PIC16LC72AT-04I/SO [MICROCHIP]

28-Pin 8-Bit CMOS Microcontrollers; 28引脚8位CMOS微控制器
PIC16LC72AT-04I/SO
型号: PIC16LC72AT-04I/SO
厂家: MICROCHIP    MICROCHIP
描述:

28-Pin 8-Bit CMOS Microcontrollers
28引脚8位CMOS微控制器

微控制器和处理器 外围集成电路 光电二极管 可编程只读存储器 时钟
文件: 总120页 (文件大小:1994K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C62B/72A  
28-Pin 8-Bit CMOS Microcontrollers  
Microcontroller Core Features:  
Pin Diagram  
• High-performance RISC CPU  
• Only 35 single word instructions to learn  
SDIP, SOIC, SSOP, Windowed CERDIP  
• All single cycle instructions except for program  
branches, which are two cycle  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
• 1  
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
VSS  
RC7  
RC6  
RC5/SDO  
RC4/SDI/SDA  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
VSS  
• 2K x 14 words of Program Memory,  
128 x 8 bytes of Data Memory (RAM)  
• Interrupt capability  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
• Eight level deep hardware stack  
• Direct, indirect, and relative addressing modes  
• Power-on Reset (POR)  
10  
11  
12  
13  
14  
RC2/CCP1  
RC3/SCK/SCL  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Peripheral Features:  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during sleep via external  
crystal/clock  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Low-power, high-speed CMOS EPROM  
technology  
• Capture, Compare, PWM module  
• Capture is 16-bit, max. resolution is 12.5 ns,  
Compare is 16-bit, max. resolution is 200 ns,  
PWM maximum resolution is 10-bit  
• Fully static design  
• In-Circuit Serial Programming (ICSP)  
• Wide operating voltage range: 2.5V to 5.5V  
• High Sink/Source Current 25/25 mA  
• 8-bit multi-channel Analog-to-Digital converter  
• Synchronous Serial Port (SSP) with Enhanced  
SPI and I2C  
• Commercial, Industrial and Extended temperature  
ranges  
• Low-power consumption:  
- < 2 mA @ 5V, 4 MHz  
- 22.5 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 1  
PIC16C62B/72A  
Pin Diagrams  
SDIP, SOIC, SSOP, Windowed CERDIP  
MCLR/VPP  
RA0  
• 1  
2
3
4
5
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
RA1  
RA2  
RA3  
RA4/T0CKI  
RA5/SS  
6
7
8
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB2  
RB1  
RB0/INT  
VDD  
VSS  
RC7  
RC6  
RC5/SDO  
RC4/SDI/SDA  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
10  
11  
12  
13  
14  
RC2/CCP1  
RC3/SCK/SCL  
Key Features  
PICmicro™ Mid-Range Reference Manual  
(DS33023)  
PIC16C62B  
PIC16C72A  
Operating Frequency  
Resets (and Delays)  
Program Memory (14-bit words)  
Data Memory (bytes)  
Interrupts  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR (PWRT, OST)  
POR, BOR (PWRT, OST)  
2K  
2K  
128  
128  
7
8
I/O Ports  
Ports A,B,C  
Ports A,B,C  
Timers  
3
3
Capture/Compare/PWM modules  
Serial Communications  
8-bit Analog-to-Digital Module  
1
1
SSP  
SSP  
5 input channels  
DS35008B-page 2  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
Table of Contents  
1.0 Device Overview .................................................................................................................................................... 5  
2.0 Memory Organization............................................................................................................................................. 7  
3.0 I/O Ports ............................................................................................................................................................... 19  
4.0 Timer0 Module ..................................................................................................................................................... 25  
5.0 Timer1 Module ..................................................................................................................................................... 27  
6.0 Timer2 Module ..................................................................................................................................................... 31  
7.0 Capture/Compare/PWM (CCP) Module ............................................................................................................... 33  
8.0 Synchronous Serial Port (SSP) Module ............................................................................................................... 39  
9.0 Analog-to-Digital Converter (A/D) Module............................................................................................................ 49  
10.0 Special Features of the CPU................................................................................................................................ 55  
11.0 Instruction Set Summary...................................................................................................................................... 67  
12.0 Development Support........................................................................................................................................... 75  
13.0 Electrical Characteristics...................................................................................................................................... 81  
14.0 DC and AC Characteristics Graphs and Tables................................................................................................. 103  
15.0 Packaging Information........................................................................................................................................ 105  
Appendix A: Revision History ................................................................................................................................... 111  
Appendix B: Conversion Considerations .................................................................................................................. 111  
Appendix C: Migration from Base-line to Mid-Range Devices .................................................................................. 112  
Index ........................................................................................................................................................................... 113  
On-Line Support.......................................................................................................................................................... 117  
Reader Response....................................................................................................................................................... 118  
PIC16C62B/72A Product Identification System.......................................................................................................... 119  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that  
this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or  
appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 3  
PIC16C62B/72A  
NOTES:  
DS35008B-page 4  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
ommended reading for a better understanding of the  
device architecture and operation of the peripheral  
modules.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information.  
Additional information may be found in the PICmicro™  
Mid-Range Reference Manual, (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip website. The  
Reference Manual should be considered a comple-  
mentary document to this data sheet, and is highly rec-  
There are two devices (PIC16C62B, PIC16C72A) cov-  
ered by this datasheet. The PIC16C62B does not have  
the A/D module implemented.  
Figure 1-1 is the block diagram for both devices. The  
pinouts are listed in Table 1-1.  
FIGURE 1-1: PIC16C62B/PIC16C72A BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0(2)  
RA1/AN1(2)  
RA2/AN2(2)  
RA3/AN3/VREF  
RA4/T0CKI  
EPROM  
2K x 14  
RAM  
Program  
Memory  
(2)  
8 Level Stack  
(13-bit)  
128 x 8  
File  
Registers  
RA5/SS/AN4(2)  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6  
RC7  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer1  
Timer0  
Timer2  
Synchronous  
Serial Port  
A/D(2)  
CCP1  
Note 1: Higher order bits are from the STATUS register.  
2: The A/D module is not available on the PIC16C62B.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 5  
PIC16C62B/72A  
TABLE 1-1  
PIC16C62B/PIC16C72A PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
1
1
I/P  
ST  
Master clear (reset) input or programming voltage input. This  
pin is an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input 0  
(4)  
2
3
4
5
6
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA0/AN0  
(4)  
RA1 can also be analog input 1  
RA1/AN1  
(4)  
RA2 can also be analog input 2  
RA2/AN2  
(4)  
RA3 can also be analog input 3 or analog reference voltage  
RA3/AN3/VREF  
RA4/T0CKI  
RA4 can also be the clock input to the Timer0 module.  
Output is open drain type.  
(4)  
7
7
I/O  
TTL  
RA5 can also be analog input 4 or the slave select for the  
synchronous serial port.  
RA5/SS/AN4  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI  
11  
11  
I/O  
ST  
RC0 can also be the Timer1 oscillator output or Timer1  
clock input.  
RC1/T1OSI  
RC2/CCP1  
12  
13  
12  
13  
I/O  
I/O  
ST  
ST  
RC1 can also be the Timer1 oscillator input.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
14  
15  
14  
15  
I/O  
I/O  
ST  
ST  
RC3 can also be the synchronous serial clock input/output  
for both SPI and I C modes.  
2
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
16  
17  
I/O  
I/O  
I/O  
P
ST  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6  
RC7  
18  
18  
VSS  
8, 19  
20  
8, 19  
20  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
P
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power or program  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
4: The A/D module is not available on the PIC16C62B.  
DS35008B-page 6  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 2-1: PROGRAM MEMORY MAP  
AND STACK  
2.0  
MEMORY ORGANIZATION  
There are two memory blocks in each of these micro-  
controllers. Each block (Program Memory and Data  
Memory) has its own bus, so that concurrent access  
can occur.  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Additional information on device memory may be found  
in the PICmicro  
(DS33023).  
Mid-Range Reference Manual,  
Stack Level 1  
Stack Level 8  
2.1  
Program Memory Organization  
The PIC16C62B/72A devices have a 13-bit program  
counter capable of addressing an 8K x 14 program  
memory space. Each device has 2K x 14 words of pro-  
gram memory. Accessing a location above 07FFh will  
cause a wraparound.  
Reset Vector  
0000h  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
07FFh  
0800h  
1FFFh  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 7  
PIC16C62B/72A  
2.2  
Data Memory Organization  
FIGURE 2-2: REGISTER FILE MAP  
File  
Address  
File  
Address  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
INDF  
INDF  
80h  
TMR0  
PCL  
OPTION_REG 81h  
RP1(1)  
RP0  
(STATUS<6:5>)  
PCL  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
STATUS  
FSR  
STATUS  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2 (not implemented)  
= 11 Bank3 (not implemented)  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
Note 1: Maintain this bit clear to ensure upward compati-  
TRISC  
bility with future products.  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain Special  
Function Registers. Some “high use” Special Function  
Registers from one bank may be mirrored in another  
bank for code reduction and quicker access.  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
2.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 2.5).  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
SSPADD  
SSPSTAT  
17h CCP1CON  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
(2)  
ADRES  
(2)  
(2)  
1Fh ADCON0  
20h  
ADCON1  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
BFh  
C0h  
7Fh  
FFh  
Bank 0  
Bank 1  
Unimplemented data memory locations,  
read as ’0’.  
Note 1: Not a physical register.  
2: These registers are not implemented on the  
PIC16C62B, read as ’0’.  
DS35008B-page 8  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers can be classified into  
two sets; core (CPU) and peripheral. Those registers  
associated with the core functions are described in  
detail in this section. Those related to the operation of  
the peripheral features are described in detail in the  
peripheral feature section.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(4)  
Bank 0  
00h  
INDF(1)  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 0000 0000  
01h  
Timer0 module’s register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
02h  
PCL(1)  
Program Counter's (PC) Least Significant Byte  
03h  
STATUS(1)  
FSR(1)  
IRP(5)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(5)  
RP0  
TO  
PD  
Z
DC  
C
04h  
05h  
PORTA(6,7)  
PORTB(6,7)  
PORTC(6,7)  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
Unimplemented  
07h  
08h-09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
PCLATH(1,2)  
INTCON(1)  
PIR1  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
PEIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
ADIF(3)  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF -0-- 0000 -0-- 0000  
Unimplemented  
TMR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1H  
T1CON  
TMR2  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
11h  
Timer2 module’s register  
0000 0000 0000 0000  
12h  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
13h  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
14h  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
CCP1M3  
CHS0  
SSPM2  
SSPM1  
15h  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
16h  
xxxx xxxx uuuu uuuu  
17h  
CCP1X  
CHS2  
CCP1Y  
CHS1  
CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
18h-1Dh  
1Eh  
1Fh  
Unimplemented  
ADRES(3)  
ADCON0(3)  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
0000 00-0 0000 00-0  
GO/DONE  
ADON  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented, read as ’0’,  
Shaded locations are unimplemented, read as ’0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
3: A/D not implemented on the PIC16C62B, maintain as ’0’.  
4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.  
5: The IRP and RP1 bits are reserved. Always maintain these bits clear.  
6: On any device reset, these pins are configured as inputs.  
7: This is the value that will be in the port output latch.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 9  
PIC16C62B/72A  
TABLE 2-1  
Addr  
SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(4)  
Bank 1  
80h  
INDF(1)  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 0000 0000  
81h  
OPTION_REG  
PCL(1)  
STATUS(1)  
FSR(1)  
TRISA  
TRISB  
TRISC  
RBPU  
Program Counter’s (PC) Least Significant Byte  
IRP(5) RP1(5)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
82h  
83h  
PD  
Z
DC  
C
84h  
85h  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
Unimplemented  
87h  
88h-89h  
8Ah  
PCLATH(1,2)  
INTCON(1)  
PIE1  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
8Bh  
PEIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
8Ch  
8Dh  
8Eh  
ADIE(3)  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE -0-- 0000 -0-- 0000  
Unimplemented  
PCON  
POR  
BOR  
---- --qq ---- --uu  
8Fh-91h  
92h  
Unimplemented  
PR2  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
93h  
SSPADD  
SSPSTAT  
94h  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
95h-9Eh  
9Fh  
Unimplemented  
ADCON1(3)  
PCFG2  
PCFG1  
PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented, read as ’0’,  
Shaded locations are unimplemented, read as ’0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents  
are transferred to the upper byte of the program counter.  
3: A/D not implemented on the PIC16C62B, maintain as ’0’.  
4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.  
5: The IRP and RP1 bits are reserved. Always maintain these bits clear.  
6: On any device reset, these pins are configured as inputs.  
7: This is the value that will be in the port output latch.  
DS35008B-page 10  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
2.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register, shown in Register 2-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, the write to these three bits is dis-  
abled. These bits are set or cleared according to the  
device logic. The TO and PD bits are not writable. The  
result of an instruction with the STATUS register as  
destination may be different than intended.  
Note 1: The IRP and RP1 bits are reserved. Main-  
tain these bits clear to ensure upward  
compatibility with future products.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
(reserved, maintain clear)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
Note: RP1 is reserved, maintain clear  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow, the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions) (for borrow, the polarity is reversed)  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 11  
PIC16C62B/72A  
2.2.2.2  
OPTION_REG REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known as the prescaler), the External INT  
Interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
bit0  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled for all PORTB inputs  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
DS35008B-page 12  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
2.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter, which contains various interrupt enable and flag  
bits for the TMR0 register overflow, RB Port change  
and External RB0/INT pin interrupts.  
REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
bit0  
bit 7:  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
IINTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (software must clear bit)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (software must clear bit)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 input pins have changed state (clear by reading PORTB)  
0= None of the RB7:RB4 input pins have changed state  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 13  
PIC16C62B/72A  
2.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
(1)  
ADIE  
CCP1IE  
R
= Readable bit  
W = Writable bit  
bit7  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as ‘0’  
bit 6:  
ADIE(1): A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5-4: Unimplemented: Read as ‘0’  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: The PIC16C62B does not have an A/D module. This bit location is reserved on these devices. Always maintain this  
bit clear.  
DS35008B-page 14  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
2.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
Peripheral interrupts.  
REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
(1)  
ADIF  
CCP1IF  
R
= Readable bit  
W = Writable bit  
bit7  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as ‘0’  
ADIF(1): A/D Converter Interrupt Flag bit  
bit 6:  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5-4: Unimplemented: Read as ‘0’  
bit 3:  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: The PIC16C62B does not have an A/D module. This bit location is reserved on these devices. Always maintain this  
bit clear.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 15  
PIC16C62B/72A  
2.2.2.6  
PCON REGISTER  
Note: On Power-on Reset, the state of the BOR  
bit is unknown and is not predictable.  
If the BODEN bit in the configuration word  
is set, the user must first set the BOR bit on  
a POR, and check it on subsequent resets.  
If BOR is cleared while POR remains set,  
a Brown-out reset has occurred.  
The Power Control register (PCON) contains flag bits to  
allow differentiation between a Power-on Reset (POR),  
Brown-Out Reset (BOR) and resets from other  
sources. .  
If the BODEN bit is clear, the BOR bit may  
be ignored.  
REGISTER 2-6: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-q  
POR  
BOR  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as ’0’  
bit 1:  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
DS35008B-page 16  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
2.3  
PCL and PCLATH  
2.4  
Program Memory Paging  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 13 bits  
wide. The low byte is called the PCL register and is  
readable and writable. The high byte is called the PCH  
register. This register contains the PC<12:8> bits and  
is not directly accessible. All updates to the PCH regis-  
ter go through the PCLATH register.  
The CALL and GOTO instructions provide 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper bit of the address is provided by  
PCLATH<3>. The user must ensure that the page  
select bit is programmed to address the proper pro-  
gram memory page. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is popped  
from the stack. Therefore, manipulation of the  
PCLATH<3> bit is not required for the return instruc-  
tions.  
2.3.1  
STACK  
The stack allows any combination of up to 8 program  
calls and interrupts to occur. The stack contains the  
return address from this branch in program execution.  
Mid-range devices have an 8 level deep hardware  
stack. The stack space is not part of either program or  
data space and the stack pointer is not accessible. The  
PC is PUSHed onto the stack when a CALLinstruction  
is executed or an interrupt causes a branch. The stack  
is POPed in the event of a RETURN, RETLWor a RET-  
FIE instruction execution. PCLATH is not modified  
when the stack is PUSHed or POPed.  
After the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 17  
PIC16C62B/72A  
2.5  
Indirect Addressing, INDF and FSR  
Registers  
EXAMPLE 2-1: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer).  
movlw 0x20 ;initialize pointer  
movwf FSR  
;
to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
NEXT  
clrf  
incf  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
btfss FSR,4 ;all done?  
goto  
NEXT ;NO, clear next  
CONTINUE  
:
;YES, continue  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-1.  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 2-3. However, IRP is not used in the  
PIC16C62B/72A.  
FIGURE 2-3: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
(1)  
(1)  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
(2)  
(2)  
Data  
Memory  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
Note 1: Maintain clear for upward compatibility with future products.  
2: Not implemented.  
DS35008B-page 18  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 3-1: BLOCK DIAGRAM OF  
3.0  
I/O PORTS  
RA3:RA0 AND RA5 PINS  
Some I/O port pins are multiplexed with an alternate  
function for the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
Data  
Bus  
D
Q
VDD  
WR  
Port  
Additional information on I/O ports may be found in the  
PICmicro™  
(DS33023).  
Q
Data Latch  
CK  
Mid-Range  
Reference  
Manual,  
P
3.1  
PORTA and the TRISA Register  
I/O pin(1)  
N
D
Q
PORTA is a 6-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input, i.e., put the corresponding output driver in a  
hi-impedance mode. Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output, (i.e., put  
the contents of the output latch on the selected pin).  
WR  
TRIS  
VSS  
Q
CK  
Analog  
input  
TRIS Latch  
mode  
(72A  
only)  
TTL  
input  
buffer  
RD TRIS  
The PORTA register reads the state of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. There-  
fore, a write to a port implies that the port pins are read,  
this value is modified, and then written to the port data  
latch.  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other RA port pins have TTL input levels and full  
CMOS output drivers.  
RD PORT  
To A/D Converter (72A only)  
Note 1: I/O pins have protection diodes to VDD and  
Pin RA5 is multiplexed with the SSP to become the  
RA5/SS pin.  
VSS.  
On the PIC16C72A device, other PORTA pins are mul-  
tiplexed with analog inputs and analog VREF input. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register1).  
FIGURE 3-2: BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Data  
Bus  
D
Q
Q
WR  
PORT  
Note: On a Power-on Reset, pins with analog  
functions are configured as analog inputs  
with digital input buffers disabled . A digital  
read of these pins will return ’0’.  
CK  
I/O pin(1)  
N
Data Latch  
D
Q
VSS  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
WR  
TRIS  
Schmitt  
Trigger  
input  
Q
CK  
TRIS Latch  
buffer  
RD TRIS  
Q
D
EN  
RD PORT  
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 19  
PIC16C62B/72A  
TABLE 3-1  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
TTL  
TTL  
TTL  
TTL  
Input/output or analog input(1)  
Input/output or analog input(1)  
Input/output or analog input(1)  
Input/output or analog input(1) or VREF  
RA1/AN1  
RA2/AN2  
(1)  
RA3/AN3/VREF  
Input/output or external clock input for Timer0  
Output is open drain type  
Input/output or slave select input for synchronous serial port or analog input(1)  
RA4/T0CKI  
bit4  
bit5  
ST  
RA5/SS/AN4  
TTL  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: The PIC16C62B does not implement the A/D module.  
TABLE 3-2  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
PORTA  
(for PIC16C72A only)  
RA5  
RA5  
RA4  
RA4  
RA3  
RA3  
RA2  
RA2  
RA1  
RA1  
RA0  
RA0  
--0x 0000 --0u 0000  
--xx xxxx --uu uuuu  
--11 1111 --11 1111  
05h  
PORTA  
(for PIC16C62B only)  
85h  
9Fh  
TRISA  
PORTA Data Direction Register  
(1)  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as ’0’. Shaded cells are not used by PORTA.  
Note 1: The PIC16C62B does not implement the A/D module. Maintain this register clear.  
DS35008B-page 20  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output, (i.e.,  
put the contents of the output latch on the selected pin).  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
FIGURE 3-3: BLOCK DIAGRAM OF  
RB3:RB0 PINS  
VDD  
RBPU(2)  
weak  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
P
pull-up  
Data Latch  
Data Bus  
D
Q
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
RB0/INT is an external interupt pin and is configured  
using the INTEDG bit (OPTION_REG<6>). RB0/INT is  
discussed in detail in Section 10.10.1.  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
FIGURE 3-4: BLOCK DIAGRAM OF  
RB7:RB4 PINS  
VDD  
RD TRIS  
RD Port  
RBPU(2)  
Q
D
weak  
P
pull-up  
Data Latch  
Data Bus  
EN  
D
Q
I/O  
pin(1)  
WR Port  
RB0/INT  
CK  
TRIS Latch  
Schmitt Trigger  
Buffer  
RD Port  
D
Q
Note 1: I/O pins have diode protection to VDD and VSS.  
WR TRIS  
TTL  
Input  
Buffer  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
CK  
ST  
Buffer  
RD TRIS  
RD Port  
Latch  
Q
Q
D
EN  
Q1  
Set RBIF  
D
From other  
RB7:RB4 pins  
RD Port  
Q3  
EN  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 21  
PIC16C62B/72A  
TABLE 3-3  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt input.  
Internal software programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change).  
Internal software programmable weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt on change).  
Internal software programmable weak pull-up.  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt on change).  
Internal software programmable weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change).  
Internal software programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 3-4  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
06h  
86h  
81h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
PS1  
RB0  
PS0  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
PORTB Data Direction Register  
OPTION_REG RBPU INTEDG T0CS T0SE PSA  
PS2  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS35008B-page 22  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
3.3  
PORTC and the TRISC Register  
PORTC is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (=1) will make the corresponding PORTC pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISC bit (=0) will  
make the corresponding PORTC pin an output, (i.e.,  
put the contents of the output latch on the selected pin).  
PORTC is multiplexed with several peripheral functions  
(Table 3-5). PORTC pins have Schmitt Trigger input  
buffers.  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override maybe  
in effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination should be avoided. The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
FIGURE 3-5: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
VDD  
0
Data Bus  
D
Q
Q
P
WR  
PORT  
1
CK  
Data Latch  
I/O  
D
Q
Q
pin(1)  
WR  
TRIS  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
EN  
RD  
PORT  
Peripheral input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 23  
PIC16C62B/72A  
TABLE 3-5  
Name  
PORTC FUNCTIONS  
Buffer  
TRISC  
Override  
Bit#  
Function  
Type  
bit0  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
ST  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
Input/output port pin or Timer1 oscillator input  
Yes  
Yes  
No  
bit1  
bit2  
RC2/CCP1  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
RC3 can also be the synchronous serial clock for both SPI and I2C  
modes.  
RC3/SCK/SCL  
bit3  
ST  
No  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output  
Input/output port pin  
RC4/SDI/SDA  
bit4  
ST  
No  
RC5/SDO  
RC6  
bit5  
bit6  
bit7  
ST  
ST  
ST  
No  
No  
No  
RC7  
Input/output port pin  
Legend: ST = Schmitt Trigger input  
TABLE 3-6  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTC Data Direction Register  
Legend: x= unknown, u= unchanged.  
DS35008B-page 24  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
Additional information on external clock requirements  
is available in the Electrical Specifications section of  
this manual, and in the PICmicro™ Mid-Range Refer-  
ence Manual, (DS33023).  
4.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
• 8-bit timer/counter  
4.2  
Prescaler  
- Read and write  
- INT on overflow  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 4-2). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. There is only one prescaler available  
which is shared between the Timer0 module and the  
Watchdog Timer. A prescaler assignment for the  
Timer0 module means that there is no prescaler for the  
Watchdog Timer, and vice-versa.  
• 8-bit software programmable prescaler  
• INT or EXT clock select  
- EXT clock edge select  
Figure 4-1 is a simplified block diagram of the Timer0  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
The prescaler is not readable or writable.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
4.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
Setting bit PSA will assign the prescaler to the Watch-  
dog Timer (WDT). When the prescaler is assigned to  
the WDT, prescale values of 1:1, 1:2, ..., 1:128 are  
selectable.  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF  
1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the WDT.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment or ratio.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
FIGURE 4-1: TIMER0 BLOCK DIAGRAM  
Data Bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(TCY delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 4-2 for detailed block diagram).  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 25  
PIC16C62B/72A  
4.2.1  
SWITCHING PRESCALER ASSIGNMENT  
4.3  
Timer0 Interrupt  
The prescaler assignment is fully under software con-  
trol, (i.e., it can be changed “on-the-fly” during program  
execution).  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP.  
Note: To avoid an unintended device RESET, a  
specific instruction sequence (shown in the  
PICmicro™ Mid-Range Reference Man-  
ual, DS33023) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This sequence must  
be followed even if the WDT is disabled.  
FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (= Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
TCY  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
Prescaler  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
TABLE 4-1  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 module’s register  
GIE PEIE T0IE INTE  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh  
81h  
INTCON  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
OPTION_REG RBPU INTEDG T0CS T0SE  
TRISA  
PS0  
1111 1111 1111 1111  
--11 1111 --11 1111  
85h  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
DS35008B-page 26  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
5.1  
Timer1 Operation  
5.0  
TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
Timer1 can operate in one of these modes:  
• As a timer  
• 16-bit timer/counter  
• As a synchronous counter  
• As an asynchronous counter  
• Readable and writable  
• Internal or external clock select  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
Timer1 has a control register, shown in Register 5-1.  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
Figure 5-1 is a simplified block diagram of the Timer1  
module.  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
Timer1 also has an internal “reset input”. This reset can  
be generated by the CCP module as a special event  
trigger (Section 7.0).  
REGISTER 5-1:T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as ’0’  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled (TRISC<1:0> ignored)  
0= Oscillator is shut off  
(The oscillator is turned off to reduce power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 27  
PIC16C62B/72A  
FIGURE 5-1: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
clock input  
0
TMR1  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS35008B-page 28  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
5.2  
Timer1 Oscillator  
5.3  
Timer1 Interrupt  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). When the  
Timer1 oscillator is enabled, RC0 and RC1 pins  
become T1OSO and T1OSI inputs, overriding  
TRISC<1:0>.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow  
and is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled by setting TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
The oscillator is a low power oscillator rated up to 200  
kHz. It will continue to run during SLEEP. It is primarily  
intended for a 32 kHz crystal. Table 5-1 shows the  
capacitor selection for the Timer1 oscillator.  
5.4  
Resetting Timer1 using a CCP Trigger  
Output  
If the CCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Note: The special event trigger from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
TABLE 5-1  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
TABLE 5-2  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
-0-- 0000 -0-- 0000  
-0-- 0000 -0-- 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Bh,8Bh INTCON GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
PIE1  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 29  
PIC16C62B/72A  
NOTES:  
DS35008B-page 30  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
Additional information on timer modules is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
6.0  
TIMER2 MODULE  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
FIGURE 6-1: TIMER2 BLOCK DIAGRAM  
- Readable and writable  
• 8-bit period register (PR2)  
Sets flag  
TMR2  
output (1)  
bit TMR2IF  
- Readable and writable  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on match (TMR2 = PR2)  
• Timer2 can be used by SSP and CCP  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 reg  
FOSC/4  
Postscaler  
2
Comparator  
1:1 to 1:16  
EQ  
Timer2 has a control register, shown in Register 6-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
4
PR2 reg  
Figure 6-1 is a simplified block diagram of the Timer2  
module.  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
REGISTER 6-1:T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
W
U
= Readable bit  
= Writable bit  
= Unimplemented bit,  
read as ‘0’  
bit7  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1 = Timer2 is on  
0 = Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 31  
PIC16C62B/72A  
6.1  
Timer2 Operation  
6.2  
Timer2 Interrupt  
The Timer2 output is also used by the CCP module to  
generate the PWM "On-Time", and the PWM period  
with a match with PR2.  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
The TMR2 register is readable and writable, and is  
cleared on any device reset.  
The input clock (FOSC/4) has a prescale option of 1:1,  
6.3  
Output of TMR2  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate shift clock.  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling) to gener-  
ate a TMR2 interrupt (latched in flag bit TMR2IF,  
(PIR1<1>)).  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
TABLE 6-1  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
-00- 0000 0000 0000  
-0-- 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
DS35008B-page 32  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
Additional information on the CCP module is available  
in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
7.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register, which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave duty cycle register. Table 7-1 shows the  
timer resources of the CCP module modes.  
TABLE 7-1  
CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
TABLE 7-2  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time-base.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None.  
None.  
PWM  
REGISTER 7-1:CCP1CON REGISTER (ADDRESS 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit, read  
as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCP1X:CCP1Y: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0: CCP1M3:CCP1M0: CCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP1 module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 and starts an A/D  
conversion (if A/D module is enabled))  
11xx= PWM mode  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 33  
PIC16C62B/72A  
7.1.4  
CCP PRESCALER  
7.1  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register, when an event  
occurs on pin RC2/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 7-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
• every 4th rising edge  
• every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit ,CCP1IF (PIR1<2>), is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
EXAMPLE 7-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
FIGURE 7-1: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
Set flag bit CCP1IF  
; mode value and CCP ON  
;Load CCP1CON with this  
; value  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
MOVWF CCP1CON  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
and  
edge detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
7.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
7.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work consistently.  
7.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should clear  
CCP1IE (PIE1<2>) before changing the capture mode  
to avoid false interrupts. Clear the interrupt flag bit,  
CCP1IE before setting CCP1IE.  
DS35008B-page 34  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
7.2.1  
CCP PIN CONFIGURATION  
7.2  
Compare Mode  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
• driven High  
• driven Low  
• remains Unchanged  
7.2.2  
TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). The inter-  
rupt flag bit, CCP1IF, is set on all compare matches.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
FIGURE 7-2: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
7.2.3  
SOFTWARE INTERRUPT MODE  
When a generated software interrupt is chosen, the  
CCP1 pin is not affected. Only a CCP interrupt is gen-  
erated (if enabled).  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>), which starts an A/D  
conversion  
7.2.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
Special Event Trigger  
Set flag bit CCP1IF  
(PIR1<2>)  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Pin  
The special trigger output of CCP1 resets the TMR1  
register pair and starts an A/D conversion (if the A/D  
module is enabled).  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
TABLE 7-3  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
8Ch  
87h  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
PIR1  
CCP1IF TMR2IF TMR1IF -0-- 0000 -0-- 0000  
CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
0Eh  
0Fh  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
CCPR1H Capture/Compare/PWM register1 (MSB)  
CCP1CON CCP1X CCP1Y  
17h  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’. Shaded cells are not used by Capture and Timer1.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 35  
PIC16C62B/72A  
7.3.1  
PWM PERIOD  
7.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] 4 TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 7-3 shows a simplified block diagram of the CCP  
module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 7.3.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 7-3: SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 6.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
7.3.2  
PWM ON-TIME  
The PWM on-time is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. CCPR1L contains eight  
MSbs and CCP1CON<5:4> contains two LSbs. This  
CCPR1H (Slave)  
Q
R
S
Comparator  
10-bit  
value  
is  
represented  
by  
RC2/CCP1  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
(Note 1)  
TMR2  
PWM on-time = (CCPR1L:CCP1CON<5:4>) •  
Tosc (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the on-time value is not latched into CCPR1H  
until after a match between PR2 and TMR2 occurs (i.e.,  
the period is complete). In PWM mode, CCPR1H is a  
read-only register.  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM on-time. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 7-4) has a time base (period)  
and a time that the output stays high (on-time). The fre-  
quency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 7-4: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
Period  
Fosc  
Fpwm  
log (  
)
=
bits  
Resolution  
On-Time  
TMR2 = PR2  
log(2)  
Note: If the PWM on-time value is larger than the  
PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
For an example PWM period and on-time calculation,  
see the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
DS35008B-page 36  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
7.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM on-time by writing to the CCPR1L  
register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 7-4  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 7-5  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
resets  
0Bh,8Bh  
0Ch  
8Ch  
87h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
CCP1IF TMR2IF TMR1IF -0-- 0000 -0-- 0000  
CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
TMR2  
PORTC Data Direction Register  
Timer2 module’s register  
11h  
0000 0000 0000 0000  
92h  
PR2  
Timer2 module’s period register  
1111 1111 1111 1111  
12h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
15h  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 37  
PIC16C62B/72A  
NOTES:  
DS35008B-page 38  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
8.0  
SYNCHRONOUS SERIAL PORT  
(SSP) MODULE  
8.1  
SSP Module Overview  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (master operation) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set (if used)  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
Note: When the SPI is in Slave Mode with SS pin  
control enabled, (SSPCON<3:0> = 0100)  
the SPI module will reset if the SS pin is set  
to VDD.  
For more information on SSP operation (including an  
I2C Overview), refer to the PICmicro™ Mid-Range Ref-  
erence Manual, (DS33023). Also, refer to Application  
Note AN578, “Use of the SSP Module in the I 2C Multi-  
Master Environment.”  
Note: If the SPI is used in Slave Mode with  
CKE = '1', then the SS pin control must be  
enabled.  
8.2  
SPI Mode  
This section contains register definitions and opera-  
tional characteristics of the SPI module.  
FIGURE 8-1: SSP BLOCK DIAGRAM  
(SPI MODE)  
Additional information on SPI operation may be found  
in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
Internal  
Data Bus  
Read  
Write  
8.2.1  
OPERATION OF SSP MODULE IN SPI  
MODE  
SSPBUF reg  
SSPSR reg  
A block diagram of the SSP Module in SPI Mode is  
shown in Figure 8-1.  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, three pins are used:  
Shift  
Clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
• Serial Data Out (SDO)RC5/SDO  
• Serial Data In (SDI)RC4/SDI/SDA  
• Serial Clock (SCK)RC3/SCK/SCL  
Control  
Enable  
SS  
Additionally, a fourth pin may be used when in a slave  
mode of operation:  
RA5/SS/AN4  
Edge  
Select  
• Slave Select (SS)RA5/SS/AN4  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
2
Clock Select  
SSPM3:SSPM0  
4
TMR2 output  
2
• Master Operation (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
• Clock Edge (Output data on rising/falling edge of  
SCK)  
TRISC<3>  
• Clock Rate (master operation only)  
• Slave Select Mode (Slave mode only)  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 39  
PIC16C62B/72A  
TABLE 8-1  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
SSPIF CCP1IF TMR2IF TMR1IF -0-- 0000 -0-- 0000  
SSPIE CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
8Ch  
PIE1  
13h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
14h  
94h  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000 0000 0000  
85h  
87h  
TRISA  
TRISC  
PORTA Data Direction Register  
--11 1111 --11 1111  
1111 1111 1111 1111  
PORTC Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
DS35008B-page 40  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address), with start and  
stop bit interrupts enabled for firmware master  
mode support  
• I2C Slave mode (10-bit address), with start and  
stop bit interrupts enabled for firmware master  
mode support  
• I2C start and stop bit interrupts enabled for firm-  
ware master mode support, slave mode idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be operated as open  
drain outputs, provided these pins are programmed to  
inputs by setting the appropriate TRISC bits.  
Additional information on SSP I2C operation may be  
found in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
8.3  
SSP I2C Operation  
The SSP module in I2C mode fully implements all slave  
functions, except general call support, and provides  
interrupts on start and stop bits in hardware to support  
firmware implementations of the master functions. The  
SSP module implements the standard mode specifica-  
tions, as well as 7-bit and 10-bit addressing.  
Two pins are used for data transfer. These are the  
RC3/SCK/SCL pin, which is the clock (SCL), and the  
RC4/SDI/SDA pin, which is the data (SDA). The user  
must configure these pins as inputs or outputs through  
the TRISC<4:3> bits.  
The SSP module functions are enabled by setting SSP  
Enable bit SSPEN (SSPCON<5>).  
FIGURE 8-2: SSP BLOCK DIAGRAM  
(I2C MODE)  
Internal  
Data Bus  
8.3.1  
SLAVE MODE  
Read  
Write  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
SSPBUF reg  
SSPSR reg  
RC3/SCK/SCL  
shift  
clock  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
load the SSPBUF register with the received value in the  
SSPSR register.  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match detect  
SSPADD reg  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. This happens if  
either of the following conditions occur:  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was completed.  
Start and  
Stop bit detect  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was completed.  
The SSP module has five registers for I2C operation.  
These are the:  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 8-2 shows what happens when a data transfer  
byte is received, given the status of bits BF and SSPOV.  
The shaded cells show the condition where user soft-  
ware did not properly clear the overflow condition. Flag  
bit BF is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
• SSP Control Register (SSPCON)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not accessible  
• SSP Address Register (SSPADD)  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the SSP  
module, is shown in timing parameter #100, THIGH, and  
parameter #101, TLOW.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 41  
PIC16C62B/72A  
8.3.1.1  
ADDRESSING  
1111 0 A9 A8 0’, where A9 and A8 are the two MSbs  
of the address. The sequence of events for 10-bit  
address is as follows, with steps 7- 9 for slave-transmit-  
ter:  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, 8 bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
5. Update the SSPADD register with the first (high)  
byte of Address, if match releases SCL line, this  
will clear bit UA.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set  
(interrupt is generated if enabled) on the falling  
edge of the ninth SCL pulse.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
7. Receive repeated START condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 8-2  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
Pulse  
(SSP Interrupt occurs  
if enabled)  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Note:Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
DS35008B-page 42  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
8.3.1.2  
RECEPTION  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT reg-  
ister is cleared. The received address is loaded into the  
SSPBUF register.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
FIGURE 8-3:  
I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D7 D6 D5 D4 D3 D2  
D0  
8
D7 D6  
D5  
D4 D3  
D2  
D0  
8
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 43  
PIC16C62B/72A  
8.3.1.3  
TRANSMISSION  
shifted out on the falling edge of the SCL input. This  
ensures that the SDA signal is valid during the SCL  
high time (Figure 8-4).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and the CKP will be cleared by  
hardware, holding SCL low. Slave devices cause the  
master to wait by holding the SCL line low. The transmit  
data is loaded into the SSPBUF register, which in turn  
loads the SSPSR register. When bit CKP (SSP-  
CON<4>) is set, pin RC3/SCK/SCL releases SCL.  
When the SCL line goes high, the master may resume  
operating the SCL line and receiving data. The master  
must monitor the SCL pin prior to asserting another  
clock pulse. The slave devices may be holding off the  
master by stretching the clock. The eight data bits are  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register used to determine the status of  
the byte. Flag bit SSPIF is set on the falling edge of the  
ninth clock pulse.  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then the  
data transfer is complete. When the ACK is latched by  
the slave, the slave logic is reset (resets SSPSTAT reg-  
ister) and the slave then monitors for another occur-  
rence of the START bit. If the SDA line was low (ACK),  
the transmit data must be loaded into the SSPBUF reg-  
ister, which also loads the SSPSR register. Then pin  
RC3/SCK/SCL should be enabled by setting bit CKP.  
FIGURE 8-4: I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP interrupt  
service routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS35008B-page 44  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
8.3.2  
MASTER OPERATION  
8.3.3  
MULTI-MASTER OPERATION  
Master operation is supported in firmware using inter-  
rupt generation on the detection of the START and  
STOP conditions. The STOP (P) and START (S) bits  
are cleared by a reset or when the SSP module is dis-  
abled. The STOP (P) and START (S) bits will toggle  
based on the START and STOP conditions. Control of  
the I2C bus may be taken when the P bit is set, or the  
bus is idle and both the S and P bits are clear.  
In multi-master operation, the interrupt generation on  
the detection of the START and STOP conditions  
allows the determination of when the bus is free. The  
STOP (P) and START (S) bits are cleared from a reset  
or when the SSP module is disabled. The STOP (P)  
and START (S) bits will toggle based on the START and  
STOP conditions. Control of the I2C bus may be taken  
when bit P (SSPSTAT<4>) is set, or the bus is idle and  
both the S and P bits clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the STOP condition occurs.  
In master operation, the SCL and SDA lines are manip-  
ulated in software by clearing the corresponding  
TRISC<4:3> bit(s). The output level is always low, irre-  
spective of the value(s) in PORTC<4:3>. So when  
transmitting data, a ’1’ data bit must have the  
TRISC<4> bit set (input) and a ’0’ data bit must have  
the TRISC<4> bit cleared (output). The same scenario  
is true for the SCL line with the TRISC<3> bit.  
In multi-master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, these are:  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
• Address Transfer  
• Data Transfer  
• START condition  
• STOP condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be gener-  
ated. If arbitration was lost during the data transfer  
stage, the device will need to re-transfer the data at a  
later time.  
• Byte transfer completed  
Master operation can be done with either the slave  
mode idle (SSPM3:SSPM0 = 1011) or with the slave  
active. When both master operation and slave modes  
are used, the software needs to differentiate the  
source(s) of the interrupt.  
For more information on master operation, see AN554  
- Software Implementation of I2C Bus Master.  
For more information on master operation, see AN578  
- Use of the SSP Module in the of I2C Multi-Master  
Environment.  
TABLE 8-3  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh, 8Bh  
0Ch  
8Ch  
13h  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
ADIF  
SSPIF CCP1IF TMR2IF TMR1IF -0-- 0000 -0-- 0000  
SSPIE CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
PIE1  
ADIE  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
2
93h  
SSPADD Synchronous Serial Port (I C mode) Address Register  
14h  
SSPCON  
SSPSTAT  
TRISC  
WCOL  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0  
(1)  
(1)  
94h  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
PORTC Data Direction register  
87h  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by SSP module in SPI mode.  
2
Note 1: Maintain these bits clear in I C mode.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 45  
PIC16C62B/72A  
REGISTER 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
R/W-0 R/W-0  
SMP CKE  
bit7  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ‘0’  
bit0  
- n =Value at POR reset  
bit 7:  
SMP: SPI data input sample phase  
SPI Master Operation  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
I2C Mode  
This bit must be maintained clear  
bit 6:  
CKE: SPI Clock Edge Select  
SPI Mode  
CKP = 0  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
I2C Mode  
This bit must be maintained clear  
bit 5:  
bit 4:  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: Stop bit (I2C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is  
detected last, SSPEN is cleared)  
1= Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0= Stop bit was not detected last  
bit 3:  
bit 2:  
S: Start bit (I2C mode only. This bit is cleared when the SSP module is disabled, or when the Stop bit is  
detected last, SSPEN is cleared)  
1= Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0= Start bit was not detected last  
R/W: Read/Write bit information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next start bit, stop bit, or ACK bit.  
1= Read  
0= Write  
bit 1:  
bit 0:  
UA: Update Address (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only)  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
DS35008B-page 46  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
REGISTER 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
SSPM3 SSPM2 SSPM1 SSPM0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ‘0’  
bit7  
bit0  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode. The user must read the SSPBUF, even  
if only transmitting data, to avoid setting overflow. In master operation, the overflow bit is not set since  
each new reception (and transmission) is initiated by writing to the SSPBUF register.  
0= No overflow  
In I2C mode  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1= Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
In I2C mode  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master operation, clock = FOSC/4  
0001= SPI master operation, clock = FOSC/16  
0010= SPI master operation, clock = FOSC/64  
0011= SPI master operation, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
0110= I2C slave mode, 7-bit address  
0111= I2C slave mode, 10-bit address  
1011= I2C firmware controlled master operation (slave idle)  
1110= I2C slave mode, 7-bit address with start and stop bit interrupts enabled  
1111= I2C slave mode, 10-bit address with start and stop bit interrupts enabled  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 47  
PIC16C62B/72A  
NOTES:  
DS35008B-page 48  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
Additional information on the A/D module is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
Note: This section applies to the PIC16C72A  
The A/D module has three registers. These registers  
are:  
only.  
The analog-to-digital (A/D) converter module has five  
input channels.  
• A/D Result Register (ADRES)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s positive supply voltage (VDD)  
or the voltage level on the RA3/AN3/VREF pin.  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted.  
The ADCON0 register, shown in Figure 9-1, controls  
the operation of the A/D module. The ADCON1 regis-  
ter, shown in Figure 9-2, configures the functions of the  
port pins. The port pins can be configured as analog  
inputs (RA3 can also be a voltage reference) or as dig-  
ital I/O.  
The A/D converter has the feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D conversion clock must be derived from  
the A/D’s internal RC oscillator.  
REGISTER 9-1:ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0 R/W-0 R/W-0  
ADCS1 ADCS0 CHS2  
bit7  
R/W-0  
CHS1  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADON  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an internal RC oscillator)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D  
conversion is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shutoff and consumes no operating current  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 49  
PIC16C62B/72A  
REGISTER 9-2:ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR  
reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0  
RA0  
RA1  
RA2  
RA5  
RA3  
VREF  
VDD  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
D
A
A
A
D
D
D
A
A
A
D
D
D
VREF  
A
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
DS35008B-page 50  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
When the A/D conversion is complete, the result is  
loaded into the ADRES register, the GO/DONE bit,  
ADCON0<2>, is cleared, and the A/D interrupt flag bit,  
ADIF, is set. The block diagram of the A/D module is  
shown in Figure 9-1.  
1. Configure the A/D module:  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
The value that is in the ADRES register is not modified  
for a Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 9.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
FIGURE 9-1: A/D BLOCK DIAGRAM  
CHS2:CHS0  
100  
RA5/AN4  
VIN  
011  
(Input voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000 or  
010 or  
100 or  
11x  
001 or  
011 or  
101  
VREF  
(Reference  
voltage)  
PCFG2:PCFG0  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 51  
PIC16C62B/72A  
To calculate the minimum acquisition time, TACQ, see  
Equation 9-1. This equation calculates the acquisition  
time to within 1/2 LSb error (512 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified accuracy.  
9.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 9-2. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD). The  
source impedance affects the offset voltage at the ana-  
log input (due to pin leakage current). The maximum  
recommended impedance for analog sources is 10  
k. After the analog input channel is selected  
(changed), this acquisition must pass before the con-  
version can be started.  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
In general;  
Assuming RS  
= 10kΩ  
Vdd = 3.0V (RSS = 10kΩ)  
Temp. = 50°C (122°F)  
TACQ 13.0 µSec  
By increasing VDD and reducing RS and Temp., TACQ  
can be substantially reduced.  
FIGURE 9-2: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
RSS  
(k)  
EQUATION 9-1:  
ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time +  
Hold Capacitor Charging Time +  
Temperature Coefficient  
=
TAMP + TC + TCOFF  
TAMP = 5µS  
TC = - (51.2pF)(1k+ RSS + RS) In(1/511)  
TCOFF = (Temp -25°C)(0.05µS/°C)  
DS35008B-page 52  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
9.2  
Selecting the A/D Conversion Clock  
9.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
The ADCON1 and TRISA registers control the opera-  
tion of the A/D port pins. The port pins that are desired  
as analog inputs must have their corresponding TRIS  
bits set (input). If the TRIS bit is cleared (output), the  
digital output level (VOH or VOL) will be converted.  
• 2TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 8TOSC  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
The A/D module can operate during sleep mode, but  
the RC oscillator must be selected as the A/D clock  
source prior to the SLEEPinstruction.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins) may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
Table 9-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 9-1  
TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Device Frequency  
Operation  
2TOSC  
ADCS1:ADCS0  
20 MHz  
5 MHz  
1.25 MHz  
1.6 µs  
333.33 kHz  
100 ns(2)  
400 ns(2)  
400 ns(2)  
1.6 µs  
00  
01  
10  
11  
6 µs  
24 µs(3)  
96 µs(3)  
2 - 6 µs(1)  
8TOSC  
6.4 µs  
25.6 µs(3)  
2 - 6 µs(1,4)  
32TOSC  
1.6 µs  
6.4 µs  
RC(5)  
2 - 6 µs(1,4)  
2 - 6 µs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep operation only.  
5: For extended voltage devices (LC), please refer to Electrical Specifications section.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 53  
PIC16C62B/72A  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
with minimal software overhead. The appropriate ana-  
log input channel must be selected and the minimum  
acquisition time must pass before the “special event  
trigger” sets the GO/DONE bit (starts a conversion).  
9.4  
A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
9.5  
Use of the CCP Trigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP1 module. This requires that the  
CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be pro-  
grammed as 1011and that the A/D module be enabled  
(ADON bit is set). When the trigger occurs, the  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
TABLE 9-2  
SUMMARY OF A/D REGISTERS  
Value on  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Bh,8Bh  
0Ch  
8Ch  
1Eh  
PIR1  
CCP1IF  
TMR2IF TMR1IF -0-- 0000 -0-- 0000  
PIE1  
CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
ADRES  
A/D Result Register  
xxxx xxxx uuuu uuuu  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
1Fh  
ADCON1  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000 ---- -000  
9Fh  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
05h  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA1  
RA0  
85h  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
DS35008B-page 54  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
other is the Power-up Timer (PWRT), which provides a  
fixed delay on power-up only and is designed to keep  
the part in reset while the power supply stabilizes. With  
these two timers on-chip, most applications need no  
external reset circuitry.  
10.0 SPECIAL FEATURES OF THE  
CPU  
The PIC16C62B/72A devices have a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code protec-  
tion. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
• Oscillator Mode Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Additional information on special features is available in  
the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
• Watchdog Timer (WDT)  
• SLEEP  
10.1  
Configuration Bits  
• Code protection  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
• ID locations  
• In-circuit serial programming™ (ICSP)  
These devices have a Watchdog Timer, which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable. The  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
FIGURE 10-1: CONFIGURATION WORD  
CP1 CP0 CP1 CP0 CP1 CP0  
BODEN CP1 CP0 PWRTE WDTE  
FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address: 2007h  
bit13  
(2)  
bit 13-8 CP1:CP0: Code Protection bits  
5-4: 11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 7:  
bit 6:  
Unimplemented: Read as ’1’  
(1)  
BODEN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
(1)  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE.  
All of the CP1:CP0 pairs must be given the same value to enable the code protection scheme listed.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 55  
PIC16C62B/72A  
10.2  
Oscillator Configurations  
TABLE 10-1  
CERAMIC RESONATORS  
10.2.1  
OSCILLATOR TYPES  
Ranges Tested:  
The PIC16CXXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
These values are for design guidance only. See  
notes at bottom of page.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
Resonators Used:  
10.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 10-2). The  
PIC16CXXX oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can use  
an external clock source to drive the OSC1/CLKIN pin  
(Figure 10-3).  
Resonators did not have built-in capacitors.  
TABLE 10-2  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
Osc Type  
C2  
FIGURE 10-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
OSC CONFIGURATION)  
C1(1)  
4 MHz  
15 pF  
15 pF  
OSC1  
4 MHz  
15 pF  
15 pF  
To  
internal  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
logic  
XTAL  
RS(2)  
RF(3)  
20 MHz  
OSC2  
These values are for design guidance only. See  
notes at bottom of page.  
SLEEP  
PIC16CXXX  
C2(1)  
Crystals Used  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
Note1: See Table 10-1 and Table 10-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
FIGURE 10-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
Note 1: Higher capacitance increases the stability of the  
oscillator, but also increases the start-up time.  
2: Since each resonator/crystal has its own charac-  
teristics, the user should consult the resona-  
tor/crystal manufacturer for appropriate values of  
external components.  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXXX  
Open  
3: Rs may be required in HS mode, as well as XT  
mode, to avoid overdriving crystals with low drive  
level specification.  
4: Oscillator performance should be verified when  
migrating between devices (including  
PIC16C62A to PIC16C62B and PIC16C72 to  
PIC16C72A)  
DS35008B-page 56  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
10.2.3 RC OSCILLATOR  
10.3  
Reset  
For timing insensitive applications, the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 10-4 shows how the R/C combina-  
tion is connected to the PIC16CXXX.  
The PIC16CXXX differentiates between various kinds  
of reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (during normal operation)  
• WDT Wake-up (during SLEEP)  
• Brown-out Reset (BOR)  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged by any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, on MCLR reset during SLEEP, and on  
Brown-out Reset (BOR). They are not affected by a  
WDT Wake-up from SLEEP, which is viewed as the  
resumption of normal operation. The TO and PD bits  
are set or cleared depending on the reset situation, as  
indicated in Table 10-4. These bits are used in software  
to determine the nature of the reset. See Table 10-6 for  
a full description of reset states of all registers.  
FIGURE 10-4: RC OSCILLATOR MODE  
VDD  
Rext  
Internal  
OSC1  
clock  
Cext  
VSS  
PIC16CXX  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 10-5.  
OSC2/CLKOUT  
Fosc/4  
The PICmicro devices have a MCLR noise filter in the  
MCLR reset path. The filter will ignore small pulses.  
However, a valid MCLR pulse must meet the minimum  
pulse width (TmcL, Specification #30).  
Recommended values: 3 kΩ ≤ Rext 100 kΩ  
Cext > 20pF  
No internal reset source (WDT, BOR, POR) willdrive  
the MCLR pin low.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 57  
PIC16C62B/72A  
FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BODEN  
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
DS35008B-page 58  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
10.4  
Power-On Reset (POR)  
10.5  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD. This will elimi-  
nate external RC components usually needed to create  
a Power-on Reset. A maximum rise time for VDD is  
specified (SVDD, parameter D004). For a slow rise  
time, see Figure 10-6.  
The Power-up Timer provides a fixed nominal time-out  
(TPWRT, parameter #33) from the POR. The Power-up  
Timer operates on an internal RC oscillator. The chip is  
kept in reset as long as the PWRT is active. The  
PWRT’s time delay allows VDD to rise to an acceptable  
level. A configuration bit is provided to enable/disable  
the PWRT.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameters for details.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the start-up con-  
ditions.  
10.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides a delay of  
1024 oscillator cycles (from OSC1 input) after the  
PWRT delay is over (TOST, parameter #32). This  
ensures that the crystal oscillator or resonator has  
started and stabilized.  
FIGURE 10-6: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
VDD  
Note: The OST delay may not occur when the  
device wakes from SLEEP.  
D
R
R1  
10.7  
Brown-Out Reset (BOR)  
MCLR  
PIC16CXX  
The configuration bit, BODEN, can enable or disable  
the Brown-Out Reset circuit. If VPP falls below Vbor  
(parameter #35, about 100µS), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a reset may not occur.  
C
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow. The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
Once the brown-out occurs, the device will remain in  
brown-out reset until VDD rises above VBOR. The  
power-up timer then keeps the device in reset for  
TPWRT (parameter #33, about 72mS). If VDD should fall  
below VBOR during TPWRT, the brown-out reset pro-  
cess will restart when VDD rises above VBOR with the  
power-up timer reset. The power-up timer is always  
enabled when the brown-out reset circuit is enabled,  
regardless of the state of the PWRT configuration bit.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 59  
PIC16C62B/72A  
Table 10-5 shows the reset conditions for the STATUS,  
PCON and PC registers, while Table 10-6 shows the  
reset conditions for all the registers.  
10.8  
Time-out Sequence  
When a POR reset occurs, the PWRT delay starts (if  
enabled). When PWRT ends, the OST counts 1024  
oscillator cycles (LP, XT, HS modes only). When OST  
completes, the device comes out of reset. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
10.9  
Power Control/Status Register  
(PCON)  
The BOR bit is unknown on Power-on Reset. If the  
Brown-out Reset circuit is used, the BOR bit must be  
set by the user and checked on subsequent resets to  
see if it was cleared, indicating a Brown-out has  
occurred.  
If MCLR is kept low long enough, the time-outs will  
expire. Bringing MCLR high will begin execution imme-  
diately. This is useful for testing purposes or to synchro-  
nize more than one PIC16CXXX device operating in  
parallel.  
POR (Power-on Reset Status bit) is cleared on a  
Power-on Reset and unaffected otherwise. The user  
Status Register  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
PCON Register  
POR  
BOR  
TABLE 10-3  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
SLEEP  
Oscillator Configuration  
Brown-out  
PWRTE = 0  
72 ms + 1024TOSC  
72 ms  
PWRTE = 1  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
1024TOSC  
72 ms  
TABLE 10-4  
STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 10-5  
RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
Interrupt wake-up from SLEEP  
PC + 1(1)  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
DS35008B-page 60  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
TABLE 10-6  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT or  
Interrupt  
W
62B  
62B  
62B  
62B  
72A  
72A  
72A  
72A  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
PC + 1(2)  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
STATUS  
FSR  
62B  
72A  
0001 1xxx  
62B  
62B  
72A  
72A  
xxxx xxxx  
--0x 0000  
PORTA(4)  
PORTB(5)  
62B  
62B  
72A  
72A  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu(1)  
---- uuuu(1)  
PORTC(5)  
PCLATH  
INTCON  
62B  
62B  
72A  
72A  
---0 0000  
0000 000x  
---0 0000  
0000 000u  
62B  
62B  
72A  
72A  
---- 0000  
-0-- 0000  
---- 0000  
-0-- 0000  
PIR1  
-u-- uuuu(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
-u-- uuuu  
---- --uq  
1111 1111  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
TMR1L  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
62B  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
72A  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
---- 0000  
-0-- 0000  
---- --0q  
1111 1111  
0000 0000  
0000 0000  
---- -000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
---- 0000  
-0-- 0000  
---- --uq  
1111 1111  
0000 0000  
0000 0000  
---- -000  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRES  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
PIE1  
PCON  
PR2  
SSPADD  
SSPSTAT  
ADCON1  
Legend:  
u
= unchanged,  
x = unknown, -= unimplemented bit, read as ’0’, q= value depends on condition  
Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
3: See Table 10-5 for reset value for specific condition.  
4: On any device reset, these pins are configured as inputs.  
5: This is the value that will be in the port output latch.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 61  
PIC16C62B/72A  
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
10.10 Interrupts  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupts, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine, the  
source of the interrupt can be determined by polling the  
interrupt flag bits. The interrupt flag bit must be cleared  
in software before re-enabling interrupts to avoid recur-  
sive interrupts.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables or disables all interrupts. When bit GIE is  
enabled, and an interrupt’s flag bit and mask bit are set,  
the interrupt will vector immediately. Individual inter-  
rupts can be disabled through their corresponding  
enable bits in various registers. Individual interrupt flag  
bits are set regardless of the status of the GIE bit. The  
GIE bit is cleared on reset.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles, depending on when the  
interrupt event occurs. The latency is the same for one  
or two cycle instructions. Individual interrupt flag bits  
are set regardless of the status of their corresponding  
mask bit or the GIE bit  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit, which re-  
enables interrupts.  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
FIGURE 10-7: INTERRUPT LOGIC  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
T0IF  
T0IE  
INTF  
INTE  
ADIF(1)  
ADIE(1)  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
Note 1: The A/D module is not implemented on the PIC16C62B.  
DS35008B-page 62  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
10.10.1 INT INTERRUPT  
10.11 Context Saving During Interrupts  
The external interrupt on RB0/INT pin is edge trig-  
gered: either rising, if bit INTEDG (OPTION_REG<6>)  
is set, or falling, if the INTEDG bit is clear. When a valid  
edge appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP. The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 10.13 for details on SLEEP mode.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt, (i.e., W register and STATUS  
register). This will have to be implemented in software.  
Example 10-1 stores and restores the W and STATUS  
registers. The register, W_TEMP, must be defined in  
each bank and must be defined at the same offset from  
the bank base address (i.e., if W_TEMP is defined at  
0x20 in bank 0, it must also be defined at 0xA0 in bank  
1).  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register.  
10.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 4.0)  
d) Executes the interrupt service routine code  
(User-generated).  
e) Restores the STATUS register (and bank select  
bit).  
f) Restores the W and PCLATH registers.  
10.10.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 3.2)  
EXAMPLE 10-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
STATUS_TEMP  
:(ISR)  
:
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 63  
PIC16C62B/72A  
The WDT time-out period (TWDT, parameter #31) is  
multiplied by the prescaler ratio, when the prescaler is  
assigned to the WDT. The prescaler assignment  
(assigned to either the WDT or Timer0) and prescaler  
ratio are set in the OPTION_REG register.  
10.12 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKIN pin. The WDT will run, even if the  
clock on the OSC1/CLKIN and OSC2/CLKOUT pins of  
the device has been stopped, for example, by execution  
of a SLEEPinstruction.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler, if assigned to  
the WDT, and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS register  
will be cleared upon a Watchdog Timer time-out.  
.
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 10.1).  
FIGURE 10-8: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 4-2)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 4-2)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION_REG register.  
FIGURE 10-9: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
CP1  
CP0  
WDTE  
FOSC1  
FOSC0  
BODEN  
INTEDG  
PWRTE  
PSA  
OPTION_REG  
81h  
RBPU  
T0CS T0SE  
PS2  
PS1  
PS0  
Legend: Shaded cells are not used by the Watchdog Timer.  
DS35008B-page 64  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device resumes execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, a NOP  
should follow the SLEEPinstruction.  
10.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low or hi-impedance).  
10.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep. The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
The MCLR pin must be at a logic high level (VIHMC,  
parameter D042).  
10.13.1 WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. CCP capture mode interrupt.  
3. Special event trigger (Timer1 in asynchronous  
mode using an external clock. CCP1 is in com-  
pare mode).  
4. SSP (Start/Stop) bit detect interrupt.  
5. SSP transmit or receive in slave mode (SPI/I2C).  
6. USART RX or TX (synchronous slave mode).  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 65  
PIC16C62B/72A  
FIGURE 10-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = ’1’ assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
10.14 Program Verification/Code Protection  
If the code protection bits have not been programmed,  
the on-chip program memory can be read out for verifi-  
cation purposes.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
10.15 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
For ROM devices, these values are submitted along  
with the ROM code.  
10.16 In-Circuit Serial Programming™  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
more lines for power, ground and the programming volt-  
age. This allows customers to manufacture boards with  
unprogrammed devices, and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
For complete details of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP™)  
Guide, DS30277.  
DS35008B-page 66  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
11.0 INSTRUCTION SET SUMMARY  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 11-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 11-1  
shows the opcode field descriptions.  
Table 11-2 lists the instructions recognized by the  
MPASM assembler.  
Figure 11-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
For byte-oriented instructions, ’f’ represents a file reg-  
ister designator and ’d’ represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
All examples use the following format to represent a  
hexadecimal number:  
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
FIGURE 11-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
TABLE 11-1  
OPCODE FIELD  
DESCRIPTIONS  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
Field  
Description  
7
6
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don’t care location (= 0 or 1)  
Literal and control operations  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
General  
13  
8
7
0
0
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
OPCODE  
k (literal)  
k = 8-bit immediate value  
PC  
TO  
PD  
Z
Program Counter  
Time-out bit  
Power-down bit  
Zero bit  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
DC  
C
Digit Carry bit  
Carry bit  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
A description of each instruction is available in the  
PICmicro™  
(DS33023).  
Mid-Range  
Reference  
Manual,  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 67  
PIC16C62B/72A  
TABLE 11-2  
PIC16CXXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS35008B-page 68  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
11.1  
Instruction Descriptions  
Add Literal and W  
ADDLW  
ANDWF  
Syntax:  
AND W with f  
[label] ANDWF f,d  
0 f 127  
Syntax:  
[label] ADDLW  
0 k 255  
k
Operands:  
Operation:  
Operands:  
d
[0,1]  
(W) + k (W)  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Z
The contents of the W register are  
added to the eight bit literal ’k’ and the  
result is placed in the W register.  
Description:  
AND the W register with register 'f'. If  
'd' is 0, the result is stored in the W  
register. If 'd' is 1, the result is stored  
back in register 'f'.  
ADDWF  
Syntax:  
Add W and f  
BCF  
Bit Clear f  
[label] ADDWF f,d  
0 f 127  
Syntax:  
Operands:  
[label] BCF f,b  
Operands:  
0 f 127  
0 b 7  
d
[0,1]  
Operation:  
(W) + (f) (destination)  
Operation:  
0 (f<b>)  
Status Affected: C, DC, Z  
Status Affected: None  
Add the contents of the W register  
Description:  
Description:  
Bit 'b' in register 'f' is cleared.  
with register ’f’. If ’d’ is 0, the result is  
stored in the W register. If ’d’ is 1, the  
result is stored back in register ’f’.  
ANDLW  
AND Literal with W  
BSF  
Bit Set f  
Syntax:  
[label] ANDLW  
k
Syntax:  
Operands:  
[label] BSF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
0 k 255  
0 f 127  
0 b 7  
(W) .AND. (k) (W)  
Operation:  
1 (f<b>)  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight bit literal 'k'.  
The result is placed in the W register.  
Bit 'b' in register 'f' is set.  
Description:  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 69  
PIC16C62B/72A  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected:  
Description:  
Z
If bit ’b’ in register ’f’ is ’0’, then the next  
The contents of register ’f’ are cleared  
and the Z bit is set.  
Description:  
instruction is executed.  
If bit ’b’ is ’1’, then the next instruction  
is discarded and a NOPis executed  
instead, making this a 2TCY instruc-  
tion.  
CLRW  
Clear W  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
[ label ] CLRW  
None  
Syntax:  
[label] BTFSC f,b  
Operands:  
Operation:  
Operands:  
0 f 127  
0 b 7  
00h (W)  
1 Z  
Operation:  
skip if (f<b>) = 0  
Status Affected:  
Description:  
Z
Status Affected: None  
W register is cleared. Zero bit (Z) is  
set.  
If bit ’b’ in register ’f’ is ’1’, then the next  
Description:  
instruction is executed.  
If bit ’b’ in register ’f’ is ’0’, then the next  
instruction is discarded, and a NOPis  
executed instead, making this a 2TCY  
instruction.  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Call Subroutine. First, return address  
Description:  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two cycle instruction.  
CLRWDTinstruction resets the Watch-  
Description:  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD  
are set.  
DS35008B-page 70  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
Syntax:  
Operands:  
Syntax:  
Operands:  
Operation:  
d
[0,1]  
k PC<10:0>  
Operation:  
(f) (destination)  
PCLATH<4:3> PC<12:11>  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ’f’ are comple-  
mented. If ’d’ is 0, the result is stored  
in W. If ’d’ is 1, the result is stored  
back in register ’f’.  
GOTOis an unconditional branch. The  
Description:  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two cycle instruction.  
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
INCF  
Increment f  
Syntax:  
Operands:  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f) - 1 (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ’f’. If ’d’ is 0, the  
result is stored in the W register. If ’d’  
is 1, the result is stored back in regis-  
ter ’f’.  
The contents of register ’f’ are incre-  
mented. If ’d’ is 0, the result is placed  
in the W register. If ’d’ is 1, the result is  
placed back in register ’f’.  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) - 1 (destination);  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
skip if result = 0  
Status Affected: None  
Status Affected: None  
The contents of register ’f’ are decre-  
The contents of register ’f’ are incre-  
Description:  
Description:  
mented. If ’d’ is 0, the result is placed in  
the W register. If ’d’ is 1, the result is  
placed back in register ’f’.  
mented. If ’d’ is 0, the result is placed  
in the W register. If ’d’ is 1, the result is  
placed back in register ’f’.  
If the result is 1, the next instruction, is  
executed. If the result is 0, then a NOPis  
executed instead making it a 2TCY  
instruction.  
If the result is 1, the next instruction is  
executed. If the result is 0, a NOPis  
executed instead making it a 2TCY  
instruction.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 71  
PIC16C62B/72A  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
(W) .OR. k (W)  
Z
k (W)  
Status Affected: None  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The eight bit literal 'k' is loaded into W  
register. The don’t cares will assem-  
ble as 0’s.  
Description:  
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 127  
MOVWF  
Syntax:  
Move W to f  
Syntax:  
[ label ] MOVWF  
0 f 127  
f
Operands:  
Operands:  
Operation:  
d
[0,1]  
(W) (f)  
Operation:  
(W) .OR. (f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Move data from W register to register  
'f'.  
Description:  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0, the result is placed in  
the W register. If 'd' is 1, the result is  
placed back in register 'f'.  
NOP  
No Operation  
[ label ] NOP  
None  
MOVF  
Move f  
Syntax:  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
0 f 127  
d
[0,1]  
No operation  
Operation:  
(f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
No operation.  
Description:  
The contents of register f is moved to  
a destination dependant upon the sta-  
tus of d. If d = 0, destination is W reg-  
ister. If d = 1, the destination is file  
register f itself. d = 1 is useful to test a  
file register since status flag Z is  
affected.  
DS35008B-page 72  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RLF  
Rotate Left f through Carry  
[ label ] RLF f,d  
0 f 127  
Syntax:  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
TOS PC,  
1 GIE  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The contents of register ’f’ are rotated  
one bit to the left through the Carry  
Flag. If ’d’ is 0, the result is placed in  
the W register. If ’d’ is 1, the result is  
stored back in register ’f’.  
C
Register f  
RETLW  
Return with Literal in W  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
[ label ] RETLW k  
Syntax:  
Operands:  
Operands:  
Operation:  
0 k 255  
d
[0,1]  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Description:  
The W register is loaded with the eight  
The contents of register ’f’ are rotated  
one bit to the right through the Carry  
Flag. If ’d’ is 0, the result is placed in  
the W register. If ’d’ is 1, the result is  
placed back in register ’f’.  
Description:  
bit literal ’k’. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
C
Register f  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN  
None  
SLEEP  
Syntax:  
[ label ] SLEEP  
None  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Status Affected: None  
Return from subroutine. The stack is  
Description:  
0 PD  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two cycle instruction.  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 10.13 for more details.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 73  
PIC16C62B/72A  
SUBLW  
Subtract W from Literal  
XORLW  
Exclusive OR Literal with W  
[label] XORLW k  
Syntax:  
[ label ]  
SUBLW k  
Syntax:  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
0 k 255  
k - (W) → (W)  
(W) .XOR. k → (W)  
Status Affected: C, DC, Z  
Z
The W register is subtracted (2’s com-  
Description:  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
plement method) from the eight bit lit-  
eral 'k'. The result is placed in the W  
register.  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
SUBWF  
Syntax:  
Subtract W from f  
[ label ]  
SUBWF f,d  
Operands:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Z
Status  
Affected:  
C, DC, Z  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0, the  
result is stored in the W register. If 'd'  
is 1, the result is stored back in regis-  
ter 'f'.  
Subtract (2’s complement method) W  
register from register 'f'. If 'd' is 0, the  
result is stored in the W register. If 'd' is  
1, the result is stored back in register 'f'.  
Description:  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 127  
Operands:  
d
[0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected: None  
The upper and lower nibbles of regis-  
Description:  
ter 'f' are exchanged. If 'd' is 0, the  
result is placed in W register. If 'd' is 1,  
the result is placed in register 'f'.  
DS35008B-page 74  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
MPLAB allows you to:  
12.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Integrated Development Environment  
- MPLAB™ IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
• Simulators  
The ability to use MPLAB with Microchip’s simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
• Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- PICMASTER®/PICMASTER-CE In-Circuit  
12.2  
MPASM Assembler  
Emulator  
MPASM is a full featured universal macro assembler for  
all PICmicro MCU’s. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- ICEPIC™  
• In-Circuit Debugger  
- MPLAB-ICD for PIC16F877  
• Device Programmers  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
• Low-Cost Demonstration Boards  
- SIMICE  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
MPASM features include:  
- PICDEM-17  
- SEEVAL  
• MPASM and MPLINK are integrated into MPLAB  
projects.  
- KEELOQ  
• MPASM allows user defined macros to be created  
for streamlined assembly.  
12.1  
MPLAB Integrated Development  
Environment Software  
• MPASM allows conditional assembly for multi pur-  
pose source files.  
• MPASM directives allow complete control over the  
assembly process.  
- The MPLAB IDE software brings an ease of  
software development previously unseen in  
the 8-bit microcontroller market. MPLAB is a  
Windows -based application which contains:  
12.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
• Multiple functionality  
- editor  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 75  
PIC16C62B/72A  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
12.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
• MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
• MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
12.7  
PICMASTER/PICMASTER CE  
The PICMASTER system from Microchip Technology is  
a full-featured, professional quality emulator system.  
This flexible in-circuit emulator provides a high-quality,  
universal platform for emulating Microchip 8-bit  
PICmicro microcontrollers (MCUs). PICMASTER sys-  
tems are sold worldwide, with a CE compliant model  
available for European Union (EU) countries.  
MPLIB features include:  
• MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
• MPLIB helps keep code maintainable by grouping  
related modules together.  
• MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
12.8  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X, and PIC16CXXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXXX products through the use of  
interchangeable personality modules or daughter  
boards. The emulator is capable of emulating without  
target application circuitry being present.  
12.5  
MPLAB-SIM Software Simulator  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
12.9  
MPLAB-ICD In-Circuit Debugger  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. MPLAB-ICD utilizes the  
In-Circuit Debugging capability built into the  
PIC16F87X. This feature, along with Microchip’s In-Cir-  
cuit Serial Programming protocol, offers cost-effective  
in-circuit flash programming and debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by watching variables,  
single-stepping and setting break points. Running at  
full speed enables testing hardware in real-time. The  
MPLAB-ICD is also a programmer for the flash  
PIC16F87X family.  
12.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
DS35008B-page 76  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
12.10 PRO MATE II Universal Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
12.14 PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
12.11 PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
12.12 SIMICE Entry-Level  
Hardware Simulator  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB-SIM. Both SIMICE  
and MPLAB-SIM run under Microchip Technology’s  
MPLAB Integrated Development Environment (IDE)  
software. Specifically, SIMICE provides hardware sim-  
ulation for Microchip’s PIC12C5XX, PIC12CE5XX, and  
PIC16C5X families of PICmicro 8-bit microcontrollers.  
SIMICE works in conjunction with MPLAB-SIM to pro-  
vide non-real-time I/O port emulation. SIMICE enables  
a developer to run simulator code for driving the target  
system. In addition, the target system can provide input  
to the simulator code. This capability allows for simple  
and interactive debugging without having to manually  
generate MPLAB-SIM stimulus files. SIMICE is a valu-  
able debugging tool for entry-level system develop-  
ment.  
12.15 PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
12.13 PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 77  
PIC16C62B/72A  
12.16 PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
12.17 SEEVAL Evaluation and Programming  
System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
12.18 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS35008B-page 78  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0
2 5 P 1 C M  
X X X C R M F  
H C S X X X  
X X C 9 3  
C 5 X 2 X /  
C 4 X 2 X /  
2 X X C 8 C 1 P I  
X X 7 C 7 C 1 P I  
4 X 7 C 1 C I P  
X X 9 C 6 C 1 P I  
X 8 X 6 1 F C I P  
8 X 6 C 1 C I P  
X X 7 C 6 C 1 P I  
7 X 6 C 1 C I P  
6 2 X 6 F 1 C I P  
X X C 6 X 1 C P I  
6 X 6 C 1 C I P  
5 X 6 C 1 C I P  
0
4 0 1 0 C I P  
X X C 2 X 1 C P I  
s o l T e o r a w f t o S s o t r a l  
E m r u g e b e u g D s r  
m m r a g e o P r  
t i s K a l d E v a n d r s a o B m e o D  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 79  
PIC16C62B/72A  
NOTES:  
DS35008B-page 80  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
13.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (†)  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2).......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB (combined).................................................................................200 mA  
Maximum current sourced by PORTA and PORTB (combined)............................................................................200 mA  
Maximum current sunk by PORTC........................................................................................................................200 mA  
Maximum current sourced by PORTC ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 81  
PIC16C62B/72A  
FIGURE 13-1: PIC16C62B/72A-20 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC16CXXX-20  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
20 MHz  
Frequency  
FIGURE 13-2: PIC16LC62B/72A AND PIC16C62B/72A/JW VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
PIC16LCXXX-04  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
10 MHz  
Frequency  
FMAX = (12.0 MHz/V) (VDDAPPMIN - 2.5 V) + 4 MHz  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Fmax is no greater than 10 MHz.  
DS35008B-page 82  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 13-3: PIC16C62B/72A-04 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC16CXXX-04  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
Frequency  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 83  
PIC16C62B/72A  
13.1  
DC Characteristics:  
PIC16C62B/72A-04 (Commercial, Industrial, Extended)  
PIC16C62B/72A-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Param Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
No.  
D001  
D001A  
VDD  
VDR  
Supply Voltage  
4.0  
4.5  
VBOR*  
-
-
-
5.5  
5.5  
5.5  
V
V
V
XT, RC and LP osc mode  
HS osc mode  
BOR enabled (Note 7)  
D002*  
D003  
RAM Data Retention  
Voltage (Note 1)  
-
-
1.5  
-
V
VPOR VDD Start Voltage to  
ensure internal  
VSS  
-
V
See section on Power-on Reset for details  
Power-on Reset signal  
D004*  
D004A*  
SVDD VDD Rise Rate to  
ensure internal  
0.05  
TBD  
-
-
-
-
V/ms PWRT enabled (PWRTE bit clear)  
PWRT disabled (PWRTE bit set)  
Power-on Reset signal  
See section on Power-on Reset for details  
D005  
D010  
VBOR Brown-out Reset  
voltage trip point  
3.65  
-
-
4.35  
5
V
BODEN bit set  
IDD  
Supply Current  
2.7  
mA XT, RC osc modes  
(Note 2, 5)  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D020  
-
10  
20  
mA HS osc mode  
FOSC = 20 MHz, VDD = 5.5V  
IPD  
Power-down Current  
(Note 3, 5)  
-
-
-
-
10.5  
1.5  
1.5  
42  
16  
19  
19  
µA VDD = 4.0V, WDT enabled,-40°C to +85°C  
µA VDD = 4.0V, WDT disabled, 0°C to +70°C  
µA VDD = 4.0V, WDT disabled,-40°C to +85°C  
µA VDD = 4.0V, WDT disabled,-40°C to +125°C  
D021  
D021B  
2.5  
Module Differential  
Current (Note 6)  
D022*  
IWDT Watchdog Timer  
-
-
6.0  
TBD 200  
20  
µA WDTE BIT SET, VDD = 4.0V  
µA BODEN bit set, VDD = 5.0V  
D022A* IBOR Brown-out Reset  
* These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will  
perform a brown-out reset when VDD falls below VBOR.  
DS35008B-page 84  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
13.2  
DC Characteristics: PIC16LC62B/72A-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
No.  
D001  
D002*  
D003  
VDD  
VDR  
Supply Voltage  
2.5  
VBOR*  
-
-
5.5  
5.5  
V
V
LP, XT, RC osc modes (DC - 4 MHz)  
BOR enabled (Note 7)  
RAM Data Retention  
Voltage (Note 1)  
-
-
1.5  
-
V
VPOR VDD Start Voltage to  
ensure internal  
VSS  
-
V
See section on Power-on Reset for details  
Power-on Reset signal  
D004*  
D004A*  
SVDD VDD Rise Rate to  
ensure internal  
0.05  
TBD  
-
-
-
-
V/ms PWRT enabled (PWRTE bit clear)  
PWRT disabled (PWRTE bit set)  
Power-on Reset signal  
See section on Power-on Reset for details  
D005  
D010  
VBOR Brown-out Reset  
voltage trip point  
3.65  
-
-
4.35  
3.8  
V
BODEN bit set  
IDD  
Supply Current  
2.0  
mA XT, RC osc modes  
(Note 2, 5)  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
-
22.5  
48  
µA LP OSC MODE  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D020  
D021  
D021A  
IPD  
Power-down Current  
(Note 3, 5)  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
Module Differential  
Current (Note 6)  
D022*  
IWDT Watchdog Timer  
-
-
6.0  
TBD 200  
20  
µA WDTE BIT SET, VDD = 4.0V  
µA BODEN bit set, VDD = 5.0V  
D022A* IBOR Brown-out Reset  
* These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by  
the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will  
perform a brown-out reset when VDD falls below VBOR.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 85  
PIC16C62B/72A  
13.3  
DC Characteristics:  
PIC16C62B/72A-04 (Commercial, Industrial, Extended)  
PIC16C62B/72A-20 (Commercial, Industrial, Extended)  
PIC16LC62B/72A-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 13.1  
and Section 13.2  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
with TTL buffer  
VSS  
Vss  
-
-
0.15VDD  
0.8V  
V
V
For entire VDD range  
4.5V VDD 5.5V  
D031  
D032  
D033  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
VSS  
Vss  
Vss  
-
-
-
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
OSC1 (in XT, HS and LP  
modes)  
Note1  
Input High Voltage  
I/O ports  
VIH  
-
-
-
D040  
with TTL buffer  
2.0  
VDD  
Vdd  
V
V
4.5V VDD 5.5V  
D040A  
0.25VD  
For entire VDD range  
D + 0.8V  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
-
-
-
-
VDD  
VDD  
VDD  
Vdd  
V
V
V
V
For entire VDD range  
Note1  
OSC1 (XT, HS and LP modes) 0.7VDD  
OSC1 (in RC mode)  
0.9VDD  
Input Leakage Current  
(Notes 2, 3)  
D060  
IIL  
I/O ports  
-
-
±1  
µA Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD,  
XT, HS and LP osc modes  
D070  
D080  
IPURB PORTB weak pull-up current  
50  
-
250  
-
400  
0.6  
µA VDD = 5V, VPIN = VSS  
Output Low Voltage  
VOL  
I/O ports  
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
device be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
DS35008B-page 86  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 13.1  
and Section 13.2  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
0.6  
0.6  
0.6  
Units  
Conditions  
-
-
-
-
-
-
V
V
V
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D083  
OSC2/CLKOUT  
(RC osc mode)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
Output High Voltage  
D090  
D092  
VOH  
I/O ports (Note 3)  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
-
-
-
-
-
-
-
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
-
-
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc  
mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
-
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D150* VOD  
Open-Drain High Voltage  
8.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
D100  
COSC2 OSC2 pin  
-
-
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
D102  
CIO  
Cb  
All I/O pins and OSC2 (in RC  
mode)  
SCL, SDA in I2C mode  
-
-
-
-
50  
pF  
400  
pF  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
device be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 87  
PIC16C62B/72A  
13.4  
AC (Timing) Characteristics  
13.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
1. TppS2ppS  
3. TCC:ST (I2C specifications only)  
2. TppS  
4. Ts  
(I2C specifications only)  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
DS35008B-page 88  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
13.4.2 TIMING CONDITIONS  
The temperature and voltages specified in Table 13-1  
apply to all timing specifications unless otherwise  
noted. Figure 13-4 specifies the load conditions for the  
timing specifications.  
TABLE 13-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
AC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 13.1 and Section 13.2.  
LC parts operate for commercial/industrial temp’s only.  
FIGURE 13-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1  
VDD/2  
Load condition 2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
VSS  
15 pF for OSC2 output  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 89  
PIC16C62B/72A  
13.4.3 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 13-5: EXTERNAL CLOCK TIMING  
Q1  
1
Q2  
Q3  
Q4  
4
Q4  
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 13-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
1A  
Fosc  
External CLKIN Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz RC and XT osc modes  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
20  
200  
MHz HS osc mode  
5
kHz LP osc mode  
1
Tosc  
External CLKIN Period  
(Note 1)  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
RC and XT osc modes  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
RC osc mode  
XT osc mode  
10,000  
250  
250  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
5
2
TCY  
Instruction Cycle Time (Note 1) 200  
DC  
TCY = 4/FOSC  
3*  
TosL, External Clock in (OSC1) High  
TosH or Low Time  
100  
2.5  
15  
XT oscillator  
LP oscillator  
HS oscillator  
4*  
TosR, External Clock in (OSC1) Rise  
TosF  
25  
XT oscillator  
or Fall Time  
50  
LP oscillator  
15  
HS oscillator  
* These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at "min." values with an external  
clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS35008B-page 90  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 13-6: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
18*  
18A*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns Note 1  
ns Note 1  
ns Note 1  
ns Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
TckL2ioV CLKOUT to Port out valid  
0.5TCY + 20 ns Note 1  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
TosH2ioI OSC1(Q2 cycle) to Port PIC16CXX  
Tosc + 200  
ns Note 1  
0
ns Note 1  
150  
ns  
ns  
ns  
100  
200  
input invalid (I/O in hold  
time)  
PIC16LCXX  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
20A*  
21*  
TioF  
21A*  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
* These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
These parameters are asynchronous events not related to any internal clock edge.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 91  
PIC16C62B/72A  
FIGURE 13-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 13-4 for load conditions.  
FIGURE 13-8: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
µs VDD = 5V, -40°C to +125°C  
ms VDD = 5V, -40°C to +125°C  
31*  
Twdt  
Watchdog Timer Time-out Period  
7
18  
33  
(No Prescaler)  
32  
Tost  
Oscillator Start-up Timer Period  
1024  
TOSC = OSC1 period  
TOSC  
33*  
34  
Tpwrt Power-up Timer Period  
28  
72  
132  
2.1  
ms VDD = 5V, -40°C to +125°C  
µs  
TIOZ  
I/O Hi-impedance from MCLR  
Low or WDT reset  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
µs  
VDD BVDD (D005)  
* These parameters are characterized but not tested.  
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS35008B-page 92  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 13-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Tt0H  
Characteristic  
T0CKI High Pulse Width  
Min  
Typ† Max Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ns  
Must also meet  
parameter 42  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20  
10  
Must also meet  
parameter 42  
TCY + 40  
Greater of:  
20 or TCY + 40  
N = prescale value  
(2, 4,..., 256)  
N
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time  
Synchronous, Prescaler = 1  
0.5TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter 47  
Synchronous,  
Prescaler =  
2,4,8  
PIC16CXX  
15  
25  
PIC16LCXX  
Asynchronous  
PIC16CXX  
30  
ns  
ns  
ns  
ns  
ns  
PIC16LCXX  
50  
T1CKI Low Time  
Synchronous, Prescaler = 1  
0.5TCY + 20  
Must also meet  
parameter 47  
Synchronous,  
Prescaler =  
2,4,8  
PIC16CXX  
15  
25  
PIC16LCXX  
Asynchronous  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
30  
50  
ns  
ns  
ns  
T1CKI input period Synchronous  
GREATER OF:  
30 OR TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
PIC16LCXX  
GREATER OF:  
50 OR TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
PIC16CXX  
60  
100  
DC  
ns  
ns  
PIC16LCXX  
Ft1  
Timer1 oscillator input frequency range  
200  
kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 93  
PIC16C62B/72A  
FIGURE 13-10: CAPTURE/COMPARE/PWM TIMINGS  
CCP1  
(Capture Mode)  
50  
51  
52  
54  
CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-6: CAPTURE/COMPARE/PWM REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
50*  
TccL  
CCP1 input low No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
time  
With Prescaler PIC16CXX  
10  
PIC16LCXX  
20  
51*  
TccH CCP1 input high No Prescaler  
time  
0.5TCY + 20  
With Prescaler PIC16CXX  
10  
20  
PIC16LCXX  
52*  
53*  
TccP CCP1 input period  
3TCY + 40  
N = prescale  
value (1,4, or 16)  
N
TccR CCP1 output rise time  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
TccF  
CCP1 output fall time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS35008B-page 94  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 13-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
BIT6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-7: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param. Symbol  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns Note 1  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
PIC16CXX  
TdoR  
SDO data output rise time  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
PIC16CXX  
SCK output rise time  
(master mode)  
PIC16LCXX  
79  
80  
TscF  
SCK output fall time (master mode)  
PIC16CXX  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
PIC16LCXX  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 95  
PIC16C62B/72A  
FIGURE 13-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-8: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param. Symbol  
No.  
Characteristic  
SCK input high time  
Min  
Typ† Max Units Conditions  
71  
TscH  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
(slave mode)  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
TscL  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK  
100  
TdiV2scL  
edge  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns Note 1  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
PIC16CXX  
TdoR  
SDO data output rise  
time  
10  
20  
10  
10  
20  
10  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
PIC16CXX  
SCK output rise time  
(master mode)  
PIC16LCXX  
79  
80  
TscF  
SCK output fall time (master mode)  
PIC16CXX  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
PIC16LCXX  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
DS35008B-page 96  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 13-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-9: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)  
Param. Symbol  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
ns Note 1  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
PIC16CXX  
TdoR  
SDO data output rise time  
10  
20  
10  
10  
20  
10  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXX  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
PIC16CXX  
TscR  
SCK output rise time  
(master mode)  
PIC16LCXX  
79  
80  
TscF  
SCK output fall time (master mode)  
PIC16CXX  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
PIC16LCXX  
83  
TscH2ssH, SS after SCK edge  
1.5TCY + 40  
TscL2ssH  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 97  
PIC16C62B/72A  
FIGURE 13-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
NOTE: Refer to Figure 13-4 for load conditions.  
TABLE 13-10: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param. Symbol  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
TB2B  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
40  
ns  
71A  
72  
ns Note 1  
ns  
SCK input low time  
(slave mode)  
1.25TCY + 30  
40  
72A  
73A  
ns Note 1  
ns Note 1  
Last clock edge of Byte1 to the 1st clock  
edge of Byte2  
1.5TCY + 40  
74  
75  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
PIC16CXX  
TdoR  
SDO data output rise  
time  
10  
20  
10  
10  
20  
10  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LCXX  
76  
77  
78  
TdoF  
SDO data output fall time  
TssH2doZ SSto SDO output hi-impedance  
10  
PIC16CXX  
TscR  
SCK output rise time  
(master mode)  
PIC16LCXX  
79  
80  
TscF  
SCK output fall time (master mode)  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
TscH2doV, SDO data output valid  
TscL2doV after SCK edge  
82  
83  
TssL2doV SDO data output valid  
after SSedge  
TscH2ssH, SS after SCK edge  
1.5TCY + 40  
TscL2ssH  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Specification 73A is only required if specifications 71A and 72A are used.  
DS35008B-page 98  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
FIGURE 13-15: I2C BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-11: I2C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Ty Max Unit  
Conditions  
p
s
90*  
91*  
92*  
93  
TSU:STA  
START condition 100 kHz mode  
4700  
600  
ns Only relevant for repeated  
START condition  
Setup time  
400 kHz mode  
THD:STA  
TSU:STO  
THD:STO  
START condition 100 kHz mode  
4000  
600  
ns After this period the first clock  
pulse is generated  
Hold time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
STOP condition  
Setup time  
4700  
600  
ns  
STOP condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 99  
PIC16C62B/72A  
FIGURE 13-16: I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 13-4 for load conditions.  
TABLE 13-12: I2C BUS DATA REQUIREMENTS  
Param.  
No.  
Sym  
Characteristic  
Min  
Max  
Units Conditions  
100*  
THIGH  
Clock high time  
100 kHz mode  
4.0  
µs  
µs  
Device must operate at a min-  
imum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a min-  
imum of 10 MHz  
SSP Module  
1.5TCY  
101*  
TLOW  
Clock low time  
100 kHz mode  
4.7  
µs  
µs  
Device must operate at a min-  
imum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a min-  
imum of 10 MHz  
SSP Module  
1.5TCY  
102*  
103*  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10-400 pF  
90*  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
91*  
START condition hold 100 kHz mode  
time  
After this period the first clock  
pulse is generated  
400 kHz mode  
106*  
107*  
92*  
Data input hold time  
100 kHz mode  
400 kHz mode  
0
0.9  
Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
STOP condition setup 100 kHz mode  
time  
400 kHz mode  
109*  
110*  
Output valid from  
clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
Cb  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the fall-  
ing edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz) I C-bus system, but the requirement Tsu:DAT ≥  
250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR  
2
max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is released.  
DS35008B-page 100  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
TABLE 13-13: A/D CONVERTER CHARACTERISTICS:  
PIC16C72A-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C72A-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16LC72A-04 (COMMERCIAL, INDUSTRIAL)  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
8-bits  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
Units  
Conditions  
A01  
A02  
A03  
A04  
A05  
A06  
A10  
NR  
Resolution  
bit  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
EABS Total Absolute error  
LSB VREF = VDD = 5.12V,  
VSS VAIN VREF  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
LSB VREF = VDD = 5.12V,  
VSS VAIN VREF  
EDL  
EFS  
LSB VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSB VREF = VDD = 5.12V,  
VSS VAIN VREF  
EOFF Offset error  
Monotonicity  
LSB VREF = VDD = 5.12V,  
VSS VAIN VREF  
guaranteed  
(Note 3)  
VSS VAIN VREF  
A20  
A25  
A30  
VREF Reference voltage  
VAIN Analog input voltage  
2.5V  
VSS - 0.3  
VDD + 0.3  
VREF + 0.3  
10.0  
V
V
ZAIN Recommended impedance of  
kΩ  
analog voltage source  
A40  
A50  
IAD  
A/D conversion  
current (VDD)  
PIC16CXX  
180  
90  
µA Average current con-  
sumption when A/D is  
on. (Note 1)  
PIC16LCXX  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisi-  
tion. Based on differ-  
ential of VHOLD to  
VAIN to charge  
CHOLD, see  
10  
µA Section 9.1.  
During A/D conver-  
sion cycle  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the Input Voltage and has no missing codes.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 101  
PIC16C62B/72A  
FIGURE 13-17: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
134  
(Tosc/2) (1)  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This  
allows the SLEEPinstruction to be executed.  
TABLE 13-14: A/D CONVERSION REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Unit  
s
Conditions  
130  
PIC16CXX  
PIC16LCXX  
PIC16CXX  
PIC16LCXX  
TAD A/D clock period  
1.6  
2.0  
2.0  
3.0  
11  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC Mode  
4.0  
6.0  
6.0  
9.0  
11  
µs A/D RC Mode  
131  
132  
TCNV Conversion time (not including S/H  
TAD  
time) (Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the  
amplifier settling time. This  
may be used if the "new" input  
voltage has not changed by  
more than 1 LSb (i.e., 20.0 mV  
@ 5.12V) from the last sam-  
pled voltage (as stated on  
CHOLD).  
134  
TGO  
Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is  
selected as RC, a time of TCY  
is added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
135  
Tswc Switching from convert sample  
1.5  
TAD  
time  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 9.1 for min conditions.  
DS35008B-page 102  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. ’Typical’ represents the mean of the distribution at 25°C. ’Max’ or ’min’ represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.  
Graphs and Tables not available at this time.  
Data is not available at this time but you may reference the PIC16C72 Series Data Sheet (DS39016,) DC and AC char-  
acteristic section, which contains data similar to what is expected.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 103  
PIC16C62B/72A  
NOTES:  
DS35008B-page 104  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
15.0 PACKAGING INFORMATION  
15.1  
Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
MMMMMMMMMMMM  
XXXXXXXXXXXXXXX  
AABBCDE  
PIC16C72A-04/SP  
9917HAT  
28-Lead CERDIP Windowed  
Example  
XXXXXXXXXXX  
PIC16C72A/JW  
9917CAT  
XXXXXXXXXXX  
XXXXXXXXXXX  
AABBCDE  
28-Lead SOIC  
Example  
MMMMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXXXX  
PIC16C62B-20/SO  
AABBCDE  
9910/SAA  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C62B  
20I/SS025  
AABBCDE  
9917SBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 105  
PIC16C62B/72A  
15.2  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
L
A
c
β
B1  
A1  
p
eB  
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
Top to Seating Plane  
A
.140  
.160  
3.56  
3.18  
3.81  
3.30  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.125  
.015  
.300  
.279  
1.345  
.125  
.008  
.040  
.016  
.320  
5
.135  
3.43  
0.38  
7.62  
7.09  
34.16  
3.18  
0.20  
1.02  
0.41  
8.13  
5
.313  
.307  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.335  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.94  
7.80  
34.67  
3.30  
0.29  
1.33  
0.48  
8.89  
10  
8.26  
8.51  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
eB  
α
β
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
DS35008B-page 106  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
15.3  
28-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)  
E1  
W2  
D
2
1
n
W1  
E
A2  
A
c
L
B1  
B
A1  
eB  
p
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.183  
.160  
.023  
.313  
.290  
1.458  
.140  
.010  
.058  
.019  
.385  
.140  
.300  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
37.02  
3.56  
0.25  
1.46  
0.47  
9.78  
3.56  
7.62  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
1.430  
.135  
.008  
.050  
.016  
.345  
.130  
.290  
.165  
.030  
.325  
.295  
1.485  
.145  
.012  
.065  
.021  
.425  
.150  
.310  
4.19  
0.76  
8.26  
7.49  
37.72  
3.68  
0.30  
1.65  
0.53  
10.80  
3.81  
7.87  
0.38  
7.62  
7.24  
36.32  
3.43  
0.20  
1.27  
0.41  
8.76  
3.30  
7.37  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
eB  
W1  
W2  
Window Length  
*Controlling Parameter  
JEDEC Equivalent: MO-058  
Drawing No. C04-080  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 107  
PIC16C62B/72A  
15.4  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS35008B-page 108  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
15.5  
28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.66  
Overall Height  
A
.068  
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
0
5
10  
0
5
10  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 109  
PIC16C62B/72A  
NOTES:  
DS35008B-page 110  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
APPENDIX A: REVISION HISTORY  
Version Date  
Revision Description  
A
7/98 This is a new data sheet. However, the devices described in this data sheet are the upgrades to  
the devices found in the PIC16C6X Data Sheet, DS30234, and the PIC16C7X Data Sheet,  
DS30390.  
APPENDIX B: CONVERSION  
CONSIDERATIONS  
Considerations for converting from previous versions of  
devices to the ones listed in this data sheet are listed in  
Table B-1.  
TABLE B-1:  
CONVERSION CONSIDERATIONS  
PIC16C62A/72  
Difference  
PIC16C62B/72A  
Voltage Range  
SSP module  
CCP module  
2.5V - 6.0V  
2.5V - 5.5V  
Basic SSP (2 mode SPI)  
SSP (4 mode SPI)  
N/A  
CCP does not reset TMR1 when in special  
event trigger mode.  
Timer1 module  
Writing to TMR1L register can cause over- N/A  
flow in TMR1H register.  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 111  
PIC16C62B/72A  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unnecessary  
delays on power-up and wake-up.  
APPENDIX C: MIGRATION FROM  
BASE-LINE TO  
MID-RANGE DEVICES  
This section discusses how to migrate from a baseline  
device (i.e., PIC16C5X) to a mid-range device (i.e.,  
PIC16CXXX).  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full eight bit register.  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
15. “In-circuit serial programming” is made possible.  
The user can program PIC16CXX devices using  
only five pins: VDD, VSS, MCLR/VPP, RB6 (clock)  
and RB7 (data in/out).  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes both in program  
memory (2K now as opposed to 512 before) and  
register file (128 bytes now versus 32 bytes  
before).  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1,  
PA0 are removed from STATUS register.  
17. Code protection scheme is enhanced such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
3. Data memory paging is redefined slightly.  
STATUS register is modified.  
18. Brown-out protection circuitry has been added.  
Controlled by configuration word bit BODEN.  
Brown-out reset ensures the device is placed in  
a reset condition if VDD dips below a fixed set-  
point.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for compati-  
bility with PIC16C5X.  
To convert code written for PIC16C5X to PIC16CXXX,  
the user should take the following steps:  
5. OPTION_REG and TRIS registers are made  
addressable.  
1. Remove any program memory page select  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized. Reg-  
isters are reset differently.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
10. Wake up from SLEEP through interrupt is  
added.  
5. Change reset vector to 0000h.  
DS35008B-page 112  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
CCP1CON Register .......................................................... 33  
CCP1M3:CCP1M0 Bits ............................................. 33  
CCP1X:CCP1Y Bits .................................................. 33  
Code Protection ...........................................................55, 66  
CP1:CP0 Bits ............................................................ 55  
Compare (CCP Module) .................................................... 35  
Block Diagram ........................................................... 35  
CCP Pin Configuration .............................................. 35  
CCPR1H:CCPR1L Registers .................................... 35  
Software Interrupt ...................................................... 35  
Special Event Trigger ................................... 29, 35, 54  
Timer1 Mode Selection ............................................. 35  
Configuration Bits .............................................................. 55  
Conversion Considerations ............................................. 111  
INDEX  
A
A/D ..................................................................................... 49  
A/D Converter Enable (ADIE Bit) ............................... 14  
A/D Converter Flag (ADIF Bit) ............................ 15, 51  
A/D Converter Interrupt, Configuring ......................... 51  
ADCON0 Register ................................................ 9, 49  
ADCON1 Register ........................................10, 49, 50  
ADRES Register .............................................9, 49, 51  
Analog Port Pins .......................................................... 6  
Analog Port Pins, Configuring ................................... 53  
Block Diagram ........................................................... 51  
Block Diagram, Analog Input Model .......................... 52  
Channel Select (CHS2:CHS0 Bits) ............................ 49  
Clock Select (ADCS1:ADCS0 Bits) ........................... 49  
Configuring the Module ............................................. 51  
Conversion Clock (TAD) ............................................. 53  
Conversion Status (GO/DONE Bit) ..................... 49, 51  
Conversions ............................................................... 54  
Converter Characteristics ........................................ 101  
Module On/Off (ADON Bit) ........................................ 49  
Port Configuration Control (PCFG2:PCFG0 Bits) ...... 50  
Sampling Requirements ............................................ 52  
Special Event Trigger (CCP) .............................. 35, 54  
Timing Diagram ....................................................... 102  
Absolute Maximum Ratings ............................................... 81  
ADCON0 Register ........................................................ 9, 49  
ADCS1:ADCS0 Bits ................................................... 49  
ADON Bit ................................................................... 49  
CHS2:CHS0 Bits ....................................................... 49  
GO/DONE Bit ..................................................... 49, 51  
ADCON1 Register ................................................10, 49, 50  
PCFG2:PCFG0 Bits ................................................... 50  
ADRES Register .....................................................9, 49, 51  
Architecture  
D
Data Memory ....................................................................... 8  
Bank Select (RP1:RP0 Bits) ..................................8, 11  
General Purpose Registers ......................................... 8  
Register File Map ........................................................ 8  
Special Function Registers ......................................... 9  
DC Characteristics ......................................................84, 86  
Development Support ........................................................ 75  
Direct Addressing .............................................................. 18  
E
Electrical Characteristics ................................................... 81  
Errata ................................................................................... 3  
External Power-on Reset Circuit ....................................... 59  
F
Firmware Instructions ........................................................ 67  
I
I/O Ports ............................................................................ 19  
2
I C (SSP Module) .............................................................. 41  
ACK Pulse .......................................41, 42, 43, 44, 45  
Addressing ................................................................ 42  
Block Diagram ........................................................... 41  
Buffer Full Status (BF Bit) ......................................... 46  
Clock Polarity Select (CKP Bit) ................................. 47  
Data/Address (D/A Bit) .............................................. 46  
Master Mode ............................................................. 45  
Mode Select (SSPM3:SSPM0 Bits) .......................... 47  
Multi-Master Mode .................................................... 45  
Read/Write Bit Information (R/W Bit) .... 42, 43, 44, 46  
Receive Overflow Indicator (SSPOV Bit) .................. 47  
Reception .................................................................. 43  
Reception Timing Diagram ........................................ 43  
Slave Mode ............................................................... 41  
Start (S Bit) ..........................................................45, 46  
Stop (P Bit) ..........................................................45, 46  
Synchronous Serial Port Enable (SSPEN Bit) .......... 47  
Timing Diagram, Data ............................................. 100  
Timing Diagram, Start/Stop Bits ................................ 99  
Transmission ............................................................. 44  
Update Address (UA Bit) ........................................... 46  
ID Locations ................................................................55, 66  
In-Circuit Serial Programming (ICSP) .........................55, 66  
Indirect Addressing ............................................................ 18  
FSR Register .................................................... 8, 9, 18  
INDF Register ............................................................. 9  
Instruction Format ............................................................. 67  
PIC16C62B/PIC16C72A Block Diagram ..................... 5  
Assembler  
MPASM Assembler ................................................... 75  
B
Banking, Data Memory ................................................. 8, 11  
Brown-out Reset (BOR) .......................... 55, 57, 59, 60, 61  
BOR Enable (BODEN Bit) ......................................... 55  
BOR Status (BOR Bit) ............................................... 16  
Timing Diagram ......................................................... 92  
C
Capture (CCP Module) ...................................................... 34  
Block Diagram ........................................................... 34  
CCP Pin Configuration .............................................. 34  
CCPR1H:CCPR1L Registers .................................... 34  
Changing Between Capture Prescalers .................... 34  
Software Interrupt ...................................................... 34  
Timer1 Mode Selection .............................................. 34  
Capture/Compare/PWM  
Interaction of Two CCP Modules ............................... 33  
Capture/Compare/PWM (CCP) ......................................... 33  
CCP1CON Register .............................................. 9, 33  
CCPR1H Register ................................................ 9, 33  
CCPR1L Register ................................................. 9, 33  
Enable (CCP1IE Bit) .................................................. 14  
Flag (CCP1IF Bit) ...................................................... 15  
RC2/CCP1 Pin ............................................................. 6  
Timer Resources ....................................................... 33  
Timing Diagram ......................................................... 94  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 113  
PIC16C62B/72A  
Instruction Set ....................................................................67  
ADDLW ......................................................................69  
ADDWF ......................................................................69  
ANDLW ......................................................................69  
ANDWF ......................................................................69  
BCF ............................................................................69  
BSF ............................................................................69  
BTFSC .......................................................................70  
BTFSS .......................................................................70  
CALL ..........................................................................70  
CLRF .........................................................................70  
CLRW .........................................................................70  
CLRWDT ...................................................................70  
COMF ........................................................................71  
DECF .........................................................................71  
DECFSZ ....................................................................71  
GOTO ........................................................................71  
INCF ..........................................................................71  
INCFSZ ......................................................................71  
IORLW .......................................................................72  
IORWF .......................................................................72  
MOVF ........................................................................72  
MOVLW .....................................................................72  
MOVWF .....................................................................72  
NOP ...........................................................................72  
RETFIE ......................................................................73  
RETLW ......................................................................73  
RETURN ....................................................................73  
RLF ............................................................................73  
RRF ...........................................................................73  
SLEEP .......................................................................73  
SUBLW ......................................................................74  
SUBWF ......................................................................74  
SWAPF ......................................................................74  
XORLW ......................................................................74  
XORWF .....................................................................74  
Summary Table .........................................................68  
INTCON Register .......................................................... 9, 13  
GIE Bit .......................................................................13  
INTE Bit .....................................................................13  
INTF Bit ......................................................................13  
PEIE Bit .....................................................................13  
RBIE Bit .....................................................................13  
RBIF Bit .............................................................. 13, 21  
T0IE Bit ......................................................................13  
T0IF Bit ......................................................................13  
Interrupt Sources ........................................................ 55, 62  
A/D Conversion Complete .........................................51  
Block Diagram ...........................................................62  
Capture Complete (CCP) ...........................................34  
Compare Complete (CCP) .........................................35  
Interrupt on Change (RB7:RB4 ) ...............................21  
RB0/INT Pin, External ........................................... 6, 63  
SSP Receive/Transmit Complete ..............................39  
TMR0 Overflow ................................................... 26, 63  
TMR1 Overflow ................................................... 27, 29  
TMR2 to PR2 Match ..................................................32  
TMR2 to PR2 Match (PWM) ............................... 31, 36  
Interrupts, Context Saving During ......................................63  
Interrupts, Enable Bits  
RB0/INT Enable (INTE Bit) ........................................ 13  
SSP Enable (SSPIE Bit) ............................................ 14  
TMR0 Overflow Enable (T0IE Bit) ............................. 13  
TMR1 Overflow Enable (TMR1IE Bit) ....................... 14  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................ 14  
Interrupts, Flag Bits  
A/D Converter Flag (ADIF Bit) .............................15, 51  
CCP1 Flag (CCP1IF Bit) ..............................15, 34, 35  
Interrupt on Change (RB7:RB4)  
Flag (RBIF Bit) ..............................................13, 21, 63  
RB0/INT Flag (INTF Bit) ............................................ 13  
SSP Flag (SSPIF Bit) ................................................ 15  
TMR0 Overflow Flag (T0IF Bit) ...........................13, 63  
TMR1 Overflow Flag (TMR1IF Bit) ............................ 15  
TMR2 to PR2 Match Flag (TMR2IF Bit) .................... 15  
K
KeeLoq Evaluation and Programming Tools .................. 78  
M
Master Clear (MCLR) .......................................................... 6  
MCLR Reset, Normal Operation ..................57, 60, 61  
MCLR Reset, SLEEP ...................................57, 60, 61  
Memory Organization  
Data Memory ............................................................... 8  
Program Memory ......................................................... 7  
MPLAB Integrated Development Environment Software .. 75  
O
OPCODE Field Descriptions ............................................. 67  
OPTION_REG Register ..............................................10, 12  
INTEDG Bit ................................................................ 12  
PS2:PS0 Bits .......................................................12, 25  
PSA Bit ................................................................12, 25  
RBPU Bit ................................................................... 12  
T0CS Bit ..............................................................12, 25  
T0SE Bit ..............................................................12, 25  
OSC1/CLKIN Pin ................................................................. 6  
OSC2/CLKOUT Pin .............................................................. 6  
Oscillator Configuration ...............................................55, 56  
HS .......................................................................56, 60  
LP ........................................................................56, 60  
RC ..................................................................6, 57, 60  
Selection (FOSC1:FOSC0 Bits).................................. 55  
XT ........................................................................56, 60  
Oscillator, Timer1 ........................................................27, 29  
Oscillator, WDT ................................................................. 64  
P
Packaging ........................................................................ 105  
Paging, Program Memory .............................................7, 17  
PCON Register ............................................................16, 60  
BOR Bit ..................................................................... 16  
POR Bit ..................................................................... 16  
PICDEM-1 Low-Cost PICmicro Demo Board .................... 77  
PICDEM-2 Low-Cost PIC16CXX Demo Board ................. 77  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ............... 77  
PICSTART Plus Entry Level Development System ........ 77  
PIE1 Register ..............................................................10, 14  
ADIE Bit ..................................................................... 14  
CCP1IE Bit ................................................................ 14  
SSPIE Bit ................................................................... 14  
TMR1IE Bit ................................................................ 14  
TMR2IE Bit ................................................................ 14  
Pinout Descriptions  
A/D Converter Enable (ADIE Bit) ...............................14  
CCP1 Enable (CCP1IE Bit) .......................................14  
Global Interrupt Enable (GIE Bit) ........................ 13, 62  
Interrupt on Change (RB7:RB4)  
Enable (RBIE Bit) ................................................ 13, 63  
PIC16C62B/PIC16C72A ............................................. 6  
Peripheral Interrupt Enable (PEIE Bit) .......................13  
DS35008B-page 114  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
PIR1 Register ............................................................... 9, 15  
ADIF Bit ..................................................................... 15  
CCP1IF Bit ................................................................. 15  
SSPIF Bit ................................................................... 15  
TMR1IF Bit ................................................................ 15  
TMR2IF Bit ................................................................ 15  
Pointer, FSR ...................................................................... 18  
PORTA ................................................................................ 6  
Analog Port Pins .......................................................... 6  
PORTA Register ................................................... 9, 19  
RA3:RA0 and RA5 Port Pins ..................................... 19  
RA4/T0CKI Pin ..................................................... 6, 19  
RA5/SS/AN4 Pin ................................................... 6, 39  
TRISA Register ................................................... 10, 19  
PORTB ................................................................................ 6  
PORTB Register ................................................... 9, 21  
Pull-up Enable (RBPU Bit) ......................................... 12  
RB0/INT Edge Select (INTEDG Bit) .......................... 12  
RB0/INT Pin, External .......................................... 6, 63  
RB3:RB0 Port Pins .................................................... 21  
RB7:RB4 Interrupt on Change ................................... 63  
RB7:RB4 Interrupt on Change  
Prescaler, Timer2 .............................................................. 36  
Select (T2CKPS1:T2CKPS0 Bits) ............................. 31  
PRO MATE II Universal Programmer ............................. 77  
Program Counter  
PCL Register .........................................................9, 17  
PCLATH Register ........................................... 9, 17, 63  
Reset Conditions ....................................................... 60  
Program Memory ................................................................. 7  
Interrupt Vector ........................................................... 7  
Paging ...................................................................7, 17  
Program Memory Map ................................................ 7  
Reset Vector ............................................................... 7  
Program Verification .......................................................... 66  
Programming Pin (Vpp) ....................................................... 6  
Programming, Device Instructions .................................... 67  
PWM (CCP Module) .......................................................... 36  
Block Diagram ........................................................... 36  
CCPR1H:CCPR1L Registers .................................... 36  
Duty Cycle ................................................................. 36  
Example Frequencies/Resolutions ............................ 37  
Output Diagram ......................................................... 36  
Period ........................................................................ 36  
Set-Up for PWM Operation ....................................... 37  
TMR2 to PR2 Match ............................................31, 36  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................ 14  
TMR2 to PR2 Match Flag (TMR2IF Bit) .................... 15  
Enable (RBIE Bit) ............................................... 13, 63  
RB7:RB4 Interrupt on Change  
Flag (RBIF Bit) ..............................................13, 21, 63  
RB7:RB4 Port Pins .................................................... 21  
TRISB Register ................................................... 10, 21  
PORTC ................................................................................ 6  
Block Diagram ........................................................... 23  
PORTC Register ................................................... 9, 23  
RC0/T1OSO/T1CKI Pin ............................................... 6  
RC1/T1OSI Pin ............................................................ 6  
RC2/CCP1 Pin ............................................................. 6  
RC3/SCK/SCL Pin ................................................ 6, 39  
RC4/SDI/SDA Pin ................................................. 6, 39  
RC5/SDO Pin ....................................................... 6, 39  
RC6 Pin ....................................................................... 6  
RC7 Pin ....................................................................... 6  
TRISC Register .................................................. 10, 23  
Postscaler, Timer2  
Q
Q-Clock ............................................................................. 36  
R
Register File ........................................................................ 8  
Register File Map ................................................................ 8  
Reset ...........................................................................55, 57  
Block Diagram ........................................................... 58  
Reset Conditions for All Registers ............................ 61  
Reset Conditions for PCON Register ........................ 60  
Reset Conditions for Program Counter ..................... 60  
Reset Conditions for STATUS Register .................... 60  
Timing Diagram ......................................................... 92  
Revision History .............................................................. 111  
Select (TOUTPS3:TOUTPS0 Bits) ............................ 31  
Postscaler, WDT ................................................................ 25  
Assignment (PSA Bit) ......................................... 12, 25  
Block Diagram ........................................................... 26  
Rate Select (PS2:PS0 Bits) ................................ 12, 25  
Switching Between Timer0 and WDT ........................ 26  
Power-on Reset (POR) ........................... 55, 57, 59, 60, 61  
Oscillator Start-up Timer (OST) .......................... 55, 59  
POR Status (POR Bit) ............................................... 16  
Power Control (PCON) Register ................................ 60  
Power-down (PD Bit) .......................................... 11, 57  
Power-on Reset Circuit, External .............................. 59  
Power-up Timer (PWRT) .................................... 55, 59  
PWRT Enable (PWRTE Bit) ...................................... 55  
Time-out (TO Bit) ................................................ 11, 57  
Time-out Sequence ................................................... 60  
Timing Diagram ......................................................... 92  
Prescaler, Capture ............................................................. 34  
Prescaler, Timer0 .............................................................. 25  
Assignment (PSA Bit) ......................................... 12, 25  
Block Diagram ........................................................... 26  
Rate Select (PS2:PS0 Bits) ................................ 12, 25  
Switching Between Timer0 and WDT ........................ 26  
Prescaler, Timer1 .............................................................. 28  
Select (T1CKPS1:T1CKPS0 Bits)............................... 27  
S
SEEVAL Evaluation and Programming System ............. 78  
SLEEP .................................................................. 55, 57, 65  
Software Simulator (MPLAB-SIM) ..................................... 76  
Special Features of the CPU ............................................. 55  
Special Function Registers .................................................. 9  
Speed, Operating ................................................................ 1  
SPI (SSP Module)  
Block Diagram ........................................................... 39  
Buffer Full Status (BF Bit) ......................................... 46  
Clock Edge Select (CKE Bit) ..................................... 46  
Clock Polarity Select (CKP Bit) ................................. 47  
Data Input Sample Phase (SMP Bit) ......................... 46  
Mode Select (SSPM3:SSPM0 Bits) .......................... 47  
Receive Overflow Indicator (SSPOV Bit) .................. 47  
Serial Clock (RC3/SCK/SCL) .................................... 39  
Serial Data In (RC4/SDI/SDA) .................................. 39  
Serial Data Out (RC5/SDO) ...................................... 39  
Slave Select (RA5/SS/AN4) ...................................... 39  
Synchronous Serial Port Enable (SSPEN Bit) .......... 47  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 115  
PIC16C62B/72A  
SSP ....................................................................................39  
Enable (SSPIE Bit) ....................................................14  
Flag (SSPIF Bit) .........................................................15  
RA5/SS/AN4 Pin ..........................................................6  
RC3/SCK/SCL Pin .......................................................6  
RC4/SDI/SDA Pin ........................................................6  
RC5/SDO Pin ...............................................................6  
SSPADD Register ......................................................10  
SSPBUF Register ........................................................9  
SSPCON Register ................................................ 9, 47  
SSPSTAT Register ............................................. 10, 46  
TMR2 Output for Clock Shift ......................................32  
Write Collision Detect (WCOL Bit) .............................47  
SSPCON Register .............................................................47  
CKP Bit ......................................................................47  
SSPEN Bit .................................................................47  
SSPM3:SSPM0 Bits ..................................................47  
SSPOV Bit .................................................................47  
WCOL Bit ...................................................................47  
SSPSTAT Register ............................................................46  
BF Bit .........................................................................46  
CKE Bit ......................................................................46  
D/A Bit ........................................................................46  
P bit ..................................................................... 45, 46  
R/W Bit ...................................................42, 43, 44, 46  
S Bit .................................................................... 45, 46  
SMP Bit ......................................................................46  
UA Bit .........................................................................46  
Stack ..................................................................................17  
STATUS Register ...................................................9, 11, 63  
C Bit ...........................................................................11  
DC Bit ........................................................................11  
IRP Bit ........................................................................11  
PD Bit .................................................................. 11, 57  
RP1:RP0 Bits .............................................................11  
TO Bit .................................................................. 11, 57  
Z Bit ...........................................................................11  
Timer1 ............................................................................... 27  
Block Diagram ........................................................... 28  
Capacitor Selection ................................................... 29  
Clock Source Select (TMR1CS Bit) ........................... 27  
External Clock Input Sync (T1SYNC Bit) .................. 27  
Module On/Off (TMR1ON Bit) ................................... 27  
Oscillator .............................................................27, 29  
Oscillator Enable (T1OSCEN Bit) .............................. 27  
Overflow Enable (TMR1IE Bit) .................................. 14  
Overflow Flag (TMR1IF Bit) ....................................... 15  
Overflow Interrupt ................................................27, 29  
RC0/T1OSO/T1CKI Pin ............................................... 6  
RC1/T1OSI .................................................................. 6  
Special Event Trigger (CCP) ...............................29, 35  
T1CON Register ....................................................9, 27  
Timing Diagram ......................................................... 93  
TMR1H Register .......................................................... 9  
TMR1L Register .......................................................... 9  
Timer2  
Block Diagram ........................................................... 32  
PR2 Register ................................................10, 31, 36  
SSP Clock Shift ......................................................... 32  
T2CON Register ....................................................9, 31  
TMR2 Register ......................................................9, 31  
TMR2 to PR2 Match Enable (TMR2IE Bit) ................ 14  
TMR2 to PR2 Match Flag (TMR2IF Bit) .................... 15  
TMR2 to PR2 Match Interrupt ......................31, 32, 36  
Timing Diagrams  
2
I C Reception (7-bit Address) ................................... 43  
Wake-up from SLEEP via Interrupt ........................... 66  
Timing Diagrams and Specifications ................................. 90  
A/D Conversion ....................................................... 102  
Brown-out Reset (BOR) ............................................ 92  
Capture/Compare/PWM (CCP) ................................. 94  
CLKOUT and I/O ....................................................... 91  
External Clock ........................................................... 90  
2
I C Bus Data ........................................................... 100  
2
I C Bus Start/Stop Bits .............................................. 99  
T
Oscillator Start-up Timer (OST) ................................. 92  
Power-up Timer (PWRT) ........................................... 92  
Reset ........................................................................... 2  
Timer0 and Timer1 .................................................... 93  
Watchdog Timer (WDT) ............................................ 92  
T1CON Register ........................................................... 9, 27  
T1CKPS1:T1CKPS0 Bits ...........................................27  
T1OSCEN Bit .............................................................27  
T1SYNC Bit ...............................................................27  
TMR1CS Bit ...............................................................27  
TMR1ON Bit ..............................................................27  
T2CON Register ........................................................... 9, 31  
T2CKPS1:T2CKPS0 Bits ...........................................31  
TMR2ON Bit ..............................................................31  
TOUTPS3:TOUTPS0 Bits ..........................................31  
Timer0 ................................................................................25  
Block Diagram ...........................................................25  
Clock Source Edge Select (T0SE Bit) ................ 12, 25  
Clock Source Select (T0CS Bit) .......................... 12, 25  
Overflow Enable (T0IE Bit) ........................................13  
Overflow Flag (T0IF Bit) ...................................... 13, 63  
Overflow Interrupt ............................................... 26, 63  
RA4/T0CKI Pin, External Clock ...................................6  
Timing Diagram .........................................................93  
TMR0 Register .............................................................9  
W
W Register ......................................................................... 63  
Wake-up from SLEEP .................................................55, 65  
Interrupts .............................................................60, 61  
MCLR Reset .............................................................. 61  
Timing Diagram ......................................................... 66  
WDT Reset ................................................................ 61  
Watchdog Timer (WDT) ..............................................55, 64  
Block Diagram ........................................................... 64  
Enable (WDTE Bit) ..............................................55, 64  
Programming Considerations .................................... 64  
RC Oscillator ............................................................. 64  
Timing Diagram ......................................................... 92  
WDT Reset, Normal Operation ....................57, 60, 61  
WDT Reset, SLEEP .....................................57, 60, 61  
WWW, On-Line Support ...................................................... 3  
DS35008B-page 116  
Preliminary  
1999 Microchip Technology Inc.  
PIC16C62B/72A  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-786-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
981103  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
Preliminary  
DS35008B-page 117  
PIC16C62B/72A  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS35008B  
Device:  
PIC16C62B/72A  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS35008B-page 118  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C62B/72A  
PIC16C62B/72A PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.  
Examples  
PART NO. -XX X /XX XXX  
Pattern:  
QTP, SQTP, Code or Special Requirements  
a)  
PIC16C72A-04/P 301  
Commercial Temp.,  
PDIP Package, 4 MHz,  
normal VDD limits, QTP  
pattern #301  
Package:  
JW  
SO  
SP  
P
=
=
=
=
=
Windowed CERDIP  
SOIC  
Skinny plastic dip  
PDIP  
SS  
SSOP  
Temperature  
Range:  
-
I
E
=
=
=
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
Frequency  
Range:  
04  
10  
20  
=
=
=
4 MHz  
10 MHz  
20 MHz  
Device  
PIC16C62B:  
VDD range 4.0V to 5.5V  
PIC16C62BT: VDD range 4.0V to 5.5V (Tape/Reel)  
PIC16LC62B: VDD range 2.5V to 5.5V  
PIC16LC62BT: VDD range 2.5V to 5.5V (Tape/Reel)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1998 Microchip Technology Inc.  
Preliminary  
DS35008B-page 119  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY