PIC16LF628T-20I/SS [MICROCHIP]

FLASH-Based 8-Bit CMOS Microcontrollers; 基于闪存的8位CMOS微控制器
PIC16LF628T-20I/SS
型号: PIC16LF628T-20I/SS
厂家: MICROCHIP    MICROCHIP
描述:

FLASH-Based 8-Bit CMOS Microcontrollers
基于闪存的8位CMOS微控制器

闪存 微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总160页 (文件大小:1657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F62X  
FLASH-Based 8-Bit CMOS Microcontrollers  
Devices included in this data sheet:  
• PIC16F627 • PIC16F628  
Special Microcontroller Features:  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
Referred to collectively as PIC16F62X .  
High Performance RISC CPU:  
• Brown-out Detect (BOD)  
• Only 35 instructions to learn  
• All single-cycle instructions (200 ns), except for  
program branches which are two-cycle  
• Operating speed:  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Multiplexed MCLR-pin  
• Programmable weak pull-ups on PORTB  
• Programmable code protection  
• Low voltage programming  
• Power saving SLEEP mode  
• Selectable oscillator options  
- FLASH configuration bits for oscillator options  
- ER (External Resistor) oscillator  
- Reduced part count  
- DC - 20 MHz clock input  
- DC - 200 ns instruction cycle  
Memory  
Device  
FLASH  
Program  
RAM  
Data  
EEPROM  
Data  
PIC16F627  
PIC16F628  
1024 x 14  
2048 x 14  
224 x 8  
224 x 8  
128 x 8  
128 x 8  
• Interrupt capability  
• 16 special function hardware registers  
• 8-level deep hardware stack  
- Dual speed INTRC  
- Lower current consumption  
- EC External Clock input  
• Direct, Indirect and Relative addressing modes  
- XT oscillator mode  
Peripheral Features:  
- HS oscillator mode  
• 15 I/O pins with individual direction control  
• High current sink/source for direct LED drive  
• Analog comparator module with:  
- Two analog comparators  
- LP oscillator mode  
• Serial in-circuit programming (via two pins)  
• Four user programmable ID locations  
- Programmable on-chip voltage reference  
(VREF) module  
CMOS Technology:  
• Low-power, high-speed CMOS FLASH technology  
• Fully static design  
• Wide operating voltage range  
- PIC16F627 - 3.0V to 5.5V  
- Programmable input multiplexing from device  
inputs and internal voltage reference  
- Comparator outputs are externally accessible  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
- PIC16F628 - 3.0V to 5.5V  
- PIC16LF627 - 2.0V to 5.5V  
- PIC16LF628 - 2.0V to 5.5V  
• Timer1: 16-bit timer/counter with external crystal/  
clock capability  
• Timer2: 8-bit timer/counter with 8-bit period regis-  
ter, prescaler and postscaler  
• Commercial, industrial and extended temperature  
range  
• Capture, Compare, PWM (CCP) module  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
• Low power consumption  
- < 2.0 mA @ 5.0V, 4.0 MHz  
- 15 µA typical @ 3.0V, 32 kHz  
- < 1.0 µA typical standby current @ 3.0V  
• Universal Synchronous/Asynchronous Receiver/  
Transmitter USART/SCI  
• 16 Bytes of common RAM  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 1  
PIC16F62X  
Pin Diagrams  
PDIP, SOIC  
RA2/AN2/VREF  
RA3/AN3/CMP1  
RA4/TOCKI/CMP2  
RA1/AN1  
RA0/AN0  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
VDD  
RB7/T1OSI  
RB6/T1OSO/T1CKI  
RB5  
RB4/PGM  
•1  
18  
17  
16  
15  
14  
13  
12  
11  
10  
2
3
4
5
6
7
8
9
RA5/MCLR/THV  
VSS  
RB0/INT  
RB1/RX/DT  
RB2/TX/CK  
RB3/CCP1  
SSOP  
RA2/AN2/VREF  
RA3/AN3/CMP1  
RA4/TOCKI/CMP2  
RA1/AN1  
RA0/AN0  
RA7/OSC1/CLKIN  
RA6/OSC2/CLKOUT  
•1  
20  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
RA5/MCLR/THV  
VSS  
VSS  
VDD  
VDD  
RB7/T1OSI  
RB6/T1OSO/T1CKI  
RB5  
RB0/INT  
RB1/RX/DT  
RB2/TX/CK  
12  
11  
10  
RB3/CCP1  
RB4/PGM  
Device Differences  
Device  
Process  
Technology  
(Microns)  
Voltage  
Range  
Oscillator  
PIC16F627  
PIC16F628  
PIC16LF627  
PIC16LF628  
3.0 - 5.5  
3.0 - 5.5  
2.0 - 5.5  
2.0 - 5.5  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
0.7  
0.7  
0.7  
0.7  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
DS40300B-page 2  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description..................................................................................................................................................................... 5  
PIC16F62X Device Varieties...................................................................................................................................................... 7  
Architectural Overview ................................................................................................................................................................ 9  
Memory Organization................................................................................................................................................................ 13  
I/O Ports .................................................................................................................................................................................... 27  
Timer0 Module .......................................................................................................................................................................... 45  
Timer1 Module .......................................................................................................................................................................... 50  
Timer2 Module .......................................................................................................................................................................... 54  
Comparator Module................................................................................................................................................................... 57  
10.0 Capture/Compare/PWM (CCP) Module .................................................................................................................................... 63  
11.0 Voltage Reference Module........................................................................................................................................................ 69  
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART).................................................................................... 71  
13.0 Data EEPROM Memory ............................................................................................................................................................ 91  
14.0 Special Features of the CPU..................................................................................................................................................... 95  
15.0 Instruction Set Summary......................................................................................................................................................... 113  
16.0 Development Support.............................................................................................................................................................. 125  
17.0 Electrical Specifications........................................................................................................................................................... 131  
18.0 Device Characterization Information ....................................................................................................................................... 145  
19.0 Packaging Information............................................................................................................................................................. 147  
Index .................................................................................................................................................................................................. 151  
On-Line Support................................................................................................................................................................................. 155  
Reader Response.............................................................................................................................................................................. 156  
PIC16F62X Product Identification System........................................................................................................................................ 157  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 3  
PIC16F62X  
NOTES:  
DS40300B-page 4  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
1.1  
Development Support  
1.0  
GENERAL DESCRIPTION  
The PIC16F62X family is supported by a full-featured  
macro assembler, a software simulator, an in-circuit  
emulator, a low-cost development programmer and a  
full-featured programmer. A Third Party “C” compiler  
support tool is also available.  
The PIC16F62X are 18-Pin FLASH-based members of  
the versatile PIC16CXX family of low-cost,  
high-performance,  
microcontrollers.  
CMOS,  
fully-static,  
8-bit  
All PICmicro® microcontrollers employ an advanced  
RISC architecture. The PIC16F62X have enhanced  
core features, eight-level deep stack, and multiple inter-  
nal and external interrupt sources. The separate  
instruction and data buses of the Harvard architecture  
allow a 14-bit wide instruction word with the separate  
8-bit wide data. The two-stage instruction pipeline  
allows all instructions to execute in a single-cycle,  
except for program branches (which require two  
cycles). A total of 35 instructions (reduced instruction  
set) are available. Additionally, a large register set gives  
some of the architectural innovations used to achieve a  
very high performance.  
PIC16F62X microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
PIC16F62X devices have special features to reduce  
external components, thus reducing system cost,  
enhancing system reliability and reducing power con-  
sumption. There are eight oscillator configurations, of  
which the single pin ER oscillator provides a low-cost  
solution. The LP oscillator minimizes power consump-  
tion, XT is a standard crystal, INTRC is a self-contained  
internal oscillator and the HS is for High Speed crys-  
tals. The SLEEP (power-down) mode offers power sav-  
ings. The user can wake up the chip from SLEEP  
through several external and internal interrupts and  
reset.  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software  
lock- up.  
Table 1-1 shows the features of the PIC16F62X  
mid-range microcontroller families.  
A simplified block diagram of the PIC16F62X is shown  
in Figure 3-1.  
The PIC16F62X series fits in applications ranging from  
battery chargers to low-power remote sensors. The  
FLASH technology makes customization of application  
programs (detection levels, pulse generation, timers,  
etc.) extremely fast and convenient. The small footprint  
packages make this microcontroller series ideal for all  
applications with space limitations. Low-cost,  
low-power, high-performance, ease of use and I/O flex-  
ibility make the PIC16F62X very versatile.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 5  
PIC16F62X  
TABLE 1-1:  
PIC16F62X FAMILY OF DEVICES  
PIC16F627  
PIC16F628  
PIC16LF627  
PIC16LF628  
Maximum Frequency  
of Operation (MHz)  
20  
20  
20  
20  
Clock  
FLASH Program Memory (words) 1024  
2048  
224  
1024  
224  
2048  
Memory  
RAM Data Memory (bytes)  
EEPROM Data Memory (bytes)  
Timer Module(s)  
224  
128  
224  
128  
128  
128  
TMR0, TMR1, TMR2 TMR0, TMR1, TMR2 TMR0, TMR1, TMR2  
TMR0, TMR1, TMR2  
Comparators(s)  
2
2
2
2
Peripherals  
Capture/Compare/PWM modules  
Serial Communications  
Internal Voltage Reference  
Interrupt Sources  
1
1
1
1
USART  
Yes  
10  
USART  
Yes  
10  
USART  
Yes  
10  
USART  
Yes  
10  
I/O Pins  
16  
16  
16  
16  
Voltage Range (Volts)  
Brown-out Detect  
3.0-5.5  
Yes  
3.0-5.5  
Yes  
2.0-5.5  
Yes  
2.0-5.5  
Yes  
Features  
Packages  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
20-pin SSOP  
20-pin SSOP  
20-pin SSOP  
®
All PICmicro Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current  
capability. All PIC16F62X Family devices use serial programming with clock pin RB6 and data pin RB7.  
DS40300B-page 6  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
2.0  
PIC16F62X DEVICE VARIETIES  
A variety of frequency ranges and packaging options are  
available. Depending on application and production  
requirements the proper device option can be selected  
using the information in the PIC16F62X Product  
Identification System section at the end of this data  
sheet. When placing orders, please use this page of the  
data sheet to specify the correct part number.  
2.1  
Flash Devices  
These devices are offered in the lower cost plastic  
package, even though the device can be erased and  
reprogrammed. This allows the same device to be used  
for prototype development and pilot programs as well  
as production.  
A further advantage of the electrically-erasable Flash  
version is that it can be erased and reprogrammed  
in-circuit, or by device programmers, such as  
Microchip’s PICSTART® Plus or PRO MATE® II  
programmers.  
2.2  
Quick-Turnaround-Production (QTP)  
Devices  
Microchip offers a QTP Programming Service for  
factory production orders. This service is made  
available for users who chose not to program a medium  
to high quantity of units and whose code patterns have  
stabilized. The devices are standard FLASH devices  
but with all program locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before  
production shipments are available. Please contact  
your Microchip Technology sales office for more details.  
2.3  
Serialized  
Quick-Turnaround-Production  
(SQTPSM) Devices  
Microchip offers a unique programming service where  
a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential.  
Serial programming allows each device to have a  
unique number which can serve as an entry-code,  
password or ID number.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 7  
PIC16F62X  
NOTES:  
DS40300B-page 8  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
The PIC16F62X devices contain an 8-bit ALU and  
working register. The ALU is a general purpose  
arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16F62X family can be  
attributed to a number of architectural features  
commonly found in RISC microprocessors. To begin  
with, the PIC16F62X uses a Harvard architecture, in  
which, program and data are accessed from separate  
memories using separate busses. This improves  
bandwidth over traditional von Neumann architecture  
where program and data are fetched from the same  
memory. Separating program and data memory further  
allows instructions to be sized differently than 8-bit wide  
data word. Instruction opcodes are 14-bits wide making  
it possible to have all single word instructions. A 14-bit  
wide program memory access bus fetches a 14-bit  
instruction in a single cycle. A two-stage pipeline over-  
laps fetch and execution of instructions. Consequently,  
all instructions (35) execute in a single-cycle (200 ns @  
20 MHz) except for program branches.  
The ALU is 8-bit wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the working register  
(W register). The other operand is a file register or an  
immediate constant. In single operand instructions, the  
operand is either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a Borrow and Digit Borrow out bit,  
respectively, bit in subtraction. See the SUBLW and  
SUBWFinstructions for examples.  
The Table below lists program memory (Flash, Data  
and EEPROM).  
Memory  
A simplified block diagram is shown in Figure 3-1, with  
a description of the device pins in Table 3-1.  
Device  
FLASH  
Program  
RAM  
Data  
EEPROM  
Data  
Two types of data memory are provided on the  
PIC16F62X devices. Non-volatile EEPROM data  
memory is provided for long term storage of data such  
as calibration values, look up table data, and any other  
data which may require periodic updating in the field.  
This data is not lost when power is removed. The other  
data memory provided is regular RAM data memory.  
Regular RAM data memory is provided for temporary  
storage of data during normal operation. It is lost when  
power is removed.  
PIC16F627  
PIC16F628  
PIC16LF627  
PIC16LF628  
1024 x 14  
2048 x 14  
1024 x 14  
2048 x 14  
224 x 8  
224 x 8  
224 x 8  
224 x 8  
128 x 8  
128 x 8  
128 x 8  
128 x 8  
The PIC16F62X can directly or indirectly address its  
register files or data memory. All special function  
registers including the program counter are mapped in  
the data memory. The PIC16F62X have an orthogonal  
(symmetrical) instruction set that makes it possible to  
carry out any operation on any register using any  
addressing mode. This symmetrical nature and lack of  
‘special optimal situations’ make programming with the  
PIC16F62X simple yet efficient. In addition, the  
learning curve is reduced significantly.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 9  
PIC16F62X  
FIGURE 3-1:  
BLOCK DIAGRAM  
13  
8
Data Bus  
RAM  
Program Counter  
FLASH  
Program  
Memory  
Data EEPROM  
8 Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
PORTA  
RAM Addr (1)  
9
Addr MUX  
RA0/AN0  
RA1/AN1  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
RA2/AN2/VREF  
RA3/AN3/CMP1  
RA4/T0CK1/CMP2  
RA5/MCLR/THV  
RA6/OSC2/CLKOUT  
RA7/OSC1/CLKIN  
8
FSR reg  
STATUS reg  
8
3
PORTB  
MUX  
Power-up  
Timer  
RB0/INT  
RB1/RX/DT  
RB2/TX/CK  
RB3/CCP1  
RB4/PGM  
RB5  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
RB6/T1OSO/T1CKI  
RB7/T1OSI  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Detect  
Low-Voltage  
Programming  
MCLR VDD, VSS  
Timer0  
CCP1  
Timer1  
Timer2  
Comparator  
USART  
VREF  
Memory  
Device  
FLASH  
Program  
RAM  
Data  
EEPROM  
Data  
PIC16F627  
1024 x 14  
2048 x 14  
1024 x 14  
2048 x 14  
224 x 8  
224 x 8  
224 x 8  
224 x 8  
128 x 8  
128 x 8  
128 x 8  
128 x 8  
PIC16F628  
PIC16LF627  
PIC16LF628  
Note 1: Higher order bits are from the STATUS register.  
DS40300B-page 10  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 3-1:  
Name  
PIC16F62X PINOUT DESCRIPTION  
DIP/  
SSOP  
Pin #  
I/O/P  
Type  
Buffer  
Type  
SOIC  
Pin #  
Description  
RA0/AN0  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
ST  
ST  
ST  
Bi-directional I/O port/Analog comparator input  
Bi-directional I/O port/Analog comparator input  
RA1/AN1  
RA2/AN2/VREF  
Bi-directional I/O port/Analog comparator input/VREF out-  
put  
RA3/AN3/CMP1  
RA4/T0CKI/CMP2  
RA5/MCLR/THV  
2
3
4
2
3
4
I/O  
I/O  
I
ST  
ST  
ST  
Bi-directional I/O port/Analog comparator input/compara-  
tor output  
Bi-directional I/O port/Can be configured as T0CKI/com-  
parator output  
Input port/master clear (reset input/programming voltage  
input. When configured as MCLR, this pin is an active low  
reset to the device. Voltage on MCLR/THV must not  
exceed VDD during normal device operation.  
RA6/OSC2/CLKOUT  
15  
17  
I/O  
ST  
ST  
Bi-directional I/O port/Oscillator crystal output. Connects  
to crystal or resonator in crystal oscillator mode. In ER  
mode, OSC2 pin outputs CLKOUT which has 1/4 the fre-  
quency of OSC1, and denotes the instruction cycle rate.  
RA7/OSC1/CLKIN  
RB0/INT  
16  
6
18  
7
I/O  
I/O  
I/O  
Bi-directional I/O port/Oscillator crystal input/external  
clock source input. ER biasing pin.  
(1)  
Bi-directional I/O port/external interrupt. Can be software  
programmed for internal weak pull-up.  
TTL/ST  
(3)  
RB1/RX/DT  
7
8
TTL/ST  
Bi-directional I/O port/ USART receive pin/synchronous  
data I/O. Can be software programmed for internal weak  
pull-up.  
(3)  
RB2/TX/CK  
8
9
I/O  
TTL/ST  
Bi-directional I/O port/ USART transmit pin/synchronous  
clock I/O. Can be software programmed for internal weak  
pull-up.  
(4)  
(5)  
RB3/CCP1  
RB4/PGM  
9
10  
11  
I/O  
I/O  
TTL/ST  
Bi-directional I/O port/Capture/Compare/PWM I/O. Can  
be software programmed for internal weak pull-up.  
10  
TTL/ST  
Bi-directional I/O port/Low voltage programming input pin.  
Wake-up from SLEEP on pin change. Can be software  
programmed for internal weak pull-up. When low voltage  
programming is enabled, the interrupt on pin change and  
weak pull-up resistor are disabled.  
RB5  
11  
12  
13  
12  
13  
14  
I/O  
I/O  
I/O  
TTL  
TTL/ST  
TTL/ST  
Bi-directional I/O port/Wake-up from SLEEP on pin  
change. Can be software programmed for internal weak  
pull-up.  
(2)  
(2)  
RB6/T1OSO/T1CKI  
RB7/T1OSI  
Bi-directional I/O port/Timer1 oscillator output/Timer1  
clock input. Wake up from SLEEP on pin change. Can be  
software programmed for internal weak pull-up.  
Bi-directional I/O port/Timer1 oscillator input. Wake up  
from SLEEP on pin change. Can be software programmed  
for internal weak pull-up.  
VSS  
5
5,6  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
14  
15,16  
P
Legend:  
O = output  
I/O = input/output  
P = power  
— = Not used  
I = Input  
ST = Schmitt Trigger input  
TTL = TTL input  
I/OD =input/open drain output  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
Note 2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
Note 3: This buffer is a Schmitt Trigger I/O when used in USART/Synchronous mode.  
Note 4: This buffer is a Schmitt Trigger I/O when used in CCP mode.  
Note 5: This buffer is a Schmitt Trigger input when used in low voltage program mode.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 11  
PIC16F62X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (OSC1/CLKIN/RA7 pin) is internally  
divided by four to generate four non-overlapping  
quadrature clocks namely Q1, Q2, Q3 and Q4. Inter-  
nally, the program counter (PC) is incremented every  
Q1, the instruction is fetched from the program memory  
and latched into the instruction register in Q4. The  
instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow is shown in Figure 3-2.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register (IR)” in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(ER mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS40300B-page 12  
Preliminary  
1999 Microchip Technology Inc.  
 
 
PIC16F62X  
FIGURE 4-2: PROGRAM MEMORY MAP AND  
STACK FOR THE PIC16F628  
4.0  
MEMORY ORGANIZATION  
4.1  
Program Memory Organization  
PC<12:0>  
The PIC16F62X has a 13-bit program counter capable  
of addressing an 8K x 14 program memory space. Only  
the first 1K x 14 (0000h - 03FFh) for the PIC16F627  
and 2K x 14 (0000h - 07FFh) for the PIC16F628 are  
physically implemented. Accessing a location above  
these boundaries will cause a wrap-around within the  
first 1K x 14 space (PIC16F627) or 2K x 14 space  
(PIC16F628). The reset vector is at 0000h and the  
interrupt vector is at 0004h (Figure 4-1 and Figure 4-2).  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
000h  
FIGURE 4-1: PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F627  
Interrupt Vector  
0004  
0005  
PC<12:0>  
CALL, RETURN  
13  
RETFIE, RETLW  
On-chip Program  
Memory  
Stack Level 1  
Stack Level 2  
07FFh  
0800h  
Stack Level 8  
1FFFh  
Reset Vector  
000h  
4.2  
Data Memory Organization  
The data memory (Figure 4-3) is partitioned into four  
Banks which contain the general purpose registers and  
the special function registers. The Special Function  
Registers are located in the first 32 locations of each  
Bank. Register locations 20-7Fh, A0h-FFh, 120h-14Fh,  
170h-17Fh and 1F0h-1FFh are general purpose regis-  
ters implemented as static RAM.  
Interrupt Vector  
0004  
0005  
On-chip Program  
Memory  
03FFh  
0400h  
The Table below lists how to access the four banks of  
registers:  
RP1  
RP0  
1FFFh  
Bank0  
Bank1  
Bank2  
Bank3  
0
0
1
1
0
1
0
1
Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are  
implemented as common RAM and mapped back to  
addresses 70h-7Fh.  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file is organized as 224 x 8 in the  
PIC16F62X. Each is accessed either directly or indi-  
rectly through the File Select Register FSR  
(Section 4.4).  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 13  
 
 
PIC16F62X  
FIGURE 4-3: DATA MEMORY MAP OF THE PIC16F627 AND PIC16F628  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION  
PCL  
Indirect addr.(*)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
Indirect addr.(*)  
TMR0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
PR2  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
TXSTA  
SPBRG  
EEDATA  
EEADR  
EECON1  
EECON2*  
CMCON  
VRCON  
11Fh  
120h  
General  
Purpose  
Register  
48 Bytes  
General  
Purpose  
Register  
80 Bytes  
A0h  
14Fh  
150h  
General  
Purpose  
Register  
1EFh  
1F0h  
EFh  
F0h  
16Fh  
170h  
96 Bytes  
accesses  
70h-7Fh  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as ’0’.  
Not a physical register.  
*
DS40300B-page 14  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special registers can be classified into two sets  
(core and peripheral). The special function registers  
associated with the “core” functions are described in  
this section. Those related to the operation of the  
peripheral features are described in the section of that  
peripheral feature.  
The special function registers are registers used by the  
CPU and Peripheral functions for controlling the  
desired operation of the device (Table 4-1). These  
registers are static RAM.  
TABLE 4-1:  
SPECIAL REGISTERS SUMMARY BANK0  
Value on  
all other  
Value on  
POR  
Reset  
Address  
Bank 0  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
Resets  
00h  
01h  
02h  
03h  
INDF  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module’s Register  
xxxx xxxx xxxx xxxx  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
RP0  
TO  
PD  
Z
DC  
C
IRP  
RP1  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
FSR  
Indirect data memory address pointer  
xxxx xxxx uuuu uuuu  
xxxx 0000 xxxx 0000  
xxxx xxxx uuuu uuuu  
PORTA  
RA7  
RB7  
RA6  
RB6  
RA5  
RB5  
RA4  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
PORTB  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
Write buffer for upper 5 bits of program counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0000 -000 0000 -000  
INTCON  
GIE  
PEIE  
CMIF  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
RBIF  
PIR1  
EEIF  
RCIF  
CCP1IF  
TMR2IF  
TMR1IF  
Unimplemented  
TMR1L  
Holding register for the least significant byte of the 16-bit TMR1  
Holding register for the most significant byte of the 16-bit TMR1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1H  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
TMR2  
TMR2 module’s register  
0000 0000 0000 0000  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -uuu uuuu  
Unimplemented  
Unimplemented  
CCPR1L  
Capture/Compare/PWM register (LSB)  
Capture/Compare/PWM register (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H  
CCP1CON  
RCSTA  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3  
ADEN  
CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
TXREG  
USART Transmit data register  
USART Receive data register  
RCREG  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
CMCON  
C2OUT C1OUT  
C2INV  
C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000 0000 0000  
Legend: — = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition,  
shaded = unimplemented  
Note 1: Other (non power-up) resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during  
normal operation.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 15  
 
PIC16F62X  
TABLE 4-2:  
SPECIAL FUNCTION REGISTERS SUMMARY BANK1  
Value on  
all other  
resets(1)  
Value on  
POR  
Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
80h  
INDF  
OPTION  
Addressing this location uses contents of FSR to address data memory (not a physical reg- xxxx xxxx  
ister)  
xxxx xxxx  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
RBPU  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PD  
PS2  
Z
PS1  
DC  
PS0  
C
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
11-1 1111  
1111 1111  
1111 1111  
0000 0000  
000q quuu  
uuuu uuuu  
11-1 1111  
1111 1111  
PCL  
STATUS  
FSR  
TRISA  
TRISA7 TRISA6  
TRISA4 TRISA3 TRISA2  
TRISA1  
TRISB1  
TRISA0  
TRISB0  
TRISB  
TRISB7 TRISB6  
TRISB5 TRISB4 TRISB3 TRISB2  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
Write buffer for upper 5 bits of program counter  
---0 0000  
0000 000x  
---0 0000  
0000 000u  
0000 -000  
INTCON  
GIE  
EEIE  
PEIE  
CMIE  
T0IE  
INTE  
TXIE  
RBIE  
T0IF  
INTF  
RBIF  
PIE1  
RCIE  
CCP1IE  
TMR2IE TMR1IE 0000 -000  
Unimplemented  
PCON  
OSCF  
POR  
BOD  
---- 1-0x  
---- 1-uq  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
11111111  
11111111  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
TXSTA  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
0000 0000  
xxxx xxxx  
xxxx xxxx  
---- x000  
--------  
0000 -010  
0000 0000  
uuuu uuuu  
uuuu uuuu  
---- q000  
--------  
SPBRG  
Baud Rate Generator Register  
EEPROM data register  
EEDATA  
EEADR  
EEPROM address register  
EECON1  
WRERR WREN  
WR  
RD  
EECON2  
EEPROM control register 2 (not a physical register)  
Unimplemented  
VRCON  
VREN VROE VRR VR3  
VR2  
VR1  
VR0  
000- 0000  
000- 0000  
Legend: : — = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition,  
shaded = unimplemented  
Note 1: Other (non power-up) resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during  
normal operation.  
DS40300B-page 16  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 4-3:  
SPECIAL FUNCTION REGISTERS SUMMARY BANK2  
Value on  
all other  
resets(1)  
Value on  
POR  
Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
100h  
INDF  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical reg- xxxx xxxx  
ister)  
xxxx xxxx  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
RBPU  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PD  
PS2  
Z
PS1  
DC  
PS0  
C
1111 1111  
1111 1111  
PCL  
0000 0000  
0000 0000  
STATUS  
0001 1xxx  
000q quuu  
FSR  
xxxx xxxx  
uuuu uuuu  
Unimplemented  
PORTB  
TRISB7 TRISB6  
TRISB5 TRISB4 TRISB3 TRISB2  
TRISB1  
TRISB0  
1111 1111  
1111 1111  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
Write buffer for upper 5 bits of program counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
---0 0000  
INTCON  
GIE  
PEIE  
T0IE  
0000 000x  
0000 000u  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Legend: — = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition,  
shaded = unimplemented  
Note 1: Other (non power-up) resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during  
normal operation.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 17  
PIC16F62X  
TABLE 4-4:  
SPECIAL FUNCTION REGISTERS SUMMARY BANK3  
Value on  
all other  
resets(1)  
Value on  
POR  
Reset  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
180h  
INDF  
OPTION  
Addressing this location uses contents of FSR to address data memory (not a physical reg- xxxx xxxx  
ister)  
xxxx xxxx  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
RBPU  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PD  
PS2  
Z
PS1  
DC  
PS0  
C
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
1111 1111  
0000 0000  
000q quuu  
uuuu uuuu  
PCL  
STATUS  
FSR  
Unimplemented  
TRISB  
TRISB7 TRISB6  
TRISB5 TRISB4 TRISB3 TRISB2  
TRISB1  
TRISB0  
1111 1111  
1111 1111  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
Write buffer for upper 5 bits of program counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
0000 000x  
---0 0000  
0000 000u  
INTCON  
GIE  
PEIE  
T0IE  
Legend: — = Unimplemented locations read as ‘0’, u = unchanged, x = unknown, q = value depends on condition,  
shaded = unimplemented  
Note 1: Other (non power-up) resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during  
normal operation.  
DS40300B-page 18  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
4.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect any status bit. For other instructions, not affecting  
any status bits, see the “Instruction Set Summary”.  
The STATUS register, shown in Register 4-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory (SRAM).  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the status register as  
000uu1uu(where u= unchanged).  
REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ’0’  
-n = Value at POR reset  
-x = Unknown at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(for borrow the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 19  
 
PIC16F62X  
4.2.2.2  
OPTION REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
TMR0, assign the prescaler to the WDT  
(PSA = 1). See Section 6.3.1  
The OPTION register is a readable and writable  
register which contains various control bits to configure  
the TMR0/WDT prescaler, the external RB0/INT  
interrupt, TMR0, and the weak pull-ups on PORTB.  
REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)  
R/W-1  
RBPU  
bit7  
R/W-1  
R/W-1  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG T0CS  
R = Readable bit  
W = Writable bit  
-n = Value at POR reset  
bit0  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS40300B-page 20  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON register is a readable and writable  
register which contains the various enable and flag bits  
for all interrupt sources except the comparator module.  
See Section 4.2.2.4 and Section 4.2.2.5 for  
description of the comparator enable and flag bits.  
a
REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit, read  
as ’0’  
-n = Value at POR reset  
-x = Unknown at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= When at least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 21  
PIC16F62X  
4.2.2.4  
PIE1 REGISTER  
This register contains interrupt enable bits.  
REGISTER 4-4: PIE1 REGISTER (ADDRESS 8CH)  
R/W-0  
EEIE  
bit7  
R/W-0  
CMIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
U
R/W-0  
R/W-0  
R/W-0  
-
CCP1IE TMR2IE TMR1IE  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ’0’  
bit0  
-n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
EEIE: EE Write Complete Interrupt Enable Bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
bit 3:  
bit 2:  
Unimplemented: Read as ‘0’  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
bit 1:  
bit 0:  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
DS40300B-page 22  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
4.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to enabling  
an interrupt.  
This register contains interrupt flag bits.  
REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)  
R/W-0  
EEIF  
bit7  
R/W-0  
CMIF  
R-0  
R-0  
U
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
-
CCP1IF TMR2IF TMR1IF  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ’0’  
bit0  
-n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed  
0= Comparator input has not changed  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty  
0= The USART transmit buffer is full  
bit 3:  
bit 2:  
Unimplemented: Read as ‘0’  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 23  
PIC16F62X  
4.2.2.6  
PCON REGISTER  
The PCON register contains flag bits to differentiate  
between a Power-on Reset, an external MCLR reset,  
WDT reset or a Brown-out Detect.  
Note: BOD is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOD is  
cleared, indicating  
a
brown-out has  
occurred. The BOD status bit is a "don’t  
care" and is not necessarily predictable if  
the brown-out circuit is disabled (by  
programming  
BOREN  
bit  
in  
the  
Configuration word).  
REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
U-0  
R/W-q  
R/W-q  
BOD  
bit0  
OSCF  
POR  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit, read  
as ’0’  
-n = Value at POR reset  
bit 7-4,2:Unimplemented: Read as '0'  
bit 3:  
bit 1:  
bit 0:  
OSCF: INTRC/ER oscillator speed  
1= 4 MHz typical(1)  
0= 37 KHz typical  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOD: Brown-out Detect Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: When in ER oscillator mode, setting OSCF = 1 will cause the oscillator speed to change to the speed  
specified by the external resistor.  
DS40300B-page 24  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
4.3.2  
STACK  
4.3  
PCL and PCLATH  
The PIC16F62X family has an 8 level deep x 13-bit  
wide hardware stack (Figure 4-1 and Figure 4-2). The  
stack space is not part of either program or data space  
and the stack pointer is not readable or writable. The  
PC is PUSHed onto the stack when a CALLinstruction  
is executed or an interrupt causes a branch. The stack  
is POPed in the event of a RETURN, RETLWor a RET-  
FIEinstruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not directly  
readable or writable and comes from PCLATH. On any  
reset, the PC is cleared. Figure 4-7 shows the two  
situations for the loading of the PC. The upper example in  
the figure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the figure  
shows how the PC is loaded during a CALL or GOTO  
instruction (PCLATH<4:3> PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 4-7: LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Note 1: There are no STATUS bits to  
indicate stack overflow or stack  
underflow conditions.  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
Note 2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLWand RETFIE  
instructions, or the vectoring to an  
interrupt address.  
ALU result  
PCH  
12 11 10  
PCL  
8
7
0
GOTO, CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
4.3.1  
COMPUTED GOTO  
A computed GOTO is accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note “Implementing a Table Read" (AN556).  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 25  
 
PIC16F62X  
4.4  
Indirect Addressing, INDF and FSR  
Registers  
EXAMPLE 4-1: INDIRECT ADDRESSING  
movlw 0x20  
movwf FSR  
;initialize pointer  
;to RAM  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT  
clrf  
incf  
INDF  
FSR  
;clear INDF register  
;inc pointer  
Indirect addressing is possible by using the INDF register.  
Any instruction using the INDF register actually accesses  
data pointed to by the file select register (FSR). Reading  
INDF itself indirectly will produce 00h. Writing to the INDF  
register indirectly results in a no-operation (although sta-  
tus bits may be affected). An effective 9-bit address is  
obtained by concatenating the 8-bit FSR register and the  
IRP bit (STATUS<7>), as shown in Figure 4-8.  
btfss FSR,4  
;all done?  
goto  
NEXT  
;no clear next  
;yes continue  
CONTINUE:  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 4-1.  
FIGURE 4-8: DIRECT/INDIRECT ADDRESSING PIC16F62X  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1 RP0  
bank select  
6
0
0
IRP  
FSR register  
bank select  
180h  
location select  
location select  
00  
01  
10  
11  
00h  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For memory map detail see Figure 4-3.  
DS40300B-page 26  
Preliminary  
1999 Microchip Technology Inc.  
 
 
PIC16F62X  
Note 1: On reset, the TRISA register is set to all  
inputs. The digital inputs are disabled and  
the comparator inputs are forced to  
ground to reduce excess current con-  
sumption.  
5.0  
I/O PORTS  
The PIC16F62X have two ports, PORTA and PORTB.  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Note 2: When RA6/OSC2/CLKOUT is configured  
as CLKOUT, the corresponding TRIS bit is  
overridden and the pin is configured as an  
output. The PORTA data bit reads 0, and  
the PORTA TRIS bit reads 0.  
5.1  
PORTA and TRISA Registers  
PORTA is an 8-bit wide latch. RA4 is a Schmitt Trigger  
input and an open drain output. Port RA4 is multiplexed  
with the T0CKI clock input. RA5 is a Schmitt Trigger input  
only and has no output drivers. All other RA port pins have  
Schmitt Trigger input levels and full CMOS output drivers.  
All pins have data direction bits (TRIS registers) which can  
configure these pins as input or output.  
TRISA controls the direction of the RA pins, even when  
they are being used as comparator inputs. The user  
must make sure to keep the pins configured as inputs  
when using them as comparator inputs.  
The RA2 pin will also function as the output for the  
voltage reference. When in this mode, the VREF pin is a  
very high impedance output. The user must configure  
TRISA<2> bit as an input and use high impedance  
loads.  
A ’1’ in the TRISA register puts the corresponding output  
driver in a hi- impedance mode. A ’0’ in the TRISA register  
puts the contents of the output latch on the selected pin(s).  
Reading the PORTA register reads the status of the pins  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then this  
value is modified and written to the port data latch.  
In one of the comparator modes defined by the  
CMCON register, pins RA3 and RA4 become outputs  
of the comparators. The TRISA<4:3> bits must be  
cleared to enable outputs to use this function.  
EXAMPLE 5-1: INITIALIZING PORTA  
The PORTA pins are multiplexed with comparator and  
voltage reference functions. The operation of these  
pins are selected by control bits in the CMCON  
(comparator control register) register and the VRCON  
(voltage reference control register) register. When  
selected as a comparator input, these pins will read  
as ’0’s.  
CLRF PORTA  
;Initialize PORTA by setting  
;output data latches  
;Turn comparators off and  
;enable pins for I/O  
;functions  
MOVLW 0X07  
MOVWF CMCON  
BCF  
BSF  
STATUS, RP1  
STATUS, RP0 ;Select Bank1  
MOVLW 0x1F  
;Value used to initialize  
;data direction  
MOVWF TRISA  
;Set RA<4:0> as inputs  
;TRISA<7:5> are always  
;read as ’0’.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 27  
PIC16F62X  
FIGURE 5-1: BLOCK DIAGRAM OF  
RA0/AN0:RA1/AN1 PINS  
FIGURE 5-2: BLOCK DIAGRAM OF  
RA2/VREF PIN  
Data  
Bus  
Data  
Bus  
D
Q
Q
D
Q
Q
VDD  
VDD  
VDD  
P
VDD  
P
WR  
PORTA  
WR  
PORTA  
CK  
Data Latch  
CK  
Data Latch  
D
Q
D
Q
RA2 Pin  
I/O Pin  
N
N
WR  
WR  
TRISA  
TRISA  
CK  
Q
CK  
TRIS Latch  
Q
VSS  
VSS  
VSS  
TRIS Latch  
VSS  
Analog  
Input Mode  
Analog  
Input Mode  
Schmitt Trigger  
Input Buffer  
Schmitt Trigger  
Input Buffer  
RD TRISA  
RD TRISA  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
To Comparator  
VROE  
To Comparator  
VREF  
DS40300B-page 28  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 5-3: BLOCK DIAGRAM OF THE RA3/AN3 PIN  
Data  
Bus  
Comparator Mode = 110  
VDD  
D
Q
Q
Comparator Output  
VDD  
WR  
PORTA  
1
0
CK  
Data Latch  
P
D
Q
RA3 Pin  
N
WR  
TRISA  
CK  
Q
VSS  
VSS  
TRIS Latch  
Analog  
Input Mode  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
To Comparator  
FIGURE 5-4: BLOCK DIAGRAM OF RA4/T0CKI PIN  
Data  
Bus  
Comparator Mode = 110  
D
Q
Q
Comparator Output  
WR  
PORTA  
1
0
CK  
Data Latch  
D
Q
RA4 Pin  
N
WR  
TRISA  
CK  
TRIS Latch  
Q
VSS  
VSS  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
TMR0 Clock Input  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 29  
PIC16F62X  
FIGURE 5-5: BLOCK DIAGRAM OF THE RA5/MCLR/THV PIN  
MCLRE  
MCLR circuit  
VDD  
MCLR Filter(1)  
Program mode  
HV Detect  
RA5/MCLR/THV  
VSS  
Data  
Bus  
VDD  
P
D
Q
Q
WR  
PORT  
CK  
Data Latch  
D
Q
WR  
TRIS  
N
CK  
TRIS Latch  
Q
VSS  
RD TRIS  
Q
D
EN  
RD Port  
DS40300B-page 30  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 5-6: BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN  
(Fosc=101,111)  
From OSC1  
CLKOUT (FOSC/4)  
Oscillator  
Circuit  
1
0
VDD  
RA6/OSC2/CLKOUT Pin  
Data  
Bus  
VDD  
P
D
Q
Q
VSS  
WR  
PORTA  
CK  
Data Latch  
D
Q
WR  
TRISA  
N
VSS  
CK  
TRIS Latch  
Q
(Fosc=100, 101, 110, 111)  
RD TRISA  
(Fosc=110, 100)  
Schmitt Trigger  
Input Buffer  
Q
D
EN  
RD PORTA  
CLKOUT is 1/4 of the Fosc frequency.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 31  
PIC16F62X  
FIGURE 5-7: BLOCK DIAGRAM OF RA7/OSC1/CLKIN PIN  
To OSC2  
Oscillator  
Circuit  
VDD  
CLKIN to core  
VDD  
Data  
Bus  
D
Q
Q
RA7/OSC1/CLKIN Pin  
WR  
PORTA  
P
CK  
Data Latch  
Schmitt Trigger  
VSS  
D
Q
WR  
TRISA  
N
CK  
TRIS Latch  
Q
(Fosc=101, 100)  
VSS  
(Fosc=101, 100)  
Schmitt Trigger  
RD TRISA  
Input Buffer  
Q
D
EN  
RD PORTA  
DS40300B-page 32  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 5-1:  
Name  
PORTA FUNCTIONS  
Buffer  
Bit #  
Function  
Type  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
ST  
ST  
ST  
ST  
ST  
Bi-directional I/O port/comparator input  
Bi-directional I/O port/comparator input  
RA1/AN1  
RA2/AN2/VREF  
RA3/AN3  
Bi-directional I/O port/analog/comparator input or VREF output  
Bi-directional I/O port/analog/comparator input/comparator output  
RA4/T0CKI  
Bi-directional I/O port/external clock input for TMR0 or comparator output.  
Output is open drain type.  
RA5/MCLR/THV  
bit5  
bit6  
ST  
ST  
Input port/master clear (reset input/programming voltage input. When  
configured as MCLR, this pin is an active low reset to the device. Voltage  
on MCLR/THV must not exceed VDD during normal device operation.  
RA6/OSC2/CLK-  
OUT  
Bi-directional I/O port/Oscillator crystal output. Connects to crystal or res-  
onator in crystal oscillator mode. In ER mode, OSC2 pin outputs CLKOUT  
which has 1/4 the frequency of OSC1, and denotes the instruction cycle  
rate.  
RA7/OSC1/CLKIN  
bit7  
ST  
Bi-directional I/O port/oscillator crystal input/external clock source input.  
Legend: ST = Schmitt Trigger input  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Other  
Resets  
05h  
85h  
1Fh  
9Fh  
PORTA  
TRISA  
RA7  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
xxxx 0000 xxxu 0000  
TRISA7 TRISA6  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 11-1 1111 11-1 1111  
CMCON  
VRCON  
C2OUT  
VREN  
C1OUT  
VROE  
C2INV  
VRR  
C1INV  
CIS  
CM2  
VR2  
CM1  
VR1  
CM0  
VR0  
0000 0000 0000 0000  
000- 0000 000- 0000  
VR3  
Legend: — = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown  
Note: Shaded bits are not used by PORTA.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 33  
PIC16F62X  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide bi-directional port. The  
corresponding data direction register is TRISB. A ’1’ in  
the TRISB register puts the corresponding output driver  
in a high impedance mode. A ’0’ in the TRISB register  
puts the contents of the output latch on the selected  
pin(s).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
PORTB is multiplexed with the interrupt, USART, CCP  
module and the TMR1 clock input/output. The standard  
port functions and the alternate port functions are  
shown in Table 5-3.  
This interrupt on mismatch feature, together with  
software configurable pull-ups on these four pins allow  
easy interface to a key pad and make it possible for  
wake-up on key-depression. (See AN552 in the  
Microchip Embedded Control Handbook.)  
Reading PORTB register reads the status of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then  
this value is modified and written to the port data latch.  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
Each of the PORTB pins has a weak internal pull-up  
(200 µA typical). A single control bit can turn on all the  
pull-ups. This is done by clearing the RBPU  
(OPTION<7>) bit. The weak pull-up is automatically  
turned off when the port pin is configured as an output.  
The pull-ups are disabled on Power-on Reset.  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt  
on change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RBIF interrupt (flag  
latched in INTCON<0>).  
DS40300B-page 34  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 5-8: BLOCK DIAGRAM OF RB0/INT PIN  
VDD  
VDD  
RBPU  
weak  
P
pull-up  
RB0/INT pin  
Data Bus  
D
Q
VSS  
WR PORTB  
CK  
Data Latch  
D
Q
WR TRISB  
TTL  
input  
buffer  
CK  
TRIS Latch  
Schmitt Trigger  
Buffer  
RD TRISB  
Q
D
EN  
RD PORTB  
INT input  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 35  
PIC16F62X  
FIGURE 5-9: BLOCK DIAGRAM OF RB1/TX/DT PIN  
VDD  
weak pull-up  
RBPU  
P
PORT/PERIPHERAL Select(1)  
USART data output  
0
VDD  
P
1
Data Bus  
D
Q
Q
VDD  
WR PORTB  
WR TRISB  
CK  
Data Latch  
RB1/RX/DT  
pin  
D
Q
Q
N
CK  
VSS  
TRIS Latch  
VSS  
RD TRISB  
TTL  
input  
buffer  
Peripheral OE(2)  
Q
D
RD PORTB  
EN  
USART receive input  
RD PORTB  
Schmitt  
Trigger  
Note 1: Port/Peripheral select signal selects between port data and peripheral output.  
Note 2: Peripheral OE( output enable) is only active if peripheral select is active.  
DS40300B-page 36  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 5-10: BLOCK DIAGRAM OF RB2/TX/CK PIN  
VDD  
RBPU  
weak pull-up  
P
VDD  
PORT/PERIPHERAL Select(1)  
USART TX/CK output  
0
1
VDD  
Data Bus  
RB2/TX/CK  
pin  
D
Q
Q
P
WR PORTB  
CK  
VSS  
Data Latch  
D
Q
Q
WR TRISB  
N
CK  
TRIS Latch  
Vss  
RD TRISB  
TTL  
input  
buffer  
Peripheral OE(2)  
Q
D
RD PORTB  
EN  
USART Slave Clock in  
RD PORTB  
Schmitt  
Trigger  
Note 1: Port/Peripheral select signal selects between port data and peripheral output.  
Note 2: Peripheral OE( output enable) is only active if peripheral select is active.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 37  
PIC16F62X  
FIGURE 5-11: BLOCK DIAGRAM OF THE RB3/CCP1 PIN  
VDD  
P
RBPU  
weak pull-up  
Port/Peripheral Select(1)  
PWM/Compare output  
0
1
VDD  
P
Data Bus  
D
Q
Q
VDD  
WR PORTB  
WR TRISB  
CK  
Data Latch  
RB3/CCP1  
pin  
D
Q
N
CK  
Q
VSS  
TRIS Latch  
Vss  
RD TRISB  
TTL  
input  
buffer  
Q
D
RD PORTB  
EN  
CCP input  
Schmitt  
Trigger  
RD PORTB  
Note 1: Peripheral Select is defined by CCP1M3:CCP1M0. (CCP1CON<3:0>)  
DS40300B-page 38  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 5-12: BLOCK DIAGRAM OF RB4/PGM PIN  
VDD  
RBPU  
P
weak pull-up  
VDD  
P
Data Bus  
D
Q
Q
VDD  
WR PORTB  
WR TRISB  
CK  
Data Latch  
RB4/PGM  
D
Q
Q
N
CK  
VSS  
TRIS Latch  
VSS  
RD TRISB  
LVP  
RD PORTB  
PGM input  
TTL  
input  
buffer  
Schmitt  
Trigger  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
RD Port  
Q3  
EN  
Note:  
The low voltage programming disables the interrupt on change and the weak pullups on RB4.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 39  
PIC16F62X  
FIGURE 5-13: BLOCK DIAGRAM OF RB5 PIN  
VDD  
weak  
RBPU  
VDD  
P
pull-up  
Data Bus  
D
Q
RB5 pin  
WR PORTB  
CK  
Data Latch  
VSS  
D
Q
WR TRISB  
CK  
TRIS Latch  
TTL  
input  
buffer  
RD TRISB  
Q
D
RD PORTB  
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
RD Port  
Q3  
EN  
DS40300B-page 40  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 5-14: BLOCK DIAGRAM OF RB6/T1OSO/T1CKI PIN  
VDD  
RBPU  
P
weak pull-up  
VDD  
P
Data Bus  
D
Q
Q
VDD  
WR PORTB  
WR TRISB  
CK  
Data Latch  
RB6/  
D
Q
Q
T1OSO/  
T1CKI  
pin  
N
CK  
VSS  
TRIS Latch  
VSS  
RD TRISB  
T1OSCEN  
TTL  
input  
buffer  
RD PORTB  
TMR1 Clock  
Schmitt  
Trigger  
From RB7  
TMR1 oscillator  
Serial programming clock  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
RD Port  
Q3  
EN  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 41  
PIC16F62X  
FIGURE 5-15: BLOCK DIAGRAM OF THE RB7/T1OSI PIN  
VDD  
RBPU  
TMR1 oscillator  
weak pull-up  
P
To RB6  
T1OSCEN  
VDD  
VDD  
P
Data Bus  
D
Q
Q
WR PORTB  
WR TRISB  
RB7/T1OSI  
pin  
CK  
Data Latch  
D
Q
Q
VSS  
N
CK  
TRIS Latch  
Vss  
RD TRISB  
T10SCEN  
TTL  
input  
RD PORTB  
buffer  
Serial programming input  
Schmitt  
Trigger  
Q
D
Q1  
EN  
Set RBIF  
Q
D
From other  
RB<7:4> pins  
RD Port  
Q3  
EN  
DS40300B-page 42  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 5-3:  
PORTB FUNCTIONS  
Buffer  
Bit #  
Name  
Function  
Type  
TTL/ST(1)  
bit0  
RB0/INT  
Bi-directional I/O port/external interrupt. Can be software programmed for  
internal weak pull-up.  
TTL/ST(3)  
bit1  
RB1/RX/DT  
RB2/TX/CK  
RB3/CCP1  
RB4/PGM  
Bi-directional I/O port/ USART receive pin/synchronous data I/O. Can be  
software programmed for internal weak pull-up.  
TTL/ST(3)  
bit2  
Bi-directional I/O port/ USART transmit pin/synchronous clock I/O. Can be  
software programmed for internal weak pull-up.  
TTL/ST(4)  
bit3  
Bi-directional I/O port/Capture/Compare/PWM I/O. Can be software pro-  
grammed for internal weak pull-up.  
TTL/ST(5)  
bit4  
Bi-directional I/O port/Low voltage programming input pin. Wake-up from  
SLEEP on pin change. Can be software programmed for internal weak  
pull-up. When low voltage programming is enabled, the interrupt on pin  
change and weak pull-up resistor are disabled.  
RB5  
bit5  
bit6  
TTL  
Bi-directional I/O port/Wake-up from SLEEP on pin change. Can be soft-  
ware programmed for internal weak pull-up.  
TTL/ST(2)  
RB6/T1OSO/T1CKI  
Bi-directional I/O port/Timer1 oscillator output/Timer1 clock input. Wake up  
from SLEEP on pin change. Can be software programmed for internal weak  
pull-up.  
TTL/ST(2)  
RB7/T1OSI  
bit7  
Bi-directional I/O port/Timer1 oscillator input. Wake up from SLEEP on pin  
change. Can be software programmed for internal weak pull-up.  
Legend: ST = Schmitt Trigger, TTL = TTL input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
Note 2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
Note 3: This buffer is a Schmitt Trigger I/O when used in USART/synchronous mode.  
Note 4: This buffer is a Schmitt Trigger I/O when used in CCP mode.  
Note 5: This buffer is a Schmitt Trigger input when used in low voltage program mode.  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORT  
Value on  
All Other  
Resets  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h  
86h  
81h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 1111 1111  
OPTION  
RBPU INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
Legend: u = unchanged, x = unknown  
Note: Shaded bits are not used by PORTB.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 43  
PIC16F62X  
5.3  
I/O Programming Considerations  
BI-DIRECTIONAL I/O PORTS  
EXAMPLE 5-2: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
5.3.1  
I/O PORT  
;Initial PORT settings: PORTB<7:4> Inputs  
;
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCFand BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result back  
to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSFoperation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bidirectional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and re-written to the data latch of this  
particular pin, overwriting the previous content. As long  
as the pin stays in the input mode, no problem occurs.  
However, if bit0 is switched into output mode later on,  
the content of the data latch may now be unknown.  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-up and are not  
;connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BDF STATUS,RPO  
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS,RP0  
BCF TRISB, 7  
BCF TRISB, 6  
;
;01pp pppp 11pp pppp  
;10pp pppp 11pp pppp  
;
;10pp pppp 11pp pppp  
;10pp pppp 10pp pppp  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
5.3.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
Reading a port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read modify write instructions  
(ex. BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle  
(Figure 5-16). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should be  
such to allow the pin voltage to stabilize (load  
dependent) before the next instruction which causes  
that file to be read into the CPU is executed. Otherwise,  
the previous state of that pin may be read into the CPU  
rather than the new state. When in doubt, it is better to  
separate these instructions with a NOP or another  
instruction not accessing this I/O port.  
Example 5-2 shows the effect of two sequential  
read-modify-write instructions (ex., BCF, BSF, etc.) on  
an I/O port.  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage  
the chip.  
FIGURE 5-16: SUCCESSIVE I/O OPERATION  
Note:  
Q1 Q2 Q3 Q4 Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4  
1 QQ4 2 4 Q
This example shows write to PORTB  
followed by a read from PORTB.  
PC  
PC + 1  
PC + 2  
PC
PC  
PC  
PC + 3  
PC
Instruction  
MOWF PORTB  
MOVF PORTB, W  
NOP  
NOP  
fetched  
Note that:  
Write to PORTB  
Read to PORTB  
data setup time = (0.25 TCY - TPD)  
where TCY = instruction cycle and  
TPD = propagation delay of Q1 cycle  
to output valid.  
RB<7:0>  
Port pin  
sampled here  
Therefore, at higher clock frequencies,  
a write followed by a read may be  
problematic.  
TPD  
Execute  
Execute  
Execute  
MOVWF  
MOVWF  
NOP  
PORTB  
PORTB  
DS40300B-page 44  
Preliminary  
1999 Microchip Technology Inc.  
 
 
PIC16F62X  
bit (OPTION<4>). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed in detail in Section 6.2.  
6.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
The prescaler is shared between the Timer0 module  
and the Watchdog Timer. The prescaler assignment is  
controlled in software by the control bit PSA  
(OPTION<3>). Clearing the PSA bit will assign the  
prescaler to Timer0. The prescaler is not readable or  
writable. When the prescaler is assigned to the Timer0  
module, prescale value of 1:2, 1:4, ..., 1:256 are  
selectable. Section 6.3 details the operation of the  
prescaler.  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Figure 6-1 is a simplified block diagram of the Timer0  
module.  
6.1  
TIMER0 Interrupt  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the TMR0 will increment  
every instruction cycle (without prescaler). If Timer0 is  
written, the increment is inhibited for the following two  
cycles (Figure 6-2 and Figure 6-3). The user can work  
around this by writing an adjusted value to TMR0.  
Timer0 interrupt is generated when the TMR0 register  
timer/counter overflows from FFh to 00h. This overflow  
sets the T0IF bit. The interrupt can be masked by  
clearing the T0IE bit (INTCON<5>). The T0IF bit  
(INTCON<2>) must be cleared in software by the  
Timer0 module interrupt service routine before  
re-enabling this interrupt. The Timer0 interrupt cannot  
wake the processor from SLEEP since the timer is shut  
off during SLEEP. See Figure 6-4 for Timer0 interrupt  
timing.  
Counter mode is selected by setting the T0CS bit. In  
this mode Timer0 will increment either on every rising  
or falling edge of pin RA4/T0CKI. The incrementing  
edge is determined by the source edge (T0SE) control  
FIGURE 6-1: TIMER0 BLOCK DIAGRAM  
Data bus  
RA4/T0CKI  
pin  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
PSout  
(2 TCY delay)  
T0SE  
Set Flag bit T0IF  
on Overflow  
PS2:PS0  
PSA  
T0CS  
Note 1: Bits T0SE, T0CS, PS2, PS1, PS0 and PSA are located in the OPTION register.  
2: The prescaler is shared with Watchdog Timer (Figure 6-6)  
FIGURE 6-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
NT0  
T0  
T0+1  
T0+2  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 45  
 
 
PIC16F62X  
FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
TMR0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0 Read TMR0 Read TMR0  
reads NT0 reads NT0 reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 6-4: TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
TMR0 timer  
FEh  
1
FFh  
1
00h  
01h  
02h  
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
Interrupt Latency Time  
PC +1  
INSTRUCTION FLOW  
PC  
PC  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (PC)  
Note 1: T0IF interrupt flag is sampled here (every Q1).  
2: Interrupt latency = 3TCY, where TCY = instruction cycle time.  
3: CLKOUT is available only in ER and INTRC (with clockout) oscillator modes.  
DS40300B-page 46  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple-counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of 40 ns)  
divided by the prescaler value. The only requirement on  
T0CKI high and low time is that they do not violate the  
minimum pulse width requirement of 10 ns. Refer to  
parameters 40, 41 and 42 in the electrical specification  
of the desired device.  
6.2  
Using Timer0 with External Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
6.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-5). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
6.2.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the TMR0 is  
actually incremented. Figure 6-5 shows the delay from  
the external clock edge to the timer incrementing.  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler output  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc). Therefore, the error in  
measuring the interval between two edges on Timer0 input = ±4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 47  
 
PIC16F62X  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
6.3  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 6-6). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusive between the  
Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1,  
MOVWF 1, BSF 1, x....etc.) will clear the pres-  
caler. When assigned to WDT, a CLRWDT instruction  
will clear the prescaler along with the Watchdog Timer.  
The prescaler is not readable or writable.  
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8-to-1MUX  
PS0 - PS2  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.  
DS40300B-page 48  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
6.3.1  
SWITCHING PRESCALER ASSIGNMENT  
To change prescaler from the WDT to the TMR0  
module use the sequence shown in Example 6-2. This  
precaution must be taken even if the WDT is disabled.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on the fly” during  
program execution). To avoid an unintended device  
EXAMPLE 6-2: CHANGING PRESCALER  
RESET,  
the  
following  
instruction  
sequence  
(WDTTIMER0)  
(Example 6-1) must be executed when changing the  
prescaler assignment from Timer0 to WDT.  
CLRWDT  
;Clear WDT and  
;prescaler  
EXAMPLE 6-1: CHANGING PRESCALER  
BSF  
STATUS, RP0  
(TIMER0WDT)  
STATUS, RP0 ;Skip if already in  
MOVLW  
b'xxxx0xxx' ;Select TMR0, new  
;prescale value and  
;clock source  
1.BCF  
; Bank 0  
2.CLRWDT  
3.CLRF  
4.BSF  
;Clear WDT  
;Clear TMR0 & Prescaler  
STATUS, RP0 ;Bank 1  
MOVWF  
BCF  
OPTION_REG  
STATUS, RP0  
TMR0  
5.MOVLW '00101111’b ;These 3 lines (5, 6, 7)  
6.MOVWF OPTION  
; are required only if  
; desired PS<2:0> are  
; 000 or 001  
7.CLRWDT  
8.MOVLW '00101xxx’b ;Set Postscaler to  
9.MOVWF OPTION ; desired WDT rate  
10.BCF STATUS, RP0 ;Return to Bank 0  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Other  
Resets  
01h  
TMR0  
Timer0 module register  
GIE T0IE  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
1111 1111 1111 1111  
0Bh/8Bh/  
10Bh/18Bh  
INTCON  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
81h  
85h  
OPTION RBPU INTEDG T0CS  
TRISA TRISA7 TRISA6  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 11-1 1111 11-1 1111  
Legend: — = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown  
Note: Shaded bits are not used by TMR0 module.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 49  
 
 
PIC16F62X  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
7.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L) which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
Timer1 also has an internal “reset input”. This reset can  
be generated by the CCP module (Section 10.0).  
Register 7-1 shows the Timer1 control register.  
For the PIC16F627 and PIC16F628, when the Timer1  
oscillator is enabled (T1OSCEN is set), the RB7/T1OSI  
and RB6/T1OSO/T1CKI pins become inputs. That is,  
the TRISB<7:6> value is ignored.  
Timer1 can operate in one of two modes:  
• As a timer  
• As a counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
bit7  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RB6/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
DS40300B-page 50  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
internal phase clock (Tosc) synchronization. Also, there  
is a delay in the actual incrementing of TMR1 after syn-  
chronization.  
7.1  
Timer1 Operation in Timer Mode  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
When the prescaler is 1:1, the external clock input is  
the same as the prescaler output. The synchronization  
of T1CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T1CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the appropri-  
ate electrical specifications, parameters 45, 46, and 47.  
7.2  
Timer1 Operation in Synchronized  
Counter Mode  
Counter mode is selected by setting bit TMR1CS. In  
this mode the timer increments on every rising edge of  
clock input on pin RB7/T1OSI when bit T1OSCEN is  
set or pin RB6/T1OSO/T1CKI when bit T1OSCEN is  
cleared.  
When a prescaler other than 1:1 is used, the external  
clock input is divided by the asynchronous rip-  
ple-counter type prescaler so that the prescaler output  
is symmetrical. In order for the external clock to meet  
the sampling requirement, the ripple-counter must be  
taken into account. Therefore, it is necessary for T1CKI  
to have a period of at least 4Tosc (and a small RC delay  
of 40 ns) divided by the prescaler value. The only  
requirement on T1CKI high and low time is that they do  
not violate the minimum pulse width requirements of  
10 ns). Refer to the appropriate electrical specifica-  
tions, parameters 40, 42, 45, 46, and 47.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple-counter.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut off. The pres-  
caler however will continue to increment.  
7.2.1  
EXTERNAL CLOCK INPUT TIMING FOR  
SYNCHRONIZED COUNTER MODE  
When an external clock input is used for Timer1 in syn-  
chronized counter mode, it must meet certain require-  
ments. The external clock requirement is due to  
FIGURE 7-1: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
clock input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
RB6/T1OSO/T1CKI  
RB7/T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 51  
PIC16F62X  
FIGURE 7-2: TIMER1 INCREMENTING EDGE  
T1CKI  
(Default high)  
T1CKI  
(Default low)  
Note: Arrows indicate counter increments.  
7.3  
Timer1 Operation in Asynchronous  
Counter Mode  
EXAMPLE 7-1: READING A 16-BIT  
FREE-RUNNING TIMER  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 7.3.2).  
; All interrupts are disabled  
MOVF  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
MOVF TMR1H, W ;Read high byte  
SUBWF TMPH,  
TMR1H, W ;Read high byte  
;
;
W
;Sub 1st read  
; with 2nd read  
BTFSC STATUS,Z ;Is result = 0  
GOTO CONTINUE ;Good 16-bit read  
In asynchronous counter mode, Timer1 can not be  
used as a time-base for capture or compare operations.  
;
7.3.1  
EXTERNAL CLOCK INPUT TIMING WITH  
UNSYNCHRONIZED CLOCK  
; TMR1L may have rolled over between the read  
; of the high and low bytes. Reading the high  
; and low bytes now will read a good value.  
;
If control bit T1SYNC is set, the timer will increment  
completely asynchronously. The input clock must meet  
certain minimum high time and low time requirements.  
Refer to the appropriate Electrical Specifications Sec-  
tion, timing parameters 45, 46, and 47.  
MOVF  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
; Re-enable the Interrupt (if required)  
CONTINUE ;Continue with your code  
TMR1H, W ;Read high byte  
;
;
7.3.2  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
7.4  
Timer1 Oscillator  
Reading TMR1H or TMR1L while the timer is running,  
from an external asynchronous clock, will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself poses certain problems since  
the timer may overflow between the reads.  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 7-1 shows the capacitor  
selection for the Timer1 oscillator.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an unpre-  
dictable value in the timer register.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Reading the 16-bit value requires some care.  
Example 7-1 is an example routine to read the 16-bit  
timer value. This is useful if the timer cannot be  
stopped.  
TABLE 7-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
DS40300B-page 52  
Preliminary  
1999 Microchip Technology Inc.  
 
 
 
PIC16F62X  
7.5  
Resetting Timer1 using a CCP Trigger  
Output  
7.6  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
If the CCP1 module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1.  
TMR1H and TMR1L registers are not reset to 00h on a  
POR or any other reset except by the CCP1 special  
event triggers.  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other resets, the register is  
unaffected.  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
7.7  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ters pair effectively becomes the period register for  
Timer1.  
TABLE 7-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
resets  
0000 000x 0000 000u  
0Bh/8Bh/  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh/18Bh  
0000 -000 0000 -000  
0000 -000 0000 -000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
EEIF  
CMIF  
RCIF  
TXIF  
CCP1IF TMR2IF  
TMR1IF  
PIE1  
EEIE  
CMIE  
RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE  
TMR1L  
TMR1H  
T1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 53  
PIC16F62X  
8.1  
Timer2 Prescaler and Postscaler  
8.0  
TIMER2 MODULE  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
reset.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset, or Brown-out Reset)  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
TMR2 is not cleared when T2CON is written.  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
8.2  
Output of TMR2  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
FIGURE 8-1: TIMER2 BLOCK DIAGRAM  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
Sets flag  
TMR2  
output (1)  
bit TMR2IF  
Reset  
Prescaler  
1:1, 1:4, 1:16  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
TMR2 reg  
FOSC/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
Register 8-1 shows the Timer2 control register.  
EQ  
4
PR2 reg  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
DS40300B-page 54  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
REGISTER 8-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
resets  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
0000 000x 0000 000u  
0Bh/8Bh/  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh/18Bh  
0000 -000 0000 -000  
0000 -000 0000 -000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
PIR1  
EEIF  
CMIF  
RCIF  
TXIF  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
EEIE  
CMIE  
RCIE  
TXIE  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 55  
PIC16F62X  
NOTES:  
DS40300B-page 56  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
The CMCON register, shown in Register 9-1, controls  
the comparator input and output multiplexers. A block  
diagram of the comparator is shown in Figure 9-1.  
9.0  
COMPARATOR MODULE  
The comparator module contains two analog  
comparators. The inputs to the comparators are  
multiplexed with the RA0 through RA3 pins. The  
on-chip Voltage Reference (Section 11.0) can also be  
an input to the comparators.  
REGISTER 9-1: CMCON REGISTER (ADDRESS 01Fh)  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
bit0  
C2OUT C1OUT C2INV C1INV CIS  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ’0’  
bit7  
-n = Value at POR reset  
bit 7:  
C2OUT: Comparator 2 output  
When C2INV=0;  
1= C2 VIN+ > C2 VIN–  
0= C2 VIN+ < C2 VIN–  
When C2INV=1;  
0= C2 VIN+ > C2 VIN–  
1= C2 VIN+ < C2 VIN–  
bit 6:  
C1OUT: Comparator 1 output  
When C1INV=0;  
1= C1 VIN+ > C1 VIN–  
0= C1 VIN+ < C1 VIN–  
When C1INV=1;  
0= C1 VIN+ > C1 VIN–  
1= C1 VIN+ < C1 VIN–  
bit 5:  
bit 4:  
bit 3:  
C2INV: Comparator 2 output inversion  
1= C2 Output inverted  
0= C2 Output not inverted  
C1INV: Comparator 1 output inversion  
1= C1 Output inverted  
0= C1 Output not inverted  
CIS: Comparator Input Switch  
When CM2:CM0: = 001:  
Then:  
1= C1 VIN– connects to RA3  
0= C1 VIN– connects to RA0  
When CM2:CM0 = 010:  
Then:  
1= C1 VIN– connects to RA3  
C2 VIN– connects to RA2  
0= C1 VIN– connects to RA0  
C2 VIN– connects to RA1  
bit 2-0: CM2:CM0: Comparator mode  
Figure 9-1 shows the comparator modes and CM2:CM0 bit settings.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 57  
 
PIC16F62X  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown  
in Table 12-2.  
9.1  
Comparator Configuration  
There are eight modes of operation for the  
comparators. The CMCON register is used to select  
the mode. Figure 9-1 shows the eight possible modes.  
The TRISA register controls the data direction of the  
comparator pins for each mode. If the comparator  
Note: Comparator interrupts should be disabled  
during a comparator mode change other-  
wise a false interrupt may occur.  
FIGURE 9-1: COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
CM2:CM0 = 000  
Comparators Off  
CM2:CM0 = 111  
D
D
Vin-  
A
A
Vin-  
RA0/AN0  
RA0/AN0  
Off (Read as ’0’)  
Off (Read as ’0’)  
C1  
C2  
Off (Read as ’0’)  
Off (Read as ’0’)  
C1  
C2  
Vin+  
Vin+  
RA3/AN3/C10  
RA3/AN3/C10  
A
A
Vin-  
D
D
Vin-  
RA1/AN1  
RA2/AN2  
RA1/AN1  
RA2/AN2  
Vin+  
Vin+  
Four Inputs Multiplexed to Two Comparators  
CM2:CM0 = 010  
Two Independent Comparators  
CM2:CM0 = 100  
A
RA0/AN0  
A
A
Vin-  
CIS = 0  
CIS = 1  
Vin-  
RA0/AN0  
A
RA3/AN3/C10  
C1OUT  
C2OUT  
C1  
Vin+  
C1OUT  
C1  
C2  
Vin+  
RA3/AN3/C10  
A
A
RA1/AN1  
RA2/AN2  
Vin-  
CIS = 0  
CIS = 1  
A
A
Vin-  
RA1/AN1  
RA2/AN2  
C2OUT  
Vin+  
C2  
Vin+  
From Vref Module  
Two Common Reference Comparators  
CM2:CM0 = 011  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 110  
A
Vin-  
RA0/AN0  
A
D
Vin-  
RA0/AN0  
C1OUT  
C1  
Vin+  
D
C1OUT  
C2OUT  
C1  
C2  
RA3/AN3/C10  
Vin+  
RA3/AN3/C10  
A
A
Vin-  
RA1/AN1  
RA2/AN2  
A
A
Vin-  
RA1/AN1  
RA2/AN2  
C2OUT  
C2  
Vin+  
Vin+  
Open Drain  
RA4/T0CKI/C20  
One Independent Comparator  
CM2:CM0 = 101  
Three Inputs Multiplexed to Two Comparators  
CM2:CM0 = 001  
D
D
Vin-  
RA0/AN0  
A
RA0/AN0  
CIS = 0  
CIS = 1  
Vin-  
Off (Read as ’0’)  
C2OUT  
C1  
Vin+  
RA3/AN3/C10  
A
RA3/AN3/C10  
C1OUT  
C2OUT  
C1  
C2  
Vin+  
A
A
Vin-  
RA1/AN1  
RA2/AN2  
A
A
Vin-  
RA1/AN1  
RA2/AN2  
C2  
Vin+  
Vin+  
A = Analog Input, port reads zeros always.  
D = Digital Input.  
CIS (CMCON<3>) is the Comparator Input Switch.  
DS40300B-page 58  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
The code example in Example 9-1 depicts the steps  
required to configure the comparator module. RA3 and  
RA4 are configured as digital output. RA0 and RA1 are  
configured as the V- inputs and RA2 as the V+ input to  
both comparators.  
9.3  
Comparator Reference  
An external or internal reference signal may be used  
depending on the comparator operating mode. The  
analog signal that is present at VIN– is compared to the  
signal at VIN+, and the digital output of the comparator  
is adjusted accordingly (Figure 9-2).  
EXAMPLE 9-1: INITIALIZING  
COMPARATOR MODULE  
FIGURE 9-2: SINGLE COMPARATOR  
FLAG_REG EQU  
0X20  
CLRF  
CLRF  
FLAG_REG  
PORTA  
;Init flag register  
;Init PORTA  
MOVF  
CMCON, W  
0xC0  
;Load comparator bits  
;Mask comparator bits  
VIN+  
+
ANDLW  
IORWF  
MOVLW  
MOVWF  
BSF  
Output  
FLAG_REG,F ;Store bits in flag register  
0x03  
CMCON  
VIN–  
;Init comparator mode  
;CM<2:0> = 011  
STATUS,RP0 ;Select Bank1  
MOVLW  
MOVWF  
0x07  
TRISA  
;Initialize data direction  
;Set RA<2:0> as inputs  
;RA<4:3> as outputs  
V
IN–  
IN+  
;TRISA<7:5> always read ‘0’  
STATUS,RP0 ;Select Bank 0  
BCF  
CALL  
MOVF  
BCF  
BSF  
BSF  
BCF  
BSF  
BSF  
DELAY 10  
CMCON,F  
PIR1,CMIF  
;10µs delay  
;Read CMCONtoendchangecondition  
;Clear pending interrupts  
V
STATUS,RP0 ;Select Bank 1  
PIE1,CMIE  
;Enable comparator interrupts  
STATUS,RP0 ;Select Bank 0  
INTCON,PEIE ;Enable peripheral interrupts  
INTCON,GIE ;Global interrupt enable  
Output  
9.2  
Comparator Operation  
9.3.1  
EXTERNAL REFERENCE SIGNAL  
A single comparator is shown in Figure 9-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN–, the output of the  
comparator is a digital low level. When the analog input  
at VIN+ is greater than the analog input VIN–, the output  
of the comparator is a digital high level. The shaded  
areas of the output of the comparator in Figure 9-2  
represent the uncertainty due to input offsets and  
response time.  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD, and can be applied to either  
pin of the comparator(s).  
9.3.2  
INTERNAL REFERENCE SIGNAL  
The comparator module also allows the selection of an  
internally generated voltage reference for the  
comparators. Section 13, Instruction Sets, contains a  
detailed description of the Voltage Reference Module  
that provides this signal. The internal reference signal  
is used when the comparators are in mode  
CM<2:0>=010 (Figure 9-1). In this mode, the internal  
voltage reference is applied to the VIN+ pin of both  
comparators.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 59  
 
 
PIC16F62X  
9.4  
Comparator Response Time  
9.5  
Comparator Outputs  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output is guaranteed to have a valid level.  
If the internal reference is changed, the maximum delay  
of the internal voltage reference must be considered  
when using the comparator outputs. Otherwise the  
maximum delay of the comparators should be used  
(Table 12-2 ).  
The comparator outputs are read through the CMCON  
register. These bits are read only. The comparator  
outputs may also be directly output to the RA3 and RA4  
I/O pins. When the CM<2:0> = 110 or 001, multiplexors  
in the output path of the RA3 and RA4/T0CK1 pins will  
switch and the output of each pin will be the unsynchro-  
nized output of the comparator. The uncertainty of each  
of the comparators is related to the input offset voltage  
and the response time given in the specifications.  
Figure 9-3 shows the comparator output block diagram.  
The TRISA bits will still function as an output  
enable/disable for the RA3 and RA4/T0CK1 pins while  
in this mode.  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as  
a ‘0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
2: Analog levels on any pin that is defined  
as a digital input may cause the input  
buffer to consume more current than is  
specified.  
FIGURE 9-3: MODIFIED COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
CnINV  
To RA3 or RA4/T0CK1 pin  
To Data Bus  
Q
D
Q1  
EN  
RD CMCON  
Set CMIF bit  
Q
D
Q3 * RD CMCON  
EN  
CL  
From other Comparator  
NRESET  
DS40300B-page 60  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
wake up the device from SLEEP mode when enabled.  
While the comparator is powered-up, higher sleep  
currents than shown in the power down current  
specification will occur. Each comparator that is  
operational will consume additional current as shown in  
the comparator specifications. To minimize power  
consumption while in SLEEP mode, turn off the  
comparators, CM<2:0> = 111, before entering sleep. If  
the device wakes-up from sleep, the contents of the  
CMCON register are not affected.  
9.6  
Comparator Interrupts  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that has occurred. The  
CMIF bit, PIR1<6>, is the comparator interrupt flag.  
The CMIF bit must be reset by clearing ‘0’. Since it is  
also possible to write a '1' to this register, a simulated  
interrupt may be initiated.  
9.8  
Effects of a RESET  
The CMIE bit (PIE1<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit must also be set. If any of these  
bits are clear, the interrupt is not enabled, though the  
CMIF bit will still be set if an interrupt condition occurs.  
A device reset forces the CMCON register to its reset  
state. This forces the comparator module to be in the  
comparator reset mode, CM2:CM0 = 000. This  
ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at reset time. The comparators will be  
powered-down during the reset interval.  
Note: If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR1<6>)  
interrupt flag may not get set.  
9.9  
Analog Input Connection  
Considerations  
The user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
A simplified circuit for an analog input is shown in  
Figure 9-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up may occur. A  
a) Any read or write of CMCON. This will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition, and  
allow flag bit CMIF to be cleared.  
maximum  
source  
impedance  
of  
10 kΩ  
is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
9.7  
Comparator Operation During SLEEP  
When a comparator is active and the device is placed  
in SLEEP mode, the comparator remains active and  
the interrupt is functional if enabled. This interrupt will  
FIGURE 9-4: ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10K  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend  
CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE  
RIC  
= Leakage Current At The Pin Due To Various Junctions  
= Interconnect Resistance  
RS  
= Source Impedance  
VA  
= Analog Voltage  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 61  
 
PIC16F62X  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
All Other  
Resets  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1Fh  
9Fh  
CMCON C2OUT C1OUT C2INV  
C1NV  
CIS  
CM2  
CM1  
CM0  
0000 0000 0000 0000  
000- 0000 000- 0000  
VRCON  
VREN  
VROE  
VRR  
VR3  
VR2  
VR1  
VR0  
0Bh/8Bh/  
10Bh/18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
85h  
PIR1  
PIE1  
EEIF  
EEIE  
CMIF  
CMIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TRISA  
TRISA7 TRISA6  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 11-1 1111 11-1 1111  
Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"  
DS40300B-page 62  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
Additional information on the CCP module is available  
in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
10.0 CAPTURE/COMPARE/PWM  
(CCP) MODULE  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave Duty Cycle register. Table 10-1 shows the  
timer resources of the CCP module modes.  
TABLE 10-1  
CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
CCP1 Module  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
REGISTER 10-1: CCP1CON REGISTER (ADDRESS 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read  
as ’0’  
CCP1X  
CCP1Y  
CCP1M3  
CCP1M2  
CCP1M1 CCP1M0  
bit0  
bit7  
-n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCP1X:CCP1Y: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0: CCP1M3:CCP1M0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP1 module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1  
11xx= PWM mode  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 63  
 
PIC16F62X  
10.1.4 CCP PRESCALER  
10.1  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RB3/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 10-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
• every 4th rising edge  
• every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
EXAMPLE 10-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
10.1.1 CCP PIN CONFIGURATION  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
In Capture mode, the RB3/CCP1 pin should be config-  
ured as an input by setting the TRISB<3> bit.  
; mode value and CCP ON  
MOVWF CCP1CON  
;Load CCP1CON with this  
; value  
Note: If the RB3/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
FIGURE 10-1: CAPTURE MODE OPERATION  
BLOCK DIAGRAM  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
³ 1, 4, 16  
RB3/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
Capture  
Enable  
and  
edge detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
10.1.2 TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
10.1.3 SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
DS40300B-page 64  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
10.2.1 CCP PIN CONFIGURATION  
10.2  
Compare Mode  
The user must configure the RB3/CCP1 pin as an out-  
put by clearing the TRISB<3> bit.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RB3/CCP1 pin is:  
Note: Clearing the CCP1CON register will force  
the RB3/CCP1 compare output latch to the  
default low level. This is not the data latch.  
• driven High  
• driven Low  
• remains Unchanged  
10.2.2 TIMER1 MODE SELECTION  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
FIGURE 10-2: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
10.2.3 SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
Special event trigger will reset Timer1, but not  
set interrupt flag bit TMR1IF (PIR1<0>)  
10.2.4 SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
Special Event Trigger (CCP2 only)  
Set flag bit CCP1IF  
(PIR1<2>)  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RB3/CCP1  
Pin  
TRISB<3>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
TABLE 10-2  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on  
all other  
resets  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh/1  
0Bh/18Bh  
0000 000x 0000 000u  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0Ch  
8Ch  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
0000 -000 0000 -000  
0000 -000 0000 -000  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
PIR1  
PIE1  
EEIF CMIF  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
EEIE CMIF  
RCIE  
TXIE  
PORTB Data Direction Register  
TRISB  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 65  
PIC16F62X  
10.3.1 PWM PERIOD  
10.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISB<3> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTB I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 10-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 10.3.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 10-3: SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 8.0) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
10.3.2 PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Q
R
S
Comparator  
RB3/CCP1  
(Note 1)  
TMR2  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TRISB<3>  
Comparator  
PR2  
Tosc • (TMR2 prescale value)  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 10-4) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 10-4: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
Period  
Fosc  
Fpwm  
log  
(
)
=
bits  
Duty Cycle  
log (2)  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
For an example PWM period and duty cycle calcula-  
tion, see the PICmicro™ Mid-Range Reference Manual  
(DS33023).  
DS40300B-page 66  
Preliminary  
1999 Microchip Technology Inc.  
 
 
PIC16F62X  
10.3.3 SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISB<3> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 10-3  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
4
1
1
1
1
0xFF  
10  
0xFF  
10  
0xFF  
10  
0x3F  
8
0x1F  
7
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 10-4  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
resets  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh/8Bh/  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh/18Bh  
0000 -000 0000 -000  
0000 -000 0000 -000  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
-000 0000 uuuu uuuu  
0Ch  
8Ch  
87h  
11h  
92h  
12h  
PIR1  
PIE1  
EEIF  
CMIF  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
EEIE  
CMIE  
RCIE  
TXIE  
PORTB Data Direction Register  
Timer2 module’s register  
TRISB  
TMR2  
PR2  
Timer2 module’s period register  
TOUTPS TOUTPS TOUTPS TOUTPS TMR2ON T2CKPS T2CKPS  
T2CON  
3
2
1
0
1
0
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
15h  
16h  
17h  
CCPR1L  
CCPR1H  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 67  
PIC16F62X  
NOTES:  
DS40300B-page 68  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
11.1  
Configuring the Voltage Reference  
11.0 VOLTAGE REFERENCE  
MODULE  
The Voltage Reference can output 16 distinct voltage  
levels for each range.  
The Voltage Reference is a 16-tap resistor ladder  
network that provides a selectable voltage reference.  
The resistor ladder is segmented to provide two ranges  
of VREF values and has a power-down function to  
conserve power when the reference is not being used.  
The VRCON register controls the operation of the  
reference as shown in Figure 11-1. The block diagram  
is given in Figure 11-2.  
The equations used to calculate the output of the  
Voltage Reference are as follows:  
if VRR = 1: VREF = (VR<3:0>/24) x VDD  
if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD  
The setting time of the Voltage Reference must be  
considered when changing the VREF output  
(Table 12-2). Example 11-1 shows an example of how  
to configure the Voltage Reference for an output volt-  
age of 1.25V with VDD = 5.0V.  
FIGURE 11-1: VRCON REGISTER(ADDRESS 9Fh)  
R/W-0  
R/W-0  
R/W-0  
VRR  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VREN  
VROE  
VR3  
VR2  
VR1  
VR0  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit, read  
as ’0’  
-n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
VREN: VREF Enable  
1= VREF circuit powered on  
0= VREF circuit powered down, no IDD drain  
VROE: VREF Output Enable  
1= VREF is output on RA2 pin  
0= VREF is disconnected from RA2 pin  
VRR: VREF Range selection  
1= Low Range  
0= High Range  
Unimplemented: Read as '0'  
bit 3-0: VR<3:0>: VREF value selection 0 VR [3:0] 15  
when VRR = 1: VREF = (VR<3:0>/ 24) * VDD  
when VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/ 32) * VDD  
FIGURE 11-2: VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
VREN  
R
R
R
8R  
R
8R  
VRR  
VR3  
VR0  
VREF  
(From VRCON<3:0>)  
16-1 Analog Mux  
Note: R is defined in Table 12-3.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 69  
 
 
PIC16F62X  
EXAMPLE 11-1: VOLTAGE REFERENCE  
CONFIGURATION  
11.4  
Effects of a Reset  
A device reset disables the Voltage Reference by clear-  
ing bit VREN (VRCON<7>). This reset also disconnects  
the reference from the RA2 pin by clearing bit VROE  
(VRCON<6>) and selects the high voltage range by  
clearing bit VRR (VRCON<5>). The VREF value select  
bits, VRCON<3:0>, are also cleared.  
MOVLW  
MOVWF  
BSF  
0x02  
; 4 Inputs Muxed  
; to 2 comps.  
; go to Bank 1  
; RA3-RA0 are  
; outputs  
CMCON  
STATUS,RP0  
0x07  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
TRISA  
0xA6  
; enable VREF  
; low range  
11.5  
Connection Considerations  
Voltage Reference Module  
VRCON  
; set VR<3:0>=6  
; go to Bank 0  
; 10µs delay  
The  
operates  
independently of the comparator module. The output of  
the reference generator may be connected to the RA2  
pin if the TRISA<2> bit is set and the VROE bit,  
VRCON<6>, is set. Enabling the Voltage Reference  
output onto the RA2 pin with an input signal present will  
increase current consumption. Connecting RA2 as a  
digital output with VREF enabled will also increase  
current consumption.  
BCF  
STATUS,RP0  
DELAY10  
CALL  
11.2  
Voltage Reference Accuracy/Error  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. The transistors on the  
top and bottom of the resistor ladder network  
(Figure 11-2) keep VREF from approaching VSS or VDD.  
The Voltage Reference is VDD derived and therefore,  
the VREF output changes with fluctuations in VDD. The  
tested absolute accuracy of the Voltage Reference can  
be found in Table 17-2.  
The RA2 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited drive  
capability, a buffer must be used in conjunction with the  
Voltage Reference output for external connections to  
VREF. Figure 11-3 shows an example buffering  
technique.  
11.3  
Operation During Sleep  
When the device wakes up from sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the VRCON register are not affected. To minimize  
current consumption in SLEEP mode, the Voltage  
Reference should be disabled.  
FIGURE 11-3: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
RA2  
R
VREF  
Module  
+
VREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.  
TABLE 11-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE  
Value On  
Value On  
All Other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
9Fh  
1Fh  
85h  
VRCON  
VREN  
VROE  
VRR  
VR3  
CIS  
VR2  
CM2  
VR1  
CM1  
VR0  
CM0  
000- 0000 000- 0000  
0000 0000 0000 0000  
CMCON C2OUT C1OUT C2INV  
TRISA TRISA7 TRISA6  
C1INV  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 11-1 1111 11-1 1111  
Note: -= Unimplemented, read as "0"  
DS40300B-page 70  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, Serial EEPROMs etc.  
12.0 UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The USART can be configured in the following modes:  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI). The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
Bit SPEN (RCSTA<7>), and bits TRISB<2:1>, have  
to be set in order to configure pins RB2/TX/CK and  
RB1/RX/DT as the Universal Synchronous Asyn-  
chronous Receiver Transmitter.  
REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ’0’  
-n = Value at POR reset  
bit 7:  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6:  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
bit 5:  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4:  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1= High speed  
0= Low speed  
Synchronous mode  
Unused in this mode  
bit 1:  
bit 0:  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of transmit data. Can be parity bit.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 71  
PIC16F62X  
REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
ADEN  
R-0  
R-0  
R-x  
FERR  
OERR  
RX9D  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ’0’  
bit7  
bit0  
-n = Value at POR reset  
x = unknown  
bit 7:  
SPEN: Serial Port Enable bit  
(Configures RB1/RX/DT and RB2/TX/CK pins as serial port pins when bits TRISB<2:17> are set)  
1= Serial port enabled  
0= Serial port disabled  
bit 6:  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
bit 5:  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode - master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave:  
Unused in this mode  
bit 4:  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3:  
ADEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load of the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9=0):  
Unused in this mode  
Synchronous mode  
Unused in this mode  
bit 2:  
bit 1:  
bit 0:  
FERR: Framing Error bit  
1= Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (Can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of received data (Can be parity bit)  
DS40300B-page 72  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
12.1  
USART Baud Rate Generator (BRG)  
EXAMPLE 12-1: CALCULATING BAUD RATE  
ERROR  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode bit BRGH is ignored.  
Table 12-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in master mode (internal clock).  
Desired Baud rate = Fosc / (64 (X + 1))  
9600 =  
16000000 /(64 (X + 1))  
X
=
Î25.042° = 25  
Calculated Baud Rate=16000000 / (64 (25 + 1))  
=
=
9615  
Error  
(Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 12-1. From this, the error in  
baud rate can be determined.  
=
=
(9615 - 9600) / 9600  
0.16%  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Example 12-1 shows the calculation of the baud rate  
error for the following conditions:  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
Writing a new value to the SPBRG register, causes the  
BRG timer to be reset (or cleared), this ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
SYNC = 0  
TABLE 12-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate= FOSC/(16(X+1))  
NA  
X = value in SPBRG (0 to 255)  
TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on Value on all  
POR other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 -010 0000 -010  
98h  
TXSTA  
CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
18h  
99h  
RCSTA SPEN RX9 SREN CREN ADEN FERR OERR RX9D  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'. Shaded cells are not used by the BRG.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 73  
 
 
PIC16F62X  
TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 20 MHz  
16 MHz  
KBAUD  
10 MHz  
KBAUD  
7.15909 MHz  
KBAUD  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value  
ERROR (decimal)  
%
%
%
%
KBAUD  
ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
9.6  
NA  
-
+1.73  
+0.16  
+0.16  
-1.96  
0
-
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73  
+0.16  
-1.36  
+0.16  
+4.17  
0
255  
129  
32  
25  
7
4
0
255  
9.622  
19.24  
77.82  
94.20  
298.3  
NA  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-
185  
92  
22  
18  
5
-
0
255  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.53  
76.92  
96.15  
294.1  
500  
255  
64  
51  
16  
9
19.23  
76.92  
95.24  
307.69  
500  
207  
51  
41  
12  
7
5000  
19.53  
-
-
0
255  
4000  
15.625  
-
-
0
255  
2500  
9.766  
-
-
1789.8  
6.991  
-
-
FOSC = 5.0688 MHz  
SPBRG  
4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value KBAUD  
ERROR (decimal)  
SPBRG  
value KBAUD  
ERROR (decimal)  
SPBRG  
value  
RATE KBAUD  
(K)  
%
value KBAUD  
%
KBAUD  
%
%
%
ERROR (decimal)  
ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
0
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
9.622  
19.04  
74.57  
99.43  
298.3  
NA  
-
-
-
-
-
-
92  
46  
11  
8
2
-
0
255  
NA  
1.202  
2.404  
9.615  
19.24  
83.34  
NA  
NA  
NA  
250  
0.9766  
-
-
207  
103  
25  
12  
2
-
-
-
0
0.303  
1.170  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
+1.14  
-2.48  
26  
6
-
-
-
-
-
-
-
+0.16  
+0.16  
+0.16  
+0.16  
-
-
-
-
-
-
-
-
-
9.6  
9.6  
131  
65  
15  
12  
3
-
0
255  
9.615  
19.231 +0.16  
76.923 +0.16  
1000  
NA  
NA  
+0.16  
103  
51  
12  
9
-
-
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.2  
79.2  
97.48  
316.8  
NA  
0
+3.13  
+1.54  
+5.60  
-
-
-
+8.51  
+4.17  
-
-
-
-
-
-
-
-
-
1267  
4.950  
100  
3.906  
0
255  
894.9  
3.496  
-
-
8.192  
0.032  
0
255  
255  
TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
%
16 MHz  
10 MHz  
7.15909 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
-
-
255  
129  
32  
15  
3
2
0
-
0
NA  
1.202  
2.404  
9.615  
19.23  
83.33  
NA  
NA  
NA  
250  
0.977  
-
-
207  
103  
25  
12  
2
-
-
-
0
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
NA  
NA  
156.3  
0.6104  
-
-
129  
64  
15  
7
1
-
-
-
NA  
1.203  
2.380  
9.322  
18.64  
NA  
NA  
NA  
NA  
111.9  
0.437  
-
-
92  
46  
11  
5
-
-
-
-
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+1.73  
+1.73  
+0.23  
-0.83  
-2.90  
-2.90  
-
-
-
-
-
-
9.6  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
+8.51  
+1.73  
-
-
-
-
-
-
-
-
-
-
312.5  
1.221  
-
-
0
255  
0
255  
255  
255  
FOSC = 5.0688 MHz  
4 MHz  
3.579545 MHz  
%
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
0.3  
1.2  
2.4  
0.31  
1.2  
2.4  
+3.13  
0
0
+3.13  
+3.13  
+3.13  
-
-
-
-
-
255  
65  
32  
7
3
0
-
-
-
0
0.3005 -0.17  
207  
51  
25  
-
-
-
-
-
-
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
NA  
NA  
NA  
55.93  
0.2185  
+0.23  
-0.83  
+1.32  
-2.90  
185  
46  
22  
5
2
-
-
-
-
0
0.300  
1.202  
2.232  
NA  
NA  
NA  
NA  
NA  
NA  
15.63  
0.0610  
+0.16  
+0.16  
-6.99  
51  
12  
6
-
-
-
-
-
-
0.256 -14.67  
1
-
-
-
-
-
-
-
-
1.202  
2.404  
NA  
+1.67  
+1.67  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
9.6  
9.9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NA  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.8  
79.2  
NA  
NA  
NA  
NA  
NA  
-2.90  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
NA  
79.2  
0.3094  
62.500  
3.906  
0
255  
0
255  
0.512  
0.0020  
0
255  
255  
255  
DS40300B-page 74  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
%
16 MHz  
10 MHz  
7.16 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
9.6  
9.615  
19.230  
37.878  
56.818  
+0.16  
+0.16  
-1.36  
-1.36  
-1.36  
0
129  
64  
32  
21  
10  
4
9.615  
19.230  
38.461  
58.823  
111.111  
250  
+0.16  
+0.16  
+0.16  
+2.12  
-3.55  
0
103  
51  
25  
16  
8
9.615  
18.939  
39.062  
56.818  
125  
+0.16  
-1.36  
+1.7  
-1.36  
+8.51  
-
64  
32  
15  
10  
4
9.520  
19.454  
37.286  
55.930  
111.860  
NA  
-0.83  
+1.32  
-2.90  
-2.90  
-2.90  
-
46  
22  
11  
7
3
-
19.2  
38.4  
57.6  
115.2 113.636  
250  
625  
250  
625  
3
-
NA  
625  
-
0
0
1
NA  
-
0
NA  
-
-
1250  
1250  
0
0
NA  
-
-
NA  
-
-
NA  
-
-
FOSC = 5.068 MHz  
%
4 MHz  
3.579 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
9.6  
19.2  
9.6  
18.645  
0
32  
16  
NA  
1.202  
-
-
9.727  
18.643 -2.90  
+1.32  
22  
11  
8.928  
20.833 +8.51  
-6.99  
6
2
NA  
NA  
-
-
-
-
-2.94  
207  
+0.17  
+0.13  
+0.16  
38.4  
57.6  
115.2  
250  
625  
1250  
39.6  
52.8  
105.6  
NA  
NA  
NA  
+3.12  
-8.33  
-8.33  
-
-
-
7
5
2
-
-
-
2.403  
9.615  
19.231 +0.16  
NA  
NA  
NA  
103  
25  
12  
-
-
-
37.286 -2.90  
55.930 -2.90  
111.860 -2.90  
223.721 -10.51  
NA  
NA  
5
3
1
0
-
31.25 -18.61  
1
0
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
-
62.5  
NA  
NA  
NA  
NA  
+8.51  
-
-
-
-
-
-
-
-
-
-
-
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 75  
PIC16F62X  
12.1.1 SAMPLING  
The data on the RB1/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin. If bit BRGH  
(TXSTA<2>) is clear (i.e., at the low baud rates), the  
sampling is done on the seventh, eighth and ninth fall-  
ing edges of a x16 clock (Figure 12-3). If bit BRGH is  
set (i.e., at the high baud rates), the sampling is done  
on the 3 clock edges preceding the second rising edge  
after the first falling edge of a x4 clock (Figure 12-4 and  
Figure 12-5).  
FIGURE 12-1: RX PIN SAMPLING SCHEME. BRGH = 0  
Start bit  
Bit0  
RX  
(RB1/RX/DT pin)  
Baud CLK for all but start bit  
baud CLK  
x16 CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
Samples  
FIGURE 12-2: RX PIN SAMPLING SCHEME, BRGH = 1  
RX pin  
bit0  
bit1  
Start Bit  
baud clk  
First falling edge after RX pin goes low  
Second rising edge  
x4 clk  
1
2
3
4
1
2
3
4
1
2
Q2, Q4 clk  
Samples  
Samples  
Samples  
DS40300B-page 76  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 12-3: RX PIN SAMPLING SCHEME, BRGH = 1  
RX pin  
Start Bit  
bit0  
Baud CLK for all but start bit  
Baud CLK  
First falling edge after RX pin goes low  
Second rising edge  
x4 CLK  
1
2
3
4
Q2, Q4 CLK  
Samples  
FIGURE 12-4: RX PIN SAMPLING SCHEME, BRGH = 0 OR BRGH = 1  
Start bit  
Bit0  
RX  
(RB1/RX/DT pin)  
Baud CLK for all but start bit  
Baud CLK  
x16 CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
Samples  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 77  
PIC16F62X  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicated the sta-  
tus of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register. Sta-  
tus bit TRMT is a read only bit which is set when the  
TSR register is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty.  
12.2  
USART Asynchronous Mode  
In this mode, the USART uses standard nonreturn-to-  
zero (NRZ) format (one start bit, eight or nine data bits  
and one stop bit). The most common data format is  
8-bits. An on-chip dedicated 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent but use the same data format  
and baud rate. The baud rate generator produces a  
clock either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
Note 2: Flag bit TXIF is set when enable bit TXEN  
is set.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure 12-5). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally when transmission  
is first started, the TSR register is empty, so a transfer  
to the TXREG register will result in an immediate trans-  
fer to TSR resulting in an empty TXREG. A back-to-  
back transfer is thus possible (Figure 12-7). Clearing  
enable bit TXEN during a transmission will cause the  
transmission to be aborted and will reset the transmit-  
ter. As a result the RB2/TX/CK pin will revert to hi-  
impedance.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
12.2.1 USART ASYNCHRONOUS TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 12-5. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
( PIE1<4>). Flag bit TXIF will be set regardless of the  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit maybe loaded in the TSR regis-  
ter.  
FIGURE 12-5: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR register  
RB2/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
DS40300B-page 78  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
Steps to follow when setting up an Asynchronous  
Transmission:  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 12.1)  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. Load data to the TXREG register (starts trans-  
mission).  
3. If interrupts are desired, then set enable bit  
TXIE.  
FIGURE 12-6: ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RB2/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 12-7: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RB2/TX/CK (pin)  
Start Bit  
Start Bit  
WORD 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 -000 0000 -000  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 -000 0000 -000  
0000 -010 0000 -010  
0000 0000 0000 0000  
0Ch  
18h  
19h  
8Ch  
PIR1  
EEIF  
CMIF  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SPEN  
RX9  
SREN CREN ADEN  
TXREG USART Transmit Register  
PIE1  
EEIE  
CMIE  
TX9  
RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
98h  
99h  
TXSTA  
CSRC  
TXEN  
SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 79  
PIC16F62X  
12.2.2 USART ASYNCHRONOUS RECEIVER  
ered register, i.e. it is a two deep FIFO. It is possible for  
two bytes of data to be received and transferred to the  
RCREG FIFO and a third byte begin shifting to the RSR  
register. On the detection of the STOP bit of the third  
byte, if the RCREG register is still full then overrun error  
bit OERR (RCSTA<1>) will be set. The word in the RSR  
will be lost. The RCREG register can be read twice to  
retrieve the two bytes in the FIFO. Overrun bit OERR  
has to be cleared in software. This is done by resetting  
the receive logic (CREN is cleared and then set). If bit  
OERR is set, transfers from the RSR register to the  
RCREG register are inhibited, so it is essential to clear  
error bit OERR if it is set. Framing error bit FERR  
(RCSTA<2>) is set if a stop bit is detected as clear. Bit  
FERR and the 9th receive bit are buffered the same  
way as the receive data. Reading the RCREG, will load  
bits RX9D and FERR with new values, therefore it is  
essential for the user to read the RCSTA register before  
reading RCREG register in order not to lose the old  
FERR and RX9D information.  
The receiver block diagram is shown in Figure 12-8.  
The data is received on the RB1/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE (PIE1<5>).  
Flag bit RCIF is a read only bit which is cleared by the  
hardware. It is cleared when the RCREG register has  
been read and is empty. The RCREG is a double buff-  
FIGURE 12-8: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR register  
LSb  
MSb  
or  
÷ 16  
0
Baud Rate Generator  
1
7
Stop (8)  
Start  
• • •  
RB1/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
8
SPEN  
RX9  
Enable  
Load of  
ADEN  
Receive  
Buffer  
RX9  
ADEN  
RSR<8>  
8
RX9D  
RX9D  
RCREG register  
RCREG register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
DS40300B-page 80  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
FIGURE 12-9: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT  
Start  
bit  
Start  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
Stop  
bit  
bit8 Stop  
bit  
bit0  
bit8  
Rcv shift reg  
Rcv buffer reg  
WORD 1  
RCREG  
Bit8 = 0, Data Byte  
Bit8 = 1, Address Byte  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
’1’  
’1’  
ADEN = 1  
(address match  
enable)  
Note: This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG (receive buffer)  
because ADEN = 1 and bit8 = 0.  
FIGURE 12-10: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST  
Start  
bit  
Start  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
Stop  
bit  
bit8 Stop  
bit  
bit0  
bit8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 1  
RCREG  
Bit8 = 1, Address Byte  
Bit8 = 0, Data Byte  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
’1’  
’1’  
ADEN = 1  
(address match  
enable)  
Note: This timing diagram shows an address byte followed by an data byte. The data byte is not read into the RCREG (receive buffer)  
because ADEN was not updated (still = 1) and bit8 = 0.  
FIGURE 12-11: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY VALID  
DATA BYTE  
Start  
bit  
Start  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
Stop  
bit  
bit8 Stop  
bit  
bit0  
bit8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 1  
RCREG  
WORD 2  
RCREG  
Bit8 = 1, Address Byte  
Bit8 = 0, Data Byte  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
ADEN  
(address match  
enable)  
Note: This timing diagram shows an address byte followed by an data byte. The data byte is read into the RCREG (receive buffer)  
because ADEN was updated after an address match, and was cleared to a ‘0’, so the contents of the receive shift register (RSR)  
are read into the receive buffer regardless of the value of bit8.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 81  
PIC16F62X  
Steps to follow when setting up an Asynchronous  
Reception:  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 12.1).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
2. Enable the asynchronous serial port by clearing  
bit SYNC, and setting bit SPEN.  
8. Read the 8-bit received data by reading the  
RCREG register.  
3. If interrupts are desired, then set enable bit  
RCIE.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
RCSTA  
SPEN  
RX9  
SREN CREN ADEN FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
PIE1  
EEIE  
CMIE  
TX9  
RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA  
CSRC  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
DS40300B-page 82  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
12.3.1.1 SETTING UP 9-BIT MODE WITH  
12.3  
USART Function  
ADDRESS DETECT  
The USART function is similar to that on the  
PIC16C74B, which includes the BRGH = 1 fix.  
Steps to follow when setting up an Asynchronous or  
Synchronous Reception with Address Detect Enabled:  
12.3.1 USART 9-BIT RECEIVER WITH ADDRESS  
DETECT  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH.  
When the RX9 bit is set in the RCSTA register, 9-bits  
are received and the ninth bit is placed in the RX9D bit  
of the RCSTA register. The USART module has a spe-  
cial provision for multi-processor communication. Mul-  
tiprocessor communication is enabled by setting the  
ADEN bit (RCSTA<3>) along with the RX9 bit. The port  
is now programmed such that when the last bit is  
received, the contents of the receive shift register  
(RSR) are transferred to the receive buffer, the ninth bit  
of the RSR (RSR<8>) is transferred to RX9D, and the  
receive interrupt is set if and only if RSR<8> = 1. This  
feature can be used in a multi-processor system as fol-  
lows:  
2. Enable asynchronous or synchronous commu-  
nication by setting or clearing bit SYNC and set-  
ting bit SPEN.  
3. If interrupts are desired, then set enable bit  
RCIE.  
4. Set bit RX9 to enable 9-bit reception.  
5. Set ADEN to enable address detect.  
6. Enable the reception by setting enable bit CREN  
or SREN.  
7. Flag bit RCIF will be set when reception is com-  
plete, and an interrupt will be generated if  
enable bit RCIE was set.  
A master processor intends to transmit a block of data  
to one of many slaves. It must first send out an address  
byte that identifies the target slave. An address byte is  
identified by setting the ninth bit (RSR<8>) to a ’1’  
(instead of a ’0’ for a data byte). If the ADEN and RX9  
bits are set in the slave’s RCSTA register, enabling mul-  
tiprocessor communication, all data bytes will be  
ignored. However, if the ninth received bit is equal to a  
‘1’, indicating that the received byte is an address, the  
slave will be interrupted and the contents of the RSR  
register will be transferred into the receive buffer. This  
allows the slave to be interrupted only by addresses, so  
that the slave can examine the received byte to see if it  
is being addressed. The addressed slave will then  
clear its ADEN bit and prepare to receive data bytes  
from the master.  
8. Read the 8-bit received data by reading the  
RCREG register to determine if the device is  
being addressed.  
9. If any error occurred, clear the error by clearing  
enable bit CREN if it was already set.  
10. If the device has been addressed (RSR<8> = 1  
with address match enabled), clear the ADEN  
and RCIF bits to allow data bytes and address  
bytes to be read into the receive buffer and inter-  
rupt the CPU.  
When ADEN is enabled (='1'), all data bytes are  
ignored. Following the STOP bit, the data will not be  
loaded into the receive buffer, and no interrupt will  
occur. If another byte is shifted into the RSR register,  
the previous data byte will be lost.  
The ADEN bit will only take effect when the receiver is  
configured in 9-bit mode (RX9 = '1'). When ADEN is  
disabled (='0'), all data bytes are received and the 9th  
bit can be used as the parity bit.  
The receive block diagram is shown in Figure 12-8.  
Reception is enabled by setting bit CREN (RCSTA<4>).  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 83  
PIC16F62X  
TABLE 12-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
EEIF  
SPEN  
RX7  
CMIF  
RX9  
RX6  
CMIE  
TX9  
RCIF  
SREN  
RX5  
TXIF  
CREN  
RX4  
ADEN  
RX3  
CCP1IF TMR2IF TMR1IF 0000 -000 0000 -000  
RCSTA  
RCREG  
PIE1  
FERR  
RX2  
OERR  
RX1  
RX9D  
RX0  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
EEIE  
CSRC  
RCIE  
TXEN  
TXIE  
CCP1IE TMR2IE TMR1IE 0000 -000 0000 -000  
TXSTA  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
ble around the falling edge of the synchronous clock  
(Figure 12-12). The transmission can also be started  
by first loading the TXREG register and then setting bit  
TXEN (Figure 12-13). This is advantageous when slow  
baud rates are selected, since the BRG is kept in reset  
when bits TXEN, CREN, and SREN are clear. Setting  
enable bit TXEN will start the BRG, creating a shift  
clock immediately. Normally when transmission is first  
started, the TSR register is empty, so a transfer to the  
TXREG register will result in an immediate transfer to  
TSR resulting in an empty TXREG. Back-to-back trans-  
fers are possible.  
12.4  
USART Synchronous Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner, i.e. transmission and reception  
do not occur at the same time. When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition enable bit SPEN (RCSTA<7>) is set in order to  
configure the RB2/TX/CK and RB1/RX/DT I/O pins to  
CK (clock) and DT (data) lines respectively. The Master  
mode indicates that the processor transmits the master  
clock on the CK line. The Master mode is entered by  
setting bit CSRC (TXSTA<7>).  
Clearing enable bit TXEN, during a transmission, will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to hi-imped-  
ance. If either bit CREN or bit SREN is set, during a  
transmission, the transmission is aborted and the DT  
pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic however is not  
reset although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting since bit TXEN is still set.  
The DT line will immediately switch from hi-impedance  
receive mode to transmit and start driving. To avoid  
this, bit TXEN should be cleared.  
12.4.1 USART SYNCHRONOUS MASTER  
TRANSMISSION  
The USART transmitter block diagram is shown in  
Figure 12-5. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit, TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory so it is not  
available to the user.  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
DS40300B-page 84  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
Steps to follow when setting up a Synchronous Master  
Transmission:  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 12.1).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
7. Start transmission by loading data to the  
TXREG register.  
3. If interrupts are desired, then set enable bit  
TXIE.  
TABLE 12-2:  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
POR  
Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other Resets  
0000 -000  
0000 -00x  
0000 0000  
0000 -000  
0000 -010  
0000 0000  
0000 -000  
0000 -00x  
0000 0000  
0000 -000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF  
RX9  
TXIF  
CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SPEN  
SREN CREN ADEN  
TXREG USART Transmit Register  
PIE1  
EEIE  
CMIE RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
CSRC  
TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
FIGURE 12-12: SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RB1/RX/DT pin  
RB2/TX/CK pin  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
WORD 2  
Bit 7  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
’1’  
Note: Sync master mode; SPBRG = ’0’. Continuous transmission of two 8-bit words  
’1’  
TXEN bit  
FIGURE 12-13: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RB1/RX/DT pin  
RB2/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 85  
PIC16F62X  
12.4.2 USART SYNCHRONOUS MASTER  
RECEPTION  
receive bit is buffered the same way as the receive  
data. Reading the RCREG register, will load bit RX9D  
with a new value, therefore it is essential for the user to  
read the RCSTA register before reading RCREG in  
order not to lose the old RX9D information.  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN (RCSTA<5>)  
or enable bit CREN (RCSTA<4>). Data is sampled on  
the RB1/RX/DT pin on the falling edge of the clock. If  
enable bit SREN is set, then only a single word is  
received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set  
then CREN takes precedence. After clocking the last  
bit, the received data in the Receive Shift Register  
(RSR) is transferred to the RCREG register (if it is  
empty). When the transfer is complete, interrupt flag bit  
RCIF (PIR1<5>) is set. The actual interrupt can be  
enabled/disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit which is  
reset by the hardware. In this case it is reset when the  
RCREG register has been read and is empty. The  
RCREG is a double buffered register, i.e. it is a two  
deep FIFO. It is possible for two bytes of data to be  
received and transferred to the RCREG FIFO and a  
third byte to begin shifting into the RSR register. On the  
clocking of the last bit of the third byte, if the RCREG  
register is still full then overrun error bit OERR  
(RCSTA<1>) is set. The word in the RSR will be lost.  
The RCREG register can be read twice to retrieve the  
two bytes in the FIFO. Bit OERR has to be cleared in  
software (by clearing bit CREN). If bit OERR is set,  
transfers from the RSR to the RCREG are inhibited, so  
it is essential to clear bit OERR if it is set. The 9th  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 12.1)  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 12-3: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 -000  
0000 -00x  
0000 0000  
-000 0000  
0000 -010  
0000 0000  
0000 -000  
0000 -00x  
0000 0000  
-000 -000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF  
RX9  
TXIF  
CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SPEN  
SREN CREN ADEN  
RCREG USART Receive Register  
PIE1  
EEPIE  
CSRC  
CMIE RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.  
DS40300B-page 86  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3 Q4Q1Q2Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2 Q3Q4 Q1 Q2Q3Q4Q1Q2 Q3 Q4 Q1 Q2Q3Q4Q1Q2 Q3Q4 Q1Q2 Q3 Q4 Q1 Q2Q3Q4  
RB1/RX/DT pin  
RB2/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
’0’  
’0’  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with bit SREN = ’1’ and bit BRG = ’0’.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 87  
PIC16F62X  
12.5.2 USART SYNCHRONOUS SLAVE  
RECEPTION  
12.5  
USART Synchronous Slave Mode  
Synchronous slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RB2/TX/CK pin (instead of being supplied internally  
in master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
The operation of the synchronous master and slave  
modes is identical except in the case of the SLEEP  
mode. Also, bit SREN is a don’t care in slave mode.  
If receive is enabled, by setting bit CREN, prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
12.5.1 USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical except in the case of the SLEEP  
mode.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
Steps to follow when setting up a Synchronous Slave  
Reception:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, then set enable bit  
RCIE.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
3. If 9-bit reception is desired, then set bit RX9.  
4. To enable reception, set enable bit CREN.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
DS40300B-page 88  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 12-4: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
POR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 -000  
0000 -00x  
0000 0000  
0000 -000  
0000 -010  
0000 0000  
0000 -000  
0000 -00x  
0000 0000  
0000 -000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF  
RX9  
TXIF  
CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SPEN  
SREN CREN ADEN  
TXREG USART Transmit Register  
PIE1  
EEIE  
CMIE RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
CSRC  
TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
TABLE 12-5: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
POR  
Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other Resets  
0000 -000  
0000 -00x  
0000 0000  
0000 -000  
0000 -010  
0000 0000  
0000 -000  
0000 -00x  
0000 0000  
0000 -000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
EEIF  
CMIF RCIF  
RX9  
TXIF  
CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SPEN  
SREN CREN ADEN  
RCREG USART Receive Register  
PIE1  
EEIE  
CMIE RCIE  
TXIE  
CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
CSRC  
TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 89  
PIC16F62X  
NOTES:  
DS40300B-page 90  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write). The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write-  
time will vary with voltage and temperature as well as  
from chip to chip. Please refer to AC specifications for  
exact limits.  
13.0 DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space. Instead  
it is indirectly addressed through the Special Function  
Registers. There are four SFRs used to read and write  
this memory. These registers are:  
• EECON1  
When the device is code protected, the CPU may  
continue to read and write the data EEPROM memory.  
The device programmer can no longer access  
this memory.  
• EECON2 (Not a physically implemented register)  
• EEDATA  
• EEADR  
EEDATA holds the 8-bit data for read/write, and EEADR  
holds the address of the EEPROM location being  
accessed. PIC16F62X devices have 128 bytes of data  
EEPROM with an address range from 0h to 7Fh.  
Additional information on the Data EEPROM is avail-  
able in the PICmicro™ Mid-Range Reference Manual,  
(DS33023).  
REGISTER 13-1: EEADR REGISTER (ADDRESS 9Bh)  
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
EADR6 EADR5 EADR4 EADR3 EADR2 EADR1 EADR0  
bit0  
R = Readable bit  
W = Writable bit  
S = Settable bit  
bit7  
U = Unimplemented bit, read  
as ‘0’  
-n = Value at POR reset  
bit 7  
Unimplemented Address: Must be set to '0'  
bit 6:0 EEADR: Specifies one of 128 locations for EEPROM Read/Write Operation  
13.1  
EEADR  
The EEADR register can address up to a maximum of  
256 bytes of data EEPROM. Only the first 128 bytes of  
data EEPROM are implemented and only seven of the  
eight bits in the register (EEADR<6:0>) are required.  
The upper bit is address decoded. This means that  
this bit should always be ’0’ to ensure that the address  
is in the 128 byte memory space.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 91  
PIC16F62X  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit  
is set when a write operation is interrupted by a MCLR  
reset or a WDT time-out reset during normal opera-  
tion. In these situations, following reset, the user can  
check the WRERR bit and rewrite the location. The  
data and address will be unchanged in the EEDATA  
and EEADR registers.  
13.2  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register with five low order bits  
physically implemented. The upper-three bits are non-  
existent and read as ’0’s.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
Interrupt flag bit EEIF in the PIR1 register is set when  
write is complete. This bit must be cleared in software.  
EECON2 is not a physical register. Reading EECON2  
will read all ’0’s. The EECON2 register is used  
exclusively in the Data EEPROM write sequence.  
REGISTER 13-2: EECON1 REGISTER (ADDRESS 9Ch) DEVICES  
U
U
U
U
R/W-x  
R/W-0  
R/S-0  
R/S-x  
RD  
WRERR  
WREN  
WR  
R = Readable bit  
W = Writable bit  
S = Settable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
-n = Value at POR reset  
bit 7:4 Unimplemented: Read as '0'  
bit 3  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR reset, any WDT reset during normal operation or BOD detect)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= initiates a write cycle. (The bit is cleared by hardware once write is complete. The WR bit can only  
be set (not cleared) in software.  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware. The RD bit can only be  
set (not cleared) in software).  
0= Does not initiate an EEPROM read  
DS40300B-page 92  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. The EEIF bit in the  
PIR1 registers must be cleared by software.  
13.3  
READING THE EEPROM DATA  
MEMORY  
To read a data memory location, the user must write  
the address to the EEADR register and then set con-  
trol bit RD (EECON1<0>). The data is available, in the  
very next cycle, in the EEDATA register; therefore it  
can be read in the next instruction. EEDATA will hold  
this value until another read or until it is written to by  
the user (during a write operation).  
13.5  
WRITE VERIFY  
Depending on the application, good programming  
practice may dictate that the value written to the Data  
EEPROM should be verified (Example 13-3) to the  
desired value to be written. This should be used in  
applications where an EEPROM bit will be stressed  
near the specification limit.  
EXAMPLE 13-1: DATA EEPROM READ  
BCF  
STATUS, RP0 ; Bank 0  
MOVLW CONFIG_ADDR  
;
MOVWF  
BSF  
BSF  
BCF  
MOVF  
EEADR  
; Address to read  
STATUS, RP0 ; Bank 1  
EECON1, RD ; EE Read  
STATUS, RP0 ; Bank 0  
EEDATA, W ; W = EEDATA  
EXAMPLE 13-3: WRITE VERIFY  
BCF  
:
STATUS, RP0 ; Bank 0  
; Any code can go here  
:
;
13.4  
WRITING TO THE EEPROM DATA  
MEMORY  
MOVF EEDATA, W  
BSF  
BSF  
; Must be in Bank 0  
STATUS, RP0 ; Bank 1 READ  
EECON1, RD ; YES, Read the  
; value written  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDATA register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
BCF  
STATUS, RP0 ; Bank 0  
;
; Is the value written (in W reg) and  
; read (in EEDATA) the same?  
;
EXAMPLE 13-2: DATA EEPROM WRITE  
SUBWF EEDATA, W  
;
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
STATUS, RP0  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
AAh  
; Bank 1  
BTFSS STATUS, Z  
GOTO WRITE_ERR  
:
:
; Is difference 0?  
; NO, Write error  
; YES, Good write  
; Continue program  
; Enable write  
; Disable INTs.  
;
; Write 55h  
;
; Write AAh  
; Set WR bit  
; begin write  
; Enable INTs.  
EECON2  
EECON1,WR  
13.6  
PROTECTION AGAINST SPURIOUS  
WRITE  
BSF  
INTCON, GIE  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also,  
the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment. A cycle count is executed during the  
required sequence. Any number what is not equal to  
the required cycles to execute the required sequence  
will cause the data not to be written into the EEPROM.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware  
13.7  
DATA EEPROM OPERATION DURING  
CODE PROTECT  
When the device is code protected, the CPU is able to  
read and write unscrambled data to the Data  
EEPROM.  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit  
will be inhibited from being set unless the WREN bit is  
set.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 93  
 
PIC16F62X  
TABLE 13-1  
REGISTERS/BITS ASSOCIATED WITH DATA EEPROM  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
9Ah  
EEDATA  
EEADR  
EEPROM data register  
EEPROM address register  
xxxx xxxx  
xxxx xxxx  
---- x000  
---- ----  
uuuu uuuu  
uuuu uuuu  
---- q000  
---- ----  
9Bh  
9Ch  
9Dh  
EECON1  
EECON2(1)  
WRERR  
WREN  
WR  
RD  
EEPROM control register 2  
Legend: x= unknown, u= unchanged, -= unimplemented read as ’0’, q= value depends upon condition. Shaded cells are not used  
by data EEPROM.  
Note 1: EECON2 is not a physical register  
DS40300B-page 94  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
The PIC16F62X has a Watchdog Timer which is  
controlled by configuration bits. It runs off its own RC  
oscillator for added reliability. There are two timers that  
offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only,  
designed to keep the part in reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs which provides at least a  
72 ms reset. With these three functions on-chip, most  
applications need no external reset circuitry.  
14.0 SPECIAL FEATURES OF THE  
CPU  
Special circuits to deal with the needs of real time appli-  
cations are what sets a microcontroller apart from other  
processors. The PIC16F62X family has a host of such  
features intended to maximize system reliability, mini-  
mize cost through elimination of external components,  
provide power saving operating modes and offer code  
protection.  
These are:  
1. OSC selection  
2. Reset  
The SLEEP mode is designed to offer a very low  
current power-down mode. The user can wake-up from  
SLEEP through external reset, Watchdog Timer  
wake-up or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The ER oscillator option saves system  
cost while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
Power-on Reset (POR)  
Power-up Timer (PWRT)  
Oscillator Start-Up Timer (OST)  
Brown-out Reset (BOD)  
3. Interrupts  
4. Watchdog Timer (WDT)  
5. SLEEP  
6. Code protection  
7. ID Locations  
8. In-circuit serial programming  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 95  
PIC16F62X  
The user will note that address 2007h is beyond  
the user program memory space. In fact, it belongs  
to the special configuration memory space (2000h  
– 3FFFh), which can be accessed only during program-  
ming.  
14.1  
Configuration Bits  
The configuration bits can be programmed (read as ’0’)  
or left unprogrammed (read as ’1’) to select various  
device configurations. These bits are mapped in  
program memory location 2007h.  
FIGURE 14-1: CONFIGURATION WORD  
CP1 CP0  
bit13  
CP1  
CP0  
-
CPD LVP BODEN MCLRE FOSC2  
PWRTE  
WDTE  
F0SC1  
F0SC0  
bit0  
Register:CONFIG  
Address2007h  
bit 13-10:CP1:CP0: Code Protection bits (2)  
Code protection for 2K program memory  
11= Program memory code protection off  
10= 0400h-07FFh code protected  
01= 0200h-07FFh code protected  
00= 0000h-07FFhcode protected  
Code protection for 1K program memory  
11= Program memory code protection off  
10= Program memory code protection off  
01= 0200h-03FFh code protected  
00= 0000h-03FFh code protected  
bit 8:  
bit 7:  
bit 6:  
bit 5:  
bit 3:  
bit 2:  
CPD: Data Code Protection bit(3)  
1= Data memory code protection off  
0= Data memory code protected  
LVP: Low Voltage Programming Enable  
1= RB4/PGM pin has PGM function, low voltage programming enabled  
0= RB4/PGM is digital I/O, HV on MCLR must be used for programming  
BODEN: Brown-out Detect Enable bit (1)  
1= BOD enabled  
0= BOD disabled  
MCLRE: RA5/MCLR pin function select  
1= RA5/MCLR pin function is MCLR  
0= RA5/MCLR pin function is digital I/O, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit (1)  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 4,1-0:FOSC2:FOSC0: Oscillator Selection bits(4)  
111= ER oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN  
110= ER oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN  
101= INTRC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
100= INTRC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
011= EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN  
010= HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
000= LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure the  
Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
3: The entire data EEPROM will be erased when the code protection is turned off.  
4: When MCLR is asserted in INTRC or ER mode, the internal clock oscillator is disabled.  
DS40300B-page 96  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
14.2  
Oscillator Configurations  
TABLE 14-1: CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
14.2.1  
OSCILLATOR TYPES  
Ranges Characterized:  
The PIC16F62X can be operated in eight different  
oscillator options. The user can program three  
configuration bits (FOSC2 thru FOSC0) to select one of  
these eight modes:  
Mode  
Freq  
OSC1(C1)  
OSC2(C2)  
455 kHz  
2.0 MHz  
4.0 MHz  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
XT  
• LP  
Low Power Crystal  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
• XT  
Crystal/Resonator  
HS  
• HS  
• ER  
• INTRC  
• EC  
High Speed Crystal/Resonator  
External Resistor (2 modes)  
Internal Resistor/Capacitor (2 modes)  
External Clock In  
Higher capacitance increases the stability of the oscillator  
but also increases the start-up time. These values are for  
design guidance only. Since each resonator has its own  
characteristics, the user should consult the resonator man-  
ufacturer for appropriate values of external components.  
14.2.2 CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
TABLE 14-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1 and OSC2 pins to establish  
oscillation (Figure 14-2). The PIC16F62X oscillator  
design requires the use of a parallel cut crystal. Use of  
a series cut crystal may give a frequency out of the  
crystal manufacturers specifications. When in XT, LP or  
HS modes, the device can have an external clock  
source to drive the OSC1 pin (Figure 14-3).  
Mode  
Freq  
OSC1(C1)  
OSC2(C2)  
LP  
32 kHz  
200 kHz  
68 - 100 pF  
15 - 30 pF  
68 - 100 pF  
15 - 30 pF  
XT  
HS  
100 kHz  
2 MHz  
4 MHz  
68 - 150 pF  
15 - 30 pF  
15 - 30 pF  
150 - 200 pF  
15 - 30 pF  
15 - 30 pF  
8 MHz  
10 MHz  
20 MHz  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
FIGURE 14-2: CRYSTAL OPERATION  
(OR CERAMIC RESONATOR)  
(HS, XT OR LP OSC  
Higher capacitance increases the stability of the oscillator  
but also increases the start-up time. These values are for  
design guidance only. Rs may be required in HS mode as  
well as XT mode to avoid overdriving crystals with low drive  
level specification. Since each crystal has its own  
characteristics, the user should consult the crystal manu-  
facturer for appropriate values of external components.  
CONFIGURATION)  
OSC1  
To internal logic  
C1  
XTAL  
RS  
SLEEP  
RF  
OSC2  
see Note  
C2  
PIC16F62X  
See Table 14-1 and Table 14-2 for recommended  
values of C1 and C2.  
Note: A series resistor may be required for  
AT strip cut crystals.  
FIGURE 14-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
Clock from  
ext. system  
OSC1  
PIC16F62X  
OSC2  
Open  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 97  
 
 
 
 
PIC16F62X  
14.2.3 EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
14.2.4 EXTERNAL CLOCK IN  
For applications where a clock is already available else-  
where, users may directly drive the PIC16F62X pro-  
vided that this external clock source meets the AC/DC  
timing requirements listed in Section 17.4. Figure 14-6  
below shows how an external clock circuit should be  
configured.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built.  
Prepackaged oscillators provide a wide operating  
range and better stability. A well-designed crystal  
oscillator will provide good performance with TTL  
gates. Two types of crystal oscillator circuits can be  
used; one with series resonance, or one with parallel  
resonance.  
FIGURE 14-6: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
Figure 14-4 shows implementation of a parallel reso-  
nant oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180° phase shift that a parallel  
oscillator requires. The 4.7 kresistor provides the  
negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This could be used for external oscillator designs.  
Clock from  
OSC1/RA7  
ext. system  
PIC16F62X  
OSC2/RA6  
RA6  
14.2.5 ER OSCILLATOR  
FIGURE 14-4: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
For timing insensitive applications, the ER (External  
Resistor) clock mode offers additional cost savings.  
Only one external component, a resistor to VSS, is  
needed to set the operating frequency of the internal  
oscillator. The resistor draws a DC bias current which  
controls the oscillation frequency. In addition to the  
resistance value, the oscillator frequency will vary from  
unit to unit, and as a function of supply voltage and tem-  
perature. Since the controlling parameter is a DC cur-  
rent and not a capacitance, the particular package type  
and lead frame will not have a significant effect on the  
resultant frequency.  
OSCILLATOR CIRCUIT  
+5V  
To other  
Devices  
10k  
74AS04  
4.7k  
PIC16F62X  
CLKIN  
74AS04  
10k  
XTAL  
Figure 14-7 shows how the controlling resistor is con-  
nected to the PIC16F62X. For Rext values below 38k,  
the oscillator operation may become unstable, or stop  
completely. For very high Rext values (e.g. 1M), the  
oscillator becomes sensitive to noise, humidity and  
leakage. Thus, we recommend keeping Rext between  
38k and 1M.  
10k  
20 pF  
20 pF  
Figure 14-5 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a 180°  
phase shift in a series resonant oscillator circuit. The  
330 kresistors provide the negative feedback to bias  
the inverters in their linear region.  
FIGURE 14-7: EXTERNAL RESISTOR  
RA7/OSC1/CLKIN  
FIGURE 14-5: EXTERNAL SERIES  
RESONANT CRYSTAL  
RA6/OSC2/CLKOUT  
OSCILLATOR CIRCUIT  
To other  
Devices  
330 kΩ  
330 kΩ  
PIC16F62X  
The Electrical Specification section shows the relation-  
ship between the resistance value and the operating  
frequency as well as frequency variations due to oper-  
ating temperature for given R and VDD values.  
74AS04  
74AS04  
74AS04  
CLKIN  
0.1 µF  
The ER oscillator mode has two options that control the  
unused OSC2 pin. The first allows it to be used as a  
general purpose I/O port. The other configures the pin  
as an output providing the Fosc signal (internal clock  
divided by 4) for test or external synchronization pur-  
poses.  
XTAL  
DS40300B-page 98  
Preliminary  
1999 Microchip Technology Inc.  
 
 
 
 
PIC16F62X  
14.2.6 INTERNAL 4 MHZ OSCILLATOR  
14.4  
Reset  
The internal RC oscillator provides a fixed 4 MHz (nom-  
inal) system clock at Vdd = 5V and 25°C, see “Electrical  
Specifications” section for information on variation over  
voltage and temperature.  
The PIC16F62X differentiates between various kinds  
of reset:  
a) Power-on reset (POR)  
b) MCLR reset during normal operation  
c) MCLR reset during SLEEP  
d) WDT reset (normal operation)  
e) WDT wake-up (SLEEP)  
14.2.7 CLKOUT  
The PIC16F62X can be configured to provide a clock  
out signal by programming the configuration word. The  
oscillator frequency, divided by 4 can be used for test  
purposes or to synchronize other logic.  
f) Brown-out Detect (BOD)  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on reset, MCLR reset, WDT reset and  
MCLR reset during SLEEP. They are not affected by a  
WDT wake-up, since this is viewed as the resumption  
of normal operation. TO and PD bits are set or cleared  
differently in different reset situations as indicated in  
Table 14-4. These bits are used in software to deter-  
mine the nature of the reset. See Table 14-7 for a full  
description of reset states of all registers.  
14.3  
Special Feature: Dual Speed  
Oscillator Modes  
A software programmable dual speed oscillator mode  
is provided when the PIC16F62X is configured in either  
ER or INTRC oscillator modes. This feature allows  
users to dynamically toggle the oscillator speed  
between 4MHz and 37kHz. In ER mode, the 4MHz set-  
ting will vary depending on the size of the external  
resistor. Also in ER mode, the 37kHz operation is fixed  
and does not vary with resistor size. Applications that  
require low current power savings, but cannot tolerate  
putting the part into sleep, may use this mode.  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 14-8.  
The MCLR reset path has a noise filter to detect and  
ignore small pulses. See Table 12-6 for pulse width  
specification.  
The OSCF bit in the PCON register is used to control  
dual speed mode. See Section 4.2.2.6, Figure 4-9.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 99  
PIC16F62X  
FIGURE 14-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/  
VPP Pin  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
detect  
BODEN  
S
R
Q
Q
OST/PWRT  
OST  
10-bit Ripple-counter  
Chip_Reset  
OSC1/  
CLKIN  
Pin  
PWRT  
10-bit Ripple-counter  
(1)  
On-chip  
ER OSC  
Enable PWRT  
Enable OST  
See Table 14-3 for time-out situations.  
Note 1: This is a separate oscillator from the INTRC/EC oscillator.  
DS40300B-page 100  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
The Power-Up Time delay will vary from chip to chip  
and due to VDD, temperature and process variation.  
See DC parameters for details.  
14.5  
Power-on Reset (POR), Power-up  
Timer (PWRT), Oscillator Start-up  
Timer (OST) and Brown-out Detect  
(BOD)  
14.5.3 OSCILLATOR START-UP TIMER (OST)  
14.5.1 POWER-ON RESET (POR)  
The Oscillator Start-Up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal  
oscillator or resonator has started and stabilized.  
The on-chip POR circuit holds the chip in reset until  
VDD has reached a high enough level for proper opera-  
tion. To take advantage of the POR, just tie the MCLR  
pin through a resistor to VDD. This will eliminate exter-  
nal RC components usually needed to create Power-on  
Reset. A maximum rise time for VDD is required. See  
Electrical Specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on power-on reset or wake-up from  
SLEEP.  
14.5.4 BROWN-OUT DETECT (BOD)  
The POR circuit does not produce an internal reset  
when VDD declines.  
The PIC16F62X members have on-chip Brown-out  
Detect circuitry. A configuration bit, BODEN, can dis-  
able (if clear/programmed) or enable (if set) the  
Brown-out Detect circuitry. If VDD falls below 4.0V, refer  
to VBOD parameter D005(VBOD) for greater than  
parameter (TBOD) in Table 17.1, the brown-out situa-  
tion will reset the chip. A reset is not guaranteed to  
occur if VDD falls below 4.0V for less than parameter  
(TBOD).  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, etc.) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions are  
met.  
For additional information, refer to Application Note  
AN607 “Power-up Trouble Shooting”.  
On any reset (Power-on, Brown-out, Watchdog, etc.)  
the chip will remain in Reset until VDD rises above  
BVDD. The Power-up Timer will now be invoked and will  
keep the chip in reset an additional 72 ms.  
14.5.2 POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates on an internal RC  
oscillator. The chip is kept in reset as long as PWRT is  
active. The PWRT delay allows the VDD to rise to an  
acceptable level. A configuration bit, PWRTE can  
disable (if set) or enable (if cleared or programmed) the  
Power-up Timer. The Power-up Timer should always be  
enabled when Brown-out Reset is enabled.  
If VDD drops below BVDD while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above BVDD, the Power-Up Timer will execute a  
72 ms reset. The Power-up Timer should always be  
enabled when Brown-out Detect is enabled.  
Figure 14-9 shows typical Brown-out situations.  
FIGURE 14-9: BROWN-OUT SITUATIONS  
VDD  
BVDD  
Internal  
Reset  
72 ms  
VDD  
BVDD  
Internal  
Reset  
<72 ms  
72 ms  
VDD  
BVDD  
Internal  
Reset  
72 ms  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 101  
 
PIC16F62X  
14.5.5 TIME-OUT SEQUENCE  
14.5.6 POWER CONTROL (PCON)/  
STATUS REGISTER  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after POR has expired. Then  
OST is activated. The total time-out will vary based on  
oscillator configuration and PWRTE bit status. For  
example, in ER mode with PWRTE bit erased (PWRT  
disabled), there will be no time-out at all. Figure 14-10,  
Figure 14-11 and Figure 14-12 depict time-out  
sequences.  
The power control/status register, PCON (address  
8Eh) has two bits.  
Bit0 is BOD (Brown-out). BOD is unknown on  
power-on-reset. It must then be set by the user and  
checked on subsequent resets to see if BOD = 0  
indicating that a brown-out has occurred. The BOD  
status bit is a don’t care and is not necessarily  
predictable if the brown-out circuit is disabled (by  
setting BODEN bit = 0 in the Configuration word).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 14-11). This is useful for testing purposes  
or to synchronize more than one PIC16F62X device  
operating in parallel.  
Bit1 is POR (Power-on-reset). It is  
a ‘0’ on  
power-on-reset and unaffected otherwise. The user  
must write a ‘1’ to this bit following a power-on-reset.  
On a subsequent reset if POR is ‘0’, it will indicate that  
a power-on-reset must have occurred (VDD may have  
gone too low).  
Table 14-6 shows the reset conditions for some special  
registers, while Table 14-7 shows the reset conditions  
for all the registers.  
TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up  
Brown-out Reset  
Oscillator Configuration  
from SLEEP  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
ER  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
72 ms + 1024 TOSC  
1024 TOSC  
72 ms  
TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOD  
TO  
PD  
0
0
0
1
1
1
1
1
X
X
X
0
1
1
1
1
1
0
X
X
0
0
u
1
1
X
0
X
u
0
u
0
Power-on-reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Detect  
WDT Reset  
WDT Wake-up  
MCLR reset during normal operation  
MCLR reset during SLEEP  
Legend: u = unchanged, x = unknown  
TABLE 14-5: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT  
Value on all  
other resets(1)  
Value on POR  
Reset  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0001 1xxx  
---- 1-0x  
000q quuu  
---- u-uq  
03h  
STATUS  
PCON  
RPO  
TO  
PD  
Z
DC  
C
IRP  
RP1  
8Eh  
OSCF  
POR  
BOD  
Note 1:  
Other (non power-up) resets include MCLR reset, Brown-out Detect and Watchdog Timer Reset during normal operation.  
DS40300B-page 102  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 14-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
000h  
000h  
PC + 1  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
000x xuuu  
uuu1 0uuu  
---- 1-0x  
---- 1-uu  
---- 1-uu  
---- 1-uu  
---- --uu  
---- 1-u0  
---- --uu  
MCLR reset during normal operation  
MCLR reset during SLEEP  
WDT reset  
WDT Wake-up  
Brown-out Detect  
(1)  
Interrupt Wake-up from SLEEP  
PC + 1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector  
(0004h) after execution of PC+1.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 103  
 
PIC16F62X  
TABLE 14-7: INITIALIZATION CONDITION FOR REGISTERS  
MCLR Reset during  
Wake up from  
SLEEP through  
interrupt  
Wake up from  
SLEEP through  
WDT time-out  
normal operation  
MCLR Reset during  
SLEEP  
WDT Reset  
Brown-out Detect (1)  
Register  
Address  
Power-on Reset  
W
-
xxxx xxxx  
-
uuuu uuuu  
-
uuuu uuuu  
-
INDF  
TMR0  
PCL  
00h  
01h  
02h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
000q quuu(4)  
uuuu uuuu  
xxxx u000  
uuuu uuuu  
--uu uuuu  
-000 0000  
--00 0000  
0000 -00x  
0000 0000  
---0 0000  
0000 000u  
uuuq quuu(4)  
uuuu uuuu  
xxxx 0000  
uuuu uuuu  
STATUS  
FSR  
03h  
04h  
05h  
06h  
10h  
12h  
17h  
18h  
1Fh  
0Ah  
0Bh  
0001 1xxx  
xxxx xxxx  
xxxx 0000  
xxxx xxxx  
--00 0000  
-000 0000  
--00 0000  
0000 -00x  
0000 0000  
---0 0000  
0000 000x  
PORTA  
PORTB  
T1CON  
T2CON  
CCP1CON  
RCSTA  
CMCON  
PCLATH  
INTCON  
uu-- uuuu  
---u uuuu  
uuuu uqqq(2)  
-q-- ----(2,5)  
uuuu uuuu  
uu-u uuuu  
uuuu uuuu  
uuuu -uuu  
---- --uu  
PIR1  
OPTION  
TRISA  
TRISB  
PIE1  
0Ch  
81h  
85h  
86h  
8Ch  
8Eh  
98h  
9Ch  
9Fh  
0000 -000  
1111 1111  
11-1 1111  
1111 1111  
0000 -000  
---- 1-0x  
0000 -010  
---- x000  
000- 0000  
0000 -000  
1111 1111  
11-- 1111  
1111 1111  
0000 -000  
---- 1-uq(1,6)  
0000 -010  
PCON  
TXSTA  
EECON1  
VRCON  
---- q000  
000- 0000  
uuu- uuuu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 14-6 for reset value for specific condition.  
5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause  
bit 6 = u.  
6: If reset was due to brown-out, then bit 0 = 0. All other resets will cause bit 0 = u.  
DS40300B-page 104  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 14-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 14-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 14-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 105  
PIC16F62X  
FIGURE 14-13: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
FIGURE 14-14: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
VDD  
33k  
VDD  
VDD  
10k  
MCLR  
D
R
40k  
R1  
PIC16F62X  
MCLR  
PIC16F62X  
C
Note 1: External power-on reset circuit is required only  
if VDD power-up slope is too slow. The diode D  
helps discharge the capacitor quickly when  
VDD powers down.  
Note 1: This circuit will activate reset when VDD  
goes below (Vz + 0.7V) where Vz = Zener  
voltage.  
2: Internal Brown-out Reset circuitry should be  
disabled when using this circuit.  
2: < 40 kis recommended to make sure that  
voltage drop across R does not violate the  
device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current flowing  
into MCLR from external capacitor C in the  
event of MCLR/VPP pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
FIGURE 14-15: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
VDD  
VDD  
R1  
Q1  
MCLR  
R2  
40k  
PIC16F62X  
Note 1: This brown-out circuit is less expensive,  
albeit less accurate. Transistor Q1 turns off  
when VDD is below a certain level such that:  
R1  
= 0.7 V  
VDD x  
R1 + R2  
2: Internal brown-out reset should be disabled  
when using this circuit.  
3: Resistors should be adjusted for the charac-  
teristics of the transistor.  
DS40300B-page 106  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
When an interrupt is responded to, the GIE is cleared  
to disable any further interrupt, the return address is  
pushed into the stack and the PC is loaded with 0004h.  
Once in the interrupt service routine the source(s) of  
the interrupt can be determined by polling the interrupt  
flag bits. The interrupt flag bit(s) must be cleared in soft-  
ware before re-enabling interrupts to avoid RB0/INT  
recursive interrupts.  
14.6  
Interrupts  
The PIC16F62X has 10 sources of interrupt:  
• External Interrupt RB0/INT  
• TMR0 Overflow Interrupt  
• PortB Change Interrupts (pins RB7:RB4)  
• Comparator Interrupt  
• USART Interrupt  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs  
(Figure 14-17). The latency is the same for one or two  
cycle instructions. Once in the interrupt service routine  
the source(s) of the interrupt can be determined by poll-  
ing the interrupt flag bits. The interrupt flag bit(s) must  
be cleared in software before re-enabling interrupts to  
avoid multiple interrupt requests. Individual interrupt  
flag bits are set regardless of the status of their  
corresponding mask bit or the GIE bit.  
• CCP Interrupt  
• TMR1 Overflow Interrupt  
• TMR2 Match Interrupt  
The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has  
individual and global interrupt enable bits.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register. GIE is cleared on reset.  
Note 1: Individual interrupt flag bits are set  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
interrupt routine as well as sets the GIE bit, which  
re-enable RB0/INT interrupts.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The CPU will execute a  
NOP in the cycle immediately following  
the instruction which clears the GIE bit.  
The interrupts which were ignored are  
still pending to be serviced when the GIE  
bit is set again.  
The INT pin interrupt, the RB port change interrupt and  
the TMR0 overflow interrupt flags are contained in the  
INTCON register.  
The peripheral interrupt flag is contained in the special  
register PIR1. The corresponding interrupt enable bit is  
contained in special registers PIE1.  
FIGURE 14-16: INTERRUPT LOGIC  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
T0IF  
T0IE  
TMR1IF  
TMR1IE  
INTF  
INTE  
TMR2IF  
TMR2IE  
RBIF  
RBIE  
CCP1IF  
CCP1IE  
CMIF  
CMIE  
PEIE  
TXIF  
TXIE  
GIE  
RCIF  
RCIE  
EEIF  
EEIE  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 107  
PIC16F62X  
14.6.1 RB0/INT INTERRUPT  
14.6.3 PORTB INTERRUPT  
External interrupt on RB0/INT pin is edge triggered:  
either rising if INTEDG bit (OPTION<6>) is set, or fall-  
ing, if INTEDG bit is clear. When a valid edge appears  
on the RB0/INT pin, the INTF bit (INTCON<1>) is set.  
This interrupt can be disabled by clearing the INTE  
control bit (INTCON<4>). The INTF bit must be cleared  
in software in the interrupt service routine before  
re-enabling this interrupt. The RB0/INT interrupt can  
wake-up the processor from SLEEP, if the INTE bit was  
set prior to going into SLEEP. The status of the GIE bit  
decides whether or not the processor branches to the  
interrupt vector following wake-up. See Section 14.9 for  
details on SLEEP and Figure 14-19 for timing of  
wake-up from SLEEP through RB0/INT interrupt.  
An input change on PORTB <7:4> sets the RBIF  
(INTCON<0>) bit. The interrupt can be enabled/dis-  
abled by setting/clearing the RBIE (INTCON<4>) bit.  
For operation of PORTB (Section 5.2).  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
14.6.4 COMPARATOR INTERRUPT  
See Section 9.6 for complete description of comparator  
interrupts.  
14.6.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will  
set the T0IF (INTCON<2>) bit. The interrupt can  
be enabled/disabled by setting/clearing T0IE  
(INTCON<5>) bit. For operation of the Timer0 module,  
see Section 6.0.  
FIGURE 14-17: INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC  
PC+1  
PC+1  
0005h  
Instruction  
Inst (PC+1)  
Inst (0004h)  
Inst (PC)  
Inst (0005h)  
Inst (0004h)  
fetched  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 Tcy. Synchronous latency = 3 Tcy, where Tcy = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in ER oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
TABLE 14-8: SUMMARY OF INTERRUPT REGISTERS  
Value on all  
other resets(1)  
Value on POR  
Reset  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh  
INTCON  
GIE  
EEIF  
EEIE  
PEIE  
CMIF  
CMIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 -000  
0000 -000  
0000 000u  
0000 -000  
0000 -000  
0Ch  
PIR1  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
8Ch  
PIE1  
Note 1:  
Other (non power-up) resets include MCLR reset, Brown-out Reset and Watchdog Timer Reset during normal operation.  
DS40300B-page 108  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
14.7  
Context Saving During Interrupts  
14.8  
Watchdog Timer (WDT)  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt e.g. W register and STATUS  
register. This will have to be implemented in software.  
The watchdog timer is a free running on-chip RC oscil-  
lator which does not require any external components.  
This RC oscillator is separate from the ER oscillator of  
the CLKIN pin. That means that the WDT will run, even  
if the clock on the OSC1 and OSC2 pins of the device  
has been stopped, for example, by execution of a  
SLEEP instruction. During normal operation, a WDT  
time-out generates a device RESET. If the device is in  
SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation. The WDT  
can be permanently disabled by programming the con-  
figuration bit WDTE as clear (Section 14.1).  
Example 14-1 stores and restores the STATUS and W  
registers. The user register, W_TEMP, must be defined  
in both banks and must be defined at the same offset  
from the bank base address (i.e., W_TEMP is defined  
at 0x20 in Bank 0 and it must also be defined at 0xA0  
in Bank 1). The user register, STATUS_TEMP, must be  
defined in Bank 0. The Example 14-1:  
• Stores the W register  
14.8.1 WDT PERIOD  
• Stores the STATUS register in Bank 0  
• Executes the ISR code  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
ture, VDD and process variations from part to part (see  
DC specs). If longer time-out periods are desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
• Restores the STATUS (and bank select bit  
register)  
• Restores the W register  
EXAMPLE 14-1: SAVING THE STATUS AND  
W REGISTERS IN RAM  
MOVWF  
W_TEMP  
;copy W to temp register,  
;could be in either bank  
The CLRWDTand SLEEPinstructions clear the WDT  
and the postscaler, if assigned to the WDT, and prevent  
it from timing out and generating a device RESET.  
SWAPF  
BCF  
STATUS,W  
;swap status to be saved into W  
STATUS,RP0  
;change to bank 0 regardless  
;of current bank  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
MOVWF  
STATUS_TEMP  
(ISR)  
;save status to bank 0  
;register  
:
14.8.2 WDT PROGRAMMING CONSIDERATIONS  
:
:
It should also be taken in account that under worst case  
conditions (VDD = Min., Temperature = Max., max.  
WDT prescaler) it may take several seconds before a  
WDT time-out occurs.  
SWAPF  
STATUS_TEMP,W ;swap STATUS_TEMP register  
;into W, sets bank to original  
;state  
MOVWF  
SWAPF  
SWAPF  
STATUS  
;move W into STATUS register  
;swap W_TEMP  
W_TEMP,F  
W_TEMP,W  
;swap W_TEMP into W  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 109  
 
PIC16F62X  
FIGURE 14-18: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-6)  
0
M
U
X
Postscaler  
8
1
Watchdog  
Timer  
PS<2:0>  
To TMR0 (Figure 6-6)  
PSA  
8 - to -1 MUX  
PSA  
WDT  
Enable Bit  
1
0
MUX  
WDT  
Time-out  
Note: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.  
TABLE 14-9: SUMMARY OF WATCHDOG TIMER REGISTERS  
Value on Value on  
POR  
Reset  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
81h  
Config. bits  
OPTION  
LVP  
BOREN  
INTEDG  
MCLRE  
T0CS  
FOSC2  
T0SE  
PWRTE  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
RBPU  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note: _ = Unimplemented location, read as “0”  
+ = Reserved for future use  
DS40300B-page 110  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
The first event will cause a device reset. The two latter  
events are considered a continuation of program exe-  
cution. The TO and PD bits in the STATUS register can  
be used to determine the cause of device reset. PD  
bit, which is set on power-up is cleared when SLEEP is  
invoked. TO bit is cleared if WDT Wake-up occurred.  
14.9  
Power-Down Mode (SLEEP)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit in the STATUS register is  
cleared, the TO bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before SLEEP was executed (driving high, low, or  
hi-impedance).  
When the SLEEP instruction is being executed, the  
next instruction (PC + 1) is pre-fetched. For the device  
to wake-up through an interrupt event, the correspond-  
ing interrupt enable bit must be set (enabled). Wake-up  
is regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEPinstruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have an NOPafter the SLEEPinstruction.  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD, or VSS, with no external  
circuitry drawing current from the I/O pin and the com-  
parators and VREF should be disabled. I/O pins that are  
hi-impedance inputs should be pulled high or low exter-  
nally to avoid switching currents caused by floating  
inputs. The T0CKI input should also be at VDD or VSS  
for lowest current consumption. The contribution from  
on chip pull-ups on PORTB should be considered.  
Note: If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wakeup from sleep. The sleep  
instruction is completely executed.  
The MCLR pin must be at a logic high level (VIHMC).  
Note: It should be noted that a RESET generated  
by a WDT time-out does not drive MCLR  
pin low.  
14.9.1 WAKE-UP FROM SLEEP  
The WDT is cleared when the device wakes-up from  
sleep, regardless of the source of wake-up.  
The device can wake-up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin  
2. Watchdog Timer Wake-up (if WDT was enabled)  
3. Interrupt from RB0/INT pin, RB Port change, or  
the Peripheral Interrupt (Comparator).  
FIGURE 14-19: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale). Approximately 1 µs delay will be there for ER osc mode.  
3: GIE = ’1’ assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 111  
PIC16F62X  
14.10 Code Protection  
FIGURE 14-20: TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
CONNECTION  
To Normal  
Connections  
Note: The entire data EEPROM and FLASH  
program memory will be erased when the  
code protection is turned off. The INTRC  
calibration data is not erased.  
External  
Connector  
Signals  
PIC16F62X  
+5V  
0V  
VDD  
VSS  
14.11 ID Locations  
VPP  
RA5/MCLR/THV  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during program/verify. Only the  
least significant 4 bits of the ID locations are used.  
RB6  
RB7  
CLK  
Data I/O  
VDD  
14.12 In-Circuit Serial Programming  
To Normal  
Connections  
The PIC16F62X microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
14.13 Low Voltage Programming  
The LVP bit of the configuration word, enables the low  
voltage programming. This mode allows the microcon-  
troller to be programmed via ICSP using only a 5V  
source. This mode removes the requirement of VIHH to  
be placed on the MCLR pin. The LVP bit is normally  
erased to ’1’ which enables the low voltage program-  
ming. In this mode, the RB4/PGM pin is dedicated to  
the programming function and ceases to be a general  
purpose I/O pin. The device will enter programming  
mode when a ’1’ is placed on the RB4/PGM pin. The  
HV programming mode is still available by placing VIHH  
on the MCLR pin.  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14-bits of program data  
are then supplied to or from the device, depending if the  
command was a load or a read. For complete details of  
serial programming, please refer to the Programming  
Specifications.  
Note 1: While in this mode the RB4 pin can no  
longer be used as a general purpose I/O  
pin.  
2: VDD must be 5.0V +10% during erase/pro-  
gram operations while in low voltage pro-  
gramming mode.  
A typical in-circuit serial programming connection is  
shown in Figure 14-20.  
If Low-voltage programming mode is not used, the LVP  
bit can be programmed to a ’0’ and RB4/PGM becomes  
a digital I/O pin. To program the device, VIHH must be  
placed onto MCLR during programming. The LVP bit  
may only be programmed when programming is  
entered with VIHH on MCLR. The LVP bit cannot be  
programmed when programming is entered with  
RB4/PGM.  
It should be noted, that once the LVP bit is programmed  
to 0, only the high voltage programming mode is avail-  
able and only high voltage programming mode can be  
used to program the device.  
DS40300B-page 112  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
15.0 INSTRUCTION SET SUMMARY  
Each PIC16F62X instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16F62X instruc-  
tion set summary in Table 15-2 lists byte-oriented,  
bit-oriented, and literal and control operations.  
Table 15-1 shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of an  
instruction. In this case, the execution takes two  
instruction cycles with the second cycle executed as a  
NOP. One instruction cycle consists of four oscillator  
periods. Thus, for an oscillator frequency of 4 MHz, the  
For byte-oriented instructions, ’f’ represents a file  
register designator and ’d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
normal instruction execution time is 1 µs. If  
a
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
conditional test is true or the program counter is  
changed as a result of an instruction, the instruction  
execution time is 2 µs.  
Table 15-1 lists the instructions recognized by the  
MPASM assembler.  
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
Figure 15-1 shows the three general formats that the  
instructions can have.  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
Note: To maintain upward compatibility with  
future PICmicro® products, do not use the  
OPTIONand TRISinstructions.  
TABLE 15-1: OPCODE FIELD  
DESCRIPTIONS  
All examples use the following format to represent a  
hexadecimal number:  
Field  
Description  
0xhh  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
where h signifies a hexadecimal digit.  
FIGURE 15-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don’t care location (= 0 or 1)  
Byte-oriented file register operations  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
label Label name  
TOS Top of Stack  
PC Program Counter  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
PCLATH  
Program Counter High Latch  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
b = 3-bit bit address  
f = 7-bit file register address  
PD Power-down bit  
Literal and control operations  
dest Destination either the W register or the specified  
register file location  
General  
[ ] Options  
13  
8
7
0
0
Contents  
( )  
OPCODE  
k (literal)  
Assigned to  
k = 8-bit immediate value  
Register bit field  
In the set of  
< >  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
User defined term (font is courier)  
italics  
k (literal)  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 113  
 
 
PIC16F62X  
TABLE 15-2: PIC16F62X INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS40300B-page 114  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
15.1  
Instruction Descriptions  
ANDLW  
AND Literal with W  
ADDLW  
Add Literal and W  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
[ label ] ADDLW  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 k 255  
(W) + k (W)  
C, DC, Z  
(W) .AND. (k) (W)  
Operation:  
Z
Status Affected:  
Encoding:  
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of the W register are  
added to the eight bit literal ’k’ and the  
result is placed in the W register.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ANDLW  
0x5F  
ADDLW  
0x15  
Before Instruction  
Before Instruction  
W
=
0xA3  
0x03  
W
=
0x10  
0x25  
After Instruction  
After Instruction  
W
=
W
=
ADDWF  
Syntax:  
Add W and f  
ANDWF  
Syntax:  
AND W with f  
[ label ] ADDWF f,d  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected:  
Encoding:  
C, DC, Z  
Status Affected:  
Encoding:  
Z
00  
0111  
dfff  
ffff  
00  
0101  
dfff  
ffff  
Add the contents of the W register  
with register ’f’. If ’d’ is 0 the result is  
stored in the W register. If ’d’ is 1 the  
result is stored back in register ’f’.  
AND the W register with register 'f'. If  
'd' is 0 the result is stored in the W  
register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ADDWF  
FSR,  
0
ANDWF  
FSR, 1  
Before Instruction  
Before Instruction  
W
FSR =  
=
0x17  
0xC2  
W
FSR =  
=
0x17  
0xC2  
After Instruction  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
W
FSR =  
=
0x17  
0x02  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 115  
PIC16F62X  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[ label ] BCF f,b  
Syntax:  
[ label ] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
If bit ’b’ in register ’f’ is ’0’ then the next  
instruction is skipped.  
Bit ’b’ in register ’f’ is cleared.  
Description:  
1
1
If bit ’b’ is ’0’ then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a  
two-cycle instruction.  
Cycles:  
BCF  
FLAG_REG, 7  
Example  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
Words:  
Cycles:  
Example  
1
1(2)  
FLAG_REG = 0x47  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address TRUE  
if FLAG<1>=1,  
PC =  
address FALSE  
BSF  
Bit Set f  
Syntax:  
Operands:  
[ label ] BSF f,b  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
1 (f<b>)  
None  
01  
01bb  
bfff  
ffff  
Bit ’b’ in register ’f’ is set.  
1
1
Cycles:  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS40300B-page 116  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] CLRF  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
0 f 127  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Z
01  
11bb  
bfff  
ffff  
00  
0001  
1fff  
ffff  
If bit ’b’ in register ’f’ is ’1’ then the next  
instruction is skipped.  
If bit ’b’ is ’1’, then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
The contents of register ’f’ are cleared  
and the Z bit is set.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
CLRF  
FLAG_REG  
Words:  
Cycles:  
Example  
1
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Z
1(2)  
=
0x5A  
HERE  
FALSE  
TRUE  
BTFSS FLAG,1  
=
=
0x00  
1
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
CLRW  
Clear W  
Syntax:  
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
00h (W)  
1 Z  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
0001  
0000  
0011  
10  
0kkk  
kkkk  
kkkk  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
Description:  
Words:  
Cycles:  
Example  
1
1
CLRW  
Words:  
Cycles:  
Example  
1
2
Before Instruction  
W
=
0x5A  
After Instruction  
HERE  
CALL THERE  
W
=
0x00  
1
Before Instruction  
Z
=
PC  
=
Address HERE  
After Instruction  
PC  
= Address THERE  
TOS = Address HERE+1  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 117  
PIC16F62X  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 127  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
00h WDT  
0 WDT prescaler,  
1 TO  
Operation:  
(f) - 1 (dest)  
Status Affected:  
Encoding:  
Z
1 PD  
00  
0011  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
Decrement register ’f’. If ’d’ is 0 the  
result is stored in the W register. If ’d’  
is 1 the result is stored back in register  
’f’.  
Description:  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the  
Description:  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits TO  
and PD are set.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
DECF  
CNT, 1  
1
Before Instruction  
CLRWDT  
CNT  
Z
=
=
0x01  
0
Before Instruction  
After Instruction  
WDT counter  
After Instruction  
=
=
?
CNT  
Z
=
=
0x00  
1
WDT counter  
0x00  
WDT prescaler=  
0
1
1
TO  
PD  
=
=
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) - 1 (dest); skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1001  
dfff  
ffff  
00  
1011  
dfff  
ffff  
The contents of register ’f’ are  
The contents of register ’f’ are  
Description:  
Description:  
decremented. If ’d’ is 0 the result is  
placed in the W register. If ’d’ is 1 the  
result is placed back in register ’f’.  
If the result is 0, the next instruction,  
which is already fetched, is discarded. A  
NOPis executed instead making it a  
two-cycle instruction.  
complemented. If ’d’ is 0 the result is  
stored in W. If ’d’ is 1 the result is  
stored back in register ’f’.  
Words:  
Cycles:  
Example  
1
1
COMF  
REG1,0  
Words:  
Cycles:  
Example  
1
Before Instruction  
1(2)  
REG1  
After Instruction  
REG1  
=
0x13  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
=
=
0x13  
0xEC  
CONTINUE •  
W
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
=
=
DS40300B-page 118  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d
[0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (dest), skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
10  
1kkk  
kkkk  
kkkk  
00  
1111  
dfff  
ffff  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
The contents of register ’f’ are  
Description:  
Description:  
incremented. If ’d’ is 0 the result is  
placed in the W register. If ’d’ is 1 the  
result is placed back in register ’f’.  
If the result is 0, the next instruction,  
which is already fetched, is discarded.  
A NOPis executed instead making it a  
two-cycle instruction.  
Words:  
Cycles:  
Example  
1
2
Words:  
Cycles:  
Example  
1
GOTO THERE  
1(2)  
After Instruction  
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
PC  
=
Address THERE  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
INCF  
Increment f  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. k (W)  
Z
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
Z
11  
1000  
kkkk  
kkkk  
00  
1010  
dfff  
ffff  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register ’f’ are  
Description:  
incremented. If ’d’ is 0 the result is  
placed in the W register. If ’d’ is 1 the  
result is placed back in register ’f’.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
IORLW  
0x35  
Before Instruction  
INCF  
CNT, 1  
W
=
0x9A  
Before Instruction  
After Instruction  
CNT  
Z
=
=
0xFF  
0
W
=
0xBF  
1
Z
=
After Instruction  
CNT  
Z
=
=
0x00  
1
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 119  
PIC16F62X  
IORWF  
Inclusive OR W with f  
MOVF  
Move f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .OR. (f) (dest)  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0100  
dfff  
ffff  
00  
1000  
dfff  
ffff  
Inclusive OR the W register with  
register ’f’. If ’d’ is 0 the result is placed  
in the W register. If ’d’ is 1 the result is  
placed back in register ’f’.  
The contents of register f is moved to  
a destination dependent upon the  
status of d. If d = 0, destination is W  
register. If d = 1, the destination is file  
register f itself. d = 1 is useful to test a  
file register since status flag Z is  
affected.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
IORWF  
RESULT, 0  
Words:  
Cycles:  
Example  
1
1
Before Instruction  
RESULT =  
0x13  
0x91  
MOVF  
FSR, 0  
W
=
After Instruction  
After Instruction  
RESULT =  
W
Z
0x13  
0x93  
1
W = value in FSR register  
=
=
Z
= 1  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
Syntax:  
f
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W)  
None  
None  
11  
00xx  
kkkk  
kkkk  
00  
0000  
1fff  
ffff  
The eight bit literal ’k’ is loaded into W  
register. The don’t cares will assemble  
as 0’s.  
Move data from W register to register  
'f'.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
MOVWF  
OPTION  
MOVLW  
0x5A  
Before Instruction  
After Instruction  
OPTION =  
0xFF  
0x4F  
W
=
0x5A  
W
=
After Instruction  
OPTION =  
0x4F  
0x4F  
W
=
DS40300B-page 120  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
Syntax:  
Syntax:  
[ label ] RETFIE  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting Global Interrupt Enable bit,  
GIE (INTCON<7>). This is a two-cycle  
instruction.  
Description:  
1
Cycles:  
1
NOP  
Example  
Words:  
Cycles:  
Example  
1
2
RETFIE  
After Interrupt  
PC  
GIE =  
=
TOS  
1
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(W) OPTION  
k (W);  
TOS PC  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code  
compatibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly  
address it.  
Description:  
11  
01xx  
kkkk  
kkkk  
The W register is loaded with the eight  
bit literal ’k’. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
Description:  
Words:  
Cycles:  
Example  
1
2
Words:  
Cycles:  
Example  
1
1
CALL TABLE  
;W contains table  
;offset value  
;W now has table  
To maintain upward compatibility  
value  
®
with future PICmicro products, do  
TABLE  
not use this instruction.  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 121  
PIC16F62X  
RETURN  
Return from Subroutine  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
TOS PC  
None  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
00  
0000  
0000  
1000  
00  
1100  
dfff  
ffff  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two cycle instruction.  
The contents of register ’f’ are rotated  
one bit to the right through the Carry  
Flag. If ’d’ is 0 the result is placed in  
the W register. If ’d’ is 1 the result is  
placed back in register ’f’.  
Description:  
Words:  
Cycles:  
Example  
1
2
C
Register f  
RETURN  
After Interrupt  
Words:  
Cycles:  
Example  
1
1
PC  
=
TOS  
RRF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
[ label ] SLEEP  
None  
0 f 127  
Operands:  
Operation:  
d
[0,1]  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
0 PD  
00  
1101  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
The contents of register ’f’ are rotated  
one bit to the left through the Carry  
Flag. If ’d’ is 0 the result is placed in  
the W register. If ’d’ is 1 the result is  
stored back in register ’f’.  
Description:  
00  
0000  
0110  
0011  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its  
Description:  
C
Register f  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 14.9 for more details.  
Words:  
Cycles:  
Example  
1
1
Words:  
1
RLF  
REG1,0  
Cycles:  
Example:  
1
Before Instruction  
SLEEP  
REG1  
=
=
1110 0110  
0
C
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
DS40300B-page 122  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ]  
SUBLW k  
[ label ]  
SUBWF f,d  
Operands:  
Operation:  
0 k 255  
Operands:  
0 f 127  
d
[0,1]  
k - (W) → (W)  
Operation:  
(f) - (W) → (dest)  
Status  
C, DC, Z  
Affected:  
Status  
C, DC, Z  
Affected:  
Encoding:  
11  
110x  
kkkk  
kkkk  
Encoding:  
00  
0010  
dfff  
ffff  
The W register is subtracted (2’s com-  
plement method) from the eight bit literal  
'k'. The result is placed in the W register.  
Description:  
Subtract (2’s complement method)  
Description:  
W register from register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is 1  
the result is stored back in register 'f'.  
Words:  
1
1
Cycles:  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Example 1:  
SUBWF  
REG1,1  
W
C
=
=
1
?
Before Instruction  
REG1  
W
C
=
=
=
3
2
?
After Instruction  
W
C
=
=
1
1; result is positive  
After Instruction  
Example 2:  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
W
C
=
=
2
?
1; result is positive  
After Instruction  
Example 2:  
Before Instruction  
W
C
=
=
0
REG1  
W
=
=
=
2
2
?
1; result is zero  
C
Before Instruction  
After Instruction  
W
C
=
=
3
?
REG1  
W
C
=
=
=
0
2
After Instruction  
1; result is zero  
W
C
=
=
0xFF  
0; result is nega-  
Example 3:  
Before Instruction  
tive  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
0xFF  
2
0; result is negative  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 123  
PIC16F62X  
SWAPF  
Syntax:  
Swap Nibbles in f  
XORLW  
Exclusive OR Literal with W  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
d
[0,1]  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
11  
1010 kkkk kkkk  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the  
W register.  
Description:  
00  
1110  
dfff  
ffff  
The upper and lower nibbles of  
Description:  
register ’f’ are exchanged. If ’d’ is 0  
the result is placed in W register. If ’d’  
is 1 the result is placed in register ’f’.  
Words:  
1
Cycles:  
Example:  
1
Words:  
Cycles:  
Example  
1
1
XORLW 0xAF  
Before Instruction  
SWAPF REG,  
0
W
=
0xB5  
0x1A  
Before Instruction  
REG1  
After Instruction  
=
0xA5  
W
=
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
TRIS  
Load TRIS Register  
XORWF  
Syntax:  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 127  
Syntax:  
[ label ] TRIS  
f
Operands:  
Operation:  
5 f 7  
Operands:  
d
[0,1]  
(W) TRIS register f;  
Status Affected: None  
Operation:  
(W) .XOR. (f) → (dest)  
00  
Encoding:  
0000 0110  
0fff  
Status Affected:  
Encoding:  
Z
The instruction is supported for code  
compatibility with the PIC16C5X  
products. Since TRIS registers are  
readable and writable, the user can  
directly address them.  
Description:  
00  
0110  
dfff  
ffff  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd'  
is 1 the result is stored back in register  
'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
REG  
1
XORWF  
®
with future PICmicro products, do  
Before Instruction  
not use this instruction.  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS40300B-page 124  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
MPLAB allows you to:  
16.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Integrated Development Environment  
- MPLAB™ IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
• Simulators  
The ability to use MPLAB with Microchip’s simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
• Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- PICMASTER®/PICMASTER-CE In-Circuit  
16.2  
MPASM Assembler  
Emulator  
MPASM is a full featured universal macro assembler for  
all PICmicro MCU’s. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- ICEPIC™  
• In-Circuit Debugger  
- MPLAB-ICD for PIC16F877  
• Device Programmers  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
• Low-Cost Demonstration Boards  
- SIMICE  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
MPASM features include:  
- PICDEM-17  
- SEEVAL  
• MPASM and MPLINK are integrated into MPLAB  
projects.  
- KEELOQ  
• MPASM allows user defined macros to be created  
for streamlined assembly.  
16.1  
MPLAB Integrated Development  
Environment Software  
• MPASM allows conditional assembly for multi pur-  
pose source files.  
• MPASM directives allow complete control over the  
assembly process.  
- The MPLAB IDE software brings an ease of  
software development previously unseen in  
the 8-bit microcontroller market. MPLAB is a  
Windows -based application which contains:  
16.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
• Multiple functionality  
- editor  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 125  
PIC16F62X  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
16.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
• MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
• MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
16.7  
PICMASTER/PICMASTER CE  
The PICMASTER system from Microchip Technology is  
a full-featured, professional quality emulator system.  
This flexible in-circuit emulator provides a high-quality,  
universal platform for emulating Microchip 8-bit  
PICmicro microcontrollers (MCUs). PICMASTER sys-  
tems are sold worldwide, with a CE compliant model  
available for European Union (EU) countries.  
MPLIB features include:  
• MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
• MPLIB helps keep code maintainable by grouping  
related modules together.  
• MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
16.8  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X, and PIC16CXXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXXX products through the use of  
interchangeable personality modules or daughter  
boards. The emulator is capable of emulating without  
target application circuitry being present.  
16.5  
MPLAB-SIM Software Simulator  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
16.9  
MPLAB-ICD In-Circuit Debugger  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. MPLAB-ICD utilizes the  
In-Circuit Debugging capability built into the  
PIC16F87X. This feature, along with Microchip’s In-Cir-  
cuit Serial Programming protocol, offers cost-effective  
in-circuit flash programming and debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by watching variables,  
single-stepping and setting break points. Running at  
full speed enables testing hardware in real-time. The  
MPLAB-ICD is also a programmer for the flash  
PIC16F87X family.  
16.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
DS40300B-page 126  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
16.10 PRO MATE II Universal Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
16.14 PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
16.11 PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
16.12 SIMICE Entry-Level  
Hardware Simulator  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB-SIM. Both SIMICE  
and MPLAB-SIM run under Microchip Technology’s  
MPLAB Integrated Development Environment (IDE)  
software. Specifically, SIMICE provides hardware sim-  
ulation for Microchip’s PIC12C5XX, PIC12CE5XX, and  
PIC16C5X families of PICmicro 8-bit microcontrollers.  
SIMICE works in conjunction with MPLAB-SIM to pro-  
vide non-real-time I/O port emulation. SIMICE enables  
a developer to run simulator code for driving the target  
system. In addition, the target system can provide input  
to the simulator code. This capability allows for simple  
and interactive debugging without having to manually  
generate MPLAB-SIM stimulus files. SIMICE is a valu-  
able debugging tool for entry-level system develop-  
ment.  
16.15 PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
16.13  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 127  
PIC16F62X  
16.16 PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
16.17 SEEVAL Evaluation and Programming  
System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
16.18  
KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS40300B-page 128  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP  
5 1 2 0 P M C  
X X R X F C M  
X X  
H C S X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X X 7 C 7 C 1 P I  
X 4 C 7 C 1 P I  
X X 9 C 6 C 1 P I  
X 8 X 1 6 C I F P  
X 8 C 6 C 1 P I  
X X 7 C 6 C 1 P I  
X 7 C 6 C 1 P I  
X 6 2 6 1 F C I P  
X X C 6 X C 1 P I  
X 6 C 6 C 1 P I  
X 5 C 6 C 1 P I  
0 0 4 0 1 C I P  
X X C 2 X C 1 P I  
s l o o e T a r f t o w S s r o t a u l E m e r g g b e u D s m e a r m o g P r r  
t i s K v a E l d a n d s a r o B o m e D  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 129  
PIC16F62X  
NOTES:  
DS40300B-page 130  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
17.0 ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-40 to +125°C  
Storage temperature.............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ........................................................................................................... -0.3 to +6.5V  
Voltage on MCLR and RA4 with respect to VSS ..........................................................................................-0.3 to +14V  
Voltage on all other pins with respect to VSS ....................................................................................-0.3V to VDD + 0.3V  
Total power dissipation (Note 1)...........................................................................................................................800 mW  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... ± 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD)............................................................................................................... ± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB....................................................................................................200 mA  
Maximum current sourced by PORTA and PORTB ..............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
Note: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a "low" level to the MCLR pin rather  
than pulling this pin directly to VSS.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 131  
PIC16F62X  
FIGURE 17-1: PIC16F62X VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 17-2: PIC16F62X VOLTAGE-FREQUENCY GRAPH, -40°C TA < 0°C, +70°C < TA 85°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS40300B-page 132  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 17-3: PIC16LF62X VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
2.0  
20  
0
4
10  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 17-4: PIC16LF62X VOLTAGE-FREQUENCY GRAPH, -40°C TA < 0°C, +70°C < TA 85°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 133  
PIC16F62X  
17.1  
DC CHARACTERISTICS:  
PIC16F62X-04 (Commercial, Industrial, Extended)  
PIC16F62X-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature –40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
–40°C TA +125°C for extended  
Param Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
D002  
VDD  
VDR  
Supply Voltage  
3.0  
-
5.5  
V
RAM Data Retention  
Voltage (Note 1)  
1.5*  
V
Device in SLEEP mode  
See section on power-on reset for details  
D003  
D004  
D005  
VPOR  
SVDD  
VBOD  
IDD  
VDD start voltage to  
ensure Power-on Reset  
Vss  
V
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See section on power-on reset for details  
Brown-out Detect Voltage  
3.7  
3.7  
4.0  
4.0  
4.3  
4.4  
V
BODEN configuration bit is cleared  
(Extended)  
D010  
D013  
Supply Current (Note 2, 5)  
0.7  
mA FOSC = 4.0 MHZ, VDD = 3.0  
4.0  
7.0  
6.0  
2.0  
mA FOSC = 20.0 MHz, VDD = 5.5  
mA FOSC = 20.0 MHz, VDD = 4.5  
mA FOSC = 10.0 MHz, VDD = 3.0  
D020  
IPD  
Power Down Current (Note 3)  
2.2  
5.0  
9.0  
µA  
µA  
µA  
µA  
VDD = 3.0  
VDD = 4.5  
VDD = 5.5  
VDD = 5.5 Extended  
15.0  
IWDT  
IBOD  
WDT Current (Note 4)  
6.0  
20  
25  
125  
50  
µA  
µA  
µA  
µA  
VDD=4.0V  
(125°C)  
BOD enabled, VDD = 5.0V  
VDD = 4.0V  
D023  
1A  
Brown-out Detect Current (Note 4)  
ICOMP Comparator Current for each  
Comparator (Note 4)  
75  
30  
IVREF VREF Current (Note 4)  
135  
µA  
VDD = 4.0V  
FOSC  
LP Oscillator Operating Frequency  
INTRC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
200  
4
4
KHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
5: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the  
formula Ir = VDD/2Rext (mA) with Rext in kΩ.  
DS40300B-page 134  
Preliminary  
1999 Microchip Technology Inc.  
 
PIC16F62X  
17.2  
DC CHARACTERISTICS:  
PIC16LF62X-04 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature –40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
–40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Table 17.1 and Table 12-2  
Param Sym  
No.  
Characteristic Min Typ† Max Units Conditions  
D001  
D002  
VDD  
VDR  
Supply Voltage  
2.0  
-
5.5  
V
RAM Data Retention  
Voltage (Note 1)  
1.5*  
V
Device in SLEEP mode  
D003  
D004  
VPOR  
SVDD  
VDD start voltage to  
ensure Power-on Reset  
VSS  
V
See section on Power-on Reset for  
details  
VDD rise rate to ensure  
Power-on Reset  
0.05*  
V/ms See section on Power-on Reset for  
details  
D005  
D010  
VBOD  
IDD  
Brown-out Detect Voltage  
Supply Current (Note 2, 5)  
3.7  
4.0  
4.3  
0.6  
V
BODEN configuration bit is cleared  
mA FOSC = 4.0 MHZ, VDD = 2.5  
D013  
4.0  
7.0  
6.0  
2.0  
mA FOSC = 20.0 MHz, VDD = 5.5  
mA FOSC = 20.0 MHz, VDD = 4.5  
mA FOSC = 10.0 MHz, VDD = 3.0  
D020  
IPD  
Power Down Current (Note 2)  
2.0  
2.2  
5.0  
9.0  
15.0  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5  
VDD = 3.0  
VDD = 4.5  
VDD = 5.5  
VDD = 5.5 Extended  
IWDT  
IBOD  
ICOMP  
WDT Current (Note 4)  
6.0  
75  
15  
125  
µA  
µA  
VDD=3.0V  
BOD enabled, VDD = 5.0V  
D023  
1A  
Brown-out Detect Current (Note 4)  
Comparator Current for each  
Comparator (Note 4)  
30  
50  
135  
µA  
µA  
VDD = 3.0V  
VDD = 3.0V  
IVREF  
FOSC  
VREF Current (Note 4)  
LP Oscillator Operating Frequency  
INTRC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
200  
4
4
KHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consump-  
tion.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the  
part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD to VSS.  
4: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base  
IDD or IPD measurement.  
5: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the for-  
mula Ir = VDD/2Rext (mA) with Rext in kΩ.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 135  
PIC16F62X  
17.3 DC CHARACTERISTICS: PIC16F62X (Commercial, Industrial, Extended)  
PIC16LF62X (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
–40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
–40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Table 17.1 and Table 12-2  
Param. Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Unit  
Conditions  
VIL  
Input Low Voltage  
I/O ports  
with TTL buffer  
D030  
VSS  
-
-
0.8V  
V
VDD = 4.5V to 5.5V  
otherwise  
0.15VDD  
0.2VDD  
0.2VDD  
D031  
D032  
with Schmitt Trigger input  
MCLR, RA4/T0CKI,OSC1 (in ER  
mode)  
VSS  
Vss  
V
V
Note1  
D033  
OSC1 (in XT and HS)  
OSC1 (in LP)  
Vss  
Vss  
-
-
0.3VDD  
V
V
0.6VDD-1.0  
VIH Input High Voltage  
I/O ports  
-
-
D040  
with TTL buffer  
2.0V  
.25VDD + 0.8V  
0.8VDD  
VDD  
VDD  
VDD  
V
VDD = 4.5V to 5.5V  
otherwise  
D041  
D042  
D043  
D043A  
D070  
with Schmitt Trigger input  
MCLR RA4/T0CKI  
OSC1 (XT, HS and LP)  
OSC1 (in ER mode)  
0.8VDD  
0.7VDD  
0.9VDD  
-
-
VDD  
VDD  
V
V
Note1  
IPURB PORTB weak pull-up current  
Input Leakage Current  
50  
200  
400  
µA VDD = 5.0V, VPIN = VSS  
IIL  
(Notes 2, 3)  
I/O ports (Except PORTA)  
PORTA  
±1.0  
±0.5  
±1.0  
±5.0  
µA VSS VPIN VDD, pin at hi-impedance  
µA Vss VPIN VDD, pin at hi-impedance  
D060  
D061  
D063  
-
-
-
-
-
-
RA4/T0CKI  
µA Vss VPIN VDD  
OSC1, MCLR  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
VOL Output Low Voltage  
D080  
D083  
I/O ports  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL=8.5 mA, VDD=4.5V, -40° to +85°C  
IOL=7.0 mA, VDD=4.5V, +125°C  
IOL=1.6 mA, VDD=4.5V, -40° to +85°C  
IOL=1.2 mA, VDD=4.5V, +125°C  
OSC2/CLKOUT (ER only)  
VOH Output High Voltage (Note 3)  
D090  
D092  
*D150  
I/O ports (Except RA4)  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
-
-
-
-
-
-
V
V
V
V
V
IOH=-3.0 mA, VDD=4.5V, -40° to +85°C  
IOH=-2.5 mA, VDD=4.5V, +125°C  
IOH=-1.3 mA, VDD=4.5V, -40° to +85°C  
IOH=-1.0 mA, VDD=4.5V, +125°C  
RA4 pin PIC16F62X, PIC16LF62X  
-
OSC2/CLKOUT (ER only)  
-
-
VOD Open-Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
8.5*  
D100  
COSC2 OSC2 pin  
-
-
15  
50  
pF In XT, HS and LP modes when external  
clock used to drive OSC1.  
pF  
D101  
Cio All I/O pins/OSC2 (in ER mode)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: In ER oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16F62X be driven with  
external clock in ER mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operat-  
ing conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
DS40300B-page 136  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 17-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD <5.5V, -40°C < TA < +125°C, unless otherwise stated.  
Param  
No.  
Characteristics  
Sym  
Min  
Typ  
Max  
± 10  
Units  
mV  
Comments  
D300  
Input offset voltage  
Input common mode voltage*  
VIOFF  
VICM  
-
± 5.0  
D301  
D302  
0
55  
-
-
VDD - 1.5  
V
Common Mode Rejection Ratio* CMRR  
-
-
db  
Response Time(1)*  
300  
300A  
TRESP  
150  
400  
600  
ns  
ns  
16F62X  
16LF62X  
301  
Comparator Mode Change to  
Output Valid*  
TMC2OV  
-
-
10  
µs  
* These parameters are characterized but not tested.  
Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from VSS to VDD.  
TABLE 17-2: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.  
Spec  
No.  
Characteristics  
Resolution  
Sym  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
-
VDD/32 LSb  
D311  
Absolute Accuracy  
VRAA  
-
-
-
-
1/4  
1/2  
LSb  
LSb  
Low Range (VRR = 1)  
High Range (VRR = 0)  
D312  
310  
Unit Resistor Value (R)*  
Settling Time(1)*  
VRUR  
TSET  
-
-
2k  
-
-
10  
µs  
* These parameters are characterized but not tested.  
Settling time measured while VRR = 1 and VR<3:0> transitions from 0000to 1111.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 137  
PIC16F62X  
17.4  
Timing Parameter Symbology  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
ck  
T
Time  
CLKOUT  
I/O port  
MCLR  
osc  
t0  
OSC1  
T0CKI  
io  
mc  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-Impedance  
FIGURE 17-5: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
TABLE 17-3: DC CHARACTERISTICS: PIC16F62X, PIC16LF62X  
Standard Operating Conditions (unless otherwise stated)  
DC Characteristics  
Parameter  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
Data EEPROM Memory  
D120  
Ed  
Endurance  
1M*  
10M  
E/W 25°C at 5V  
D121  
Vdrw VDD for read/write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D122  
Tdew Erase/Write cycle time  
4
8*  
ms  
Program Flash Memory  
D130  
D131  
Ep  
Vpr  
Endurance  
VDD for read  
1000*  
Vmin  
10000  
5.5  
E/W  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
Vpew VDD for erase/write  
Tpew Erase/Write cycle time  
4.5  
4
5.5  
8*  
V
ms  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS40300B-page 138  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
17.5  
Timing Diagrams and Specifications  
FIGURE 17-6: EXTERNAL CLOCK TIMING  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
Fosc External CLKIN Frequency  
(Note 1)  
DC  
4
MHz XT and ER osc mode,  
VDD=5.0V  
DC  
DC  
20  
MHz HS osc mode  
kHz LP osc mode  
200  
Oscillator Frequency  
(Note 1)  
4
4
MHz ER osc mode, VDD=5.0V  
0.1  
1
MHz XT osc mode  
20  
200  
MHz HS osc mode  
kHz LP osc mode  
4
MHz INTRC mode (fast)  
kHz INTRC mode (slow)  
37  
1
Tosc  
External CLKIN Period  
(Note 1)  
250  
50  
5
ns  
ns  
µs  
XT and ER osc mode  
HS osc mode  
LP osc mode  
Oscillator Period  
(Note 1)  
250  
250  
50  
ns  
ER osc mode  
10,000 ns  
XT osc mode  
1,000 ns  
HS osc mode  
5
µs  
ns  
µs  
LP osc mode  
250  
27  
INTRC mode (fast)  
INTRC mode (slow)  
TCY = 4/FOSC  
2
3
Tcy  
Instruction Cycle Time (Note 1) 1.0  
TCY  
DC  
ns  
ns  
TosL, External CLKIN (OSC1) High  
TosH External CLKIN Low  
100 *  
XT oscillator, TOSC L/H duty  
cycle  
4
5
INTRC Internal Calibrated ER  
3.65  
4.00  
4.28  
MHz VDD = 5.0V  
VDD = 5.0V  
ER  
External Biased ER Frequency 10kHz  
8MHz  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 139  
PIC16F62X  
FIGURE 17-7: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
13  
12  
16  
19  
18  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
TABLE 17-5: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min Typ† Max  
Units  
No.  
10  
TosH2ckL OSC1to CLKOUT↓  
16F62X  
16LF62X  
16F62X  
16LF62X  
16F62X  
16LF62X  
16F62X  
16LF62X  
75  
200  
ns  
10A  
11  
400  
200  
ns  
ns  
TosH2ckH OSC1to CLKOUT↑  
75  
11A  
12  
35  
35  
400  
100  
200  
100  
200  
ns  
ns  
ns  
ns  
ns  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
12A  
13  
13A  
14  
15  
TckL2ioV  
TioV2ckH  
CLKOUT to Port out valid  
20  
ns  
ns  
Port in valid before  
Tosc  
16F62X  
+200  
ns  
CLKOUT ↑  
Tosc  
=400  
ns  
ns  
16LF62X  
16  
17  
TckH2ioI  
Port in hold after CLKOUT ↑  
OSC1(Q1 cycle) to  
0
ns  
ns  
TosH2ioV  
50  
150 *  
16F62X  
Port out valid  
300  
ns  
ns  
16LF62X  
18  
TosH2ioI  
OSC1(Q2 cycle) to Port input invalid  
100  
200  
(I/O in hold time)  
DS40300B-page 140  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
FIGURE 17-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Timeout  
32  
OSC  
Timeout  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
FIGURE 17-9: BROWN-OUT DETECT TIMING  
BVDD  
VDD  
35  
TABLE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Unit  
s
Sym  
Characteristic  
Min  
Typ†  
Max  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2000  
TBD  
TBD  
TBD  
ns  
VDD = 5V, -40°C to +85°C  
ms Extended temperature  
31  
Twdt  
Tost  
Watchdog Timer Time-out Period  
(No Prescaler)  
7
TBD  
18  
TBD  
33  
TBD  
ms VDD = 5V, -40°C to +85°C  
ms Extended temperature  
32  
Oscillation Start-up Timer Period  
1024TOSC  
TOSC = OSC1 period  
33*  
Tpwrt Power up Timer Period  
28  
72  
132  
ms VDD = 5V, -40°C to +85°C  
TBD  
TBD  
TBD  
ms  
34  
35  
TIOZ  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
2.0  
µs  
TBOD  
Brown-out Detect pulse width  
100  
µs  
VDD BVDD (D005)  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 141  
PIC16F62X  
FIGURE 17-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RB6/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
DS40300B-page 142  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
TABLE 17-7: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
No.  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
10  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20  
10  
Greater of:  
ns N = prescale  
TCY + 40  
value (2, 4, ...,  
N
256)  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High  
Time  
Synchronous, No Prescaler  
Synchronous, 16F62X  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15  
25  
30  
50  
with Prescaler  
16LF62X  
Asynchronous 16F62X  
16LF62X  
Synchronous, No Prescaler  
Synchronous, 16F62X  
T1CKI Low  
Time  
0.5TCY + 20  
15  
25  
30  
50  
with Prescaler  
16LF62X  
Asynchronous 16F62X  
16LF62X  
Synchronous 16F62X  
ns  
ns  
T1CKI input  
period  
Greater of:  
TCY + 40  
N
ns N = prescale  
value (1, 2, 4, 8)  
16LF62X  
Greater of:  
TCY + 40  
N
Asynchronous 16F62X  
16LF62X  
Timer1 oscillator input frequency range  
60  
100  
DC  
ns  
ns  
Ft1  
200 kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
TCKEZtmr1 Delay from external clock edge to timer  
increment  
2Tosc  
7Tos  
c
* These parameters are characterized but not tested.  
†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 17-11: CAPTURE/COMPARE/PWM TIMINGS  
RB3/CCP1  
(Capture Mode)  
50  
51  
52  
RB3/CCP1  
(Compare or PWM Mode)  
53  
54  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 143  
PIC16F62X  
TABLE 17-8: CAPTURE/COMPARE/PWM REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
50* TccL CCP  
No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
input low time  
16F62X  
10  
With Prescaler  
No Prescaler  
16LF62X  
20  
0.5TCY + 20  
10  
51* TccH CCP  
input high time  
16F62X  
With Prescaler  
16LF62X  
20  
52* TccP CCP input period  
3TCY + 40  
ns N = prescale  
value (1,4 or  
16)  
N
53* TccR CCP output rise time  
54* TccF CCP output fall time  
16F62X  
16LF62X  
16F62X  
16LF62X  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
* These parameters are characterized but not tested.  
†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
FIGURE 17-12: TIMER0 CLOCK TIMING  
RA4/T0CKI  
41  
40  
42  
TMR0  
TABLE 17-9: TIMER0 CLOCK REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse Width  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
No Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20*  
10*  
TCY + 40*  
N = prescale value  
(1, 2, 4, ..., 256)  
N
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS40300B-page 144  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
18.0 DEVICE CHARACTERIZATION  
INFORMATION  
Not Available at this time.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 145  
PIC16F62X  
NOTES:  
DS40300B-page 146  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
19.0 PACKAGING INFORMATION  
19.1  
Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16F627  
-04I / P456  
9923 CBA  
AABBCDE  
18-Lead SOIC (.300")  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16F627  
-04I / S0218  
AABBCDE  
9918 CDK  
20-Lead SSOP  
Example  
PIC16F627  
XXXXXXXXXX  
XXXXXXXXXX  
AABBCDE  
-04I / 218  
9951 CBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 147  
PIC16F62X  
Package Type: K04-007 18-Lead Plastic Dual In-line (P) – 300 mil  
E
D
2
α
n
1
E1  
A1  
L
A
R
c
A2  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
0.100  
0.018  
0.060  
0.005  
0.010  
0.155  
0.095  
0.020  
0.130  
0.895  
0.255  
0.250  
0.349  
10  
2.54  
0.013  
0.023  
0.33  
1.40  
0.46  
1.52  
0.13  
0.25  
3.94  
2.41  
0.51  
3.30  
22.73  
6.48  
6.35  
8.85  
10  
0.58  
0.055  
0.000  
0.005  
0.110  
0.075  
0.000  
0.125  
0.890  
0.245  
0.230  
0.310  
5
0.065  
0.010  
0.015  
0.155  
0.115  
0.020  
0.135  
0.900  
0.265  
0.270  
0.387  
15  
1.65  
0.25  
0.38  
3.94  
2.92  
0.51  
3.43  
22.86  
6.73  
6.86  
9.83  
15  
0.00  
0.13  
2.79  
1.91  
0.00  
3.18  
22.61  
6.22  
5.84  
7.87  
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS40300B-page 148  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
Package Type: K04-051 18-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
E
p
D
2
1
B
n
X
α
45°  
L
R2  
c
A
A1  
R1  
φ
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
18  
MAX  
p
n
A
A1  
A2  
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.093  
0.099  
0.058  
0.008  
0.456  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
11.58  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
1.73  
0.28  
11.73  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.048  
0.004  
0.450  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.462  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
0.10  
11.43  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 149  
PIC16F62X  
Package Type: K04-072 20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm  
E1  
E
p
D
B
2
n
1
α
L
R2  
c
A
A1  
R1  
φ
L1  
A2  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
20  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
20  
0.073  
0.036  
0.005  
0.283  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.068  
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
7.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.278  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.289  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
7.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
7.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
*
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS40300B-page 150  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
Comparator Interrupts......................................................... 61  
Comparator Module............................................................ 57  
Comparator Operation........................................................ 59  
Comparator Reference ....................................................... 59  
Compare (CCP Module) ..................................................... 65  
Block Diagram ............................................................ 65  
CCP Pin Configuration ............................................... 65  
CCPR1H:CCPR1L Registers ..................................... 65  
Software Interrupt....................................................... 65  
Special Event Trigger ................................................. 65  
Timer1 Mode Selection............................................... 65  
Configuration Bits ............................................................... 96  
Configuring the Voltage Reference..................................... 69  
Crystal Operation................................................................ 97  
INDEX  
A
A/D  
Special Event Trigger (CCP)....................................... 65  
Absolute Maximum Ratings .............................................. 131  
ADDLW Instruction ........................................................... 115  
ADDWF Instruction ........................................................... 115  
ANDLW Instruction ........................................................... 115  
ANDWF Instruction ........................................................... 115  
Architectural Overview .......................................................... 9  
Assembler  
MPASM Assembler................................................... 125  
B
Baud Rate Error .................................................................. 73  
Baud Rate Formula............................................................. 73  
Baud Rates  
Asynchronous Mode ................................................... 74  
Synchronous Mode..................................................... 74  
BCF Instruction ................................................................. 116  
Block Diagram  
TIMER0....................................................................... 45  
TMR0/WDT PRESCALER .......................................... 48  
Block Diagrams  
D
DATA .................................................................................. 93  
Data .................................................................................... 93  
Data EEPROM Memory...................................................... 91  
EECON1 Register ...................................................... 91  
EECON2 Register ...................................................... 91  
Data Memory Organization................................................. 13  
DECF Instruction .............................................................. 118  
DECFSZ Instruction.......................................................... 118  
Development Support....................................................... 125  
Comparator I/O Operating Modes............................... 58  
Comparator Output ..................................................... 60  
RA3:RA0 and RA5 Port Pins ...................................... 35  
Timer1......................................................................... 51  
Timer2......................................................................... 54  
USART Receive.......................................................... 80  
USART Transmit......................................................... 78  
BRGH bit............................................................................. 73  
Brown-Out Detect (BOD) .................................................. 101  
BSF Instruction ................................................................. 116  
BTFSC Instruction............................................................. 116  
BTFSS Instruction............................................................. 117  
E
EECON1............................................................................. 92  
Errata.................................................................................... 3  
External Crystal Oscillator Circuit ....................................... 98  
G
General purpose Register File............................................ 13  
GOTO Instruction.............................................................. 119  
I
I/O Ports ............................................................................. 27  
I/O Programming Considerations ....................................... 44  
ID Locations...................................................................... 112  
INCF Instruction................................................................ 119  
INCFSZ Instruction ........................................................... 119  
In-Circuit Serial Programming........................................... 112  
Indirect Addressing, INDF and FSR Registers ................... 26  
Instruction Flow/Pipelining.................................................. 12  
Instruction Set  
C
CALL Instruction ............................................................... 117  
Capture (CCP Module) ....................................................... 64  
Block Diagram............................................................. 64  
CCP Pin Configuration................................................ 64  
CCPR1H:CCPR1L Registers...................................... 64  
Changing Between Capture Prescalers...................... 64  
Software Interrupt ....................................................... 64  
Timer1 Mode Selection............................................... 64  
Capture/Compare/PWM (CCP)........................................... 63  
CCP1 .......................................................................... 63  
CCP1CON Register............................................ 63  
ADDLW..................................................................... 115  
ADDWF .................................................................... 115  
ANDLW..................................................................... 115  
ANDWF .................................................................... 115  
BCF .......................................................................... 116  
BSF........................................................................... 116  
BTFSC...................................................................... 116  
BTFSS...................................................................... 117  
CALL......................................................................... 117  
CLRF ........................................................................ 117  
CLRW....................................................................... 117  
CLRWDT .................................................................. 118  
COMF....................................................................... 118  
DECF........................................................................ 118  
DECFSZ ................................................................... 118  
GOTO....................................................................... 119  
INCF ......................................................................... 119  
INCFSZ..................................................................... 119  
IORLW...................................................................... 119  
IORWF...................................................................... 120  
MOVF ....................................................................... 120  
MOVLW.................................................................... 120  
MOVWF.................................................................... 120  
CCPR1H Register............................................... 63  
CCPR1L Register ............................................... 63  
CCP2 .......................................................................... 63  
Timer Resources......................................................... 63  
CCP1CON Register ............................................................ 63  
CCP1M3:CCP1M0 Bits............................................... 63  
CCP1X:CCP1Y Bits.................................................... 63  
CCP2CON Register  
CCP2M3:CCP2M0 Bits............................................... 63  
CCP2X:CCP2Y Bits.................................................... 63  
Clocking Scheme/Instruction Cycle .................................... 12  
CLRF Instruction............................................................... 117  
CLRW Instruction.............................................................. 117  
CLRWDT Instruction ......................................................... 118  
CMCON Register ................................................................ 57  
Code Protection ................................................................ 112  
COMF Instruction.............................................................. 118  
Comparator Configuration................................................... 58  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 151  
PIC16F62X  
NOP ..........................................................................121  
OPTION ....................................................................121  
RETFIE .....................................................................121  
RETLW .....................................................................121  
RETURN ...................................................................122  
RLF ...........................................................................122  
RRF...........................................................................122  
SLEEP ......................................................................122  
SUBLW .....................................................................123  
SUBWF.....................................................................123  
SWAPF .....................................................................124  
TRIS..........................................................................124  
XORLW.....................................................................124  
XORWF.....................................................................124  
Instruction Set Summary...................................................113  
INT Interrupt......................................................................108  
INTCON Register................................................................21  
Interrupt Sources  
Capture Complete (CCP)............................................64  
Compare Complete (CCP)..........................................65  
TMR2 to PR2 Match (PWM) .......................................66  
Interrupts...........................................................................107  
Interrupts, Enable Bits  
CCP1 Enable (CCP1IE Bit).........................................64  
Interrupts, Flag Bits  
CCP1 Flag (CCP1IF Bit) ....................................... 64, 65  
IORLW Instruction.............................................................119  
IORWF Instruction.............................................................120  
Power-Down Mode (SLEEP) ............................................ 111  
Power-On Reset (POR).................................................... 101  
Power-up Timer (PWRT) .................................................. 101  
PR2 Register ...................................................................... 54  
Prescaler............................................................................. 48  
Prescaler, Capture.............................................................. 64  
Prescaler, Timer2 ............................................................... 66  
PRO MATE II Universal Programmer ............................ 127  
Program Memory Organization........................................... 13  
PROTECTION .................................................................... 93  
PWM (CCP Module) ........................................................... 66  
Block Diagram ............................................................ 66  
CCPR1H:CCPR1L Registers...................................... 66  
Duty Cycle .................................................................. 66  
Example Frequencies/Resolutions ............................. 67  
Output Diagram .......................................................... 66  
Period ......................................................................... 66  
Set-Up for PWM Operation......................................... 67  
TMR2 to PR2 Match ................................................... 66  
Q
Q-Clock............................................................................... 66  
Quick-Turnaround-Production (QTP) Devices...................... 7  
R
RC Oscillator....................................................................... 98  
READING ........................................................................... 93  
Registers  
Maps  
PIC16C76........................................................... 14  
PIC16C77........................................................... 14  
RCSTA  
K
KeeLoq Evaluation and Programming Tools..................128  
M
Diagram.............................................................. 72  
Reset .................................................................................. 99  
RETFIE Instruction ........................................................... 121  
RETLW Instruction............................................................ 121  
RETURN Instruction ......................................................... 122  
RLF Instruction ................................................................. 122  
RRF Instruction................................................................. 122  
Memory Organization  
Data EEPROM Memory..............................................91  
MOVF Instruction ..............................................................120  
MOVLW Instruction...........................................................120  
MOVWF Instruction...........................................................120  
MPLAB Integrated Development Environment Software ..125  
N
S
NOP Instruction.................................................................121  
SEEVAL Evaluation and Programming System............. 128  
Serialized Quick-Turnaround-Production  
O
(SQTP) Devices.................................................................... 7  
SLEEP Instruction............................................................. 122  
Software Simulator (MPLAB-SIM) .................................... 126  
Special................................................................................ 99  
Special Features of the CPU .............................................. 95  
Special Function Registers................................................. 15  
Stack................................................................................... 25  
Status Register ................................................................... 19  
SUBLW Instruction ........................................................... 123  
SUBWF Instruction ........................................................... 123  
SWAPF Instruction ........................................................... 124  
OPTION Instruction...........................................................121  
OPTION Register................................................................20  
Oscillator Configurations.....................................................97  
Oscillator Start-up Timer (OST) ........................................101  
Output of TMR2...................................................................54  
P
Package Marking Information ...........................................147  
Packaging Information ......................................................147  
PCL and PCLATH...............................................................25  
PCON Register ...................................................................24  
PICDEM-1 Low-Cost PICmicro Demo Board....................127  
PICDEM-2 Low-Cost PIC16CXX Demo Board .................127  
PICDEM-3 Low-Cost PIC16CXXX Demo Board...............127  
PICSTART Plus Entry Level Development System .......127  
PIE1 Register......................................................................22  
Pin Functions  
RC6/TX/CK ...........................................................71–88  
RC7/RX/DT........................................................... 71–88  
Pinout Description...............................................................11  
PIR1 Register......................................................................23  
Port RB Interrupt ...............................................................108  
PORTA................................................................................27  
PORTB................................................................................34  
Power Control/Status Register (PCON)............................102  
T
T1CKPS0 bit....................................................................... 50  
T1CKPS1 bit....................................................................... 50  
T1CON Register ................................................................. 50  
T1OSCEN bit...................................................................... 50  
T1SYNC bit......................................................................... 50  
T2CKPS0 bit....................................................................... 55  
T2CKPS1 bit....................................................................... 55  
T2CON Register ................................................................. 55  
DS40300B-page 152  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
Timer0  
TIMER0....................................................................... 45  
USART  
Asynchronous Mode................................................... 78  
Asynchronous Receiver.............................................. 80  
Asynchronous Reception............................................ 82  
Asynchronous Transmission ...................................... 79  
Asynchronous Transmitter.......................................... 78  
Baud Rate Generator (BRG) ...................................... 73  
Sampling..................................................................... 76  
Synchronous Master Mode......................................... 84  
Synchronous Master Reception ................................. 86  
Synchronous Master Transmission ............................ 84  
Synchronous Slave Mode........................................... 88  
Synchronous Slave Reception ................................... 88  
Synchronous Slave Transmit...................................... 88  
Transmit Block Diagram ............................................. 78  
TIMER0 (TMR0) Interrupt ........................................... 45  
TIMER0 (TMR0) Module............................................. 45  
TMR0 with External Clock........................................... 47  
Timer1  
Special Event Trigger (CCP)....................................... 65  
Switching Prescaler Assignment................................. 49  
Timer2  
PR2 Register............................................................... 66  
TMR2 to PR2 Match Interrupt..................................... 66  
Timers  
Timer1  
Asynchronous Counter Mode ............................. 52  
Block Diagram .................................................... 51  
Capacitor Selection............................................. 52  
External Clock Input............................................ 51  
External Clock Input Timing................................ 52  
Operation in Timer Mode .................................... 51  
Oscillator............................................................. 52  
Prescaler....................................................... 51, 53  
Resetting of Timer1 Registers ............................ 53  
Resetting Timer1 using a CCP Trigger Output ... 53  
Synchronized Counter Mode .............................. 51  
T1CON................................................................ 50  
TMR1H ............................................................... 52  
TMR1L ................................................................ 52  
V
Voltage Reference Module ................................................. 69  
VRCON Register ................................................................ 69  
W
Watchdog Timer (WDT).................................................... 109  
WRITE ................................................................................ 93  
WRITING ............................................................................ 93  
WWW, On-Line Support ....................................................... 3  
X
XORLW Instruction........................................................... 124  
XORWF Instruction........................................................... 124  
Timer2  
Block Diagram .................................................... 54  
Module ................................................................ 54  
Postscaler ........................................................... 54  
Prescaler............................................................. 54  
T2CON................................................................ 55  
Timing Diagrams  
Timer0....................................................................... 142  
Timer1....................................................................... 142  
USART Asynchronous Master Transmission.............. 79  
USART RX Pin Sampling...................................... 76, 77  
USART Synchronous Reception................................. 87  
USART Synchronous Transmission ........................... 85  
USART, Asynchronous Reception.............................. 81  
Timing Diagrams and Specifications................................. 139  
TMR0 Interrupt.................................................................. 108  
TMR1CS bit ........................................................................ 50  
TMR1ON bit ........................................................................ 50  
TMR2ON bit ........................................................................ 55  
TOUTPS0 bit....................................................................... 55  
TOUTPS1 bit....................................................................... 55  
TOUTPS2 bit....................................................................... 55  
TOUTPS3 bit....................................................................... 55  
TRIS Instruction ................................................................ 124  
TRISA ................................................................................. 27  
TRISB ................................................................................. 34  
TXSTA Register .................................................................. 71  
U
Universal Synchronous Asynchronous Receiver  
Transmitter (USART) .......................................................... 71  
Asynchronous Receiver  
Setting Up Reception.......................................... 83  
Timing Diagram .................................................. 81  
Asynchronous Receiver Mode  
Block Diagram .................................................... 83  
Section................................................................ 83  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 153  
PIC16F62X  
DS40300B-page 154  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 155  
PIC16F62X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS40300B  
Device:  
PIC16F62X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS40300B-page 156  
Preliminary  
1999 Microchip Technology Inc.  
PIC16F62X  
PIC16F62X PRODUCT IDENTIFICATION SYSTEM  
To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed  
sales offices.  
PART NO. -XX X /XX XXX  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
Package:  
P
SO  
SS  
=
=
=
PDIP  
SOIC (Gull Wing, 300 mil body)  
SSOP (209 mil)  
Examples:  
g) PIC16F627 - 04/P 301 =  
Commercial temp., PDIP pack-  
age, 4 MHz, normal VDD limits,  
QTP pattern #301.  
Temperature -  
=
=
=
0°C to +70°C  
–40°C to +85°C  
–40°C to +125°C  
Range:  
I
E
h) PIC16LF627- 04I/SO =  
Industrial temp., SOIC pack-  
age, 200kHz, extended VDD  
limits.  
Frequency 04  
=
=
=
200kHz (LP osc)  
4 MHz (XT and ER osc)  
20 MHz (HS osc)  
Range:  
04  
20  
Device:  
PIC16F62X :VDD range 3.0V to 5.5V  
PIC16F62XT:VDD range 3.0V to 5.5V (Tape and Reel)  
PIC16LF62X:VDD range 2.0V to 5.5V  
PIC16LF62XT:VDD range 2.0V to 5.5V (Tape and Reel)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 157  
PIC16F62X  
NOTES:  
DS40300B-page 158  
1999 Microchip Technology Inc.  
PIC16F62X  
NOTES:  
1999 Microchip Technology Inc.  
Preliminary  
DS40300B-page 159  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY