMP  
; save STATUS  
; save PCLATH  
(Interrupt Service Routine)  
:
MOVF  
MOVWF  
MOVF  
MOVWF  
SWAPF  
SWAPF  
RETFIE  
PCLATH_TEMP,w  
PCLATH  
STATUS_TEMP,w  
STATUS  
W_TEMP,f  
W_TEMP,w  
;
; swapf loads W without affecting STATUS flags  
DS41120B-page 128  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS regis-  
ter will be cleared upon a Watchdog Timer time-out.  
12.12 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This oscillator is independent from the processor clock.  
If enabled, the WDT will run even if the main clock of  
the device has been stopped, for example, by execu-  
tion of a SLEEPinstruction.  
The WDT can be permanently disabled by program-  
ming the configuration bit WDTE to 0(Section 12.1).  
WDT time-out period values may be found in Table 15-  
4. Values for the WDT prescaler may be assigned using  
the OPTION_REG register.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
Note: The SLEEPinstruction clears the WDT and  
the postscaler, if assigned to the WDT,  
restarting the WDT period.  
FIGURE 12-11:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-2)  
0
Postscaler  
M
U
X
1
WDT Timer  
8
(1)  
8 - to - 1 MUX  
PS<2:0>  
PSA  
WDT  
Enable Bit  
(2)  
To TMR0 (Figure 5-2)  
0
1
(1)  
MUX  
PSA  
WDT  
Time-out  
Note 1: PSA and PS<2:0> are bits in the OPTION_REG register.  
2: WDTE bit in the configuration word.  
TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Config. bits(1)  
2007h  
BODEN  
INTEDG  
MCLRE PWRTE  
T0CS T0SE  
WDTE FOSC2 FOSC1  
PSA PS2 PS1  
FOSC0  
PS0  
81h,181h OPTION_REG RBPU  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 12-1 for the full description of the configuration word bits.  
2002 Microchip Technology Inc.  
DS41120B-page 129  
PIC16C717/770/771  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
12.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
12.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from SLEEP. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
12.13.1 WAKE-UP FROM SLEEP  
The device can wake-up from SLEEP through one of  
the following events:  
1. External RESET input on MCLR pin.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
If a peripheral can wake the device from SLEEP, then  
to ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. CCP Capture mode interrupt.  
3. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
4. SSP (START/STOP) bit detect interrupt.  
5. SSP transmit or receive in Slave mode  
(SPI/I2C).  
6. A/D conversion (when A/D clock source is RC).  
7. Low Voltage detect.  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
DS41120B-page 130  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 12-12:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(1)  
TOST  
CLKOUT(3)  
INT pin  
INTF flag  
(INTCON<1>)  
Interrupt Latency(2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
Instruction  
fetched  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: TOST = 1024TOSC (drawing not to scale) This delay applies to LP, XT and HS modes only.  
2: GIE = 1assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.  
3: CLKOUT is not available in these osc modes, but shown here for timing reference.  
12.14 Program Verification/Code  
Protection  
12.16 In-Circuit Serial Programming  
(ICSP)  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
Note: Microchip does not recommend code pro-  
tecting windowed devices. Code protected  
devices are not reprogrammable.  
12.15 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 Least Significant bits of the ID  
location are used.  
For complete details of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP)  
Guide, (DS30277).  
2002 Microchip Technology Inc.  
DS41120B-page 131  
PIC16C717/770/771  
NOTES:  
DS41120B-page 132  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Table 13-2 lists the instructions recognized by the  
MPASMassembler.  
13.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 13-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 13-1  
shows the opcode field descriptions.  
Figure 13-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
All examples use the following format to represent a  
hexadecimal number:  
For byte-oriented instructions, frepresents a file reg-  
ister designator and drepresents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
The destination designator specifies where the result of  
the operation is to be placed. If dis zero, the result is  
placed in the W register. If dis one, the result is placed  
in the file register specified in the instruction.  
FIGURE 13-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
For bit-oriented instructions, brepresents a bit field  
designator which selects the number of the bit affected  
by the operation, while frepresents the number of the  
file in which the bit is located.  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
For literal and control operations, krepresents an  
eight or eleven bit constant or literal value.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
TABLE 13-1: OPCODE FIELD  
DESCRIPTIONS  
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
General  
k
13  
8
7
0
0
x
Dont care location (= 0 or 1)  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
OPCODE  
k (literal)  
k = 8-bit immediate value  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
PC  
TO  
PD  
Program Counter  
Time-out bit  
k (literal)  
Power-down bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the  
PICmicroMid-Range MCU Family Reference Man-  
ual, (DS33023).  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
2002 Microchip Technology Inc.  
DS41120B-page 133  
PIC16C717/770/771  
TABLE 13-2: PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nybbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an external  
device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS41120B-page 134  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
13.1 Instruction Descriptions  
ADDLW  
Add Literal and W  
ANDWF  
AND W with f  
Syntax:  
[label] ADDLW  
0 k 255  
k
Syntax:  
[label] ANDWF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d ∈ [0,1]  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
The contents of the W register  
are added to the eight bit literal k’  
and the result is placed in the W  
register.  
AND the W register with register  
'f'. If 'd' is 0, the result is stored in  
the W register. If 'd' is 1, the result  
is stored back in register 'f'.  
BCF  
Bit Clear f  
ADDWF  
Syntax:  
Add W and f  
Syntax:  
Operands:  
[label] BCF f,b  
[label] ADDWF f,d  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
0 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit 'b' in register 'f' is cleared.  
Description:  
Add the contents of the W register  
with register f. If dis 0, the result  
is stored in the W register. If dis  
1, the result is stored back in reg-  
ister f.  
ANDLW  
AND Literal with W  
BSF  
Bit Set f  
Syntax:  
[label] ANDLW  
0 k 255  
k
Syntax:  
Operands:  
[label] BSF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
0 b 7  
(W) .AND. (k) (W)  
Operation:  
1 (f<b>)  
Z
Status Affected:  
Description:  
None  
The contents of W register are  
ANDed with the eight bit literal  
'k'. The result is placed in the W  
register.  
Bit 'b' in register 'f' is set.  
2002 Microchip Technology Inc.  
DS41120B-page 135  
PIC16C717/770/771  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit bin register fis 0, the next  
The contents of register fare  
instruction is executed.  
cleared and the Z bit is set.  
If bit bis 1, then the next instruc-  
tion is discarded and a NOPis exe-  
cuted instead making this a 2TCY  
instruction.  
BTFSC  
Bit Test, Skip if Clear  
CLRW  
Clear W  
Syntax:  
[label] BTFSC f,b  
Syntax:  
[ label ] CLRW  
None  
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
00h (W)  
1 Z  
Operation:  
skip if (f<b>) = 0  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
If bit bin register fis 1, the next  
W register is cleared. Zero bit (Z)  
is set.  
instruction is executed.  
If bit b, in register f, is 0, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
CALL  
Call Subroutine  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Operands:  
Operation:  
Operands:  
Operation:  
00h WDT  
0 WDT prescaler,  
1 TO  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call Subroutine. First, return  
Description: CLRWDTinstruction resets the  
address (PC+1) is pushed onto  
the stack. The eleven bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two cycle instruction.  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits  
TO and PD are set.  
DS41120B-page 136  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
COMF  
Complement f  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
Syntax:  
Operands:  
[ label ] COMF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register fare  
complemented. If dis 0, the  
result is stored in W. If dis 1, the  
result is stored back in register f.  
Description:  
GOTOis an unconditional branch.  
The eleven bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two  
cycle instruction.  
DECF  
Decrement f  
INCF  
Increment f  
Syntax:  
Operands:  
[label] DECF f,d  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 127  
d [0,1]  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register f. If dis 0,  
the result is stored in the W regis-  
ter. If dis 1, the result is stored  
back in register f.  
The contents of register fare  
incremented. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in reg-  
ister f.  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] DECFSZ f,d  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description: The contents of register fare  
Description: The contents of register fare  
decremented. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in reg-  
ister f.  
incremented. If dis 0, the result is  
placed in the W register. If dis 1,  
the result is placed back in regis-  
ter f.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead  
making it a 2TCY instruction.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
a NOPis executed instead making  
it a 2TCY instruction.  
2002 Microchip Technology Inc.  
DS41120B-page 137  
PIC16C717/770/771  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .OR. k (W)  
Z
k (W)  
None  
The contents of the W register are  
ORed with the eight bit literal 'k'.  
The result is placed in the W reg-  
ister.  
The eight bit literal 'k' is loaded  
into W register. The dont cares  
will assemble as 0s.  
IORWF  
Inclusive OR W with f  
MOVWF  
Move W to f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
Operation:  
(W) .OR. (f) (destination)  
None  
Status Affected:  
Description:  
Z
Move data from W register to reg-  
ister 'f'.  
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1  
the result is placed back in regis-  
ter 'f'.  
NOP  
No Operation  
[ label ] NOP  
None  
MOVF  
Move f  
Syntax:  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
No operation  
Operation:  
(f) (destination)  
Status Affected: None  
Description: No operation.  
Status Affected:  
Description:  
Z
The contents of register f are  
moved to a destination dependant  
upon the status of d. If d = 0, des-  
tination is W register. If d = 1, the  
destination is file register f itself. d  
= 1 is useful to test a file register  
since status flag Z is affected.  
DS41120B-page 138  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RLF  
Rotate Left f through Carry  
Syntax:  
Syntax:  
[ label ] RLF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
TOS PC,  
1 GIE  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The contents of register fare  
rotated one bit to the left through  
the Carry Flag. If dis 0, the  
result is placed in the W register.  
If dis 1, the result is stored back  
in register f.  
C
Register f  
RETLW  
Return with Literal in W  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] RETLW k  
0 k 255  
Syntax:  
Operands:  
[ label ] RRF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
Description:  
The W register is loaded with the  
The contents of register fare  
rotated one bit to the right through  
the Carry Flag. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in reg-  
ister f.  
eight bit literal k. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two cycle instruction.  
C
Register f  
SLEEP  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN  
None  
Syntax:  
[ label  
]
SLEEP  
Operands:  
Operation:  
Operands:  
Operation:  
None  
TOS PC  
00h WDT,  
Status Affected: None  
0 WDT prescaler,  
1 TO,  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two cycle  
instruction.  
0 PD  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD  
is cleared. Time-out status bit,  
TO is set. Watchdog Timer and  
its prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 12.8 for more  
details.  
2002 Microchip Technology Inc.  
DS41120B-page 139  
PIC16C717/770/771  
SUBLW  
Subtract W from Literal  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ]  
Syntax:  
[label]  
SUBLW k  
XORLW k  
Operands:  
Operation:  
0 k 255  
Operands:  
0 k 255  
k - (W) → (W)  
Operation:  
(W) .XOR. k → (W)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
Description:  
The W register is subtracted (2s  
The contents of the W register  
are XORed with the eight bit lit-  
eral 'k'. The result is placed in  
the W register.  
complement method) from the  
eight bit literal 'k'. The result is  
placed in the W register.  
XORWF  
Syntax:  
Exclusive OR W with f  
SUBWF  
Subtract W from f  
Syntax:  
[ label ]  
[label] XORWF f,d  
SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: C, DC, Z  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Description:  
Subtract (2s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W regis-  
ter. If 'd' is 1, the result is stored  
back in register 'f'.  
SWAPF  
Syntax:  
Swap Nybbles in f  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
Description:  
The upper and lower nybbles of  
register 'f' are exchanged. If 'd' is  
0, the result is placed in W regis-  
ter. If 'd' is 1, the result is placed in  
register 'f'.  
DS41120B-page 140  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
The MPLAB IDE allows you to:  
14.0 DEVELOPMENT SUPPORT  
Edit your source files (either assembly or C)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
Simulators  
- MPLAB SIM Software Simulator  
Emulators  
14.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPICIn-Circuit Emulator  
In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCUs.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
Integration into MPLAB IDE projects.  
User-defined macros to streamline assembly  
code.  
14.1 MPLAB Integrated Development  
Environment Software  
Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
Directives that allow complete control over the  
assembly process.  
14.3 MPLAB C17 and MPLAB C18  
C Compilers  
An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI Ccompilers for  
Microchips PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
A full-featured editor  
A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
Customizable toolbar and key mapping  
A status bar  
On-line help  
2002 Microchip Technology Inc.  
DS41120B-page 141  
PIC16C717/770/771  
14.4 MPLINK Object Linker/  
MPLIB Object Librarian  
14.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
Easier linking because single libraries can be  
included instead of many smaller files.  
Helps keep code maintainable by grouping  
related modules together.  
14.7 ICEPIC In-Circuit Emulator  
Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
14.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or Trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS41120B-page 142  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
14.8 MPLAB ICD In-Circuit Debugger  
14.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchips In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchips In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchips microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
14.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
Stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In Stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
14.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
14.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2002 Microchip Technology Inc.  
DS41120B-page 143  
PIC16C717/770/771  
14.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
14.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
14.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS41120B-page 144  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X X F 8 C 1 P I  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2002 Microchip Technology Inc.  
DS41120B-page 145  
PIC16C717/770/771  
NOTES:  
DS41120B-page 146  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4) .......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Maximum voltage between AVDD and VDD pins................................................................................................................. 0.3V  
Maximum voltage between AVSS and VSS pins ................................................................................................................. 0.3V  
Voltage on MCLR with respect to VSS........................................................................................................ -0.3V to +8.5V  
Voltage on RA4 with respect to Vss......................................................................................................... -0.3V to +10.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB (combined).................................................................................200 mA  
Maximum current sourced by PORTA and PORTB (combined) ...........................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL).  
NOTICE: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
DS41120B-page 147  
PIC16C717/770/771  
FIGURE 15-1:  
PIC16C717/770/771 VOLTAGE-FREQUENCY GRAPH, -40°C TA +85°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
VDD  
(Volts)  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 15-2:  
PIC16LC717/770/771 VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
VDD  
(Volts)  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS41120B-page 148  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-3:  
PIC16LC717/770/771 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA 0°C, +70°C TA +85°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
VDD  
(Volts)  
0
4
10  
Frequency (MHz)  
20  
25  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2002 Microchip Technology Inc.  
DS41120B-page 149  
PIC16C717/770/771  
15.1 DC Characteristics: PIC16C717/770/771 (Commercial, Industrial, Extended)  
PIC16LC717/770/771 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
PIC16LC717/770/771  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
PIC16C717/770/771  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min TypMax Units  
Conditions  
D001  
D001  
VDD  
VDD  
Supply Voltage  
2.5  
4.0  
5.5  
5.5  
V
V
V
Supply Voltage  
D002* VDR  
RAM Data Retention  
Voltage(1)  
1.5  
D002* VDR  
D003* VPOR  
RAM Data Retention  
Voltage(1)  
1.5  
V
V
VSS  
VDD start voltage to  
ensure internal Power-  
on Reset signal  
See section on Power-on Reset for details  
See section on Power-on Reset for details  
VSS  
D003* VPOR  
D004* SVDD  
D004* SVDD  
VDD start voltage to  
ensure internal Power-  
on Reset signal  
V
VDD rise rate to ensure  
internal Power-on Reset  
signal  
0.05  
0.05  
V/ms See section on Power-on Reset for details.  
PWRT enabled  
VDD rise rate to ensure  
internal Power-on Reset  
signal  
V/ms See section on Power-on Reset for details.  
PWRT enabled  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
DS41120B-page 150  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.1 DC Characteristics: PIC16C717/770/771 (Commercial, Industrial, Extended)  
PIC16LC717/770/771 (Commercial, Industrial, Extended)  
(Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
PIC16LC717/770/771  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
PIC16C717/770/771  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min TypMax Units  
Conditions  
Supply Current(2)  
IDD  
D010D  
D010E  
PIC16LC7XX  
1.0  
2.0  
3.0  
mA FOSC = 10 MHz, VDD = 3V, -40°C to 85°C  
FOSC = 10 MHz, VDD = 3V, -40°C to 125°C  
D010G  
0.36 1.0  
mA FOSC = 4 MHz, VDD = 2.5V, -40°C to 125°C  
µA FOSC = 32 kHz, VDD = 2.5V, -40°C to 125°C  
D010K  
IDD  
11  
45  
Supply Current(2)  
PIC16C7XX  
D010  
D010A  
4.0  
2.5  
7.5  
12.0  
mA FOSC = 20 MHz, VDD = 5.5V, -40°C to 85°C  
FOSC = 20 MHz, VDD = 5.5V, -40°C to 125°C  
D010B  
D010C  
5.0  
6.0  
mA FOSC = 20 MHz, VDD = 4V, -40°C to 85°C  
FOSC = 20 MHz, VDD = 4V, -40°C to 125°C  
D010F  
0.55 1.5  
mA FOSC = 4 MHz, VDD = 4V, -40°C to 125°C  
D010H  
D010J  
30  
80  
95  
µA FOSC = 32 kHz, VDD = 4V, -40°C to 85°C  
FOSC = 32 kHz, VDD = 4V, -40°C to 125°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
2002 Microchip Technology Inc.  
DS41120B-page 151  
PIC16C717/770/771  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
PIC16LC717/770/771  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
PIC16C717/770/771  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min TypMax Units  
Conditions  
Power-down Current(3)  
PIC16LC7XX  
IPD  
D020D  
D020E  
0.3  
2.0  
5.0  
µA VDD = 3V, -40°C to 85°C  
VDD = 3V, -40°C to 125°C  
D020F  
D020G  
0.1  
1.4  
1.5  
3.0  
µA VDD = 2.5V, -40°C to 85°C  
VDD = 2.5V, -40°C to 125°C  
D020  
PIC16C7XX  
4.0  
8.0  
µA VDD = 5.5V, -40°C to 85°C  
VDD = 5.5V, -40°C to 125°C  
D020A  
D020B  
D020C  
1.0  
3.5  
6.0  
µA VDD = 4V, -40°C to 85°C  
VDD = 4V, -40°C to 125°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
DS41120B-page 152  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.1 DC Characteristics: PIC16C717/770/771 (Commercial, Industrial, Extended)  
PIC16LC717/770/771 (Commercial, Industrial, Extended)  
(Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
PIC16LC717/770/771  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
PIC16C717/770/771  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min TypMax Units  
Conditions  
Base plus Module current  
Watchdog Timer  
D021A  
D021  
D021  
D025  
D025  
D025  
D026*  
D026*  
IWDT  
IWDT  
IWDT  
2
5
10  
20  
20  
9
µA VDD = 3V, -40°C to 125°C  
µA VDD = 4V, -40°C to 125°C  
µA VDD = 4V, -40°C to 125°C  
µA VDD = 3V, -40°C to 125°C  
µA VDD = 4V, -40°C to 125°C  
µA VDD = 4V, -40°C to 125°C  
µA VDD = 5.5V, A/D on, not converting  
µA VDD = 5.5V, A/D on, not converting  
Watchdog Timer  
Watchdog Timer  
5
IT1OSC Timer1 Oscillator  
IT1OSC Timer1 Oscillator  
IT1OSC Timer1 Oscillator  
3
4
12  
12  
4
IAD  
IAD  
ADC Converter  
ADC Converter  
300  
300  
55  
D027  
IPLVD Programmable Low  
Voltage Detect  
125  
150  
µA VDD = 4V, -40°C to 85°C  
VDD = 4V, -40°C to 125°C  
D027A  
D027  
IPLVD Programmable Low  
Voltage Detect  
55  
55  
55  
125  
150  
µA VDD = 4V, -40°C to 85°C  
VDD = 4V, -40°C to 125°C  
D027A  
D028  
IPBOR Programmable Brown-  
out Reset  
125  
150  
µA VDD = 5V, -40°C to 85°C  
VDD = 5V, -40°C to 125°C  
D028A  
D028  
IPBOR Programmable Brown-  
out Reset  
125  
150  
µA VDD = 5V, -40°C to 85°C  
VDD = 5V, -40°C to 125°C  
D028A  
D029  
IVRH  
IVRH  
IVRL  
IVRL  
Voltage reference High  
Voltage reference High  
Voltage reference Low  
Voltage reference Low  
200 750  
1.0  
µA VDD = 5V, -40°C to 85°C  
mA VDD = 5V, -40°C to 125°C  
D029A  
D029  
200 750  
1.0  
µA VDD = 5V, -40°C to 85°C  
mA VDD = 5V, -40°C to 125°C  
D029A  
D030  
200 750  
1.0  
µA VDD = 4V, -40°C to 85°C  
mA VDD = 4V, -40°C to 125°C  
D030A  
D030  
200 750  
1.0  
µA VDD = 4V, -40°C to 85°C  
mA VDD = 4V, -40°C to 125°C  
D030A  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2002 Microchip Technology Inc.  
DS41120B-page 153  
PIC16C717/770/771  
15.2 DC Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial,  
Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Operating voltage VDD range as described in Section 15.1 and  
Section 15.2.  
Param. Sym  
No.  
Characteristic  
Min  
TypMax Units  
Conditions  
Input Low Voltage  
VIL I/O ports  
D030  
D030A  
D031  
D032  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
For entire VDD range  
with Schmitt Trigger buffer  
MCLR  
D033  
OSC1 (in XT, HS, LP and EC)  
VSS  
0.3VDD  
V
Input High Voltage  
VIH I/O ports  
with TTL buffer  
D040  
D040A  
2.0  
(0.25VDD  
+ 0.8V)  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D041  
D042  
D042A  
with Schmitt Trigger buffer 0.8VDD  
VDD  
VDD  
VDD  
400  
V
V
V
For entire VDD range  
MCLR  
OSC1 (XT, HS, LP and EC)  
0.8VDD  
0.7VDD  
50  
D070 IPURB PORTB weak pull-up current  
per pin  
250  
µA VDD = 5V, VPIN = VSS  
Input Leakage Current (1,2)  
D060  
D060A  
IIL I/O ports (with digital functions)  
IIL I/O ports (with analog func-  
1
100  
µA Vss VPIN VDD, Pin at hi-impedance  
nA Vss VPIN VDD, Pin at hi-impedance  
tions)  
D061  
D063  
RA5/MCLR/VPP  
OSC1  
5
5
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS, LP and EC  
osc configuration  
Output Low Voltage  
VOL I/O ports  
Output High Voltage  
I/O ports(2)  
VOH  
D080  
D090  
0.6  
V
IOL = 8.5 mA, VDD = 4.5V  
VDD - 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V  
RA4 pin  
D150* VOD Open Drain High Voltage  
Capacitive Loading Specs on  
Output Pins*  
10.5  
D100  
COS OSC2 pin  
15  
pF In XT, HS and LP modes when exter-  
C2  
nal clock is used to drive OSC1.  
D101  
D102  
CIO All I/O pins and OSC2 (in RC  
50  
400  
pF  
pF  
mode) SCL, SDA in I2C mode  
CB  
CVRH VRH pin  
CVRL VRL pin  
200  
200  
pF VRH output enabled  
pF VRL output enabled  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
2: Negative current is defined as current sourced by the pin.  
DS41120B-page 154  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.3 AC Characteristics: PIC16C717/770/771 & PIC16LC717/770/771  
(Commercial, Industrial, Extended)  
15.3.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created using one of the following formats:  
1. TppS2ppS  
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C (I2C specifications only)  
AA  
output access  
Bus free  
High  
BUF  
High  
Low  
Low  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
2002 Microchip Technology Inc.  
DS41120B-page 155  
PIC16C717/770/771  
FIGURE 15-4:  
LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF  
15 pF  
for all pins except OSC2  
for OSC2 output  
DS41120B-page 156  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.3.2  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 15-5:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
(1)  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-1: CLKOUT AND I/O TIMING REQUIREMENTS  
Param.  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Unit Conditions  
s
12*  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
35  
35  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
13*  
14*  
15*  
16*  
17*  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
PIC16C717/770/771  
PIC16LC717/770/771  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16C717/770/771  
PIC16LC717/770/771  
PIC16C717/770/771  
PIC16LC717/770/771  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB<7:0> change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken ER or INTRC w/CLKOUT mode where CLKOUT output is 4 x TOSC.  
2002 Microchip Technology Inc.  
DS41120B-page 157  
PIC16C717/770/771  
FIGURE 15-6:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param No. Sym Characteristic Min Typ†  
Max  
Units Conditions  
1A  
FOSC  
External CLKIN Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
0.1*  
4
20  
20  
200  
4
MHz XT mode  
MHz EC mode  
MHz HS mode  
kHz LP mode  
MHz XT mode  
Oscillator Frequency  
(Note 1)  
4*  
5*  
20  
200  
MHz HS mode  
kHz LP mode  
1
TOSC  
External CLKIN Period  
(Note 1)  
250  
50  
50  
5
TCY  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
XT mode  
EC mode  
HS mode  
LP mode  
XT mode  
HS mode  
LP mode  
TCY = 4/FOSC  
XT mode  
LP mode  
HS mode  
EC mode  
XT mode  
LP mode  
HS mode  
EC mode  
Oscillator Period  
(Note 1)  
250  
50  
5
10,000*  
250*  
2
TCY  
Instruction Cycle Time (Note 1)  
200  
DC  
3*  
TosL,  
TosH  
External Clock in (OSC1) High or Low 100  
Time  
2.5  
15  
4*  
TosR,  
TosF  
External Clock in (OSC1) Rise or Fall  
Time  
25  
50  
15  
ns  
ns  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "Max. Frequency" values with a square wave applied to the OSC1/CLKIN  
pin.  
When an external clock input is used, the "Min." frequency (or Max. TCY) limit is "DC" (no clock) for all devices.  
DS41120B-page 158  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 15-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C717/770/771 AND  
PIC16LC717/770/771  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Operating Voltage VDD range is described in Section and Section  
Parameter  
Sym  
Typ(1)*  
Characteristic  
Min  
Max Units  
Conditions  
No.  
Internal Calibrated RC Frequency 3.65 4.00  
Internal RC Frequency* 3.55 4.00  
4.28 MHz VDD = 5.0V  
4.31 MHz VDD = 2.5V  
FIRC  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (Typ) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
FIGURE 15-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 15-4 for load conditions.  
FIGURE 15-8:  
BROWN-OUT RESET TIMING  
VBOR  
VDD  
35  
2002 Microchip Technology Inc.  
DS41120B-page 159  
PIC16C717/770/771  
TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30*  
31*  
TMCL  
MCLR Pulse Width (low)  
2
7
µs  
VDD = 5V, -40°C to +85°C  
VDD = 5V, -40°C to +85°C  
TWDT  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms  
32*  
33*  
34*  
TOST  
Oscillation Start-up Timer Period  
Power up Timer Period  
28  
1024 TOSC  
ms  
µs  
TOSC = OSC1 period  
TPWRT  
72  
132  
2.1  
VDD = 5V, -40°C to +85°C  
TIOZ  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35*  
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD VBOR (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 15-9:  
BROWN-OUT RESET CHARACTERISTICS  
VDD  
VBOR  
(device not in Brown-out Reset)  
(device in Brown-out Reset)  
RESET (due to BOR)  
72 ms time-out  
FIGURE 15-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RB6/T1OSO/T1CKI/PIC  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 15-4 for load conditions.  
DS41120B-page 160  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param.  
No.  
Sym Characteristic  
Min  
TypMax Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time  
T1CKI Low Time  
Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C717/770/771  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC717/770/771  
25  
Asynchronous PIC16C717/770/771  
PIC16LC717/770/771  
30  
ns  
ns  
50  
0.5TCY + 20  
15  
Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C717/770/771  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC717/770/771  
25  
Asynchronous PIC16C717/770/771  
PIC16LC717/770/771  
30  
50  
ns  
ns  
T1CKI input period Synchronous PIC16C717/770/771 Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
PIC16LC717/770/771 Greater of:  
ns N = prescale value  
(1, 2, 4, 8)  
50 OR TCY + 40  
N
Asynchronous PIC16C717/770/771  
PIC16LC717/770/771  
60  
100  
DC  
50  
ns  
ns  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
kHz  
48  
*
Tcke2tmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 15-11:  
ENHANCED CAPTURE/COMPARE/PWM TIMINGS (ECCP)  
RB3/CCP1/P1A  
(Capture Mode)  
50  
51  
52  
RB3/CCP1/P1A  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 15-4 for load conditions.  
54  
2002 Microchip Technology Inc.  
DS41120B-page 161  
PIC16C717/770/771  
TABLE 15-6: ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)  
Param. Sym Characteristic  
No.  
Min  
TypMax Units Conditions  
50*  
51*  
TccL CCP1 input low  
time  
No Prescaler  
0.5TCY + 20  
ns  
PIC16C717/770/771  
PIC16LC717/770/771  
10  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
20  
0.5TCY + 20  
10  
TccH  
CCP1 input high  
time  
PIC16C717/770/771  
PIC16LC717/770/771  
With Prescaler  
20  
52*  
53*  
TccP  
3TCY + 40  
N
ns N = prescale value  
(1, 4 or 16)  
CCP1 input period  
PIC16C717/770/771  
PIC16LC717/770/771  
PIC16C717/770/771  
PIC16LC717/770/771  
TccR CCP1 output fall time  
TccF CCP1 output fall time  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41120B-page 162  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.4 Analog Peripherals Characteristics: PIC16C717/770/771 & PIC16LC717/770/771  
(Commercial, Industrial, Extended)  
15.4.1  
BANDGAP MODULE  
FIGURE 15-12:  
BANDGAP START-UP TIME  
VBGAP  
VBGAP = 1.2V  
(internal use only)  
Enable Bandgap  
Bandgap stable  
TBGAP  
TABLE 15-7: BANDGAP START-UP TIME  
Param.  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
36*  
TBGAP  
Bandgap start-up time  
19  
33  
µS Defined as the time between the  
instant that the bandgap is  
enabled and the moment that  
the bandgap reference voltage  
is stable.  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
2002 Microchip Technology Inc.  
DS41120B-page 163  
PIC16C717/770/771  
15.4.2  
LOW VOLTAGE DETECT MODULE (LVD)  
FIGURE 15-13:  
LOW VOLTAGE DETECT CHARACTERISTICS  
VDD  
VLVD  
(LVDIF set by hardware)  
LVDIF  
(LVDIF can be cleared in software anytime during  
the gray area)  
TABLE 15-8: ELECTRICAL CHARACTERISTICS: LVD  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial and  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC Characteristics Section 15.1.  
Param.  
No.  
Characteristic  
Symbol  
Min TypMax Units  
Conditions  
D420*  
LVD Voltage  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
2.5  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
2.58 2.66  
2.78 2.86  
2.89 2.98  
V
V
V
V
V
V
V
V
V
V
V
3.1  
3.2  
3.41 3.52  
3.61 3.72  
3.72 3.84  
3.92 4.04  
4.13 4.26  
4.33 4.46  
4.64 4.78  
VLVD  
*
These parameters are characterized but not tested.  
Note 1: Production tested at Tamb = 25°C. Specifications over temperature limits ensured by characterization.  
DS41120B-page 164  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.4.3  
PROGRAMMABLE BROWN-OUT RESET MODULE (PBOR)  
TABLE 15-9: DC CHARACTERISTICS: PBOR  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC Characteristics Section 15.1.  
Param.  
No.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
2.5  
2.58  
2.66  
D005  
BOR Voltage  
BORV<1:0> = 11  
BORV<1:0> = 10  
BORV<1:0> = 01  
BORV<1:0> = 00  
2.7  
4.2  
4.5  
2.78  
4.33  
4.64  
2.86  
4.46  
4.78  
VBOR  
V
15.4.4  
VREF MODULE  
TABLE 15-10: DC CHARACTERISTICS: VREF  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param. Symbol  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC Characteristics  
Section 15.1.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
D400  
VRL  
VRH  
Output Voltage  
Output Voltage  
2.0  
4.0  
1.9  
4.0  
2.048  
4.096  
2.048  
4.096  
2.1  
4.2  
2.2  
4.3  
5
V
V
VDD 2.7V, -40°C TA +85°C  
VDD 4.5V, -40°C TA +85°C  
VDD 2.7V, -40°C TA +125°C  
VDD 4.5V, -40°C TA +125°C  
D400A VRL  
VRH  
V
V
D404* IVREFSO External Load Source  
D405* IVREFSI External Load Sink  
mA  
mA  
pF  
-5  
*
CL  
External Capacitor Load  
200  
1
D406* Vout/ VRH Load Regulation  
Iout  
0.6  
mV/mA VDD 5V ISOURCE = 0 mA to 5 mA  
ISINK = 0 mA to 5 mA  
1
4
VRL Load Regulation  
0.6  
1
VDD 3V ISOURCE = 0 mA to 5 mA  
ISINK = 0 mA to 5 mA  
2
4
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are  
for design guidance only and are not tested.  
2002 Microchip Technology Inc.  
DS41120B-page 165  
PIC16C717/770/771  
15.4.5  
A/D CONVERTER MODULE  
TABLE 15-11: PIC16C770/771 AND PIC16LC770/771 A/D CONVERTER CHARACTERISTICS:  
Param. Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
12 bits  
bit Min. resolution for A/D is 1 mV,  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A03  
A04  
EIL  
Integral error  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
±2  
VREF- VAIN VREF+  
EDL  
Differential error  
LSb No missing codes to 12 bits  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
+2  
-1  
VREF- VAIN VREF+  
A06  
A07  
EOFF Offset error  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
±2  
VREF- VAIN VREF+  
EGN  
Gain Error  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
±2  
VREF- VAIN VREF+  
A10  
Monotonicity  
Note 3  
AVSS VAIN VREF+  
A20*  
VREF Reference voltage  
(VREF+ - VREF-)  
4.096  
VDD  
+0.3V  
V
Absolute minimum electrical spec to  
ensure 12-bit accuracy.  
A21*  
A22*  
A25*  
A30*  
VREF+ Reference V High  
(AVDD or VREF+)  
VREF-  
AVSS  
VREFL  
AVDD  
VREF+  
VREFH  
2.5  
V
V
Min. resolution for A/D is 1 mV  
VREF- Reference V Low  
(AVSS or VREF-)  
Min. resolution for A/D is 1 mV  
VAIN  
Analog input volt-  
age  
V
ZAIN  
Recommended  
kΩ  
impedance of ana-  
log voltage source  
A50*  
IREF  
VREF input current  
(Note 2)  
10  
µA During VAIN acquisition.  
Based on differential of VHOLD to  
VAIN.  
To charge CHOLD see Section 11.0.  
During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
2: VREF input current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as refer-  
ence input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
DS41120B-page 166  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-14:  
PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION TIMING (NORMAL  
MODE)  
BSF ADCON0, GO  
134  
Q4  
1/2 TCY  
131  
130  
A/D CLK  
11  
10  
9
8
3
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
DONE  
OLD_DATA  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
2002 Microchip Technology Inc.  
DS41120B-page 167  
PIC16C717/770/771  
TABLE 15-12: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENTS  
(NORMAL MODE)  
Parameter Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
130*(3)  
TAD  
A/D clock period  
1.6  
3.0  
µs Tosc based, VREF 2.5V  
µs Tosc based, VREF full range  
ADCS<1:0> = 11  
(A/D RC mode)  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs At VDD = 2.5V  
µs At VDD = 5.0V  
131*  
132*  
TCNV  
TACQ  
Conversion time  
(not including  
acquisition time)  
(Note 1)  
13TAD  
TAD  
Acquisition Time  
Note 2  
11.5  
µs  
5*  
µs The minimum time is the ampli-  
fier settling time. This may be  
used if the newinput voltage  
has not changed by more than  
1LSb (i.e., 1mV @ 4.096V) from  
the last sampled voltage (as  
stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock  
start  
TOSC/2  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.  
DS41120B-page 168  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-15:  
PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
131  
Q4  
130  
A/D CLK  
11  
10  
9
3
2
1
0
8
A/D DATA  
OLD_DATA  
NEW_DATA  
DONE  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
TABLE 15-13: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENT  
(SLEEP MODE)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
(3)  
TAD  
A/D Internal RC  
oscillator period  
ADCS<1:0> = 11 (RC mode)  
At VDD= 3.0V  
130*  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 5.0V  
131*  
132*  
TCNV  
TACQ  
Conversion time (not  
including acquisition  
time) (Note 1)  
13TAD  
Acquisition Time  
(Note 2)  
11.5  
µs  
µs  
5*  
The minimum time is the amplifier  
settling time. This may be used if  
the newinput voltage has not  
changed by more than 1LSb (i.e.,  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2 + TCY  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.  
2002 Microchip Technology Inc.  
DS41120B-page 169  
PIC16C717/770/771  
TABLE 15-14: PIC16C717 AND PIC16LC717 A/D CONVERTER CHARACTERISTICS:  
Param.  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10 bits  
bit  
Min. resolution for A/D is 4.1 mV,  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A03  
A04  
EIL  
Integral error  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
±1  
±1  
VREF- VAIN VREF+  
EDL  
Differential error  
LSb No missing codes to 10 bits  
VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A06  
A07  
EOFF  
EGN  
Offset error  
Gain Error  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
±2  
±1  
VREF- VAIN VREF+  
LSb VREF+ = AVDD = 4.096V,  
VREF- = AVSS = 0V,  
VREF- VAIN VREF+  
A10  
Monotonicity  
Note 3  
AVSS VAIN VREF+  
A20*  
VREF  
Reference voltage  
(VREF+ - VREF-)  
4.096  
VDD +0.3V  
V
Absolute minimum electrical spec to  
ensure 10-bit accuracy.  
A21*  
A22*  
VREF+ Reference V High  
(AVDD or VREF+)  
VREF-  
AVSS  
AVDD  
V
V
Min. resolution for A/D is 4.1 mV  
VREF-  
Reference V Low  
(AVSS or VREF-)  
VREF+  
Min. resolution for A/D is 4.1 mV  
A25*  
A30*  
VAIN  
ZAIN  
Analog input voltage  
VREFL  
VREFH  
2.5  
V
Recommended  
kΩ  
impedance of analog  
voltage source  
A50*  
IREF  
VREF input current  
10  
µA  
During VAIN acquisition.  
(Note 2)  
Based on differential of VHOLD to VAIN.  
To charge CHOLD see Section 11.0.  
During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such  
leakage from the A/D module.  
2: VREF current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
DS41120B-page 170  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-16:  
PIC16C717 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
134  
Q4  
1/2 TCY  
131  
130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
DONE  
OLD_DATA  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
TABLE 15-15: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (NORMAL MODE)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
(3)  
TAD  
A/D clock period  
1.6  
3.0  
µs  
µs  
Tosc based, VREF 2.5V  
130*  
Tosc based, VREF full range  
ADCS<1:0> = 11 (A/D RC mode)  
At VDD = 2.5V  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
µs  
µs  
At VDD = 5.0V  
131*  
132*  
TCNV  
TACQ  
Conversion time (not  
including  
acquisition time)  
(Note 1)  
11TAD  
TAD  
Acquisition Time  
(Note 2)  
11.5  
µs  
µs  
5*  
The minimum time is the amplifier  
settling time. This may be used if  
the newinput voltage has not  
changed by more than 1LSb (i.e.,  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
3:These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.  
2002 Microchip Technology Inc.  
DS41120B-page 171  
PIC16C717/770/771  
FIGURE 15-17:  
PIC16C717 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
131  
Q4  
130  
A/D CLK  
9
8
7
3
2
1
0
6
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
TABLE 15-16: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (SLEEP MODE)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
(3)  
TAD  
A/D clock period  
3.0  
6.0  
9.0  
µs  
ADCS<1:0> = 11 (A/D RC mode)  
At VDD = 3.0V  
130*  
2.0  
4.0  
6.0  
µs  
At VDD = 5.0V  
131*  
132*  
TCNV  
TACQ  
Conversion time (not  
including acquisition  
time) (Note 1)  
11TAD  
Acquisition Time  
(Note 2)  
11.5  
µs  
µs  
5*  
The minimum time is the amplifier  
settling time. This may be used if  
the newinput voltage has not  
changed by more than 1LSb (i.e.,  
1mV @ 4.096V) from the last sam-  
pled voltage (as stated on CHOLD).  
134*  
TGO  
Q4 to A/D clock start  
TOSC/2 + TCY  
If the A/D RC clock source is  
selected, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.6 for minimum conditions.  
3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.  
DS41120B-page 172  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
15.5 Master SSP SPI Mode Timing Waveforms and Requirements  
FIGURE 15-18:  
SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-17: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
Symbol Characteristic  
Min  
TypMax Units Conditions  
No.  
70*  
TssL2scH,  
TssL2scL  
TCY  
ns  
SSto SCKor SCKinput  
71*  
71A*  
72*  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
40  
1.25TCY + 30  
40  
ns Note 1  
ns  
TscL  
SCK input low time  
(Slave mode)  
72A*  
73*  
ns Note 1  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK edge  
100  
ns  
73A* TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns Note 1  
74*  
75*  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK edge  
100  
ns  
TdoR  
SDO data output rise time PIC16CXXX  
PIC16LCXXX  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76*  
78*  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC16CXXX  
PIC16LCXXX  
79*  
80*  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
PIC16CXXX  
PIC16LCXXX  
* These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
2002 Microchip Technology Inc.  
DS41120B-page 173  
PIC16C717/770/771  
FIGURE 15-19:  
SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
MSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-18: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
Symbol Characteristic  
Min  
TypMax Units Conditions  
No.  
71*  
TscH  
TscL  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A*  
72*  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(Slave mode)  
ns  
72A*  
73*  
ns Note 1  
TdiV2scH, Setup time of SDI data input to SCK  
100  
ns  
TdiV2scL  
edge  
73A* TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns Note 1  
74*  
75*  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK edge  
100  
ns  
TdoR  
SDO data output rise  
time  
PIC16CXXX  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXXX  
76*  
78*  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC16CXXX  
PIC16LCXXX  
79*  
80*  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
PIC16CXXX  
PIC16LCXXX  
81*  
*
TdoV2scH,  
TdoV2scL  
SDO data output setup to SCK edge  
TCY  
ns  
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
DS41120B-page 174  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 15-20:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-19: SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)  
Param.  
No.  
Symbol  
Characteristic  
Min  
TypMax Units  
Conditions  
70*  
TssL2scH,  
TssL2scL  
TCY  
ns  
SSto SCKor SCKinput  
71*  
71A*  
72*  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
ns  
ns  
ns  
40  
1.25TCY + 30  
40  
Note 1  
TscL  
SCK input low time  
(Slave mode)  
72A*  
73*  
Note 1  
Note 1  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK edge  
100  
ns  
ns  
73A*  
74*  
TB2B  
Last clock edge of Byte1 to the 1st clock edge  
of Byte2  
1.5TCY + 40  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK edge  
100  
ns  
75*  
TdoR  
SDO data output rise time  
SDO data output fall time  
PIC16CXXX  
10  
20  
10  
10  
20  
10  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXXX  
76*  
77*  
78*  
TdoF  
10  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (Master PIC16CXXX  
mode)  
PIC16LCXXX  
79*  
80*  
TscF  
SCK output fall time (Master mode)  
TscH2doV,  
TscL2doV  
SDO data output valid after  
SCK edge  
PIC16CXXX  
PIC16LCXXX  
83*  
TscH2ssH,  
TscL2ssH  
1.5TCY + 40  
SS after SCK edge  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
2002 Microchip Technology Inc.  
DS41120B-page 175  
PIC16C717/770/771  
FIGURE 15-21:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-20: SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param.  
No.  
Symbol  
Characteristic  
Min  
TypMax Units  
Conditions  
70*  
TssL2scH,  
TssL2scL  
TCY  
ns  
SSto SCKor SCKinput  
71*  
71A*  
72*  
TscH  
TscL  
TB2B  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
40  
ns  
ns  
ns  
ns  
ns  
Note 1  
SCK input low time  
(Slave mode)  
1.25TCY + 30  
40  
72A*  
73A*  
Note 1  
Note 1  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
74*  
75*  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK edge  
100  
ns  
TdoR  
SDO data output rise time PIC16CXXX  
PIC16LCXXX  
10  
20  
10  
25  
45  
25  
50  
ns  
ns  
ns  
ns  
76*  
77*  
TdoF  
SDO data output fall time  
TssH2doZ  
10  
SSto SDO output hi-impedance  
78*  
TscR  
SCK output rise time (Mas- PIC16CXXX  
10  
20  
10  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ter mode)  
PIC16LCXXX  
79*  
80*  
TscF  
SCK output fall time (Master mode)  
25  
TscH2doV,  
TscL2doV  
SDO data output valid after PIC16CXXX  
50  
SCK edge  
PIC16LCXXX  
100  
50  
82*  
83*  
TssL2doV  
SDO data output valid after PIC16CXXX  
SSedge  
PIC16LCXXX  
100  
TscH2ssH,  
TscL2ssH  
1.5TCY + 40  
SS after SCK edge  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
DS41120B-page 176  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
2
15.6 Master SSP I C Mode Timing Waveforms and Requirements  
FIGURE 15-22:  
MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-21: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param.  
No.  
Symbol Characteristic  
Min  
Typ Max Units  
Conditions  
90*  
TSU:STA START condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
Only relevant for a Repeated  
START  
condition  
Setup time  
400 kHz mode  
ns  
ns  
ns  
ns  
(1)  
1 MHz mode  
91*  
92*  
93*  
THD:STA START condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
After this period the first clock  
pulse is generated  
Hold time  
400 kHz mode  
(1)  
1 MHz mode  
TSU:STO STOP condition  
Setup time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
(1)  
1 MHz mode  
THD:STO STOP condition  
Hold time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2
(1)  
1 MHz mode  
*
These parameters are characterized but not tested. For the value required by the I C specification, please refer to the PICmi-  
TM  
cro Mid-Range MCU Family Reference Manual (DS33023).  
2
Maximum pin capacitance = 10 pF for all I C pins.  
FIGURE 15-23:  
MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 15-4 for load conditions.  
2002 Microchip Technology Inc.  
DS41120B-page 177  
PIC16C717/770/771  
TABLE 15-22: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol Characteristic  
Min  
Max  
Units  
Conditions  
100*  
THIGH  
TLOW  
TR  
Clock high time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
(1)  
1 MHz mode  
101*  
102*  
103*  
90*  
Clock low time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
(1)  
1 MHz mode  
SDA and SCL  
rise time  
100 kHz mode  
400 kHz mode  
20 + 0.1Cb  
1000  
300  
300  
ns  
ns  
ns  
Cb is specified to be from  
10 to 400 pF  
(1)  
1 MHz mode  
TF  
SDA and SCL  
fall time  
100 kHz mode  
400 kHz mode  
20 + 0.1Cb  
300  
300  
100  
ns  
ns  
ns  
Cb is specified to be from  
10 to 400 pF  
(1)  
1 MHz mode  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
Only relevant for Repeated  
START  
condition  
(1)  
1 MHz mode  
91*  
THD:STA START condition  
hold time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
After this period the first clock  
pulse is generated  
(1)  
1 MHz mode  
106*  
107*  
92*  
THD:DAT Data input  
hold time  
100 kHz mode  
400 kHz mode  
0
0
TBD  
0.9  
ns  
ms  
ns  
(1)  
1 MHz mode  
TSU:DAT Data input  
setup time  
100 kHz mode  
400 kHz mode  
250  
100  
TBD  
ns  
ns  
ns  
Note 2  
(1)  
1 MHz mode  
TSU:STO STOP condition  
setup time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
(1)  
1 MHz mode  
109*  
110  
TAA  
TBUF  
Cb  
Output valid from  
clock  
100 kHz mode  
400 kHz mode  
3500  
1000  
ns  
ns  
ns  
(1)  
1 MHz mode  
Bus free time  
100 kHz mode  
400 kHz mode  
4.7 ‡  
1.3 ‡  
TBD‡  
ms  
ms  
ms  
Time the bus must be free  
before a new transmission  
can start  
(1)  
1 MHz mode  
D102 ‡  
Bus capacitive loading  
400  
pF  
2
*
These parameters are characterized but not tested. For the value required by the I C specification, please refer to the  
TM  
PICmicro Mid-Range MCU Family Reference Manual (DS33023).  
These parameters are for design guidance only and are not tested, nor characterized.  
2
Note 1: Maximum pin capacitance = 10 pF for all I C pins.  
2
2
2: A Fast mode I C bus device can be used in a Standard mode I C bus system, but (TSU:DAT) 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does  
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
[(TR) + (TSU:DAT) = 1000 + 250 = 1250 ns], for 100 kHz mode, before the SCL line is released.  
DS41120B-page 178  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
16.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
The graphs and tables provided following this note are a statistical summary based on a limited number of samples  
and are provided for informational purposes only. The performance characteristics listed herein are not tested or  
guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside  
specified power supply range) and therefore outside the warranted range.  
Typicalrepresents the mean of the distribution at 25°C. Maximumor minimumrepresents (mean + 3σ ) or  
(mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.  
The FOSC IDD was determined using an external sinusoidal clock source with a peak amplitude ranging from VSS to VDD.  
FIGURE 16-1:  
MAXIMUM IDD VS. FOSC OVER VDD (HS MODE)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
4.00  
6.00  
8.00  
10.00  
12.00  
14.00  
16.00  
18.00  
20.00  
FOSC (MHz)  
2002 Microchip Technology Inc.  
DS41120B-page 179  
PIC16C717/770/771  
FIGURE 16-2:  
TYPICAL IDD VS. FOSC OVER VDD (HS MODE)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
4.00  
6.00  
8.00  
10.00  
12.00  
14.00  
16.00  
18.00  
20.00  
FOSC (MHz)  
FIGURE 16-3:  
MAXIMUM IDD VS. FOSC OVER VDD (XT MODE)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
FOSC (MHz)  
DS41120B-page 180  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-4:  
TYPICAL IDD VS. FOSC OVER VDD (XT MODE)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
FOSC (MHz)  
FIGURE 16-5:  
MAXIMUM IDD VS. FOSC OVER VDD (LP MODE)  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.000  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.09  
0.10  
FOSC (MHz)  
2002 Microchip Technology Inc.  
DS41120B-page 181  
PIC16C717/770/771  
FIGURE 16-6:  
TYPICAL IDD VS. FOSC OVER VDD (LP MODE)  
0.120  
5.5V  
0.100  
0.080  
0.060  
0.040  
0.020  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.000  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.09  
0.10  
FOSC (MHz)  
FIGURE 16-7:  
MAXIMUM IDD VS. FOSC OVER VDD (EC MODE)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.00  
2.00  
4.00  
6.00  
8.00  
10.00  
12.00  
14.00  
16.00  
18.00  
20.00  
FOSC (MHz)  
DS41120B-page 182  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-8:  
TYPICAL IDD VS. FOSC OVER VDD (EC MODE)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.00  
2.00  
4.00  
6.00  
8.00  
10.00  
12.00  
14.00  
16.00  
18.00  
20.00  
FOSC (MHz)  
FIGURE 16-9:  
MAXIMUM IDD VS. FOSC OVER VDD (ER MODE)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
R = 38.3 kΩ  
R = 100 kΩ  
R = 200 kΩ  
R = 499 kΩ  
R = 1 MΩ  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS41120B-page 183  
PIC16C717/770/771  
FIGURE 16-10:  
TYPICAL IDD VS. FOSC OVER VDD (ER MODE)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
R = 38.3 kΩ  
R = 100 kΩ  
R = 200 kΩ  
R = 499 kΩ  
R = 1 MΩ  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-11:  
TYPICAL FOSC VS. VDD (ER MODE)  
10.0  
R = 38.3 kΩ  
R= 100kΩ  
1.0  
R = 200 kΩ  
R = 499 kΩ  
R = 1 MΩ  
0.1  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41120B-page 184  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-12:  
MAXIMUM IDD VS. VDD (INTRC 37 kHZ MODE)  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
Max (-40 °C)  
Typ (25 °C)  
0.00  
2.5  
3.0  
3.5  
4.0  
VDD (Volts)  
4.5  
5.0  
5.5  
FIGURE 16-13:  
TYPICAL IDD VS. VDD (INTRC 37 kHZ MODE)  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
-40 °C  
25 °C  
85 °C  
125 °C  
0.00  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS41120B-page 185  
PIC16C717/770/771  
FIGURE 16-14:  
INTERNAL RC FOSC VS. VDD OVER TEMPERATURE (37 kHZ)  
0.060  
0.055  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
Max (125 °C)  
Typ (25 °C)  
Min(-40° C)  
0.020  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
FIGURE 16-15:  
MAXIMUM AND TYPICAL IDD VS. VDD (INTRC 4 MHz MODE)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
Max (-40 °C)  
Typ (25 °C)  
0.4  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (Volts)  
DS41120B-page 186  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-16:  
TYPICAL IDD VS. VDD (INTRC 4 MHz MODE)  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
125 °C  
25 °C  
85 °C  
-40 °C  
0.4  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (Volts)  
FIGURE 16-17:  
INTERNAL RC FOSC VS. VDD OVER TEMPERATURE (4 MHz)  
4.15  
4.10  
4.05  
4.00  
3.95  
3.90  
3.85  
Max (125 °C)  
Typ (25 °C)  
Min (-40 °C)  
3.80  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS41120B-page 187  
PIC16C717/770/771  
FIGURE 16-18:  
MAXIMUM IPD VS. VDD (-40°C TO +125°C)  
10  
+125°C  
1
+85°C  
+25°C  
-40°C  
0.1  
0.01  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
DD  
V
(V)  
DS41120B-page 188  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-19:  
TYPICAL AND MAXIMUM IWDT VS. VDD (-40°C TO +125°C)  
16.0  
14.0  
12.0  
10.0  
8.0  
Max (-40°C)  
Typ (25°C)  
6.0  
4.0  
2.0  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS41120B-page 189  
PIC16C717/770/771  
FIGURE 16-20:  
TYPICAL AND MAXIMUM ITMR1 VS. VDD (32 KHZ, -40°C TO +125°C)  
150.0  
130.0  
110.0  
90.0  
Max (-40°C)  
Typ (25°C)  
70.0  
50.0  
30.0  
10.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-21:  
TYPICAL AND MAXIMUM IVRL VS. VDD (-40°C TO +125°C)  
350.0  
330.0  
310.0  
290.0  
270.0  
250.0  
230.0  
210.0  
190.0  
170.0  
Max (125°C)  
Max (85°C)  
Typ (25°C)  
150.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41120B-page 190  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-22:  
TYPICAL AND MAXIMUM IVRH VS. VDD (-40°C TO +125°C)  
380.0  
360.0  
340.0  
320.0  
300.0  
280.0  
260.0  
240.0  
220.0  
Max (125°C)  
Max (85°C)  
Typ (25°C)  
200.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-23:  
TYPICAL AND MAXIMUM ILVD VS. VDD (-40°C TO +125°C) (LVD TRIP = 3.0V)  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
35.0  
Max (125°C)  
Max (85°C)  
Typ (25°C)  
30.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS41120B-page 191  
PIC16C717/770/771  
FIGURE 16-24:  
TYPICAL AND MAXIMUM ILVD VS. VDD (-40°C TO +125°C) (LVD TRIP = 4.5V)  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
35.0  
Max (125°C)  
Max (85°C)  
Typ (25°C)  
30.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
FIGURE 16-25:  
TYPICAL AND MAXIMUM IBOR VS. VDD (-40°C TO +125°C) (VBOR = 2.5V)  
90.0  
Max (125°C)  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
Typ (25°C)  
Max (125°C)  
Typ (25°C)  
Device in RESET Indeterminate  
2.5  
Device inSSLEEP  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41120B-page 192  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-26:  
TYPICAL AND MAXIMUM IBOR VS. VDD (-40°C TO +125°C) (VBOR = 4.5V)  
170.0  
150.0  
130.0  
110.0  
90.0  
Max (125 °C)  
Typ (25 °C)  
70.0  
Max (125 °C)  
50.0  
Typ (25C)  
Device in
RESET  
Device inSLEEP  
Indeterminate  
30.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-27:  
VOL VS. IOL (-40°C TO +125°C, VDD = 3.0V)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Max (125°C)  
Typ (25°C)  
Min (-40°C)  
0.0  
0.0  
5.0  
10.0  
15.0  
20.0  
25.0  
IOL (mA)  
2002 Microchip Technology Inc.  
DS41120B-page 193  
PIC16C717/770/771  
FIGURE 16-28:  
VOL VS. IOL (-40°C TO +125°C, VDD = 5.0V)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Max (125°C)  
Typ (25°C)  
Min (-40°C)  
0.0  
0.0  
5.0  
10.0  
15.0  
20.0  
25.0  
IOL (mA)  
FIGURE 16-29:  
VOH VS. IOH (-40°C TO +125°C, VDD = 3.0V)  
3.0  
2.5  
2.0  
1.5  
1.0  
Max (-40°C)  
Min (125°C)  
Typ (25°C)  
0.5  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
IOH (mA)  
-10.0  
-12.0  
-14.0  
-16.0  
DS41120B-page 194  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
FIGURE 16-30:  
VOH VS. IOH (-40°C TO +125°C, VDD = 5.0V)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
Max (-40°C)  
Typ (25°C)  
Min (125°C)  
2.0  
0.0  
-5.0  
-10.0  
-15.0  
-20.0  
-25.0  
IOH (mA)  
FIGURE 16-31:  
MINIMUM AND MAXIMUM VIH/VIL VS. VDD (TTL INPUT,-40°C TO +125°C)  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
Max (-40°C)  
Min (125°C)  
0.8  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS41120B-page 195  
PIC16C717/770/771  
FIGURE 16-32:  
MINIMUM AND MAXIMUM VIH/VIL VS. VDD (ST INPUT,-40°C TO +125°C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max High (125°C)  
Min High (-40°C)  
Max Low (-40°C)  
Min Low (125°C)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-33:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD VS. VDD (-40°C TO +125°C)  
35.0  
30.0  
25.0  
20.0  
15.0  
Max (125°C)  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
10.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41120B-page 196  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
17.0 PACKAGING INFORMATION  
17.1 Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16C717/P  
9917017  
18-Lead CERDIP Windowed  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
PIC16C717/JW  
9905017  
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C717/SO  
YYWWNNN  
9910017  
Example  
20-Lead PDIP  
PIC16C770/P  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
9917017  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week 01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2002 Microchip Technology Inc.  
DS41120B-page 197  
PIC16C717/770/771  
17.1 Package Marking Information (Contd)  
20-Lead SSOP  
Example  
PIC16C770  
XXXXXXXXXXX  
XXXXXXXXXXX  
20I/SS  
YYWWNNN  
9917017  
20-Lead CERDIP Windowed  
Example  
PIC16C770/JW  
9905017  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
20-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXXXXXX  
PIC16C771/SO  
YYWWNNN  
9910017  
DS41120B-page 198  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
17.2 18-Lead Plastic Dual In-line (P) 300 mil (PDIP)  
E1  
D
2
1
α
n
E
A2  
L
A
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
2002 Microchip Technology Inc.  
DS41120B-page 199  
PIC16C717/770/771  
17.3 18-Lead Ceramic Dual In-line with Window (JW) 300 mil (CERDIP)  
E1  
D
W2  
2
1
n
W1  
E
A2  
A
c
L
A1  
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.183  
.160  
.023  
.313  
.290  
.900  
.138  
.010  
.055  
.019  
.385  
.140  
.200  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
22.86  
3.49  
0.25  
1.40  
0.47  
9.78  
3.56  
5.08  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
.880  
.125  
.008  
.050  
.016  
.345  
.130  
.190  
.165  
.030  
.325  
.295  
.920  
.150  
.012  
.060  
.021  
.425  
.150  
.210  
4.19  
0.76  
8.26  
7.49  
23.37  
3.81  
0.30  
1.52  
0.53  
10.80  
3.81  
5.33  
0.38  
7.62  
7.24  
22.35  
3.18  
0.20  
1.27  
0.41  
8.76  
3.30  
4.83  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
eB  
W1  
W2  
Window Length  
*Controlling Parameter  
JEDEC Equivalent: MO-036  
Drawing No. C04-010  
DS41120B-page 200  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
17.4 18-Lead Plastic Small Outline (SO) Wide, 300 mil (SOIC)  
E
p
E1  
D
2
1
B
n
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
2.64  
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
§
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
2002 Microchip Technology Inc.  
DS41120B-page 201  
PIC16C717/770/771  
17.5 20-Lead Plastic Dual In-line (P) 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
β
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.295  
.240  
1.025  
.120  
.008  
.055  
.014  
.310  
5
.145  
3.68  
0.38  
7.49  
6.10  
26.04  
3.05  
0.20  
1.40  
0.36  
7.87  
5
.310  
.250  
1.033  
.130  
.012  
.060  
.018  
.370  
10  
.325  
.260  
1.040  
.140  
.015  
.065  
.022  
.430  
15  
7.87  
6.35  
26.24  
3.30  
0.29  
1.52  
0.46  
9.40  
10  
8.26  
6.60  
26.42  
3.56  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-019  
DS41120B-page 202  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
17.6 20-Lead Ceramic Dual In-line with Window (JW) 300 mil (CERDIP)  
DRAWING NOT AVAILABLE  
2002 Microchip Technology Inc.  
DS41120B-page 203  
PIC16C717/770/771  
17.7 20-Lead Plastic Small Outline (SO) Wide, 300 mi (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
A1  
L
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
20  
20  
.050  
.099  
.091  
.008  
.407  
.295  
.504  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
12.80  
0.50  
0.84  
4
Overall Height  
A
.093  
.088  
.004  
.394  
.291  
.496  
.010  
.016  
0
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.094  
.012  
.420  
.299  
.512  
.029  
.050  
8
2.24  
0.10  
10.01  
7.39  
12.60  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
13.00  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-094  
DS41120B-page 204  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
17.8 20-Lead Plastic Shrink Small Outline (SS) 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
§
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
2002 Microchip Technology Inc.  
DS41120B-page 205  
PIC16C717/770/771  
NOTES:  
DS41120B-page 206  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
APPENDIX A: REVISION HISTORY  
Version  
Date  
Revision Description  
A
09/14/99  
This is a new data sheet. However, the devices described in this data sheet are  
the upgrades to the devices found in the PIC16C7X Data Sheet, DS30390E.  
B
2/8/02  
Electrical Characteristics tables completed and characteristics graphs added.  
MSSP I2C (Section 9.2) rewritten. General minor changes and corrections.  
2002 Microchip Technology Inc.  
DS41120B-page 207  
PIC16C717/770/771  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the devices in this data sheet  
are listed in Table B-1.  
TABLE B-1:  
Difference  
DEVICE DIFFERENCES  
PIC16C717  
PIC16C770  
PIC16C771  
Program Memory  
A/D  
2K  
2K  
4K  
6 channels, 10 bits  
Not available  
6 channels, 12 bits  
Available  
6 channels, 12 bits  
Available  
Dedicated AVDD  
and AVSS  
Packages  
18-pin PDIP, 18-pin windowed  
CERDIP, 18-pin SOIC,  
20-pin SSOP  
20-pin PDIP, 20-pin  
windowed CERDIP, 20-pin  
SOIC, 20-pin SSOP  
20-pin PDIP, 20-pin windowed  
CERDIP, 20-pin SOIC,  
20-pin SSOP  
DS41120B-page 208  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
INDEX  
A
C
A/D.................................................................................... 105  
A/D Converter Enable (ADIE Bit)................................ 17  
ADCON0 Register..................................................... 105  
ADCON1 Register............................................. 105, 107  
ADRES Register ....................................................... 105  
Block Diagram........................................................... 109  
Configuring Analog Port............................................ 108  
Conversion time........................................................ 115  
Conversions.............................................................. 111  
converter characteristics................... 164, 165, 166, 170  
Faster Conversion - Lower Resolution Tradeoff ....... 115  
Internal Sampling Switch (Rss) Impedence.............. 113  
Operation During Sleep ............................................ 116  
Sampling Requirements............................................ 113  
Sampling Time.......................................................... 113  
Source Impedance.................................................... 113  
Special Event Trigger (ECCP) .................................... 55  
A/D Conversion Clock....................................................... 110  
ACK..................................................................................... 77  
Acknowledge Data bit, AKD................................................ 69  
Acknowledge Sequence Enable bit, AKE ........................... 69  
Acknowledge Status bit, AKS ............................................. 69  
ACKSTAT ........................................................................... 87  
ADCON0 Register............................................................. 105  
ADCON1 Register..................................................... 105, 107  
ADRES.............................................................................. 105  
ADRES Register ........................................... 11, 12, 105, 116  
AKD..................................................................................... 69  
AKE..................................................................................... 69  
AKS..................................................................................... 69  
Analog-to-Digital Converter. See A/D  
Capture (ECCP Module)..................................................... 54  
Block Diagram ............................................................ 54  
CCPR1H:CCPR1L Registers ..................................... 54  
Changing Between Capture Prescalers ..................... 54  
ECCP Pin Configuration............................................. 54  
Software Interrupt....................................................... 54  
Timer1 Mode Selection............................................... 54  
Capture/Compare/PWM (ECCP)  
Capture Mode. See Capture  
Compare Mode. See Compare  
PWM Mode. See PWM  
CCP1CON .......................................................................... 13  
CCP2CON .......................................................................... 13  
CCPR1H Register......................................................... 11, 13  
CCPR1L Register ............................................................... 13  
CCPR2H Register............................................................... 13  
CCPR2L Register ............................................................... 13  
CKE .................................................................................... 66  
CKP .................................................................................... 67  
Clock Polarity Select bit, CKP............................................. 67  
Code Examples  
Loading the SSPBUF register .................................... 71  
Code Protection........................................................ 117, 131  
Compare (ECCP Module)................................................... 54  
Block Diagram ............................................................ 55  
CCPR1H:CCPR1L Registers ..................................... 54  
ECCP Pin Configuration............................................. 54  
Software Interrupt....................................................... 55  
Special Event Trigger ........................................... 49, 55  
Timer1 Mode Selection............................................... 54  
Configuration Bits ............................................................. 117  
Application Note AN578, "Use of the SSP Module  
in the I2C Multi-Master Environment." ............................. 84  
Architecture  
D
D/A...................................................................................... 66  
Data Memory ........................................................................ 9  
Bank Select (RP Bits)............................................. 9, 14  
General Purpose Registers .......................................... 9  
Register File Map ....................................................... 10  
Special Function Registers......................................... 11  
Data/Address bit, D/A ......................................................... 66  
DC Characteristics  
PIC16C717/770/771................................. 150, 151, 153  
Development Support....................................................... 141  
Device Differences............................................................ 208  
Direct Addressing ............................................................... 23  
PIC16C717/PIC16C717 Block Diagram ....................... 5  
PIC16C770/771/PIC16C770/771 Block Diagram ......... 6  
Assembler  
MPASM Assembler................................................... 141  
B
Banking, Data Memory ................................................... 9, 14  
Baud Rate Generator.......................................................... 84  
BF ..................................................................... 66, 77, 87, 89  
Block Diagrams  
Baud Rate Generator.................................................. 84  
2
I C Master Mode......................................................... 83  
E
2
I C Module.................................................................. 76  
Enhanced Capture/Compare/PWM (ECCP)  
RA3:RA0 and RA5 Port Pins .................... 26, 28, 29, 35  
CCP1  
2
SSP (I C Mode) .......................................................... 76  
CCPR1H Register .............................................. 53  
CCPR1L Register............................................... 53  
Enable (CCP1IE Bit)........................................... 17  
Timer Resources ........................................................ 54  
Errata.................................................................................... 3  
External Power-on Reset Circuit....................................... 122  
SSP (SPI Mode).......................................................... 70  
BOR. See Brown-out Reset  
BRG .................................................................................... 84  
Brown-out Reset (BOR).................................... 117, 123, 124  
Buffer Full bit, BF ................................................................ 77  
Buffer Full Status bit, BF ..................................................... 66  
Bus Arbitration .................................................................... 94  
Bus Collision During a RESTART Condition....................... 97  
Bus Collision During a Start Condition................................ 95  
Bus Collision During a Stop Condition ................................ 98  
Bus Collision Section .......................................................... 94  
F
Firmware Instructions ....................................................... 133  
FSR Register.......................................................... 11, 12, 13  
G
GCE.................................................................................... 69  
General Call Address Sequence ........................................ 82  
General Call Address Support............................................ 82  
General Call Enable bit, GCE............................................. 69  
2002 Microchip Technology Inc.  
DS41120B-page 209  
PIC16C717/770/771  
BTFSS ...................................................................... 136  
CALL......................................................................... 136  
CLRF ........................................................................ 136  
CLRW ....................................................................... 136  
CLRWDT .................................................................. 136  
COMF ....................................................................... 137  
DECF........................................................................ 137  
DECFSZ ................................................................... 137  
GOTO ....................................................................... 137  
INCF ......................................................................... 137  
INCFSZ..................................................................... 137  
IORLW...................................................................... 138  
IORWF...................................................................... 138  
MOVF ....................................................................... 138  
MOVLW .................................................................... 138  
MOVWF.................................................................... 138  
NOP.......................................................................... 138  
RETFIE..................................................................... 139  
RETLW ..................................................................... 139  
RETURN................................................................... 139  
RLF........................................................................... 139  
RRF .......................................................................... 139  
SLEEP ...................................................................... 139  
SUBLW..................................................................... 140  
SUBWF..................................................................... 140  
SWAPF..................................................................... 140  
XORLW .................................................................... 140  
XORWF .................................................................... 140  
Summary Table ........................................................ 134  
INT Interrupt (RB0/INT). See Interrupt Sources  
I
I/O Ports..............................................................................25  
2
I C.......................................................................................76  
2
I C Master Mode Reception................................................89  
2
I C Master Mode Restart Condition ....................................86  
2
I C Mode Selection .............................................................76  
2
I C Module  
Acknowledge Sequence timing...................................91  
Addressing ..................................................................77  
Baud Rate Generator..................................................84  
Block Diagram.............................................................83  
BRG Block Diagram....................................................84  
BRG Reset due to SDA Collision................................96  
BRG Timing ................................................................85  
Bus Arbitration ............................................................94  
Bus Collision ...............................................................94  
Acknowledge.......................................................94  
Restart Condition ................................................97  
Restart Condition Timing (Case1).......................97  
Restart Condition Timing (Case2).......................97  
Start Condition ....................................................95  
Start Condition Timing .................................. 95, 96  
Stop Condition ....................................................98  
Stop Condition Timing (Case1)...........................98  
Stop Condition Timing (Case2)...........................98  
Transmit Timing ..................................................94  
Bus Collision timing.....................................................94  
Clock Arbitration..........................................................93  
Clock Arbitration Timing (Master Transmit).................93  
Conditions to not give ACK Pulse ...............................77  
General Call Address Support ....................................82  
Master Mode...............................................................83  
Master Mode 7-bit Reception timing ...........................90  
Master Mode Operation ..............................................84  
Master Mode Start Condition ......................................85  
Master Mode Transmission.........................................87  
Master Mode Transmit Sequence...............................84  
Multi-Master Communication ......................................94  
Multi-master Mode ......................................................84  
Operation ....................................................................76  
Repeat Start Condition timing .....................................86  
Slave Mode.................................................................76  
Slave Reception..........................................................78  
Slave Transmission.....................................................80  
SSPBUF......................................................................76  
Stop Condition Receive or Transmit timing.................92  
Stop Condition timing..................................................92  
Waveforms for 7-bit Reception ...................................78  
Waveforms for 7-bit Transmission ..............................80  
INTCON.............................................................................. 13  
INTCON Register................................................................ 16  
GIE Bit ........................................................................ 16  
INTE Bit ...................................................................... 16  
INTF Bit ...................................................................... 16  
PEIE Bit ...................................................................... 16  
RBIE Bit ...................................................................... 16  
RBIF Bit ................................................................ 16, 33  
T0IE Bit....................................................................... 16  
T0IF Bit....................................................................... 16  
2
Inter-Integrated Circuit (I C) ............................................... 65  
internal sampling switch (Rss) impedence ....................... 113  
Interrupt Sources ...................................................... 117, 127  
Block Diagram .......................................................... 127  
Capture Complete (ECCP) ......................................... 54  
Compare Complete (ECCP) ....................................... 55  
RB0/INT Pin, External............................................... 128  
TMR0 Overflow................................................... 46, 128  
TMR1 Overflow..................................................... 47, 49  
TMR2 to PR2 Match ................................................... 52  
TMR2 to PR2 Match (PWM)................................. 51, 56  
Interrupts  
2
I C Slave Mode...................................................................76  
ICEPIC In-Circuit Emulator ...............................................142  
ID Locations ..............................................................117, 131  
In-Circuit Serial Programming (ICSP) ....................... 117, 131  
INDF....................................................................................13  
INDF Register ............................................................... 11, 12  
Indirect Addressing .............................................................23  
FSR Register ................................................................9  
Instruction Format .............................................................133  
Instruction Set ...................................................................133  
ADDLW .....................................................................135  
ADDWF.....................................................................135  
ANDLW .....................................................................135  
ANDWF.....................................................................135  
BCF...........................................................................135  
BSF...........................................................................135  
BTFSC ......................................................................136  
Synchronous Serial Port Interrupt............................... 18  
Interrupts, Context Saving During..................................... 128  
Interrupts, Enable Bits  
A/D Converter Enable (ADIE Bit)................................ 17  
CCP1 Enable (CCP1IE Bit) .................................. 17, 54  
Global Interrupt Enable (GIE Bit)........................ 16, 127  
Interrupt-on-Change (RB7:RB4) Enable  
(RBIE Bit)........................................................ 16, 128  
Peripheral Interrupt Enable (PEIE Bit)........................ 16  
PSP Read/Write Enable (PSPIE Bit) .......................... 17  
RB0/INT Enable (INTE Bit)......................................... 16  
SSP Enable (SSPIE Bit) ............................................. 17  
TMR0 Overflow Enable (T0IE Bit) .............................. 16  
TMR1 Overflow Enable (TMR1IE Bit)......................... 17  
DS41120B-page 210  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................. 17  
USART Receive Enable (RCIE Bit) ...................... 17, 18  
Interrupts, Flag Bits  
PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board.................................................... 144  
PICSTART Plus Entry Level  
CCP1 Flag (CCP1IF Bit)............................................. 54  
Interrupt on Change (RB7:RB4) Flag  
(RBIF Bit) .................................................. 16, 33, 128  
RB0/INT Flag (INTF Bit).............................................. 16  
TMR0 Overflow Flag (T0IF Bit)........................... 16, 128  
INTRC Mode ..................................................................... 120  
Development Programmer............................................ 143  
PIE1 Register ..................................................................... 17  
ADIE Bit...................................................................... 17  
CCP1IE Bit ................................................................. 17  
PSPIE Bit.................................................................... 17  
RCIE Bit................................................................ 17, 18  
SSPIE Bit.................................................................... 17  
TMR1IE Bit ................................................................. 17  
TMR2IE Bit ................................................................. 17  
PIE2 Register ..................................................................... 19  
Pinout Descriptions  
K
KEELOQ Evaluation and Programming Tools .................... 144  
L
LVDCON ........................................................................... 101  
PIC16C770................................................................... 7  
PIC16C770/771............................................................ 7  
PIC16C771................................................................... 7  
PIR1 Register ..................................................................... 18  
PIR2 Register ..................................................................... 20  
Pointer, FSR ....................................................................... 23  
POR. See Power-on Reset  
PORTA ............................................................................... 13  
Initialization................................................................. 26  
PORTA Register......................................................... 25  
TRISA Register........................................................... 25  
PORTA Register......................................................... 11, 116  
PORTB ............................................................................... 13  
Initialization................................................................. 33  
PORTB Register......................................................... 33  
Pull-up Enable (RBPU Bit).......................................... 15  
RB0/INT Edge Select (INTEDG Bit) ........................... 15  
RB0/INT Pin, External .............................................. 128  
RB7:RB4 Interrupt on Change.................................. 128  
RB7:RB4 Interrupt on Change Enable  
(RBIE Bit)........................................................ 16, 128  
RB7:RB4 Interrupt on Change Flag  
(RBIF Bit).................................................. 16, 33, 128  
TRISB Register........................................................... 33  
PORTB Register......................................................... 11, 116  
Postscaler, Timer2  
Select (TOUTPS Bits)................................................. 51  
Postscaler, WDT................................................................. 45  
Assignment (PSA Bit)........................................... 15, 45  
Block Diagram ............................................................ 46  
Rate Select (PS Bits)............................................ 15, 45  
Switching Between Timer0 and WDT......................... 46  
Power-down Mode. See SLEEP  
Power-on Reset (POR)..................... 117, 121, 122, 123, 124  
Oscillator Start-up Timer (OST)........................ 117, 122  
Power Control (PCON) Register............................... 123  
Power-down (PD Bit).................................................. 14  
Power-on Reset Circuit, External ............................. 122  
Power-up Timer (PWRT).................................. 117, 122  
Time-out (TO Bit)........................................................ 14  
Time-out Sequence .................................................. 123  
Time-out Sequence on Power-up..................... 125, 126  
PR2 Register ...................................................................... 12  
Prescaler, Capture.............................................................. 54  
Prescaler, Timer0 ............................................................... 45  
Assignment (PSA Bit)........................................... 15, 45  
Block Diagram ............................................................ 46  
Rate Select (PS Bits)............................................ 15, 45  
Switching Between Timer0 and WDT......................... 46  
Prescaler, Timer1 ............................................................... 48  
Select (T1CKPS Bits) ................................................. 47  
M
Master Clear (MCLR)  
MCLR Reset, Normal Operation............... 121, 123, 124  
MCLR Reset, SLEEP................................ 121, 123, 124  
Memory Organization  
Data Memory ................................................................ 9  
Program Memory .......................................................... 9  
MPLAB C17 and MPLAB C18 C Compilers...................... 141  
MPLAB ICD In-Circuit Debugger ...................................... 143  
MPLAB ICE High Performance Universal In-Circuit  
Emulator with MPLAB IDE............................................ 142  
MPLAB Integrated Development Environment Software .. 141  
MPLINK Object Linker/MPLIB Object Librarian ................ 142  
Multi-Master Communication .............................................. 94  
Multi-Master Mode .............................................................. 84  
O
OPCODE Field Descriptions............................................. 133  
OPTION_REG Register ...................................................... 15  
INTEDG Bit ................................................................. 15  
PS Bits .................................................................. 15, 45  
PSA Bit.................................................................. 15, 45  
RBPU Bit..................................................................... 15  
T0CS Bit................................................................ 15, 45  
T0SE Bit................................................................ 15, 45  
Oscillator Configuration..................................................... 119  
CLKOUT ................................................................... 120  
Dual Speed Operation for ER and  
INTRC Modes ....................................................... 120  
EC..................................................................... 119, 123  
ER..................................................................... 119, 123  
ER Mode................................................................... 120  
HS..................................................................... 119, 123  
INTRC............................................................... 119, 123  
LP...................................................................... 119, 123  
XT ..................................................................... 119, 123  
Oscillator, Timer1.......................................................... 47, 49  
Oscillator, WDT................................................................. 129  
P
P.......................................................................................... 66  
Packaging ......................................................................... 197  
Paging, Program Memory............................................... 9, 22  
Parallel Slave Port (PSP)  
Read/Write Enable (PSPIE Bit)................................... 17  
PCL Register................................................................. 11, 12  
PCLATH Register ................................................... 11, 12, 13  
PCON Register ........................................................... 21, 123  
PICDEM 1 Low Cost PICmicro  
Demonstration Board .................................................... 143  
PICDEM 17 Demonstration Board .................................... 144  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board .................................................... 143  
2002 Microchip Technology Inc.  
DS41120B-page 211  
PIC16C717/770/771  
Prescaler, Timer2................................................................57  
Select (T2CKPS Bits)..................................................51  
PRO MATE II Universal Device Programmer ...................143  
Program Counter  
S
S ......................................................................................... 66  
SAE..................................................................................... 69  
SCK .................................................................................... 70  
SCL..................................................................................... 76  
SDA .................................................................................... 76  
SDI...................................................................................... 70  
SDO.................................................................................... 70  
Serial Data In, SDI.............................................................. 70  
Serial Data Out, SDO ......................................................... 70  
Slave Select Synchronization ............................................. 73  
Slave Select, SS................................................................. 70  
SLEEP .............................................................. 117, 121, 130  
SMP.................................................................................... 66  
Software Simulator (MPLAB SIM) .................................... 142  
SPE..................................................................................... 69  
Special Event Trigger. See Compare  
PCL Register...............................................................22  
PCLATH Register ............................................... 22, 128  
Reset Conditions.......................................................123  
Program Memory ..................................................................9  
Interrupt Vector .............................................................9  
Paging.....................................................................9, 22  
Program Memory Map ..................................................9  
READ (PMR)...............................................................43  
Reset Vector .................................................................9  
Program Verification..........................................................131  
Programmable Brown-out Reset (PBOR) ................. 121, 122  
Programming, Device Instructions ....................................133  
PWM (CCP Module)  
TMR2 to PR2 Match ...................................................51  
TMR2 to PR2 Match Enable (TMR2IE Bit) .................17  
PWM (ECCP Module) .........................................................56  
Block Diagram.............................................................56  
CCPR1H:CCPR1L Registers......................................56  
Duty Cycle...................................................................57  
Output Diagram...........................................................57  
Period..........................................................................56  
TMR2 to PR2 Match ...................................................56  
Special Features of the CPU ............................................ 117  
Special Function Registers................................................. 11  
PIC16C717 ................................................................. 11  
PIC16C717/770/771 ................................................... 11  
PIC16C770 ................................................................. 11  
PIC16C771 ................................................................. 11  
Speed, Operating.................................................................. 1  
SPI  
Master Mode............................................................... 72  
Serial Clock................................................................. 70  
Serial Data In.............................................................. 70  
Serial Data Out ........................................................... 70  
Serial Peripheral Interface (SPI)................................. 65  
Slave Select................................................................ 70  
SPI clock..................................................................... 72  
SPI Mode.................................................................... 70  
SPI Clock Edge Select, CKE .............................................. 66  
SPI Data Input Sample Phase Select, SMP ....................... 66  
SPI Master/Slave Connection............................................. 71  
SPI Module  
Q
Q Clock ...............................................................................57  
R
R/W .....................................................................................66  
R/W bit ................................................................................80  
R/W bit ................................................................................78  
R/W bit ................................................................................77  
RAM. See Data Memory  
RCE,Receive Enable bit, RCE............................................69  
RCREG ...............................................................................13  
RCSTA Register..................................................................13  
Read/Write bit, R/W ............................................................66  
Receive Overflow Indicator bit, SSPOV..............................67  
REFCON...........................................................................102  
Register File..........................................................................9  
Register File Map................................................................10  
Registers  
FSR Summary ............................................................13  
INDF Summary ...........................................................13  
INTCON Summary......................................................13  
PCL Summary.............................................................13  
PCLATH Summary .....................................................13  
PORTB Summary .......................................................13  
SSPSTAT............................................................ 66, 101  
STATUS Summary .....................................................13  
TMR0 Summary..........................................................13  
TRISB Summary.........................................................13  
Reset......................................................................... 117, 121  
Block Diagram...........................................................121  
Brown-out Reset (BOR). See Brown-out Reset (BOR)  
MCLR Reset. See MCLR  
Master/Slave Connection............................................ 71  
Slave Mode................................................................. 73  
Slave Select Synchronization ..................................... 73  
Slave Synch Timnig.................................................... 73  
SS....................................................................................... 70  
SSP..................................................................................... 65  
Block Diagram (SPI Mode) ......................................... 70  
Enable (SSPIE Bit) ..................................................... 17  
SPI Mode.................................................................... 70  
SSPADD..................................................................... 77  
SSPBUF ............................................................... 72, 76  
SSPCON .................................................................... 67  
SSPCON2 ............................................................ 69, 70  
SSPSR ................................................................. 72, 77  
SSPSTAT ..................................................... 66, 76, 101  
TMR2 Output for Clock Shift................................. 51, 52  
2
SSP I C  
2
SSP I C Operation ..................................................... 76  
SSP Module  
SPI Master Mode........................................................ 72  
SPI Master./Slave Connection.................................... 71  
SPI Slave Mode.......................................................... 73  
SSPCON1 Register.................................................... 76  
SSP Overflow Detect bit, SSPOV....................................... 77  
SSPADD Register............................................................... 12  
SSPBUF ................................................................. 13, 76, 77  
SSPBUF Register............................................................... 11  
SSPCON............................................................................. 67  
SSPCON Register .............................................................. 11  
Power-on Reset (POR). See Power-on Reset (POR)  
Reset Conditions for All Registers ............................124  
Reset Conditions for PCON Register........................123  
Reset Conditions for Program Counter.....................123  
Reset Conditions for STATUS Register....................123  
WDT Reset. See Watchdog Timer (WDT)  
Restart Condition Enabled bit, RSE....................................69  
Revision History ................................................................207  
RSE.....................................................................................69  
DS41120B-page 212  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
SSPCON1........................................................................... 76  
SSPCON2..................................................................... 69, 70  
SSPEN................................................................................ 67  
SSPIF............................................................................ 18, 78  
SSPM.................................................................................. 68  
SSPOV.................................................................... 67, 77, 89  
SSPSTAT.............................................................. 66, 76, 101  
SSPSTAT Register ............................................................. 12  
Stack................................................................................... 22  
Start bit (S).......................................................................... 66  
Start Condition Enabled bit, SAE ........................................ 69  
STATUS Register ................................................. 14, 15, 128  
C Bit ............................................................................ 14  
DC Bit.................................................................... 14, 15  
IRP Bit......................................................................... 14  
PD Bit.......................................................................... 14  
RP Bits........................................................................ 14  
TO Bit.......................................................................... 14  
Z Bit............................................................................. 14  
Status Register ................................................................... 14  
Stop bit (P) .......................................................................... 66  
Stop Condition Enable bit ................................................... 69  
Synchronous Serial Port ..................................................... 65  
Synchronous Serial Port Enable bit, SSPEN ...................... 67  
Synchronous Serial Port Interrupt....................................... 18  
Synchronous Serial Port Mode Select bits, SSPM ............. 68  
Timer2  
Block Diagram ............................................................ 52  
Postscaler. See Postscaler, Timer2  
PR2 Register ........................................................ 51, 56  
Prescaler. See Prescaler, Timer2  
SSP Clock Shift .................................................... 51, 52  
T2CON Register......................................................... 51  
TMR2 Register ........................................................... 51  
TMR2 to PR2 Match Enable (TMR2IE Bit)................. 17  
TMR2 to PR2 Match Interrupt......................... 51, 52, 56  
Timing Diagrams  
Acknowledge Sequence Timing ................................. 91  
Baud Rate Generator with Clock Arbitration............... 85  
BRG Reset Due to SDA Collision............................... 96  
Brown-out Reset....................................................... 159  
Bus Collision  
Start Condition Timing........................................ 95  
Bus Collision During a Restart Condition  
(Case 1).................................................................. 97  
Bus Collision During a Restart Condition  
(Case2)................................................................... 97  
Bus Collision During a Start Condition  
(SCL = 0)................................................................ 96  
Bus Collision During a Stop Condition........................ 98  
Bus Collision for Transmit and Acknowledge ............. 94  
Capture/Compare/PWM ........................................... 161  
CLKOUT and I/O ...................................................... 157  
External Clock Timing............................................... 157  
T
T1CON................................................................................ 13  
T1CON Register ........................................................... 13, 47  
T1CKPS Bits............................................................... 47  
T1OSCEN Bit.............................................................. 47  
T1SYNC Bit................................................................. 47  
TMR1CS Bit................................................................ 47  
TMR1ON Bit................................................................ 47  
T2CON Register ........................................................... 13, 51  
T2CKPS Bits............................................................... 51  
TMR2ON Bit................................................................ 51  
TOUTPS Bits .............................................................. 51  
Timer0  
2
I C Bus Data............................................................. 177  
2
I C Master Mode First Start bit timing ........................ 85  
2
I C Master Mode Reception timing............................. 90  
2
I C Master Mode Transmission timing ....................... 88  
Master Mode Transmit Clock Arbitration .................... 93  
Power-up Timer........................................................ 159  
Repeat Start Condition ............................................... 86  
Reset ........................................................................ 159  
Slave Synchronization................................................ 73  
Start-up Timer........................................................... 159  
Stop Condition Receive or Transmit........................... 92  
Time-out Sequence on Power-up..................... 125, 126  
Timer0 ...................................................................... 160  
Timer1 ...................................................................... 160  
Wake-up from SLEEP via Interrupt .......................... 131  
Watchdog Timer ....................................................... 159  
TMR0.................................................................................. 13  
TMR0 Register.................................................................... 11  
TMR1H ............................................................................... 13  
TMR1H Register................................................................. 11  
TMR1L................................................................................ 13  
TMR1L Register.................................................................. 11  
TMR2.................................................................................. 13  
TMR2 Register.................................................................... 11  
TRISA Register........................................................... 12, 116  
TRISB Register........................................................... 12, 116  
TXREG ............................................................................... 13  
Block Diagram............................................................. 45  
Clock Source Edge Select (T0SE Bit)................... 15, 45  
Clock Source Select (T0CS Bit)............................ 15, 45  
Overflow Enable (T0IE Bit) ......................................... 16  
Overflow Flag (T0IF Bit)...................................... 16, 128  
Overflow Interrupt ............................................... 46, 128  
Prescaler. See Prescaler, Timer0  
Timer1................................................................................. 47  
Block Diagram............................................................. 48  
Capacitor Selection..................................................... 49  
Clock Source Select (TMR1CS Bit) ............................ 47  
External Clock Input Sync (T1SYNC Bit).................... 47  
Module On/Off (TMR1ON Bit)..................................... 47  
Oscillator............................................................... 47, 49  
Oscillator Enable (T1OSCEN Bit) ............................... 47  
Overflow Enable (TMR1IE Bit).................................... 17  
Overflow Interrupt ................................................. 47, 49  
Prescaler. See Prescaler, Timer1  
U
Update Address, UA........................................................... 66  
Special Event Trigger (ECCP) .............................. 49, 55  
T1CON Register ......................................................... 47  
TMR1H Register ......................................................... 47  
TMR1L Register.......................................................... 47  
USART  
Receive Enable (RCIE Bit) ................................... 17, 18  
2002 Microchip Technology Inc.  
DS41120B-page 213  
PIC16C717/770/771  
W
W Register ........................................................................128  
Wake-up from SLEEP............................................... 117, 130  
Interrupts........................................................... 123, 124  
MCLR Reset .............................................................124  
Timing Diagram.........................................................131  
WDT Reset ...............................................................124  
Watchdog Timer (WDT) ............................................ 117, 129  
Block Diagram...........................................................129  
Enable (WDTE Bit)....................................................129  
Postscaler. See Postscaler, WDT  
Programming Considerations ...................................129  
RC Oscillator.............................................................129  
Time-out Period ........................................................129  
WDT Reset, Normal Operation .................121, 123, 124  
WDT Reset, SLEEP.......................................... 123, 124  
Waveform for General Call Address Sequence ..................82  
WCOL ...................................................67, 85, 87, 89, 91, 92  
WCOL Status Flag ..............................................................85  
Write Collision Detect bit, WCOL ........................................67  
WWW, On-Line Support........................................................3  
DS41120B-page 214  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchips development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
013001  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
Users Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
Design Tips  
Device Errata  
Job Postings  
Microchip Consultant Program Member Listing  
Links to other useful web sites related to  
Microchip Products  
Conferences for products, Development Systems,  
technical information and more  
Listing of seminars and events  
2002 Microchip Technology Inc.  
Advance Information  
DS41120B-page215  
PIC16C717/770/771  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS41120B  
Device:  
PIC16C717/770/771  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS41120B-page216  
Advance Information  
2002 Microchip Technology Inc.  
PIC16C717/770/771  
PIC16C717/770/771 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
a) PIC16C771/P Commercial Temp.,  
PDIP package, normal VDD limits  
Temperature Package  
Range  
Pattern  
Device  
PIC16C771  
:
VDD range 4.0V to 5.5V  
PIC16C771T : VDD range 4.0V to 5.5V (Tape/Reel)  
PIC16LC771 : VDD range 2.5V to 5.5V  
PIC16LC771T: VDD range 2.5V to 5.5V (Tape/Reel)  
Temperature Range:  
Package  
-
=
=
=
0°C to +70°C  
I
-40°C to +85°C  
-40°C to +125°C  
E
JW  
SO  
P
=
=
=
=
Windowed CERDIP  
SOIC  
PDIP  
SSOP  
SS  
Pattern  
QTP, SQTP, Code or Special Requirements. Blank for OTP  
and Windowed devices.  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS41120B-page 217  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc dActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Germany  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Hong Kong  
Italy  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, OShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
01/18/02  
DS41120B-page 218  
2002 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY