PIC18F2331-I/SP [MICROCHIP]

28/40/44-Pin Enhanced Flash Microcontrollers with nanoWatt Technology, High-Performance PWM and A/D; 28 /40/ 44引脚增强型闪存微控制器采用纳瓦技术,高性能PWM和A / D
PIC18F2331-I/SP
型号: PIC18F2331-I/SP
厂家: MICROCHIP    MICROCHIP
描述:

28/40/44-Pin Enhanced Flash Microcontrollers with nanoWatt Technology, High-Performance PWM and A/D
28 /40/ 44引脚增强型闪存微控制器采用纳瓦技术,高性能PWM和A / D

闪存 微控制器和处理器 外围集成电路 光电二极管 PC 时钟
文件: 总392页 (文件大小:3127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F2331/2431/4331/4431  
Data Sheet  
28/40/44-Pin Enhanced Flash  
Microcontrollers with nanoWatt Technology,  
High-Performance PWM and A/D  
2010 Microchip Technology Inc.  
DS39616D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-490-2  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39616D-page 2  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
28/40/44-Pin Enhanced Flash Microcontrollers with  
nanoWatt Technology, High-Performance PWM and A/D  
14-Bit Power Control PWM Module:  
Power-Managed Modes:  
• Up to 4 Channels with Complementary Outputs  
• Run: CPU on, Peripherals on  
• Edge or Center-Aligned Operation  
• Idle: CPU off, Peripherals on  
• Flexible Dead-Band Generator  
• Sleep: CPU off, Peripherals off  
• Hardware Fault Protection Inputs  
• Ultra Low, 50 nA Input Leakage  
• Simultaneous Update of Duty Cycle and Period:  
- Flexible Special Event Trigger output  
• Idle mode Currents Down to 5.8 A, Typical  
• Sleep Current Down to 0.1 A, Typical  
• Timer1 Oscillator, 1.8 A, Typical, 32 kHz, 2V  
• Watchdog Timer (WDT), 2.1 A, typical  
• Oscillator Two-Speed Start-up  
Motion Feedback Module:  
• Three Independent Input Capture Channels:  
- Flexible operating modes for period and  
pulse-width measurement  
- Fast wake from Sleep and Idle, 1 s, typical  
Peripheral Highlights:  
• High-Current Sink/Source 25 mA/25 mA  
• Three External Interrupts  
• Two Capture/Compare/PWM (CCP) modules  
• Enhanced USART module:  
- Special Hall sensor interface module  
- Special Event Trigger output to other modules  
• Quadrature Encoder Interface:  
- 2-phase inputs and one index input from  
encoder  
- High and low position tracking with direction  
status and change of direction interrupt  
- Velocity measurement  
- Supports RS-485, RS-232 and LIN/J2602  
- Auto-wake-up on Start bit  
- Auto-Baud Detect  
High-Speed, 200 ksps 10-Bit A/D Converter:  
• Up to 9 Channels  
• Simultaneous, Two-Channel Sampling  
• Sequential Sampling: 1, 2 or 4 Selected Channels  
• Auto-Conversion Capability  
Special Microcontroller Features:  
• 100,000 Erase/Write Cycle Enhanced Flash  
Program Memory, Typical  
• 1,000,000 Erase/Write Cycle Data EEPROM  
Memory, Typical  
• 4-Word FIFO with Selectable Interrupt Frequency  
• Selectable External Conversion Triggers  
• Programmable Acquisition Time  
• Flash/Data EEPROM Retention: 100 Years  
• Self-Programmable under Software Control  
• Priority Levels for Interrupts  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 41 ms to 131s  
• Single-Supply In-Circuit Serial Programming™  
(ICSP™) via Two Pins  
Flexible Oscillator Structure:  
• Four Crystal modes up to 40 MHz  
• Two External Clock modes up to 40 MHz  
• Internal Oscillator Block:  
• In-Circuit Debug (ICD) via Two Pins:  
- Drives PWM outputs safely when debugging  
- 8 user-selectable frequencies: 31 kHz to 8 MHz  
- OSCTUNE can compensate for frequency drift  
• Secondary Oscillator using Timer1 @ 32 kHz  
• Fail-Safe Clock Monitor:  
- Allows for safe shutdown of device if clock fails  
Program Memory  
Data Memory  
SSP  
14-Bit  
PWM  
(ch)  
10-Bit  
A/D (ch)  
Timers  
8/16-Bit  
Device  
I/O  
CCP  
EUSART  
Flash #Single-Word SRAM EEPROM  
(bytes) Instructions (bytes) (bytes)  
Slave  
SPI  
2
I C™  
PIC18F2331 8192  
PIC18F2431 16384  
PIC18F4331 8192  
PIC18F4431 16384  
4096  
8192  
4096  
8192  
768  
768  
768  
768  
256  
256  
256  
256  
24  
24  
36  
36  
5
5
9
9
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
6
6
8
8
1/3  
1/3  
1/3  
1/3  
2010 Microchip Technology Inc.  
DS39616D-page 3  
PIC18F2331/2431/4331/4431  
Pin Diagrams  
28-Pin SPDIP, SOIC  
1
2
3
4
5
28  
27  
26  
25  
24  
RB7/KBI3/PGD  
RB6/KBI2/PGC  
RB5/KBI1/PWM4/PGM  
RB4/KBI0/PWM5  
RB3/PWM3  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-/CAP1/INDX  
RA3/AN3/VREF+/CAP2/QEA  
RA4/AN4/CAP3/QEB  
AVDD  
RB2/PWM2  
6
7
8
23  
22  
21  
RB1/PWM1  
RB0/PWM0  
AVSS  
VDD  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2/FLTA  
RC2/CCP1  
9
20  
19  
18  
17  
16  
15  
VSS  
10  
11  
12  
13  
14  
RC7/RX/DT/SDO  
RC6/TX/CK/SS  
RC5/INT2/SCK/SCL  
RC4/INT1/SDI/SDA  
RC3/T0CKI/T5CKI/INT0  
28-Pin QFN(1)  
RA2/AN2/VREF-/CAP1/INDX  
1
2
3
4
5
6
7
21  
20  
19  
18  
17 VDD  
16 VSS  
RB3/PWM3  
RB2/PWM2  
RB1/PWM1  
RB0/PWM0  
RA3/AN3/VREF+/CAP2/QEA  
RA4/AN4/CAP3/QEB  
AVDD  
PIC18F2331  
PIC18F2431  
AVSS  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
RC7/RX/DT/SDO  
15  
Note 1: For the QFN package, it is recommended that the bottom pad be connected to VSS.  
DS39616D-page 4  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Pin Diagrams (Continued)  
40-Pin PDIP  
MCLR/VPP/RE3  
RA0/AN0  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7/KBI3/PGD  
RB6/KBI2/PGC  
RB5/KBI1/PWM4/PGM  
RB4/KBI0/PWM5  
RB3/PWM3  
RA1/AN1  
RA2/AN2/VREF-/CAP1/INDX  
RA3/AN3/VREF+/CAP2/QEA  
RA4/AN4/CAP3/QEB  
RB2/PWM2  
RA5/AN5/LVDIN  
RE0/AN6  
RB1/PWM1  
RB0/PWM0  
VDD  
RE1/AN7  
RE2/AN8  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
AVDD  
AVSS  
RD7/PWM7  
RD6/PWM6  
(3)  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2/FLTA  
RC2/CCP1/FLTB  
RD5/PWM4  
(2)  
RD4/FLTA  
RC7/RX/DT/SDO  
RC6/TX/CK/SS  
(1)  
(1)  
RC5/INT2/SCK /SCL  
(1)  
(1)  
(1)  
(1)  
RC3/T0CKI /T5CKI /INT0  
RD0/T0CKI/T5CKI  
RD1/SDO  
RC4/INT1/SDI /SDA  
RD3/SCK/SCL  
RD2/SDI/SDA  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
2010 Microchip Technology Inc.  
DS39616D-page 5  
PIC18F2331/2431/4331/4431  
Pin Diagrams (Continued)  
44-Pin TQFP  
NC  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
3
4
5
6
7
8
9
RC7/RX/DT/SDO  
RD4/FLTA(2)  
RD5/PWM4(3)  
RD6/PWM6  
RD7/PWM7  
VSS  
RC0/T1OSO/T1CKI  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
AVSS  
AVDD  
RE2/AN8  
RE1/AN7  
RE0/AN6  
RA5/AN5/LVDIN  
RA4/AN4/CAP3/QEB  
PIC18F4331  
PIC18F4431  
VDD  
RB0/PWM0  
RB1/PWM1  
RB2/PWM2  
RB3/PWM3  
10  
11  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
DS39616D-page 6  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Pin Diagrams (Continued)  
44-Pin QFN(2)  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
VSS  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
RC7/RX/DT/SDO  
RD4/FLTA(3)  
RD5/PWM4(4)  
RD6/PWM6  
RD7/PWM7  
VSS  
AVSS  
AVDD  
VDD  
RE2/AN8  
RE1/AN7  
RE0/AN6  
RA5/AN5/LVDIN  
RA4/AN4/CAP3/QEB  
PIC18F4331  
PIC18F4431  
VDD  
AVDD  
RB0/PWM0  
RB1/PWM1  
RB2/PWM2  
25  
24  
23  
10  
11  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL.  
2: For the QFN package, it is recommended that the bottom pad be connected to VSS.  
3: RD4 is the alternate pin for FLTA.  
4: RD5 is the alternate pin for PWM4.  
2010 Microchip Technology Inc.  
DS39616D-page 7  
PIC18F2331/2431/4331/4431  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 11  
2.0 Guidelines for Getting Started with PIC18F Microcontrollers ..................................................................................................... 25  
3.0 Oscillator Configurations ............................................................................................................................................................ 29  
4.0 Power-Managed Modes ............................................................................................................................................................. 39  
5.0 Reset.......................................................................................................................................................................................... 47  
6.0 Memory Organization................................................................................................................................................................. 61  
7.0 Data EEPROM Memory ............................................................................................................................................................. 79  
8.0 Flash Program Memory.............................................................................................................................................................. 85  
9.0 8 x 8 Hardware Multiplier............................................................................................................................................................ 95  
10.0 Interrupts .................................................................................................................................................................................... 97  
11.0 I/O Ports ................................................................................................................................................................................... 113  
12.0 Timer0 Module ......................................................................................................................................................................... 127  
13.0 Timer1 Module ......................................................................................................................................................................... 131  
14.0 Timer2 Module ......................................................................................................................................................................... 136  
15.0 Timer5 Module ......................................................................................................................................................................... 139  
16.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 145  
17.0 Motion Feedback Module......................................................................................................................................................... 151  
18.0 Power Control PWM Module .................................................................................................................................................... 173  
19.0 Synchronous Serial Port (SSP) Module ................................................................................................................................... 205  
20.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 217  
21.0 10-Bit High-Speed Analog-to-Digital Converter (A/D) Module ................................................................................................. 239  
22.0 Low-Voltage Detect (LVD)........................................................................................................................................................ 257  
23.0 Special Features of the CPU.................................................................................................................................................... 263  
24.0 Instruction Set Summary.......................................................................................................................................................... 283  
25.0 Development Support............................................................................................................................................................... 325  
26.0 Electrical Characteristics .......................................................................................................................................................... 329  
27.0 Packaging Information.............................................................................................................................................................. 363  
Appendix A: Revision History............................................................................................................................................................. 375  
Appendix B: Device Differences......................................................................................................................................................... 375  
Appendix C: Conversion Considerations ........................................................................................................................................... 376  
Appendix D: Migration from Baseline to Enhanced Devices.............................................................................................................. 376  
Appendix E: Migration From Mid-Range to Enhanced Devices......................................................................................................... 377  
Appendix F: Migration From High-End to Enhanced Devices............................................................................................................ 377  
INDEX ................................................................................................................................................................................................ 379  
The Microchip Web Site..................................................................................................................................................................... 389  
Customer Change Notification Service .............................................................................................................................................. 389  
Customer Support.............................................................................................................................................................................. 389  
Reader Response .............................................................................................................................................................................. 390  
Product Identification System............................................................................................................................................................. 391  
DS39616D-page 8  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2010 Microchip Technology Inc.  
DS39616D-page 9  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 10  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
On-the-Fly Mode Switching: The power-  
managed modes are invoked by user code  
during operation, allowing the user to incorporate  
power-saving ideas into their application’s  
software design.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following devices:  
• PIC18F2331  
• PIC18F2431  
• PIC18F4331  
• PIC18F4431  
• PIC18LF2331  
• PIC18LF2431  
• PIC18LF4331  
• PIC18LF4431  
Lower Consumption in Key Modules: The  
power requirements for both Timer1 and the  
Watchdog Timer have been reduced by up to  
80%, with typical values of 1.1 and 2.1 A,  
respectively.  
This family offers the advantages of all PIC18  
microcontrollers namely, high computational  
performance at an economical price, with the addition of  
high-endurance enhanced Flash program memory and a  
high-speed 10-bit A/D Converter. On top of these  
features, the PIC18F2331/2431/4331/4431 family  
introduces design enhancements that make these micro-  
controllers a logical choice for many high-performance,  
power control and motor control applications. These  
special peripherals include:  
1.1.2  
MULTIPLE OSCILLATOR OPTIONS  
AND FEATURES  
All of the devices in the PIC18F2331/2431/4331/4431  
family offer nine different oscillator options, allowing  
users a wide range of choices in developing application  
hardware. These include:  
• Four Crystal modes, using crystals or ceramic  
resonators.  
• 14-Bit Resolution Power Control PWM module  
(PCPWM) with Programmable Dead-Time Insertion  
• Two External Clock modes, offering the option of  
using two pins (oscillator input and a divide-by-4  
clock output) or one pin (oscillator input, with the  
second pin reassigned as general I/O).  
• Motion Feedback Module (MFM), including a  
3-Channel Input Capture (IC) module and  
Quadrature Encoder Interface (QEI)  
• Two External RC Oscillator modes, with the same  
pin options as the External Clock modes.  
• High-Speed 10-Bit A/D Converter (HSADC)  
The PCPWM can generate up to eight complementary  
PWM outputs with dead-band time insertion. Overdrive  
current is detected by off-chip analog comparators or  
the digital Fault inputs (FLTA, FLTB).  
• An internal oscillator block, which provides an  
8 MHz clock and an INTRC source (approxi-  
mately 31 kHz, stable over temperature and VDD),  
as well as a range of 6 user-selectable clock  
frequencies (from 125 kHz to 4 MHz) for a total of  
8 clock frequencies.  
The MFM Quadrature Encoder Interface provides  
precise rotor position feedback and/or velocity  
measurement. The MFM 3x input capture or external  
interrupts can be used to detect the rotor state for  
electrically commutated motor applications using Hall  
sensor feedback, such as BLDC motor drives.  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to both the High-Speed Crystal and  
Internal Oscillator modes, which allows clock  
speeds of up to 40 MHz. Used with the internal  
oscillator, the PLL gives users a complete selection  
of clock speeds, from 31 kHz to 32 MHz – all  
without using an external crystal or clock circuit.  
PIC18F2331/2431/4331/4431 devices also feature  
Flash program memory and an internal RC oscillator  
with built-in LP modes.  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a  
reference signal provided by the internal  
oscillator. If a clock failure occurs, the controller is  
switched to the internal oscillator block, allowing  
for continued low-speed operation or a safe  
application shutdown.  
1.1  
New Core Features  
1.1.1  
nanoWatt Technology  
All of the devices in the PIC18F2331/2431/4331/4431  
family incorporate a range of features that can signifi-  
cantly reduce power consumption during operation.  
Key items include:  
Two-Speed Start-up: This option allows the  
internal oscillator to serve as the clock source  
from Power-on Reset, or wake-up from Sleep  
mode, until the primary clock source is available.  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal oscillator  
block, power consumption during code execution  
can be reduced by as much as 90%.  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled, but the peripherals are  
still active. In these states, power consumption  
can be reduced even further, to as little as 4% of  
normal operation requirements.  
2010 Microchip Technology Inc.  
DS39616D-page 11  
PIC18F2331/2431/4331/4431  
High-Speed 10-Bit A/D Converter: This module  
incorporates programmable acquisition time,  
allowing for a channel to be selected and a  
conversion to be initiated without waiting for a  
sampling period and thus, reducing code  
overhead.  
1.2  
Other Special Features  
Memory Endurance: The enhanced Flash cells  
for both program memory and data EEPROM are  
rated to last for many thousands of erase/write  
cycles – up to 100,000 for program memory and  
1,000,000 for EEPROM. Data retention without  
refresh is conservatively estimated to be greater  
than 100 years.  
Motion Feedback Module (MFM): This module  
features a Quadrature Encoder Interface (QEI)  
and an Input Capture (IC) module. The QEI  
accepts two phase inputs (QEA, QEB) and one  
index input (INDX) from an incremental encoder.  
The QEI supports high and low precision position  
tracking, direction status and change of direction  
interrupt and velocity measurement. The input  
capture features 3 channels of independent input  
capture with Timer5 as the time base, a Special  
Event Trigger to other modules and an adjustable  
noise filter on each IC input.  
Self-Programmability: These devices can write  
to their own program memory spaces under inter-  
nal software control. By using a bootloader routine  
located in the protected boot block at the top of  
program memory, it becomes possible to create  
an application that can update itself in the field.  
Power Control PWM Module: In PWM mode,  
this module provides 1, 2 or 4 modulated outputs  
for controlling half-bridge and full-bridge drivers.  
Other features include auto-shutdown on Fault  
detection and auto-restart to reactivate outputs  
once the condition has cleared.  
Extended Watchdog Timer (WDT): This  
enhanced version incorporates a 16-bit prescaler,  
allowing a time-out range from 4 ms to over  
2 minutes, that is stable across operating voltage  
and temperature.  
Enhanced Addressable USART: This serial  
communication module is capable of standard  
RS-232 operation and provides support for the  
LIN/J2602 bus protocol. Other enhancements  
include automatic baud rate detection and a 16-bit  
Baud Rate Generator for improved resolution.  
When the microcontroller is using the internal  
oscillator block, the EUSART provides stable  
operation for applications that talk to the outside  
world without using an external crystal (or its  
accompanying power requirement).  
Extended Watchdog Timer (WDT): This  
enhanced version incorporates a 16-bit prescaler,  
allowing an extended time-out range that is stable  
across operating voltage and temperature. See  
Section 26.0 “Electrical Characteristics” for  
time-out periods.  
DS39616D-page 12  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
All other features for devices in this family are identical.  
These are summarized in Table 1-1.  
1.3  
Details on Individual Family  
Members  
The pinouts for all devices are listed in Table 1-2 and  
Table 1-3.  
Devices in the PIC18F2331/2431/4331/4431 family are  
available in 28-pin (PIC18F2331/2431) and 40/44-pin  
(PIC18F4331/4431) packages. The block diagram for  
the two groups is shown in Figure 1-1.  
Like all Microchip PIC18 devices, members of the  
PIC18F2331/2431/4331/4431 family are available as  
both standard and low-voltage devices. Standard  
devices with Enhanced Flash memory, designated with  
an “F” in the part number (such as PIC18F2331),  
accommodate an operating VDD range of 4.2V to 5.5V.  
Low-voltage parts, designated by “LF” (such as  
PIC18LF2331), function over an extended VDD range  
of 2.0V to 5.5V.  
The devices are differentiated from each other in three  
ways:  
1. Flash program memory (8 Kbytes for  
PIC18F2331/4331 devices, 16 Kbytes for  
PIC18F2431/4431).  
2. A/D channels (5 for PIC18F2331/2431 devices,  
9 for PIC18F4331/4431 devices).  
3. I/O ports (3 bidirectional ports on PIC18F2331/  
2431 devices,  
5
bidirectional ports on  
PIC18F4331/4431 devices).  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18F2331  
PIC18F2431  
PIC18F4331  
PIC18F4431  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz  
DC – 40 MHz  
DC – 40 MHz  
DC – 40 MHz  
16384  
8192  
8192  
16384  
8192  
4096  
768  
256  
34  
4096  
8192  
768  
768  
768  
256  
256  
256  
22  
22  
34  
I/O Ports  
Ports A, B, C  
Ports A, B, C  
Ports A, B, C, D, E Ports A, B, C, D, E  
Timers  
4
4
4
4
Capture/Compare/PWM modules  
14-Bit Power Control PWM  
2
2
2
2
(6 Channels)  
(6 Channels)  
(8 Channels)  
(8 Channels)  
Motion Feedback Module  
(Input Capture/Quadrature  
Encoder Interface)  
1 QEI  
or  
3x IC  
1 QEI  
or  
3x IC  
1 QEI  
or  
3x IC  
1 QEI  
or  
3x IC  
Serial Communications  
SSP,  
SSP,  
SSP,  
SSP,  
Enhanced USART Enhanced USART Enhanced USART Enhanced USART  
10-Bit High-Speed  
5 Input Channels 5 Input Channels 9 Input Channels 9 Input Channels  
Analog-to-Digital Converter module  
Resets (and Delays)  
POR, BOR,  
POR, BOR,  
POR, BOR,  
POR, BOR,  
RESETInstruction, RESETInstruction, RESETInstruction, RESETInstruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
Stack Full,  
Stack Underflow  
(PWRT, OST),  
MCLR (optional), MCLR (optional), MCLR (optional), MCLR (optional),  
WDT  
WDT  
WDT  
WDT  
Programmable Low-Voltage Detect  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
75 Instructions  
75 Instructions  
75 Instructions  
75 Instructions  
Packages  
28-pin SPDIP  
28-pin SOIC  
28-pin QFN  
28-pin SPDIP  
28-pin SOIC  
28-pin QFN  
40-pin PDIP  
44-pin TQFP  
44-pin QFN  
40-pin PDIP  
44-pin TQFP  
44-pin QFN  
2010 Microchip Technology Inc.  
DS39616D-page 13  
PIC18F2331/2431/4331/4431  
FIGURE 1-1:  
PIC18F2331/2431 (28-PIN) BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
PORTB  
PORTC  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-/CAP1/INDX  
RA3/AN3/VREF+/CAP2/QEA  
RA4/AN4/CAP3/QEB  
OSC2/CLKO/RA6  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
8
8
Data RAM  
(768 bytes)  
21  
21  
Address Latch  
12  
OSC1/CLKI/RA7  
20  
PCLATU PCLATH  
Address Latch  
Program  
Memory  
Address<12>  
PCU PCH PCL  
Program Counter  
4
BSR  
12  
FSR0  
4
RB0/PWM0  
RB1/PWM1  
RB2/PWM2  
RB3/PWM3  
RB4/KBI0/PWM5  
RB5/KBI1/PWM4/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
Data Latch  
Bank 0, F  
FSR1  
FSR2  
31 Level Stack  
12  
16  
inc/dec  
logic  
Decode  
Table Latch  
8
ROM Latch  
IR  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2/FLTA  
RC2/CCP1  
RC3/T0CKI/T5CKI/INT0  
RC4/INT1/SDI/SDA  
RC5/INT2/SCK/SCL  
RC6/TX/CK/SS  
8
Instruction  
Decode &  
Control  
RC7/RX/DT/SDO  
PRODH PRODL  
8 x 8 Multiply  
3
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
T1OSI  
8
Timing  
W
8
BITOP  
8
Oscillator  
Start-up Timer  
Generation  
8
Power-on  
Reset  
8
T1OSO  
4x PLL  
ALU<8>  
Watchdog  
Timer  
8
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
PORTE  
Power-Managed  
Mode Logic  
MCLR/VPP  
INTRC  
OSC  
MCLR/VPP  
VDD, VSS  
Timer0  
HS 10-Bit  
ADC  
Timer1  
Timer2  
AVDD, AVSS  
Timer5  
Synchronous  
Serial Port  
CCP1  
CCP2  
EUSART  
Data EE  
PCPWM  
MFM  
DS39616D-page 14  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 1-2:  
PIC18F4331/4431 (40/44-PIN) BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-/CAP1/INDX  
RA3/AN3/VREF+/CAP2/QEA  
RA4/AN4/CAP3/QEB  
RA5/AN5/LVDIN  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
8
8
Data RAM  
(768 bytes)  
21  
21  
Address Latch  
12  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
20  
PCLATU PCLATH  
Address Latch  
Address<12>  
Program Memory  
PCU PCH PCL  
Program Counter  
PORTB  
4
12  
4
RB0/PWM0  
Data Latch  
BSR  
Bank 0, F  
FSR0  
FSR1  
FSR2  
RB1/PWM1  
RB2/PWM2  
RB3/PWM3  
31 Level Stack  
12  
RB4/KBI0/PWM5  
RB5/KBI1/PWM4/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
16  
inc/dec  
logic  
Decode  
Table Latch  
8
ROM Latch  
IR  
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2/FLTA  
RC2/CCP1/FLTB  
RC3/T0CKI/T5CKI/INT0(3)  
RC4/INT1/SDI/SDA(3)  
8
RC5/INT2/SCK/SCL(3)  
RC6/TX/CK/SS  
Instruction  
Decode &  
Control  
RC7/RX/DT/SDO  
PRODH PRODL  
8 x 8 Multiply  
3
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
T1OSI  
8
PORTD  
RD0/IT0CKI/T5CKI  
RD1/SDO  
RD2/SDI/SDA  
Timing  
Generation  
W
8
BITOP  
8
Oscillator  
Start-up Timer  
8
RD3/SCK/SCL  
RD4/FLTA(2)  
RD5/PWM4(4)  
RD6/PWM6  
Power-on  
Reset  
8
T1OSO  
4x PLL  
ALU<8>  
Watchdog  
Timer  
RD7/PWM7  
8
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
PORTE  
RE0/AN6  
Power-Managed  
Mode Logic  
MCLR/VPP  
RE1/AN7  
RE2/AN8  
INTRC  
OSC  
MCLR/VPP/RE3(1)  
VDD, VSS  
Timer0  
HS 10-Bit  
ADC  
Timer1  
Timer2  
Timer5  
AVDD, AVSS  
Synchronous  
Serial Port  
CCP1  
CCP2  
EUSART  
Data EE  
PCPWM  
MFM  
Note 1: RE3 is available only when MCLR is disabled.  
2: RD4 is the alternate pin for FLTA.  
3: RC3, RC4 and RC5 are alternate pins for T0CKI/T5CKI, SDI/SDA, SCK/SCL, respectively.  
4: RD5 is the alternate pin for PWM4.  
2010 Microchip Technology Inc.  
DS39616D-page 15  
PIC18F2331/2431/4331/4431  
TABLE 1-2:  
PIC18F2331/2431 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Pin Name  
Description  
SPDIP,  
SOIC  
Type Type  
QFN  
MCLR/VPP  
MCLR  
1
26  
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
I
ST  
VPP  
P
High-voltage ICSP™ programming enable pin.  
OSC1/CLKI/RA7  
OSC1  
9
6
7
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode; CMOS otherwise.  
External clock source input. Always associated with pin  
function OSC1. (See related OSC1/CLKI, OSC2/CLKO  
pins.)  
I
I
ST  
CLKI  
CMOS  
RA7  
I/O  
TTL  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
10  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO, which has 1/4  
the frequency of OSC1 and denotes the instruction  
cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General purpose I/O pin.  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
2
3
4
27  
28  
1
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog Input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog Input 1.  
AN1  
RA2/AN2/VREF-/CAP1/INDX  
RA2  
AN2  
VREF-  
CAP1  
INDX  
I/O  
TTL  
Analog  
Analog  
ST  
Digital I/O.  
Analog Input 2.  
A/D reference voltage (low) input.  
Input Capture Pin 1.  
Quadrature Encoder Interface index input pin.  
I
I
I
I
ST  
RA3/AN3/VREF+/CAP2/QEA  
5
6
2
3
RA3  
AN3  
VREF+  
CAP2  
QEA  
I/O  
TTL  
Analog  
Analog  
ST  
Digital I/O.  
Analog Input 3.  
A/D reference voltage (high) input.  
Input Capture Pin 2.  
Quadrature Encoder Interface Channel A input pin.  
I
I
I
I
ST  
RA4/AN4/CAP3/QEB  
RA4  
AN4  
CAP3  
QEB  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog Input 4.  
Input Capture Pin 3.  
Quadrature Encoder Interface Channel B input pin.  
I
I
I
ST  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
DS39616D-page 16  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 1-2:  
PIC18F2331/2431 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
SPDIP,  
QFN  
SOIC  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/PWM0  
RB0  
21  
22  
23  
24  
25  
18  
19  
20  
21  
22  
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 0.  
PWM0  
RB1/PWM1  
RB1  
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 1.  
PWM1  
RB2/PWM2  
RB2  
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 2.  
PWM2  
RB3/PWM3  
RB3  
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 3.  
PWM3  
RB4/KBI0/PWM5  
RB4  
I/O  
I
O
TTL  
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
PWM Output 5.  
KBI0  
PWM5  
RB5/KBI1/PWM4/PGM  
26  
23  
RB5  
I/O  
I
O
TTL  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
PWM Output 4.  
KBI1  
PWM4  
PGM  
I/O  
Single-Supply ICSP™ Programming entry pin.  
RB6/KBI2/PGC  
RB6  
27  
28  
24  
25  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
2010 Microchip Technology Inc.  
DS39616D-page 17  
PIC18F2331/2431/4331/4431  
TABLE 1-2:  
PIC18F2331/2431 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Pin Name  
Description  
SPDIP,  
SOIC  
Type Type  
QFN  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
12  
8
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2/FLTA  
9
RC1  
I/O  
ST  
Analog  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input, Compare 2 output, PWM2 output.  
Fault interrupt input pin.  
T1OSI  
CCP2  
FLTA  
I
I/O  
I
ST  
RC2/CCP1  
RC2  
13  
14  
10  
11  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture 1 input/Compare 1 output/PWM1 output.  
RC3/T0CKI/T5CKI/INT0  
RC3  
I/O  
ST  
ST  
ST  
ST  
Digital I/O.  
T0CKI  
T5CKI  
INT0  
I
I
I
Timer0 alternate clock input.  
Timer5 alternate clock input.  
External Interrupt 0.  
RC4/INT1/SDI/SDA  
15  
16  
17  
18  
12  
13  
14  
15  
RC4  
INT1  
SDI  
I/O  
I
I
ST  
ST  
ST  
I2C  
Digital I/O.  
External Interrupt 1.  
SPI data in.  
SDA  
I/O  
I2C™ data I/O.  
RC5/INT2/SCK/SCL  
RC5  
INT2  
SCK  
SCL  
I/O  
I
I/O  
I/O  
ST  
ST  
ST  
I2C  
Digital I/O.  
External Interrupt 2.  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C mode.  
RC6/TX/CK/SS  
RC6  
TX  
CK  
SS  
I/O  
O
I/O  
I
ST  
ST  
TTL  
Digital I/O.  
EUSART asynchronous transmit.  
EUSART synchronous clock (see related RX/DT).  
SPI slave select input.  
RC7/RX/DT/SDO  
RC7  
RX  
DT  
I/O  
I
I/O  
O
ST  
ST  
ST  
Digital I/O.  
EUSART asynchronous receive.  
EUSART synchronous data (see related TX/CK).  
SPI data out.  
SDO  
VSS  
VDD  
8, 19 5, 16  
7, 20 4, 17  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
CMOS = CMOS compatible input or output  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
I
= Input  
O
P
= Power  
DS39616D-page 18  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 1-3:  
Pin Name  
PIC18F4331/4431 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
MCLR/VPP/RE3  
MCLR  
1
18  
18  
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
I
ST  
ST  
VPP  
RE3  
P
I
Programming voltage input.  
Digital input. Available only when MCLR is disabled.  
OSC1/CLKI/RA7  
OSC1  
13  
30  
32  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode; CMOS otherwise.  
External clock source input. Always associated with pin  
function OSC1. (See related OSC1/CLKI, OSC2/CLKO  
pins.)  
I
I
ST  
CLKI  
CMOS  
RA7  
I/O  
TTL  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
14  
31  
33  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or resonator  
in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO, which has 1/4 the  
frequency of OSC1 and denotes the instruction cycle rate.  
General purpose I/O pin.  
CLKO  
RA6  
I/O  
TTL  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL; RC7 is the alternate pin for SDO.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
2010 Microchip Technology Inc.  
DS39616D-page 19  
PIC18F2331/2431/4331/4431  
TABLE 1-3:  
Pin Name  
PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
2
3
4
19  
20  
21  
19  
20  
21  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog Input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog Input 1.  
AN1  
RA2/AN2/VREF-/CAP1/  
INDX  
RA2  
I/O  
TTL  
Analog  
Analog  
ST  
Digital I/O.  
Analog Input 2.  
A/D reference voltage (low) input.  
Input Capture Pin 1.  
Quadrature Encoder Interface index input pin.  
AN2  
I
I
I
I
VREF-  
CAP1  
INDX  
ST  
RA3/AN3/VREF+/  
CAP2/QEA  
RA3  
5
22  
22  
I/O  
TTL  
Analog  
Analog  
ST  
Digital I/O.  
Analog Input 3.  
A/D reference voltage (high) input.  
Input Capture Pin 2.  
Quadrature Encoder Interface Channel A input pin.  
AN3  
VREF+  
CAP2  
QEA  
I
I
I
I
ST  
RA4/AN4/CAP3/QEB  
6
7
23  
24  
23  
24  
RA4  
AN4  
CAP3  
QEB  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog Input 4.  
Input Capture Pin 3.  
Quadrature Encoder Interface Channel B input pin.  
I
I
I
ST  
RA5/AN5/LVDIN  
RA5  
I/O  
TTL  
Digital I/O.  
AN5  
LVDIN  
I
I
Analog  
Analog  
Analog Input 5.  
Low-Voltage Detect input.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL; RC7 is the alternate pin for SDO.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
DS39616D-page 20  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 1-3:  
Pin Name  
PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/PWM0  
RB0  
33  
34  
35  
36  
37  
8
9
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 0.  
PWM0  
RB1/PWM1  
RB1  
9
10  
11  
12  
14  
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 1.  
PWM1  
RB2/PWM2  
RB2  
10  
11  
14  
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 2.  
PWM2  
RB3/PWM3  
RB3  
I/O  
O
TTL  
TTL  
Digital I/O.  
PWM Output 3.  
PWM3  
RB4/KBI0/PWM5  
RB4  
I/O  
I
O
TTL  
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
PWM Output 5.  
KBI0  
PWM5  
RB5/KBI1/PWM4/  
PGM  
38  
15  
15  
RB5  
KBI1  
PWM4  
PGM  
I/O  
I
O
TTL  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
PWM Output 4.  
I/O  
Single-Supply ICSP™ Programming entry pin.  
RB6/KBI2/PGC  
RB6  
39  
40  
16  
17  
16  
17  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL; RC7 is the alternate pin for SDO.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
2010 Microchip Technology Inc.  
DS39616D-page 21  
PIC18F2331/2431/4331/4431  
TABLE 1-3:  
Pin Name  
PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
15  
16  
32  
35  
34  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2/  
FLTA  
RC1  
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input, Compare 2 output, PWM2 output.  
Fault interrupt input pin.  
T1OSI  
CCP2  
FLTA  
I
I/O  
I
ST  
RC2/CCP1/FLTB  
RC2  
17  
18  
36  
37  
36  
37  
I/O  
I/O  
I
ST  
ST  
ST  
Digital I/O.  
CCP1  
FLTB  
Capture 1 input/Compare 1 output/PWM1 output.  
Fault interrupt input pin.  
RC3/T0CKI/T5CKI/  
INT0  
RC3  
I/O  
ST  
ST  
ST  
ST  
Digital I/O.  
T0CKI(1)  
T5CKI(1)  
INT0  
I
I
I
Timer0 alternate clock input.  
Timer5 alternate clock input.  
External Interrupt 0.  
RC4/INT1/SDI/SDA  
23  
24  
25  
26  
42  
43  
44  
1
42  
43  
44  
1
RC4  
I/O  
I
I
ST  
ST  
ST  
I2C  
Digital I/O.  
INT1  
External Interrupt 1.  
SPI data in.  
SDI(1)  
SDA(1)  
I/O  
I2C™ data I/O.  
RC5/INT2/SCK/SCL  
RC5  
I/O  
I
I/O  
I/O  
ST  
ST  
ST  
I2C  
Digital I/O.  
External Interrupt 2.  
INT2  
SCK(1)  
SCL(1)  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C mode.  
RC6/TX/CK/SS  
RC6  
TX  
CK  
SS  
I/O  
O
I/O  
I
ST  
ST  
ST  
Digital I/O.  
EUSART asynchronous transmit.  
EUSART synchronous clock (see related RX/DT).  
SPI slave select input.  
RC7/RX/DT/SDO  
RC7  
RX  
I/O  
I
I/O  
O
ST  
ST  
ST  
Digital I/O.  
EUSART asynchronous receive.  
EUSART synchronous data (see related TX/CK).  
SPI data out.  
DT  
SDO(1)  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL; RC7 is the alternate pin for SDO.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
DS39616D-page 22  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 1-3:  
Pin Name  
PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
PORTD is a bidirectional I/O port.  
RD0/T0CKI/T5CKI  
RD0  
19  
38  
38  
I/O  
I
I
ST  
ST  
ST  
Digital I/O.  
Timer0 external clock input.  
Timer5 input clock.  
T0CKI  
T5CKI  
RD1/SDO  
RD1  
20  
21  
39  
40  
39  
40  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO(1)  
RD2/SDI/SDA  
RD2  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI(1)  
SPI data in.  
SDA(1)  
I2C™ data I/O.  
RD3/SCK/SCL  
RD3  
22  
41  
41  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK(1)  
Synchronous serial clock input/output for SPI mode.  
SCL(1)  
Synchronous serial clock input/output for I2C mode.  
RD4/FLTA  
RD4  
27  
28  
29  
30  
2
3
4
5
2
3
4
5
I/O  
I
ST  
ST  
Digital I/O.  
Fault interrupt input pin.  
FLTA(2)  
RD5/PWM4  
RD5  
I/O  
O
ST  
TTL  
Digital I/O.  
PWM Output 4.  
PWM4(3)  
RD6/PWM6  
RD6  
I/O  
O
ST  
TTL  
Digital I/O.  
PWM Output 6.  
PWM6  
RD7/PWM7  
RD7  
I/O  
O
ST  
TTL  
Digital I/O.  
PWM Output 7.  
PWM7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL; RC7 is the alternate pin for SDO.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
2010 Microchip Technology Inc.  
DS39616D-page 23  
PIC18F2331/2431/4331/4431  
TABLE 1-3:  
Pin Name  
PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP TQFP QFN  
PORTE is a bidirectional I/O port.  
RE0/AN6  
RE0  
8
9
25  
26  
27  
25  
26  
27  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog Input 6.  
AN6  
RE1/AN7  
RE1  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog Input 7.  
AN7  
RE2/AN8  
RE2  
10  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog Input 8.  
AN8  
VSS  
VDD  
NC  
12, 6, 29 6, 30,  
31 31  
11, 7, 28 7, 8,  
P
Ground reference for logic and I/O pins.  
P
Positive supply for logic and I/O pins.  
32  
28, 29  
12,13, 13  
33, 34  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
NC  
NC No connect.  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin  
for SCK/SCL; RC7 is the alternate pin for SDO.  
2: RD4 is the alternate pin for FLTA.  
3: RD5 is the alternate pin for PWM4.  
DS39616D-page 24  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH PIC18F  
MICROCONTROLLERS  
(1)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC18F2331/2431/4331/4431  
family of 8-bit microcontrollers requires attention to a  
minimal set of device pin connections before  
proceeding with development.  
R1  
R2  
MCLR  
VDD  
C1  
(1)  
The following pins must always be connected:  
PIC18FXXXX  
C3  
VSS  
• All VDD and VSS pins  
VSS  
VDD  
(see Section 2.2 “Power Supply Pins”)  
(1)  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(1)  
(1)  
C4  
C5  
These pins must also be connected if they are being  
used in the end application:  
• PGC/PGD pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.4 “ICSP Pins”)  
Key (all values are recommendations):  
C1 through C6: 0.1 µF, 20V ceramic  
R1: 10 k  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.5 “External Oscillator Pins”)  
R2: 100to 470Ω  
Note 1: The example shown is for a PIC18F device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins are used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
The minimum mandatory connections are shown in  
Figure 2-1.  
2010 Microchip Technology Inc.  
DS39616D-page 25  
PIC18F2331/2431/4331/4431  
2.2.2  
TANK CAPACITORS  
2.2  
Power Supply Pins  
On boards with power traces running longer than  
six inches in length, it is suggested to use a tank capac-  
itor for integrated circuits, including microcontrollers, to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device, and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 F to 47 F.  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS, is required.  
Consider the following criteria when using decoupling  
capacitors:  
Value and type of capacitor: A 0.1 F (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device, with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
2.2.3  
CONSIDERATIONS WHEN USING  
BOR  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
When the Brown-out Reset (BOR) feature is enabled,  
a sudden change in VDD may result in a spontaneous  
BOR event. This can happen when the microcontroller  
is operating under normal operating conditions, regard-  
less of what the BOR set point has been programmed  
to, and even if VDD does not approach the set point.  
The precipitating factor in these BOR events is a rise or  
fall in VDD with a slew rate faster than 0.15V/s.  
An application that incorporates adequate decoupling  
between the power supplies will not experience such  
rapid voltage changes. Additionally, the use of an  
electrolytic tank capacitor across VDD and VSS, as  
described above, will be helpful in preventing high slew  
rate transitions.  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 F to 0.001 F. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 F in parallel with 0.001 F).  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB trace  
If the application has components that turn on or off,  
and share the same VDD circuit as the microcontroller,  
the BOR can be disabled in software by using the  
SBOREN bit before switching the component. After-  
wards, allow a small delay before re-enabling the BOR.  
By doing this, it is ensured that the BOR is disabled  
during the interval that might cause high slew rate  
changes of VDD.  
Note:  
Not all devices incorporate software BOR  
control. See Section 5.0 “Reset” for  
device-specific information.  
inductance.  
DS39616D-page 26  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
2.3  
Master Clear (MCLR) Pin  
2.4  
ICSP Pins  
The MCLR pin provides two specific device  
functions: Device Reset, and Device Programming  
and Debugging. If programming and debugging are  
The PGC and PGD pins are used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes. It  
is recommended to keep the trace length between the  
ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
voltage sags, may be beneficial.  
A
typical  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented, depending on the  
application’s requirements.  
Pull-up resistors, series diodes, and capacitors on the  
PGC and PGD pins are not recommended as they will  
interfere with the programmer/debugger communica-  
tions to the device. If such discrete components are an  
application requirement, they should be removed from  
the circuit during programming and debugging. Alter-  
natively, refer to the AC/DC characteristics and timing  
requirements information in the respective device  
Flash programming specification for information on  
capacitive loading limits and pin input voltage high (VIH)  
and input low (VIL) requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must be  
considered. Device programmers and debuggers drive  
the MCLR pin. Consequently, specific voltage levels  
(VIH and VIL) and fast signal transitions must not be  
adversely affected. Therefore, specific values of R1  
and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated from  
the MCLR pin during programming and debugging  
operations by using a jumper (Figure 2-2). The jumper  
is replaced for normal run-time operations.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGCx/PGDx pins) programmed  
into the device matches the physical connections for  
the ICSP to the Microchip debugger/emulator tool.  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
For more information on available Microchip  
development tools connection requirements, refer to  
Section 25.0 “Development Support”.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
R1  
R2  
MCLR  
PIC18FXXXX  
JP  
C1  
Note 1: R1 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2: R2 470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
2010 Microchip Technology Inc.  
DS39616D-page 27  
PIC18F2331/2431/4331/4431  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
2.5  
External Oscillator Pins  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Single-Sided and In-Line Layouts:  
Section 3.0 “Oscillator Configurations” for details).  
Copper Pour  
(tied to ground)  
Primary Oscillator  
Crystal  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
DEVICE PINS  
Primary  
OSC1  
OSC2  
GND  
Oscillator  
C1  
C2  
`
`
Use a grounded copper pour around the oscillator cir-  
cuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a two-sided  
board, avoid any traces on the other side of the board  
where the crystal is placed.  
T1OSO  
T1OS I  
Timer1 Oscillator  
Crystal  
`
Layout suggestions are shown in Figure 2-4. In-line  
packages may be handled with a single-sided layout  
that completely encompasses the oscillator pins. With  
fine-pitch packages, it is not always possible to com-  
pletely surround the pins and components. A suitable  
solution is to tie the broken guard sections to a mirrored  
ground layer. In all cases, the guard trace(s) must be  
returned to ground.  
T1 Oscillator: C2  
T1 Oscillator: C1  
Fine-Pitch (Dual-Sided) Layouts:  
Top Layer Copper Pour  
(tied to ground)  
In planning the application’s routing and I/O assign-  
ments, ensure that adjacent port pins and other signals  
in close proximity to the oscillator are benign (i.e., free  
of high frequencies, short rise and fall times, and other  
similar noise).  
Bottom Layer  
Copper Pour  
(tied to ground)  
OSCO  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
C2  
Oscillator  
Crystal  
GND  
AN826, Crystal Oscillator Basics and Crystal  
C1  
Selection for rfPIC™ and PICmicro® Devices”  
• AN849, “Basic PICmicro® Oscillator Design”  
OSCI  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
• AN949, “Making Your Oscillator Work”  
DEVICE PINS  
2.6  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
DS39616D-page 28  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 3-1:  
CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(XT, LP, HS OR HSPLL  
CONFIGURATION)  
3.0  
3.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
(1)  
C1  
OSC1  
The PIC18F2331/2431/4331/4431 devices can be  
operated in 10 different oscillator modes. The user can  
program the Configuration bits, FOSC<3:0>, in  
Configuration Register 1H to select one of these  
10 modes:  
To  
Internal  
Logic  
XTAL  
(3)  
RF  
Sleep  
(2)  
RS  
1. LP  
Low-Power Crystal  
(1)  
PIC18FXXXX  
C2  
2. XT  
Crystal/Resonator  
OSC2  
3. HS  
High-Speed Crystal/Resonator  
Note 1: See Table 3-1 and Table 3-2 for initial values of  
4. HSPLL  
High-Speed Crystal/Resonator  
with PLL Enabled  
C1 and C2.  
2: A series resistor (RS) may be required for AT  
5. RC  
External Resistor/Capacitor with  
FOSC/4 Output on RA6  
strip resonant crystals.  
3: RF varies with the oscillator mode chosen.  
6. RCIO  
7. INTIO1  
8. INTIO2  
External Resistor/Capacitor with  
I/O on RA6  
TABLE 3-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Internal Oscillator with FOSC/4  
Output on RA6 and I/O on RA7  
Internal Oscillator with I/O on RA6  
and RA7  
Typical Capacitor Values Used:  
Mode  
Freq  
OSC1  
OSC2  
9. EC  
External Clock with FOSC/4 Output  
External Clock with I/O on RA6  
10. ECIO  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
56 pF  
47 pF  
33 pF  
56 pF  
47 pF  
33 pF  
3.2  
Crystal Oscillator/Ceramic  
Resonators  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
In XT, LP, HS or HSPLL Oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 3-1 shows  
the pin connections.  
Capacitor values are for design guidance only.  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values are not optimized.  
The oscillator design requires the use of a parallel  
resonant crystal.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
Note:  
Use of a series resonant crystal may give  
frequency out of the crystal  
manufacturers’ specifications.  
a
See the notes following Table 3-2 for additional  
information.  
Resonators Used:  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
16.0 MHz  
2010 Microchip Technology Inc.  
DS39616D-page 29  
PIC18F2331/2431/4331/4431  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 3-2.  
TABLE 3-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Typical Capacitor Values  
FIGURE 3-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
Crystal  
Freq  
Tested:  
Osc Type  
C1  
C2  
LP  
XT  
HS  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
4 MHz  
8 MHz  
20 MHz  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
OSC1  
Clock from  
Ext. System  
PIC18FXXXX  
(HS Mode)  
OSC2  
Open  
3.3  
PLL Frequency Multiplier  
Capacitor values are for design guidance only.  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who wish to use a lower frequency  
oscillator circuit or to clock the device up to its highest  
rated frequency from a crystal oscillator. This may be  
useful for those concerned with EMI from high-  
frequency crystals or users requiring higher clock  
speeds from an internal oscillator.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
are not optimized.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
3.3.1  
HSPLL OSCILLATOR MODE  
See the notes following this table for additional  
information.  
The HSPLL mode uses the HS Oscillator mode for  
frequencies up to 10 MHz. A PLL circuit then multiplies  
the oscillator output frequency by four to produce an  
internal clock frequency up to 40 MHz. The PLLEN bit  
is not available in this oscillator mode.  
Crystals Used:  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
20 MHz  
The PLL is only available to the crystal oscillator when  
the FOSC<3:0> Configuration bits are programmed for  
HSPLL mode (‘0110’).  
Note 1: Higher capacitance increases the  
stability of oscillator, but also increases  
the start-up time.  
FIGURE 3-3:  
PLL BLOCK DIAGRAM  
HS Osc Enable  
PLL Enable  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use the  
HS mode or switch to a crystal oscillator.  
(from Configuration Register 1H)  
OSC2  
OSC1  
Phase  
Comparator  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
HS Mode  
Crystal  
Osc  
FIN  
FOUT  
appropriate  
components.  
values  
of  
external  
Loop  
Filter  
4: Rs may be required to avoid overdriving  
crystals with low drive level specification.  
4  
VCO  
5: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
SYSCLK  
DS39616D-page 30  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
3.4  
External Clock Input  
3.5  
RC Oscillator  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. There is  
no oscillator start-up time required after a Power-on  
Reset or after an exit from Sleep mode.  
For timing-insensitive applications, the “RC” and “RCIO”  
device options offer additional cost savings. The actual  
oscillator frequency is a function of several factors:  
• Supply voltage  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 3-4 shows the pin connections for the EC  
Oscillator mode.  
• Values of the external resistor (REXT) and capacitor  
(CEXT)  
• Operating temperature  
Given the same device, operating voltage and tempera-  
ture, and component values, there will also be unit-to-unit  
frequency variations. These are due to factors, such as:  
FIGURE 3-4:  
EXTERNAL CLOCK INPUT  
OPERATION  
• Normal manufacturing variation  
• Difference in lead frame capacitance between  
package types (especially for low CEXT values)  
(EC CONFIGURATION)  
• Variations within the tolerance of limits of REXT  
and CEXT  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18FXXXX  
OSC2/CLKO  
In the RC Oscillator mode (Figure 3-6), the oscillator  
frequency divided by 4 is available on the OSC2 pin.  
This signal may be used for test purposes or to  
synchronize other logic.  
FOSC/4  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional  
general purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 3-5 shows the pin connections  
for the ECIO Oscillator mode.  
FIGURE 3-6:  
RC OSCILLATOR MODE  
VDD  
REXT  
Internal  
OSC1  
FIGURE 3-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
Clock  
(ECIO CONFIGURATION)  
CEXT  
VSS  
PIC18FXXXX  
OSC2/CLKO  
OSC1/CLKI  
PIC18FXXXX  
I/O (OSC2)  
Clock from  
Ext. System  
FOSC/4  
Recommended values: 3 k  REXT 100 k  
RA6  
CEXT > 20 pF  
The RCIO Oscillator mode (Figure 3-7) functions like  
the RC mode, except that the OSC2 pin becomes an  
additional general purpose I/O pin. The I/O pin  
becomes bit 6 of PORTA (RA6).  
FIGURE 3-7:  
RCIO OSCILLATOR MODE  
VDD  
REXT  
Internal  
OSC1  
Clock  
CEXT  
PIC18FXXXX  
VSS  
I/O (OSC2)  
RA6  
Recommended values: 3 k  REXT 100 k  
CEXT > 20 pF  
2010 Microchip Technology Inc.  
DS39616D-page 31  
PIC18F2331/2431/4331/4431  
3.6.2  
INTRC OUTPUT FREQUENCY  
3.6  
Internal Oscillator Block  
The internal oscillator block is calibrated at the factory  
to produce an INTOSC output frequency of 8.0 MHz.  
This changes the frequency of the INTRC source from  
its nominal 31.25 kHz. Peripherals and features that  
depend on the INTRC source will be affected by this  
shift in frequency.  
The PIC18F2331/2431/4331/4431 devices include an  
internal oscillator block, which generates two different  
clock signals; either can be used as the system’s clock  
source. This can eliminate the need for external  
oscillator circuits on the OSC1 and/or OSC2 pins.  
The main output (INTOSC) is an 8 MHz clock source,  
which can be used to directly drive the system clock. It  
also drives a postscaler, which can provide a range of  
clock frequencies from 125 kHz to 4 MHz. The  
INTOSC output is enabled when a system clock  
frequency from 125 kHz to 8 MHz is selected.  
3.6.3  
OSCTUNE REGISTER  
The internal oscillator’s output has been calibrated at the  
factory, but can be adjusted in the user’s application.  
This is done by writing to the OSCTUNE register  
(Register 3-1). Each increment may adjust the FRC  
frequency by varying amounts and may not be mono-  
tonic. The next closest frequency may be multiple steps  
apart.  
The other clock source is the internal RC oscillator  
(INTRC), which provides a 31 kHz output. The INTRC  
oscillator is enabled by selecting the internal oscillator  
block as the system clock source, or when any of the  
following are enabled:  
When the OSCTUNE register is modified, the INTOSC  
and INTRC frequencies will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred. Oper-  
ation of features that depend on the INTRC clock  
source frequency, such as the WDT, Fail-Safe Clock  
Monitor and peripherals, will also be affected by the  
change in frequency.  
• Power-up Timer  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
• Two-Speed Start-up  
These features are discussed in greater detail in  
Section 23.0 “Special Features of the CPU”.  
3.6.4  
INTOSC FREQUENCY DRIFT  
The clock source frequency (INTOSC direct, INTRC  
direct or INTOSC postscaler) is selected by configuring  
the IRCF bits of the OSCCON register (Register 3-2).  
The factory calibrates the internal oscillator block out-  
put (INTOSC) for 8 MHz. This frequency, however, may  
drift as the VDD or temperature changes, which can  
affect the controller operation in a variety of ways.  
3.6.1  
INTIO MODES  
Using the internal oscillator as the clock source can  
eliminate the need for up to two external oscillator pins,  
which can then be used for digital I/O. Two distinct  
configurations are available:  
The INTOSC frequency can be adjusted by modifying  
the value in the OSCTUNE register. This has no effect  
on the INTRC clock source frequency.  
Tuning the INTOSC source requires knowing when to  
make an adjustment, in which direction it should be  
made, and in some cases, how large a change is  
needed. Three compensation techniques are discussed  
in Section 3.6.4.1 “Compensating with the  
EUSART”, Section 3.6.4.2 “Compensating with the  
Timers” and Section 3.6.4.3 “Compensating with the  
CCP Module in Capture Mode”, but other techniques  
may be used.  
• In INTIO1 mode, the OSC2 pin outputs FOSC/4,  
while OSC1 functions as RA7 for digital input and  
output.  
• In INTIO2 mode, OSC1 functions as RA7 and  
OSC2 functions as RA6, both for digital input and  
output.  
DS39616D-page 32  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 3-1:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
011111= Maximum frequency  
000001  
000000= Center frequency. Oscillator module is running at the calibrated frequency.  
111111  
100000= Minimum frequency  
3.6.4.1  
Compensating with the EUSART  
3.6.4.3  
Compensating with the CCP Module  
in Capture Mode  
An adjustment may be required when the EUSART  
begins generating framing errors or receives data with  
errors while in Asynchronous mode. Framing errors  
frequently indicate that the device clock frequency is  
too high. To adjust for this, decrement the value in the  
OSCTUNE register to reduce the clock frequency.  
A CCP module can use free-running Timer1 (or  
Timer3), clocked by the internal oscillator block and an  
external event with a known period (such as the AC  
power frequency). The time of the first event is cap-  
tured in the CCPRxH:CCPRxL registers and recorded  
for later use. When the second event causes a capture,  
the time of the first event is subtracted from the time of  
the second event. Since the period of the external  
event is known, the time difference between events can  
be calculated.  
Conversely, errors in data may suggest that the clock  
speed is too low; to compensate, increment the  
OSCTUNE register to increase the clock frequency.  
3.6.4.2  
Compensating with the Timers  
If the measured time is much greater than the calcu-  
lated time, the internal oscillator block is running too  
fast. To compensate for this, decrement the OSCTUNE  
register. If the measured time is much less than the  
calculated time, the internal oscillator block is running  
too slow and the OSCTUNE register should be  
incremented.  
This technique compares the device clock speed to  
that of a reference clock. Two timers may be used: one  
timer clocked by the peripheral clock and the other by  
a fixed reference source, such as the Timer1 oscillator.  
Both timers are cleared, but the timer clocked by the  
reference generates interrupts. When an interrupt  
occurs, the internally clocked timer is read and both  
timers are cleared. If the internally clocked timer value  
is greater than expected, the internal oscillator block is  
running too fast. To adjust for this, decrement the  
OSCTUNE register.  
2010 Microchip Technology Inc.  
DS39616D-page 33  
PIC18F2331/2431/4331/4431  
3.7.1  
OSCILLATOR CONTROL REGISTER  
3.7  
Clock Sources and Oscillator  
Switching  
The OSCCON register (Register 3-2) controls sev-  
eral aspects of the system clock’s operation, both in  
full-power operation and in power-managed modes.  
Like previous PIC18 devices, the PIC18F2331/2431/  
4331/4431 devices include a feature that allows the sys-  
tem clock source to be switched from the main oscillator  
to an alternate low-frequency clock source. PIC18F2331/  
2431/4331/4431 devices offer two alternate clock  
sources. When enabled, these give additional options for  
switching to the various power-managed operating  
modes.  
The System Clock Select bits, SCS<1:0>, select the  
clock source that is used when the device is operating  
in power-managed modes. The available clock sources  
are the primary clock (defined in Configuration Register  
1H), the secondary clock (Timer1 oscillator) and the  
internal oscillator block. The clock selection has no  
effect until a SLEEP instruction is executed and the  
device enters a power-managed mode of operation.  
The SCS bits are cleared on all forms of Reset.  
Essentially, there are three clock sources for these  
devices:  
• Primary oscillators  
The Internal Oscillator Select bits, IRCF<2:0>, select  
the frequency output of the internal oscillator block that  
is used to drive the system clock. The choices are the  
INTRC source, the INTOSC source (8 MHz) or one of  
the six frequencies derived from the INTOSC post-  
scaler (125 kHz to 4 MHz). If the internal oscillator  
block is supplying the system clock, changing the  
states of these bits will have an immediate change on  
the internal oscillator’s output. On device Resets, the  
default output frequency of the internal oscillator block  
is set at 32 kHz.  
• Secondary oscillators  
• Internal oscillator block  
The primary oscillators include the External Crystal  
and Resonator modes, the External RC modes, the  
External Clock modes and the internal oscillator block.  
The particular mode is defined on POR by the contents  
of Configuration Register 1H. The details of these  
modes are covered earlier in this chapter.  
The secondary oscillators are those external sources  
not connected to the OSC1 or OSC2 pins. These  
sources may continue to operate even after the  
controller is placed in a power-managed mode.  
The OSTS, IOFS and T1RUN bits indicate which clock  
source is currently providing the system clock. The OSTS  
indicates that the Oscillator Start-up Timer has timed out,  
and the primary clock is providing the system clock in  
Primary Clock modes. The IOFS bit indicates when the  
internal oscillator block has stabilized, and is providing  
the system clock in RC Clock modes. The T1RUN bit  
(T1CON<6>) indicates when the Timer1 oscillator is  
providing the system clock in Secondary Clock modes. In  
power-managed modes, only one of these three bits will  
be set at any time. If none of these bits are set, the INTRC  
is providing the system clock, or the internal oscillator  
block has just started and is not yet stable.  
PIC18F2331/2431/4331/4431 devices offer only the  
Timer1 oscillator as a secondary oscillator. This  
oscillator, in all power-managed modes, is often the  
time base for functions such as a Real-Time Clock  
(RTC).  
Most often, a 32.768 kHz watch crystal is connected  
between the RC0/T1OSO/T1CKI and RC1/T1OSI/  
CCP2/FLTA pins. Like the LP Oscillator mode circuit,  
loading capacitors are also connected from each pin to  
ground.  
The Timer1 oscillator is discussed in greater detail in  
Section 13.2 “Timer1 Oscillator”.  
The IDLEN bit controls the selective shutdown of the  
controller’s CPU in power-managed modes. The use of  
these bits is discussed in more detail in Section 4.0  
“Power-Managed Modes”  
In addition to being a primary clock source, the internal  
oscillator block is available as a power-managed  
mode clock source. The INTRC source is also used as  
the clock source for several special features, such as  
the WDT and Fail-Safe Clock Monitor.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control  
register (T1CON<3>). If the Timer1  
oscillator is not enabled, then any  
attempt to select a secondary clock  
The clock sources for the PIC18F2331/2431/4331/4431  
devices are shown in Figure 3-8. See Section 13.0  
“Timer1 Module” for further details of the Timer1  
oscillator. See Section 23.1 “Configuration Bits” for  
Configuration register details.  
source, when executing  
instruction, will be ignored.  
a
SLEEP  
2: It is recommended that the Timer1  
oscillator be operating and stable before  
executing the SLEEP instruction, or a  
very long delay may occur while the  
Timer1 oscillator starts.  
DS39616D-page 34  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 3-8:  
PIC18F2331/2431/4331/4431 CLOCK DIAGRAM  
Clock  
Control  
CONFIG1H<3:0>  
HSPLL  
OSCCON<1:0>  
Peripherals  
Primary Oscillator  
OSC2  
4 x PLL  
Sleep  
LP, XT, HS, RC, EC  
OSC1  
Secondary Oscillator  
T1OSC  
T1OSO  
Clock Source Option  
for other Modules  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
OSCCON<6:4>  
Internal Oscillator  
CPU  
8 MHz  
OSCCON<6:4>  
111  
110  
101  
4 MHz  
2 MHz  
Internal  
Oscillator  
Block  
IDLEN  
1 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
8 MHz  
(INTOSC)  
INTRC  
Source  
WDT, FSCM  
2010 Microchip Technology Inc.  
DS39616D-page 35  
PIC18F2331/2431/4331/4431  
REGISTER 3-2:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0  
IDLEN  
bit 7  
R/W-0  
IRCF2  
R/W-0  
IRCF1  
R/W-0  
IRCF0  
R(1)  
R-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
OSTS  
IOFS  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IDLEN: Idle Enable bit  
1= Idle mode enabled; CPU core is not clocked in power-managed modes  
0= Run mode enabled; CPU core is clocked in power-managed modes  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111= 8 MHz (8 MHz source drives clock directly)  
110= 4 MHz (default)  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (INTRC source drives clock directly)(2)  
bit 3  
OSTS: Oscillator Start-up Timer Time-out Status bit(1)  
1= Oscillator Start-up Timer time-out has expired; primary oscillator is running  
0= Oscillator Start-up Timer time-out is running; primary oscillator is not ready  
bit 2  
IOFS: INTOSC Frequency Stable bit  
1= INTOSC frequency is stable  
0= INTOSC frequency is not stable  
bit 1-0  
SCS<1:0>: System Clock Select bits  
1x= Internal oscillator block  
01= Secondary (Timer1) oscillator  
00= Primary oscillator  
Note 1: Depends on the state of the IESO bit in Configuration Register 1H.  
2: Default output frequency of INTOSC on Reset.  
DS39616D-page 36  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
directly to clock the system, or may be divided down  
first. The INTOSC output is disabled if the system clock  
is provided directly from the INTRC output.  
3.7.2  
OSCILLATOR TRANSITIONS  
The PIC18F2331/2431/4331/4431 devices contain  
circuitry to prevent clocking “glitches” when switching  
between clock sources. A short pause in the system  
clock occurs during the clock switch. The length of this  
pause is between 8 and 9 clock periods of the new  
clock source. This ensures that the new clock source is  
stable and that its pulse width will not be less than the  
shortest pulse width of the two clock sources.  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
Timer1 oscillator may be operating to support a Real-  
Time Clock. Other features may be operating that do  
not require a system clock source (i.e., SSP slave,  
INTx pins, A/D conversions and others).  
Clock transitions are discussed in greater detail in  
Section 4.1.2 “Entering Power-Managed Modes”.  
3.8  
Effects of Power-Managed Modes  
on the Various Clock Sources  
When PRI_IDLE mode is selected, the designated  
primary oscillator continues to run without interruption.  
For all other power-managed modes, the oscillator using  
the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin,  
if used by the oscillator) will stop oscillating.  
3.9  
Power-up Delays  
Power-up delays are controlled by two timers, so that no  
external Reset circuitry is required for most applications.  
The delays ensure that the device is kept in Reset until  
the device power supply is stable under normal  
circumstances, and the primary clock is operating and  
stable. For additional information on power-up delays,  
see Section 5.3 “Power-on Reset (POR)” through  
Section 5.4 “Brown-out Reset (BOR)”.  
When the device executes a SLEEP instruction, the  
system is switched to one of the power-managed  
modes, depending on the state of the IDLEN and  
SCS<1:0> bits of the OSCCON register. See  
Section 4.0 “Power-Managed Modes” for details.  
In secondary clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the system clock. The Timer1 oscillator may  
also run in all power-managed modes if required to  
clock Timer1.  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 26-8), if enabled, in Configuration Register 2L.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the crys-  
tal oscillator is stable (LP, XT and HS modes). The OST  
does this by counting 1024 oscillator cycles before  
allowing the oscillator to clock the device.  
In internal oscillator modes (RC_RUN and RC_IDLE),  
the internal oscillator block provides the system clock  
source. The INTRC output can be used directly to  
provide the system clock and may be enabled to  
support various special features, regardless of the  
power-managed mode (see Section 23.2 “Watchdog  
Timer (WDT)” through Section 23.4 “Fail-Safe Clock  
Monitor”). The INTOSC output at 8 MHz may be used  
When the HSPLL Oscillator mode is selected, the  
device is kept in Reset for an additional 2 ms, following  
the HS mode OST delay, so the PLL can lock to the  
incoming clock frequency.  
TABLE 3-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC Mode  
OSC1 Pin  
OSC2 Pin  
RC, INTIO1  
Floating, external resistor  
should pull high  
At logic low (clock/4 output)  
RCIO, INTIO2  
Floating, external resistor  
should pull high  
Configured as PORTA, bit 6  
ECIO  
Floating, pulled by external clock  
Floating, pulled by external clock  
Configured as PORTA, bit 6  
At logic low (clock/4 output)  
EC  
LP, XT and HS  
Feedback inverter disabled at  
quiescent voltage level  
Feedback inverter disabled at  
quiescent voltage level  
Note: See Table 5-1 in Section 5.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
2010 Microchip Technology Inc.  
DS39616D-page 37  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 38  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
4.1.1  
CLOCK SOURCES  
4.0  
POWER-MANAGED MODES  
The SCS<1:0> bits allow the selection of one of three  
clock sources for power-managed modes. They are:  
PIC18F2331/2431/4331/4431 devices offer a total of  
seven operating modes for more efficient power  
management. These modes provide a variety of  
options for selective power conservation in applications  
where resources may be limited (i.e., battery-powered  
devices).  
• the primary clock, as defined by the FOSC<3:0>  
Configuration bits  
• the secondary clock (the Timer1 oscillator)  
• the internal oscillator block (for RC modes)  
There are three categories of power-managed modes:  
4.1.2  
ENTERING POWER-MANAGED  
MODES  
• Run modes  
• Idle modes  
• Sleep mode  
Switching from one power-managed mode to another  
begins by loading the OSCCON register. The  
SCS<1:0> bits select the clock source and determine  
which Run or Idle mode is to be used. Changing these  
bits causes an immediate switch to the new clock  
source, assuming that it is running. The switch may  
also be subject to clock transition delays. These are  
discussed in Section 4.1.3 “Clock Transitions and  
Status Indicators” and subsequent sections.  
These categories define which portions of the device  
are clocked, and sometimes, what speed. The Run and  
Idle modes may use any of the three available clock  
sources (primary, secondary or internal oscillator  
block); the Sleep mode does not use a clock source.  
The power-managed modes include several power-  
saving features offered on previous PIC® devices. One  
is the clock switching feature, offered in other PIC18  
devices, allowing the controller to use the Timer1 oscil-  
lator in place of the primary oscillator. Also included is  
the Sleep mode, offered by all PIC devices, where all  
device clocks are stopped.  
Entry to the power-managed Idle or Sleep modes is  
triggered by the execution of a SLEEPinstruction. The  
actual mode that results depends on the status of the  
IDLEN bit.  
Depending on the current mode and the mode being  
switched to, a change to a power-managed mode does  
not always require setting all of these bits. Many  
transitions may be done by changing the oscillator select  
bits, or changing the IDLEN bit, prior to issuing a SLEEP  
instruction. If the IDLEN bit is already configured  
correctly, it may only be necessary to perform a SLEEP  
instruction to switch to the desired mode.  
4.1  
Selecting Power-Managed Modes  
Selecting  
a power-managed mode requires two  
decisions: if the CPU is to be clocked or not and the  
selection of clock source. The IDLEN bit  
(OSCCON<7>) controls CPU clocking, while the  
SCS<1:0> bits (OSCCON<1:0>) select the clock  
source. The individual modes, bit settings, clock sources  
and affected modules are summarized in Table 4-1.  
a
TABLE 4-1:  
Mode  
POWER-MANAGED MODES  
OSCCON Bits<7,1:0>  
IDLEN(1) SCS<1:0>  
Module Clocking  
Available Clock and Oscillator Source  
CPU  
Peripherals  
Sleep  
0
N/A  
Off  
Off  
None – All clocks are disabled  
PRI_RUN  
N/A  
00  
Clocked  
Clocked  
Primary – LP, XT, HS, HSPLL, RC, EC and  
Internal Oscillator Block.(2)  
This is the normal, full-power execution mode.  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
N/A  
N/A  
1
01  
1x  
00  
01  
1x  
Clocked  
Clocked  
Off  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(2)  
Primary – LP, XT, HS, HSPLL, RC, EC  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(2)  
1
Off  
1
Off  
Note 1: IDLEN reflects its value when the SLEEPinstruction is executed.  
2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.  
2010 Microchip Technology Inc.  
DS39616D-page 39  
PIC18F2331/2431/4331/4431  
4.1.3  
CLOCK TRANSITIONS AND STATUS  
INDICATORS  
4.2  
Run Modes  
In the Run modes, clocks to both the core and  
peripherals are active. The difference between these  
modes is the clock source.  
The length of the transition between clock sources is  
the sum of two cycles of the old clock source and three  
to four cycles of the new clock source. This formula  
assumes that the new clock source is stable.  
4.2.1  
PRI_RUN MODE  
Three bits indicate the current clock source and its  
status. They are:  
The PRI_RUN mode is the normal, full-power execu-  
tion mode of the microcontroller. This is also the default  
mode upon a device Reset unless Two-Speed Start-up  
is enabled (see Section 23.3 “Two-Speed Start-up”  
for details). In this mode, the OSTS bit is set. The IOFS  
bit may be set if the internal oscillator block is the  
primary clock source (see Section 3.7.1 “Oscillator  
Control Register”).  
• OSTS (OSCCON<3>)  
• IOFS (OSCCON<2>)  
• T1RUN (T1CON<6>)  
In general, only one of these bits will be set while in a  
given power-managed mode. When the OSTS bit is  
set, the primary clock is providing the device clock.  
When the IOFS bit is set, the INTOSC output is  
providing a stable, 8 MHz clock source to a divider that  
actually drives the device clock. When the T1RUN bit is  
set, the Timer1 oscillator is providing the clock. If none  
of these bits are set, then either the INTRC clock  
source is clocking the device, or the INTOSC source is  
not yet stable.  
4.2.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high-accuracy clock source.  
If the internal oscillator block is configured as the primary  
clock source by the FOSC<3:0> Configuration bits, then  
both the OSTS and IOFS bits may be set when in  
PRI_RUN or PRI_IDLE modes. This indicates that the  
primary clock (INTOSC output) is generating a stable,  
8 MHz output. Entering another power-managed RC  
mode at the same frequency would clear the OSTS bit.  
SEC_RUN mode is entered by setting the SCS<1:0>  
bits to ‘01’. The device clock source is switched to the  
Timer1 oscillator (see Figure 4-1), the primary oscillator  
is shut down, the T1RUN bit (T1CON<6>) is set and the  
OSTS bit is cleared.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN  
mode. If the T1OSCEN bit is not set when  
the SCS<1:0> bits are set to ‘01’, entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, device clocks will be delayed until  
the oscillator has started. In such situa-  
tions, initial oscillator operation is far from  
stable and unpredictable operation may  
result.  
Note 1: Caution should be used when modifying  
a single IRCF bit. If VDD is less than 3V, it  
is possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
2: Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode. It acts as the trigger to place the  
controller into either the Sleep mode or  
one of the Idle modes, depending on the  
setting of the IDLEN bit.  
On transitions from SEC_RUN mode to PRI_RUN, the  
peripherals and CPU continue to be clocked from the  
Timer1 oscillator while the primary clock is started.  
When the primary clock becomes ready, a clock switch  
back to the primary clock occurs (see Figure 4-2).  
When the clock switch is complete, the T1RUN bit is  
cleared, the OSTS bit is set and the primary clock is  
providing the clock. The IDLEN and SCS bits are not  
affected by the wake-up; the Timer1 oscillator  
continues to run.  
4.1.4  
MULTIPLE SLEEP COMMANDS  
The power-managed mode that is invoked with the  
SLEEP instruction is determined by the setting of the  
IDLEN bit at the time the instruction is executed. If  
another SLEEPinstruction is executed, the device will  
enter the power-managed mode specified by IDLEN at  
that time. If IDLEN has changed, the device will enter  
the new power-managed mode specified by the new  
setting.  
DS39616D-page 40  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 4-1:  
TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
T1OSI  
Clock Transition(1)  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Clock transition typically occurs within 2-4 TOSC.  
FIGURE 4-2:  
TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
T1OSI  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition(2)  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
SCS<1:0> bits Changed  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2: Clock transition typically occurs within 2-4 TOSC.  
This mode is entered by setting the SCS1 bit to ‘1’.  
4.2.3  
RC_RUN MODE  
Although it is ignored, it is recommended that the SCS0  
bit also be cleared; this is to maintain software compat-  
ibility with future devices. When the clock source is  
switched to the INTOSC multiplexer (see Figure 4-3),  
the primary oscillator is shut down and the OSTS bit is  
cleared. The IRCF bits may be modified at any time to  
immediately change the clock speed.  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator block using the  
INTOSC multiplexer. In this mode, the primary clock is  
shut down. When using the INTRC source, this mode  
provides the best power conservation of all the Run  
modes, while still executing code. It works well for user  
applications which are not highly timing-sensitive or do  
not require high-speed clocks at all times.  
Note:  
Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
If the primary clock source is the internal oscillator block  
(either INTRC or INTOSC), there are no distinguishable  
differences between PRI_RUN and RC_RUN modes  
during execution. However, a clock switch delay will  
occur during entry to and exit from RC_RUN mode.  
Therefore, if the primary clock source is the internal  
oscillator block, the use of RC_RUN mode is not  
recommended.  
2010 Microchip Technology Inc.  
DS39616D-page 41  
PIC18F2331/2431/4331/4431  
If the IRCF bits and the INTSRC bit are all clear, the  
INTOSC output is not enabled and the IOFS bit will  
remain clear; there will be no indication of the current  
clock source. The INTRC source is providing the  
device clocks.  
On transitions from RC_RUN mode to PRI_RUN mode,  
the device continues to be clocked from the INTOSC  
multiplexer while the primary clock is started. When the  
primary clock becomes ready, a clock switch to the  
primary clock occurs (see Figure 4-4). When the clock  
switch is complete, the IOFS bit is cleared, the OSTS  
bit is set and the primary clock is providing the device  
clock. The IDLEN and SCS bits are not affected by the  
switch. The INTRC source will continue to run if either  
the WDT or the Fail-Safe Clock Monitor is enabled.  
If the IRCF bits are changed from all clear (thus,  
enabling the INTOSC output), or if INTSRC is set, the  
IOFS bit becomes set after the INTOSC output  
becomes stable. Clocks to the device continue while  
the INTOSC source stabilizes, after an interval of  
TIOBST.  
If the IRCF bits were previously at a non-zero value, or  
if INTSRC was set before setting SCS1 and the  
INTOSC source was already stable, the IOFS bit will  
remain set.  
FIGURE 4-3:  
TRANSITION TIMING TO RC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
INTRC  
OSC1  
Clock Transition(1)  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Clock transition typically occurs within 2-4 TOSC.  
FIGURE 4-4:  
TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition(2)  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
SCS<1:0> bits Changed  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2: Clock transition typically occurs within 2-4 TOSC.  
DS39616D-page 42  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
4.3  
Sleep Mode  
4.4  
Idle Modes  
The power-managed Sleep mode in the PIC18F2331/  
2431/4331/4431 devices is identical to the legacy  
Sleep mode offered in all other PIC devices. It is  
entered by clearing the IDLEN bit (the default state on  
device Reset) and executing the SLEEP instruction.  
This shuts down the selected oscillator (Figure 4-5). All  
clock source status bits are cleared.  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
If the IDLEN bit is set to a ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected using the SCS<1:0> bits; however, the  
CPU will not be clocked. The clock source status bits are  
not affected. Setting IDLEN and executing a SLEEP  
instruction provides a quick method of switching from a  
given Run mode to its corresponding Idle mode.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the INTRC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the WDT is selected, the INTRC source will continue  
to operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source, selected by the SCS<1:0> bits,  
becomes ready (see Figure 4-6), or it will be clocked  
from the internal oscillator block if either the Two-Speed  
Start-up or the Fail-Safe Clock Monitor is enabled (see  
Section 23.0 “Special Features of the CPU”). In  
either case, the OSTS bit is set when the primary clock  
is providing the device clocks. The IDLEN and SCS bits  
are not affected by the wake-up.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(Parameter 38, Table 26-8) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator block will clock the CPU  
and peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or Sleep mode, a WDT time-  
out will result in a WDT wake-up to the Run mode  
currently specified by the SCS<1:0> bits.  
FIGURE 4-5:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 4-6:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
TOST  
(1)  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
OSTS bit Set  
2010 Microchip Technology Inc.  
DS39616D-page 43  
PIC18F2331/2431/4331/4431  
setting the IDLEN bit and executing  
a SLEEP  
4.4.1  
PRI_IDLE MODE  
instruction. If the device is in another Run mode, set the  
IDLEN bit first, then set the SCS<1:0> bits to ‘01’ and  
execute SLEEP. When the clock source is switched to  
the Timer1 oscillator, the primary oscillator is shut down,  
the OSTS bit is cleared and the T1RUN bit is set.  
This mode is unique among the three low-power Idle  
modes, in that it does not disable the primary device  
clock. For timing-sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm-up” or transition from another  
oscillator.  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After an interval  
of TCSD, following the wake event, the CPU begins exe-  
cuting code being clocked by the Timer1 oscillator. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run (see Figure 4-8).  
PRI_IDLE mode is entered from PRI_RUN mode by  
setting the IDLEN bit and executing a SLEEP instruc-  
tion. If the device is in another Run mode, set IDLEN  
first, then clear the SCS bits and execute SLEEP.  
Although the CPU is disabled, the peripherals continue  
to be clocked from the primary clock source specified  
by the FOSC<3:0> Configuration bits. The OSTS bit  
remains set (see Figure 4-7).  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE  
mode. If the T1OSCEN bit is not set when  
the SLEEP instruction is executed, the  
SLEEP instruction will be ignored and  
entry to SEC_IDLE mode will not occur. If  
the Timer1 oscillator is enabled but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started. In such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
When a wake event occurs, the CPU is clocked from the  
primary clock source. A delay of interval, TCSD, is  
required between the wake event and when code  
execution starts. This is required to allow the CPU to  
become ready to execute instructions. After the wake-  
up, the OSTS bit remains set. The IDLEN and SCS bits  
are not affected by the wake-up (see Figure 4-8).  
4.4.2  
SEC_IDLE MODE  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered from SEC_RUN by  
FIGURE 4-7:  
TRANSITION TIMING FOR ENTRY TO IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 4-8:  
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
TCSD  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
Wake Event  
DS39616D-page 44  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
On all exits from Idle or Sleep modes by interrupt, code  
execution branches to the interrupt vector if the GIE/  
GIEH bit (INTCON<7>) is set. Otherwise, code execution  
continues or resumes without branching (see  
Section 10.0 “Interrupts”).  
4.4.3  
RC_IDLE MODE  
In RC_IDLE mode, the CPU is disabled but the periph-  
erals continue to be clocked from the internal oscillator  
block using the INTOSC multiplexer. This mode allows  
for controllable power conservation during Idle periods.  
A fixed delay of interval, TCSD, following the wake  
event, is required when leaving Sleep and Idle modes.  
This delay is required for the CPU to prepare for execu-  
tion. Instruction execution resumes on the first clock  
cycle following this delay.  
From RC_RUN, this mode is entered by setting the  
IDLEN bit and executing a SLEEP instruction. If the  
device is in another Run mode, first set IDLEN, then set  
the SCS1 bit and execute SLEEP. Although its value is  
ignored, it is recommended that SCS0 also be cleared;  
this is to maintain software compatibility with future  
devices. The INTOSC multiplexer may be used to  
select a higher clock frequency by modifying the IRCF  
bits before executing the SLEEPinstruction. When the  
clock source is switched to the INTOSC multiplexer, the  
primary oscillator is shut down and the OSTS bit is  
cleared.  
4.5.2  
EXIT BY WDT TIME-OUT  
A WDT time-out will cause different actions depending  
on which power-managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in an exit from the  
power-managed mode (see Section 4.2 “Run  
Modes” and Section 4.3 “Sleep Mode”). If the device  
is executing code (all Run modes), the time-out will  
result in a WDT Reset (see Section 23.2 “Watchdog  
Timer (WDT)”).  
If the IRCF bits are set to any non-zero value, or the  
INTSRC bit is set, the INTOSC output is enabled. The  
IOFS bit becomes set, after the INTOSC output  
becomes stable, after an interval of TIOBST  
(Parameter 39, Table 26-8). Clocks to the peripherals  
continue while the INTOSC source stabilizes. If the  
IRCF bits were previously at a non-zero value, or  
INTSRC was set before the SLEEP instruction was  
executed, and the INTOSC source was already stable,  
the IOFS bit will remain set. If the IRCF bits and  
INTSRC are all clear, the INTOSC output will not be  
enabled, the IOFS bit will remain clear and there will be  
no indication of the current clock source.  
The WDT timer and postscaler are cleared by  
executing a SLEEPor CLRWDTinstruction, the loss of a  
currently selected clock source (if the Fail-Safe Clock  
Monitor is enabled) and modifying the IRCF bits in the  
OSCCON register if the internal oscillator block is the  
device clock source.  
4.5.3  
EXIT BY RESET  
When a wake event occurs, the peripherals continue to  
be clocked from the INTOSC multiplexer. After a delay of  
TCSD, following the wake event, the CPU begins execut-  
ing code being clocked by the INTOSC multiplexer. The  
IDLEN and SCS bits are not affected by the wake-up.  
The INTRC source will continue to run if either the WDT  
or the Fail-Safe Clock Monitor is enabled.  
Normally, the device is held in Reset by the Oscillator  
Start-up Timer (OST) until the primary clock becomes  
ready. At that time, the OSTS bit is set and the device  
begins executing code. If the internal oscillator block is  
the new clock source, the IOFS bit is set instead.  
The exit delay time from Reset to the start of code  
execution depends on both the clock sources before  
and after the wake-up, and the type of oscillator if the  
new clock source is the primary clock. Exit delays are  
summarized in Table 4-2.  
4.5  
Exiting Idle and Sleep Modes  
An exit from Sleep mode or any of the Idle modes, is  
triggered by an interrupt, a Reset or a WDT time-out.  
This section discusses the triggers that cause exits  
from power-managed modes. The clocking subsystem  
actions are discussed in more detail in each of the  
sections that relate to the power-managed modes (see  
Section 4.2 “Run Modes”, Section 4.3 “Sleep  
Mode” and Section 4.4 “Idle Modes”).  
Code execution can begin before the primary clock  
becomes ready. If either the Two-Speed Start-up (see  
Section 23.3 “Two-Speed Start-up”) or Fail-Safe  
Clock Monitor (see Section 23.4 “Fail-Safe Clock  
Monitor”) is enabled, the device may begin execution  
as soon as the Reset source has cleared. Execution is  
clocked by the INTOSC multiplexer driven by the  
internal oscillator block. Execution is clocked by the  
internal oscillator block until either the primary clock  
becomes ready or a power-managed mode is entered  
before the primary clock becomes ready; the primary  
clock is then shut down.  
4.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit from an Idle mode or Sleep mode to a  
Run mode. To enable this functionality, an interrupt  
source must be enabled by setting its enable bit in one  
of the INTCON or PIE registers. The exit sequence is  
initiated when the corresponding interrupt flag bit is set.  
2010 Microchip Technology Inc.  
DS39616D-page 45  
PIC18F2331/2431/4331/4431  
In these instances, the primary clock source either  
does not require an oscillator start-up delay since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (RC, EC and INTIO  
Oscillator modes). However, a fixed delay of interval,  
TCSD, following the wake event, is still required when  
leaving Sleep and Idle modes to allow the CPU to  
prepare for execution. Instruction execution resumes  
on the first clock cycle following this delay.  
4.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Certain exits from power-managed modes do not  
invoke the OST at all. There are two cases:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; and  
• the primary clock source is not any of the LP, XT,  
HS or HSPLL modes.  
TABLE 4-2:  
EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE  
(BY CLOCK SOURCES)  
Clock Source  
Before Wake-up  
Clock Source  
After Wake-up  
Clock Ready Status  
Bit (OSCCON)  
Exit Delay  
LP, XT, HS  
HSPLL  
OSTS  
IOFS  
OSTS  
IOFS  
OSTS  
IOFS  
OSTS  
IOFS  
Primary Device Clock  
(PRI_IDLE mode)  
(1)  
TCSD  
EC, RC  
INTOSC(2)  
LP, XT, HS  
HSPLL  
(3)  
TOST  
(3)  
TOST + trc  
T1OSC  
(1)  
EC, RC  
TCSD  
INTOSC(2)  
LP, XT, HS  
HSPLL  
TIOBST  
(4)  
(3)  
TOST  
(3)  
TOST + trc  
INTOSC(3)  
(1)  
EC, RC  
TCSD  
INTOSC(2)  
LP, XT, HS  
HSPLL  
None  
(3)  
TOST  
(3)  
TOST + trc  
None  
(Sleep mode)  
(1)  
EC, RC  
INTOSC(2)  
TCSD  
(4)  
TIOBST  
Note 1: TCSD (Parameter 38) is a required delay when waking from Sleep and all Idle modes, and runs concur-  
rently with any other required delays (see Section 4.4 “Idle Modes”).  
2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.  
3: TOST is the Oscillator Start-up Timer (Parameter 32). trc is the PLL Lock-out Timer (Parameter F12); it is  
also designated as TPLL.  
4: Execution continues during TIOBST (Parameter 39), the INTOSC stabilization period.  
DS39616D-page 46  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
This section discusses Resets generated by MCLR,  
POR and BOR, and the operation of the various start-  
up timers. Stack Reset events are covered in  
Section 6.1.2.4 “Stack Full/Underflow Resets”.  
WDT Resets are covered in Section 23.2 “Watchdog  
Timer (WDT)”.  
5.0  
RESET  
The PIC18F2331/2431/4331/4431 devices differentiate  
between various kinds of Reset:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 5-1.  
d) Watchdog Timer (WDT) Reset (during  
execution)  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
g) Stack Full Reset  
h) Stack Underflow Reset  
FIGURE 5-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack  
Pointer  
Stack Full/Underflow Reset  
External Reset  
MCLRE  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
BOREN  
VDD  
Brown-out  
Reset  
S
OST/PWRT  
OST  
10-Bit Ripple Counter  
1024 Cycles  
Chip_Reset  
R
Q
OSC1  
32 s  
65.5 ms  
PWRT  
11-Bit Ripple Counter  
INTRC  
Enable PWRT  
(1)  
Enable OST  
Note 1: See Table 5-1 for time-out situations.  
2010 Microchip Technology Inc.  
DS39616D-page 47  
PIC18F2331/2431/4331/4431  
5.1  
RCON Register  
Note 1: If the BOREN Configuration bit is set  
(Brown-out Reset enabled), the BOR bit  
is ‘1’ on a Power-on Reset. After a  
Brown-out Reset has occurred, the BOR  
bit will be cleared and must be set by  
firmware to indicate the occurrence of the  
next Brown-out Reset.  
Device Reset events are tracked through the RCON  
register (Register 5-1). The lower five bits of the register  
indicate that a specific Reset event has occurred. In most  
cases, these bits can only be cleared by the event and  
must be set by the application after the event. The state  
of these flag bits, taken together, can be read to indicate  
the type of Reset that just occurred. This is described in  
more detail in Section 5.6 “Reset State of Registers”.  
2: It is recommended that the POR bit be  
set after a Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
The RCON register also has control bits for setting  
interrupt priority (IPEN) and software control of the  
BOR (SBOREN). Interrupt priority is discussed in  
Section 10.0 “Interrupts”. BOR is covered in  
Section 5.4 “Brown-out Reset (BOR)”.  
REGISTER 5-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR(2)  
R/W-0  
BOR(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESET instruction was executed causing a device Reset (must be set in software after a  
Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Set by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit(2)  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit(1)  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’.  
2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this  
register and Section 5.6 “Reset State of Registers” for additional information.  
Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent  
Power-on Resets may be detected.  
2: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to  
1’ by software immediately after a Power-on Reset).  
DS39616D-page 48  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 5-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
5.2  
Master Clear (MCLR)  
The MCLR pin can trigger an external Reset of the  
device by holding the pin low. These devices have a  
noise filter in the MCLR Reset path that detects and  
ignores small pulses.  
VDD  
VDD  
D
The MCLR pin is not driven low by any internal Resets,  
including the Watchdog Timer.  
R
R1  
MCLR  
In PIC18F2331/2431/4331/4431 devices, the MCLR  
input can be disabled with the MCLRE Configuration  
bit. When MCLR is disabled, the pin becomes a digital  
input. For more information, see Section 11.5  
“PORTE, TRISE and LATE Registers”.  
PIC18FXXXX  
C
Note 1: External Power-on Reset circuit is  
required only if the VDD power-up slope is  
too slow. The diode, D, helps discharge  
the capacitor quickly when VDD powers  
down.  
5.3  
Power-on Reset (POR)  
A Power-on Reset pulse is generated on-chip when-  
ever VDD rises above a certain threshold. This allows  
the device to start in the initialized state when VDD is  
adequate for operation.  
2: R < 40 kis recommended to make  
sure that the voltage drop across R does  
not violate the device’s electrical  
specification.  
To take advantage of the POR circuitry, tie the MCLR  
pin through a resistor (1 kto 10 k) to VDD. This will  
eliminate external RC components usually needed to  
create a Power-on Reset delay. The minimum rise rate  
for VDD is specified (Parameter D004). For a slow rise  
time, see Figure 5-2.  
3: R1 1 kwill limit any current flowing  
into MCLR from external capacitor, C, in  
the event of MCLR/VPP pin breakdown,  
due to Electrostatic Discharge (ESD) or  
Electrical Overstress (EOS).  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (such  
as voltage, frequency and temperature) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
5.4  
Brown-out Reset (BOR)  
A Configuration bit, BOREN, can disable (if clear/  
programmed) or enable (if set) the Brown-out Reset  
circuitry. If VDD falls below VBOR (Parameter D005A  
through D005F) for greater than TBOR (Parameter 35),  
the brown-out situation will reset the chip. A Reset may  
not occur if VDD falls below VBOR for less than TBOR.  
The chip will remain in Brown-out Reset until VDD rises  
above VBOR. If the Power-up Timer is enabled, it will be  
invoked after VDD rises above VBOR; it then will keep  
the chip in Reset for an additional time delay TPWRT  
(Parameter 33). If VDD drops below VBOR while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be  
initialized. Once VDD rises above VBOR, the Power-up  
Timer will execute the additional time delay. Enabling  
the Brown-out Reset does not automatically enable the  
PWRT.  
Power-on Reset events are captured by the POR bit  
(RCON<1>). The state of the bit is set to ‘0’ whenever  
a POR occurs and does not change for any other Reset  
event. POR is not reset to ‘1’ by any hardware event.  
To capture multiple events, the user manually resets  
the bit to ‘1’ in software following any Power-on Reset.  
Note:  
The following decoupling method is  
recommended:  
1. A 1 F capacitor should be connected  
across AVDD and AVSS.  
2. A similar capacitor should be  
connected across VDD and VSS.  
2010 Microchip Technology Inc.  
DS39616D-page 49  
PIC18F2331/2431/4331/4431  
5.5.3  
PLL LOCK TIME-OUT  
5.5  
Device Reset Timers  
With the PLL enabled in its PLL mode, the time-out  
sequence following a Power-on Reset is slightly differ-  
ent from other oscillator modes. A separate timer is  
used to provide a fixed time-out that is sufficient for the  
PLL to lock to the main oscillator frequency. This PLL  
Lock Time-out (TPLL) is typically 2 ms and follows the  
oscillator start-up time-out.  
PIC18F2331/2431/4331/4431 devices incorporate  
three separate on-chip timers that help regulate the  
Power-on Reset process. Their main function is to  
ensure that the device clock is stable before code is  
executed. These timers are:  
• Power-up Timer (PWRT)  
• Oscillator Start-up Timer (OST)  
• PLL Lock Time-out  
5.5.4  
TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows:  
5.5.1  
POWER-UP TIMER (PWRT)  
1. After the POR pulse has cleared, the PWRT time-out  
is invoked (if enabled).  
The Power-up Timer (PWRT) of PIC18F2331/2431/  
4331/4431 devices is an 11-bit counter that uses the  
INTRC source as the clock input. This yields an  
approximate time interval of 2,048 x 32 s = 65.6 ms.  
2. Then, the OST is activated.  
The total time-out will vary based on oscillator configu-  
ration and the status of the PWRT. Figure 5-3 through  
Figure 5-7 depict time-out sequences on power-up,  
with the Power-up Timer enabled and the device oper-  
ating in HS Oscillator mode. Figure 5-3 through  
Figure 5-6 also apply to devices operating in XT or LP  
modes.  
While the PWRT is counting, the device is held in  
Reset. The power-up time delay depends on the  
INTRC clock and will vary from chip to chip due to tem-  
perature and process variation. See DC Parameter 33  
for details.  
The PWRT is enabled by clearing the PWRTEN  
Configuration bit.  
For devices in RC mode, and with the PWRT disabled,  
there will be no time-out at all. Since the time-outs  
occur from the POR pulse, if MCLR is kept low long  
enough, all time-outs will expire. Bringing MCLR high  
will begin execution immediately (Figure 5-5). This is  
useful for testing purposes or synchronization of more  
than one PIC18FXXXX device operating in parallel.  
5.5.2  
OSCILLATOR START-UP TIMER  
(OST)  
The Oscillator Start-up Timer (OST) provides  
a
1,024 oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (Parameter 33). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP, HS and  
HSPLL modes, and on Power-on Reset or on exit from  
most power-managed modes.  
TABLE 5-1:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2) and Brown-out  
Exit From  
Configuration  
Power-Managed Mode  
PWRTEN = 0  
PWRTEN = 1  
HSPLL  
66 ms(1) + 1024 TOSC + 2 ms(2)  
66 ms(1) + 1024 TOSC  
66 ms(1)  
1024 TOSC + 2 ms(2)  
1024 TOSC + 2 ms(2)  
HS, XT, LP  
EC, ECIO  
1024 TOSC  
1024 TOSC  
RC, RCIO  
66 ms(1)  
66 ms(1)  
INTIO1, INTIO2  
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.  
2: 2 ms is the nominal time required for the 4x PLL to lock.  
DS39616D-page 50  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Status bits from the RCON register (RI, TO, PD, POR  
and BOR) are set or cleared differently in different  
Reset situations, as indicated in Table 5-2. These bits  
are used in software to determine the nature of the  
Reset.  
5.6  
Reset State of Registers  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” depending on the type of Reset that occurred.  
Table 5-3 describes the Reset states for all of the  
Special Function Registers. These are categorized by  
Power-on and Brown-out Resets, Master Clear and  
WDT Resets, and WDT wake-ups.  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal  
operation.  
FIGURE 5-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 5-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2010 Microchip Technology Inc.  
DS39616D-page 51  
PIC18F2331/2431/4331/4431  
FIGURE 5-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 5-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS39616D-page 52  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 5-7:  
TIME-OUT SEQUENCE ON POR w/PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
TABLE 5-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
0000h  
0000h  
0--1 1100  
0--0 uuuu  
0--1 11u-  
0--u 1uuu  
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
RESETInstruction  
Brown-out  
MCLR Reset during power-managed  
Run modes  
MCLR Reset during power-managed Idle  
and Sleep modes  
0000h  
0000h  
0--u 10uu  
0--u 0uuu  
u
u
1
0
0
u
u
u
u
u
u
u
u
u
WDT Time-out during full power or  
power-managed Run modes  
MCLR Reset during full-power execution  
Stack Full Reset (STVREN = 1)  
u
1
u
u
u
u
1
1
0000h  
0000h  
0--u uuuu  
u
u
u
u
u
Stack Underflow Reset (STVREN = 1)  
Stack Underflow Error (not an actual  
Reset, STVREN = 0)  
u--u uuuu  
u--u 00uu  
u--u u0uu  
u
u
u
u
0
u
u
0
0
u
u
u
u
u
u
WDT time-out during power-managed Idle  
or Sleep modes  
PC + 2  
u
u
u
u
(1)  
Interrupt exit from power-managed modes PC + 2  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’.  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
2010 Microchip Technology Inc.  
DS39616D-page 53  
PIC18F2331/2431/4331/4431  
TABLE 5-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
RESETInstruction  
Stack Resets  
TOSU  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
N/A  
N/A  
N/A  
POSTDEC0 2331 2431 4331 4431  
N/A  
N/A  
N/A  
PREINC0  
PLUSW0  
FSR0H  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
N/A  
N/A  
N/A  
POSTDEC1 2331 2431 4331 4431  
N/A  
N/A  
N/A  
PREINC1  
PLUSW1  
2331 2431 4331 4431  
2331 2431 4331 4431  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 5-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE  
pin, they are disabled and read as ‘0’. The 28-pin devices do not have only RE3 implemented.  
DS39616D-page 54  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 5-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
FSR1H  
FSR1L  
BSR  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
INDF2  
POSTINC2  
N/A  
N/A  
N/A  
POSTDEC2 2331 2431 4331 4431  
N/A  
N/A  
N/A  
PREINC2  
PLUSW2  
FSR2H  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0000 q000  
--00 0101  
0--- ---0  
0--1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0000 q000  
--00 0101  
0--- ---0  
0--q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
u--- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 5-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE  
pin, they are disabled and read as ‘0’. The 28-pin devices do not have only RE3 implemented.  
2010 Microchip Technology Inc.  
DS39616D-page 55  
PIC18F2331/2431/4331/4431  
TABLE 5-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
ANSEL1  
ANSEL0  
T5CON  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
xxxx xxxx  
xxxx xxxx  
--00 0000  
00-0 0000  
0000 0000  
00-0 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
---- ---1  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
0000 0000  
xx-0 x000  
---1 1111  
---0 0000  
---0 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
00-0 0000  
0000 0000  
00-0 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
---- ---1  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
0000 0000  
uu-0 u000  
---1 1111  
---0 0000  
---0 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uu-u uuuu  
uuuu uuuu  
uu-u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
-u-u u-uu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uu-0 u000  
---u uuuu  
---u uuuu  
---u uuuu  
QEICON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
BAUDCON  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
PIE3  
PIR3  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 5-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE  
pin, they are disabled and read as ‘0’. The 28-pin devices do not have only RE3 implemented.  
DS39616D-page 56  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 5-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
1--1 -1-1  
0--0 -0-0  
0--0 -0-0  
-111 1111  
-000 0000  
-000 0000  
0000 0000  
-000 0000  
--00 0000  
---- -111  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
1111 1111  
1111 1111  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx(5)  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx0x 0000(5)  
1--1 -1-1  
0--0 -0-0  
0--0 -0-0  
-111 1111  
-000 0000  
-000 0000  
0000 0000  
-000 0000  
--00 0000  
---- -111  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
1111 1111  
1111 1111  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---- xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu0u 0000(5)  
u--u -u-u  
u--u -u-u  
u--u -u-u  
-uuu uuuu  
-uuu uuuu(1)  
-uuu uuuu(1)  
uuuu uuuu  
-uuu uuuu  
--uu uuuu  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
PIE1  
OSCTUNE  
TRISE(6)  
TRISD  
TRISC  
TRISB  
TRISA(5)  
PR5H  
PR5L  
LATE(6)  
LATD  
LATC  
LATB  
LATA(5)  
TMR5H  
TMR5L  
PORTE(6)  
PORTD  
PORTC  
PORTB  
PORTA(5)  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 5-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE  
pin, they are disabled and read as ‘0’. The 28-pin devices do not have only RE3 implemented.  
2010 Microchip Technology Inc.  
DS39616D-page 57  
PIC18F2331/2431/4331/4431  
TABLE 5-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
PTCON0  
PTCON1  
PTMRL  
PTMRH  
PTPERL  
PTPERH  
PDC0L  
PDC0H  
PDC1L  
PDC1H  
PDC2L  
PDC2H  
PDC3L  
PDC3H  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
0000 0000  
00-- ----  
0000 0000  
---- 0000  
1111 1111  
---- 1111  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
---- 0000  
-111 0000  
0000 0-00  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
xxxx xxxx  
uuuu uuuu  
00-- ----  
0000 0000  
---- 0000  
1111 1111  
---- 1111  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
---- 0000  
-111 0000  
0000 0-00  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uu-- ----  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
---- uuuu  
-uuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
SEVTCMPL 2331 2431 4331 4431  
SEVTCMPH 2331 2431 4331 4431  
PWMCON0 2331 2431 4331 4431  
PWMCON1 2331 2431 4331 4431  
DTCON  
2331 2431 4331 4431  
FLTCONFIG 2331 2431 4331 4431  
OVDCOND 2331 2431 4331 4431  
OVDCONS  
2331 2431 4331 4431  
CAP1BUFH/ 2331 2431 4331 4431  
VELRH  
CAP1BUFL/ 2331 2431 4331 4431  
VELRL  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
CAP2BUFH/ 2331 2431 4331 4431  
POSCNTH  
CAP2BUFL/ 2331 2431 4331 4431  
POSCNTL  
CAP3BUFH/ 2331 2431 4331 4431  
MAXCNTH  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 5-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE  
pin, they are disabled and read as ‘0’. The 28-pin devices do not have only RE3 implemented.  
DS39616D-page 58  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 5-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
CAP3BUFL/ 2331 2431 4331 4431  
MAXCNTL  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
CAP1CON  
CAP2CON  
CAP3CON  
DFLTCON  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
2331 2431 4331 4431  
-0-- 0000  
-0-- 0000  
-0-- 0000  
-000 0000  
-0-- 0000  
-0-- 0000  
-0-- 0000  
-000 0000  
-u-- uuuu  
-u-- uuuu  
-u-- uuuu  
-uuu uuuu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 5-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE  
pin, they are disabled and read as ‘0’. The 28-pin devices do not have only RE3 implemented.  
2010 Microchip Technology Inc.  
DS39616D-page 59  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 60  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
6.1  
Program Memory Organization  
6.0  
MEMORY ORGANIZATION  
PIC18 microcontrollers implement a 21-bit program  
counter that can address a 2-Mbyte program memory  
space. Accessing a location between the upper bound-  
ary of the physically implemented memory and the  
2-Mbyte address will return all ‘0’s (a NOPinstruction).  
There are three memory types in enhanced MCU  
devices. These memory types are:  
• Program Memory  
• Data RAM  
• Data EEPROM  
The PIC18F2331/4331 devices each have 8 Kbytes of  
Flash memory and can store up to 4,096 single-word  
instructions.  
As Harvard architecture devices, the data and program  
memories use separate buses, enabling concurrent  
access of the two memory spaces. The data EEPROM,  
for practical purposes, can be regarded as a peripheral  
device, since it is addressed and accessed through a  
set of control registers.  
The PIC18F2431/4431 devices each have 16 Kbytes  
of Flash memory and can store up to 8,192 single-word  
instructions.  
PIC18 devices have two interrupt vectors. The Reset  
vector address is at 000000h and the interrupt vector  
addresses are at 000008h and 000018h.  
Additional detailed information on the operation of the  
Flash program memory is provided in Section 8.0  
“Flash Program Memory”. Data EEPROM is  
discussed separately in Section 7.0 “Data EEPROM  
Memory”.  
The program memory maps for PIC18F2331/4331 and  
PIC18F2431/4431 devices are shown in Figure 6-1  
and Figure 6-2, respectively.  
FIGURE 6-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F2431/4431  
FIGURE 6-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F2331/4331  
PC<20:0>  
21  
PC<20:0>  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
Stack Level 31  
000000h  
000008h  
000018h  
Reset Vector LSb  
000000h  
Reset Vector LSb  
High-Priority Interrupt Vector LSb  
Low-Priority Interrupt Vector LSb  
000008h  
000018h  
High-Priority Interrupt Vector LSb  
Low-Priority Interrupt Vector LSb  
On-Chip Flash  
Program Memory  
On-Chip Flash  
Program Memory  
001FFFh  
002000h  
003FFFh  
004000h  
Unused  
Read ‘0’s  
Unused  
Read ‘0’s  
1FFFFFh  
1FFFFFh  
2010 Microchip Technology Inc.  
DS39616D-page 61  
PIC18F2331/2431/4331/4431  
The stack space is not part of either program or data  
space. The Stack Pointer is readable and writable, and  
the address on the top of the stack is readable and  
writable through the Top-of-Stack (TOS) Special Function  
Registers. Data can also be pushed to, or popped from,  
the stack using the Top-of-Stack SFRs. Status bits  
indicate if the stack is full, has overflowed or underflowed.  
6.1.1  
PROGRAM COUNTER  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits wide  
and contained in three 8-bit registers. The low byte,  
known as the PCL register, is both readable and writ-  
able. The high byte (PCH register) contains the  
PC<15:8> bits and is not directly readable or writable.  
Updates to the PCH register are performed through the  
PCLATH register. The upper byte is the PCU register  
and contains the bits, PC<20:16>. This register is also  
not directly readable or writable. Updates to the PCU  
register are performed through the PCLATU register.  
6.1.2.1  
Top-of-Stack Access  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL, hold the  
contents of the stack location pointed to by the  
STKPTR register (Figure 6-3). This allows users to  
implement a software stack if necessary. After a CALL,  
RCALLor interrupt, the software can read the pushed  
value by reading the TOSU, TOSH and TOSL registers.  
These values can be placed on a user-defined software  
stack. At return time, the software can replace the  
TOSU, TOSH and TOSL and do a return.  
The contents of PCLATH and PCLATU are transferred  
to the program counter by any operation that writes to  
the PCL. Similarly, the upper two bytes of the program  
counter are transferred to PCLATH and PCLATU by an  
operation that reads PCL. This is useful for computed  
offsets to the PC (see Section 6.1.4.1 “Computed  
GOTO”).  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the Least Significant bit of the PCL is fixed  
to a value of ‘0‘. The PC increments by two to address  
sequential instructions in the program memory.  
6.1.2.2  
Return Stack Pointer (STKPTR)  
The STKPTR register (Register 6-1) contains the Stack  
Pointer value, the STKFUL (Stack Full) status bit and  
the STKUNF (Stack Underflow) status bits. The value  
of the Stack Pointer can be 0 through 31. The Stack  
Pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. At Reset, the Stack Pointer value will be zero.  
The user may read and write the Stack Pointer value.  
This feature can be used by a Real-Time Operating  
System (RTOS) for return stack maintenance.  
The CALL, RCALL, GOTOand program branch instruc-  
tions write to the program counter directly. For these  
instructions, the contents of PCLATH and PCLATU are  
not transferred to the program counter.  
6.1.2  
RETURN ADDRESS STACK  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed, or an interrupt  
is Acknowledged. The PC value is pulled off the stack  
on a RETURN, RETLW or a RETFIE instruction.  
PCLATU and PCLATH are not affected by any of the  
RETURNor CALLinstructions.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) Configuration bit. (Refer to  
Section 23.1 “Configuration Bits” for a description of  
the device Configuration bits.) If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to zero.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, with the Stack Pointer initialized to  
00000b after all Resets. There is no RAM associated  
with Stack Pointer, 00000b. This is only a Reset value.  
During a CALLtype instruction, causing a push onto the  
stack, the Stack Pointer is first incremented and the  
RAM location pointed to by the Stack Pointer is written  
with the contents of the PC (already pointing to the  
instruction following the CALL). During a RETURNtype  
instruction, causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR are  
transferred to the PC and then the Stack Pointer is  
decremented.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and STKPTR will remain at 31.  
DS39616D-page 62  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and set the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or a POR occurs.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset as the contents  
of the SFRs are not affected.  
FIGURE 6-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
001A34h 00010  
000D58h 00001  
00000  
Top-of-Stack  
REGISTER 6-1:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL(1)  
R/C-0  
STKUNF(1)  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP<4:0>: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
2010 Microchip Technology Inc.  
DS39616D-page 63  
PIC18F2331/2431/4331/4431  
Example 6-1 shows a source code example that uses  
the Fast Register Stack during a subroutine call and  
return.  
6.1.2.3  
PUSHand POPInstructions  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack without disturbing normal program execu-  
tion is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the Stack Pointer and load the  
current PC value onto the stack. TOSU, TOSH and  
TOSL can then be modified to place data or a return  
address on the stack.  
EXAMPLE 6-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
The PUSHinstruction places the current PC value onto  
the stack. This increments the Stack Pointer and loads  
the current PC value onto the stack. The POPinstruc-  
tion discards the current TOS by decrementing the  
Stack Pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
6.1.4  
LOOK-UP TABLES IN PROGRAM  
MEMORY  
6.1.2.4  
Stack Full/Underflow Resets  
These Resets are enabled by programming the  
STVREN bit in Configuration Register 4L. When the  
STVREN bit is cleared, a full or underflow condition will  
set the appropriate STKFUL or STKUNF bit, but not  
cause a device Reset. When the STVREN bit is set, a  
full or underflow condition will set the appropriate  
STKFUL or STKUNF bit and then cause a device  
Reset. The STKFUL or STKUNF bits are cleared by the  
user software or a Power-on Reset.  
There may be programming situations that require the  
creation of data structures, or look-up tables, in  
program memory. For PIC18 devices, look-up tables  
can be implemented two ways:  
• Computed GOTO  
Table Reads  
6.1.4.1  
Computed GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 6-2.  
6.1.3  
FAST REGISTER STACK  
A Fast Register Stack is provided for the STATUS,  
WREG and BSR registers, to provide a “fast return”  
option for interrupts. The stack for each register is only  
one level deep and is neither readable nor writable. It is  
loaded with the current value of the corresponding  
register when the processor vectors for an interrupt. All  
interrupt sources will push values into the stack  
registers.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLWnn instructions. The  
W register is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW nn  
instructions that returns the value “nn” to the calling  
function.  
The values in the registers are then loaded back into  
their associated registers if the RETFIE, FASTinstruc-  
tion is used to return from the interrupt. If both low and  
high-priority interrupts are enabled, the stack registers  
cannot be used reliably to return from low-priority inter-  
rupts. If a high-priority interrupt occurs while servicing a  
low-priority interrupt, the stack register values stored by  
the low-priority interrupt will be overwritten. In these  
cases, users must save the key registers in software  
during a low-priority interrupt.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSb = 0).  
In this method, only one data byte can be stored in  
each instruction location and room on the return  
address stack is required.  
EXAMPLE 6-2:  
COMPUTED GOTOUSING  
AN OFFSET VALUE  
If interrupt priority is not used, all interrupts may use the  
Fast Register Stack for returns from interrupt. If no  
interrupts are used, the Fast Register Stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the Fast Register  
Stack for a subroutine call, a CALL label, FAST  
instruction must be executed to save the STATUS,  
WREG and BSR registers to the Fast Register Stack. A  
RETURN, FAST instruction is then executed to restore  
these registers from the Fast Register Stack.  
MOVFW  
CALL  
OFFSET  
TABLE  
ORG  
TABLE  
0xnn00  
ADDWF  
RETLW  
RETLW  
RETLW  
PCL  
0xnn  
0xnn  
0xnn  
.
.
.
DS39616D-page 64  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
6.1.4.2  
Table Reads and Table Writes  
6.2  
Clocking Scheme/Instruction  
Cycle  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location. Look-up table data may be stored, two bytes  
per program word, by using table reads and writes.  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the  
Program Counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the Instruction Register (IR) in Q4. The  
instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow are shown in Figure 6-4.  
The Table Pointer register (TBLPTR) specifies the byte  
address and the Table Latch register (TABLAT) con-  
tains the data that is read from or written to program  
memory. Data is transferred to or from program  
memory, one byte at a time.  
Table read and table write operations are discussed  
further in Section 8.1 “Table Reads and Table  
Writes”.  
FIGURE 6-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC + 2  
PC + 4  
PC  
OSC2/CLKO  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
6.3  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute take another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 6-3).  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle, Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 6-3:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
2010 Microchip Technology Inc.  
DS39616D-page 65  
PIC18F2331/2431/4331/4431  
6.4.1  
TWO-WORD INSTRUCTIONS  
6.4  
Instructions in Program Memory  
The standard PIC18 instruction set has four two-word  
instructions: CALL, MOVFF, GOTO and LSFR. In all  
cases, the second word of the instructions always has  
1111’ as its four Most Significant bits; the other 12 bits  
are literal data, usually a data memory address.  
The program memory is addressed in bytes. Instructions  
are stored as two bytes or four bytes in program memory.  
The Least Significant Byte of an instruction word is  
always stored in a program memory location with an  
even address (LSB = 0). Figure 6-5 shows an example of  
how instruction words are stored in the program memory.  
To maintain alignment with instruction boundaries, the  
PC increments in steps of 2 and the LSB will always read  
0’.  
The use of ‘1111’ in the four MSbs of an instruction  
specifies a special form of NOP. If the instruction is exe-  
cuted in proper sequence, immediately after the first  
word, the data in the second word is accessed and  
used by the instruction sequence. If the first word is  
skipped for some reason and the second word is  
executed by itself, a NOP is executed instead. This is  
necessary for cases when the two-word instruction is  
preceded by a conditional instruction that changes the  
PC. Example 6-4 shows how this works.  
The CALL and GOTO instructions have the absolute  
program memory address embedded into the instruction.  
Since instructions are always stored on word boundaries,  
the data contained in the instruction is a word address.  
The word address is written to PC<20:1>, which  
accesses the desired byte address in program memory.  
Instruction 2 in Figure 6-5 shows how the instruction,  
GOTO 000006h’, is encoded in the program memory.  
Program branch instructions, which encode a relative  
address offset, operate in the same manner. The offset  
value stored in a branch instruction represents the num-  
ber of single-word instructions that the PC will be offset  
by. Section 24.0 “Instruction Set Summary” provides  
further details of the instruction set.  
Note:  
For information on two-word instructions  
in the extended instruction set, see  
Section 24.2 “Instruction Set”.  
FIGURE 6-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations   
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
MOVLW  
GOTO  
055h  
000006h  
Instruction 3:  
MOVFF  
123h, 456h  
EXAMPLE 6-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Source Code  
Object Code  
0110 0110 0000 0000 TSTFSZ  
REG1  
; is RAM location 0?  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
MOVFF  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
ADDWF  
REG3  
REG1  
Object Code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
; is RAM location 0?  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
ADDWF  
REG3  
; continue code  
DS39616D-page 66  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The instruction set and architecture allow operations  
across all banks. The entire data memory may be  
accessed by Direct, Indirect or Indexed Addressing  
modes. Addressing modes are discussed later in this  
subsection.  
6.5  
Data Memory Organization  
The data memory in PIC18 devices is implemented as  
static RAM. Each register in the data memory has a 12-bit  
address, allowing up to 4,096 bytes of data memory. The  
memory space is divided into as many as 16 banks that  
contain 256 bytes each. PIC18F2331/2431/4331/4431  
devices implement all 16 banks.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle, PIC18  
devices implement an Access Bank. This is a 256-byte  
memory space that provides fast access to SFRs and  
the lower portion of GPR Bank 0 without using the  
Figure 6-6 shows the data memory organization for the  
PIC18F2331/2431/4331/4431 devices. The data mem-  
ory contains Special Function Registers (SFRs) and  
General Purpose Registers (GPRs). The SFRs are used  
for control and status of the controller and peripheral  
functions, while GPRs are used for data storage and  
scratchpad operations in the user’s application. Any  
read of an unimplemented location will read as ‘0’s.  
BSR. Section 6.5.2 “Access Bank” provides  
a
detailed description of the Access RAM.  
FIGURE 6-6:  
DATA MEMORY MAP FOR PIC18F2331/2431/4331/4431 DEVICES  
Data Memory Map  
BSR<3:0>  
000h  
05Fh  
060h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000  
Bank 0  
Bank 1  
Bank 2  
FFh  
00h  
= 0001  
= 0010  
GPR  
GPR  
1FFh  
200h  
FFh  
00h  
FFh  
00h  
2FFh  
300h  
Access Bank  
00h  
Access RAM Low  
5Fh  
60h  
= 0011  
= 1110  
Access RAM High  
Bank 3  
to  
Bank 14  
Unused  
Read ‘00h’  
(SFRs)  
FFh  
When a = 0:  
The BSR is ignored and the  
Access Bank is used.  
The first 96 bytes are  
General Purpose RAM  
(from Bank 0).  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111  
Bank 15  
When a = 1:  
The BSR specifies the bank  
used by the instruction.  
2010 Microchip Technology Inc.  
DS39616D-page 67  
PIC18F2331/2431/4331/4431  
6.5.1  
BANK SELECT REGISTER (BSR)  
6.5.2  
ACCESS BANK  
Large areas of data memory require an efficient  
addressing scheme to make rapid access to any  
address possible. Ideally, this means that an entire  
address does not need to be provided for each read or  
write operation. For PIC18 devices, this is accom-  
plished with a RAM banking scheme. This divides the  
memory space into 16 contiguous banks of 256 bytes.  
While the use of the BSR with an embedded 8-bit  
address allows users to address the entire range of  
data memory, it also means that the user must always  
ensure that the correct bank is selected; otherwise,  
data may be read from or written to the wrong location.  
This can be disastrous if a GPR is the intended target  
of an operation, but an SFR is written to instead.  
Verifying and/or changing the BSR for each read or  
write to data memory can become very inefficient.  
Depending on the instruction, each location can be  
addressed directly by its full 12-bit address, or an 8-bit  
low-order address and a four-bit Bank Pointer. Most  
instructions in the PIC18 instruction set make use of  
the Bank Pointer, known as the Bank Select Register  
(BSR). This SFR holds the four Most Significant bits of  
a location’s address; the instruction itself includes the  
eight Least Significant bits. Only the four lower bits of  
the BSR are implemented (BSR<3:0>). The upper four  
bits are unused; they will always read ‘0’ and cannot be  
written to. The BSR can be loaded directly by using the  
MOVLBinstruction.  
To streamline access for the most commonly used data  
memory locations, the data memory is configured with  
an Access Bank, which allows users to access a  
mapped block of memory without specifying a BSR.  
The Access Bank consists of the first 128 bytes of  
memory (00h-7Fh) in Bank 0 and the last 128 bytes of  
memory (80h-FFh) in Block 15. The lower half is known  
as the “Access RAM” and is composed of GPRs. This  
upper half is also where the device’s SFRs are  
mapped. These two areas are mapped contiguously in  
the Access Bank and can be addressed in a linear  
fashion by an 8-bit address (Figure 6-6).  
The value of the BSR indicates the bank in data mem-  
ory. The eight bits in the instruction show the location in  
the bank and can be thought of as an offset from the  
bank’s lower boundary. The relationship between the  
BSR’s value and the bank division in data memory is  
shown in Figure 6-6.  
The Access Bank is used by core PIC18 instructions  
that include the Access RAM bit (the ‘a’ parameter in  
the instruction). When ‘a’ is equal to ‘1’, the instruction  
uses the BSR and the 8-bit address included in the  
opcode for the data memory address. When ‘a’ is ‘0’,  
however, the instruction is forced to use the Access  
Bank address map; the current value of the BSR is  
ignored entirely.  
Since up to 16 registers may share the same low-order  
address, the user must always be careful to ensure that  
the proper bank is selected before performing a data  
read or write. For example, writing what should be pro-  
gram data to the eight-bit address of F9h, while the  
BSR is 0Fh, will end up resetting the program counter.  
Using this “forced” addressing allows the instruction to  
operate on a data address in a single cycle, without  
updating the BSR first. For 8-bit addresses of 80h and  
above, this means that users can evaluate and operate  
on SFRs more efficiently. The Access RAM below 80h  
is a good place for data values that the user might need  
to access rapidly, such as immediate computational  
results or common program variables. Access RAM  
also allows for faster and more code efficient context  
saving and switching of variables.  
While any bank can be selected, only those banks that  
are actually implemented can be read or written to.  
Writes to unimplemented banks are ignored, while  
reads from unimplemented banks will return ‘0’s. Even  
so, the STATUS register will still be affected as if the  
operation was successful. The data memory map in  
Figure 6-5 indicates which banks are implemented.  
In the core PIC18 instruction set, only the MOVFF  
instruction fully specifies the 12-bit address of the  
source and target registers. This instruction ignores the  
BSR completely when it executes. All other instructions  
include only the low-order address as an operand and  
must use either the BSR or the Access Bank to locate  
their target registers.  
6.5.3  
GENERAL PURPOSE REGISTER  
(GPR) FILE  
PIC18 devices may have banked memory in the GPR  
area. This is data RAM, which is available for use by all  
instructions. GPRs start at the bottom of Bank 0  
(address 000h) and grow upwards towards the bottom of  
the SFR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
DS39616D-page 68  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
6.5.4  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 6-1 and Table 6-2.  
The SFRs are typically distributed among the  
peripherals whose functions they control.  
The unused SFR locations will be unimplemented and  
read as ‘0’s.  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
TABLE 6-1:  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F2331/2431/4331/4431 DEVICES  
Address  
FFFh  
Name  
TOSU  
TOSH  
TOSL  
Address  
Name  
Address  
Name  
Address  
F9Fh  
Name  
IPR1  
PIR1  
PIE1  
Address  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F76h  
F75h  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
Name  
PTCON0  
PTCON1  
PTMRL  
PTMRH  
PTPERL  
PTPERH  
PDC0L  
(1)  
FDFh  
INDF2  
FBFh CCPR1H  
FBEh CCPR1L  
FBDh CCP1CON  
FBCh CCPR2H  
FBBh CCPR2L  
FBAh CCP2CON  
FB9h ANSEL1  
FB8h ANSEL0  
(1)  
(1)  
FFEh  
FDEh POSTINC2  
F9Eh  
FFDh  
FDDh POSTDEC2  
F9Dh  
(1)  
(2)  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
STKPTR  
PCLATU  
PCLATH  
PCL  
FDCh PREINC2  
F9Ch  
(1)  
FDBh  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
PLUSW2  
F9Bh OSCTUNE  
F9Ah ADCON3  
FSR2H  
FSR2L  
F99h  
F98h  
F97h  
ADCHS  
(2)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
STATUS  
TMR0H  
TMR0L  
T0CON  
PDC0H  
PDC1L  
(2)  
FB7h  
T5CON  
(3)  
FB6h QEICON  
F96h TRISE  
F95h TRISD  
PDC1H  
PDC2L  
(2)  
(3)  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
(2)  
(2)  
(2)  
(2)  
(2)  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
TRISC  
PDC2H  
(3)  
OSCCON  
LVDCON  
WDTCON  
RCON  
TRISB  
TRISA  
PR5H  
PR5L  
PDC3L  
(3)  
INTCON  
INTCON2  
INTCON3  
PDC3H  
SEVTCMPL  
SEVTCMPH  
PWMCON0  
PWMCON1  
DTCON  
FB0h SPBRGH  
(1)  
(2)  
INDF0  
TMR1H  
TMR1L  
FAFh  
FAEh  
FADh  
FACh  
FABh  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
(1)  
(1)  
(2)  
FEEh POSTINC0  
(3)  
FEDh POSTDEC0  
T1CON  
TMR2  
LATE  
(1)  
(3)  
FECh PREINC0  
LATD  
FLTCONFIG  
OVDCOND  
OVDCONS  
CAP1BUFH  
CAP1BUFL  
CAP2BUFH  
CAP2BUFL  
CAP3BUFH  
CAP3BUFL  
CAP1CON  
CAP2CON  
CAP3CON  
DFLTCON  
(1)  
FEBh PLUSW0  
PR2  
LATC  
LATB  
FEAh  
FE9h  
FE8h  
FE7h  
FSR0H  
FSR0L  
WREG  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON  
FAAh BAUDCON  
FA9h EEADR  
LATA  
FA8h EEDATA  
FA7h EECON2  
FA6h EECON1  
TMR5H  
TMR5L  
(1)  
INDF1  
(1)  
(1)  
(2)  
FE6h POSTINC1  
(2)  
(2)  
FE5h POSTDEC1  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
IPR3  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
(1)  
FE4h PREINC1  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
PORTE  
(1)  
(3)  
FE3h PLUSW1  
F83h PORTD  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
F82h  
F81h  
F80h  
PORTC  
PORTB  
PORTA  
Note 1: This is not a physical register.  
2: Unimplemented registers are read as ‘0’.  
3: This register is not available on 28-pin devices.  
2010 Microchip Technology Inc.  
DS39616D-page 69  
PIC18F2331/2431/4331/4431  
TABLE 6-2:  
REGISTER FILE SUMMARY (PIC18F2331/2431/4331/4431)  
Value on  
POR, BOR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TOSU  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
bit 21(3)  
SP4  
SP3  
SP2  
SP1  
SP0  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit 21(3)  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 offset by W (not a physical register)  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 0 High  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 offset by W (not a physical register)  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 1 High Byte  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
FSR1L  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 2 High Byte  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
TMR0L  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
T0CON  
TMR0ON  
T016BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0  
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition. Shaded cells are unimplemented.  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator modes only and read  
0’ in all other oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: These registers and/or bits are not implemented on the PIC18F2331/2431 devices and read as ‘0’.  
5: The RE3 port bit is only available for PIC18F4331/4431 devices when the MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’; otherwise, RE3  
reads ‘0’. This bit is read-only.  
DS39616D-page 70  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 6-2:  
REGISTER FILE SUMMARY (PIC18F2331/2431/4331/4431) (CONTINUED)  
Value on  
POR, BOR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
LVDCON  
WDTCON  
RCON  
IDLEN  
IRCF2  
IRCF1  
IRVST  
IRCF0  
LVDEN  
OSTS  
LVDL3  
IOFS  
LVDL2  
SCS1  
LVDL1  
SCS0  
LVDL0  
SWDTEN  
BOR  
0000 q000  
--00 0101  
0--- ---0  
0--1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
00-0 0000  
0000 0000  
00-0 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
---- ---1  
1111 1111  
WDTW  
IPEN  
RI  
TO  
PD  
POR  
TMR1H  
Timer1 Register High Byte  
Timer1 Register Low Byte  
TMR1L  
T1CON  
RD16  
T1RUN  
T1CKPS1  
TOUTPS2  
T1CKPS0  
TOUTPS1  
T1OSCEN  
TOUTPS0  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON  
T2CKPS0  
TMR2  
Timer2 Register  
PR2  
Timer2 Period Register  
TOUTPS3  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
SSP Receive Buffer/Transmit Register  
SSP Address Register in I2C™ Slave mode. SSP Baud Rate Reload Register in I2C Master mode.  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ACONV  
ACSCH  
FIFOEN  
ACQT1  
SSRC4  
GBSEL0  
ACMOD1  
BFEMT  
ACQT0  
SSRC3  
GCSEL1  
ACMOD0  
BFOVFL  
ADCS2  
GO/DONE  
ADPNT1  
ADCS1  
ADON  
ADPNT0  
ADCS0  
SSRC0  
GASEL0  
VCFG1  
ADFM  
VCFG0  
ACQT3  
ADRS0  
GDSEL0  
ACQT2  
ADRS1  
GDSEL1  
SSRC2  
SSRC1  
GBSEL1  
GCSEL0  
GASEL1  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
ANSEL1  
ANSEL0  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0  
Capture/Compare/PWM Register 2 High Byte  
Capture/Compare/PWM Register 2 Low Byte  
ANS7(4)  
ANS6(4)  
DC2B1  
ANS5(4)  
DC2B0  
CCP2M3  
CCP2M2  
CCP2M1  
CCP2M0  
ANS8(4)  
ANS0  
ANS4  
ANS3  
ANS2  
ANS1  
T5CON  
QEICON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
T5SEN  
VELM  
RESEN(4)  
T5MOD  
T5PS1  
QEIM2  
T5PS0  
QEIM1  
T5SYNC  
QEIM0  
TMR5CS  
PDEC1  
TMR5ON  
PDEC0  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000X  
-1-1 0-00  
QERR  
UP/DOWN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
EUSART Receive Register  
EUSART Transmit Register  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
RCSTA  
BAUDCON  
RCIDL  
ABDEN  
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition. Shaded cells are unimplemented.  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator modes only and read  
0’ in all other oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: These registers and/or bits are not implemented on the PIC18F2331/2431 devices and read as ‘0’.  
5: The RE3 port bit is only available for PIC18F4331/4431 devices when the MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’; otherwise, RE3  
reads ‘0’. This bit is read-only.  
2010 Microchip Technology Inc.  
DS39616D-page 71  
PIC18F2331/2431/4331/4431  
TABLE 6-2:  
REGISTER FILE SUMMARY (PIC18F2331/2431/4331/4431) (CONTINUED)  
Value on  
POR, BOR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
EEPROM Address Register  
EEPROM Data Register  
0000 0000  
0000 0000  
0000 0000  
xx-0 x000  
---1 1111  
---0 0000  
---0 0000  
1--1 -1-1  
0--0 -0-0  
0--0 -0-0  
-111 1111  
-000 0000  
-000 0000  
--00 0000  
00-0 0000  
0000 0000  
---- -111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx0x 0000  
0000 0000  
00-- ----  
0000 0000  
---- 0000  
1111 1111  
---- 1111  
EEPROM Control Register 2 (not a physical register)  
EEPGD  
CFGS  
FREE  
PTIP  
PTIF  
WRERR  
IC3DRIP  
IC3DRIF  
IC3DRIE  
WREN  
IC2QEIP  
IC2QEIF  
IC2QEIE  
LVDIP  
WR  
IC1IP  
IC1IF  
IC1IE  
RD  
TMR5IP  
TMR5IF  
TMR5IE  
CCP2IP  
CCP2IF  
CCP2IE  
TMR1IP  
TMR1IF  
TMR1IE  
TUN0  
PIR3  
PIE3  
PTIE  
EEIP  
EEIF  
EEIE  
TXIP  
TXIF  
IPR2  
OSCFIP  
OSCFIF  
OSCFIE  
PIR2  
LVDIF  
PIE2  
LVDIE  
IPR1  
ADIP  
ADIF  
ADIE  
RCIP  
RCIF  
RCIE  
TUN5  
SSPIP  
SSPIF  
SSPIE  
TUN3  
SSRC3  
GCSEL1  
CCP1IP  
CCP1IF  
CCP1IE  
TUN2  
TMR2IP  
TMR2IF  
TMR2IE  
TUN1  
SSRC1  
GASEL1  
PIR1  
PIE1  
TXIE  
TUN4  
SSRC4  
GBSEL0  
OSCTUNE  
ADCON3  
ADCHS  
TRISE(4)  
TRISD(4)  
TRISC  
TRISB  
TRISA  
PR5H  
ADRS1  
GDSEL1  
ADRS0  
GDSEL0  
SSRC2  
GCSEL0  
PORTE Data Direction Register(4)  
SSRC0  
GASEL0  
GBSEL1  
PORTD Data Direction Register  
PORTC Data Direction Register  
PORTB Data Direction Register  
TRISA7(2)  
TRISA6(1) PORTA Data Direction Register  
Timer5 Period Register High Byte  
Timer5 Period Register Low Byte  
PR5L  
LATE(4)  
LATD(4)  
LATC  
LATE Data Output Register  
LATD Data Output Register  
LATC Data Output Register  
LATB Data Output Register  
LATB  
LATA  
LATA7(2)  
LATA6(1)  
LATA Data Output Register  
TMR5H  
TMR5L  
PORTE  
PORTD(4)  
PORTC  
PORTB  
PORTA  
PTCON0  
PTCON1  
PTMRL  
PTMRH  
PTPERL  
PTPERH  
Timer5 Register High Byte  
Timer5 Register Low Byte  
RD7  
RD6  
RD5  
RC5  
RB5  
RD4  
RC4  
RB4  
RE3(4,5)  
RD3  
RE2(4)  
RD2  
RE1(4)  
RD1  
RE0(4)  
RD0  
RC7  
RC6  
RC3  
RC2  
RC1  
RC0  
RB7  
RB6  
RB3  
RB2  
RB1  
RB0  
RA7(2)  
PTOPS3  
PTEN  
RA6(1)  
PTOPS2  
PTDIR  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PTOPS1  
PTOPS0  
PTCKPS1  
PTCKPS0  
PTMOD1  
PTMOD0  
PWM Time Base Register (lower 8 bits)  
UNUSED  
PWM Time Base Register (upper 4 bits)  
PWM Time Base Period Register (lower 8 bits)  
UNUSED  
PWM Time Base Period Register (upper 4 bits)  
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition. Shaded cells are unimplemented.  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator modes only and read  
0’ in all other oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: These registers and/or bits are not implemented on the PIC18F2331/2431 devices and read as ‘0’.  
5: The RE3 port bit is only available for PIC18F4331/4431 devices when the MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’; otherwise, RE3  
reads ‘0’. This bit is read-only.  
DS39616D-page 72  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 6-2:  
REGISTER FILE SUMMARY (PIC18F2331/2431/4331/4431) (CONTINUED)  
Value on  
POR, BOR  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PDC0L  
PWM Duty Cycle #0L Register (lower 8 bits)  
UNUSED PWM Duty Cycle #0H Register (upper 6 bits)  
PWM Duty Cycle #1L Register (lower 8 bits)  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
--00 0000  
0000 0000  
---- 0000  
-111 0000  
0000 0-00  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
xxxx xxxx  
PDC0H  
PDC1L  
PDC1H  
UNUSED  
PWM Duty Cycle #1H Register (upper 6 bits)  
PDC2L  
PWM Duty Cycle #2L Register (lower 8 bits)  
PDC2H  
UNUSED  
PWM Duty Cycle #2H Register (upper 6 bits)  
PDC3L(4)  
PDC3H(4)  
SEVTCMPL  
SEVTCMPH  
PWMCON0  
PWMCON1  
DTCON  
PWM Duty Cycle #3L Register (lower 8 bits)  
UNUSED  
PWM Duty Cycle #3H Register (upper 6 bits)  
PWM Special Event Compare Register (lower 8 bits)  
UNUSED  
PWM Special Event Compare Register (upper 4 bits)  
PWMEN2  
SEVOPS2  
DTPS0  
PWMEN1  
SEVOPS1  
DT5  
PWMEN0  
SEVOPS0  
DT4  
PMOD3  
SEVTDIR  
DT3  
PMOD2  
PMOD1  
UDIS  
PMOD0  
OSYNC  
DT0  
SEVOPS3  
DTPS1  
DT2  
DT1  
FLTCONFIG  
OVDCOND  
OVDCONS  
BRFEN  
FLTBS(4)  
POVD6(4)  
POUT6(4)  
FLTBMOD(4)  
FLTBEN(4)  
FLTCON  
POVD3  
POUT3  
FLTAS  
POVD2  
POUT2  
FLTAMOD  
POVD1  
POUT1  
FLTAEN  
POVD0  
POUT0  
POVD7(4)  
POUT7(4)  
POVD5  
POVD4  
POUT5  
POUT4  
CAP1BUFH/  
VELRH  
Capture 1 Register High Byte/Velocity Register High Byte  
CAP1BUFL/  
VELRL  
Capture 1 Register Low Byte/Velocity Register Low Byte  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
CAP2BUFH/  
POSCNTH  
Capture 2 Register High Byte/QEI Position Counter Register High Byte  
Capture 2 Register Low Byte/QEI Position Counter Register Low Byte  
Capture 3 Register High Byte/QEI Max. Count Limit Register High Byte  
Capture 3 Register Low Byte/QEI Max. Count Limit Register Low Byte  
CAP2BUFL/  
POSCNTL  
CAP3BUFH/  
MAXCNTH  
CAP3BUFL/  
MAXCNTL  
CAP1CON  
CAP2CON  
CAP3CON  
DFLTCON  
CAP1REN  
CAP2REN  
CAP3REN  
FLT4EN  
CAP1M3  
CAP2M3  
CAP3M3  
FLT1EN  
CAP1M2  
CAP2M2  
CAP3M2  
FLTCK2  
CAP1M1  
CAP2M1  
CAP3M1  
FLTCK1  
CAP1M0  
CAP2M0  
CAP3M0  
FLTCK0  
-0-- 0000  
-0-- 0000  
-0-- 0000  
-000 0000  
FLT3EN  
FLT2EN  
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition. Shaded cells are unimplemented.  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator modes only and read  
0’ in all other oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: These registers and/or bits are not implemented on the PIC18F2331/2431 devices and read as ‘0’.  
5: The RE3 port bit is only available for PIC18F4331/4431 devices when the MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’; otherwise, RE3  
reads ‘0’. This bit is read-only.  
2010 Microchip Technology Inc.  
DS39616D-page 73  
PIC18F2331/2431/4331/4431  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the STATUS register, because these instructions  
do not affect the Z, C, DC, OV or N bits in the STATUS  
register. For other instructions not affecting any Status  
bits, see Table 24-2.  
6.6  
STATUS Register  
The STATUS register, shown in Register 6-2, contains  
the arithmetic status of the ALU. The STATUS register  
can be the operand for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV or N bits,  
then the write to these five bits is disabled. These bits  
are set or cleared according to the device logic. There-  
fore, the result of an instruction with the STATUS  
register as destination may be different than intended.  
Note:  
The C and DC bits operate as a Borrow  
and Digit Borrow bit respectively, in  
subtraction.  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
REGISTER 6-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was negative  
(ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit magnitude  
which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit(1)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit(2)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.  
2: For Borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit  
of the source register.  
DS39616D-page 74  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
A few instructions, such as MOVFF, include the entire  
12-bit address (either source or destination) in their op  
6.7  
Data Addressing Modes  
The data memory space can be addressed in several  
ways. For most instructions, the addressing mode is  
fixed. Other instructions may use up to three modes,  
depending on which operands are used and whether or  
not the extended instruction set is enabled.  
codes. In these cases, the BSR is ignored entirely.  
The destination of the operation’s results is determined  
by the destination bit, ‘d’. When ‘d’ is ‘1’, the results are  
stored back in the source register, overwriting its origi-  
nal contents. When ‘d’ is ‘0’, the results are stored in  
the W register. Instructions without the ‘d’ argument  
have a destination that is implicit in the instruction; their  
destination is either the target register being operated  
on or the W register.  
The addressing modes are:  
• Inherent  
• Literal  
• Direct  
• Indirect  
6.7.3  
INDIRECT ADDRESSING  
Indirect Addressing allows the user to access a location  
in data memory without giving a fixed address in the  
instruction. This is done by using File Select Registers  
(FSRs) as pointers to the locations to be read or written  
to. Since the FSRs are themselves located in RAM as  
Special Function Registers, they can also be directly  
manipulated under program control. This makes FSRs  
very useful in implementing data structures, such as  
tables and arrays in data memory.  
6.7.1  
INHERENT AND LITERAL  
ADDRESSING  
Many PIC18 control instructions do not need any  
argument at all. They either perform an operation that  
globally affects the device or they operate implicitly on  
one register. This addressing mode is known as Inherent  
Addressing. Examples include SLEEP, RESETand DAW.  
Other instructions work in a similar way but require an  
additional explicit argument in the opcode. This is  
known as Literal Addressing mode because they  
require some literal value as an argument. Examples  
include ADDLWand MOVLW, which respectively, add or  
move a literal value to the W register. Other examples  
include CALL and GOTO, which include a 20-bit  
program memory address.  
The registers for Indirect Addressing are also  
implemented with Indirect File Operands (INDFs) that  
permit automatic manipulation of the pointer value with  
auto-incrementing, auto-decrementing or offsetting  
with another value. This allows for efficient code, using  
loops, such as the example of clearing an entire RAM  
bank in Example 6-5.  
6.7.2  
DIRECT ADDRESSING  
EXAMPLE 6-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
Direct Addressing specifies all or part of the source  
and/or destination address of the operation within the  
opcode itself. The options are specified by the  
arguments accompanying the instruction.  
LFSR  
FSR0, 100h ;  
NEXT  
CLRF  
POSTINC0  
; Clear INDF  
In the core PIC18 instruction set, bit-oriented and byte-  
oriented instructions use some version of Direct  
Addressing by default. All of these instructions include  
some 8-bit literal address as their Least Significant  
Byte. This address specifies either a register address in  
one of the banks of data RAM (Section 6.5.4 “Special  
Function Registers”) or a location in the Access Bank  
(Section 6.5.2 “Access Bank”) as the data source for  
the instruction.  
; register then  
; inc pointer  
; All done with  
; Bank1?  
; NO, clear next  
; YES, continue  
BTFSS FSR0H, 1  
BRA NEXT  
CONTINUE  
The Access RAM bit, ‘a’, determines how the address  
is interpreted. When ‘a’ is ‘1’, the contents of the BSR  
(Section 6.5.1 “Bank Select Register (BSR)”) are  
used with the address to determine the complete 12-bit  
address of the register. When ‘a’ is ‘0’, the address is  
interpreted as being a register in the Access Bank.  
Addressing that uses the Access RAM is sometimes  
also known as Direct Forced Addressing mode.  
2010 Microchip Technology Inc.  
DS39616D-page 75  
PIC18F2331/2431/4331/4431  
6.7.3.1  
FSR Registers and the  
INDF Operand  
6.7.3.2  
FSR Registers and POSTINC,  
POSTDEC, PREINC and PLUSW  
At the core of Indirect Addressing are three sets of  
registers: FSR0, FSR1 and FSR2. Each represents a  
pair of 8-bit registers, FSRnH and FSRnL. The four  
upper bits of the FSRnH register are not used so each  
FSR pair holds a 12-bit value. This represents a value  
that can address the entire range of the data memory  
in a linear fashion. The FSR register pairs, then, serve  
as pointers to data memory locations.  
In addition to the INDF operand, each FSR register pair  
also has four additional indirect operands. Like INDF,  
these are “virtual” registers that cannot be indirectly  
read or written to. Accessing these registers actually  
accesses the associated FSR register pair, but also  
performs a specific action on its stored value. They are:  
• POSTDEC: accesses the FSR value, then  
automatically decrements it by 1 afterwards  
Indirect Addressing is accomplished with a set of  
Indirect File Operands: INDF0 through INDF2. These  
can be thought of as “virtual” registers; they are  
mapped in the SFR space but are not physically imple-  
mented. Reading or writing to a particular INDF register  
actually accesses its corresponding FSR register pair.  
A read from INDF1, for example, reads the data at the  
address indicated by FSR1H:FSR1L. Instructions that  
use the INDF registers as operands actually use the  
contents of their corresponding FSR as a pointer to the  
instruction’s target. The INDF operand is just a  
convenient way of using the pointer.  
• POSTINC: accesses the FSR value, then  
automatically increments it by 1 afterwards  
• PREINC: increments the FSR value by 1, then  
uses it in the operation  
• PLUSW: adds the signed value of the W register  
(range of -127 to 128) to that of the FSR and uses  
the new value in the operation.  
In this context, accessing an INDF register uses the  
value in the FSR registers without changing them. Sim-  
ilarly, accessing a PLUSW register gives the FSR value  
offset by that in the W register; neither value is actually  
changed in the operation. Accessing the other virtual  
registers changes the value of the FSR registers.  
Because Indirect Addressing uses a full 12-bit address,  
data RAM banking is not necessary. Thus, the current  
contents of the BSR and the Access RAM bit have no  
effect on determining the target address.  
Operations on the FSRs with POSTDEC, POSTINC  
and PREINC affect the entire register pair; that is, roll-  
overs of the FSRnL register from FFh to 00h carry over  
to the FSRnH register. On the other hand, results of  
these operations do not change the value of any flags  
in the STATUS register (e.g., Z, N, OV, etc.).  
FIGURE 6-7:  
INDIRECT ADDRESSING  
000h  
Using an instruction with one of the  
indirect addressing registers as the  
operand....  
Bank 0  
Bank 1  
ADDWF, INDF1, 1  
100h  
200h  
300h  
Bank 2  
FSR1H:FSR1L  
...uses the 12-bit address stored in  
the FSR pair associated with that  
register....  
7
0
7
0
Bank 3  
through  
Bank 13  
x x x x 1 1 1 0  
1 1 0 0 1 1 0 0  
...to determine the data memory  
location to be used in that operation.  
E00h  
In this case, the FSR1 pair contains  
ECCh. This means the contents of  
location ECCh will be added to that  
of the W register and stored back in  
ECCh.  
Bank 14  
Bank 15  
F00h  
FFFh  
Data Memory  
DS39616D-page 76  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The PLUSW register can be used to implement a form  
On the other hand, using the virtual registers to write to  
an FSR pair may not occur as planned. In these cases,  
the value will be written to the FSR pair but without any  
incrementing or decrementing. Thus, writing to INDF2  
or POSTDEC2 will write the same value to the  
FSR2H:FSR2L.  
of Indexed Addressing in the data memory space. By  
manipulating the value in the W register, users can  
reach addresses that are fixed offsets from pointer  
addresses. In some applications, this can be used to  
implement some powerful program control structure,  
such as software stacks, inside of data memory.  
Since the FSRs are physical registers mapped in the  
SFR space, they can be manipulated through all direct  
operations. Users should proceed cautiously when  
working on these registers, particularly if their code  
uses Indirect Addressing.  
6.7.3.3  
Operations by FSRs on FSRs  
Indirect Addressing operations that target other FSRs or  
virtual registers represent special cases. For example,  
using an FSR to point to one of the virtual registers will  
not result in successful operations. As a specific case,  
assume that FSR0H:FSR0L contain FE7h, the address  
of INDF1. Attempts to read the value of the INDF1 using  
INDF0 as an operand will return 00h. Attempts to write  
to INDF1 using INDF0 as the operand will result in a NOP.  
Similarly, operations by Indirect Addressing are gener-  
ally permitted on all other SFRs. Users should exercise  
the appropriate caution that they do not inadvertently  
change settings that might affect the operation of the  
device.  
2010 Microchip Technology Inc.  
DS39616D-page 77  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 78  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
7.2  
EECON1 and EECON2 Registers  
7.0  
DATA EEPROM MEMORY  
Access to the data EEPROM is controlled by two  
registers: EECON1 and EECON2. These are the same  
registers which control access to the program memory  
and are used in a similar manner for the data  
EEPROM.  
The data EEPROM is readable and writable during  
normal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
The EECON1 register (Register 7-1) is the control  
register for data and program memory access. Control  
bit, EEPGD, determines if the access will be to program  
or data EEPROM memory. When clear, operations will  
access the data EEPROM memory. When set, program  
memory is accessed.  
There are four SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
Control bit, CFGS, determines if the access will be to  
the Configuration registers or to program memory/data  
EEPROM memory. When set, subsequent operations  
access Configuration registers. When CFGS is clear,  
the EEPGD bit selects either Flash program or data  
EEPROM memory.  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed.  
These devices have 256 bytes of data EEPROM with  
an address range from 00h to FFh.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set in hardware when the WREN bit is set and cleared  
when the internal programming timer expires and the  
write operation is complete.  
The EEPROM data memory is rated for high erase/  
write cycle endurance. A byte write automatically  
erases the location and writes the new data (erase-  
before-write). The write time is controlled by an on-chip  
timer. The write time will vary with voltage and  
temperature, as well as from chip-to-chip. Please  
refer to Parameter D122 (Table 26-1 in Section 26.0  
“Electrical Characteristics”) for exact limits.  
Note:  
During normal operation, the WRERR bit  
is read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
a
Reset or  
a write operation was  
attempted improperly.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software; it is cleared in  
hardware at the completion of the write operation.  
7.1  
EEADR  
The Address register can address 256 bytes of data  
EEPROM.  
Note:  
The EEIF interrupt flag bit (PIR2<4>) is  
set when the write is complete. It must be  
cleared in software.  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firmware  
and cleared by hardware at the completion of the  
operation.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
table read instructions. See Section 7.3 “Reading the  
Data EEPROM Memory” regarding table reads.  
The EECON2 register is not a physical register. It is  
used exclusively in the memory write and erase  
sequences. Reading EECON2 will read all ‘0’s.  
2010 Microchip Technology Inc.  
DS39616D-page 79  
PIC18F2331/2431/4331/4431  
REGISTER 7-1:  
EECON1: EEPROM CONTROL REGISTER 1  
R/W-x  
EEPGD  
bit 7  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
WRERR(1)  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
bit 0  
Legend:  
S = Settable bit (cannot be cleared in software)  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command (cleared by  
completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit  
can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only  
be set (not cleared) in software. RD bit cannot be set when EEPGD = 1or CFGS = 1.)  
0= Does not initiate an EEPROM read  
Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error  
condition.  
DS39616D-page 80  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
After a write sequence has been initiated, EECON1,  
EEADR and EEDATA cannot be modified. The WR bit  
will be inhibited from being set unless the WREN bit is  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD con-  
trol bit (EECON1<7>) and then set control bit, RD  
(EECON1<0>). The data is available for the very next  
instruction cycle; therefore, the EEDATA register can  
be read by the next instruction. EEDATA will hold this  
value until another read operation, or until it is written to  
by the user (during a write operation).The basic  
process is shown in Example 7-1.  
set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Interrupt Flag bit  
(EEIF) is set. The user may either enable this interrupt  
or poll this bit. EEIF must be cleared by software.  
7.5  
Write Verify  
7.4  
Writing to the Data EEPROM  
Memory  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data writ-  
ten to the EEDATA register. The sequence in  
Example 7-2 must be followed to initiate the write cycle.  
7.6  
Protection Against Spurious Write  
The write will not begin if this sequence is not exactly  
followed (write 55h to EECON2, write 0AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times, except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
BCF  
BSF  
MOVF  
DATA_EE_ADDR  
EEADR  
EECON1, EEPGD  
EECON1, RD  
EEDATA, W  
;
; Data Memory Address to read  
; Point to DATA memory  
; EEPROM Read  
; W = EEDATA  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDATA  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
EECON1, WR  
;
; Data Memory Address to write  
;
; Data Memory Value to write  
; Point to DATA memory  
; Access EEPROM  
; Enable writes  
; Disable Interrupts  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Wait for write to complete  
Required  
Sequence  
BTFSC  
GOTO  
BSF  
$-2  
INTCON, GIE  
;
; Enable interrupts  
2010 Microchip Technology Inc.  
DS39616D-page 81  
PIC18F2331/2431/4331/4431  
7.7  
Operation During Code-Protect  
7.9  
Using the Data EEPROM  
Data EEPROM memory has its own code-protect bits in  
Configuration Words. External read and write opera-  
tions are disabled if either of these mechanisms are  
enabled.  
The data EEPROM is a high-endurance, byte-  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated  
often). Frequently changing values will typically be  
updated more often than Specification D124. If this is  
not the case, an array refresh must be performed. For  
this reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
The microcontroller itself can both read and write to the  
internal data EEPROM, regardless of the state of the  
code-protect Configuration bit. Refer to Section 23.0  
“Special Features of the CPU” for additional  
information.  
A simple data EEPROM refresh routine is shown in  
Example 7-3.  
7.8  
Protection Against Spurious Write  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been implemented. On power-up, the WREN bit is  
cleared. In addition, writes to the EEPROM memory  
are blocked during the Power-up Timer period (TPWRT,  
Parameter 33).  
Note:  
If data EEPROM is only used to store con-  
stants and/or data that changes rarely, an  
array refresh is likely not required. See  
Specification D124.  
The write/initiate sequence, and the WREN bit  
together, help prevent an accidental write during  
Brown-out Reset, power glitch or software malfunction.  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
EEADR  
EECON1, CFGS  
EECON1, EEPGD ; Set for Data EEPROM  
INTCON, GIE  
EECON1, WREN  
; Start at address 0  
; Set for memory  
BCF  
BCF  
BCF  
BSF  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Wait for write to complete  
LOOP  
BSF  
EECON1, RD  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
BTFSC  
BRA  
INCFSZ EEADR, F  
; Increment address  
BRA  
LOOP  
; Not zero, do it again  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
DS39616D-page 82  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 7-1:  
Name  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Reset  
Values on  
page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
EEPROM Address Register  
EEDATA EEPROM Data Register  
EECON2 EEPROM Control Register 2 (not a physical register)  
RBIE  
TMR0IF  
INT0IF  
RBIF  
54  
56  
56  
56  
56  
57  
57  
57  
EEADR  
EECON1  
IPR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
RD  
LVDIP  
LVDIF  
LVDIE  
CCP2IP  
CCP2IF  
CCP2IE  
PIR2  
PIE2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
2010 Microchip Technology Inc.  
DS39616D-page 83  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 84  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The program memory space is 16 bits wide, while the  
8.0  
FLASH PROGRAM MEMORY  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table read operations retrieve data from program  
memory and place it into TABLAT in the data RAM  
space. Figure 8-1 shows the operation of a table read  
with program memory and data RAM.  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
may not be issued from user code.  
Table write operations store data from TABLAT in the  
data memory space into holding registers in program  
memory. The procedure to write the contents of the  
holding registers into program memory is detailed in  
Section 8.5 “Writing to Flash Program Memory”.  
Figure 8-2 shows the operation of a table write with  
program memory and data RAM.  
While writing or erasing program memory, instruction  
fetches cease until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word-aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word-aligned,  
(TBLPTRL<0> = 0).  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
8.1  
Table Reads and Table Writes  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data  
RAM:  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 8-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
(1)  
Program Memory  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: The Table Pointer points to a byte in program memory.  
2010 Microchip Technology Inc.  
DS39616D-page 85  
PIC18F2331/2431/4331/4431  
FIGURE 8-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: The Table Pointer actually points to one of eight holding registers, the address of which is determined  
by TBLPTRL<2:0>. The process for physically writing data to the program memory array is discussed  
in Section 8.5 “Writing to Flash Program Memory”.  
The FREE bit controls program memory erase opera-  
tions. When the FREE bit is set, the erase operation is  
initiated on the next WR command. When FREE is  
clear, only writes are enabled.  
8.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
A write operation is allowed when the WREN bit  
(EECON1<2>) is set. On power-up, the WREN bit is  
clear. The WRERR bit (EECON1<3>) is set in hard-  
ware when the WR bit (EECON1<1>) is set and  
cleared when the internal programming timer expires  
and the write operation is complete.  
8.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
Note:  
During normal operation, the WRERR  
may read as ‘1’. This can indicate that a  
write operation was prematurely termi-  
nated by a Reset or a write operation was  
attempted improperly.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bit, EEPGD, determines if the access will be to  
program or data EEPROM memory. When clear,  
operations will access the data EEPROM memory.  
When set, program memory is accessed.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software. The bit is  
cleared in hardware at the completion of the write  
operation.  
Control bit, CFGS, determines if the access will be to  
the Configuration registers or to program memory/data  
EEPROM memory. When set, subsequent operations  
access Configuration registers, regardless of EEPGD.  
(See Section 23.0 “Special Features of the CPU”.)  
When CFGS is clear, the EEPGD bit selects either  
program Flash or data EEPROM memory.  
Note:  
The EEIF interrupt flag bit (PIR2<4>) is  
set when the write is complete. It must be  
cleared in software.  
DS39616D-page 86  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 8-1:  
EECON1: DATA EEPROM CONTROL REGISTER 1  
R/W-x  
EEPGD  
bit 7  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
WRERR(1)  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
bit 0  
Legend:  
S = Settable bit (cannot be cleared in software)  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command (cleared by  
completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit  
can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only  
be set (not cleared) in software. RD bit cannot be set when EEPGD = 1or CFGS = 1.)  
0= Does not initiate an EEPROM read  
Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error  
condition.  
2010 Microchip Technology Inc.  
DS39616D-page 87  
PIC18F2331/2431/4331/4431  
8.2.2  
TABLAT TABLE LATCH REGISTER  
8.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRD is executed, all 22 bits of the Table  
Pointer determine which byte is read from program or  
configuration memory into TABLAT.  
8.2.3  
TBLPTR TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the Table Pointer, TBLPTR  
(TBLPTR<21:3>), will determine which program  
memory block of 8 bytes is written to (TBLPTR<2:0>  
are ignored). For more detail, see Section 8.5  
“Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. Setting the 22nd bit allows  
access to the Device ID, the User ID and the  
Configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer (TBLPTR<21:6>) point to  
the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The TBLPTR is used by the TBLRDand TBLWTinstruc-  
tions. These instructions can update the TBLPTR in  
one of four ways based on the table operation. These  
operations are shown in Table 8-1. These operations  
on the TBLPTR only affect the low-order 21 bits.  
Figure 8-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 8-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRDAND TBLWTINSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 8-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
TABLE ERASE/WRITE  
TBLPTR<21:6>  
TABLE WRITE  
TBLPTR<5:0>  
TABLE READ – TBLPTR<21:0>  
DS39616D-page 88  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 8-4  
8.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and place it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
shows the interface between the internal program  
memory and the TABLAT.  
TBLPTR points to a byte address in program space.  
Executing a TBLRDinstruction places the byte pointed  
to into TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
FIGURE 8-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
(IR)  
TABLAT  
Read Register  
FETCH  
TBLRD  
EXAMPLE 8-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
READ_WORD  
TBLRD*+  
MOVF  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT,W  
MOVWF  
TBLRD*+  
MOVF  
WORD_EVEN  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT,W  
WORD_ODD  
MOVWF  
2010 Microchip Technology Inc.  
DS39616D-page 89  
PIC18F2331/2431/4331/4431  
8.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
8.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes.  
Larger blocks of program memory can be bulk erased  
only through the use of an external programmer or  
ICSP control. Word erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load the Table Pointer with the address of the  
row being erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased;  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase  
operation:  
- set the EEPGD bit to point to program memory;  
- clear the CFGS bit to access program memory;  
- set the WREN bit to enable writes;  
- set the FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit (EECON1<7>) must be set to point to  
the Flash program memory. The WREN bit  
(EECON1<2>) must be set to enable write operations.  
The FREE bit (EECON1<4>) is set to select an erase  
operation.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
For protection, the write initiate sequence using  
EECON2 must be used.  
7. The CPU will stall for the duration of the erase  
(about 2 ms using internal timer).  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
8. Execute a NOP.  
9. Re-enable interrupts.  
EXAMPLE 8-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BCF  
BSF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON2, WR  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 55H  
Required  
Sequence  
; write 0AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
DS39616D-page 90  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The long write is necessary for programming the  
8.5  
Writing to Flash Program Memory  
internal Flash. Instruction execution is halted while in a  
long write cycle. The long write will be terminated by  
the internal programming timer.  
The programming block size is 4 words or 8 bytes.  
Word or byte programming is not supported.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 8 holding registers used by the table writes for  
programming.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device.  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the table write  
operations will essentially be short writes, because only  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
Note:  
The default value of the holding registers  
on device Resets and after write operations  
is FFh. A write of FFh to a holding register  
does not modify that byte. This means that  
individual bytes of program memory may  
be modified, provided that the modification  
does not attempt to change any bit from a  
0’ to a ‘1’. When modifying individual  
bytes, it is not necessary to load all 64 hold-  
ing registers before executing a write  
operation.  
FIGURE 8-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
Holding Register Holding Register  
TBLPTR = xxxxx7  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Program Memory  
2010 Microchip Technology Inc.  
DS39616D-page 91  
PIC18F2331/2431/4331/4431  
7. Set the EECON1 register for the write operation  
by doing the following:  
8.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
• Set the EEPGD bit to point to program  
memory  
The sequence of events for programming an internal  
program memory location should be:  
• Clear the CFGS bit to access program  
memory  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer with address being erased.  
• Set the WREN bit to enable byte writes  
8. Disable interrupts.  
4. Do the row erase procedure (see Section 8.4.1  
“Flash Program Memory Erase Sequence”).  
9. Write 55h to EECON2.  
10. Write 0AAh to EECON2.  
5. Load Table Pointer with the address of the first  
byte being written.  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for the duration of the write  
(about 2 ms using internal timer).  
6. Write the first 8 bytes into the holding registers  
with auto-increment.  
13. Execute a NOP.  
14. Re-enable interrupts.  
15. Repeat Steps 6-14 seven times to write  
64 bytes.  
16. Verify the memory (table read).  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 8-3.  
DS39616D-page 92  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
EXAMPLE 8-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
D'64'  
; number of bytes in erase block  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data and increment FSR0  
; done?  
TABLAT,W  
POSTINC0  
DECFSZ COUNTER  
BRA  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word and increment FSR0  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1, CFGS  
EECON1, EEPGD  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
; point to PROG/EEPROM memory  
; point to Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
; Required sequence  
; write 55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
; write 0AAh  
; start erase (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
BUFFER_ADDR_HIGH  
FSR0H  
MOVLW  
MOVWF  
BUFFER_ADDR_LOW  
FSR0L  
PROGRAM_LOOP  
MOVLW  
8
; number of bytes in holding register  
MOVWF  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVF  
POSTINC0,F  
TABLAT  
; get low byte of buffer data and increment FSR0  
; present data to table latch  
; short write  
MOVWF  
TBLWT+*  
; to internal TBLWT holding register, increment  
; TBLPTR  
DECFSZ COUNTER  
; loop until buffers are full  
GOTO  
WRITE_WORD_TO_HREGS  
2010 Microchip Technology Inc.  
DS39616D-page 93  
PIC18F2331/2431/4331/4431  
EXAMPLE 8-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
PROGRAM_MEMORY  
BCF  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
; disable interrupts  
; required sequence  
; write 55h  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 0AAh  
; start program (CPU stall)  
EECON1, WR  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
; loop until done  
DECFSZ COUNTER_HI  
GOTO  
BCF  
PROGRAM_LOOP  
EECON1, WREN  
; disable write to memory  
reprogrammed if needed. The WRERR bit is set when  
8.5.2  
WRITE VERIFY  
a write operation is interrupted by a MCLR Reset, or a  
WDT Time-out Reset during normal operation. In these  
situations, users can check the WRERR bit and rewrite  
the location.  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
8.6  
Flash Program Operation During  
Code Protection  
8.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
See Section 23.5 “Program Verification and Code  
Protection” for details on code protection of Flash  
program memory.  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and  
TABLE 8-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Reset  
Values  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
TBLPTRU  
bit 21(1) Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
54  
54  
54  
54  
54  
56  
56  
57  
57  
57  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
TABLAT Program Memory Table Latch  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1 EEPGD  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
WREN  
LVDIP  
LVDIF  
LVDIE  
WR  
RD  
IPR2  
PIR2  
PIE2  
OSCFIP  
OSCFIF  
OSCFIE  
CCP2IP  
CCP2IF  
CCP2IE  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
DS39616D-page 94  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
9.2  
Operation  
9.0  
9.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
Example 9-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
All PIC18 devices include an 8 x 8 hardware multiplier  
as part of the ALU. The multiplier performs an unsigned  
operation and yields a 16-bit result that is stored in the  
product register pair, PRODH:PRODL. The multiplier’s  
operation does not affect any flags in the STATUS  
register.  
Example 9-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
Making multiplication a hardware operation allows it to be  
completed in a single instruction cycle. This has the  
advantages of higher computational throughput and  
reduced code size for multiplication algorithms, and  
allows the PIC18 devices to be used in many applications  
previously reserved for digital signal processors.  
EXAMPLE 9-1:  
8 x 8 UNSIGNED MULTIPLY  
ROUTINE  
MOVF  
ARG1, W  
ARG2  
;
MULWF  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
A comparison of various hardware and software multi-  
ply operations, along with the savings in memory and  
execution time, is shown in Table 9-1.  
EXAMPLE 9-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
TABLE 9-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
@ 40 MHz @ 10 MHz @ 4 MHz  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
Without Hardware Multiply  
Hardware Multiply  
13  
1
69  
1
6.9 s  
100 ns  
9.1 s  
600 ns  
24.2 s  
2.4 s  
25.4 s  
3.6 s  
27.6 s  
400 ns  
36.4 s  
2.4 s  
69 s  
1 s  
8 x 8 Unsigned  
8 x 8 Signed  
Without Hardware Multiply  
Hardware Multiply  
33  
6
91  
6
91 s  
6 s  
Without Hardware Multiply  
Hardware Multiply  
21  
24  
52  
36  
242  
24  
254  
36  
96.8 s  
9.6 s  
242 s  
24 s  
254 s  
36 s  
16 x 16 Unsigned  
16 x 16 Signed  
Without Hardware Multiply  
Hardware Multiply  
102.6 s  
14.4 s  
2010 Microchip Technology Inc.  
DS39616D-page 95  
PIC18F2331/2431/4331/4431  
Example 9-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 9-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES<3:0>.  
EQUATION 9-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES<3:0>  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 216) +  
EQUATION 9-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H ² 28) +  
(ARG1L ARG2L)+  
RES<3:0>  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 216) +  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L)  
(-1 ARG2H<7> ARG1H:ARG1L 216) +  
(-1 ARG1H<7> ARG2H:ARG2L 216)  
EXAMPLE 9-4:  
16 x 16 SIGNED MULTIPLY  
ROUTINE  
MOVF  
MULWF ARG2L  
ARG1L, W  
EXAMPLE 9-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
MOVF  
MULWF ARG2L  
ARG1L, W  
MOVFF PRODH, RES1  
MOVFF PRODL, RES0  
;
;
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
;
;
MOVFF PRODH, RES1  
MOVFF PRODL, RES0  
MOVF  
ARG1H, W  
MULWF ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF ARG2H  
ARG1H, W  
MOVFF PRODH, RES3  
MOVFF PRODL, RES2  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
MOVFF PRODH, RES3  
MOVFF PRODL, RES2  
;
;
MOVF  
MULWF ARG2H  
ARG1L,W  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
MOVF  
ARG1L, W  
MOVF  
PRODL, W  
;
MULWF ARG2H  
; ARG1L * ARG2H ->  
ADDWF RES1, F  
; Add cross  
; PRODH:PRODL  
;
; Add cross  
; products  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODH, W  
; products  
MOVF  
PRODL, W  
;
;
;
ADDWF RES1, F  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODH, W  
;
;
;
;
MOVF  
MULWF ARG2L  
ARG1H, W  
;
; ARG1H * ARG2L ->  
;
; PRODH:PRODL  
MOVF  
ARG1H, W  
;
MOVF  
PRODL, W  
;
MULWF ARG2L  
; ARG1H * ARG2L ->  
ADDWF RES1, F  
; Add cross  
; PRODH:PRODL  
;
; Add cross  
; products  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
PRODH, W  
; products  
MOVF  
PRODL, W  
;
;
;
ADDWF RES1, F  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODH, W  
ADDWFC RES3, F  
;
;
;
;
;
BTFSS ARG2H, 7  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
BRA  
MOVF  
SIGN_ARG1  
ARG1L, W  
SUBWF RES2  
Example 9-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 9-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES<3:0>. To account for the sign bits of the argu-  
ments, each argument pair’s Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
MOVF  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS ARG1H, 7  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
BRA  
MOVF  
CONT_CODE  
ARG2L, W  
SUBWF RES2  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39616D-page 96  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
10.0 INTERRUPTS  
compatible with PIC® mid-range devices. In Compati-  
bility mode, the interrupt priority bits for each source  
have no effect. INTCON<6> is the PEIE bit, which  
enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit, which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
The PIC18F2331/2431/4331/4431 devices have  
multiple interrupt sources and an interrupt priority  
feature that allows each interrupt source to be assigned  
a high-priority level or a low-priority level. The high-  
priority interrupt vector is at 000008h and the low-priority  
interrupt vector is at 000018h. High-priority interrupt  
events will interrupt any low-priority interrupts that may  
be in progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High-priority interrupt sources can interrupt a low-  
priority interrupt. Low-priority interrupts are not  
processed while high-priority interrupts are in progress.  
There are thirteen registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files sup-  
plied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or  
GIEL if priority levels are used), which re-enables  
interrupts.  
In general, each interrupt source has three bits to  
control its operation. The functions of these bits are:  
For external interrupt events, such as the INTx pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
(most interrupt sources have priority bits)  
Note:  
Do not use the MOVFFinstruction to modify  
any of the Interrupt Control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all  
interrupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will  
vector immediately to address 000008h or 000018h  
depending on the priority bit setting. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
2010 Microchip Technology Inc.  
DS39616D-page 97  
PIC18F2331/2431/4331/4431  
FIGURE 10-1:  
INTERRUPT LOGIC  
Wake-up if in  
Power-Managed Mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
TXIF  
TXIE  
TXIP  
GIE/GIEH  
ADIF  
ADIE  
ADIP  
IPEN  
IPEN  
PEIE/GIEL  
RCIF  
RCIE  
RCIP  
IPEN  
Additional Peripheral Interrupts  
High-Priority Interrupt Generation  
Low-Priority Interrupt Generation  
TXIF  
TXIE  
TXIP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
ADIF  
ADIE  
ADIP  
RBIF  
RBIE  
RBIP  
RCIF  
RCIE  
RCIP  
PEIE/GIEL  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39616D-page 98  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
10.1 INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH  
PEIE/GIEL  
TMR0IE  
INT0IE  
TMR0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high-priority interrupts  
0= Disables all high-priority interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low-priority peripheral interrupts  
0= Disables all low-priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt for RB<7:4> pins  
0= Disables the RB port change interrupt for RB<7:4> pins  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB<7:4> pins changed state (must be cleared in software)  
0= None of the RB<7:4> pins have changed state  
2010 Microchip Technology Inc.  
DS39616D-page 99  
PIC18F2331/2431/4331/4431  
REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0  
INTEDG1  
INTEDG2  
TMR0IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding  
enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature allows for software polling.  
DS39616D-page 100  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding  
enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature allows for software polling.  
2010 Microchip Technology Inc.  
DS39616D-page 101  
PIC18F2331/2431/4331/4431  
10.2 PIR Registers  
Note 1: Interrupt flag bits are set when an inter-  
rupt condition occurs, regardless of the  
state of its corresponding enable bit or the  
Global Interrupt Enable bit, GIE  
(INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Request (Flag) Registers (PIR1, PIR2 and PIR3).  
2: User software should ensure the appro-  
priate interrupt flag bits are cleared prior  
to enabling an interrupt and after servicing  
that interrupt.  
REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
U-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5  
bit 4  
bit 3  
bit 2  
RCIF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The EUSART receive buffer is empty  
TXIF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The EUSART transmit buffer is full  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
DS39616D-page 102  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
U-0  
U-0  
R/W-0  
EEIF  
U-0  
R/W-0  
LVDIF  
U-0  
R/W-0  
OSCFIF  
CCP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= Device oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= Device clock operating  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: EEPROM or Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete or has not been started  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= The supply voltage has fallen below the specified LVD voltage (must be cleared in software)  
0= The supply voltage is greater than the specified LVD voltage  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Not used in this mode.  
2010 Microchip Technology Inc.  
DS39616D-page 103  
PIC18F2331/2431/4331/4431  
REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
PTIF  
R/W-0  
R/W-0  
R/W-0  
IC1IF  
R/W-0  
IC3DRIF  
IC2QEIF  
TMR5IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
PTIF: PWM Time Base Interrupt bit  
1= PWM time base matched the value in the PTPER registers. Interrupt is issued according to the  
postscaler settings. PTIF must be cleared in software.  
0= PWM time base has not matched the value in the PTPER registers  
bit 3  
IC3DRIF: IC3 Interrupt Flag/Direction Change Interrupt Flag bit  
IC3 Enabled (CAP3CON<3:0>):  
1= TMR5 value was captured by the active edge on CAP3 input (must be cleared in software)  
0= TMR5 capture has not occurred  
QEI Enabled (QEIM<2:0>):  
1= Direction of rotation has changed (must be cleared in software)  
0= Direction of rotation has not changed  
bit 2  
IC2QEIF: IC2 Interrupt Flag/QEI Interrupt Flag bit  
IC2 Enabled (CAP2CON<3:0>):  
1= TMR5 value was captured by the active edge on CAP2 input (must be cleared in software)  
0= TMR5 capture has not occurred  
QEI Enabled (QEIM<2:0>):  
1= The QEI position counter has reached the MAXCNT value, or the index pulse, INDX, has been  
detected. Depends on the QEI operating mode enabled. Must be cleared in software.  
0= The QEI position counter has not reached the MAXCNT value or the index pulse has not been  
detected  
bit 1  
IC1 Enabled (CAP1CON<3:0>):  
1= TMR5 value was captured by the active edge on CAP1 input (must be cleared in software)  
0= TMR5 capture has not occurred  
QEI Enabled (QEIM<2:0>), Velocity Measurement Mode Enabled (VELM = 0 in QEICON register):  
1= Timer5 value was captured by the active velocity edge (based on PHA or PHB input). CAP1REN  
bit must be set in CAP1CON register. IC1IF must be cleared in software.  
0= Timer5 value was not captured by the active velocity edge  
bit 0  
TMR5IF: Timer5 Interrupt Flag bit  
1= Timer5 time base matched the PR5 value (must be cleared in software)  
0= Timer5 time base did not match the PR5 value  
DS39616D-page 104  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
10.3 PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Enable Registers (PIE1, PIE2 and PIE3). When  
IPEN = 0, the PEIE bit must be set to enable any of these  
peripheral interrupts.  
REGISTER 10-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RCIE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TXIE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
2010 Microchip Technology Inc.  
DS39616D-page 105  
PIC18F2331/2431/4331/4431  
REGISTER 10-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
U-0  
U-0  
R/W-0  
EEIE  
U-0  
R/W-0  
LVDIE  
U-0  
R/W-0  
OSCFIE  
CCP2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
DS39616D-page 106  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
PTIE  
R/W-0  
R/W-0  
R/W-0  
IC1IE  
R/W-0  
IC3DRIE  
IC2QEIE  
TMR5IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
PTIE: PWM Time Base Interrupt Enable bit  
1= PTIF enabled  
0= PTIF disabled  
bit 3  
IC3DRIE: IC3 Interrupt Enable/Direction Change Interrupt Enable bit  
IC3 Enabled (CAP3CON<3:0>):  
1= IC3 interrupt enabled  
0= IC3 interrupt disabled  
QEI Enabled (QEIM<2:0>):  
1= Change of direction interrupt enabled  
0= Change of direction interrupt disabled  
bit 2  
IC2QEIE: IC2 Interrupt Flag/QEI Interrupt Flag Enable bit  
IC2 Enabled (CAP2CON<3:0>):  
1= IC2 interrupt enabled)  
0= IC2 interrupt disabled  
QEI Enabled (QEIM<2:0>):  
1= QEI interrupt enabled  
0= QEI interrupt disabled  
bit 1  
bit 0  
IC1IE: IC1 Interrupt Enable bit  
1= IC1 interrupt enabled  
0= IC1 interrupt disabled  
TMR5IE: Timer5 Interrupt Enable bit  
1= Timer5 interrupt enabled  
0= Timer5 interrupt disabled  
2010 Microchip Technology Inc.  
DS39616D-page 107  
PIC18F2331/2431/4331/4431  
10.4 IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three peripheral  
interrupt priority registers (IPR1, IPR2 and IPR3).  
Using the priority bits requires that the Interrupt Priority  
Enable (IPEN) bit be set.  
REGISTER 10-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
U-0  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
CCPIP  
R/W-1  
R/W-1  
TMR2IP  
TMR1IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
RC1IP: EUSART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX1IP: EUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
SSP1IP: Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39616D-page 108  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
U-0  
U-0  
R/W-1  
EEIP  
U-0  
R/W-1  
LVDIP  
U-0  
R/W-1  
OSCFIP  
CCP2IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
2010 Microchip Technology Inc.  
DS39616D-page 109  
PIC18F2331/2431/4331/4431  
REGISTER 10-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
U-0  
U-0  
U-0  
R/W-1  
PTIP  
R/W-1  
R/W-1  
R/W-1  
IC1IP  
R/W-1  
IC3DRIP  
IC2QEIP  
TMR5IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
PTIP: PWM Time Base Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
IC3DRIP: IC3 Interrupt Priority/Direction Change Interrupt Priority bit  
IC3 Enabled (CAP3CON<3:0>):  
1= IC3 interrupt high priority  
0= IC3 interrupt low priority  
QEI Enabled (QEIM<2:0>):  
1= Change of direction interrupt high priority  
0= Change of direction interrupt low priority  
bit 2  
IC2QEIP: IC2 Interrupt Priority/QEI Interrupt Priority bit  
IC2 Enabled (CAP2CON<3:0>):  
1= IC2 interrupt high priority  
0= IC2 interrupt low priority  
QEI Enabled (QEIM<2:0>):  
1= High priority  
0= Low priority  
bit 1  
bit 0  
IC1IP: IC1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR5IP: Timer5 Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39616D-page 110  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
10.5 RCON Register  
The RCON register contains bits used to determine the  
cause of the last Reset or wake-up from a power-  
managed mode. RCON also contains the bit that  
enables interrupt priorities (IPEN).  
REGISTER 10-13: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 5-1.  
TO: Watchdog Timer Time-out Flag bit  
For details of bit operation, see Register 5-1.  
PD: Power-Down Detection Flag bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 5-1.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 5-1.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 5-1.  
2010 Microchip Technology Inc.  
DS39616D-page 111  
PIC18F2331/2431/4331/4431  
10.6 INTx Pin Interrupts  
10.7 TMR0 Interrupt  
External interrupts on the INT0, INT1 and INT2 pins are  
edge-triggered. If the corresponding INTEDGx bit in the  
INTCON2 register is set (= 1), the interrupt is triggered  
by a rising edge. If the bit is clear, the trigger is on the  
falling edge.  
In 8-bit mode (which is the default), an overflow  
(FFh 00h) in the TMR0 register will set flag bit,  
TMR0IF. In 16-bit mode, an overflow (FFFFh 0000h)  
in the TMR0H:TMR0L registers will set flag bit,  
TMR0IF. The interrupt can be enabled/disabled by  
setting/clearing enable bit, TMR0IE (INTCON<5>).  
Interrupt priority for Timer0 is determined by the value  
contained in the interrupt priority bit, TMR0IP  
(INTCON2<2>). See Section 12.0 “Timer0 Module”  
for further details.  
When a valid edge appears on the INTx pin, the corre-  
sponding flag bit, INTxIF, is set. This interrupt can be  
disabled by clearing the corresponding enable bit,  
INTxIE. Before re-enabling the interrupt, the flag bit,  
INTxIF, must be cleared in software in the Interrupt  
Service Routine.  
10.8 PORTB Interrupt-on-Change  
All external interrupts (INT0, INT1 and INT2) can wake-  
up the processor from the Idle or Sleep modes if bit,  
INTxIE, was set prior to going into those modes. If the  
Global Interrupt Enable bit, GIE, is set, the processor  
will branch to the interrupt vector following wake-up.  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1 and INT2 is determined by  
the value contained in the Interrupt Priority bits,  
INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>).  
There is no priority bit associated with INT0. It is  
always a high-priority interrupt source.  
10.9 Context Saving During Interrupts  
During interrupts, the return PC address is saved on  
the stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the fast return stack. If a fast  
return from interrupt is not used (see Section 6.1.3  
“Fast Register Stack”), the user may need to save the  
WREG, STATUS and BSR registers on entry to the  
Interrupt Service Routine. Depending on the user’s  
application, other registers may also need to be saved.  
Example 10-1 saves and restores the WREG, STATUS  
and BSR registers during an Interrupt Service Routine.  
EXAMPLE 10-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS39616D-page 112  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
11.1 PORTA, TRISA and LATA  
Registers  
11.0 I/O PORTS  
Depending on the device selected and features  
enabled, there are up to five ports available. Some pins  
of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
PORTA is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Each port has three registers for its operation. These  
registers are:  
Reading the PORTA register reads the status of the  
pins, whereas writing to it, will write to the port latch.  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
The Data Latch register (LATA) is also memory mapped.  
Read-modify-write operations on the LATA register read  
and write the latched output value for PORTA.  
• LAT register (Data Latch)  
The Data Latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
The RA<4:2> pins are multiplexed with three input  
capture pins and Quadrature Encoder Interface pins.  
Pins, RA6 and RA7, are multiplexed with the main  
oscillator pins. They are enabled as oscillator or I/O  
pins by the selection of the main oscillator in  
Configuration Register 1H (see Section 23.1  
“Configuration Bits” for details). When they are not  
used as port pins, RA6 and RA7 and their associated  
TRIS and LAT bits are read as ‘0’.  
A simplified model of a generic I/O port without the  
interfaces to other peripherals is shown in Figure 11-1.  
FIGURE 11-1:  
GENERIC I/O PORT  
OPERATION  
The other PORTA pins are multiplexed with analog  
inputs, the analog VREF+ and VREF- inputs and the com-  
parator voltage reference output. The operation of pins  
RA<3:0> and RA5 as A/D Converter inputs is selected  
by clearing/setting the control bits in the ANSEL0 and  
ANSEL1 registers.  
RD LAT  
Data  
Bus  
D
Q
I/O Pin(1)  
WR LAT  
or  
PORT  
CK  
Data Latch  
Note 1: On a Power-on Reset, RA<5:0> are  
configured as analog inputs and read as ‘0’.  
D
Q
2: RA5 I/F is available only on 40-pin  
WR TRIS  
RD TRIS  
devices (PIC18F4331/4431).  
CK  
TRIS Latch  
Input  
Buffer  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Q
D
EXAMPLE 11-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
LATA  
0x3F  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
EN  
RD PORT  
CLRF  
Note 1: I/O pins have diode protection to VDD and VSS.  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ANSEL0 ; for digital inputs  
0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
2010 Microchip Technology Inc.  
DS39616D-page 113  
PIC18F2331/2431/4331/4431  
TABLE 11-1: PORTA I/O SUMMARY  
TRIS  
Setting  
I/O  
Type  
Pin  
RA0/AN0  
Function  
I/O  
Description  
RA0  
0
1
1
O
I
DIG LATA<0> data output; not affected by analog input.  
TTL PORTA<0> data input; disabled when analog input is enabled.  
AN0  
RA1  
I
ANA A/D Input Channel 0. Default input configuration on POR; does not  
affect digital output.  
RA1/AN1  
0
1
1
O
I
DIG LATA<1> data output; not affected by analog input.  
TTL PORTA<1> data input; disabled when analog input is enabled.  
AN1  
RA2  
I
ANA A/D Input Channel 1. Default input configuration on POR; does not  
affect digital output.  
RA2/AN2/VREF-/  
CAP1/INDX  
0
1
1
1
1
1
O
I
DIG LATA<2> data output; not affected by analog input.  
TTL PORTA<2> data input. Disabled when analog input is enabled.  
ANA A/D Input Channel 2. Default input configuration on POR.  
ANA A/D voltage reference low input.  
AN2  
VREF-  
CAP1  
INDX  
I
I
I
ST  
ST  
Input Capture Pin 1. Disabled when analog input is enabled.  
I
Quadrature Encoder Interface index input pin. Disabled when analog  
input is enabled.  
RA3/AN3/VREF+/  
CAP2/QEA  
RA3  
0
1
1
1
1
1
O
I
DIG LATA<3> data output; not affected by analog input.  
TTL PORTA<3> data input; disabled when analog input is enabled.  
ANA A/D Input Channel 3. Default input configuration on POR.  
ANA A/D voltage reference high input.  
AN3  
VREF+  
CAP2  
QEA  
I
I
I
ST  
ST  
Input Capture Pin 2. Disabled when analog input is enabled.  
I
Quadrature Encoder Interface Channel A input pin. Disabled when  
analog input is enabled.  
RA4/AN4/CAP3/  
QEB  
RA4  
0
1
1
1
1
O
I
DIG LATA<4> data output; not affected by analog input.  
ST PORTA<4> data input; disabled when analog input is enabled.  
ANA A/D Input Channel 4. Default input configuration on POR.  
AN4  
CAP3  
QEB  
I
I
ST  
ST  
Input Capture Pin 3. Disabled when analog input is enabled.  
I
Quadrature Encoder Interface Channel B input pin. Disabled when  
analog input is enabled.  
RA5/AN5/LVDIN  
OSC2/CLKO/RA6  
RA5  
0
1
1
1
x
x
O
I
DIG LATA<5> data output; not affected by analog input.  
TTL PORTA<5> data input; disabled when analog input is enabled.  
ANA A/D Input Channel 5. Default configuration on POR.  
ANA Low-Voltage Detect external trip point input.  
AN5  
I
LVDIN  
OSC2  
CLKO  
I
O
O
ANA Main oscillator feedback output connection (XT, HS and LP modes).  
DIG System cycle clock output (FOSC/4) in RC, INTIO1 and EC Oscillator  
modes.  
RA6  
0
1
x
x
0
1
O
I
DIG LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.  
TTL PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.  
ANA Main oscillator input connection.  
OSC1  
CLKI  
RA7  
I
OSC1/CLKI/RA7  
I
ANA Main clock input connection.  
O
I
DIG LATA<7> data output. Disabled in external oscillator modes.  
TTL PORTA<7> data input. Disabled in external oscillator modes.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
DS39616D-page 114  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA7(1)  
LATA7(1)  
RA6(1)  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
57  
57  
57  
56  
56  
56  
LATA6(1) LATA Data Output Register  
TRISA  
TRISA7(1) TRISA6(1) PORTA Data Direction Register  
ADCON1  
ANSEL0  
ANSEL1  
VCFG1  
ANS7(2)  
VCFG0  
ANS6(2)  
ANS5(2)  
FIFOEN BFEMT BFOVFL ADPNT1 ADPNT0  
ANS4  
ANS3  
ANS2  
ANS1  
ANS0  
ANS8(2)  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator  
configuration; otherwise, they are read as ‘0’.  
2: ANS5 through ANS8 are available only on the PIC18F4331/4431 devices.  
2010 Microchip Technology Inc.  
DS39616D-page 115  
PIC18F2331/2431/4331/4431  
Four of the PORTB pins (RB<7:4>) have an interrupt-  
11.2 PORTB, TRISB and LATB  
Registers  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB<7:4> pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB<7:4>)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB<7:4>  
are ORed together to generate the RB port change  
interrupt with flag bit, RBIF (INTCON<0>).  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register read and write the latched output value for  
PORTB.  
a) Any read or write of PORTB (except with the  
MOVFF (ANY), PORTBinstruction).  
b) NOP(or any 1 TCY delay).  
EXAMPLE 11-2:  
INITIALIZING PORTB  
c) Clear flag bit, RBIF.  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB and waiting 1 TCY will end the  
mismatch condition and allow flag bit, RBIF, to be  
cleared. Also, if the port pin returns to its original state,  
the mismatch condition will be cleared.  
CLRF  
LATB  
MOVLW  
MOVWF  
0xCF  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
RB<3:0> and RB4 pins are multiplexed with the 14-bit  
PWM module for PWM<3:0> and PWM5 output. The  
RB5 pin can be configured by the Configuration bit,  
PWM4MX, as the alternate pin for PWM4 output.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
DS39616D-page 116  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 11-3: PORTB I/O SUMMARY  
TRIS  
Setting  
I/O  
Pin  
Function  
I/O  
Description  
Type  
RB0/PWM0  
RB0  
0
1
O
I
DIG  
TTL  
LATB<0> data output; not affected by analog input.  
PORTB<0> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input is enabled.  
PWM0  
RB1  
0
0
1
O
O
I
DIG  
DIG  
TTL  
PWM Output 0.  
RB1/PWM1  
LATB<1> data output; not affected by analog input.  
PORTB<1> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input is enabled.  
PWM1  
RB2  
0
0
1
O
O
I
DIG  
DIG  
TTL  
PWM Output 1.  
RB2/PWM2  
LATB<2> data output; not affected by analog input.  
PORTB<2> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input is enabled.  
PWM2  
RB3  
0
0
1
O
O
I
DIG  
DIG  
TTL  
PWM Output 2.  
RB3/PWM3  
LATB<3> data output; not affected by analog input.  
PORTB<3> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input is enabled.  
PWM3  
RB4  
0
0
1
O
O
I
DIG  
DIG  
TTL  
PWM Output 3.  
RB4/KBI0/PWM5  
LATB<4> data output; not affected by analog input.  
PORTB<4> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input is enabled.  
KBI0  
PWM5  
RB5  
1
0
0
1
1
0
x
I
O
O
I
TTL  
DIG  
DIG  
TTL  
TTL  
DIG  
ST  
Interrupt-on-change pin.  
PWM Output 5.  
RB5/KBI1/  
PWM4/PGM  
LATB<5> data output.  
PORTB<5> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-change pin.  
KBI1  
I
(3)  
PWM4  
O
I
PWM Output 4; takes priority over port data.  
(2)  
PGM  
Single-Supply Programming mode entry (ICSP™). Enabled by LVP  
Configuration bit; all other pin functions are disabled.  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
RB6  
0
1
1
x
0
1
1
x
x
O
I
DIG  
TTL  
TTL  
ST  
LATB<6> data output.  
PORTB<6> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-change pin.  
KBI2  
PGC  
RB7  
I
(1)  
I
Serial execution (ICSP™) clock input for ICSP and ICD operation.  
LATB<7> data output.  
O
I
DIG  
TTL  
TTL  
DIG  
ST  
PORTB<7> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-change pin.  
KBI3  
PGD  
I
(1)  
O
I
Serial execution data output for ICSP and ICD operation.  
(1)  
Serial execution data input for ICSP and ICD operation.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: All other pin functions are disabled when ICSP or ICD is enabled.  
2: Single-Supply Programming must be enabled.  
3: RD5 is the alternate pin for PWM4.  
2010 Microchip Technology Inc.  
DS39616D-page 117  
PIC18F2331/2431/4331/4431  
TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
57  
57  
57  
54  
54  
54  
LATB Data Output Register  
PORTB Data Direction Register  
GIE/GIEH PEIE/GIEL TMR0IE  
TRISB  
INTCON  
INTCON2  
INTCON3  
INT0IE  
RBIE TMR0IF INT0IF  
RBIF  
RBIP  
RBPU  
INTEDG0 INTEDG1 INTEDG2  
INT1IP INT2IE  
TMR0IP  
INT2IP  
INT1IE  
INT2IF INT1IF  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTB.  
DS39616D-page 118  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
External interrupts, IN0, INT1 and INT2, are placed on  
RC3, RC4 and RC5 pins, respectively.  
11.3 PORTC, TRISC and LATC  
Registers  
SSP alternate interface pins, SDI/SDA, SCK/SCL and  
SDO are placed on RC4, RC5 and RC7 pins,  
respectively.  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
These pins are multiplexed on PORTC and PORTD by  
using the SSPMX bit in the CONFIG3L register.  
EUSART pins RX/DT and TX/CK are placed on RC7  
and RC6 pins, respectively.  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register read and write the latched output value for  
PORTC.  
The alternate Timer5 external clock input, T5CKI, and  
the alternate TMR0 external clock input, T0CKI, are  
placed on RC3 and are multiplexed with the PORTD  
(RD0) pin using the EXCLKMX Configuration bit in  
CONFIG3H. Fault inputs to the 14-bit PWM module,  
FLTA and FLTB, are located on RC1 and RC2. FLTA  
input on RC1 is multiplexed with RD4 using the  
FLTAMX bit.  
PORTC is multiplexed with several peripheral functions  
(Table 11-5). The pins have Schmitt Trigger input  
buffers.  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
EXAMPLE 11-3:  
INITIALIZING PORTC  
Note: On a Power-on Reset, these pins are  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
configured as digital inputs.  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
CLRF  
LATC  
MOVLW  
MOVWF  
0xCF  
TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
2010 Microchip Technology Inc.  
DS39616D-page 119  
PIC18F2331/2431/4331/4431  
TABLE 11-5: PORTC I/O SUMMARY  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RC0/T1OSO/  
T1CKI  
RC0  
0
1
x
O
I
DIG  
ST  
LATC<0> data output.  
PORTC<0> data input.  
T1OSO  
O
ANA  
Timer1 oscillator output; enabled when Timer1 oscillator is enabled.  
Disables digital I/O.  
T1CKI  
RC1  
1
0
1
x
I
O
I
ST  
DIG  
ST  
Timer1/Timer3 counter input.  
LATC<1> data output.  
RC1/T1OSI/  
CCP2/FLTA  
PORTC<1> data input.  
T1OSI  
CCP2  
I
ANA  
Timer1 oscillator input; enabled when Timer1 oscillator is enabled.  
Disables digital I/O.  
0
1
1
0
1
0
1
1
0
1
1
1
1
0
1
1
1
0
1
0
1
1
0
1
0
1
0
1
0
O
I
DIG  
ST  
CCP2 compare and PWM output; takes priority over port data.  
CCP2 capture input.  
FLTA  
RC2  
I
ST  
Fault Interrupt Input Pin A.  
LATC<2> data output.  
RC2/CCP1/FLTB  
O
I
DIG  
ST  
PORTC<2> data input.  
CCP1  
O
I
DIG  
ST  
CCP1 compare or PWM output; takes priority over port data.  
CCP1 capture input.  
FLTB  
RC3  
I
ST  
Fault Interrupt Input Pin B.  
LATC<3> data output.  
RC3/T0CKI/  
T5CKI/INT0  
O
I
DIG  
ST  
PORTC<3> data input.  
(1)  
T0CKI  
I
ST  
Timer0 alternate clock input.  
Timer5 alternate clock input.  
External Interrupt 0.  
(1)  
T5CKI  
I
ST  
INT0  
RC4  
I
ST  
RC4/INT1/SDI/  
SDA  
O
I
DIG  
ST  
LATC<4> data output.  
PORTC<4> data input.  
INT1  
I
ST  
External Interrupt 1.  
(1)  
SDI  
I
ST  
SPI data input (SSP module).  
(1)  
2
SDA  
O
I
DIG  
I C™ data output (SSP module); takes priority over port data.  
2
2
I C  
I C data input (SSP module).  
RC5/INT2/SCK/  
SCL  
RC5  
O
I
DIG  
ST  
LATC<5> data output.  
PORTC<5> data input.  
INT2  
I
ST  
External Interrupt 2.  
(1)  
SCK  
O
I
DIG  
ST  
SPI clock output (SSP module); takes priority over port data.  
SPI clock input (SSP module).  
(1)  
2
SCL  
O
I
DIG  
I C clock output (SSP module); takes priority over port data.  
2
2
I C  
I C clock input (SSP module); input type depends on module setting.  
RC6/TX/CK/SS  
RC6  
O
I
DIG  
ST  
LATC<6> data output.  
PORTC<6> data input.  
TX  
CK  
O
DIG  
Asynchronous serial transmit data output (EUSART module);  
takes priority over port data. User must configure as an output.  
0
O
DIG  
Synchronous serial clock output (EUSART module); takes priority  
over port data.  
1
1
I
I
ST  
ST  
Synchronous serial clock input (EUSART module).  
SPI slave select input.  
SS  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: RD0 is the alternate pin for T0CKI/T5CKI; RD2 is the alternate pin for SDI/SDA; RD3 is the alternate pin for SCK/SCL;  
RD1 is the alternate pin for SDO.  
DS39616D-page 120  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 11-5: PORTC I/O SUMMARY (CONTINUED)  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RC7/RX/DT/SDO  
RC7  
0
1
1
0
O
I
DIG  
ST  
LATC<7> data output.  
PORTC<7> data input.  
RX  
DT  
I
ST  
Asynchronous serial receive data input (EUSART module).  
O
DIG  
Synchronous serial data output (EUSART module); takes priority over  
port data.  
1
0
I
ST  
Synchronous serial data input (EUSART module). User must  
configure as an input.  
(1)  
SDO  
O
DIG  
SPI data out; takes priority over port data.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: RD0 is the alternate pin for T0CKI/T5CKI; RD2 is the alternate pin for SDI/SDA; RD3 is the alternate pin for SCK/SCL;  
RD1 is the alternate pin for SDO.  
TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Reset Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
57  
57  
57  
54  
54  
54  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
RBIP  
INTCON2  
INTCON3  
RBPU  
INTEDG0 INTEDG1 INTEDG2  
INT1IP INT2IE  
TMR0IP  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTC.  
2010 Microchip Technology Inc.  
DS39616D-page 121  
PIC18F2331/2431/4331/4431  
PORTD includes PWM<7:6> complementary fourth  
11.4 PORTD, TRISD and LATD  
Registers  
channel PWM outputs. PWM4 is the complementary  
output of PWM5 (the third channel), which is multi-  
plexed with the RB5 pin. This output can be used as the  
alternate output using the PWM4MX Configuration bit  
in CONFIG3H when the Single-Supply Programming  
pin (PGM) is used on RB5.  
Note: PORTD is only available on PIC18F4331/  
4431 devices.  
PORTD is an 8-bit wide, bidirectional port. The  
corresponding Data Direction register is TRISD.  
Setting a TRISD bit (= 1) will make the corresponding  
PORTD pin an input (i.e., put the corresponding output  
driver in a high-impedance mode). Clearing a TRISD  
bit (= 0) will make the corresponding PORTD pin an  
output (i.e., put the contents of the output latch on the  
selected pin).  
RD1, RD2 and RD3 can be used as the alternate out-  
put for SDO, SDI/SDA and SCK/SCL using the SSPMX  
Configuration bit in CONFIG3H.  
RD4 an be used as the alternate output for FLTA using  
the FLTAMX Configuration bit in CONFIG3H.  
EXAMPLE 11-4:  
INITIALIZING PORTD  
The Data Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register read and write the latched output value for  
PORTD.  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
LATD  
All pins on PORTD are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
MOVLW  
MOVWF  
0xCF  
Note: On a Power-on Reset, these pins are  
configured as digital inputs.  
TRISD  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
DS39616D-page 122  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 11-7: PORTD I/O SUMMARY  
TRIS  
Setting  
I/O  
Pin  
Function  
I/O  
Description  
Type  
RD0/T0CKI/  
T5CKI  
RD0  
0
1
1
1
0
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
0
1
0
0
1
0
O
I
DIG  
ST  
LATD<0> data output.  
PORTD<0> data input.  
(1)  
T0CKI  
I
ST  
Timer0 alternate clock input.  
Timer5 alternate clock input.  
LATD<1> data output.  
(1)  
T5CKI  
I
ST  
RD1/SDO  
RD1  
O
I
DIG  
ST  
PORTD<1> data input.  
(1)  
SDO  
O
O
I
DIG  
DIG  
ST  
SPI data out; takes priority over port data.  
LATD<2> data output.  
RD2/SDI/SDA  
RD2  
PORTD<2> data input.  
(1)  
SDI  
I
ST  
SPI data input (SSP module).  
(1)  
2
SDA  
O
I
DIG  
I C™ data output (SSP module); takes priority over port data.  
2
2
I C  
I C data input (SSP module).  
RD3/SCK/SCL  
RD3  
O
I
DIG  
ST  
LATD<3> data output.  
PORTD<3> data input.  
(1)  
SCK  
O
I
DIG  
ST  
SPI clock output (SSP module); takes priority over port data.  
SPI clock input (SSP module).  
(1)  
2
SCL  
O
I
DIG  
I C clock output (SSP module); takes priority over port data.  
2
2
I C  
I C clock input (SSP module); input type depends on module setting.  
RD4/FLTA  
RD4  
O
I
DIG  
ST  
LATD<4> data output.  
PORTD<4> data input.  
(2)  
FLTA  
I
ST  
Fault Interrupt Input Pin A.  
LATD<5> data output.  
RD5/PWM4  
RD6/PWM6  
RD7/PWM7  
RD5  
O
I
DIG  
ST  
PORTD<5> data input.  
(3)  
PWM4  
O
O
I
DIG  
DIG  
ST  
PWM Output 4; takes priority over port data.  
LATD<6> data output.  
RD6  
PORTD<6> data input.  
PWM6  
RD7  
O
O
I
DIG  
DIG  
ST  
PWM Output 6; takes priority over port data.  
LATD<7> data output.  
PORTD<7> data input.  
PWM7  
O
DIG  
PWM Output 7; takes priority over port data.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer;  
x = Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL;  
RC7 is the alternate pin for SDO.  
2: RC1 is the alternate pin for FLTA.  
3: RB5 is the alternate pin for PWM4.  
TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Reset Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
57  
57  
57  
LATD Data Output Register  
TRISD  
PORTD Data Direction Register  
2010 Microchip Technology Inc.  
DS39616D-page 123  
PIC18F2331/2431/4331/4431  
in Configuration Register 3H (CONFIG3H<7>). When  
11.5 PORTE, TRISE and LATE  
Registers  
selected as a port pin (MCLRE = 0), it functions as a  
digital input-only pin. As such, it does not have TRIS or  
LAT bits associated with its operation. Otherwise, it  
functions as the device’s master clear input. In either  
configuration, RE3 also functions as the programming  
voltage input during programming.  
Note:  
PORTE is only available on PIC18F4331/  
4431 devices.  
PORTE is a 4-bit wide, bidirectional port. Three pins  
(RE0/AN6, RE1/AN7 and RE2/AN8) are individually  
configurable as inputs or outputs. These pins have  
Schmitt Trigger input buffers. When selected as an  
analog input, these pins will read as ‘0’s.  
Note:  
On a Power-on Reset, RE3 is enabled as a  
digital input only if Master Clear functionality  
is disabled.  
The corresponding Data Direction register is TRISE.  
Setting a TRISE bit (= 1) will make the corresponding  
PORTE pin an input (i.e., put the corresponding output  
driver in a high-impedance mode). Clearing a TRISE bit  
(= 0) will make the corresponding PORTE pin an output  
(i.e., put the contents of the output latch on the selected  
pin).  
EXAMPLE 11-5:  
INITIALIZING PORTE  
CLRF  
PORTE  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Configure A/D  
; for digital inputs  
;
; Value used to  
; initialize data  
; direction  
CLRF  
LATE  
MOVLW  
MOVWF  
BCF  
0x3F  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
ANSEL0  
ANSEL1, 0  
0x03  
MOVLW  
MOVWF  
TRISE  
; Set RE<0> as input  
; RE<1> as output  
; RE<2> as input  
Note: On a Power-on Reset, RE<2:0> are  
configured as analog inputs.  
The Data Latch register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register read and write the latched output value for  
PORTE.  
11.5.1  
PORTE IN 28-PIN DEVICES  
For PIC18F2331/2431 devices, PORTE is not available.  
It is only available for PIC18F4331/4431 devices.  
The fourth pin of PORTE (MCLR/VPP/RE3) is an input  
only pin available for PIC18F4331/4431 devices. Its  
operation is controlled by the MCLRE Configuration bit  
REGISTER 11-1: TRISE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
TRISE2: RE2 Direction Control bit  
1= Input  
0= Output  
bit 1  
bit 0  
TRISE1: RE1 Direction Control bit  
1= Input  
0= Output  
TRISE0: RE0 Direction Control bit  
1= Input  
0= Output  
DS39616D-page 124  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 11-9: PORTE I/O SUMMARY  
TRIS  
Setting  
I/O  
Pin  
RE0/AN6  
Function  
I/O  
Description  
Type  
RE0  
0
1
1
0
1
1
0
1
1
O
I
DIG  
ST  
LATE<0> data output; not affected by analog input.  
PORTE<0> data input; disabled when analog input is enabled.  
A/D Input Channel 6. Default input configuration on POR.  
LATE<1> data output; not affected by analog input.  
AN6  
RE1  
I
ANA  
DIG  
ST  
RE1/AN7  
O
I
PORTE<1> data input; disabled when analog input is enabled.  
A/D Input Channel 7. Default input configuration on POR.  
LATE<2> data output; not affected by analog input.  
AN7  
RE2  
I
ANA  
DIG  
ST  
RE2/AN8  
O
I
PORTE<2> data input; disabled when analog input is enabled.  
A/D Input Channel 8. Default input configuration on POR.  
AN8  
I
ANA  
ST  
(1)  
MCLR/VPP/RE3  
MCLR  
I
External Master Clear input; enabled when MCLRE Configuration bit  
is set.  
VPP  
I
I
ANA  
ST  
High-Voltage Detection; used for ICSP™ mode entry detection. Always  
available, regardless of pin mode.  
(2)  
RE3  
PORTE<3> data input; enabled when MCLRE Configuration bit is  
clear.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: All PORTE pins are only implemented on 40/44-pin devices.  
2: RE3 does not have a corresponding TRIS bit to control data direction.  
TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTE  
RE3(1)  
RE2  
RE1  
RE0  
57  
57  
57  
56  
56  
LATE  
LATE Data Output Register  
PORTE Data Direction Register  
TRISE  
ANSEL0  
ANSEL1  
ANS7(2) ANS6(2) ANS5(2)  
ANS4  
ANS3  
ANS2  
ANS1  
ANS0  
ANS8(2)  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTE.  
Note 1: Implemented only when Master Clear functionality is disabled (CONFIG3H<7> = 0). It is available for  
PIC18F4331/4431 devices only.  
2: ANS5 through ANS8 are available only on PIC18F4331/4431 devices.  
2010 Microchip Technology Inc.  
DS39616D-page 125  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 126  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Figure 12-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 12-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
12.0 TIMER0 MODULE  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or  
16-bit timer/counter  
The T0CON register (Register 12-1) is a readable and  
writable register that controls all the aspects of Timer0,  
• Readable and writable  
including the prescale selection.  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
TMR0ON  
T016BIT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T016BIT: Timer0 16-Bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin input edge  
0= Internal clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS<2:0>: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
2010 Microchip Technology Inc.  
DS39616D-page 127  
PIC18F2331/2431/4331/4431  
FIGURE 12-1:  
TIMER0 BLOCK DIAGRAM (8-BIT MODE)  
FOSC/4  
0
1
1
0
Sync with  
Internal  
Clocks  
Set  
TMR0IF  
on Overflow  
TMR0L  
8
Programmable  
Prescaler  
T0CKI pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
T0PS<2:0>  
PSA  
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 12-2:  
TIMER0 BLOCK DIAGRAM (16-BIT MODE)  
FOSC/4  
0
1
Sync with  
Internal  
Clocks  
Set  
TMR0  
High Byte  
1
TMR0L  
TMR0IF  
Programmable  
Prescaler  
on Overflow  
T0CKI pin  
0
8
(2 TCY Delay)  
T0SE  
T0CS  
3
Read TMR0L  
Write TMR0L  
T0PS<2:0>  
PSA  
8
8
TMR0H  
8
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39616D-page 128  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
12.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
12.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed “on-the-fly” during program  
execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
12.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
FFFFh to 0000h in 16-bit mode. This overflow sets the  
TMR0IF bit. The interrupt can be masked by clearing  
the TMR0IE bit. The TMR0IF bit must be cleared in  
software by the Timer0 module Interrupt Service  
Routine before re-enabling this interrupt. The TMR0  
interrupt cannot awaken the processor from Sleep  
mode, since the timer requires clock cycles, even when  
T0CS is set.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment, either on every  
rising or falling edge of pin, RC3/T0CKI/T5CKI/INT0.  
The incrementing edge is determined by the Timer0  
Source Edge Select bit (T0SE). Clearing the T0SE bit  
selects the rising edge.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
12.4 16-Bit Mode Timer Reads and  
Writes  
12.2 Prescaler  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 12-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16 bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid due to a rollover between successive reads  
of the high and low byte.  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not readable or writable.  
The PSA and T0PS<2:0> bits determine the prescaler  
assignment and prescale ratio.  
Clearing bit, PSA, will assign the prescaler to the  
Timer0 module. When the prescaler is assigned to the  
Timer0 module, prescale values of 1:2, 1:4, ..., 1:256  
are selectable.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x..., etc.) will clear the prescaler  
count.  
A write to the high byte of Timer0 must also take place  
through the TMR0H Buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16 bits of Timer0 to be  
updated at once.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER0  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
TMR0H  
INTCON  
T0CON  
TRISA  
Timer0 Register Low Byte  
Timer0 Register High Byte  
55  
55  
54  
55  
57  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
PSA  
TMR0IF INT0IF  
T0PS2 T0PS1  
RBIF  
TMR0ON  
TRISA7(1)  
T016BIT  
T0CS  
T0SE  
T0PS0  
TRISA6(1) PORTA Data Direction Register  
Legend: Shaded cells are not used by Timer0.  
Note 1: RA6 and RA7 are enabled as I/O pins depending on the oscillator mode selected in Configuration Word 1H.  
2010 Microchip Technology Inc.  
DS39616D-page 129  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 130  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Register 13-1 details the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module and contains the Timer1 Oscillator Enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by  
setting or clearing control bit, TMR1ON (T1CON<0>).  
13.0 TIMER1 MODULE  
The Timer1 timer/counter module has the following  
features:  
• 16-bit timer/counter  
(two 8-bit registers; TMR1H and TMR1L)  
The Timer1 oscillator can be used as a secondary clock  
source in power-managed modes. When the T1RUN  
bit is set, the Timer1 oscillator provides the system  
clock. If the Fail-Safe Clock Monitor is enabled and the  
Timer1 oscillator fails while providing the system clock,  
polling the T1RUN bit will indicate whether the clock is  
being provided by the Timer1 oscillator or another  
source.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module Special Event Trigger  
• Status of system clock operation  
Figure 13-1 is a simplified block diagram of the Timer1  
module.  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of TImer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= Device clock is derived from Timer1 oscillator  
0= Device clock is derived from another source  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1 (External Clock):  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0 (Internal Clock):  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
2010 Microchip Technology Inc.  
DS39616D-page 131  
PIC18F2331/2431/4331/4431  
When TMR1CS = 0, Timer1 increments every instruc-  
13.1 Timer1 Operation  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input or the  
Timer1 oscillator, if enabled.  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2/FLTA and RC0/T1OSO/  
T1CKI pins become inputs. That is, the TRISC<1:0>  
value is ignored and the pins are read as ‘0’.  
The operating mode is determined by the Timer1 Clock  
Select bit, TMR1CS (T1CON<1>).  
Timer1 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (see  
Section 16.4.4 “Special Event Trigger”).  
FIGURE 13-1:  
TIMER1 BLOCK DIAGRAM  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
On/Off  
1
T1OSO/T1CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 13-2:  
TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
1
0
T1OSO/T1CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1IF  
on Overflow  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
8
Read TMR1L  
Write TMR1L  
8
8
TMR1H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39616D-page 132  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
13.2 Timer1 Oscillator  
13.3 Timer1 Oscillator Layout  
Considerations  
A crystal oscillator circuit is built in-between pins, T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit, T1OSCEN (T1CON<3>). The oscilla-  
tor is a low-power oscillator rated for 32 kHz crystals. It  
will continue to run during all power-managed modes.  
The circuit for a typical LP oscillator is shown in  
Figure 13-3. Table 13-1 shows the capacitor selection  
for the Timer1 oscillator.  
The Timer1 oscillator for PIC18F2331/2431/4331/4431  
devices incorporates an additional low-power feature.  
When this option is selected, it allows the oscillator to  
automatically reduce its power consumption when the  
microcontroller is in Sleep mode. During normal device  
operation, the oscillator draws full current. As high  
noise environments may cause excessive oscillator  
instability in Sleep mode, this option is best suited for  
low noise applications, where power conservation is an  
important design consideration.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 13-3:  
EXTERNAL COMPONENTS  
FOR THE TIMER1 LP  
OSCILLATOR  
The low-power option is enabled by clearing the  
T1OSCMX bit (CONFIG3L<5>). By default, the option  
is disabled, which results in a more or less constant  
current draw for the Timer1 oscillator.  
C1  
27 pF  
PIC18FXXXX  
Due to the low-power nature of the oscillator, it may  
also be sensitive to rapidly changing signals in close  
proximity.  
T1OSI  
XTAL  
32.768 kHz  
The oscillator circuit, shown in Figure 13-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD. Refer to  
Section 2.0 “Guidelines for Getting Started with  
PIC18F Microcontrollers” for additional information  
T1OSO  
C2  
27 pF  
Note:  
See the notes with Table 13-1 for additional  
information about capacitor selection.  
TABLE 13-1: CAPACITOR SELECTION FOR  
THE TIMER OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
27 pF(1)  
27 pF(1)  
Note 1: Microchip suggests this value as a starting  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stabil-  
ity of the oscillator, but also increases the  
start-up time.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
4: Capacitor values are for design guidance  
only.  
2010 Microchip Technology Inc.  
DS39616D-page 133  
PIC18F2331/2431/4331/4431  
A write to the high byte of Timer1 must also take place  
13.4 Timer1 Interrupt  
through the TMR1H Buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow,  
which is latched in Timer1 Interrupt Flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing Timer1 Interrupt Enable bit, TMR1IE  
(PIE1<0>).  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 High Byte Buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
13.5 Resetting Timer1 Using a CCP  
Trigger Output  
13.7 Using Timer1 as a Real-Time  
Clock (RTC)  
If the CCP1 module is configured in Compare mode  
to  
generate  
a
“Special  
Event  
Trigger”  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 13.2 “Timer1 Oscillator”)  
gives users the option to include RTC functionality to  
their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base, and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
(CCP1M<3:0> = 1011), this signal will reset Timer1 and  
start an A/D conversion if the A/D module is enabled  
(see Section 16.4.4 “Special Event Trigger” for more  
information).  
Note:  
The Special Event Triggers from the  
CCP1 module will not set interrupt flag bit,  
TMR1IF (PIR1<0>).  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
The application code routine, RTCisr, shown in  
Example 13-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow triggers the interrupt and calls  
the routine, which increments the seconds counter by  
one. Additional counters for minutes and hours are  
incremented as the previous counter overflow.  
In the event that a write to Timer1 coincides with a  
Special Event Trigger from CCP1, the write will take  
precedence.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ter pair effectively becomes the Period register for  
Timer1.  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it. The simplest method is to set the MSb of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
13.6 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 13-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, is valid due to a rollover between reads.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1) as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
DS39616D-page 134  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
EXAMPLE 13-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
0x80  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b'00001111'  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
MOVLW  
MOVWF  
RETURN  
.01  
hours  
; Reset hours to 1  
; Done  
TABLE 13-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
55  
55  
55  
PIR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
TMR1H  
T1CON  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
2010 Microchip Technology Inc.  
DS39616D-page 135  
PIC18F2331/2431/4331/4431  
14.1 Timer2 Operation  
14.0 TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits,  
T2CKPS<1:0> (T2CON<1:0>). The match output of  
TMR2 goes through a 4-bit postscaler (which gives a  
1:1 to 1:16 scaling inclusive) to generate a TMR2  
interrupt, latched in flag bit, TMR2IF (PIR1<1>).  
The Timer2 module has the following features:  
• 8-bit Timer register (TMR2)  
• 8-bit Period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match with PR2  
• SSP module optional use of TMR2 output to  
generate clock shift  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset, while the PR2 register initializes at FFh.  
Timer2 has a control register, shown in Register 14-1.  
TMR2 can be shut off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
Figure 14-1 is a simplified block diagram of the Timer2  
module. Register 14-1 shows the Timer2 Control  
register. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• A write to the TMR2 register  
• A write to the T2CON register  
• Any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
DS39616D-page 136  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
14.2 Timer2 Interrupt  
14.3 Output of TMR2  
Timer2 can also generate an optional device interrupt.  
The Timer2 output signal (TMR2 to PR2 match) pro-  
vides the input for the 4-bit output counter/postscaler.  
This counter generates the TMR2 match interrupt flag  
which is latched in TMR2IF (PIR1<1>).  
The unscaled output of TMR2 is available primarily to  
the CCP modules, where it is used as a time base for  
operations in PWM mode. Timer2 can be optionally  
used as the shift clock source for the SSP module  
operating in SPI mode.  
The interrupt is enabled by setting the TMR2 Match  
Interrupt Enable bit, TMR2IE (PIE1<1>). A range of  
16 postscale options (from 1:1 through 1:16 inclusive)  
can be selected with the postscaler control bits,  
T2OUTPS<3:0> (T2CON<6:3>).  
For additional information, see Section 19.0  
“Synchronous Serial Port (SSP) Module”.  
FIGURE 14-1:  
TIMER2 BLOCK DIAGRAM  
4
1:1 to 1:16  
Set TMR2IF  
Postscaler  
T2OUTPS<3:0>  
T2CKPS<1:0>  
2
TMR2 Output  
(to PWM or SSP)  
TMR2/PR2  
Match  
Reset  
1:1, 1:4, 1:16  
Prescaler  
PR2  
FOSC/4  
TMR2  
Comparator  
8
8
8
Internal Data Bus  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
55  
55  
55  
PIR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TXIE  
TXIP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
2010 Microchip Technology Inc.  
DS39616D-page 137  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 138  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Timer5 is a general purpose timer/counter that incor-  
porates additional features for use with the Motion  
Feedback Module (see Section 17.0 “Motion Feed-  
back Module”). It may also be used as a general  
purpose timer or a Special Event Trigger delay timer.  
15.0 TIMER5 MODULE  
The Timer5 module implements these features:  
• 16-bit timer/counter operation  
• Synchronous and Asynchronous Counter modes  
• Continuous Count and Single-Shot Operating modes  
• Four programmable prescaler values (1:1 to 1:8)  
• Interrupt generated on period match  
• Special Event Trigger Reset function  
• Double-buffered registers  
• Operation during Sleep  
• CPU wake-up from Sleep  
• Selectable hardware Reset input with a wake-up  
feature  
When used as a general purpose timer, it can be  
configured to generate a delayed Special Event Trigger  
(e.g., an ADC Special Event Trigger) using  
preprogrammed period delay.  
a
Timer5 is controlled through the Timer5 Control register  
(T5CON), shown in Register 15-1. The timer can be  
enabled or disabled by setting or clearing the control bit  
TMR5ON (T5CON<0>).  
A block diagram of Timer5 is shown in Figure 15-1.  
REGISTER 15-1: T5CON: TIMER5 CONTROL REGISTER  
R/W-0  
R/W-0  
RESEN(1)  
R/W-0  
R/W-0  
T5PS1  
R/W-0  
T5PS0  
R/W-0  
T5SYNC(2)  
R/W-0  
R/W-0  
T5SEN  
T5MOD  
TMR5CS  
TMR5ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
T5SEN: Timer5 Sleep Enable bit  
1= Timer5 is enabled during Sleep  
0= Timer5 is disabled during Sleep  
bit 6  
RESEN: Special Event Trigger Reset Enable bit(1)  
1= Special Event Trigger Reset is disabled  
0= Special Event Trigger Reset is enabled  
bit 5  
T5MOD: Timer5 Mode bit  
1= Single-Shot mode is enabled  
0= Continuous Count mode is enabled  
bit 4-3  
T5PS<1:0>: Timer5 Input Clock Prescale Select bits  
11= 1:8  
10= 1:4  
01= 1:2  
00= 1:1  
bit 2  
T5SYNC: Timer5 External Clock Input Synchronization Select bit(2)  
When TMR5CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR5CS = 0:  
This bit is ignored. Timer5 uses the internal clock when TMR5CS = 0.  
bit 1  
bit 0  
TMR5CS: Timer5 Clock Source Select bit  
1= External clock from the T5CKI pin  
0= Internal clock (TCY)  
TMR5ON: Timer5 On bit  
1= Timer5 is enabled  
0= Timer5 is disabled  
Note 1: These bits are not implemented on PIC18F2331/2431 devices and read as ‘0’.  
2: For Timer5 to operate during Sleep mode, T5SYNC must be set.  
2010 Microchip Technology Inc.  
DS39616D-page 139  
PIC18F2331/2431/4331/4431  
FIGURE 15-1:  
TIMER5 BLOCK DIAGRAM (16-BIT READ/WRITE MODE SHOWN)  
1
Internal Data Bus  
Noise  
Filter  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
0
T5CKI  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
TMR5CS  
Timer5  
On/Off  
T5PS<1:0>  
T5SYNC  
TMR5ON  
8
8
TMR5H  
8
Write TMR5L  
Read TMR5L  
TMR5  
TMR5L  
Special Event  
Trigger Input  
from IC1  
8
1
0
TMR5  
High Byte  
Timer5 Reset  
Timer5 Reset  
(external)  
16  
Reset  
Logic  
Comparator  
16  
PR5  
8
8
PR5L  
PR5H  
Set TMR5IF  
Special  
Event  
Logic  
Special Event  
Trigger Output  
Timer5 supports three configurations:  
15.1 Timer5 Operation  
• 16-Bit Synchronous Timer  
• 16-Bit Synchronous Counter  
• 16-Bit Asynchronous Counter  
Timer5 combines two 8-bit registers to function as a  
16-bit timer. The TMR5L register is the actual low byte  
of the timer; it can be read and written to directly. The  
high byte is contained in an unmapped register; it is  
read and written to through TMR5H, which serves as  
a buffer. Each register increments from 00h to FFh.  
In Synchronous Timer configuration, the timer is  
clocked by the internal device clock. The optional  
Timer5 prescaler divides the input by 2, 4, 8 or not at all  
(1:1). The TMR5 register pair increments on Q1.  
Clearing TMR5CS (= 0) selects the internal device  
clock as the timer sampling clock.  
A second register pair, PR5H and PR5L, serves as the  
Period register; it sets the maximum count for the  
TMR5 register pair. When TMR5 reaches the value of  
PR5, the timer rolls over to 00h and sets the TMR5IF  
interrupt flag. A simplified block diagram of the Timer5  
module is shown in Figure 2-1.  
Note:  
The Timer5 may be used as a general pur-  
pose timer and as the time base resource to  
the Motion Feedback Module (Input  
Capture or Quadrature Encoder Interface).  
DS39616D-page 140  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
In Synchronous Counter mode configuration, the timer  
15.2 16-Bit Read/Write and Write Modes  
is clocked by the external clock (T5CKI) with the  
optional prescaler. The external T5CKI is selected by  
setting the TMR5CS bit (TMR5CS = 1); the internal  
clock is selected by clearing TMR5CS. The external  
clock is synchronized to the internal clock by clearing  
the T5SYNC bit. The input on T5CKI is sampled on  
every Q2 and Q4 of the internal clock. The low to rise  
transition is decoded on three adjacent samples and  
the Timer5 is incremented on the next Q1. The T5CKI  
minimum pulse-width high and low time must be  
greater than TCY/2.  
As noted, the actual high byte of the Timer5 register  
pair is mapped to TMR5H, which serves as a buffer.  
Reading TMR5L will load the contents of the high byte  
of the register pair into the TMR5H register. This allows  
the user to accurately read all 16 bits of the register pair  
without having to determine whether a read of the high  
byte, followed by the low byte, is valid due to a rollover  
between reads.  
Since the actual high byte of the Timer5 register pair is  
not directly readable or writable, it must be read and  
written to through the Timer5 High Byte Buffer register  
(TMR5H). The T5 high byte is updated with the con-  
tents of TMR5H when a write occurs to TMR5L. This  
allows a user to write all 16 bits to both the high and low  
bytes of Timer5 at once. Writes to TMR5H do not clear  
the Timer5 prescaler. The prescaler is only cleared on  
writes to TMR5L.  
In Asynchronous Counter mode configuration, Timer5  
is clocked by the external clock (T5CKI) with the  
optional prescaler. In this mode, T5CKI is not synchro-  
nized to the internal clock. By setting TMR5CS, the  
external input clock (T5CKI) can be used as the coun-  
ter sampling clock. When T5SYNC is set, the external  
clock is not synchronized to the internal device clock.  
The timer count is not reset automatically when the  
module is disabled. The user may write the Counter  
register to initialize the counter.  
15.2.1  
16-BIT READ-MODIFY-WRITE  
Read-modify-write instructions, like BSF and BCF, will  
read the contents of a register, make the appropriate  
changes and place the result back into the register. The  
write portion of a read-modify-write instruction of  
TMR5H will not update the contents of the high byte of  
TMR5 until a write of TMR5L takes place. Only then will  
the contents of TMR5H be placed into the high byte of  
TMR5.  
Note:  
The Timer5 module does NOT prevent  
writes to the PR5 registers (PR5H:PR5L)  
while the timer is enabled. Writing to PR5  
while the timer is enabled may result in  
unexpected period match events.  
15.1.1  
CONTINUOUS COUNT AND  
SINGLE-SHOT OPERATION  
15.3 Timer5 Prescaler  
Timer5 has two operating modes: Continuous Count  
and Single-Shot.  
The Timer5 clock input (either TCY or the external clock)  
may be divided by using the Timer5 programmable  
prescaler. The prescaler control bits, T5PS<1:0>  
(T5CON<4:3>), select a prescale factor of 2, 4, 8 or no  
prescale.  
Continuous Count mode is selected by clearing the  
T5MOD control bit (= 0). In this mode, the Timer5 time  
base will start incrementing according to the prescaler  
settings until a TMR5/PR5 match occurs, or until TMR5  
rolls over (FFFFh to 0000h). The TMR5IF interrupt flag  
is set, the TMR5 register is reset on the following input  
clock edge and the timer continues to count for as long  
as the TMR5ON bit remains set.  
The Timer5 prescaler is cleared by any of the following:  
• A write to the Timer5 register  
• Disabling Timer5 (TMR5ON = 0)  
• A device Reset such as Master Clear, POR or  
BOR  
Single-Shot mode is selected by setting T5MOD (= 1).  
In this mode, the Timer5 time base begins to increment  
according to the prescaler settings until a TMR5/PR5  
match occurs. This causes the TMR5IF interrupt flag to  
be set, the TMR5 register pair to be cleared on the  
following input clock edge and the TMR5ON bit to be  
cleared by the hardware to halt the timer.  
Note:  
Writing to the T5CON register does not  
clear the Timer5.  
The Timer5 time base can only start incrementing in  
Single-Shot mode under two conditions:  
1. Timer5 is enabled (TMR5ON is set), or  
2. Timer5 is disabled and a Special Event Trigger  
Reset is present on the Timer5 Reset input. (See  
Section 15.7 “Timer5 Special Event Trigger  
Reset Input” for additional information.)  
2010 Microchip Technology Inc.  
DS39616D-page 141  
PIC18F2331/2431/4331/4431  
15.7.1  
WAKE-UP ON IC1 EDGE  
15.4 Noise Filter  
The Timer5 Special Event Trigger Reset input can act  
as a Timer5 wake-up and a start-up pulse. Timer5 must  
be in Single-Shot mode and disabled (TMR5ON = 0).  
An active edge on the CAP1 input pin will set TMR5ON.  
The timer is subsequently incremented on the next fol-  
lowing clock according to the prescaler and the Timer5  
clock settings. A subsequent hardware time-out (such  
as TMR5/PR5 match) will clear the TMR5ON bit and  
stop the timer.  
The Timer5 module includes an optional input noise  
filter, designed to reduce spurious signals in noisy  
operating environments. The filter ensures that the input  
is not permitted to change until a stable value has been  
registered for three consecutive sampling clock cycles.  
The noise filter is part of the input filter network associ-  
ated with the Motion Feedback Module (see  
Section 17.0 “Motion Feedback Module”). All of the  
filters are controlled using the Digital Filter Control  
(DFLTCON) register (Register 17-3). The Timer5 filter  
can be individually enabled or disabled by setting or  
clearing the FLT4EN bit (DFLTCON<6>). It is disabled  
on all Brown-out Resets.  
15.7.2  
DELAYED ACTION EVENT TRIGGER  
An active edge on CAP1 can also be used to initiate  
some later action delayed by the Timer5 time base. In  
this case, Timer5 increments as before after being  
triggered. When the hardware time-out occurs, the  
Special Event Trigger output is generated and used to  
trigger another action, such as an A/D conversion. This  
allows a given hardware action to be referenced from a  
capture edge on CAP1 and delayed by the timer.  
For additional information, refer to Section 17.3  
“Noise Filters” in the Motion Feedback Module.  
15.5 Timer5 Interrupt  
Timer5 has the ability to generate an interrupt on a  
period match. When the PR5 register is loaded with a  
new period value (00FFh), the Timer5 time base incre-  
ments until its value is equal to the value of PR5. When  
a match occurs, the Timer5 interrupt is generated on  
the rising edge of Q4; TMR5IF is set on the next TCY.  
The event timing for the delayed action event trigger is  
discussed further in Section 17.1 “Input Capture”.  
15.7.3  
SPECIAL EVENT TRIGGER RESET  
WHILE TIMER5 IS INCREMENTING  
The interrupt latency (i.e., the time elapsed from the  
moment Timer5 rolls over until TMR5IF is set) will not  
exceed 1 TCY. When the Timer5 clock input is prescaled  
and a TMR5/PR5 match occurs, the interrupt will be  
generated on the first Q4 rising edge after TMR5 resets.  
In the event that a bus write to Timer5 coincides with a  
Special Event Trigger Reset, the bus write will always  
take precedence over the Special Event Trigger Reset.  
15.8 Operation in Sleep Mode  
When Timer5 is configured for asynchronous operation,  
it will continue to increment each timer clock (or prescale  
multiple of clocks). Executing the SLEEPinstruction will  
either stop the timer or let the timer continue, depending  
on the setting of the Timer5 Sleep Enable bit, T5SEN. If  
T5SEN is set (= 1), the timer continues to run when the  
SLEEPinstruction is executed and the external clock is  
selected (TMR5CS = 1). If T5SEN is cleared, the timer  
stops when a SLEEPinstruction is executed, regardless  
of the state of the TMR5CS bit.  
15.6 Timer5 Special Event Trigger  
Output  
A Timer5 Special Event Trigger is generated on a  
TMR5/PR5 match. The Special Event Trigger is  
generated on the falling edge of Q3.  
Timer5 must be configured for either Synchronous  
mode (Counter or Timer) to take advantage of the  
Special Event Trigger feature. If Timer5 is running in  
Asynchronous Counter mode, the Special Event  
Trigger may not work and should not be used.  
To summarize, Timer5 will continue to increment when  
a SLEEPinstruction is executed only if all of these bits  
are set:  
15.7 Timer5 Special Event Trigger  
Reset Input  
• TMR5ON  
• T5SEN  
In addition to the Special Event Trigger output, Timer5  
has a Special Event Trigger Reset input that may be  
used with Input Capture Channel 1 (IC1) of the Motion  
Feedback Module. To use the Special Event Trigger  
Reset, the Capture 1 Control register, CAP1CON, must  
be configured for one of the Special Event Trigger  
modes (CAP1M<3:0> = 1110 or 1111). The Special  
Event Trigger Reset can be disabled by setting the  
RESEN control bit (T5CON<6>).  
• TMR5CS  
• T5SYNC  
15.8.1  
INTERRUPT DETECT IN SLEEP MODE  
When configured as described above, Timer5 will  
continue to increment on each rising edge on T5CKI  
while in Sleep mode. When a TMR5/PR5 match occurs,  
an interrupt is generated which can wake the part.  
The Special Event Trigger Reset resets the Timer5 time  
base. This Reset occurs in either Continuous Count or  
Single-Shot modes.  
DS39616D-page 142  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER5  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IPR3  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
54  
56  
56  
56  
57  
57  
57  
57  
56  
59  
59  
PTIP  
PTIE  
PTIF  
IC3DRIP IC2QEIP IC1IP  
IC3DRIE IC2QEIE IC1IE  
TMR5IP  
TMR5IE  
TMR5IF  
PIE3  
PIR3  
IC3DRIF IC2QEIF  
IC1IF  
TMR5H  
TMR5L  
PR5H  
Timer5 Register High Byte  
TImer5 Register Low Byte  
Timer5 Period Register High Byte  
Timer5 Period Register Low Byte  
PR5L  
T5CON  
CAP1CON  
DFLTCON  
T5SEN  
RESEN  
T5MOD T5PS1  
T5PS0 T5SYNC TMR5CS TMR5ON  
CAP1M3 CAP1M2 CAP1M1 CAP1M0  
CAP1REN  
FLT4EN FLT3EN FLT2EN FLT1EN FLTCK2 FLTCK1 FLTCK0  
Legend: — = unimplemented. Shaded cells are not used by the Timer5 module.  
2010 Microchip Technology Inc.  
DS39616D-page 143  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 144  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 16-1: CCP MODE – TIMER  
16.0 CAPTURE/COMPARE/PWM  
RESOURCES  
(CCP) MODULES  
CCP Mode  
Timer Resources  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register that can operate as a 16-bit Capture reg-  
ister, a 16-bit Compare register or a PWM Master/Slave  
Duty Cycle register. Table 16-1 shows the timer  
resources required for each of the CCP module modes.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the Special Event Trigger. Therefore,  
operation of a CCP module is described with respect to  
CCP1, except where noted.  
16.2 CCP2 Module  
Capture/Compare/PWM Register 2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
16.1 CCP1 Module  
Capture/Compare/PWM Register  
1
(CCPR1) is  
comprised of two 8-bit registers: CCPR1L (low byte)  
and CCPR1H (high byte). The CCP1CON register  
controls the operation of CCP1. All are readable and  
writable.  
REGISTER 16-1: CCPxCON: CCPx CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSBs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCxB<9:2>) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: CCPx Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0001= Reserved  
0010= Compare mode; toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode; every falling edge  
0101= Capture mode; every rising edge  
0110= Capture mode; every 4th rising edge  
0111= Capture mode; every 16th rising edge  
1000= Compare mode; initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)  
1001= Compare mode; initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set)  
1010= Compare mode; generate software interrupt on compare match (CCPxIF bit is set, CCPx pin is  
unaffected)  
1011= Compare mode; Special Event Trigger (CCPxIF bit is set)  
11xx= PWM mode  
2010 Microchip Technology Inc.  
DS39616D-page 145  
PIC18F2331/2431/4331/4431  
16.3.3  
SOFTWARE INTERRUPT  
16.3 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit,  
CCP1IE (PIE1<2>), clear to avoid false interrupts and  
should clear the flag bit, CCP1IF, following any such  
change in operating mode.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event  
occurs on pin RC2/CCP1. An event is defined as  
one of the following:  
• every falling edge  
• every rising edge  
16.3.4  
CCP PRESCALER  
• every 4th rising edge  
• every 16th rising edge  
There are four prescaler settings specified by bits  
CCP1M<3:0>. Whenever the CCP module is turned off,  
or the CCP module is not in Capture mode, the  
prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
The event is selected by control bits, CCP1M<3:0>  
(CCP1CON<3:0>). When a capture is made, the  
interrupt request flag bit, CCP1IF (PIR1<2>), is set; it  
must be cleared in software. If another capture occurs  
before the value in register CCPR1 is read, the old  
captured value is overwritten by the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 16-1 shows the recom-  
mended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
16.3.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be  
configured as an input by setting the TRISC<2> bit.  
Note:  
If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a  
capture condition.  
EXAMPLE 16-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
CCP1CON  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVLW  
NEW_CAPT_PS  
16.3.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode to be used with the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
MOVWF  
CCP1CON  
FIGURE 16-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
Set CCP1IF Flag bit  
CCPR1H  
CCPR1L  
Prescaler  
1, 4, 16  
TMR1  
Enable  
CCP1 Pin  
and  
TMR1H  
TMR1L  
Edge Detect  
CCP1CON<3:0>  
Qs  
Set CCP2IF Flag bit  
CCPR2H  
CCPR2L  
TMR1L  
Prescaler  
1, 4, 16  
TMR1  
Enable  
CCP2 Pin  
and  
Edge Detect  
TMR1H  
CCP2CON<3:0>  
Qs  
DS39616D-page 146  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
16.4.2  
TIMER1 MODE SELECTION  
16.4 Compare Mode  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
In Compare mode, the 16-bit CCPR1 (CCPR2) register  
value is constantly compared against the TMR1  
register pair value. When a match occurs, the RC2/  
CCP1 (RC1/CCP2) pin:  
• is driven high  
16.4.3  
SOFTWARE INTERRUPT MODE  
• is driven low  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
• toggles output (high-to-low or low-to-high)  
• remains unchanged (interrupt only)  
The action on the pin is based on the value of control  
bits, CCP1M<3:0> (CCP2M<3:0>). At the same time,  
interrupt flag bit CCP1IF (CCP2IF) is set.  
16.4.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
16.4.1  
CCP PIN CONFIGURATION  
The Special Event Trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
The user must configure the CCP1 pin as an output by  
clearing the appropriate TRISC bit.  
Note:  
Clearing the CCPxCON register will force  
the RC1 or RC2 compare output latch to  
the default low level. This is not the  
PORTC I/O data latch.  
The Special Event Trigger output of CCP2 resets the  
TMR1 register pair. Additionally, the CCP2 Special  
Event Trigger will start an A/D conversion if the A/D  
module is enabled.  
Note:  
The Special Event Trigger from the CCP2  
module will not set the Timer1 interrupt  
flag bit.  
FIGURE 16-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1, but not set Timer1 interrupt flag bit  
and set bit, GO/DONE (ADCON0<1>), which starts an A/D conversion (CCP2 only)  
Special Event Trigger  
Set Flag CCP1IF bit  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RC2/CCP1 Pin  
TRISC<2>  
Output Enable  
CCP1CON<3:0>  
Mode Select  
TMR1H TMR1L  
Special Event Trigger  
Set Flag CCP2IF bit  
Match  
Q
S
R
Output  
Logic  
Comparator  
RC1/CCP2 Pin  
TRISC<1>  
Output Enable  
CCPR2H CCPR2L  
CCP2CON<3:0>  
Mode Select  
2010 Microchip Technology Inc.  
DS39616D-page 147  
PIC18F2331/2431/4331/4431  
TABLE 16-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
57  
55  
55  
55  
56  
56  
56  
56  
56  
56  
57  
57  
57  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TXIE  
TXIP  
IPR1  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
CCPR1L Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Capture/Compare/PWM Register 1 High Byte  
CCP1CON  
CCPR2L  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register 2 Low Byte  
CCPR2H Capture/Compare/PWM Register 2 High Byte  
CCP2CON  
PIR2  
DC2B1  
DC2B0  
EEIF  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
OSCFIF  
OSCFIE  
OSCFIP  
LVDIF  
LVDIE  
LVDIP  
CCP2IF  
CCP2IE  
CCP2IP  
PIE2  
EEIE  
IPR2  
EEIP  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Capture, Compare and Timer1.  
DS39616D-page 148  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
16.5.1  
PWM PERIOD  
16.5 PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following equation:  
In Pulse-Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
EQUATION 16-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Note:  
Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1/[PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
Figure 16-3 shows a simplified block diagram of the  
CCP1 module in PWM mode.  
• TMR2 is cleared  
For a step-by-step procedure on how to set up the  
CCP1 module for PWM operation, see Section 16.5.3  
“Setup for PWM Operation”.  
• The CCP1 pin is set (if PWM duty cycle = 0%, the  
CCP1 pin will not be set)  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
FIGURE 16-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 14.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
16.5.2  
PWM DUTY CYCLE  
CCPR1H (Slave)  
Comparator  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is  
calculated by the following equation:  
R
S
Q
RC2/CCP1  
(Note 1)  
TMR2  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
EQUATION 16-2:  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
Note 1: 8-bit timer is concatenated with 2-bit internal  
Q clock or 2 bits of the prescaler to create  
10-bit time base.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read-only register.  
A PWM output (Figure 16-4) has a time base  
(period) and a time that the output is high (duty  
cycle). The frequency of the PWM is the inverse of  
the period (1/period).  
FIGURE 16-4:  
PWM OUTPUT  
Period  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
2010 Microchip Technology Inc.  
DS39616D-page 149  
PIC18F2331/2431/4331/4431  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or two bits  
of the TMR2 prescaler, the CCP1 pin is cleared. The  
maximum PWM resolution (bits) for a given PWM  
frequency is given by the following equation:  
16.5.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP1 module for PWM operation:  
1. Set the PWM period by writing to the PR2 register.  
2. Set the PWM duty cycle by writing to the CCPR1L  
register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
EQUATION 16-3:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
FOSC  
FPWM  
log  
5. Configure the CCP1 module for PWM operation.  
PWM Resolution (max) =  
bits  
log(2)  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TABLE 16-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
TABLE 16-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
ResetValues  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
57  
55  
55  
55  
56  
56  
56  
56  
56  
56  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
SSPIF  
CCP1IF TMR2IF TMR1IF  
PIE1  
TXIE  
TXIP  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
IPR1  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Register  
Timer2 Period Register  
T2CON  
CCPR1L  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Capture/Compare/PWM Register 1 High Byte  
CCP1CON  
CCPR2L  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register 2 Low Byte  
Capture/Compare/PWM Register 2 High Byte  
CCPR2H  
CCP2CON  
DC2B1  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by PWM and  
Timer2.  
DS39616D-page 150  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Many of the features for the IC and QEI submodules  
17.0 MOTION FEEDBACK MODULE  
are fully programmable, creating a flexible peripheral  
structure that can accommodate a wide range of  
in-system uses. An overview of the available features  
is presented in Table 17-1. A simplified block diagram  
of the entire Motion Feedback Module is shown in  
Figure 17-1.  
The Motion Feedback Module (MFM) is a special  
purpose peripheral designed for motion feedback  
applications. Together with the Power Control PWM  
(PCPWM) module (see Section 18.0 “Power Control  
PWM Module”), it provides a variety of control  
solutions for a wide range of electric motors.  
Note:  
Because the same input pins are common  
to the IC and QEI submodules, only one of  
these two submodules may be used at  
any given time. If both modules are on, the  
QEI submodule will take precedence.  
The module actually consists of two hardware  
submodules:  
• Input Capture (IC)  
Quadrature Encoder Interface (QEI)  
Together with Timer5 (see Section 15.0 “Timer5  
Module”), these modules provide a number of  
options for motion and control applications.  
TABLE 17-1: SUMMARY OF MOTION FEEDBACK MODULE FEATURES  
Submodule  
Mode(s)  
Features  
Timer  
Function  
IC (3x)  
• Synchronous  
• Input Capture  
• Flexible Input Capture modes  
• Available Prescaler  
TMR5 • 3x Input Capture (edge  
capture, pulse width, period  
measurement, capture on  
change)  
• Selectable Time Base Reset  
• Special Event Trigger for ADC  
Sampling/Conversion or Optional  
TMR5 Reset Feature (CAP1 only)  
• Wake-up from Sleep function  
• Selectable Interrupt Frequency  
• Optional Noise Filter  
• Special Event Triggers the  
A/D Conversion on the CAP1  
Input  
QEI  
QEI  
• Detect Position  
16-Bit • Position Measurement  
Position • Direction of Rotation Status  
Counter  
• Detect Direction of Rotation  
• Large Bandwidth (FCY/16)  
• Optional Noise Filter  
Velocity  
Measurement  
• 2x and 4x Update modes  
• Velocity Event Postscaler  
• Counter Overflow Flag for Low  
Rotation Speed  
TMR5 • Precise Velocity Measurement  
• Direction of Rotation Status  
• Utilizes Input Capture 1 Logic  
(IC1)  
• High and Low Velocity Support  
2010 Microchip Technology Inc.  
DS39616D-page 151  
PIC18F2331/2431/4331/4431  
FIGURE 17-1:  
MOTION FEEDBACK MODULE BLOCK DIAGRAM  
TMR5IF  
Special Event Trigger Reset  
Timer Reset  
TMR5  
Reset  
Control  
Special Event Trigger Output  
Timer5  
TMR5<15:0>  
8
Filter  
TCY  
T5CKI  
3x Input Capture Logic  
TMR5<15:0>  
IC3IF  
Filter  
Filter  
IC3  
IC2  
IC1  
8
8
CAP3/QEB  
CAP2/QEA  
IC2IF  
IC1IF  
Special Event Trigger Reset  
8
Filter  
CAP1/INDX  
TCY  
Clock  
Divider  
8
Postscaler  
QEB  
Velocity Event  
Timer Reset  
8
Direction  
QEA  
Position Counter  
Clock  
QEIF  
QEI  
Control  
Logic  
CHGIF  
INDX  
8
QEI Logic  
CHGIF  
IC3IF  
IC3DRIF  
QEI  
Mode  
Decoder  
8
QEIF  
IC2IF  
IC2QEIF  
DS39616D-page 152  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Input Channel 1 (IC1) includes a Special Event  
Trigger that can be configured for use in Velocity  
17.1 Input Capture  
The Input Capture (IC) submodule implements the  
following features:  
Measurement mode. Its block diagram is shown in  
Figure 17-2. IC2 and IC3 are similar, but lack the  
Special Event Trigger features or additional velocity  
measurement logic. A representative block diagram is  
shown in Figure 17-3. Please note that the time base  
is Timer5.  
• Three channels of independent input capture  
(16-bits/channel) on the CAP1, CAP2 and CAP3  
pins  
• Edge-Trigger, Period or Pulse-Width  
Measurement Operating modes for each channel  
• Programmable prescaler on every input capture  
channel  
• Special Event Trigger output (IC1 only)  
• Selectable noise filters on each capture input  
FIGURE 17-2:  
INPUT CAPTURE BLOCK DIAGRAM FOR IC1  
CAP1 Pin  
and  
Mode  
Select  
Prescaler  
1, 4, 16  
Clock  
Noise  
Filter  
CAP1BUF/VELR(1)  
3
4
FLTCK<2:0>  
Q Clocks  
CAP1M<3:0>  
IC1IF  
Reset  
IC1_TR  
TMR5  
Reset  
Control  
Special  
Event Trigger  
Reset  
Clock/  
Reset/  
Interrupt  
Decode  
Logic  
Timer5 Logic  
1
CAP1BUF_clk  
MUX  
First Event  
Reset  
0
Timer5 Reset  
Timer  
velcap(2)  
Reset  
Control  
VELM  
Q Clocks  
CAP1M<3:0>  
Note 1: CAP1BUF register is reconfigured as VELR register when QEI mode is active.  
2: QEI generated velocity pulses, vel_out, are downsampled to produce this velocity capture signal.  
2010 Microchip Technology Inc.  
DS39616D-page 153  
PIC18F2331/2431/4331/4431  
FIGURE 17-3:  
INPUT CAPTURE BLOCK DIAGRAM FOR IC2 AND IC3  
Capture  
Clock  
CAPxBUF(1,2,3)  
CAP2/3 Pin  
and  
Prescaler  
Noise  
Filter  
Mode  
1, 4, 16  
Select  
TMR5  
Enable  
3
4
TMR5  
CAP1M<3:0>(1)  
FLTCK<2:0>  
Q Clocks  
ICxIF(1)  
Capture Clock/  
Reset/  
CAPxBUF_clk(1)  
Interrupt  
Decode  
Logic  
TMR5 Reset  
Timer  
Reset  
Reset  
Control  
Q Clocks CAPxM<3:0>(1)  
CAPxREN(2)  
Note 1: IC2 and IC3 are denoted as x = 2 and 3.  
2: CAP2BUF is enabled as POSCNT when QEI mode is active.  
3: CAP3BUF is enabled as MAXCNT when QEI mode is active.  
DS39616D-page 154  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The three input capture channels are controlled  
through the Input Capture Control registers,  
CAP1CON, CAP2CON and CAP3CON. Each channel  
is configured independently with its dedicated register.  
The implementation of the registers is identical except  
for the Special Event Trigger (see Section 17.1.8  
“Special Event Trigger (CAP1 Only)”). The typical  
Capture Control register is shown in Register 17-1.  
Note:  
Throughout this section, references to  
registers and bit names that may be asso-  
ciated with a specific capture channel will  
be referred to generically by the use of the  
term ‘x’ in place of the channel number.  
For example, ‘CAPxREN’ may refer to the  
Capture Reset Enable bit in CAP1CON,  
CAP2CON or CAP3CON.  
REGISTER 17-1: CAPxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CAPxREN  
CAPxM3  
CAPxM2  
CAPxM1  
CAPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CAPxREN: Time Base Reset Enable bit  
1= Enabled  
0= Disable selected time base Reset on capture  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CAPxM<3:0>: Input Capture x (ICx) Mode Select bits  
1111= Special Event Trigger mode; the trigger occurs on every rising edge on CAP1 input(1)  
1110= Special Event Trigger mode; the trigger occurs on every falling edge on CAP1 input(1)  
1101= Unused  
1100= Unused  
1011= Unused  
1010= Unused  
1001= Unused  
1000= Capture on every CAPx input state change  
0111= Pulse-Width Measurement mode, every rising to falling edge  
0110= Pulse-Width Measurement mode, every falling to rising edge  
0101= Frequency Measurement mode, every rising edge  
0100= Capture mode, every 16th rising edge  
0011= Capture mode, every 4th rising edge  
0010= Capture mode, every rising edge  
0001= Capture mode, every falling edge  
0000= Input Capture x (ICx) off  
Note 1: Special Event Trigger is only available on CAP1. For CAP2 and CAP3, this configuration is unused.  
2010 Microchip Technology Inc.  
DS39616D-page 155  
PIC18F2331/2431/4331/4431  
When in Counter mode, the counter must be  
configured as the synchronous counter only  
(T5SYNC = 0). When configured in Asynchronous  
mode, the IC module will not work properly.  
17.1.1  
EDGE CAPTURE MODE  
In this mode, the value of the time base is captured  
either on every rising edge, every falling edge, every  
4th rising edge, or every 16th rising edge. The edge  
present on the input capture pin (CAP1, CAP2 or  
CAP3) is sampled by the synchronizing latch. The  
signal is used to load the Input Capture Buffer (ICxBUF  
register) on the following Q1 clock (see Figure 17-4).  
Consequently, Timer5 is either reset to ‘0’ (Q1  
immediately following the capture event) or left free  
running, depending on the setting of the Capture Reset  
Enable bit, CAPxREN, in the CAPxCON register.  
Note 1: Input capture prescalers are reset  
(cleared) when the input capture module  
is disabled (CAPxM = 0000).  
2: When the Input Capture mode is  
changed, without first disabling the  
module and entering the new Input Cap-  
ture mode, a false interrupt (or Special  
Event Trigger on IC1) may be generated.  
The user should either: (1) disable the  
input capture before entering another  
mode, or (2) disable IC interrupts to avoid  
false interrupts during IC mode changes.  
Note:  
On the first capture edge following the  
setting of the Input Capture mode (i.e.,  
MOVWF CAP1CON), Timer5 contents are  
always captured into the corresponding  
Input Capture Buffer (i.e., CAPxBUF).  
Timer5 can optionally be reset; however,  
this is dependent on the setting of the  
Capture Reset Enable bit, CAPxREN (see  
Figure 17-4).  
3: During IC mode changes, the prescaler  
count will not be cleared, therefore, the  
first capture in the new IC mode may be  
from the non-zero prescaler.  
FIGURE 17-4:  
EDGE CAPTURE MODE TIMING  
Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4  
OSC  
(1)  
0012  
0013  
0014  
0015  
0000  
0001  
0016  
0002  
0000  
0001  
0002  
TMR5  
(2)  
CAP1 Pin  
ABCD  
0003  
0002  
Note 5  
(3)  
CAP1BUF  
(4)  
TMR5 Reset  
Instruction  
Execution  
MOVWF CAP1CON  
BCF CAP1CON, CAP1REN  
Note 1: TMR5 is a synchronous time base input to the input capture; prescaler = 1:1. It increments on the Q1 rising edge.  
2: IC1 is configured in Edge Capture mode (CAP1M<3:0> = 0010) with the time base reset upon edge capture  
(CAP1REN = 1) and no noise filter.  
3: TMR5 value is latched by CAP1BUF on TCY. In the event that a write to TMR5 coincides with an input capture event,  
the write will always take precedence. All Input Capture Buffers, CAP1BUF, CAP2BUF and CAP3BUF, are updated  
with the incremented value of the time base on the next TCY clock edge when the capture event takes place (see  
Note 4 when Reset occurs).  
4: TMR5 Reset is normally an asynchronous Reset signal to TMR5. When used with the input capture, it is active  
immediately after the time base value is captured.  
5: TMR5 Reset pulse is disabled by clearing the CAP1REN bit (e.g., BCF CAP1CON, CAP1REN).  
DS39616D-page 156  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Timer5 is always reset on the edge when the  
measurement is first initiated. For example, when the  
measurement is based on the falling to rising edge,  
Timer5 is first reset on the falling edge, and thereafter,  
the timer value is captured on the rising edge. Upon  
entry into the Pulse-Width Measurement mode, the  
very first edge detected on the CAPx pin is always  
captured. The TMR5 value is reset on the first active  
edge (see Figure 17-5).  
17.1.2  
PERIOD MEASUREMENT MODE  
The Period Measurement mode is selected by setting  
CAPxM<3:0> = 0101. In this mode, the value of Timer5  
is latched into the CAPxBUF register on the rising edge  
of the input capture trigger and Timer5 is subsequently  
reset to 0000h (optional by setting CAPxREN = 1) on  
the next TCY (see capture and Reset relationship in  
Figure 17-4).  
17.1.3  
PULSE-WIDTH MEASUREMENT  
MODE  
The Pulse-Width Measurement mode can be configured  
for two different edge sequences, such that the pulse  
width is based on either the falling to rising edge of the  
CAPx input pin (CAPxM<3:0> = 0110), or on the rising  
to falling edge (CAPxM<3:0> = 0111).  
FIGURE 17-5:  
PULSE-WIDTH MEASUREMENT MODE TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
(1)  
0012  
0013  
0014  
0015  
0000  
0015  
0001  
0002  
0000  
0001  
0001  
0002  
0002  
TMR5  
(2)  
CAP1 Pin  
(3)  
CAP1BUF  
(4,5)  
TMR5 Reset  
Instruction  
Execution  
MOVWF CAP1CON  
(2)  
Note 1: TMR5 is a synchronous time base input to the input capture; prescaler = 1:1. It increments on every Q1 rising edge.  
2: IC1 is configured in Pulse-Width Measurement mode (CAP1M<3:0> = 0111, rising to falling pulse-width  
measurement). No noise filter on CAP1 input is used. The MOVWFinstruction loads CAP1CON when W = 0111.  
3: TMR5 value is latched by CAP1BUF on TCY rising edge. In the event that a write to TMR5 coincides with an input cap-  
ture event, the write will always take precedence. All Input Capture Buffers, CAP1BUF, CAP2BUF and CAP3BUF, are  
updated with the incremented value of the time base on the next TCY clock edge when the capture event takes place  
(see Note 4 when Reset occurs).  
4: TMR5 Reset is normally an asynchronous Reset signal to TMR5. When used in Pulse-Width Measurement mode, it  
is always present on the edge that first initiates the pulse-width measurement (i.e., when configured in the rising to  
falling Pulse-Width Measurement mode); it is active on each rising edge detected. In the falling to rising Pulse-Width  
Measurement mode, it is active on each falling edge detected.  
5: TMR5 Reset pulse is activated on the capture edge. The CAP1REN bit has no bearing in this mode.  
2010 Microchip Technology Inc.  
DS39616D-page 157  
PIC18F2331/2431/4331/4431  
17.1.3.1  
Pulse-Width Measurement Timing  
17.1.4  
INPUT CAPTURE ON STATE  
CHANGE  
Pulse-width measurement accuracy can only be  
ensured when the pulse-width high and low present on  
the CAPx input exceeds one TCY clock cycle. The  
limitations depend on the mode selected:  
When CAPxM<3:0> = 1000, the value is captured on  
every signal change on the CAPx input. If all three  
capture channels are configured in this mode, the three  
input captures can be used as the Hall effect sensor  
state transition detector. The value of Timer5 can be  
captured, Timer5 reset and the interrupt generated.  
Any change on CAP1, CAP2 or CAP3 is detected and  
the associated time base count is captured.  
• When CAPxM<3:0> = 0110(rising to falling edge  
delay), the CAPx input high pulse width (TCCH)  
must exceed TCY + 10 ns.  
• When CAPxM<3:0> = 0111(falling to rising edge  
delay), the CAPx input low pulse width (TCCL)  
must exceed TCY + 10 ns.  
For position and velocity measurement in this mode,  
the timer can be optionally reset (see Section 17.1.6  
“Timer5 Reset” for Reset options).  
Note 1: The Period Measurement mode will  
produce valid results upon sampling of the  
second rising edge of the input capture.  
CAPxBUF values latched during the first  
active edge after initialization are invalid.  
2: The Pulse-Width Measurement mode will  
latch the value of the timer upon sampling  
of the first input signal edge by the input  
capture.  
FIGURE 17-6:  
INPUT CAPTURE ON STATE CHANGE (HALL EFFECT SENSOR MODE)  
1
0
1
0
1
1
0
1
0
1
0
0
CAP1  
CAP2  
CAP3  
1
0
0
0
1
1
0FFFh  
0000h  
Time Base(1)  
CAP1BUF(2)  
CAP2BUF(2)  
CAP3BUF(2)  
Time Base Reset(1)  
Note 1: TMR5 can be selected as the time base for input capture. The time base can be optionally reset when the Capture  
Reset Enable bit is set (CAPxREN = 1).  
2: Detailed CAPxBUF event timing (all modes reflect the same capture and Reset timing) is shown in Figure 17-4. There  
are six commutation BLDC Hall effect sensor states shown. The other two remaining states (i.e., 000h and 111h)are  
invalid in the normal operation. They remain to be decoded by the CPU firmware in BLDC motor application.  
DS39616D-page 158  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
17.1.5  
ENTERING INPUT CAPTURE MODE  
AND CAPTURE TIMING  
17.1.6  
TIMER5 RESET  
Every input capture trigger can optionally reset  
(TMR5). The Capture Reset Enable bit, CAPxREN,  
gates the automatic Reset of the time base of the cap-  
ture event with this enable Reset signal. All capture  
events reset the selected timer when CAPxREN is set.  
Resets are disabled when CAPxREN is cleared (see  
Figure 17-4, Figure 17-5 and Figure 17-6).  
The following is a summary of functional operation  
upon entering any of the Input Capture modes:  
1. After the module is configured for one of the  
Capture modes by setting the Capture Mode  
Select bits (CAPxM<3:0>), the first detected  
edge captures the Timer5 value and stores it in  
the CAPxBUF register. The timer is then reset  
(depending on the setting of CAPxREN bit) and  
starts to increment according to its settings (see  
Figure 17-4, Figure 17-5 and Figure 17-6).  
Note:  
The CAPxREN bit has no effect in  
Pulse-Width Measurement mode.  
17.1.7  
IC INTERRUPTS  
2. On all edges, the capture logic performs the  
following:  
There are four operating modes for which the IC  
module can generate an interrupt and set one of the  
Interrupt Capture Flag bits (IC1IF, IC2QEIF or  
IC3DRIF). The interrupt flag that is set depends on the  
channel in which the event occurs. The modes are:  
a) Input Capture mode is decoded and the  
active edge is identified.  
b) The CAPxREN bit is checked to determine  
whether Timer5 is reset or not.  
• Edge Capture  
c) On every active edge, the Timer5 value is  
recorded in the Input Capture Buffer  
(CAPxBUF).  
(CAPxM<3:0> = 0001, 0010, 0011or 0100)  
• Period Measurement Event (CAPxM<3:0> = 0101)  
• Pulse-Width Measurement Event  
(CAPxM<3:0> = 0110or 0111)  
d) Reset Timer5 after capturing the value of  
the timer when the CAPxREN bit is  
enabled. Timer5 is reset on every active  
capture edge in this case.  
• State Change Event (CAPxM<3:0> = 1000)  
Note:  
The Special Event Trigger is generated  
only in the Special Event Trigger mode on  
the CAP1 input (CAP1M<3:0> = 1110  
and 1111). IC1IF interrupt is not set in this  
mode.  
e) On all continuing capture edge events,  
repeat steps (a) through (d) until the opera-  
tional mode is terminated, either by user  
firmware, POR or BOR.  
f) The timer value is not affected when switch-  
ing into and out of various Input Capture  
modes.  
The timing of interrupt and Special Event Trigger  
events is shown in Figure 17-7. Any active edge is  
detected on the rising edge of Q2 and propagated on  
the rising edge of Q4 rising edge. If an active edge  
happens to occur any later than this (on the falling edge  
of Q2, for example), then it will be recognized on the  
next Q2 rising edge.  
FIGURE 17-7:  
CAPx INTERRUPTS AND IC1 SPECIAL EVENT TRIGGER  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC  
CAP1 Pin  
IC1IF  
TMR5 Reset  
TMR5  
0001  
XXXX  
0000  
TMR5ON(1)  
Note 1: Timer5 is only reset and enabled (assuming TMR5ON = 0and T5MOD = 1) when the Special Event Trigger Reset is  
enabled for the Timer5 Reset input. The TMR5ON bit is asserted and Timer5 is reset on the Q1 rising edge following  
the event capture. With the Special Event Trigger Reset disabled, Timer5 cannot be reset by the Special Event Trigger  
Reset on the CAP1 input. In order for the Special Event Trigger Reset to work as the Reset trigger to Timer5, IC1 must  
be configured in the Special Event Trigger mode (CAP1M<3:0> = 1110or 1111).  
2010 Microchip Technology Inc.  
DS39616D-page 159  
PIC18F2331/2431/4331/4431  
17.1.8  
SPECIAL EVENT TRIGGER  
(CAP1 ONLY)  
17.1.9  
OPERATING MODES SUMMARY  
Table 17-3 shows a summary of the input capture  
configuration when used in conjunction with the TMR5  
timer resource.  
The Special Event Trigger mode of IC1  
(CAP1M<3:0> = 1110 or 1111) enables the Special  
Event Trigger signal. The trigger signal can be used as  
the Special Event Trigger Reset input to TMR5,  
resetting the timer when the specific event happens on  
IC1. The events are summarized in Table 17-2.  
17.1.10 OTHER OPERATING MODES  
Although the IC and QEI submodules are mutually  
exclusive, the IC can be reconfigured to work with the  
QEI module to perform specific functions. In effect, the  
QEI “borrows” hardware from the IC to perform these  
operations.  
TABLE 17-2: SPECIAL EVENT TRIGGER  
CAP1M<3:0>  
Description  
For velocity measurement, the QEI uses dedicated  
hardware in channel IC1. The CAP1BUF registers are  
remapped, becoming the VELR registers. Its operation  
and use are described in Section 17.2.6 “Velocity  
Measurement”.  
1110  
The trigger occurs on every falling  
edge on the CAP1 input.  
1111  
The trigger occurs on every rising  
edge on the CAP1 input.  
While in QEI mode, the CAP2BUF and CAP3BUF reg-  
isters of channel IC2 and IC3 are used for position  
determination. They are remapped as the POSCNT  
and MAXCNT Buffer registers, respectively.  
TABLE 17-3: INPUT CAPTURE TIME BASE RESET SUMMARY  
Reset Timer  
Pin  
CAPxM  
Mode  
Timer  
Description  
on Capture  
CAP1 0001-0100 Edge Capture  
TMR5  
optional(1)  
Simple Edge Capture mode (includes a  
selectable prescaler).  
0101  
Period Measurement  
TMR5  
TMR5  
optional(1)  
always  
Captures Timer5 on period boundaries.  
Captures Timer5 on pulse boundaries.  
0110-0111 Pulse-Width  
Measurement  
1000  
Input Capture on State  
Change  
TMR5  
TMR5  
optional(1)  
optional(2)  
Captures Timer5 on state change.  
1110-1111 Special Event Trigger  
Used as a Special Event Trigger to be  
used with the Timer5 or other peripheral  
modules.  
(rising or falling edge)  
CAP2 0001-0100 Edge Capture  
TMR5  
optional(1)  
Simple Edge Capture mode (includes a  
selectable prescaler).  
0101  
Period Measurement  
TMR5  
TMR5  
optional(1)  
always  
Captures Timer5 on period boundaries.  
Captures Timer5 on pulse boundaries.  
0110-0111 Pulse-Width  
Measurement  
1000  
Input Capture on State  
Change  
CAP3 0001-0100 Edge Capture  
TMR5  
TMR5  
optional(1)  
optional(1)  
Captures Timer5 on state change.  
Simple Edge Capture mode (includes a  
selectable prescaler).  
0101  
Period Measurement  
TMR5  
TMR5  
optional(1)  
always  
Captures Timer5 on period boundaries.  
Captures Timer5 on pulse boundaries.  
0110-0111 Pulse-Width  
Measurement  
1000  
Input Capture on State  
Change  
TMR5  
optional(1)  
Captures Timer5 on state change.  
Note 1: Timer5 may be reset on capture events only when CAPxREN = 1.  
2: Trigger mode will not reset Timer5 unless RESEN = 0in the T5CON register.  
DS39616D-page 160  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The QEI control logic detects the leading edge on the  
17.2 Quadrature Encoder Interface  
QEA or QEB phase input pins and generates the count  
pulse, which is sent to the position counter logic. It also  
samples the index input signal (INDX) and generates  
the direction of the rotation signal (up/down) and the  
velocity event signals.  
The Quadrature Encoder Interface (QEI) decodes  
speed and motion sensor information. It can be used in  
any application that uses a quadrature encoder for  
feedback. The interface implements these features:  
• Three QEI inputs: two phase signals (QEA and  
QEB) and one index signal (INDX)  
The position counter acts as an integrator for tracking  
distance traveled. The QEA and QEB input edges  
serve as the stimulus to create the input clock which  
advances the Position Counter register (POSCNT).  
The register is incremented on either the QEA input  
edge, or the QEA and QEB input edges, depending on  
the operating mode. It is reset either by a rollover on  
match to the Period register, MAXCNT, or on the  
external index pulse input signal (INDX). An interrupt is  
generated on a Reset of POSCNT if the position  
counter interrupt is enabled.  
• Direction of movement detection with a direction  
change interrupt (IC3DRIF)  
• 16-bit up/down position counter  
• Standard and High-Precision Position Tracking  
modes  
• Two Position Update modes (x2 and x4)  
• Velocity measurement with a programmable  
postscaler for high-speed velocity measurement  
• Position counter interrupt (IC2QEIF in the PIR3  
register)  
The velocity postscaler down samples the velocity  
pulses used to increment the velocity counter by a  
specified ratio. It essentially divides down the number  
of velocity pulses to one output per so many inputs,  
preserving the pulse width in the process.  
• Velocity control interrupt (IC1IF in the PIR3  
register)  
The QEI submodule has three main components: the  
QEI control logic block, the position counter and  
velocity postscaler.  
A simplified block-diagram of the QEI module is shown  
in Figure 17-8.  
FIGURE 17-8:  
QEI BLOCK DIAGRAM  
QEI Module  
Direction Change  
Set CHGIF  
Reset Timer5  
Velocity Capture  
8
Timer Reset  
Velocity Event  
Postscaler  
Set UP/DOWN  
Direction  
Clock  
8
Filter  
Filter  
QEB  
QEA  
INDX  
CAP2BUF/POSCNT  
Comparator  
CAP3/QEB  
CAP2/QEA  
Reset on Match  
Set IC2QEIF  
8
CAP3BUF/MAXCNT  
QEI  
Control  
Logic  
Filter  
Position Counter  
CAP1/INDX  
8
8
2010 Microchip Technology Inc.  
DS39616D-page 161  
PIC18F2331/2431/4331/4431  
The operation of the QEI is controlled by the QEICON  
Configuration register (see Register 17-2).  
17.2.1  
QEI CONFIGURATION  
The QEI module shares its input pins with the Input  
Capture (IC) module. The inputs are mutually  
exclusive; only the IC module or the QEI module (but  
not both) can be enabled at one time. Also, because  
the IC and QEI are multiplexed to the same input pins,  
the programmable noise filters can be dedicated to one  
module only.  
Note:  
In the event that both QEI and IC are  
enabled, QEI will take precedence and IC  
will remain disabled.  
REGISTER 17-2: QEICON: QUADRATURE ENCODER INTERFACE CONTROL REGISTER  
R/W-0  
VELM  
R/W-0  
QERR(1)  
R-0  
R/W-0  
QEIM2(2,3)  
R/W-0  
QEIM1(2,3)  
R/W-0  
QEIM0(2,3)  
R/W-0  
R/W-0  
UP/DOWN  
PDEC1  
PDEC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VELM: Velocity Mode bit  
1= Velocity mode disabled  
0= Velocity mode enabled  
bit 6  
QERR: QEI Error bit(1)  
1= Position counter overflow or underflow(4)  
0= No overflow or underflow  
bit 5  
UP/DOWN: Direction of Rotation Status bit  
1= Forward  
0= Reverse  
bit 4-2  
QEIM<2:0>: QEI Mode bits(2,3)  
111= Unused  
110= QEI enabled in 4x Update mode; position counter is reset on period match (POSCNT = MAXCNT)  
101= QEI enabled in 4x Update mode; INDX resets the position counter  
100= Unused  
010= QEI enabled in 2x Update mode; position counter is reset on period match (POSCNT = MAXCNT)  
001= QEI enabled in 2x Update mode; INDX resets the position counter  
000= QEI off  
bit 1-0  
PDEC<1:0>: Velocity Pulse Reduction Ratio bits  
11= 1:64  
10= 1:16  
01= 1:4  
00= 1:1  
Note 1: QEI must be enabled and in Index mode.  
2: QEI mode select must be cleared (= 000) to enable CAP1, CAP2 or CAP3 inputs. If QEI and IC modules  
are both enabled, QEI will take precedence.  
3: Enabling one of the QEI operating modes remaps the IC Buffer registers, CAP1BUFH, CAP1BUFL,  
CAP2BUFH, CAP2BUFL, CAP3BUFH and CAP3BUFL, as the VELRH, VELRL, POSCNTH, POSCNTL,  
MAXCNTH and MAXCNTL registers (respectively) for the QEI.  
4: The QERR bit must be cleared in software.  
DS39616D-page 162  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
17.2.2  
QEI MODES  
17.2.3  
QEI OPERATION  
Position measurement resolution depends on how  
often the Position Counter register, POSCNT, is  
incremented. There are two QEI Update modes to  
measure the rotor’s position: QEI x2 and QEI x4.  
The Position Counter register pair (POSCNTH:  
POSCNTL) acts as an integrator, whose value is propor-  
tional to the position of the sensor rotor that corresponds  
to the number of active edges detected. POSCNT can  
either increment or decrement, depending on a number  
of selectable factors which are decoded by the QEI logic  
block. These include the Count mode selected, the  
phase relationship of QEA to QEB (“lead/lag”), the  
direction of rotation and if a Reset event occurs. The  
logic is detailed in the sections that follow.  
TABLE 17-4: QEI MODES  
Mode/  
QEIM<2:0>  
Description  
Reset  
000  
001  
QEI disabled.(1)  
x2 update/ Two clocks per QEA  
index pulse pulse. INDX resets  
POSCNT.  
17.2.3.1  
Edge and Phase Detect  
In the first step, the active edges of QEA and QEB are  
detected, and the phase relationship between them is  
determined. The position counter is changed based on  
the selected QEI mode.  
010  
x2 update/ Two clocks per QEA pulse.  
period  
match  
POSCNT is reset by the  
period match (MAXCNT).  
In QEI x2 Update mode, the position counter  
increments or decrements on every QEA edge based  
on the phase relationship of the QEA and QEB signals.  
011  
100  
101  
Unused.  
Unused.  
x4 update/ Four clocks per QEA and  
index pulse QEB pulse pair.  
INDX resets POSCNT.  
In QEI x4 Update mode, the position counter  
increments or decrements on every QEA and QEB  
edge based on the phase relationship of the QEA and  
QEB signals. For example, if QEA leads QEB, the  
position counter is incremented by ‘1’. If QEB lags  
QEA, the position counter is decremented by ‘1’.  
110  
x4 update/ Four clocks per QEA and  
period  
match  
QEB pulse pair.  
POSCNT is reset by the  
period match (MAXCNT).  
17.2.3.2  
Direction of Count  
111  
Unused.  
The QEI control logic generates a signal that sets the  
UP/DOWN bit (QEICON<5>); this, in turn, determines  
the direction of the count. When QEA leads QEB,  
UP/DOWN is set (= 1) and the position counter  
increments on every active edge. When QEA lags  
QEB, UP/DOWN is cleared and the position counter  
decrements on every active edge.  
Note 1: QEI module is disabled. The position  
counter and the velocity measurement  
functions are fully disabled in this mode.  
17.2.2.1  
QEI x2 Update Mode  
QEI x2 Update mode is selected by setting the QEI  
Mode Select bits (QEIM<2:0>) to ‘001’ or ‘010’. In this  
mode, the QEI logic detects every edge on the QEA  
input only. Every rising and falling edge on the QEA  
signal clocks the position counter.  
TABLE 17-5: DIRECTION OF ROTATION  
Previous Signal  
Detected  
Current  
Signal  
Detected  
The position counter can be reset by either an input on  
the INDX pin (QEIM<2:0> = 001), or by a period match,  
even when the POSCNT register pair equals MAXCNT  
(QEIM<2:0> = 010).  
Pos.  
Rising Falling  
Cntrl.(1)  
QEA QEB QEA QEB  
QEA Rising  
QEA Falling  
QEB Rising  
QEB Falling  
x
INC  
DEC  
DEC  
INC  
17.2.2.2  
QEI x4 Update Mode  
x
QEI x4 Update mode provides for a finer resolution of  
the rotor position, since the counter increments or  
decrements more frequently for each QEA/QEB input  
pulse pair than in QEI x2 mode. This mode is selected  
by setting the QEI mode select bits to ‘101’ or ‘110’. In  
QEI x4, the phase measurement is made on the rising  
and the falling edges of both QEA and QEB inputs. The  
position counter is clocked on every QEA and QEB  
edge.  
x
x
x
x
x
x
INC  
DEC  
INC  
DEC  
Note 1: When UP/DOWN = 1, the position counter  
is incremented. When UP/DOWN = 0, the  
position counter is decremented.  
Like QEI x2 mode, the position counter can be reset by  
an input on the pin (QEIM<2:0> = 101), or by the period  
match event (QEIM<2:0> = 010).  
2010 Microchip Technology Inc.  
DS39616D-page 163  
PIC18F2331/2431/4331/4431  
17.2.3.3  
Reset and Update Events  
17.2.4  
QEI INTERRUPTS  
The position counter will continue to increment or dec-  
rement until one of the following events takes place.  
The type of event and the direction of rotation when it  
happens determines if a register Reset or update  
occurs.  
The position counter interrupt occurs and the interrupt  
flag (IC2QEIF) is set, based on the following events:  
• A POSCNT/MAXCNT period match event  
(QEIM<2:0> = 010or 110)  
• A POSCNT rollover (FFFFh to 0000h) in Period  
mode only (QEIM<2:0> = 010or 110)  
1. An index pulse is detected on the INDX input  
(QEIM<2:0> = 001).  
• An index pulse detected on INDX  
If the encoder is traveling in the forward direc-  
tion, POSCNT is reset (00h) on the next clock  
edge after the index marker, INDX, has been  
detected. The position counter resets on the  
QEA or QEB edge once the INDX rising edge  
has been detected.  
The interrupt timing diagrams for IC2QEIF are shown in  
Figure 17-10 and Figure 17-11.  
When the direction has changed, the direction change  
interrupt flag (IC3DRIF) is set on the following TCY  
clock (see Figure 17-10).  
If the position counter rolls over in Index mode, the  
QERR bit will be set.  
If the encoder is traveling in the reverse direc-  
tion, the value in the MAXCNT register is loaded  
into POSCNT on the next quadrature pulse  
edge (QEA or QEB) after the falling edge on  
INDX has been detected.  
17.2.5  
QEI SAMPLE TIMING  
The quadrature input signals, QEA and QEB, may vary  
in quadrature frequency. The minimum quadrature  
input period, TQEI, is 16 TCY.  
2. A POSTCNT/MAXCNT period match occurs  
(QEIM<2:0> = 010).  
The position count rate, FPOS, is directly proportional to  
the rotor’s RPM, line count D and QEI Update mode (x2  
versus x4); that is,  
If the encoder is traveling in the forward direc-  
tion, POSCNT is reset (00h) on the next clock  
edge when POSCNT = MAXCNT. An interrupt  
event is triggered on the next TCY after the Reset  
(see Figure 17-10)  
EQUATION 17-1:  
4D • RPM  
FPOS =  
If the encoder is traveling in the reverse  
direction and the value of POSCNT reaches  
00h, POSCNT is loaded with the contents of the  
MAXCNT register on the next clock edge. An  
interrupt event is triggered on the next TCY after  
the load operation (see Figure 17-10).  
60  
Note:  
The number of incremental lines in the  
position encoder is typically set at D = 1024  
and the QEI Update mode = x4.  
The value of the position counter is not affected during  
QEI mode changes, nor when the QEI is disabled  
altogether.  
The maximum position count rate (i.e., x4 QEI  
Update mode, D = 1024) with FCY = 10 MIPS is equal  
to 2.5 MHz, which corresponds to FQEI of 625 kHz.  
Figure 17-9 shows QEA and QEB quadrature input  
timing when sampled by the noise filter.  
DS39616D-page 164  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 17-9:  
QEI INPUTS WHEN SAMPLED BY THE FILTER (DIVIDE RATIO = 1:1)  
TCY  
QEA Pin  
(1)  
TQEI = 16 TCY  
QEB Pin  
QEA Input  
TGD = 3 TCY  
QEB Input  
Note 1: The module design allows a quadrature frequency of up to FQEI = FCY/16.  
FIGURE 17-10:  
QEI MODULE RESET TIMING ON PERIOD MATCH  
Forward  
Reverse  
QEA  
QEB  
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  
Count (+/-)  
(1)  
POSCNT  
MAXCNT  
IC2QEIF  
MAXCNT=1527  
Note 6  
Note 2  
Note 2  
UP/DOWN  
(3)  
(3)  
Q4  
Q4  
(5)  
(4)  
Q1  
Q1  
Position  
Counter Load  
IC3DRIF  
(5)  
Q1  
Note 1: The POSCNT register is shown in QEI x4 Update mode (POSCNT increments on every rising and every falling edge  
of QEA and QEB input signals). Asynchronous external QEA and QEB inputs are synchronized to the TCY clock by  
the input sampling FF in the noise filter (see Figure 17-14).  
2: When POSCNT = MAXCNT, POSCNT is reset to ‘0’ on the next QEA rising edge. POSCNT is set to MAXCNT when  
POSCNT = 0(when decrementing), which occurs on the next QEA falling edge.  
3: IC2QEIF is generated on the Q4 rising edge.  
4: Position counter is loaded with ‘0’ (which is a rollover event in this case) on POSCNT = MAXCNT.  
5: Position counter is loaded with MAXCNT value (1527h) on underflow.  
6: IC2QEIF must be cleared in software.  
2010 Microchip Technology Inc.  
DS39616D-page 165  
PIC18F2331/2431/4331/4431  
FIGURE 17-11:  
QEI MODULE RESET TIMING WITH THE INDEX INPUT  
Forward  
Note 2  
Reverse  
Note 2  
QEA  
QEB  
-1 -1 -1 -1  
-1 -1 -1 -1  
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1  
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  
Count (+/-)  
(1)  
POSCNT  
MAXCNT  
INDX  
MAXCNT = 1527  
Note 6  
IC2QEIF  
UP/DOWN  
(3)  
(3)  
Q4  
Q4  
(5)  
(4)  
Q1  
Q1  
Position  
Counter Load  
Note 1: POSCNT register is shown in QEI x4 Update mode (POSCNT increments on every rising and every falling edge of  
QEA and QEB input signals).  
2: When an INDX Reset pulse is detected, POSCNT is reset to ‘0’ on the next QEA or QEB edge. POSCNT is set to  
MAXCNT when POSCNT = 0(when decrementing), which occurs on the next QEA or QEB edge. a similar Reset  
sequence occurs for the reverse direction, except that the INDX signal is recognized on its falling edge. The Reset  
is generated on the next QEA or QEB edge.  
3: IC2QEIF is enabled for one TCY clock cycle.  
4: The position counter is loaded with 0000h (i.e., Reset) on the next QEA or QEB edge when the INDX is high.  
5: The position counter is loaded with a MAXCNT value (e.g., 1527h) on the next QEA or QEB edge following the  
INDX falling edge input signal detect).  
6: IC2QEIF must be cleared in software.  
DS39616D-page 166  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
17.2.6  
VELOCITY MEASUREMENT  
17.2.6.1  
Velocity Event Timing  
The velocity pulse generator, in conjunction with the  
IC1 and the synchronous TMR5 (in synchronous  
operation), provides a method for high accuracy speed  
measurements at both low and high mechanical motor  
speeds. The Velocity mode is enabled when the VELM  
bit is cleared (= 0) and QEI is set to one of its operating  
modes (see Table 17-6).  
The event pulses are reduced by a fixed ratio by the  
velocity pulse divider. The divider is useful for  
high-speed measurements where the velocity events  
happen frequently. By producing a single output pulse  
for a given number of input event pulses, the counter  
can track larger pulse counts (i.e., distance travelled)  
for a given time interval. Time is measured by utilizing  
the TMR5 time base.  
To optimize register space, the Input Capture  
Channel 1 (IC1) is used to capture TMR5 counter  
values. Input Capture Buffer register, CAP1BUF, is  
redefined in Velocity Measurement mode, VELM = 0,  
as the Velocity Register Buffer (VELRH, VELRL).  
Each velocity pulse serves as a capture pulse. With the  
TMR5 in Synchronous Timer mode, the value of TMR5  
is captured on every output pulse of the postscaler. The  
counter is subsequently reset to ‘0’. TMR5 is reset  
upon a capture event.  
TABLE 17-6: VELOCITY PULSES  
Figure 17-13 shows the velocity measurement timing  
diagram.  
QEIM<2:0>  
Velocity Event Mode  
001  
010  
x2 Velocity Event mode. The velocity  
pulse is generated on every QEA edge.  
101  
110  
x4 Velocity Event mode. The velocity  
pulse is generated on every QEA and  
QEB active edge.  
FIGURE 17-12:  
VELOCITY MEASUREMENT BLOCK DIAGRAM  
TMR5 Reset  
Reset  
Logic  
QEI  
Control  
Logic  
Clock  
TMR5  
16  
TCY  
Velocity Mode  
Velocity Capture  
IC1  
Velocity Event  
Postscaler  
(VELR Register)  
CAP3/QEB  
QEB  
QEA  
INDX  
Direction  
Clock  
CAP2/QEA  
CAP1/INDX  
Position  
Counter  
2010 Microchip Technology Inc.  
DS39616D-page 167  
PIC18F2331/2431/4331/4431  
FIGURE 17-13:  
VELOCITY MEASUREMENT TIMING(1)  
Forward  
Reverse  
QEA  
QEB  
vel_out  
velcap  
(2)  
TMR5  
(2)  
VELR  
Old Value  
1529  
1537  
(3)  
cnt_reset  
Q1  
Q1  
Q1  
(4)  
IC1IF  
CAP1REN  
Instr.  
Execution  
MOVWF QEICON(5)  
BCFPIE2,IC1IE  
BSFPIE2,IC1IE  
BCF T5CON,VELM  
Note 1: Timing shown is for QEIM<2:0> = 101, 110or 111(x4 Update mode enabled) and the velocity postscaler divide ratio  
is set to divide-by-4 (PDEC<1:0> = 01).  
2: The VELR register latches the TMR5 count on the “velcap” capture pulse. Timer5 must be set to the Synchronous Timer  
or Counter mode. In this example, it is set to the Synchronous Timer mode, where the TMR5 prescaler divide ratio = 1  
(i.e., Timer5 Clock = TCY).  
3: The TMR5 counter is reset on the next Q1 clock cycle following the “velcap” pulse. The TMR5 value is unaffected  
when the Velocity Measurement mode is first enabled (VELM = 0). The velocity postscaler values must be  
reconfigured to their previous settings when re-entering Velocity Measurement mode. While making speed  
measurements of very slow rotational speeds (e.g., servo-controller applications), the Velocity Measurement mode  
may not provide sufficient precision. The Pulse-Width Measurement mode may have to be used to provide the  
additional precision. In this case, the input pulse is measured on the CAP1 input pin.  
4: IC1IF interrupt is enabled by setting IC1IE as follows: BSF PIE2, IC1IE. Assume IC1E bit is placed in the PIE2  
(Peripheral Interrupt Enable 2) register in the target device. The actual IC1IF bit is written on the Q2 rising edge.  
5: The post decimation value is changed from PDEC = 01(decimate by 4) to PDEC = 00(decimate by 1).  
17.2.6.2  
Velocity Postscaler  
17.2.6.3  
CAP1REN in Velocity Mode  
The velocity event pulse (velcap, see Figure 17-12)  
serves as the TMR5 capture trigger to IC1 while in the  
Velocity mode. The number of velocity events are  
reduced by the velocity postscaler before they are used  
as the input capture clock. The velocity event reduction  
ratio can be set with the PDEC<1:0> control bits  
(QEICON<1:0>) to 1:4, 1:16, 1:64 or no reduction (1:1).  
The TMR5 value can be reset (TMR5 register  
pair = 0000h) on a velocity event capture by setting  
the CAP1REN bit (CAP1CON<6>). When CAP1REN  
is cleared, the TMR5 time base will not be reset on  
any velocity event capture pulse. The VELR register  
pair, however, will continue to be updated with the  
current TMR5 value.  
The velocity postscaler settings are automatically  
reloaded from their previous values as the Velocity  
mode is re-enabled.  
DS39616D-page 168  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
programmed by the FLTCK<2:0> Configuration bits.  
TCY is used as the clock reference to the clock divider  
block.  
17.3 Noise Filters  
The Motion Feedback Module includes three noise  
rejection filters on RA2/AN2/VREF-/CAP1/INDX,  
RA3/AN3/VREF+/CAP2/QEA and RA4/AN4/CAP3/QEB.  
The filter block also includes a fourth filter for the T5CKI  
pin. They are intended to help reduce spurious noise  
spikes which may cause the input signals to become  
corrupted at the inputs. The filter ensures that the input  
signals are not permitted to change until a stable value  
has been registered for three consecutive sampling  
clock cycles.  
The noise filters can either be added or removed from  
the input capture, or QEI signal path, by setting or  
clearing the appropriate FLTxEN bit, respectively. Each  
capture channel provides for individual enable control  
of the filter output. The FLT4EN bit enables or disables  
the noise filter available on the T5CKI input in the  
Timer5 module.  
The filter network for all channels is disabled on  
Power-on and Brown-out Resets, as the DFLTCON  
register is cleared on Resets. The operation of the filter  
is shown in the timing diagram in Figure 17-14.  
The filters are controlled using the Digital Filter Control  
(DFLTCON) register (see Register 17-3). The filters  
can be individually enabled or disabled by setting or  
clearing the corresponding FLTxEN bit in the  
DFLTCON register. The sampling frequency, which  
must be the same for all three noise filters, can be  
REGISTER 17-3: DFLTCON: DIGITAL FILTER CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
FLT3EN(1)  
R/W-0  
FLT2EN(1)  
R/W-0  
FLT1EN(1)  
R/W-0  
R/W-0  
R/W-0  
FLT4EN  
FLTCK2  
FLTCK1  
FLTCK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
FLT4EN: Noise Filter Output Enable bit (T5CKI input)  
1= Enabled  
0= Disabled  
bit 5  
FLT3EN: Noise Filter Output Enable bit (CAP3/QEB input)(1)  
1= Enabled  
0= Disabled  
bit 4  
FLT2EN: Noise Filter Output Enable bit (CAP2/QEA input)(1)  
1= Enabled  
0= Disabled  
bit 3  
FLT1EN: Noise Filter Output Enable bit (CAP1/INDX Input)(1)  
1= Enabled  
0= Disabled  
bit 2-0  
FLTCK<2:0>: Noise Filter Clock Divider Ratio bits  
111= Unused  
110= 1:128  
101= 1:64  
100= 1:32  
011= 1:16  
010= 1:4  
001= 1:2  
000= 1:1  
Note 1: The noise filter output enables are functional in both QEI and IC Operating modes.  
Note: The noise filter is intended for random high-frequency filtering and not continuous high-frequency filtering.  
2010 Microchip Technology Inc.  
DS39616D-page 169  
PIC18F2331/2431/4331/4431  
FIGURE 17-14:  
NOISE FILTER TIMING DIAGRAM (CLOCK DIVIDER = 1:1)  
TQEI = 16 TCY  
TCY  
(3)  
(3)  
Noise Glitch  
Noise Glitch  
(1)  
CAP1/INDX Pin  
(input to filter)  
(2)  
CAP1/INDX Input  
(output from filter)  
TGD = 3 TCY  
Note 1: Only the CAP1/INDX pin input is shown for simplicity. Similar event timing occurs on the CAP2/QEA and  
CAP3/QEB pins.  
2: Noise filtering occurs in the shaded portions of the CAP1 input.  
3: Filter’s group delay: TGD = 3 TCY.  
17.4 IC and QEI Shared Interrupts  
17.5 Operation in Sleep Mode  
The IC and QEI submodules can each generate three  
distinct interrupt signals; however, they share the use  
of the same three interrupt flags in register, PIR3. The  
meaning of a particular interrupt flag at any given time  
depends on which module is active at the time the  
interrupt is set. The meaning of the flags in context are  
summarized in Table 17-7.  
17.5.1  
3x INPUT CAPTURE IN SLEEP  
MODE  
Since the input capture can operate only when its time  
base is configured in a Synchronous mode, the input  
capture will not capture any events. This is because the  
device’s internal clock has been stopped and any inter-  
nal timers in Synchronous modes will not increment.  
The prescaler will continue to count the events (not  
synchronized).  
When the IC submodule is active, the three flags (IC1IF,  
IC2QEIF and IC3DRIF) function as interrupt-on-capture  
event flags for their respective input capture channels.  
The channel must be configured for one of the events  
that will generate an interrupt (see Section 17.1.7 “IC  
Interrupts” for more information).  
When the specified capture event occurs, the CAPx  
interrupt will be set. The Capture Buffer register will be  
updated upon wake-up from sleep to the current TMR5  
value. If the CAPx interrupt is enabled, the device will  
wake-up from Sleep. This effectively enables all input  
capture channels to be used as the external interrupts.  
When the QEI is enabled, the IC1IF interrupt flag  
indicates an interrupt caused by  
a
velocity  
measurement event, usually an update of the VELR  
register. The IC2QEIF interrupt indicates that a position  
measurement event has occurred. IC3DRIF indicates  
that a direction change has been detected.  
17.5.2  
QEI IN SLEEP MODE  
All QEI functions are halted in Sleep mode.  
TABLE 17-7: MEANING OF IC AND QEI  
INTERRUPT FLAGS  
Meaning  
Interrupt  
Flag  
IC Mode  
QEI Mode  
IC1IF  
IC1 Capture Event Velocity Register Update  
IC2QEIF IC2 Capture Event Position Measurement  
Update  
IC3DRIF IC3 Capture Event  
Direction Change  
DS39616D-page 170  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 17-8: REGISTERS ASSOCIATED WITH THE MOTION FEEDBACK MODULE  
ResetValues  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
IPR3  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
IC1IP  
IC1IE  
IC1IF  
RBIF  
54  
56  
56  
56  
57  
57  
57  
57  
57  
58  
PTIP IC3DRIP IC2QEIP  
PTIE IC3DRIE IC2QEIE  
PTIF IC3DRIF IC2QEIF  
TMR5IP  
TMR5IE  
TMR5IF  
PIE3  
PIR3  
TMR5H  
TMR5L  
PR5H  
PR5L  
Timer5 Register High Byte  
Timer5 Register Low Byte  
Timer5 Period Register High Byte  
Timer5 Period Register Low Byte  
T5CON  
T5SEN  
RESEN  
T5MOD T5PS1 T5PS0 T5SYNC TMR5CS TMR5ON  
CAP1BUFH/ Capture 1 Register High Byte/Velocity Register High Byte(1)  
VELRH  
CAP1BUFL/ Capture 1 Register Low Byte/Velocity Register Low Byte(1)  
VELRL  
CAP2BUFH/ Capture 2 Register High Byte/QEI Position Counter Register High Byte(1)  
58  
58  
58  
58  
58  
POSCNTH  
CAP2BUFL/ Capture 2 Register Low Byte/QEI Position Counter Register Low Byte(1)  
POSCNTL  
CAP3BUFH/ Capture 3 Register High Byte/QEI Max. Count Limit Register High Byte(1)  
MAXCNTH  
CAP3BUFL/ Capture 3 Register Low Byte/QEI Max. Count Limit Register Low Byte(1)  
MAXCNTL  
CAP1CON  
CAP2CON  
CAP3CON  
DFLTCON  
QEICON  
CAP1REN  
CAP2REN  
CAP3REN  
FLT4EN  
CAP1M3 CAP1M2 CAP1M1 CAP1M0  
CAP2M3 CAP2M2 CAP2M1 CAP2M0  
CAP3M3 CAP3M2 CAP3M1 CAP3M0  
59  
59  
59  
59  
56  
FLT3EN FLT2EN FLT1EN FLTCK2 FLTCK1 FLTCK0  
QEIM0 PDEC1 PDEC0  
VELM  
QERR UP/DOWN QEIM2 QEIM1  
Legend: — = unimplemented. Shaded cells are not used by the Motion Feedback Module.  
Note 1: Register name and function determined by which submodule is selected (IC/QEI, respectively). See  
Section 17.1.10 “Other Operating Modes” for more information.  
2010 Microchip Technology Inc.  
DS39616D-page 171  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 172  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The PWM module has the following features:  
18.0 POWER CONTROL PWM  
MODULE  
• Up to eight PWM I/O pins with four duty cycle  
generators. Pins can be paired to get a complete  
The Power Control PWM module simplifies the task of  
generating multiple, synchronized Pulse-Width  
Modulated (PWM) outputs for use in the control of  
motor controllers and power conversion applications.  
In particular, the following power and motion control  
applications are supported by the PWM module:  
half-bridge control.  
• Up to 14-bit resolution, depending upon the PWM  
period.  
• “On-the-fly” PWM frequency changes.  
• Edge and Center-Aligned Output modes.  
• Single-Pulse Generation mode.  
• Three-Phase and Single-Phase AC Induction  
Motors  
• Programmable dead-time control between paired  
PWMs.  
• Switched Reluctance Motors  
• Brushless DC (BLDC) Motors  
• Uninterruptible Power Supplies (UPS)  
• Multiple DC Brush Motors  
• Interrupt support for asymmetrical updates in  
Center-Aligned mode.  
• Output override for Electrically Commutated  
Motor (ECM) operation; for example, BLDC.  
• Special Event Trigger comparator for scheduling  
other peripheral events.  
• PWM outputs disable feature sets PWM outputs  
to their inactive state when in Debug mode.  
The Power Control PWM module supports three PWM  
generators  
and  
six  
output  
channels  
on  
PIC18F2331/2431 devices, and four generators and  
eight channels on PIC18F4331/4431 devices. A simpli-  
fied block diagram of the module is shown in  
Figure 18-1. Figure 18-2 and Figure 18-3 show how  
the module hardware is configured for each PWM  
output pair for the Complementary and Independent  
Output modes.  
Each functional unit of the PWM module will be  
discussed in subsequent sections.  
2010 Microchip Technology Inc.  
DS39616D-page 173  
PIC18F2331/2431/4331/4431  
FIGURE 18-1:  
POWER CONTROL PWM MODULE BLOCK DIAGRAM  
Internal Data Bus  
8
PWMCON0  
PWM Enable and Mode  
8
8
8
8
PWMCON1  
DTCON  
Dead-Time Control  
Fault Pin Control  
FLTCONFIG  
PWM Manual Control  
OVDCON<D/S>  
(1)  
PWM Generator #3  
PDC3 Buffer  
8
PDC3  
Channel 3  
Dead-Time Generator  
and Override Logic  
(2)  
(2)  
Comparator  
PWM7  
PWM6  
(2)  
8
PWM  
Generator 2  
Channel 2  
Dead-Time Generator  
and Override Logic  
PWM5  
PWM4  
PTMR  
Comparator  
PTPER  
Output  
Driver  
Block  
PWM  
Generator 1  
Channel 1  
Dead-Time Generator  
and Override Logic  
PWM3  
PWM2  
PWM  
Generator 0  
Channel 0  
Dead-Time Generator  
and Override Logic  
PWM1  
PWM0  
8
8
PTPER Buffer  
FLTA  
PTCON  
(2)  
FLTB  
Special Event  
Postscaler  
Comparator  
Special Event Trigger  
SEVTDIR  
PTDIR  
8
SEVTCMP  
Note 1: Only PWM Generator 3 is shown in detail. The other generators are identical; their details are omitted for clarity.  
2: PWM Generator 3 and its logic, PWM Channels 6 and 7, and FLTB and its associated logic are not implemented on  
PIC18F2331/2431 devices.  
DS39616D-page 174  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 18-2:  
PWM MODULE BLOCK DIAGRAM, ONE OUTPUT PAIR, COMPLEMENTARY MODE  
VDD  
Dead-Band  
Generator  
PWM1  
Duty Cycle Comparator  
HPOL  
LPOL  
PWM Duty Cycle Register  
PWM0  
Fault Override Values  
Channel Override Values  
Fault A Pin  
Fault B Pin  
Fault Pin Assignment  
Logic  
Note:  
In Complementary mode, the even channel cannot be forced active by a Fault or override event when the odd channel is active.  
The even channel is always the complement of the odd channel and is inactive, with dead time inserted, before the odd channel  
is driven to its active state.  
FIGURE 18-3:  
PWM MODULE BLOCK DIAGRAM, ONE OUTPUT PAIR, INDEPENDENT MODE  
VDD  
PWM Duty Cycle Register  
PWM1  
Duty Cycle Comparator  
HPOL  
VDD  
PWM0  
Fault Override Values  
LPOL  
Channel Override Values  
Fault A Pin  
Fault B Pin  
Fault Pin Assignment  
Logic  
This module contains four duty cycle generators,  
numbered 0 through 3. The module has eight PWM  
output pins, numbered 0 through 7. The eight PWM  
outputs are grouped into output pairs of even and odd  
numbered outputs. In Complementary modes, the even  
PWM pins must always be the complement of the  
corresponding odd PWM pin. For example, PWM0 will  
be the complement of PWM1, PWM2 will be the  
complement of PWM3 and so on. The dead-time  
generator inserts an OFF period called “dead time”  
between the going OFF of one pin to the going ON of  
the complementary pin of the paired pins. This is to  
prevent damage to the power switching devices that  
will be connected to the PWM output pins.  
The time base for the PWM module is provided by its  
own 12-bit timer, which also incorporates selectable  
prescaler and postscaler options.  
2010 Microchip Technology Inc.  
DS39616D-page 175  
PIC18F2331/2431/4331/4431  
18.1 Control Registers  
18.2 Module Functionality  
The operation of the PWM module is controlled by a  
total of 22 registers. Eight of these are used to  
configure the features of the module:  
The PWM module supports several modes of operation  
that are beneficial for specific power and motor control  
applications. Each mode of operation is described in  
subsequent sections.  
• PWM Timer Control Register 0 (PTCON0)  
• PWM Timer Control Register 1 (PTCON1)  
• PWM Control Register 0 (PWMCON0)  
• PWM Control Register 1 (PWMCON1)  
• Dead-Time Control Register (DTCON)  
• Output Override Control Register (OVDCOND)  
• Output State Register (OVDCONS)  
The PWM module is composed of several functional  
blocks. The operation of each is explained separately  
in relation to the several modes of operation:  
• PWM Time Base  
• PWM Time Base Interrupts  
• PWM Period  
• PWM Duty Cycle  
• Fault Configuration Register (FLTCONFIG)  
• Dead-Time Generators  
• PWM Output Overrides  
• PWM Fault Inputs  
There are also 14 registers that are configured as  
seven register pairs of 16 bits. These are used for the  
configuration values of specific features. They are:  
• PWM Special Event Trigger  
• PWM Time Base Registers (PTMRH and PTMRL)  
• PWM Time Base Period Registers (PTPERH and  
PTPERL)  
18.3 PWM Time Base  
• PWM Special Event Trigger Compare Registers  
(SEVTCMPH and SEVTCMPL)  
The PWM time base is provided by a 12-bit timer with  
prescaler and postscaler functions. A simplified block  
diagram of the PWM time base is shown in Figure 18-4.  
The PWM time base is configured through the  
PTCON0 and PTCON1 registers. The time base is  
enabled or disabled by respectively setting or clearing  
the PTEN bit in the PTCON1 register.  
• PWM Duty Cycle #0 Registers  
(PDC0H and PDC0L)  
• PWM Duty Cycle #1 Registers  
(PDC1H and PDC1L)  
• PWM Duty Cycle #2 Registers  
(PDC2H and PDC2L)  
Note:  
The PTMR register pair (PTMRL:PTMRH)  
is not cleared when the PTEN bit is  
cleared in software.  
• PWM Duty Cycle #3 Registers  
(PDC3H and PDC3L)  
All of these register pairs are double-buffered.  
DS39616D-page 176  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 18-4:  
PWM TIME BASE BLOCK DIAGRAM  
PTMR Register  
PTMR Clock  
Timer Reset  
Up/Down  
Zero Match  
Comparator  
Timer  
Direction  
Control  
PTDIR  
Period Match  
PTMOD1  
Comparator  
PTPER  
Duty Cycle Load  
Period Load  
PTPER Buffer  
Update Disable (UDIS)  
Zero Match  
Period Match  
PTMOD1  
Clock  
Control  
PTMR Clock  
PTEN  
PTMOD0  
Prescaler  
1:1, 1:4, 1:16, 1:64  
FOSC/4  
Zero Match  
Postscaler  
1:1-1:16  
Interrupt  
Control  
PTIF  
Period Match  
PTMOD1  
PTMOD0  
The PWM time base can be configured for four different  
modes of operation:  
These four modes are selected by the PTMOD<1:0>  
bits in the PTCON0 register. The Free-Running mode  
produces edge-aligned PWM generation. The  
Continuous Up/Down Count modes produce  
center-aligned PWM generation. The Single-Shot  
mode allows the PWM module to support pulse control  
of certain Electronically Commutated Motors (ECMs)  
and produces edge-aligned operation.  
• Free-Running mode  
• Single-Shot mode  
• Continuous Up/Down Count mode  
• Continuous Up/Down Count mode with interrupts  
for double updates  
2010 Microchip Technology Inc.  
DS39616D-page 177  
PIC18F2331/2431/4331/4431  
REGISTER 18-1: PTCON0: PWM TIMER CONTROL REGISTER 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTOPS3  
PTOPS2  
PTOPS1  
PTOPS0  
PTCKPS1  
PTCKPS0  
PTMOD1  
PTMOD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
PTOPS<3:0>: PWM Time Base Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
.
.
.
1111= 1:16 Postscale  
bit 3-2  
bit 1-0  
PTCKPS<1:0>: PWM Time Base Input Clock Prescale Select bits  
00= PWM time base input clock is FOSC/4 (1:1 prescale)  
01= PWM time base input clock is FOSC/16 (1:4 prescale)  
10= PWM time base input clock is FOSC/64 (1:16 prescale)  
11= PWM time base input clock is FOSC/256 (1:64 prescale)  
PTMOD<1:0>: PWM Time Base Mode Select bits  
11= PWM time base operates in a Continuous Up/Down Count mode with interrupts for double PWM  
updates  
10= PWM time base operates in a Continuous Up/Down Count mode  
01= PWM time base configured for Single-Shot mode  
00= PWM time base operates in a Free-Running mode  
REGISTER 18-2: PTCON1: PWM TIMER CONTROL REGISTER 1  
R/W-0  
PTEN  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PTDIR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PTEN: PWM Time Base Timer Enable bit  
1= PWM time base is on  
0= PWM time base is off  
bit 6  
PTDIR: PWM Time Base Count Direction Status bit  
1= PWM time base counts down  
0= PWM time base counts up  
bit 5-0  
Unimplemented: Read as ‘0’  
DS39616D-page 178  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 18-3: PWMCON0: PWM CONTROL REGISTER 0  
U-0  
R/W-1(1)  
R/W-1(1)  
R/W-1(1)  
R/W-0  
PMOD3(3)  
R/W-0  
R/W-0  
R/W-0  
PWMEN2  
PWMEN1  
PWMEN0  
PMOD2  
PMOD1  
PMOD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
PWMEN<2:0>: PWM Module Enable bits(1)  
bit 6-4  
111= All odd PWM I/O pins are enabled for PWM output(2)  
110= PWM1, PWM3 pins are enabled for PWM output  
101= All PWM I/O pins are enabled for PWM output(2)  
100= PWM0, PWM1, PWM2, PWM3, PWM4 and PWM5 pins are enabled for PWM output  
011= PWM0, PWM1, PWM2 and PWM3 I/O pins are enabled for PWM output  
010= PWM0 and PWM1 pins are enabled for PWM output  
001= PWM1 pin is enabled for PWM output  
000= PWM module is disabled; all PWM I/O pins are general purpose I/O  
bit 3-0  
PMOD<3:0>: PWM Output Pair Mode bits  
For PMOD0:  
1= PWM I/O pin pair (PWM0, PWM1) is in the Independent mode  
0= PWM I/O pin pair (PWM0, PWM1) is in the Complementary mode  
For PMOD1:  
1= PWM I/O pin pair (PWM2, PWM3) is in the Independent mode  
0= PWM I/O pin pair (PWM2, PWM3) is in the Complementary mode  
For PMOD2:  
1= PWM I/O pin pair (PWM4, PWM5) is in the Independent mode  
0= PWM I/O pin pair (PWM4, PWM5) is in the Complementary mode  
For PMOD3:(3)  
1= PWM I/O pin pair (PWM6, PWM7) is in the Independent mode  
0= PWM I/O pin pair (PWM6, PWM7) is in the Complementary mode  
Note 1: Reset condition of the PWMEN bits depends on the PWMPIN Configuration bit.  
2: When PWMEN<2:0> = 101, PWM<5:0> outputs are enabled for PIC18F2331/2431 devices; PWM<7:0>  
outputs are enabled for PIC18F4331/4431 devices.  
When PWMEN<2:0> = 111, PWM Outputs 1, 3 and 5 are enabled in PIC18F2331/2431 devices; PWM  
Outputs 1, 3, 5 and 7 are enabled in PIC18F4331/4431 devices.  
3: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.  
2010 Microchip Technology Inc.  
DS39616D-page 179  
PIC18F2331/2431/4331/4431  
REGISTER 18-4: PWMCON1: PWM CONTROL REGISTER 1  
R/W-0  
SEVOPS3  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
UDIS  
R/W-0  
SEVOPS2  
SEVOPS1  
SEVOPS0  
SEVTDIR  
OSYNC  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
.
.
.
1111= 1:16 Postscale  
bit 3  
SEVTDIR: Special Event Trigger Time Base Direction bit  
1= A Special Event Trigger will occur when the PWM time base is counting downwards  
0= A Special Event Trigger will occur when the PWM time base is counting upwards  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
UDIS: PWM Update Disable bit  
1= Updates from Duty Cycle and Period Buffer registers are disabled  
0= Updates from Duty Cycle and Period Buffer registers are enabled  
bit 0  
OSYNC: PWM Output Override Synchronization bit  
1= Output overrides via the OVDCON register are synchronized to the PWM time base  
0= Output overrides via the OVDCON register are asynchronous  
18.3.1  
FREE-RUNNING MODE  
Note:  
Since the PWM compare outputs are  
driven to the active state when the PWM  
time base is counting downwards and  
matches the duty cycle value, the PWM  
outputs are held inactive during the first  
half of the first period of the Continuous  
Up/Down Count mode until PTMR begins  
to count down from the PTPER value.  
In the Free-Running mode, the PWM Time Base regis-  
ters (PTMRL and PTMRH) will begin counting upwards  
until the value in the PWM Time Base Period register,  
PTPER (PTPERL and PTPERH), is matched. The  
PTMR registers will be reset on the following input  
clock edge and the time base will continue counting  
upwards as long as the PTEN bit remains set.  
18.3.2  
SINGLE-SHOT MODE  
18.3.4  
PWM TIME BASE PRESCALER  
In the Single-Shot mode, the PWM time base will begin  
counting upwards when the PTEN bit is set. When the  
value in the PTMR register matches the PTPER regis-  
ter, the PTMR register will be reset on the following  
input clock edge and the PTEN bit will be cleared by the  
hardware to halt the time base.  
The input clock to PTMR (FOSC/4) has prescaler  
options of 1:1, 1:4, 1:16 or 1:64. These are selected by  
control bits, PTCKPS<1:0>, in the PTCON0 register.  
The prescaler counter is cleared when any of the  
following occurs:  
• Write to the PTMR register  
• Write to the PTCON (PTCON0 or PTCON1)  
register  
18.3.3  
CONTINUOUS UP/DOWN COUNT  
MODES  
• Any device Reset  
In Continuous Up/Down Count modes, the PWM time  
base counts upwards until the value in the PTPER  
register matches with the PTMR register. On the  
following input clock edge, the timer counts  
downwards. The PTDIR bit in the PTCON1 register is  
read-only and indicates the counting direction. The  
PTDIR bit is set when the timer counts downwards.  
Note:  
The PTMR register is not cleared when  
PTCONx is written.  
DS39616D-page 180  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Table 18-1 shows the minimum PWM frequencies that  
can be generated with the PWM time base and the  
prescaler. An operating frequency of 40 MHz  
(FCYC = 10 MHz) and PTPER = 0xFFF is assumed in  
the table. The PWM module must be capable of gener-  
ating PWM signals at the line frequency (50 Hz or  
60 Hz) for certain power control applications.  
18.3.5  
PWM TIME BASE POSTSCALER  
The match output of PTMR can optionally be  
postscaled through a 4-bit postscaler (which gives a  
1:1 to 1:16 scaling inclusive) to generate an interrupt.  
The postscaler counter is cleared when any of the  
following occurs:  
• Write to the PTMR register  
• Write to the PTCON register  
• Any device Reset  
TABLE 18-1: MINIMUM PWM FREQUENCY  
Minimum PWM Frequencies vs. Prescaler Value  
for FCYC = 10 MIPS (PTPER = 0FFFh)  
The PTMR register is not cleared when PTCON is  
written.  
PWM Frequency  
Edge-Aligned  
PWM Frequency  
Center-Aligned  
Prescale  
18.4 PWM Time Base Interrupts  
1:1  
1:4  
2441 Hz  
610 Hz  
153 Hz  
38 Hz  
1221 Hz  
305 Hz  
76 Hz  
The PWM timer can generate interrupts based on the  
modes of operation selected by the PTMOD<1:0> bits  
and the postscaler bits (PTOPS<3:0>).  
1:16  
1:64  
19 Hz  
18.4.1  
INTERRUPTS IN FREE-RUNNING  
MODE  
When the PWM time base is in the Free-Running mode  
(PTMOD<1:0> = 00), an interrupt event is generated  
each time a match with the PTPER register occurs. The  
PTMR register is reset to zero in the following clock edge.  
Using a postscaler selection other than 1:1 will reduce  
the frequency of interrupt events.  
FIGURE 18-5:  
PWM TIME BASE INTERRUPT TIMING, FREE-RUNNING MODE  
A: PRESCALER = 1:1  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
FOSC/4  
PTMR  
1
FFEh  
FFFh  
000h  
001h  
002h  
PTMR_INT_REQ  
PTIF bit  
B: PRESCALER = 1:4  
Q4  
Q4  
Qc  
Qc Qc Qc  
Qc  
Qc  
Qc Qc  
Qc  
Qc Qc  
Qc  
Qc  
Qc Qc  
001h  
Qc  
Qc  
Qc Qc  
002h  
Qc  
1
PTMR  
FFEh  
FFFh  
000h  
PTMR_INT_REQ  
PTIF bit  
Note 1: PWM Time Base Period register, PTPER, is loaded with the value, FFFh, for this example.  
2010 Microchip Technology Inc.  
DS39616D-page 181  
PIC18F2331/2431/4331/4431  
18.4.2  
INTERRUPTS IN SINGLE-SHOT  
MODE  
18.4.3  
INTERRUPTS IN CONTINUOUS  
UP/DOWN COUNT MODE  
When the PWM time base is in the Single-Shot mode  
(PTMOD<1:0> = 01), an interrupt event is generated  
when a match with the PTPER register occurs. The  
PWM Time Base register (PTMR) is reset to zero on  
the following input clock edge and the PTEN bit is  
cleared. The postscaler selection bits have no effect in  
this Timer mode.  
In the Continuous Up/Down Count mode  
(PTMOD<1:0> = 10), an interrupt event is generated  
each time the value of the PTMR register becomes  
zero and the PWM time base begins to count upwards.  
The postscaler selection bits may be used in this mode  
of the timer to reduce the frequency of the interrupt  
events. Figure 18-7 shows the interrupts in Continuous  
Up/Down Count mode.  
FIGURE 18-6:  
PWM TIME BASE INTERRUPT TIMING, SINGLE-SHOT MODE  
A: PRESCALER = 1:1  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
FOSC/4  
PTMR  
2
FFEh  
FFFh  
000h  
000h  
000h  
1
1
1
PTMR_INT_REQ  
PTIF bit  
B: PRESCALER = 1:4  
Q4  
Q4  
Qc  
Qc  
Qc Qc  
Qc  
Qc  
Qc Qc  
FFFh  
Qc Qc  
Qc  
Qc  
Qc  
Qc Qc  
000h  
Qc  
Qc Qc Qc  
Qc  
2
PTMR  
PTMR_INT_REQ  
PTIF bit  
FFEh  
000h  
000h  
1
1
1
Note 1: Interrupt flag bit, PTIF, is sampled here (every Q1).  
2: PWM Time Base Period register, PTPER, is loaded with the value, FFFh, for this example.  
DS39616D-page 182  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 18-7:  
PWM TIME BASE INTERRUPT, CONTINUOUS UP/DOWN COUNT MODE  
A: PRESCALER = 1:1  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
FOSC/4  
PTMR  
PTDIR bit  
002h  
001h  
000h  
001h  
002h  
PTMR_INT_REQ  
1
1
1
1
PTIF bit  
B: PRESCALER = 1:4  
Q4  
Q4  
Qc  
Qc Qc  
Qc  
Qc  
Qc Qc  
001h  
Qc Qc  
Qc Qc  
Qc  
Qc  
Qc Qc  
001h  
Qc  
Qc Qc Qc  
Qc  
002h  
000h  
002h  
PTMR  
PTDIR bit  
1
1
1
1
PTMR_INT_REQ  
PTIF bit  
Note 1: Interrupt flag bit, PTIF, is sampled here (every Q1).  
2010 Microchip Technology Inc.  
DS39616D-page 183  
PIC18F2331/2431/4331/4431  
18.4.4  
INTERRUPTS IN DOUBLE UPDATE  
MODE  
Note:  
Do not change the PTMOD bits while  
PTEN is active; it will yield unexpected  
results. To change the PWM Timer mode  
of operation, first clear the PTEN bit, load  
the PTMOD bits with the required data  
and then set PTEN.  
This mode is available in Continuous Up/Down Count  
mode. In the Double Update mode (PTMOD<1:0> = 11),  
an interrupt event is generated each time the PTMR  
register is equal to zero and each time the PTMR  
matches with PTPER register. Figure 18-8 shows the  
interrupts in Continuous Up/Down Count mode with  
double updates.  
The Double Update mode provides two additional  
functions to the user in Center-Aligned mode.  
1. The control loop bandwidth is doubled because  
the PWM duty cycles can be updated twice per  
period.  
2. Asymmetrical center-aligned PWM waveforms  
can be generated, which are useful for  
minimizing output waveform distortion in certain  
motor control applications.  
FIGURE 18-8:  
PWM TIME BASE INTERRUPT, CONTINUOUS UP/DOWN COUNT MODE WITH  
DOUBLE UPDATES  
A: PRESCALER = 1:1  
Case 1: PTMR Counting Upwards  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
2
PTMR  
3FDh  
3FEh  
3FFh  
3FEh  
3FDh  
PTDIR bit  
PTMR_INT_REQ  
PTIF bit  
1
1
1
1
Case 2: PTMR Counting Downwards  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
PTMR  
PTDIR bit  
002h  
001h  
000h  
001h  
002h  
PTMR_INT_REQ  
1
1
1
1
PTIF bit  
Note 1: Interrupt flag bit, PTIF, is sampled here (every Q1).  
2: PWM Time Base Period register, PTPER, is loaded with the value, 3FFh, for this example.  
DS39616D-page 184  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The maximum resolution (in bits) for a given device  
oscillator and PWM frequency can be determined from  
the following formula:  
18.5 PWM Period  
The PWM period is defined by the PTPER register pair  
(PTPERL and PTPERH). The PWM period has 12-bit  
resolution by combining 4 LSBs of PTPERH and 8 bits  
of PTPERL. PTPER is a double-buffered register used  
to set the counting period for the PWM time base.  
EQUATION 18-4: PWM RESOLUTION  
FOSC  
FPWM  
log  
The PTPER register contents are loaded into the  
PTPER register at the following times:  
Resolution =  
log(2)  
• Free-Running and Single-Shot modes: When the  
PTMR register is reset to zero after a match with  
the PTPER register.  
The PWM resolutions and frequencies are shown for a  
selection of execution speeds and PTPER values in  
Table 18-2. The PWM frequencies in Table 18-2 are  
calculated for Edge-Aligned PWM mode. For  
Center-Aligned mode, the PWM frequencies will be  
approximately one-half the values indicated in this  
table.  
• Continuous Up/Down Count modes: When the  
PTMR register is zero. The value held in the  
PTPER register is automatically loaded into the  
PTPER register when the PWM time base is  
disabled (PTEN = 0). Figure 18-9 and  
Figure 18-10 indicate the times when the contents  
of the PTPER register are loaded into the actual  
PTPER register.  
TABLE 18-2: EXAMPLE PWMFREQUENCIES  
AND RESOLUTIONS  
PWM Frequency = 1/TPWM  
The PWM period can be calculated from the following  
formulas:  
PTPER  
PWM  
PWM  
FOSC  
MIPS  
Value Resolution Frequency  
EQUATION 18-1: PWM PERIOD FOR  
FREE-RUNNING MODE  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0FFFh  
07FFh  
03FFh  
01FFh  
FFh  
14 bits  
13 bits  
12 bits  
11 bits  
10 bits  
9 bits  
2.4 kHz  
4.9 kHz  
9.8 kHz  
19.5 kHz  
39.0 kHz  
78.1 kHz  
156.2 kHz  
312.5 kHz  
625 kHz  
1.5 kHz  
6.1 kHz  
24.4 kHz  
610 Hz  
(PTPER + 1) x PTMRPS  
TPWM =  
FOSC/4  
EQUATION 18-2: PWM PERIOD FOR  
UP/DOWN COUNT MODE  
7Fh  
3Fh  
8 bits  
1Fh  
7 bits  
(2 x PTPER) x PTMRPS  
TPWM =  
0Fh  
6 bits  
FOSC  
4
25 MHz 6.25 0FFFh  
25 MHz 6.25 03FFh  
14 bits  
12 bits  
10 bits  
14 bits  
12 bits  
10 bits  
14 bits  
12 bits  
10 bits  
14 bits  
12 bits  
10 bits  
The PWM frequency is the inverse of period; or:  
25 MHz 6.25  
FFh  
10 MHz  
10 MHz  
10 MHz  
5 MHz  
5 MHz  
5 MHz  
4 MHz  
4 MHz  
4 MHz  
2.5 0FFFh  
EQUATION 18-3: PWM FREQUENCY  
2.5  
2.5  
03FFh  
FFh  
2.4 kHz  
9.8 kHz  
305 Hz  
1
PWM Frequency =  
PWM Period  
1.25 0FFFh  
1.25 03FFh  
1.2 kHz  
4.9 kHz  
244 Hz  
1.25  
FFh  
0FFFh  
03FFh  
FFh  
1
1
1
976 Hz  
3.9 kHz  
Note: For center-aligned operation, PWM frequencies  
will be approximately 1/2 the value indicated in  
the table.  
2010 Microchip Technology Inc.  
DS39616D-page 185  
PIC18F2331/2431/4331/4431  
FIGURE 18-9:  
PWM PERIOD BUFFER UPDATES IN FREE-RUNNING MODE  
Period Value Loaded from PTPER Register  
7
New PTPER Value = 007  
6
5
4
4
4
Old PTPER Value = 004  
3
3
3
2
2
2
1
1
1
0
0
0
New Value Written to PTPER Register  
FIGURE 18-10:  
PWM PERIOD BUFFER UPDATES IN CONTINUOUS UP/DOWN COUNT MODE  
Period Value Loaded from PTPER Register  
7
New PTPER Value = 007  
6
6
5
5
4
Old PTPER Value = 004  
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
New Value Written to PTPER Register  
DS39616D-page 186  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The value in each Duty Cycle register determines the  
amount of time that the PWM output is in the active  
18.6 PWM Duty Cycle  
PWM duty cycle is defined by the PDCx (PDCxL and  
PDCxH) registers. There are a total of four PWM Duty  
Cycle registers for four pairs of PWM channels. The  
Duty Cycle registers have 14-bit resolution by combin-  
ing six LSbs of PDCxH with the 8 bits of PDCxL. PDCx  
is a double-buffered register used to set the counting  
period for the PWM time base.  
state. The upper 12 bits of PDCx holds the actual duty  
cycle value from PTMRH/L<11:0>, while the lower  
2 bits control which internal Q clock the duty cycle  
match will occur. This 2-bit value is decoded from the Q  
clocks as shown in Figure 18-11 (when the prescaler is  
1:1 or PTCKPS<1:0> = 00).  
In Edge-Aligned mode, the PWM period starts at Q1  
and ends when the Duty Cycle register matches the  
PTMR register as follows. The duty cycle match is con-  
sidered when the upper 12 bits of the PDCx are equal  
to the PTMR and the lower 2 bits are equal to Q1, Q2,  
Q3 or Q4, depending on the lower two bits of the PDCx  
(when the prescaler is 1:1 or PTCKPS<1:0> = 00).  
18.6.1  
PWM DUTY CYCLE REGISTERS  
There are four 14-bit Special Function Registers used  
to specify duty cycle values for the PWM module:  
• PDC0 (PDC0L and PDC0H)  
• PDC1 (PDC1L and PDC1H)  
• PDC2 (PDC2L and PDC2H)  
• PDC3 (PDC3L and PDC3H)  
Note:  
When the prescaler is not 1:1  
(PTCKPS<1:0> ~00), the duty cycle  
match occurs at the Q1 clock of the  
instruction cycle when the PTMR and  
PDCx match occurs.  
Each compare unit has logic that allows override of the  
PWM signals. This logic also ensures that the PWM  
signals will complement each other (with dead-time  
insertion) in Complementary mode (see Section 18.7  
“Dead-Time Generators”).  
FIGURE 18-11:  
DUTY CYCLE COMPARISON  
PTMRH<7:0>  
PTMRL<7:0>  
PTMR<11:0>  
Q Clocks(1)  
<1:0>  
PTMRH<3:0>  
Unused  
PTMRL<7:0>  
Comparator  
Unused  
PDCxH<5:0>  
PDCxL<7:0>  
PDCx<13:0>  
PDCxH<7:0>  
PDCxL<7:0>  
Note 1: This value is decoded from the Q clocks:  
00= duty cycle match occurs on Q1  
01= duty cycle match occurs on Q2  
10= duty cycle match occurs on Q3  
11= duty cycle match occurs on Q4  
2010 Microchip Technology Inc.  
DS39616D-page 187  
PIC18F2331/2431/4331/4431  
18.6.2  
DUTY CYCLE REGISTER BUFFERS  
18.6.3  
EDGE-ALIGNED PWM  
The four PWM Duty Cycle registers are  
double-buffered to allow glitchless updates of the PWM  
outputs. For each duty cycle block, there is a Duty  
Cycle Buffer register that is accessible by the user and  
a second Duty Cycle register that holds the actual  
compare value used in the present PWM period.  
Edge-aligned PWM signals are produced by the  
module when the PWM time base is in the  
Free-Running mode or the Single-Shot mode. For  
edge-aligned PWM outputs, the output for a given  
PWM channel has a period specified by the value  
loaded in PTPER and a duty cycle specified by the  
appropriate Duty Cycle register (see Figure 18-12).  
The PWM output is driven active at the beginning of the  
period (PTMR = 0) and is driven inactive when the  
value in the Duty Cycle register matches PTMR. A new  
cycle is started when PTMR matches the PTPER as  
explained in the PWM period section.  
In Edge-Aligned PWM Output mode, a new duty cycle  
value will be updated whenever a PTMR match with the  
PTPER register occurs and PTMR is reset as shown in  
Figure 18-12. Also, the contents of the duty cycle buffers  
are automatically loaded into the Duty Cycle registers  
when the PWM time base is disabled (PTEN = 0).  
If the value in a particular Duty Cycle register is zero,  
then the output on the corresponding PWM pin will be  
inactive for the entire PWM period. In addition, the out-  
put on the PWM pin will be active for the entire PWM  
period if the value in the Duty Cycle register is greater  
than the value held in the PTPER register.  
When the PWM time base is in the Continuous  
Up/Down Count mode, new duty cycle values will be  
updated when the value of the PTMR register is zero  
and the PWM time base begins to count upwards. The  
contents of the duty cycle buffers are automatically  
loaded into the Duty Cycle registers when the PWM  
time base is disabled (PTEN = 0). Figure 18-13 shows  
the timings when the duty cycle update occurs for the  
Continuous Up/Down Count mode. In this mode, up to  
one entire PWM period is available for calculating and  
loading the new PWM duty cycle before changes take  
effect.  
FIGURE 18-12:  
EDGE-ALIGNED PWM  
New Duty Cycle Latched  
PTPER  
When the PWM time base is in the Continuous  
Up/Down Count mode with double updates, new duty  
cycle values will be updated when the value of the  
PTMR register is zero and when the value of the PTMR  
register matches the value in the PTPER register. The  
contents of the duty cycle buffers are automatically  
loaded into the Duty Cycle registers during both of the  
previously described conditions. Figure 18-14 shows  
the duty cycle updates for Continuous Up/Down Count  
mode with double updates. In this mode, only up to half  
of a PWM period is available for calculating and loading  
the new PWM duty cycle before changes take effect.  
PTMR  
Value  
PDCx  
(old)  
PDCx  
(new)  
0
Duty Cycle  
Active at  
Beginning  
of Period  
Period  
FIGURE 18-13:  
DUTY CYCLE UPDATE TIMES IN CONTINUOUS UP/DOWN COUNT MODE  
Duty Cycle Value Loaded from Buffer Register  
PWM Output  
PTMR Value  
New Value Written to Duty Cycle Buffer  
DS39616D-page 188  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 18-14:  
DUTY CYCLE UPDATE TIMES IN CONTINUOUS UP/DOWN COUNT MODE WITH  
DOUBLE UPDATES  
Duty Cycle Value Loaded from Buffer Register  
PWM Output  
PTMR Value  
New Values Written to Duty Cycle Buffer  
inactive for the entire PWM period. In addition, the  
output on the PWM pin will be active for the entire PWM  
period if the value in the Duty Cycle register is equal to  
or greater than the value in the PTPER register.  
18.6.4  
CENTER-ALIGNED PWM  
Center-aligned PWM signals are produced by the  
module when the PWM time base is configured in a  
Continuous Up/Down Count mode (see Figure 18-15).  
The PWM compare output is driven to the active state  
when the value of the Duty Cycle register matches the  
value of PTMR and the PWM time base is counting  
downwards (PTDIR = 1). The PWM compare output  
will be driven to the inactive state when the PWM time  
base is counting upwards (PTDIR = 0) and the value in  
the PTMR register matches the duty cycle value. If the  
value in a particular Duty Cycle register is zero, then  
the output on the corresponding PWM pin will be  
Note:  
When the PWM is started in  
Center-Aligned mode, the PWM Time  
Base Period register (PTPER) is loaded  
into the PWM Time Base register (PTMR)  
and the PTMR is configured automatically  
to start down counting. This is done to  
ensure that all the PWM signals don’t start  
at the same time.  
FIGURE 18-15:  
START OF CENTER-ALIGNED PWM  
Period/2  
PTPER  
PTMR  
Value  
Duty  
Cycle  
0
Duty Cycle  
Start of  
First  
PWM  
Period  
Period  
Period  
2010 Microchip Technology Inc.  
DS39616D-page 189  
PIC18F2331/2431/4331/4431  
18.6.5  
COMPLEMENTARY PWM  
OPERATION  
FIGURE 18-16:  
TYPICAL LOAD FOR  
COMPLEMENTARY PWM  
OUTPUTS  
The Complementary mode of PWM operation is useful  
to drive one or more power switches in half-bridge  
configuration as shown in Figure 18-16. This inverter  
topology is typical for a 3-phase induction motor,  
brushless DC motor or a 3-phase Uninterruptible  
Power Supply (UPS) control applications.  
+V  
3-Phase  
Load  
Each upper/lower power switch pair is fed by a  
complementary PWM signal. Dead time may be  
optionally inserted during device switching, where both  
outputs are inactive for  
a
short period (see  
Section 18.7 “Dead-Time Generators”).  
In Complementary mode, the duty cycle comparison  
units are assigned to the PWM outputs as follows:  
• PDC0 register controls PWM1/PWM0 outputs  
• PDC1 register controls PWM3/PWM2 outputs  
• PDC2 register controls PWM5/PWM4 outputs  
• PDC3 register controls PWM7/PWM6 outputs  
The Complementary mode is selected for each PWM  
I/O pin pair by clearing the appropriate PMODx bit in  
the PWMCON0 register. The PWM I/O pins are set to  
Complementary mode by default upon all kinds of  
device Resets.  
PWM1/3/5/7 are the main PWMs that are controlled by  
the PDCx registers and PWM0/2/4/6 are the  
complemented outputs. When using the PWMs to  
control the half bridge, the odd numbered PWMs can  
be used to control the upper power switch and the even  
numbered PWMs used for the lower switches.  
DS39616D-page 190  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
18.7.1  
DEAD-TIME INSERTION  
18.7 Dead-Time Generators  
Each complementary output pair for the PWM module  
has a 6-bit down counter used to produce the  
dead-time insertion. As shown in Figure 18-17, each  
dead-time unit has a rising and falling edge detector  
connected to the duty cycle comparison output. The  
dead time is loaded into the timer on the detected PWM  
edge event. Depending on whether the edge is rising or  
falling, one of the transitions on the complementary  
outputs is delayed until the timer counts down to zero.  
A timing diagram, indicating the dead-time insertion for  
one pair of PWM outputs, is shown in Figure 18-18.  
In power inverter applications, where the PWMs are  
used in Complementary mode to control the upper and  
lower switches of a half-bridge, a dead-time insertion is  
highly recommended. The dead-time insertion keeps  
both outputs in inactive state for a brief time. This  
avoids any overlap in the switching during the state  
change of the power devices due to TON and TOFF  
characteristics.  
Because the power output devices cannot switch  
instantaneously, some amount of time must be pro-  
vided between the turn-off event of one PWM output in  
a complementary pair and the turn-on event of the  
other transistor. The PWM module allows dead time to  
be programmed. The following sections explain the  
dead-time block in detail.  
FIGURE 18-17:  
DEAD-TIME CONTROL UNIT BLOCK DIAGRAM FOR ONE PWM OUTPUT PAIR  
Dead Time  
Select Bits  
Zero Compare  
Clock Control  
FOSC  
6-Bit Down Counter  
and Prescaler  
Odd PWM Signal to  
Output Control Block  
Dead Time  
Prescale  
Even PWM Signal to  
Output Control Block  
Dead-Time Register  
Duty Cycle  
Compare Input  
FIGURE 18-18:  
DEAD-TIME INSERTION FOR COMPLEMENTARY PWM  
t
d
t
d
PDC1  
Compare  
Output  
PWM1  
PWM0  
2010 Microchip Technology Inc.  
DS39616D-page 191  
PIC18F2331/2431/4331/4431  
REGISTER 18-5: DTCON: DEAD-TIME CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
DT5  
R/W-0  
DT4  
R/W-0  
DT3  
R/W-0  
DT2  
R/W-0  
DT1  
R/W-0  
DT0  
DTPS1  
DTPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
DTPS<1:0>: Dead-Time Unit A Prescale Select bits  
11= Clock source for dead-time unit is FOSC/16  
10= Clock source for dead-time unit is FOSC/8  
01= Clock source for dead-time unit is FOSC/4  
00= Clock source for dead-time unit is FOSC/2  
bit 5-0  
DT<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit bits  
18.7.2  
DEAD-TIME RANGES  
18.7.3  
DECREMENTING THE DEAD-TIME  
COUNTER  
The amount of dead time provided by the dead-time  
unit is selected by specifying the input clock prescaler  
value and a 6-bit unsigned value defined in the DTCON  
register. Four input clock prescaler selections have  
been provided to allow a suitable range of dead times  
based on the device operating frequency. FOSC/2,  
FOSC/4, FOSC/8 and FOSC/16 are the clock prescaler  
options available using the DTPS<1:0> control bits in  
the DTCON register.  
The dead-time counter is clocked from any of the Q  
clocks based on the following conditions.  
1. The dead-time counter is clocked on Q1 when:  
• The DTPS bits are set to any of the following  
dead-time prescaler settings: FOSC/4,  
FOSC/8, FOSC/16  
• The PWM Time Base Prescale bits  
(PTCKPS) are set to any of the following  
prescale ratios: FOSC/16, FOSC/64, FOSC/256  
After selecting an appropriate prescaler value, the  
dead time is adjusted by loading a 6-bit unsigned value  
into DTCON<5:0>. The dead-time unit prescaler is  
cleared on any of the following events:  
2. The dead-time counter is clocked by a pair of Q  
clocks when the PWM Time Base Prescale bits  
are set to 1:1 (PTCKPS<1:0> = 00, FOSC/4) and  
the dead-time counter is clocked by the FOSC/2  
(DTPS<1:0> = 00).  
• On a load of the down timer due to a duty cycle  
comparison edge event;  
• On a write to the DTCON register; or  
• On any device Reset.  
3. The dead-time counter is clocked using every  
other Q clock, depending on the two LSbs in the  
Duty Cycle registers:  
• If the PWM duty cycle match occurs on Q1 or  
Q3, then the dead-time counter is clocked  
using every Q1 and Q3.  
• If the PWM duty cycle match occurs on Q2 or  
Q4, then the dead-time counter is clocked  
using every Q2 and Q4.  
4. When the DTPS<1:0> bits are set to any of the  
other dead-time prescaler settings (i.e., FOSC/4,  
FOSC/8 or FOSC/16) and the PWM time base  
prescaler is set to 1:1, the dead-time counter is  
clocked by the Q clock corresponding to the Q  
clocks on which the PWM duty cycle match  
occurs.  
DS39616D-page 192  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The actual dead time is calculated from the DTCON  
register as follows:  
18.7.4  
DEAD-TIME DISTORTION  
Note 1: For small PWM duty cycles, the ratio of  
dead time to the active PWM time may  
become large. In this case, the inserted  
dead time will introduce distortion into  
waveforms produced by the PWM  
module. The user can ensure that  
dead-time distortion is minimized by  
keeping the PWM duty cycle at least  
three times larger than the dead time. A  
similar effect occurs for duty cycles at or  
near 100%. The maximum duty cycle  
used in the application should be chosen  
such that the minimum inactive time of  
the signal is at least three times larger  
than the dead time. If the dead time is  
greater or equal to the duty cycle of one  
of the PWM output pairs, then that PWM  
pair will be inactive for the whole period.  
Dead Time = Dead-Time Value/(FOSC/Prescaler)  
Table 18-3 shows example dead-time ranges as a  
function of the input clock prescaler selected and the  
device operating frequency.  
TABLE 18-3: EXAMPLE DEAD-TIME  
RANGES  
FOSC  
(MHz)  
Prescaler Dead-Time Dead-Time  
MIPS  
Selection  
Min  
Max  
40  
40  
40  
40  
32  
32  
32  
32  
25  
25  
25  
25  
20  
20  
20  
20  
10  
10  
10  
10  
5
10  
10  
10  
10  
8
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
50 ns  
100 ns  
200 ns  
400 ns  
62.5 ns  
125 ns  
250 ns  
500 ns  
80 ns  
3.2 s  
6.4 s  
12.8 s  
25.6 s  
4 s  
8
8 s  
2: Changing the dead-time values in  
DTCON when the PWM is enabled may  
result in an undesired situation. Disable  
the PWM (PTEN = 0) before changing  
the dead-time value  
8
16 s  
8
32 s  
6.25  
6.25  
6.25  
6.25  
5
5.12 s  
10.2 s  
20.5 s  
41 s  
160 ns  
320 ns  
640 ns  
100 ns  
200 ns  
400 ns  
800 ns  
200 ns  
400 ns  
800 ns  
1.6 s  
400 ns  
800 ns  
1.6 s  
3.2 s  
0.5 s  
1 s  
18.8 Independent PWM Output  
Independent PWM mode is used for driving the loads  
(as shown in Figure 18-19) for driving one winding of a  
switched reluctance motor. A particular PWM output  
pair is configured in the Independent Output mode  
when the corresponding PMOD bit in the PWMCON0  
register is set. No dead-time control is implemented  
between the PWM I/O pins when the module is operat-  
ing in the Independent PWM mode and both I/O pins  
are allowed to be active simultaneously. This mode can  
also be used to drive stepper motors.  
6.4 s  
5
12.8 s  
25.6 s  
51.2 s  
12.8 s  
25.6 s  
51.2 s  
102.4 s  
25.6 s  
51.2 s  
102.4 s  
204.8 s  
32 s  
5
5
2.5  
2.5  
2.5  
2.5  
1.25  
1.25  
1.25  
1.25  
1
18.8.1  
DUTY CYCLE ASSIGNMENT IN THE  
INDEPENDENT PWM MODE  
5
5
In the Independent PWM mode, each duty cycle gener-  
ator is connected to both PWM output pins in a given  
PWM output pair. The odd and even PWM output pins  
are driven with a single PWM duty cycle generator.  
PWM1 and PWM0 are driven by the PWM channel  
which uses the PDC0 register to set the duty cycle,  
PWM3 and PWM2 with PDC1, PWM5 and PWM4 with  
PDC2, and PWM7 and PWM6 with PDC3 (see  
Figure 18-3 and Register 18-4).  
5
4
4
1
64 s  
4
1
2 s  
128 s  
256 s  
4
1
4 s  
2010 Microchip Technology Inc.  
DS39616D-page 193  
PIC18F2331/2431/4331/4431  
OVDCOND and OVDCONS registers are used to  
define the PWM override options. The OVDCOND  
register contains eight bits, POVD<7:0>, that  
determine which PWM I/O pins will be overridden. The  
OVDCONS register contains eight bits, POUT<7:0>,  
that determine the state of the PWM I/O pins when a  
particular output is overridden via the POVD bits.  
18.8.2  
PWM CHANNEL OVERRIDE  
PWM output may be manually overridden for each  
PWM channel by using the appropriate bits in the  
OVDCOND and OVDCONS registers. The user may  
select the following signal output options for each PWM  
output pin operating in the Independent PWM mode:  
• I/O pin outputs PWM signal  
• I/O pin inactive  
The POVD bits are active-low control bits. When the  
POVD bits are set, the corresponding POUT bit will  
have no effect on the PWM output. In other words, the  
pins corresponding to POVD bits that are set will have  
the duty PWM cycle set by the PDCx registers. When  
one of the POVD bits is cleared, the output on the cor-  
responding PWM I/O pin will be determined by the  
state of the POUT bit. When a POUT bit is set, the  
PWM pin will be driven to its active state. When the  
POUT bit is cleared, the PWM pin will be driven to its  
inactive state.  
• I/O pin active  
Refer to Section 18.10 “PWM Output Override” for  
details for all the override functions.  
FIGURE 18-19:  
CENTER CONNECTED  
LOAD  
+V  
18.10.1 COMPLEMENTARY OUTPUT MODE  
Load  
PWM1  
The even numbered PWM I/O pins have override  
restrictions when a pair of PWM I/O pins are operating  
in the Complementary mode (PMODx = 0). In Comple-  
mentary mode, if the even numbered pin is driven  
active by clearing the corresponding POVD bit and by  
setting POUT bits in the OVDCOND and OVDCONS  
registers, the output signal is forced to be the comple-  
ment of the odd numbered I/O pin in the pair (see  
Figure 18-2 for details).  
PWM0  
18.9 Single-Pulse PWM Operation  
The single-pulse PWM operation is available only in  
Edge-Aligned mode. In this mode, the PWM module  
will produce single-pulse output. Single-pulse  
operation is configured when the PTMOD<1:0> bits are  
set to ‘01’ in the PTCON0 register. This mode of  
operation is useful for driving certain types of ECMs.  
18.10.2 OVERRIDE SYNCHRONIZATION  
If the OSYNC bit in the PWMCON1 register is set, all  
output overrides performed via the OVDCOND and  
OVDCONS registers will be synchronized to the PWM  
time base. Synchronous output overrides will occur on  
the following conditions:  
In Single-Pulse mode, the PWM I/O pin(s) are driven to  
the active state when the PTEN bit is set. When the  
PWM timer match with the Duty Cycle register occurs,  
the PWM I/O pin is driven to the inactive state. When  
the PWM timer match with the PTPER register occurs,  
the PTMR register is cleared, all active PWM I/O pins  
are driven to the inactive state, the PTEN bit is cleared  
and an interrupt is generated if the corresponding  
interrupt bit is set.  
• When the PWM is in Edge-Aligned mode,  
synchronization occurs when PTMR is zero.  
• When the PWM is in Center-Aligned mode,  
synchronization occurs when PTMR is zero and  
when the value of PTMR matches PTPER.  
Note 1: In the Complementary mode, the even  
channel cannot be forced active by a  
Fault or override event when the odd  
channel is active. The even channel is  
always the complement of the odd  
channel with dead time inserted, before  
the odd channel can be driven to its  
active state, as shown in Figure 18-20.  
Note:  
PTPER and PDCx values are held as they  
are after the single-pulse output. To have  
another cycle of single pulse, only PTEN  
has to be enabled.  
2: Dead time is inserted in the PWM  
channels even when they are in Override  
mode.  
18.10 PWM Output Override  
The PWM output override bits allow the user to manu-  
ally drive the PWM I/O pins to specified logic states,  
independent of the duty cycle comparison units. The  
PWM override bits are useful when controlling various  
types of ECMs like a BLDC motor.  
DS39616D-page 194  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 18-20:  
PWM OVERRIDE BITS IN COMPLEMENTARY MODE  
1
POUT0  
POUT1  
4
3
5
PWM1  
PWM0  
2
7
6
Assume: POVD0 = 0; POVD1 = 0; PMOD0 = 0  
1. Even override bits have no effect in Complementary mode.  
2. Odd override bit is activated, which causes the even PWM to deactivate.  
3. Dead-time insertion.  
4. Odd PWM activated after the dead time.  
5. Odd override bit is deactivated, which causes the odd PWM to deactivate.  
6. Dead-time insertion.  
7. Even PWM is activated after the dead time.  
2010 Microchip Technology Inc.  
DS39616D-page 195  
PIC18F2331/2431/4331/4431  
The PWM Duty Cycle registers may be used in con-  
18.10.3 OUTPUT OVERRIDE EXAMPLES  
junction with the OVDCOND and OVDCONS registers.  
The Duty Cycle registers control the average voltage  
across the load and the OVDCOND and OVDCONS  
registers control the commutation sequence.  
Figure 18-22 shows the waveforms, while Table 18-4  
and Table 18-5 show the OVDCOND and OVDCONS  
register values used to generate the signals.  
Figure 18-21 shows an example of a waveform that  
might be generated using the PWM output override  
feature. The figure shows a six-step commutation  
sequence for a BLDC motor. The motor is driven  
through a 3-phase inverter as shown in Figure 18-16.  
When the appropriate rotor position is detected, the  
PWM outputs are switched to the next commutation  
state in the sequence. In this example, the PWM out-  
puts are driven to specific logic states. The OVDCOND  
and OVDCONS register values used to generate the  
signals in Figure 18-21 are given in Table 18-4.  
REGISTER 18-6: OVDCOND: OUTPUT OVERRIDE CONTROL REGISTER  
R/W-1  
POVD7(1)  
bit 7  
R/W-1  
POVD6(1)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
POVD5  
POVD4  
POVD3  
POVD2  
POVD1  
POVD0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
POVD<7:0>: PWM Output Override bits  
1= Output on PWM I/O pin is controlled by the value in the Duty Cycle register and the PWM time base  
0= Output on PWM I/O pin is controlled by the value in the corresponding POUT bit  
Note 1: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.  
REGISTER 18-7: OVDCONS: OUTPUT STATE REGISTER(1,2)  
R/W-0  
POUT7(1)  
bit 7  
R/W-0  
POUT6(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
POUT5  
POUT4  
POUT3  
POUT2  
POUT1  
POUT0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
POUT<7:0>: PWM Manual Output bits  
1= Output on PWM I/O pin is active when the corresponding PWM output override bit is cleared  
0= Output on PWM I/O pin is inactive when the corresponding PWM output override bit is cleared  
Note 1: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.  
2: With PWMs configured in Complementary mode, the output of even numbered PWM (PM0,2,4) will be  
complementary of the output of odd PWM (PWM1,3,5), irrespective of the POUT bit setting.  
DS39616D-page 196  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 18-21:  
PWM OUTPUT OVERRIDE  
EXAMPLE #1  
FIGURE 18-22:  
PWM OUTPUT OVERRIDE  
EXAMPLE #2  
1
2
3
4
5
6
1
2
3
4
PWM5  
PWM4  
PWM3  
PWM2  
PWM1  
PWM0  
PWM7  
PWM6  
PWM5  
PWM4  
PWM3  
PWM2  
PWM1  
PWM0  
TABLE 18-4: PWM OUTPUT OVERRIDE  
EXAMPLE #1  
State  
OVDCOND (POVD) OVDCONS (POUT)  
1
2
3
4
5
6
00000000b  
00000000b  
00000000b  
00000000b  
00000000b  
00000000b  
00100100b  
00100001b  
00001001b  
00011000b  
00010010b  
00000110b  
TABLE 18-5: PWM OUTPUT OVERRIDE  
EXAMPLE #2  
State OVDCOND (POVD) OVDCONS (POUT)  
1
2
3
4
11000011b  
11110000b  
00111100b  
00001111b  
00000000b  
00000000b  
00000000b  
00000000b  
2010 Microchip Technology Inc.  
DS39616D-page 197  
PIC18F2331/2431/4331/4431  
18.11.2 OUTPUT POLARITY CONTROL  
18.11 PWM Output and Polarity Control  
The polarity of the PWM I/O pins is set during device  
programming via the HPOL and LPOL Configuration  
bits in the CONFIG3L Configuration register. The  
HPOL Configuration bit sets the output polarity for the  
high side PWM outputs: PWM1, PWM3, PWM5 and  
PWM7. The polarity is active-low when HPOL is  
cleared (= 0), and active-high when it is set (= 1).  
There are three device Configuration bits associated  
with the PWM module that provide PWM output pin  
control defined in the CONFIG3L Configuration  
register. They are:  
• HPOL  
• LPOL  
• PWMPIN  
The LPOL Configuration bit sets the output polarity for  
the low side PWM outputs: PWM0, PWM2, PWM4 and  
PWM6. As with HPOL, they are active-low when LPOL  
is cleared and active-high when it is set.  
These three Configuration bits work in conjunction with  
the three PWM Enable bits (PWMEN<2:0>) in the  
PWMCON0 register. The Configuration bits and PWM  
enable bits ensure that the PWM pins are in the correct  
states after a device Reset occurs.  
All output signals generated by the PWM module are  
referenced to the polarity control bits, including those  
generated by Fault inputs or manual override (see  
Section 18.10 “PWM Output Override”).  
18.11.1 OUTPUT PIN CONTROL  
The PWMEN<2:0> control bits enable each PWM  
output pin as required in the application.  
The default polarity Configuration bits have the PWM  
I/O pins in active-high output polarity.  
All PWM I/O pins are general purpose I/O. When a pair  
of pins are enabled for PWM output, the PORT and  
TRIS registers controlling the pins are disabled. Refer  
to Figure 18-23 for details.  
FIGURE 18-23:  
PWM I/O PIN BLOCK DIAGRAM  
PWM Signal from Module  
1
0
PWM Pin Enable  
Data Bus  
D
Q
Q
VDD  
P
WR PORT  
CK  
Data Latch  
I/O Pin  
D
Q
Q
N
WR TRIS  
RD TRIS  
CK  
VSS  
TRIS Latch  
TTL or  
Schmitt  
Trigger  
Q
D
EN  
RD PORT  
Note: I/O pin has protection diodes to VDD and VSS. PWM polarity selection logic not shown for clarity.  
DS39616D-page 198  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
18.11.3 PWM OUTPUT PIN RESET STATES  
18.12.1 FAULT PIN ENABLE BITS  
The PWMPIN Configuration bit determines the PWM  
output pins to be PWM output pins or digital I/O pins,  
after the device comes out of Reset. If the PWMPIN  
Configuration bit is unprogrammed (default), the  
PWMEN<2:0> control bits will be cleared on a device  
Reset. Consequently, all PWM outputs will be tri-stated  
and controlled by the corresponding PORT and TRIS  
registers. If the PWMPIN Configuration bit is pro-  
grammed low, the PWMEN<2:0> control bits will be  
set, as follows, on a device Reset:  
By setting the bits, FLTAEN and FLTBEN in the  
FLTCONFIG register, the corresponding Fault inputs  
are enabled. If both bits are cleared, then the Fault  
inputs have no effect on the PWM module.  
18.12.2 MFAULT INPUT MODES  
The FLTAMOD and FLTBMOD bits in the FLTCONFIG  
register determine the modes of PWM I/O pins that are  
deactivated when they are overridden by Fault input.  
The FLTAS and FLTBS bits in the FLTCONFIG register  
give the status of Fault A and Fault B inputs.  
• PWMEN<2:0> = 101if device has 8 PWM pins  
(PIC18F4331/4431 devices)  
Each of the Fault inputs have two modes of operation:  
• PWMEN<2:0> = 100if device has 6 PWM pins  
(PIC18F2331/2431 devices)  
• Inactive Mode (FLTxMOD = 0)  
This is a Catastrophic Fault Management mode.  
When the Fault occurs in this mode, the PWM out-  
puts are deactivated. The PWM pins will remain in  
Inactivate mode until the Fault is cleared (Fault  
input is driven high) and the corresponding Fault  
Status bit has been cleared in software. The PWM  
outputs are enabled immediately at the beginning  
of the following PWM period, after the Fault Status  
bit (FLTxS) is cleared.  
All PWM pins will be enabled for PWM output and will  
have the output polarity defined by the HPOL and  
LPOL Configuration bits.  
18.12 PWM Fault Inputs  
There are two Fault inputs associated with the PWM  
module. The main purpose of the input Fault pins is to  
disable the PWM output signals and drive them into an  
inactive state. The action of the Fault inputs is  
performed directly in hardware so that when a Fault  
occurs, it can be managed quickly and the PWM  
outputs are put into an inactive state to save the power  
devices connected to the PWMs.  
• Cycle-by-Cycle Mode (FLTxMOD = 1)  
When the Fault occurs in this mode, the PWM  
outputs are deactivated. The PWM outputs will  
remain in the defined Fault states (all PWM  
outputs inactive) for as long as the Fault pin is held  
low. After the Fault pin is driven high, the PWM  
outputs will return to normal operation at the begin-  
ning of the following PWM period and the FLTxS  
bit is automatically cleared.  
The PWM Fault inputs are FLTA and FLTB, which can  
come from I/O pins, the CPU or another module. The  
FLTA and FLTB pins are active-low inputs so it is easy to  
“OR” many sources to the same input. FLTB and its asso-  
ciated logic are not implemented on PIC18F2331/2431  
devices.  
The FLTCONFIG register (Register 18-8) defines the  
settings of FLTA and FLTB inputs.  
Note:  
The inactive state of the PWM pins are  
dependent on the HPOL and LPOL Con-  
figuration bit settings, which define the  
active and inactive state for PWM outputs.  
2010 Microchip Technology Inc.  
DS39616D-page 199  
PIC18F2331/2431/4331/4431  
18.12.3 PWM OUTPUTS WHILE IN FAULT  
CONDITION  
18.12.4 PWM OUTPUTS IN DEBUG MODE  
The BRFEN bit in the FLTCONFIG register controls the  
simulation of a Fault condition, when a breakpoint is hit,  
while debugging the application using an In-Circuit  
Emulator (ICE) or an In-Circuit Debugger (ICD). Setting  
the BRFEN to high, enables the Fault condition on  
breakpoint, thus driving the PWM outputs to the inactive  
state. This is done to avoid any continuous keeping of  
status on the PWM pin, which may result in damage of  
the power devices connected to the PWM outputs.  
While in the Fault state (i.e., one or both FLTA and  
FLTB inputs are active), the PWM output signals are  
driven into their inactive states. The selection of which  
PWM outputs are deactivated (while in the Fault state)  
is determined by the FLTCON bit in the FLTCONFIG  
register as follows:  
• FLTCON = 1: When FLTA or FLTB is asserted,  
the PWM outputs (i.e., PWM<7:0>) are driven into  
their inactive state.  
If BRFEN = 0, the Fault condition on breakpoint is  
disabled.  
• FLTCON = 0: When FLTA or FLTB is asserted,  
only PWM<5:0> outputs are driven inactive,  
leaving PWM<7:6> activated.  
Note:  
It is highly recommended to enable the  
Fault condition on breakpoint if a debug-  
ging tool is used while developing the  
firmware and high-power circuitry. When  
the device is ready to program after  
debugging the firmware, the BRFEN bit  
can be disabled.  
Note:  
Disabling only three PWM channels and  
leaving one PWM channel enabled when  
in the Fault state, allows the flexibility to  
have at least one PWM channel enabled.  
None of the PWM outputs can be enabled  
(driven with the PWM Duty Cycle  
registers) while FLTCON = 1and the Fault  
condition is present.  
DS39616D-page 200  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 18-8: FLTCONFIG: FAULT CONFIGURATION REGISTER  
R/W-0  
R/W-0  
FLTBS(1)  
R/W-0  
R/W-0  
R/W-0  
FLTCON(2)  
R/W-0  
FLTAS  
R/W-0  
R/W-0  
BRFEN  
FLTBMOD(1) FLTBEN(1)  
FLTAMOD  
FLTAEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
BRFEN: Breakpoint Fault Enable bit  
1= Enable Fault condition on a breakpoint (i.e., only when PWMPIN = 1)  
0= Disable Fault condition  
FLTBS: Fault B Status bit(1)  
1= FLTB is asserted:  
if FLTBMOD = 0, cleared by the user;  
if FLTBMOD = 1, cleared automatically at beginning of the new period when FLTB is deasserted  
0= No Fault  
bit 5  
FLTBMOD: Fault B Mode bit(1)  
1= Cycle-by-Cycle mode: Pins are inactive for the remainder of the current PWM period or until FLTB  
is deasserted; FLTBS is cleared automatically when FLTB is inactive (no Fault present)  
0= Inactive mode: Pins are deactivated (catastrophic failure) until FLTB is deasserted and FLTBS is  
cleared by the user only  
bit 4  
bit 3  
bit 2  
FLTBEN: Fault B Enable bit(1)  
1= Enable Fault B  
0= Disable Fault B  
FLTCON: Fault Configuration bit(2)  
1= FLTA, FLTB or both deactivates all PWM outputs  
0= FLTA or FLTB deactivates PWM<5:0>  
FLTAS: Fault A Status bit  
1= FLTA is asserted:  
if FLTAMOD = 0, cleared by the user;  
if FLTAMOD = 1, cleared automatically at beginning of the new period when FLTA is deasserted  
0= No Fault  
bit 1  
bit 0  
FLTAMOD: Fault A Mode bit  
1= Cycle-by-Cycle mode: Pins are inactive for the remainder of the current PWM period or until FLTA is  
deasserted; FLTAS is cleared automatically  
0= Inactive mode: Pins are deactivated (catastrophic failure) until FLTA is deasserted and FLTAS is  
cleared by the user only  
FLTAEN: Fault A Enable bit  
1= Enable Fault A  
0= Disable Fault A  
Note 1: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.  
2: PWM<7:6> are implemented only on PIC18F4331/4431 devices. On PIC18F2331/2431 devices, setting or  
clearing FLTCON has no effect.  
2010 Microchip Technology Inc.  
DS39616D-page 201  
PIC18F2331/2431/4331/4431  
The PTMR value for which a Special Event Trigger  
18.13 PWM Update Lockout  
should occur is loaded into the SEVTCMP register pair.  
The SEVTDIR bit in the PWMCON1 register specifies  
the counting phase when the PWM time base is in a  
Continuous Up/Down Count mode.  
For a complex PWM application, the user may need to  
write up to four Duty Cycle registers and the PWM Time  
Base Period register, PTPER, at a given time. In some  
applications, it is important that all buffer registers be  
written before the new duty cycle and period values are  
loaded for use by the module.  
If the SEVTDIR bit is cleared, the Special Event Trigger  
will occur on the upward counting cycle of the PWM  
time base. If SEVTDIR is set, the Special Event Trigger  
will occur on the downward count cycle of the PWM  
time base. The SEVTDIR bit has effect only when the  
PWM timer is in the Continuous Up/Down Count mode.  
A PWM update lockout feature may optionally be  
enabled so the user may specify when new duty cycle  
buffer values are valid. The PWM update lockout  
feature is enabled by setting the control bit, UDIS, in  
the PWMCON1 register. This bit affects all Duty Cycle  
Buffer registers and the PWM Time Base Period  
register, PTPER.  
18.14.1 SPECIAL EVENT TRIGGER ENABLE  
The PWM module will always produce Special Event  
Trigger pulses. This signal may optionally be used by  
the A/D module. Refer to Section 21.0 “10-Bit  
High-Speed Analog-to-Digital Converter (A/D)  
Module” for details.  
To perform a PWM update lockout:  
1. Set the UDIS bit.  
2. Write all Duty Cycle registers and PTPER, if  
applicable.  
18.14.2 SPECIAL EVENT TRIGGER  
POSTSCALER  
3. Clear the UDIS bit to re-enable updates.  
4. With this, when UDIS bit is cleared, the buffer  
values will be loaded to the actual registers. This  
makes a synchronous loading of the registers.  
The PWM Special Event Trigger has a postscaler that  
allows a 1:1 to 1:16 postscale ratio. The postscaler is  
configured by writing the SEVOPS<3:0> control bits in  
the PWMCON1 register.  
18.14 PWM Special Event Trigger  
The Special Event Trigger output postscaler is cleared  
on any write to the SEVTCMP register pair, or on any  
device Reset.  
The PWM module has a Special Event Trigger capabil-  
ity that allows A/D conversions to be synchronized to  
the PWM time base. The A/D sampling and conversion  
time may be programmed to occur at any point within  
the PWM period. The Special Event Trigger allows the  
user to minimize the delay between the time when A/D  
conversion results are acquired and the time when the  
duty cycle value is updated.  
The PWM 16-bit Special Event Trigger register,  
SEVTCMP (high and low), and five control bits in the  
PWMCON1 register are used to control its operation.  
DS39616D-page 202  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 18-6: REGISTERS ASSOCIATED WITH THE POWER CONTROL PWM MODULE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page:  
INTCON  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INT0IE  
PTIP  
PTIE  
PTIF  
RBIE  
TMR0IF  
IC2QEIP  
IC2QEIE  
IC2QEIF  
INT0IF  
IC1IP  
IC1IE  
IC1IF  
RBIF  
54  
56  
56  
56  
58  
58  
58  
58  
58  
58  
58  
58  
IPR3  
IC3DRIP  
IC3DRIE  
IC3DRIF  
TMR5IP  
TMR5IE  
TMR5IF  
PIE3  
PIR3  
PTCON0  
PTCON1  
PTOPS3  
PTEN  
PTOPS2  
PTDIR  
PTOPS1  
PTOPS0 PTCKPS1 PTCKPS0 PTMOD1 PTMOD0  
(1)  
PTMRL  
PTMRH  
PWM Time Base Register (lower 8 bits)  
(1)  
UNUSED  
PWM Time Base Register (upper 4 bits)  
(1)  
(1)  
PTPERL  
PWM Time Base Period Register (lower 8 bits)  
PTPERH  
UNUSED  
PWM Special Event Compare Register (lower 8 bits)  
UNUSED  
PWM Time Base Period Register (upper 4 bits)  
(1)  
(1)  
SEVTCMPL  
SEVTCMPH  
PWM Special Event Compare Register  
(upper 4 bits)  
(2)  
PWMCON0  
PWMCON1  
DTCON  
PWMEN2  
PWMEN1  
PWMEN0 PMOD3  
PMOD2  
PMOD1  
UDIS  
DT1  
PMOD0  
OSYNC  
DT0  
58  
58  
58  
58  
58  
58  
58  
58  
58  
58  
58  
58  
58  
58  
SEVOPS3 SEVOPS2 SEVOPS1 SEVOPS0 SEVTDIR  
DTPS1  
BRFEN  
DTPS0  
DT5  
FLTBMOD  
POVD5  
DT4  
DT3  
DT2  
(2)  
(2)  
(2)  
FLTCONFIG  
OVDCOND  
OVDCONS  
FLTBS  
POVD6  
POUT6  
FLTBEN  
FLTCON  
POVD3  
POUT3  
FLTAS  
POVD2  
POUT2  
FLTAMOD FLTAEN  
(2)  
(2)  
(2)  
POVD7  
POVD4  
POUT4  
POVD1  
POUT1  
POVD0  
POUT0  
(2)  
POUT7  
POUT5  
(1)  
PDC0L  
PWM Duty Cycle #0L Register (lower 8 bits)  
UNUSED PWM Duty Cycle #0H Register (upper 6 bits)  
PWM Duty Cycle #1L register (lower 8 bits)  
(1)  
PDC0H  
(1)  
PDC1L  
(1)  
PDC1H  
UNUSED  
PWM Duty Cycle #1H Register (upper 6 bits)  
(1)  
PDC2L  
PWM Duty Cycle #2L Register (lower 8 bits)  
(1)  
PDC2H  
UNUSED  
PWM Duty Cycle #2H Register (upper 6 bits)  
(1,2)  
PDC3L  
PWM Duty Cycle #3L Register (lower 8 bits)  
(1,2)  
PDC3H  
UNUSED  
PWM Duty Cycle #3H Register (upper 6 bits)  
Legend: — = Unimplemented, read as ‘0’. Shaded cells are not used with the power control PWM.  
Note 1: Double-buffered register pairs. Refer to text for explanation of how these registers are read and written to.  
2: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear. Reset values shown are for  
PIC18F4331/4431 devices.  
2010 Microchip Technology Inc.  
DS39616D-page 203  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 204  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
19.2 SPI Mode  
19.0 SYNCHRONOUS SERIAL PORT  
(SSP) MODULE  
This section contains register definitions and opera-  
tional characteristics of the SPI module. Additional  
information on the SPI module can be found in the  
”PIC® Mid-Range MCU Family Reference Manual”  
(DS33023).  
19.1 SSP Module Overview  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D Converters, etc. The SSP module  
can operate in one of two modes:  
SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. To accomplish  
communication, typically three pins are used:  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
An overview of I2C operations and additional  
information on the SSP module can be found in the  
“PIC® Mid-Range MCU Family Reference Manual”  
(DS33023).  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS)  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits in the SSPCON (SSPCON<5:0>) and  
SSPSTAT<7:6> registers. These control bits allow the  
following to be specified:  
Refer to application note AN578, “Use of the SSP  
Module in the I 2CMulti-Master Environment”  
(DS00578).  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock polarity (Idle state of SCK)  
• Clock edge (output data on rising/falling edge of  
SCK)  
• Clock rate (Master mode only)  
• Slave Select mode (Slave mode only)  
2010 Microchip Technology Inc.  
DS39616D-page 205  
PIC18F2331/2431/4331/4431  
REGISTER 19-1: SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
bit 6  
CKE: SPI Clock Edge Select bit (Figure 19-2, Figure 19-3 and Figure 19-4)  
SPI mode, CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
I2C™ mode:  
This bit must be maintained clear.  
bit 5  
bit 4  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: Stop bit (I2C mode only)  
This bit is cleared when the SSP module is disabled or when the Start bit is detected last; SSPEN is  
cleared.  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
bit 3  
bit 2  
S: Start bit (I2C mode only)  
This bit is cleared when the SSP module is disabled or when the Stop bit is detected last; SSPEN is  
cleared.  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
R/W: Read/Write Information bit (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or ACK bit.  
1= Read  
0= Write  
bit 1  
bit 0  
UA: Update Address bit (10-Bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only):  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
DS39616D-page 206  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 19-2: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER  
R/W-0  
WCOL  
R/W-0  
SSPOV(1)  
R/W-0  
SSPEN(2)  
R/W-0  
CKP  
R/W-0  
SSPM3(3)  
R/W-0  
SSPM2(3)  
R/W-0  
SSPM1(3)  
R/W-0  
SSPM0(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit(1)  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In  
Master mode, the overflow bit is not set since each new reception (and transmission) is  
initiated by writing to the SSPBUF register.  
0= No overflow  
In I2C™ mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV  
is a “don’t care” in Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit(2)  
In SPI mode:  
1= Enables serial port and configures SCK, SDO and SDI as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode:  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
In I2C mode:  
SCK release control.  
1= Enables clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by  
writing to the SSPBUF register.  
2: When enabled, these pins must be properly configured as inputs or outputs.  
3: Bit combinations not specifically listed here are either reserved or implemented in I2C™ mode only.  
2010 Microchip Technology Inc.  
DS39616D-page 207  
PIC18F2331/2431/4331/4431  
REGISTER 19-2: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (CONTINUED)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits(3)  
0000= SPI Master mode, Clock = FOSC/4  
0001= SPI Master mode, Clock = FOSC/16  
0010= SPI Master mode, Clock = FOSC/64  
0011= SPI Master mode, Clock = TMR2 output/2  
0100= SPI Slave mode, Clock = SCK pin, SS pin control enabled  
0101= SPI Slave mode, Clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1011= I2C Firmware Controlled Master mode (slave Idle)  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by  
writing to the SSPBUF register.  
2: When enabled, these pins must be properly configured as inputs or outputs.  
3: Bit combinations not specifically listed here are either reserved or implemented in I2C™ mode only.  
DS39616D-page 208  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON<5>), must be set. To reset or reconfigure  
SPI mode, clear bit SSPEN, reinitialize the SSPCON  
register and then set bit SSPEN. This configures the  
SDI, SDO, SCK and SS pins as serial port pins. For the  
pins to behave as the serial port function, they must  
have their data direction bits (in the TRISC register)  
appropriately programmed. That is:  
FIGURE 19-1:  
SSP BLOCK DIAGRAM  
(SPI MODE)  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
• Serial Data Out (SDO) – RC7/RX/DT/SDO or  
RD1/SDO  
• SDI must have TRISC<4> or TRISD<2> set  
SSPSR Reg  
• SDO must have TRISC<7> or TRISD<1> cleared  
SDI  
Shift  
Clock  
bit 0  
• SCK (Master mode) must have TRISC<5> or  
TRISD<3> cleared  
SDO  
• SCK (Slave mode) must have TRISC<5> or  
TRISD<3> set  
Peripheral OE  
• SS must have TRISA<6> set  
Control  
Enable  
SS  
Note 1: When the SPI is in Slave mode, with  
the  
SS  
pin  
control  
enabled,  
the SPI  
SS  
Edge  
Select  
(SSPCON<3:0> = 0100),  
module will reset if the SS pin is set to  
VDD.  
2
Clock Select  
2: If the SPI is used in Slave mode with  
CKE = 1, then the SS pin control must be  
enabled.  
SSPM<3:0>  
4
TMR2 Output  
2
3: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the state of the SS pin can affect the state  
read back from the TRISC<6> bit. The  
peripheral OE signal from the SSP module  
into PORTC controls the state that is read  
back from the TRISC<6> bit (see  
Section 11.3 “PORTC, TRISC and LATC  
Registers” for information on PORTC). If  
Read-Modify-Write instructions, such as  
BSF, are performed on the TRISC register  
while the SS pin is high, this will cause the  
TRISC<6> bit to be set, thus disabling the  
SDO output.  
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
SCK  
TRISC<3>  
2010 Microchip Technology Inc.  
DS39616D-page 209  
PIC18F2331/2431/4331/4431  
FIGURE 19-2:  
SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 0  
SDO  
SDI (SMP = 0)  
bit 7  
SDI (SMP = 1)  
bit 0  
bit 7  
SSPIF  
FIGURE 19-3:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SDI (SMP = 0)  
bit 0  
bit 7  
SSPIF  
DS39616D-page 210  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 19-4:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit 2  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDI (SMP = 0)  
bit 0  
bit 7  
SSPIF  
TABLE 19-1: REGISTERS ASSOCIATED WITH SPI OPERATION  
ResetValues  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
INT0IF  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
TMR0IF  
RBIF  
54  
57  
57  
57  
55  
55  
57  
55  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
PIE1  
TRISC  
PORTC Data Direction Register  
SSPBUF SSP Receive Buffer/Transmit Register  
SSPCON  
TRISA  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3 SSPM2  
SSPM1  
UA  
SSPM0  
BF  
TRISA7(1) TRISA6(2) PORTA Data Direction Register  
SSPSTAT  
SMP CKE D/A  
P
S
R/W  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the SSP in SPI mode.  
Note 1: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other  
oscillator modes.  
2: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6)  
Oscillator modes only and read ‘0’ in all other oscillator modes.  
2010 Microchip Technology Inc.  
DS39616D-page 211  
PIC18F2331/2431/4331/4431  
The SSPCON register allows control of the I2C opera-  
2
19.3 SSP I C Operation  
tion. Four mode selection bits (SSPCON<3:0>) allow  
The SSP module, in I2C mode, fully implements all slave  
functions except general call support and provides  
interrupts on Start and Stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the standard mode  
specifications, as well as 7-bit and 10-bit addressing.  
one of the following I2C modes to be selected:  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address), with Start and  
Stop bit interrupts enabled to support Firmware  
Controlled Master mode  
• I2C Slave mode (10-bit address), with Start and  
Stop bit interrupts enabled to support Firmware  
Controlled Master mode  
• I2C Start and Stop bit interrupts enabled to  
support Firmware Controlled Master mode;  
Slave is Idle  
Two pins are used for data transfer. These are the SCK/  
SCL pin, which is the clock (SCL), and the SDI/SDA  
pin, which is the data (SDA). The user must configure  
these pins as inputs or outputs through the  
TRISC<5:4> or TRISD<3:2> bits.  
The SSP module functions are enabled by setting SSP  
Enable bit SSPEN (SSPCON<5>).  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain,  
provided these pins are programmed as inputs by  
setting the appropriate TRISC or TRISD bits. Pull-up  
resistors must be provided externally to the SCL and  
SDA pins for proper operation of the I2C module.  
FIGURE 19-5:  
SSP BLOCK DIAGRAM  
(I2C™ MODE)  
Internal  
Data Bus  
Additional information on SSP I2C operation can be  
found in the “PIC® Mid-Range MCU Family Reference  
Manual” (DS33023).  
Read  
Write  
SSPBUF Reg  
SCK/SCL(1)  
SDI/SDA(1)  
19.3.1  
SLAVE MODE  
Shift  
Clock  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<5:4> or TRISD<3:2> set). The  
SSP module will override the input state with the output  
data when required (slave-transmitter).  
SSPSR Reg  
MSb  
LSb  
Addr Match  
Match Detect  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
SSPADD Reg  
Set, Reset  
S, P bits  
(SSPSTAT Reg)  
Start and  
Stop bit Detect  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. They include (either  
or both):  
Note 1: When SSPMX = 1in CONFIG3H:  
SCK/SCL is multiplexed to the RC5 pin, SDA/  
SDI is multiplexed to the RC4 pin and SDO is  
multiplexed to pin, RC7.  
a) The Buffer Full bit, BF (SSPSTAT<0>), was set  
before the transfer was received.  
b) The SSP Overflow bit, SSPOV (SSPCON<6>),  
was set before the transfer was received.  
When SSPMX = 0in CONFIG3H:  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit, SSPIF (PIR1<3>), is set.  
Table 19-2 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow  
condition. Flag bit, BF, is cleared by reading the  
SSPBUF register, while bit, SSPOV, is cleared through  
software.  
SCK/SCL is multiplexed to the RD3 pin, SDA/  
SDI is multiplexed to the RD2 pin and SDO is  
multiplexed to pin, RD1.  
The SSP module has five registers for I2C operation.  
These are the:  
• SSP Control Register (SSPCON)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirements of the  
SSP module, are shown in timing Parameter 100 and  
Parameter 101.  
• SSP Shift Register (SSPSR) – Not directly  
accessible  
• SSP Address Register (SSPADD)  
DS39616D-page 212  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The sequence of events for 10-Bit Addressing mode is  
as follows, with Steps 7-9 for slave-transmitter:  
19.3.1.1  
Addressing  
Once the SSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All incom-  
ing bits are sampled with the rising edge of the clock  
(SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of address (SSPIF, BF  
and UA bits are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit, UA, and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit, BF) and  
clear flag bit, SSPIF.  
4. Receive second (low) byte of address (SSPIF,  
BF and UA bits are set).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit, UA.  
b) The Buffer Full bit, BF, is set.  
c) An ACK pulse is generated.  
6. Read the SSPBUF register (clears bit, BF) and  
clear flag bit, SSPIF.  
d) SSP Interrupt Flag bit, SSPIF (PIR1<3>), is set  
(interrupt is generated if enabled) on the falling  
edge of the ninth SCL pulse.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of address (SSPIF and  
BF bits are set).  
In 10-Bit Addressing mode, two address bytes need to  
be received by the slave (Figure 19-7). The five Most  
Significant bits (MSbs) of the first address byte specify  
if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the  
second address byte. For a 10-bit address, the first  
byte would equal ‘1111 0 A9 A8 0’, where A9and  
A8are the two MSbs of the address.  
9. Read the SSPBUF register (clears bit, BF) and  
clear flag bit, SSPIF.  
TABLE 19-2: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Set SSPIF Bit  
(SSP interrupt occurs  
if enabled)  
Generate ACK  
Transfer is Received  
SSPSR SSPBUF  
Pulse  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
2010 Microchip Technology Inc.  
DS39616D-page 213  
PIC18F2331/2431/4331/4431  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON<6>) is set. This is an error  
condition due to the user’s firmware.  
19.3.1.2  
Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit, SSPIF (PIR1<3>), must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
FIGURE 19-6:  
I2C™ WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W = 0  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
SDA  
SCL  
D1 D0  
D7 D6 D5 D4 D3 D2  
D7 D6 D5 D4 D3 D2 D1 D0  
3
7
7
1
2
4
8
5
7
8
3
6
9
5
6
1
2
3
6
1
2
4
8
4
5
P
S
Cleared in software  
SSPIF (PIR1<3>)  
Bus master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPOV (SSPCON<6>)  
SSPBUF register is read  
SSPOV bit is set because the SSPBUF register is still full  
ACK is not sent  
DS39616D-page 214  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
An SSP interrupt is generated for each data transfer  
byte. Flag bit, SSPIF, must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit, SSPIF, is set on the falling edge of  
the ninth clock pulse.  
19.3.1.3  
Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin, SCK/SCL, is held low.  
The transmit data must be loaded into the SSPBUF  
register, which also loads the SSPSR register. Then,  
pin, SCK/SCL, should be enabled by setting bit, CKP  
(SSPCON<4>). The master must monitor the SCL pin  
prior to asserting another clock pulse. The slave  
devices may be holding off the master by stretching the  
clock. The eight data bits are shifted out on the falling  
edge of the SCL input. This ensures that the SDA signal  
is valid during the SCL high time (Figure 19-7).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then the  
data transfer is complete. When the ACK is latched by  
the slave, the slave logic is reset and the slave then  
monitors for another occurrence of the Start bit. If the  
SDA line was low (ACK), the transmit data must be  
loaded into the SSPBUF register, which also loads the  
SSPSR register. Then pin, SCK/SCL, should be enabled  
by setting bit CKP.  
FIGURE 19-7:  
I2C™ WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
CKP (SSPCON<4>)  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
Set bit after writing to SSPBUF  
(SSPBUF must be written to  
before the CKP bit can be set)  
2010 Microchip Technology Inc.  
DS39616D-page 215  
PIC18F2331/2431/4331/4431  
19.3.2  
MASTER MODE  
19.3.3  
MULTI-MASTER MODE  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the Start  
and Stop conditions. The Stop (P) and Start (S) bits are  
cleared from a Reset or when the SSP module is  
disabled. The Stop (P) and Start (S) bits will toggle  
based on the Start and Stop conditions. Control of the  
I2C bus may be taken when the P bit is set, or the bus  
is Idle and both the S and P bits are clear.  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the SSP  
module is disabled. The Stop (P) and Start (S) bits will  
toggle based on the Start and Stop conditions. Control  
of the I2C bus may be taken when bit P (SSPSTAT<4>)  
is set, or the bus is Idle and both the S and P bits clear.  
When the bus is busy, enabling the SSP interrupt will  
generate the interrupt when the Stop condition occurs.  
In Master mode, the SCL and SDA lines are manipu-  
lated by clearing the corresponding TRISC<5:4> or  
TRISD<3:2> bits. The output level is always low,  
regardless of the value(s) in PORTC<5:4> or  
PORTD<3:2>. So when transmitting data, a ‘1’ data bit  
must have the TRISC<4> bit set (input) and a ‘0’ data  
bit must have the TRISC<4> bit cleared (output). The  
same scenario is true for the SCL line with the  
TRISC<4> or TRISD<2> bit. Pull-up resistors must be  
provided externally to the SCL and SDA pins for proper  
operation of the I2C module.  
In Multi-Master mode, the SDA line must be monitored  
to see if the signal level is the expected output level.  
This check only needs to be done when a high level is  
output. If a high level is expected and a low level is  
present, the device needs to release the SDA and SCL  
lines (set TRISC<5:4> or TRISD<3:2>). There are two  
stages where this arbitration can be lost, these are:  
• Address Transfer  
• Data Transfer  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP interrupt will occur if  
enabled):  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address  
transfer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be gener-  
ated. If arbitration was lost during the data transfer  
stage, the device will need to retransfer the data at a  
later time.  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
Slave mode Idle (SSPM<3:0> = 1011) or with the  
Slave active. When both Master and Slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
TABLE 19-3: REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
55  
55  
55  
55  
57  
57  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
PIE1  
SSPBUF  
SSPADD  
SSPCON  
SSPSTAT  
TRISC(2)  
TRISD(2)  
SSP Receive Buffer/Transmit Register  
SSP Address Register (I2C mode)  
WCOL  
SMP(1)  
SSPOV  
CKE(1)  
SSPEN  
D/A  
CKP  
P
SSPM3 SSPM2 SSPM1 SSPM0  
S
R/W  
UA  
BF  
PORTC Data Direction Register  
PORTD Data Direction Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the SSP module in I2C mode.  
Note 1: Maintain these bits clear in I2C mode.  
2: Depending upon the setting of SSPMX in CONFIG3H, these pins are multiplexed to PORTC or PORTD.  
DS39616D-page 216  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The operation of the Enhanced USART module is  
controlled through three registers:  
20.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
• Transmit Status and Control (TXSTA)  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCON)  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is one of the  
two serial I/O modules available in the PIC18F2331/  
2431/4331/4431 family of microcontrollers. EUSART is  
also known as a Serial Communications Interface or  
SCI.  
These are detailed on the following pages in  
Register 20-1, Register 20-2 and Register 20-3,  
respectively.  
20.1 Asynchronous Operation in  
Power-Managed Modes  
The EUSART can be configured as a full-duplex  
asynchronous system that can communicate with  
peripheral devices, such as CRT terminals and  
personal computers. It can also be configured as a half-  
duplex synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs, etc.  
The EUSART may operate in Asynchronous mode  
while the peripheral clocks are being provided by the  
internal oscillator block. This makes it possible to  
remove the crystal or resonator that is commonly con-  
nected as the primary clock on the OSC1 and OSC2  
pins.  
The EUSART module implements additional features,  
including automatic baud rate detection and  
calibration, automatic wake-up on Sync Break  
reception and 12-bit Break character transmit. These  
features make it ideally suited for use in Local  
Interconnect Network (LIN/J2602) bus systems.  
The factory calibrates the internal oscillator block out-  
put (INTOSC) for 8 MHz (see Table 26-6). However,  
this frequency may drift as VDD or temperature  
changes, and this directly affects the asynchronous  
baud rate. Two methods may be used to adjust the  
baud rate clock, but both require a reference clock  
source of some kind.  
The EUSART can be configured in the following  
modes:  
The first (preferred) method uses the OSCTUNE  
register to adjust the INTOSC output back to 8 MHz.  
Adjusting the value in the OSCTUNE register allows for  
fine resolution changes to the system clock source (see  
Section 3.6.4 “INTOSC Frequency Drift” for more  
information).  
• Asynchronous (full-duplex) with:  
- Auto-wake-up on character reception  
- Auto-baud calibration  
- 12-bit Break character transmission  
• Synchronous – Master (half-duplex) with  
selectable clock polarity  
The other method adjusts the value in the Baud Rate  
Generator (BRG). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
• Synchronous – Slave (half-duplex) with selectable  
clock polarity  
In order to configure pins, TX and RX, as the Enhanced  
Universal Synchronous Asynchronous Receiver  
Transmitter:  
• SPEN (RCSTA<7>) bit must be set ( = 1),  
• TRISC<6> bit must be set ( = 1), and  
• TRISC<7> bit must be set ( = 1).  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
2010 Microchip Technology Inc.  
DS39616D-page 217  
PIC18F2331/2431/4331/4431  
REGISTER 20-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
bit 4  
bit 3  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR is empty  
0= TSR is full  
TX9D: 9th Bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS39616D-page 218  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 20-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled  
0= Serial port disabled  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-Bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-Bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be cleared by reading RCREGx register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit, CREN)  
0= No overrun error  
RX9D: 9th Bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
2010 Microchip Technology Inc.  
DS39616D-page 219  
PIC18F2331/2431/4331/4431  
REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER  
U-0  
R-1  
U-0  
R/W-1  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
RCIDL: Receive Operation Idle Status bit  
1= Receiver is Idle  
0= Receive in progress  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous mode:  
1= Idle state for clock (CK) is a high level  
0= Idle state for clock (CK) is a low level  
bit 3  
BRG16: 16-Bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGH and SPBRG  
0= 8-bit Baud Rate Generator – SPBRG only (Compatible mode), SPBRGH value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RX pin – interrupt generated on falling edge; bit cleared in  
hardware on following rising edge  
0= RX pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h);  
cleared in hardware upon completion.  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
DS39616D-page 220  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
20.2.1  
POWER-MANAGED MODE  
OPERATION  
20.2 EUSART Baud Rate Generator  
(BRG)  
The system clock is used to generate the desired baud  
rate. However, when a power-managed mode is  
entered, the clock source may be operating at a  
different frequency than in PRI_RUN mode. In Sleep  
mode, no clocks are present and in PRI_IDLE, the  
primary clock source continues to provide clocks to the  
Baud Rate Generator. However, in other power-  
managed modes, the clock frequency will probably  
change. This may require the value in SPBRG to be  
adjusted.  
The BRG is a dedicated 8-bit or 16-bit generator, that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode. Setting the BRG16 bit (BAUDCON<3>)  
selects 16-bit mode.  
The SPBRGH:SPBRG register pair controls the period  
of a free-running timer. In Asynchronous mode, bits  
BRGH (TXSTA<2>) and BRG16 also control the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 20-1 shows the formula for computation of the  
baud rate for different EUSART modes, which only  
apply in Master mode (internally generated clock).  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit  
and make sure that the receive operation is Idle before  
changing the system clock.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGH:SPBRG registers can be  
calculated using the formulas in Table 20-1. From this,  
the error in baud rate can be determined. An example  
calculation is shown in Example 20-1. Typical baud  
rates and error values for the various Asynchronous  
modes are shown in Table 20-2. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG, to reduce the baud rate error or  
achieve a slow baud rate for a fast oscillator frequency.  
20.2.2  
SAMPLING  
The data on the RC7/RX/DT/SDO pin is sampled three  
times by a majority detect circuit to determine if a high  
or a low level is present at the RX pin.  
Writing a new value to the SPBRGH:SPBRG registers  
causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
TABLE 20-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-Bit/Asynchronous  
8-Bit/Asynchronous  
16-Bit/Asynchronous  
16-Bit/Asynchronous  
8-Bit/Synchronous  
16-Bit/Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = value of SPBRGH:SPBRG register pair  
2010 Microchip Technology Inc.  
DS39616D-page 221  
PIC18F2331/2431/4331/4431  
EXAMPLE 20-1:  
CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate = FOSC/(64 ([SPBRGH:SPBRG] + 1))  
Solving for SPBRGH:SPBRG:  
X
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
=
=
=
9615  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
TABLE 20-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
ResetValues  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
56  
56  
56  
56  
56  
RCSTA  
BAUDCON  
SPBRGH  
SPBRG  
RCIDL  
ABDEN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
DS39616D-page 222  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
2.4  
9.6  
255  
129  
42  
129  
64  
2.441  
9.615  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.766  
1.73  
0.16  
0.94  
-1.36  
9.615  
0.16  
0.16  
-1.36  
-1.36  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
19.531  
56.818  
125.000  
21  
21  
10  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
0.300  
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
2010 Microchip Technology Inc.  
DS39616D-page 223  
PIC18F2331/2431/4331/4431  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2.400  
9.6  
9.606  
9.596  
9.615  
9.615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19.230  
57.142  
117.647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
DS39616D-page 224  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
This allows the user to verify that no carry occurred for 8-  
bit modes by checking for 00h in the SPBRGH register.  
Refer to Table 20-4 for counter clock rates to the BRG.  
20.2.3  
AUTO-BAUD RATE DETECT  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RCIF interrupt is set  
once the fifth rising edge on RX is detected. The value  
in the RCREG needs to be read to clear the RCIF  
interrupt. RCREG content should be discarded.  
The automatic baud rate measurement sequence  
(Figure 20-1) begins whenever a Start bit is received and  
the ABDEN bit is set. The calculation is self-averaging.  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Rate Detection will occur on  
the byte following the Break character  
(see Section 20.3.4 “Auto-Wake-up on  
Sync Break Character”).  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG. In  
ABD mode, the internal Baud Rate Generator is used  
as a counter to time the bit period of the incoming serial  
byte stream.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system timing  
and communication baud rates must be  
taken into consideration when using the  
Auto-Baud Rate Detection feature.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Detect  
must receive a byte with the value of 55h (ASCII “U”,  
which is also the LIN/J2602 bus Sync character) in  
order to calculate the proper bit rate. The measurement  
takes over both a low and a high bit time in order to  
minimize any effects caused by asymmetry of the  
incoming signal. After a Start bit, the SPBRG begins  
counting up, using the preselected clock source on the  
first rising edge of RX. After eight bits on the RX pin, or  
the fifth rising edge, an accumulated value totalling the  
proper BRG period is left in the SPBRGH:SPBRG  
registers. Once the 5th edge is seen (should  
correspond to the Stop bit), the ABDEN bit is  
automatically cleared.  
3: To maximize baud rate range, setting  
the BRG16 bit is recommended if the  
auto-baud feature is used.  
TABLE 20-4: BRG COUNTER CLOCK  
RATES  
BRG16 BRGH  
BRG Counter Clock  
While calibrating the baud rate period, the BRG regis-  
ters are clocked at 1/8th the preconfigured clock rate.  
The BRG clock can be configured by the BRG16 and  
BRGH bits. The BRG16 bit must be set to use both  
SPBRG and SPBRGH as a 16-bit counter.  
0
0
1
1
0
1
0
1
FOSC/512  
FOSC/256  
FOSC/128  
FOSC/32  
FIGURE 20-1:  
AUTOMATIC BAUD RATE CALCULATION(1)  
BRG Value  
XXXXh  
0000h  
001Ch  
Edge #2  
Bit 3  
Edge #3  
Edge #4  
Bit 7  
Bit 6  
Edge #5  
Stop Bit  
Edge #1  
Bit 1  
Bit 5  
Start  
Bit 0  
Bit 2  
Bit 4  
RX Pin  
BRG Clock  
Auto-Cleared  
Set by user  
ABDEN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
2010 Microchip Technology Inc.  
DS39616D-page 225  
PIC18F2331/2431/4331/4431  
Once the TXREG register transfers the data to the TSR  
20.3 EUSART Asynchronous Mode  
register (occurs in one TCY), the TXREG register is  
empty and flag bit, TXIF (PIR1<4>), is set. This inter-  
rupt can be enabled/disabled by setting/clearing  
enable bit, TXIE (PIE1<4>). Flag bit, TXIF, will be set,  
regardless of the state of enable bit TXIE and cannot be  
cleared in software. Flag bit, TXIF, is not cleared  
immediately upon loading the Transmit Buffer register,  
TXREG. TXIF becomes valid in the second instruction  
cycle following the load instruction. Polling TXIF  
immediately following a load of TXREG will return  
invalid results.  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA<4>). In this mode, the  
EUSART uses standard Non-Return-to-Zero (NRZ) for-  
mat (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit Baud Rate Generator can be  
used to derive standard baud rate frequencies from the  
oscillator.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but use the same data format and baud  
rate. The Baud Rate Generator produces a clock, either  
x16 or x64 of the bit shift rate, depending on the BRGH  
and BRG16 bits (TXSTA<2> and BAUDCON<3>). Par-  
ity is not supported by the hardware but can be  
implemented in software and stored as the 9th data bit.  
While flag bit, TXIF, indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. Status bit, TRMT, is a read-  
only bit, which is set when the TSR register is empty.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit in order to determine if the TSR register is  
empty.  
Asynchronous mode is available in all Low-Power  
modes; it is available in Sleep mode only when Auto-  
Wake-up on Sync Break is enabled. When in PRI_IDLE  
mode, no changes to the Baud Rate Generator values  
are required; however, other Low-Power mode clocks  
may operate at another frequency than the primary  
clock. Therefore, the Baud Rate Generator values may  
need to be adjusted.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit, TXIF, is set when enable bit,  
TXEN, is set.  
To set up an Asynchronous Transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
• Baud Rate Generator  
• Sampling Circuit  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
• Asynchronous Transmitter  
• Asynchronous Receiver  
3. If interrupts are desired, set enable bit, TXIE.  
• Auto-Wake-up on Sync Break Character  
• 12-Bit Break Character Transmit  
• Auto-Baud Rate Detection  
4. If 9-bit transmission is desired, set transmit bit,  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TXIF.  
20.3.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
The EUSART transmitter block diagram is shown in  
Figure 20-2. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG register (if available).  
7. Load data to the TXREG register (starts  
transmission).  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
DS39616D-page 226  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 20-2:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG Register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
  
TSR Register  
RC6/TX/CK/SS Pin  
Interrupt  
Baud Rate CLK  
SPBRG  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGH  
TX9  
Baud Rate Generator  
TX9D  
FIGURE 20-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK/SS  
(pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 20-4:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK/SS  
(pin)  
Start bit  
Word 2  
bit 0  
bit 1  
Word 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 2  
Transmit Shift Reg.  
Word 1  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
2010 Microchip Technology Inc.  
DS39616D-page 227  
PIC18F2331/2431/4331/4431  
TABLE 20-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
ResetValues  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
56  
56  
56  
56  
56  
56  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCON  
SPBRGH  
SPBRG  
SPEN  
CREN ADDEN FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP BRG16  
ABDEN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for asynchronous transmission.  
DS39616D-page 228  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
20.3.2  
EUSART ASYNCHRONOUS  
RECEIVER  
20.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 20-5.  
The data is received on the RC7/RX/DT/SDO pin and  
drives the data recovery block. The data recovery block  
is actually a high-speed shifter operating at x16 times  
the baud rate, whereas the main receive serial shifter  
operates at the bit rate or at FOSC. This mode would  
typically be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
3. If interrupts are desired, set enable bit, RCIE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be Acknowledged if the  
RCIE and GIE bits are set.  
6. Flag bit, RCIF, will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit, RCIE, was set.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG to determine if the device is being  
addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
RCREG register.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-5:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
SPBRGH  
64  
RSR Register  
  
MSb  
Stop  
LSb  
BRG16  
SPBRG  
or  
16  
Start  
(8)  
7
1
0
or  
Baud Rate Generator  
4  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RX9D  
RCREG Register  
RC7/RX/DT/SDO  
FIFO  
SPEN  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
2010 Microchip Technology Inc.  
DS39616D-page 229  
PIC18F2331/2431/4331/4431  
To set up an Asynchronous Transmission:  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit, BRGH (see Section 20.2 “EUSART  
Baud Rate Generator (BRG)”).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
3. If interrupts are desired, set enable bit, TXIE.  
4. If 9-bit transmission is desired, set transmit bit,  
TX9. Can be used as address/data bit.  
FIGURE 20-6:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0 bit 1  
bit 7/8  
bit 7/8  
bit 7/8  
RX (Pin)  
bit 0  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (Receive Buffer) is read after  
the third word, causing the OERR (Overrun) bit to be set.  
TABLE 20-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
ResetValues  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
56  
56  
56  
56  
56  
56  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCON  
SPEN  
CREN ADDEN FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP  
BRG16  
ABDEN  
SPBRGH EUSART Baud Rate Generator Register High Byte  
SPBRG EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for asynchronous reception.  
DS39616D-page 230  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
and cause data or framing errors. To work properly,  
therefore, the initial characters in the transmission must  
be all ‘0’s. This can be 00h (8 bits) for standard RS-232  
devices, or 000h (12 bits) for LIN/J2602 bus.  
20.3.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper byte reception cannot be per-  
formed. The auto-wake-up feature allows the controller  
to wake-up due to activity on the RX/DT line, while the  
EUSART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., LP, XT or HS/PLL mode). The  
Sync Break (or Wake-up Signal) character must be of  
sufficient length, and be followed by a sufficient inter-  
val, to allow enough time for the selected oscillator to  
start and provide proper initialization of the EUSART.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCON<1>). Once set, the typical receive  
sequence on RX/DT is disabled and the EUSART  
remains in an Idle state, monitoring for a wake-up event  
independent of the CPU mode. A wake-up event con-  
sists of a high-to-low transition on the RX/DT line. (This  
coincides with the start of a Sync Break or a Wake-up  
Signal character for the LIN/J2602 protocol.)  
20.3.4.2  
Special Considerations Using the  
WUE Bit  
The timing of WUE and RCIF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
EUSART in an Idle mode. The wake-up event causes  
a receive interrupt by setting the RCIF bit. The WUE bit  
is cleared after this when a rising edge is seen on RX/  
DT. The interrupt condition is then cleared by reading  
the RCREG register. Ordinarily, the data in RCREG will  
be dummy data and should be discarded.  
Following a wake-up event, the module generates an  
RCIF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 20-7), and asynchronously if the device is in  
Sleep mode (Figure 20-8). The interrupt condition is  
cleared by reading the RCREG register.  
The WUE bit is automatically cleared once a low-to-  
high transition is observed on the RX line following the  
wake-up event. At this point, the EUSART module is in  
Idle mode and returns to normal operation. This signals  
to the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set), and the RCIF flag is set, should not be used as an  
indicator of the integrity of the data in RCREG. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
20.3.4.1  
Special Considerations Using  
Auto-Wake-up  
Since Auto-Wake-up functions by sensing rising edge  
transitions on RX/DT, information with any state changes  
before the Stop bit may signal a false end-of-character  
FIGURE 20-7:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Auto-Cleared  
Bit Set by User  
WUE bit(1)  
RX/DT Line  
RCIF  
Cleared Due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 20-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Auto-Cleared  
Bit Set by User  
WUE bit(2)  
RX/DT Line  
RCIF  
Note 1  
Cleared Due to User Read of RCREG  
Sleep Ends  
Sleep Command Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.  
This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
2010 Microchip Technology Inc.  
DS39616D-page 231  
PIC18F2331/2431/4331/4431  
20.3.5  
BREAK CHARACTER SEQUENCE  
20.3.5.1  
Break and Sync Transmit Sequence  
The Enhanced USART module has the capability of  
sending the special Break character sequences that  
are required by the LIN/J2602 bus standard. The Break  
character transmit consists of a Start bit, followed by  
twelve ‘0’ bits and a Stop bit. The Frame Break charac-  
ter is sent whenever the SENDB and TXEN bits  
(TXSTA<3> and TXSTA<5>) are set while the Transmit  
Shift register is loaded with data. Note that the value of  
data written to TXREG will be ignored and all ‘0’s will  
be transmitted.  
The following sequence will send a message frame  
header made up of a Break, followed by an Auto-Baud  
Sync byte. This sequence is typical of a LIN/J2602 bus  
master.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to setup the  
Break character.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN/J2602 specification).  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
Note that the data value written to the TXREG for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
20.3.6  
RECEIVING A BREAK CHARACTER  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 20-9 for the timing of the Break  
character sequence.  
The Enhanced USART module can receive a Break  
character in two ways.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 of the typical speed. This allows  
for the Stop bit transition to be at the correct sampling  
location (13 bits for Break versus Start bit and 8 data  
bits for typical data).  
The second method uses the auto-wake-up feature  
described in Section 20.3.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on RX/DT,  
cause an RCIF interrupt and receive the next data byte  
followed by another interrupt.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABD bit  
before placing the EUSART in its Sleep mode.  
FIGURE 20-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
Start Bit  
TX (Pin)  
Bit 0  
Bit 1  
Break  
Bit 11  
Stop Bit  
TXIF bit  
(Interrupt Reg. Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB sampled here  
Auto-Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
DS39616D-page 232  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Once the TXREG register transfers the data to the TSR  
20.4 EUSART Synchronous Master  
register (occurs in one TCYCLE), the TXREG is empty  
and interrupt bit, TXIF (PIR1<4>), is set. The interrupt  
can be enabled/disabled by setting/clearing enable bit,  
TXIE (PIE1<4>). Flag bit, TXIF, will be set, regardless  
of the state of enable bit, TXIE, and cannot be cleared  
in software. It will reset only when new data is loaded  
into the TXREG register.  
Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit  
SYNC (TXSTA<4>). In addition, enable bit SPEN  
(RCSTA<7>) is set in order to configure the RC6/TX/  
CK/SS and RC7/RX/DT/SDO I/O pins to CK (clock)  
and DT (data) lines, respectively.  
While flag bit, TXIF, indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit, so the user must poll this bit in order to determine  
if the TSR register is empty. The TSR is not mapped in  
data memory, so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CK line. Clock polarity is  
selected with the SCKP bit (BAUDCON<4>). Setting  
SCKP sets the Idle state on CK as high, while clearing  
the bit, sets the Idle state low. This option is provided to  
support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
20.4.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
The EUSART transmitter block diagram is shown in  
Figure 20-2. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available).  
3. If interrupts are desired, set enable bit, TXIE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting bit, TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE bits  
in the INTCON register (INTCON<7:6>) are set.  
FIGURE 20-10:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT/  
SDO Pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 1  
Word 2  
RC6/TX/CK/  
SS Pin  
(SCKP = 0)  
RC6/TX/CK/  
SS pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
2010 Microchip Technology Inc.  
DS39616D-page 233  
PIC18F2331/2431/4331/4431  
FIGURE 20-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT/SDO Pin  
bit 0  
bit 1  
bit 2  
bit 6  
bit 7  
RC6/TX/CK/SS Pin  
Write to  
TXREG Reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
54  
57  
57  
57  
56  
56  
56  
56  
56  
56  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCON  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB  
SCKP BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
SPBRGH EUSART Baud Rate Generator Register High Byte  
SPBRG EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
DS39616D-page 234  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
3. Ensure bits, CREN and SREN, are clear.  
4. If interrupts are desired, set enable bit, RCIE.  
5. If 9-bit reception is desired, set bit, RX9.  
20.4.2  
EUSART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA<4>). Data is sampled on the  
RC7/RX/DT/SDO pin on the falling edge of the clock.  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
7. Interrupt flag bit, RCIF, will be set when  
reception is complete and an interrupt will be  
generated if the enable bit, RCIE, was set.  
If enable bit SREN is set, only a single word is received.  
If enable bit CREN is set, the reception is continuous  
until CREN is cleared. If both bits are set, then CREN  
takes precedence.  
8. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
To set up a Synchronous Master Reception:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
FIGURE 20-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT/SDO  
Pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC6/TX/CK/SS  
Pin  
(SCKP = 0)  
RC6/TX/CK/SS  
Pin  
(SCKP = 1)  
Write to  
SREN bit  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with SREN bit = 1and BRGH bit = 0.  
2010 Microchip Technology Inc.  
DS39616D-page 235  
PIC18F2331/2431/4331/4431  
TABLE 20-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
56  
56  
56  
56  
56  
56  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCON  
SPBRGH  
SPBRG  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
SCKP BRG16  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
DS39616D-page 236  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
To set up a Synchronous Slave Transmission:  
20.5 EUSART Synchronous Slave  
Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTA<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is  
supplied externally at the RC6/TX/CK/SS pin (instead  
of being supplied internally in Master mode). This  
allows the device to transfer or receive data while in  
any low-power mode.  
CSRC.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TXIE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
20.5.1  
EUSART SYNCHRONOUS SLAVE  
TRANSMIT  
7. Start transmission by loading data to the TXREG  
register.  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of Sleep mode.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit, TXIF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second word  
to the TSR and flag bit, TXIF, will now be set.  
e) If enable bit, TXIE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
56  
56  
56  
56  
56  
56  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCON  
SPBRGH  
SPBRG  
SPEN  
CREN ADDEN FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP BRG16  
ABDEN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
2010 Microchip Technology Inc.  
DS39616D-page 237  
PIC18F2331/2431/4331/4431  
To set up a Synchronous Slave Reception:  
20.5.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep, or any  
Idle mode and bit SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RCIE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this Low-Power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG register. If the RCIE enable bit is set, the inter-  
rupt generated will wake the chip from Low-Power  
mode. If the global interrupt is enabled, the program will  
branch to the interrupt vector.  
5. Flag bit, RCIF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RCIE, was set.  
6. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 20-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
54  
57  
57  
57  
56  
56  
56  
56  
56  
56  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCON  
SPBRGH  
SPBRG  
SPEN  
CREN ADDEN FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP BRG16  
ABDEN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
DS39616D-page 238  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
These features lend themselves to many applications  
including motor control, sensor interfacing, data  
acquisition and process control. In many cases, these  
features will reduce the software overhead associated  
with standard A/D modules.  
21.0 10-BIT HIGH-SPEED  
ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The high-speed Analog-to-Digital (A/D) Converter  
module allows conversion of an analog signal to a  
corresponding 10-bit digital number.  
The module has 9 registers:  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
• A/D Control Register 3 (ADCON3)  
• A/D Channel Select Register (ADCHS)  
• Analog I/O Select Register 0 (ANSEL0)  
• Analog I/O Select Register 1 (ANSEL1)  
The A/D module supports up to 5 input channels on  
PIC18F2331/2431 devices, and up to 9 channels on  
the PIC18F4331/4431 devices.  
This high-speed 10-bit A/D module offers the following  
features:  
• Up to 200K samples per second  
• Two sample and hold inputs for dual-channel  
simultaneous sampling  
• Selectable Simultaneous or Sequential Sampling  
modes  
• 4-word data buffer for A/D results  
• Selectable data acquisition timing  
• Selectable A/D event trigger  
• Operation in Sleep using internal oscillator  
2010 Microchip Technology Inc.  
DS39616D-page 239  
PIC18F2331/2431/4331/4431  
REGISTER 21-1: ADCON0: A/D CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADON  
ACONV  
ACSCH  
ACMOD1  
ACMOD0  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ACONV: Auto-Conversion Continuous Loop or Single-Shot Mode Select bit  
1= Continuous Loop mode enabled  
0= Single-Shot mode enabled  
bit 4  
ACSCH: Auto-Conversion Single or Multi-Channel Mode bit  
1= Multi-Channel mode enabled, Single Channel mode disabled  
0= Single Channel mode enabled, Multi-Channel mode disabled  
bit 3-2  
ACMOD<1:0>: Auto-Conversion Mode Sequence Select bits  
If ACSCH = 1:  
00= Sequential Mode 1 (SEQM1); two samples are taken in sequence:  
1st sample: Group A(1)  
2nd sample: Group B(1)  
01= Sequential Mode 2 (SEQM2); four samples are taken in sequence:  
1st sample: Group A(1)  
2nd sample: Group B(1)  
3rd sample: Group C(1)  
4th sample: Group D(1)  
10= Simultaneous Mode 1 (STNM1); two samples are taken simultaneously:  
1st sample: Group A and Group B(1)  
11= Simultaneous Mode 2 (STNM2); two samples are taken simultaneously:  
1st sample: Group A and Group B(1)  
2nd sample: Group C and Group D(1)  
If ACSCH = 0, Auto-Conversion Single Channel Sequence Mode Enabled:  
00= Single Channel Mode 1 (SCM1); Group A is taken and converted(1)  
01= Single Channel Mode 2 (SCM2); Group B is taken and converted(1)  
10= Single Channel Mode 3 (SCM3); Group C is taken and converted(1)  
11= Single Channel Mode 4 (SCM4); Group D is taken and converted(1)  
bit 1  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts the A/D conversion cycle. If Auto-  
Conversion Single-Shot mode is enabled (ACONV = 0), this bit is automatically cleared by  
hardware when the A/D conversion (single or multi-channel depending on ACMOD settings) has  
completed. If Auto-Conversion Continuous Loop mode is enabled (ACONV = 1), this bit remains  
set after the user/trigger has set it (continuous conversions). It may be cleared manually by the user  
to stop the conversions.  
0= A/D conversion or multiple conversions completed/not in progress  
bit 0  
ADON: A/D On bit  
1= A/D Converter module is enabled (after brief power-up delay, starts continuous sampling)  
0= A/D Converter module is disabled  
Note 1: Groups A, B, C, and D refer to the ADCHS register.  
DS39616D-page 240  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 21-2: ADCON1: A/D CONTROL REGISTER 1  
R/W-0  
R/W-0  
U-0  
R/W-0  
R-0  
R-0  
R-0  
R-0  
VCFG1  
VCFG0  
FIFOEN  
BFEMT  
BFOVL  
ADPNT1  
ADPNT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-6  
VCFG<1:0>: A/D VREF+ and A/D VREF- Source Selection bits  
00= VREF+ = AVDD, VREF- = AVSS (AN2 and AN3 are analog inputs or digital I/O)  
01= VREF+ = External VREF+, VREF- = AVSS (AN2 is an analog input or digital I/O)  
10= VREF+ = AVDD, VREF- = External VREF- (AN3 is an analog input or digital I/O)  
11= VREF+ = External VREF-, VREF- = External VREF-  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FIFOEN: FIFO Buffer Enable bit  
1= FIFO is enabled  
0= FIFO is disabled  
bit 3  
BFEMT: Buffer Empty bit  
1= FIFO is empty  
0= FIFO is not empty (at least one of four locations has unread A/D result data)  
bit 2  
BFOVFL: Buffer Overflow bit  
1= A/D result has overwritten a buffer location that has unread data  
0= A/D result has not overflowed  
bit 1-0  
ADPNT<1:0>: Buffer Read Pointer Location bits  
Designates the location to be read next.  
00= Buffer Address 0  
01= Buffer Address 1  
10= Buffer Address 2  
11= Buffer Address 3  
2010 Microchip Technology Inc.  
DS39616D-page 241  
PIC18F2331/2431/4331/4431  
REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT3  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6-3  
ACQT<3:0>: A/D Acquisition Time Select bits  
0000= No delay (conversion starts immediately when GO/DONE is set)(1)  
0001= 2 TAD  
0010= 4 TAD  
0011= 6 TAD  
0100= 8 TAD  
0101= 10 TAD  
0110= 12 TAD  
0111= 16 TAD  
1000= 20 TAD  
1001= 24 TAD  
1010= 28 TAD  
1011= 32 TAD  
1100= 36 TAD  
1101= 40 TAD  
1110= 48 TAD  
1111= 64 TAD  
bit 2-0  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC/4  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (Internal A/D RC Oscillator)  
Note 1: If the A/D RC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock  
starts. This allows the SLEEPinstruction to be executed before starting a conversion.  
DS39616D-page 242  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 21-4: ADCON3: A/D CONTROL REGISTER 3  
R/W-0  
R/W-0  
U-0  
R/W-0  
SSRC4(1)  
R/W-0  
SSRC3(1)  
R/W-0  
SSRC2(1)  
R/W-0  
SSRC1(1)  
R/W-0  
SSRC0(1)  
ADRS1  
ADRS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-6  
ADRS<1:0>: A/D Result Buffer Depth Interrupt Select Control for Continuous Loop Mode bits  
The ADRS bits are ignored in Single-Shot mode.  
00= Interrupt is generated when each word is written to the buffer  
01= Interrupt is generated when the 2nd and 4th words are written to the buffer  
10= Interrupt is generated when the 4th word is written to the buffer  
11= Unimplemented  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SSRC<4:0>: A/D Trigger Source Select bits(1)  
00000= All triggers disabled  
xxxx1= External interrupt RC3/INT0 starts A/D sequence  
xxx1x= Timer5 starts A/D sequence  
xx1xx= Input Capture 1 (IC1) starts A/D sequence  
x1xxx= CCP2 compare match starts A/D sequence  
1xxxx= Power Control PWM module rising edge starts A/D sequence  
Note 1: The SSRC<4:0> bits can be set such that any of the triggers will start a conversion (e.g., SSRC<4:0> = 00101  
will trigger the A/D conversion sequence when RC3/INT0 or Input Capture 1 event occurs).  
2010 Microchip Technology Inc.  
DS39616D-page 243  
PIC18F2331/2431/4331/4431  
REGISTER 21-5: ADCHS: A/D CHANNEL SELECT REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
GDSEL1  
GDSEL0  
GBSEL1  
GBSEL0  
GCSEL1  
GCSEL0  
GASEL1  
GASEL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
GDSEL<1:0>: Group D Select bits  
S/H-2 positive input.  
00= AN3  
01= AN7(1)  
1x= Reserved  
GBSEL<1:0>: Group B Select bits  
S/H-2 positive input.  
00= AN1  
01= AN5(1)  
1x= Reserved  
GCSEL<1:0>: Group C Select bits  
S/H-1 positive input.  
00= AN2  
01= AN6(1)  
1x= Reserved  
GASEL<1:0>: Group A Select bits  
S/H-1 positive input.  
00= AN0  
01= AN4  
10= AN8(1)  
11= Reserved  
Note 1: AN5 through AN8 are available only in PIC18F4331/4431 devices.  
DS39616D-page 244  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 21-6: ANSEL0: ANALOG SELECT REGISTER 0(1)  
R/W-1  
ANS7(2)  
R/W-1  
ANS6(2)  
R/W-1  
ANS5(2)  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
ANS<7:0>: Analog Input Function Select bits  
Correspond to pins, AN<7:0>.  
1= Analog input  
0= Digital I/O  
Note 1: Setting a pin to an analog input disables the digital input buffer. The corresponding TRIS bit should be set  
for an input and cleared for an output (analog or digital). The ANSx bits directly correspond to the ANx pins  
(e.g., ANS0 = AN0, ANS1 = AN1, etc.). Unused ANSx bits are read as ‘0’.  
2: ANS7 through ANS5 are available only on PIC18F4331/4431 devices.  
REGISTER 21-7: ANSEL1: ANALOG SELECT REGISTER 1(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
ANS8(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
ANS8: Analog Input Function Select bit(2)  
1= Analog input  
0= Digital I/O  
Note 1: Setting a pin to an analog input disables the digital input buffer. The corresponding TRIS bit should be set  
for an input and cleared for an output (analog or digital). The ANSx bits directly correspond to the ANx pins  
(e.g., ANS8 = AN8, ANS9 = AN9, etc.). Unused ANSx bits are read as ‘0’.  
2: ANS8 is available only on PIC18F4331/4431 devices.  
2010 Microchip Technology Inc.  
DS39616D-page 245  
PIC18F2331/2431/4331/4431  
The A/D channels are grouped into four sets of 2 or  
3 channels. For the PIC18F2331/2431 devices, AN0  
and AN4 are in Group A, AN1 is in Group B, AN2 is in  
Group C and AN3 is in Group D. For the PIC18F4331/  
4431 devices, AN0, AN4 and AN8 are in Group A, AN1  
and AN5 are in Group B, AN2 and AN6 are in Group C  
and AN3 and AN7 are in Group D. The selected chan-  
nel in each group is selected by configuring the A/D  
Channel Select Register, ADCHS.  
The A/D Converter has a unique feature of being able  
to operate while the device is in Sleep mode. To  
operate in Sleep, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted.  
Each port pin associated with the A/D Converter can  
individually be configured as an analog input or digital  
I/O using the ANSEL0 and ANSEL1 registers. The  
ADRESH and ADRESL registers contain the value in  
the result buffer pointed to by ADPNT<1:0>  
(ADCON1<1:0>). The result buffer is a 4-deep circular  
buffer that has a Buffer Empty status bit, BFEMT  
(ADCON1<3>), and a Buffer Overflow status bit,  
BFOVFL (ADCON1<2>).  
The analog voltage reference is software selectable to  
either the device’s positive and negative analog supply  
voltage (AVDD and AVSS), or the voltage level on the  
RA3/AN3/VREF+/CAP2/QEA and RA2/AN2/VREF-/  
CAP1/INDX, or some combination of supply and  
external sources. Register ADCON1 controls the  
voltage reference settings.  
FIGURE 21-1:  
A/D BLOCK DIAGRAM  
VCFG<1:0>  
(2)  
(2)  
AVSS  
AVDD  
VREF+  
VREF-  
VREFH  
VREFL  
ADC  
AN0  
AN4  
AN8(1)  
Analog  
MUX  
ADRESH, ADRESL  
MUX  
10  
AN2/VREF-  
ADPNT<1:0>  
AN6(1)  
00  
01  
10  
11  
1
2
3
4
S/H-1  
+
ACMOD<1:0>,  
GxSEL<1:0>  
S/H  
-
4x10-Bit FIFO  
AVSS  
ACONV  
ACSCH  
ACMODx  
AN1  
AN5(1)  
Analog  
MUX  
AN3/VREF+  
S/H-2  
+
AN7(1)  
S/H  
-
(2)  
ACMOD<1:0>,  
GxSEL<1:0>  
AVSS  
Seq.  
Cntrl.  
Note 1: AN5 through AN8 are available only on PIC18F4331/4431 devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39616D-page 246  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Continuous Loop mode allows the defined sequence to  
21.1 Configuring the A/D Converter  
be executed in a continuous loop when ACONV = 1. In  
this mode, either the user can trigger the start of  
conversion by setting the GO/DONE bit, or one of the  
A/D triggers can start the conversion. The interrupt flag,  
ADIF, is set based on the configuration of the bits,  
ADRS<1:0> (ADCON3<7:6>). In Simultaneous modes,  
STNM1 and STNM2 acquisition time must be config-  
ured to ensure proper conversion of the analog input  
signals.  
The A/D Converter has two types of conversions, two  
modes of operation and eight different Sequencing  
modes. These features are controlled by the ACONV  
bit (ADCON0<5>), ACSCH bit (ADCON0<4>) and  
ACMOD<1:0> bits (ADCON0<3:2>). In addition, the  
A/D channels are divided into four groups as defined  
in the ADCHS register. Table 21-1 shows the  
sequence configurations as controlled by the ACSCH  
and ACMOD<1:0> bits.  
21.1.2  
CONVERSION MODE  
21.1.1  
CONVERSION TYPE  
The ACSCH bit (ADCON0<4>) controls how many  
channels are used in the configured sequence. When  
clear, the A/D is configured for single channel conver-  
sion and will convert the group selected by the  
ACMOD<1:0> bits and the channel selected by the  
GxSEL<1:0> bits (ADCHS register). When ACSCH = 1,  
the A/D is configured for multiple channel conversion  
and the sequence is defined by ACMOD<1:0>.  
Two types of conversions exist in the high-speed 10-bit  
A/D Converter module that are selected using the  
ACONV bit. Single-Shot mode allows a single conversion  
or sequence to be enabled when ACONV = 0. At the end  
of the sequence, the GO/DONE bit will be automatically  
cleared and the interrupt flag, ADIF, will be set. When  
using Single-Shot mode and configured for  
Simultaneous mode, STNM2, acquisition time must be  
used to ensure proper conversion of the analog input  
signals.  
TABLE 21-1: AUTO-CONVERSION SEQUENCE CONFIGURATIONS  
Mode  
ACSCH ACMOD<1:0>  
Description  
Multi-Channel Sequential Mode 1  
(SEQM1)  
1
1
1
1
00  
01  
10  
11  
Groups A and B are sampled and converted  
sequentially.  
Multi-Channel Sequential Mode 2  
(SEQM2)  
Groups A, B, C and D are sampled and converted  
sequentially.  
Multi-Channel Simultaneous Mode 1  
(STNM1)  
Groups A and B are sampled simultaneously and  
converted sequentially.  
Multi-Channel Simultaneous Mode 2  
(STNM2)  
Groups A and B are sampled simultaneously, then  
converted sequentially. Then, Group C and D are  
sampled simultaneously, then converted  
sequentially.  
Single Channel Mode 1 (SCM1)  
Single Channel Mode 2 (SCM2)  
Single Channel Mode 3 (SCM3)  
Single Channel Mode 4 (SCM4)  
0
0
0
0
00  
01  
10  
11  
Group A is sampled and converted.  
Group B is sampled and converted.  
Group C is sampled and converted.  
Group D is sampled and converted.  
2010 Microchip Technology Inc.  
DS39616D-page 247  
PIC18F2331/2431/4331/4431  
21.1.3  
CONVERSION SEQUENCING  
21.1.5  
A/D MODULE INITIALIZATION  
STEPS  
The ACMOD<1:0> bits control the sequencing of the  
A/D conversions. When ACSCH = 0, the A/D is  
configured to sample and convert a single channel.  
The ACMOD bits select which group to perform the  
conversions and the GxSEL<1:0> bits select which  
channel in the group is to be converted. If Single-Shot  
mode is enabled, the A/D interrupt flag will be set after  
the channel is converted. If Continuous Loop mode is  
enabled, the A/D interrupt flag will be set according to  
the ADRS<1:0> bits.  
The following steps should be followed to initialize the  
A/D module:  
1. Configure the A/D module:  
a) Configure the analog pins, voltage reference  
and digital I/O.  
b) Select the A/D input channels.  
c) Select the A/D Auto-Conversion mode  
(Single-Shot or Continuous Loop).  
d) Select the A/D conversion clock.  
e) Select the A/D conversion trigger.  
2. Configure the A/D interrupt (if required):  
a) Set the GIE bit.  
When ACSCH = 1, multiple channel sequencing is  
enabled and two submodes can be selected. The first  
mode is Sequential mode with two settings. The first set-  
ting is called SEQM1, and first samples and converts the  
selected Group A channel, and then samples and  
converts the selected Group B channel. The second  
mode is called SEQM2, and it samples and converts a  
Group A channel, Group B channel, Group C channel  
and finally, a Group D channel.  
b) Set the PEIE bit.  
c) Set the ADIE bit.  
d) Clear the ADIF bit.  
e) Select the A/D trigger setting.  
f) Select the A/D interrupt priority.  
3. Turn on ADC:  
The second multiple channel sequencing submode is  
Simultaneous Sampling mode. In this mode, there are  
also two settings. The first setting is called STNM1, and  
uses the two sample and hold circuits on the A/D  
module. The selected Group A and B channels are  
simultaneously sampled and then the Group A channel  
is converted followed by the conversion of the Group B  
channel. The second setting is called STNM2, and  
starts the same as STNM1, but follows it with a  
simultaneous sample of Group C and D channels. The  
A/D module will then convert the Group C channel  
followed by the Group D channel.  
a) Set the ADON bit in the ADCON0 register.  
b) Wait the required power-up setup time,  
about 5-10 s.  
4. Start the sample/conversion sequence:  
a) Sample for a minimum of 2 TAD and start  
the conversion by setting the GO/DONE bit.  
The GO/DONE bit is set by the user in  
software or by the module if initiated by a  
trigger.  
b) If TACQ is assigned a value (multiple of TAD),  
then setting the GO/DONE bit starts a  
sample period of the TACQ value, then starts  
a conversion.  
21.1.4  
TRIGGERING A/D CONVERSIONS  
The PIC18F2331/2431/4331/4431 devices are capable  
of triggering conversions from many different sources.  
The same method used by all other microcontrollers of  
setting the GO/DONE bit still works. The other trigger  
sources are:  
5. Wait for A/D conversion/conversions to  
complete using one of the following options:  
a) Poll for the GO/DONE bit to be cleared if in  
Single-Shot mode.  
• RC3/INT0 Pin  
b) Wait for the A/D Interrupt Flag (ADIF) to be  
set.  
• Timer5 Overflow  
• Input Capture 1 (IC1)  
• CCP2 Compare Match  
• Power Control PWM Rising Edge  
c) Poll for the BFEMT bit to be cleared to  
signify that at least the first conversion has  
completed.  
These triggers are enabled using the SSRC<4:0> bits  
(ADCON3<4:0>). Any combination of the five sources  
can trigger a conversion by simply setting the corre-  
sponding bit in ADCON3. When the trigger occurs, the  
GO/DONE bit is automatically set by the hardware and  
then cleared once the conversion completes.  
6. Read the A/D results, clear the ADIF flag,  
reconfigure the trigger.  
DS39616D-page 248  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
21.2 A/D Result Buffer  
21.3 A/D Acquisition Requirements  
The A/D module has a 4-level result buffer with an  
address range of 0 to 3, enabled by setting the FIFOEN  
bit in the ADCON1 register. This buffer is implemented  
in a circular fashion, where the A/D result is stored in  
one location and the address is incremented. If the  
address is greater than 3, the pointer is wrapped back  
around to 0. The result buffer has a Buffer Empty Flag,  
BFEMT, indicating when any data is in the buffer. It also  
has a Buffer Overflow Flag, BFOVFL, which indicates  
when a new sample has overwritten a location that was  
not previously read.  
For the A/D Converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 21-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 k. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
Associated with the buffer is a pointer to the address for  
the next read operation. The ADPNT<1:0> bits  
configure the address for the next read operation.  
These bits are read-only.  
Note:  
When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
The Result Buffer also has a configurable interrupt  
trigger level that is configured by the ADRS<1:0> bits.  
The user has three selections: interrupt flag set on  
every write to the buffer, interrupt on every second write  
to the buffer, or interrupt on every fourth write to the  
buffer. ADPNT<1:0> are reset to ‘00’ every time a  
conversion sequence is started (either by setting the  
GO/DONE bit or on a trigger).  
To calculate the minimum acquisition time,  
Equation 21-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
Note:  
When right justified, reading ADRESL  
increments the ADPNT<1:0> bits. When  
left justified, reading ADRESH increments  
the ADPNT<1:0> bits.  
Example 21-1 shows the calculation of the minimum  
required acquisition time TACQ. In this case, the  
converter module is fully powered up at the outset and  
therefore, the amplifier settling time, TAMP, is negligible.  
This calculation is based on the following application  
system assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
9 pF  
100  
1/2 LSb  
5V Rss = 6 k  
50°C (system max.)  
0V @ time = 0  
EQUATION 21-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 21-2: MINIMUM A/D HOLDING CAPACITOR CHARGING TIME  
VHOLD  
or  
TC  
=
=
(VREF – (VREF/2048)) • (1 – e(-TC/CHOLD(RIC + RSS + RS))  
)
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
2010 Microchip Technology Inc.  
DS39616D-page 249  
PIC18F2331/2431/4331/4431  
EXAMPLE 21-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
Negligible  
(Temp – 25°C)(0.005 s/°C)  
(50°C – 25°C)(0.005 s/°C) = .13 s  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 s.  
TC  
=
-(CHOLD) (RIC + RSS + RS) ln(1/2047) s  
-(9 pF) (1 k+ 6 k+ 100) ln(0.0004883) s = .49 s  
TACQ  
=
0 + .49 s + .13 s = .62 s  
Note: If the converter module has been in Sleep mode, TAMP is 2.0 s from the time the part exits Sleep mode.  
FIGURE 21-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
VAIN  
ILEAKAGE  
±100 nA  
CHOLD = 9 pF  
VT = 0.6V  
5 pF  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
6V  
5V  
VDD 4V  
VT  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
3V  
RIC  
= Interconnect Resistance  
2V  
SS  
= Sampling Switch  
CHOLD  
RSS  
= Sample/Hold Capacitance (from DAC)  
= Sampling Switch Resistance  
5
6
7
8 9 10 11  
Sampling Switch (k)  
Note:  
For VDD < 2.7V and temperatures below 0°C, VAIN should be restricted to range: VAIN < VDD/2.  
DS39616D-page 250  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
If desired, the ACQT bits can be set to select a  
programmable acquisition time for the A/D module.  
When triggered, the A/D module continues to sample  
the input for the selected acquisition time, then  
21.4 A/D Voltage References  
If external voltage references are used instead of the  
internal AVDD and AVSS sources, the source  
impedance of the VREF+ and VREF- voltage sources  
must be considered. During acquisition, currents  
supplied by these sources are insignificant. However,  
during conversion, the A/D module sinks and sources  
current through the reference sources.  
automatically begins  
a
conversion. Since the  
acquisition time is programmed, there may be no need  
to wait for an acquisition time between selecting a  
channel and triggering the A/D. If an acquisition time is  
programmed, there is nothing to indicate if the  
acquisition time has ended or if the conversion has  
begun.  
In order to maintain the A/D accuracy, the voltage  
reference source impedances should be kept low to  
reduce voltage changes. These voltage changes occur  
as reference currents flow through the reference  
source impedance.  
21.6 Selecting the A/D Conversion  
Clock  
Note:  
When using external references, the  
source impedance of the external voltage  
references must be less than 75in order  
to achieve the specified ADC resolution. A  
higher reference source impedance will  
increase the ADC offset and gain errors.  
Resistive voltage dividers will not provide a  
low enough source impedance. To ensure  
the best possible ADC performance, exter-  
nal VREF inputs should be buffered with an  
op amp or other low-impedance circuit.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are eight possible options for TAD:  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC Oscillator  
• Internal RC Oscillator/4  
21.5 Selecting and Configuring  
Automatic Acquisition Time  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible, but greater than the  
minimum TAD (approximately 416 ns, see parameter  
A11 for more information).  
The ADCON2 register allows the user to select an acqui-  
sition time that occurs each time an A/D conversion is  
triggered.  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensuring  
the required acquisition time has passed between  
selecting the desired input channel and the start of  
conversion. This occurs when the ACQT<3:0> bits  
(ADCON2<6:3>) remain in their Reset state (‘0000’).  
Table 21-2 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 21-2: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS<2:0>  
PIC18FXX31  
PIC18LFXX31(4)  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC/4(3)  
RC(3)  
000  
100  
001  
101  
010  
110  
011  
111  
4.8 MHz  
9.6 MHz  
666 kHz  
1.33 MHz  
2.66 MHz  
5.33 MHz  
10.65 MHz  
21.33 MHz  
1.00 MHz(2)  
4.0 MHz(2)  
19.2 MHz  
38.4 MHz  
40.0 MHz  
40.0 MHz  
1.00 MHz(1)  
4.0 MHz(2)  
Note 1: The RC source has a typical TAD time of 2-6 s.  
2: The RC source has a typical TAD time of 0.5-1.5 s.  
3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D  
accuracy may be out of specification unless in Single-Shot mode.  
4: Low-power devices only.  
2010 Microchip Technology Inc.  
DS39616D-page 251  
PIC18F2331/2431/4331/4431  
21.7 Operation in Power-Managed  
Modes  
21.8 Configuring Analog Port Pins  
The ANSEL0, ANSEL1, TRISA and TRISE registers all  
configure the A/D port pins. The port pins needed as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The selection of the automatic acquisition time and A/D  
conversion clock is determined in part by the clock  
source and frequency while in a power-managed mode.  
If the A/D is expected to operate while the device is in  
The A/D operation is independent of the state of the  
ANSEL0, ANSEL1 and TRIS bits.  
a
power-managed mode, the ACQT<3:0> and  
ADCS<2:0> bits in ADCON2 should be updated in  
accordance with the power-managed mode clock that  
will be used. After the power-managed mode is entered  
(either of the power-managed Run modes), an A/D  
acquisition or conversion may be started. Once an  
acquisition or conversion is started, the device should  
continue to be clocked by the same power-managed  
mode clock source until the conversion has been com-  
pleted. If desired, the device may be placed into the  
corresponding power-managed Idle mode during the  
conversion.  
Note 1: When reading the PORT register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins  
configured as digital inputs will convert an  
analog input. Analog levels on a digitally  
configured input will be accurately  
converted.  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
If the power-managed mode clock frequency is less  
than 1 MHz, the A/D RC clock source should be  
selected.  
Operation in Sleep mode requires the A/D RC clock to  
be selected. If bits, ACQT<3:0>, are set to ‘0000’ and  
a conversion is started, the conversion will be delayed  
one instruction cycle to allow execution of the SLEEP  
instruction and entry to Sleep mode. The IDLEN and  
SCS bits in the OSCCON register must have already  
been cleared prior to starting the conversion.  
Note:  
The A/D can operate in Sleep mode only  
when configured for Single-Shot mode. If  
the part is in Sleep mode, and it is possible  
for a source other than the A/D module to  
wake the part, the user must poll  
ADCON0<GO/DONE> to ensure it is clear  
before reading the result.  
DS39616D-page 252  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The resulting buffer loca-  
tion will contain the partially completed A/D conversion  
sample. This will not set the ADIF flag, therefore, the  
user must read the buffer location before a conversion  
sequence overwrites it.  
21.9 A/D Conversions  
Figure 21-3 shows the operation of the A/D Converter  
after the GO/DONE bit has been set and the  
ACQT<2:0> bits are cleared. A conversion is started  
after the following instruction to allow entry into Sleep  
mode before the conversion begins. The internal A/D  
RC oscillator must be selected to perform a conversion  
in Sleep.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can be  
started. After this wait, acquisition on the selected  
channel is automatically started.  
Figure 21-4 shows the operation of the A/D Converter  
after the GO/DONE bit has been set, the ACQT<3:0>  
bits are set to ‘010’ and a 4 TAD acquisition time is  
selected before the conversion starts.  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 21-3:  
GO/DONE bit is  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b6  
set and holding  
cap is  
b8  
b4  
b3  
b2  
b9  
b5  
b7  
b0  
b1  
disconnected  
from analog  
input  
Conversion Starts  
GO/DONE bit cleared on the rising edge of Q1 after the first Q3  
following TAD11 and result buffer is loaded.(1)  
Note 1: Conversion time is a minimum of 11 TAD + 2 TCY and a maximum of 11 TAD + 6 TCY.  
FIGURE 21-4:  
A/D CONVERSION TAD CYCLES (ACQT<3:0> = 0010, TACQ = 4 TAD)  
TACQT Cycles  
TAD Cycles  
1
2
3
4
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b6  
b9  
Conversion Starts  
(Holding capacitor is disconnected)  
b8  
b5  
b4  
b3  
b2  
b7  
b0  
b1  
Automatic  
Acquisition  
Time  
A/D Triggered  
GO/DONE bit cleared on the rising edge of Q1 after the first Q3  
following TAD11 and result buffer is loaded.(1)  
Note 1: In Continuous modes, next conversion starts at the end of TAD12.  
2010 Microchip Technology Inc.  
DS39616D-page 253  
PIC18F2331/2431/4331/4431  
Format Select bit (ADFM) controls this justification.  
Figure 21-5 shows the operation of the A/D result  
justification. The extra bits are loaded with ‘0’s. When  
an A/D result will not overwrite these locations (A/D  
disable), these registers may be used as two general  
purpose 8-bit registers.  
21.9.1  
A/D RESULT REGISTER  
The ADRESH:ADRESL register pair is the location  
where the 10-bit A/D result is loaded at the completion  
of the A/D conversion. This register pair is 16 bits wide.  
The A/D module gives the flexibility to left or right justify  
the 10-bit result in the 16-bit result register. The A/D  
FIGURE 21-5:  
A/D RESULT JUSTIFICATION  
10-Bit Result  
ADFM = 0  
ADFM = 1  
0
7
7
2 1 0 7  
0 7 6 5  
0
0000 00  
0000 00  
ADRESH  
ADRESL  
ADRESH  
ADRESL  
10-Bit Result  
10-Bit Result  
Left Justified  
Right Justified  
EQUATION 21-3: CONVERSION TIME FOR MULTI-CHANNEL MODES  
Sequential Mode:  
T = (TACQ)A + (TCON)A + [(TACQ)B – 12 TAD] + (TCON)B + [(TACQ)C – 12 TAD] + (TCON)C + [(TACQ)D – 12 TAD] + (TCON)D  
Simultaneous Mode:  
T = TACQ + (TCON)A + (TCON)B + TACQ + (TCON)C + (TCON)D  
DS39616D-page 254  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 21-3: SUMMARY OF A/D REGISTERS  
Reset Values  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
LVDIF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
54  
57  
57  
57  
57  
57  
57  
56  
56  
56  
56  
56  
56  
56  
56  
56  
57  
57  
57  
57  
57  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
TMR1IF  
TMR1IE  
TMR1IP  
CCP2IF  
CCP2IE  
CCP2IP  
IPR1  
PIR2  
PIE2  
OSCFIF  
OSCFIE  
OSCFIP  
LVDIE  
IPR2  
LVDIP  
ADRESH A/D Result Register High Byte  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
ANSEL0  
ANSEL1  
PORTA  
A/D Result Register Low Byte  
ACONV ACSCH ACMOD1 ACMOD0 GO/DONE  
ADON  
ADPNT0  
ADCS0  
SSRC0  
GASEL0  
ANS0  
VCFG1  
ADFM  
ADRS1  
VCFG0  
ACQT3  
ADRS0  
FIFOEN BFEMT BFOVFL  
ADPNT1  
ADCS1  
SSRC1  
GASEL1  
ANS1  
ACQT2 ACQT1  
SSRC4  
ACQT0  
SSRC3  
ADCS2  
SSRC2  
GDSEL1 GDSEL0 GBSEL1 GBSEL0 GCSEL1 GCSEL0  
ANS7(6)  
ANS6(6) ANS5(6)  
ANS4  
ANS3  
ANS2  
ANS8(5)  
RA7(4)  
RA6(4)  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
TRISA  
TRISA7(4) TRISA6(4) PORTA Data Direction Register  
PORTE(2)  
TRISE(3)  
LATE(3)  
RE3(1,3)  
RA2(3)  
RA1(3)  
RA0(3)  
PORTE Data Direction Register  
LATE Data Output Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: The RE3 port bit is available only as an input pin when the MCLRE bit in the CONFIG3H register is ‘0’.  
2: This register is not implemented on PIC18F2331/2431 devices.  
3: These bits are not implemented on PIC18F2331/2431 devices.  
4: These pins may be configured as port pins depending on the oscillator mode selected.  
5: ANS5 through ANS8 are available only on the PIC18F4331/4431 devices.  
6: Not available on 28-pin devices.  
2010 Microchip Technology Inc.  
DS39616D-page 255  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 256  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The block diagram for the LVD module is shown in  
Figure 22-1.  
22.0 LOW-VOLTAGE DETECT (LVD)  
PIC18F2331/2431/4331/4431 devices have a Low-  
Voltage Detect module (LVD), a programmable circuit  
that enables the user to specify a device voltage trip  
point. If the device experiences an excursion below the  
trip point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to the interrupt.  
The module is enabled by setting the LVDEN bit, but  
the circuitry requires some time to stabilize each time  
that it is enabled. The IRVST bit is a read-only bit used  
to indicate when the circuit is stable. The module can  
only generate an interrupt after the circuit is stable and  
the IRVST bit is set. The module monitors for drops in  
VDD below a predetermined set point.  
The Low-Voltage Detect Control register (Register 22-1)  
completely controls the operation of the LVD module.  
This allows the circuitry to be “turned off” by the user  
under software control, which minimizes the current  
consumption for the device.  
REGISTER 22-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3(1)  
R/W-1  
LVDL2(1)  
R/W-0  
LVDL1(1)  
R/W-1  
LVDL0(1)  
IRVST  
LVDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified voltage  
range  
0= Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the specified  
voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0  
LVDL<3:0>: Low-Voltage Detection Limit bits(1)  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= Maximum setting  
.
.
.
0010= Minimum setting  
0001= Reserved  
0000= Reserved  
Note 1: LVDL<3:0> bit modes, which result in a trip point below the valid operating voltage of the device, are not  
tested.  
2010 Microchip Technology Inc.  
DS39616D-page 257  
PIC18F2331/2431/4331/4431  
FIGURE 22-1:  
LVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)  
Externally Generated  
Trip Point  
VDD  
VDD  
LVDL<3:0>  
LVDCON  
Register  
LVDIN  
VDIRMAG  
LVDEN  
LVDIN  
Set  
LVDIF  
LVDEN  
BOREN  
Internal Voltage  
Reference  
DS39616D-page 258  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
22.1 Operation  
22.2 LVD Setup  
When the LVD module is enabled, a comparator uses  
an internally generated reference voltage as the set  
point. The set point is compared with the trip point,  
where each node in the resistor divider represents a  
trip point voltage. The “trip point” voltage is the voltage  
level at which the device detects a low-voltage event,  
depending on the configuration of the module. When  
the supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the internal  
reference voltage generated by the voltage reference  
module. The comparator then generates an interrupt  
signal by setting the LVDIF bit.  
The following steps are needed to set up the LVD  
module:  
1. Disable the module by clearing the LVDEN bit  
(LVDCON<4>).  
2. Write the value to the LVDL<3:0> bits that  
selects the desired LVD trip point.  
3. Enable the LVD module by setting the LVDEN  
bit.  
4. Clear the LVD interrupt flag (PIR2<2>), which  
may have been set from a previous interrupt.  
5. Enable the LVD interrupt, if interrupts are  
desired, by setting the LVDIE and GIE bits  
(PIE<2> and INTCON<7>).  
The trip point voltage is software programmable to any  
one of 16 values, selected by programming the  
LVDL<3:0> bits (LVDCON<3:0>).  
An interrupt will not be generated until the IRVST bit is set.  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from an  
external source. This mode is enabled when bits,  
LVDL<3:0>, are set to ‘1111’. In this state, the compar-  
ator input is multiplexed from the external input pin,  
LVDIN. This gives users flexibility because it allows  
them to configure the Low-Voltage Detect interrupt to  
occur at any voltage in the valid operating range.  
22.3 Current Consumption  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The total current consumption, when enabled, is  
specified in electrical specification Parameter D022B.  
Depending on the application, the LVD module does  
not need to be operating constantly. To decrease the  
current requirements, the LVD circuitry may only need  
to be enabled for short periods where the voltage is  
checked. After doing the check, the LVD module may  
be disabled.  
2010 Microchip Technology Inc.  
DS39616D-page 259  
PIC18F2331/2431/4331/4431  
start-up time, TIRVST, is an interval that is independent  
of device clock speed. It is specified in electrical  
specification Parameter 36.  
22.4 LVD Start-up Time  
The internal reference voltage of the LVD module,  
specified in electrical specification Parameter D420,  
may be used by other internal circuitry, such as the  
Programmable Brown-out Reset. If the LVD, or other  
circuits using the voltage reference, are disabled to  
lower the device’s current consumption, the reference  
voltage circuit will require time to become stable before  
a low-voltage condition can be reliably detected. This  
The LVD interrupt flag is not enabled until TIRVST has  
expired and a stable reference voltage is reached. For  
this reason, brief excursions beyond the set point may  
not be detected during this interval (refer to Figure 22-2).  
FIGURE 22-2:  
LOW-VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIRVST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIRVST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS39616D-page 260  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
22.5 Operation During Sleep  
22.7 Applications  
When enabled, the LVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from Sleep. Device execution will continue from the  
interrupt vector address if interrupts have been globally  
enabled.  
Figure 22-3 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage,  
VA, the LVD logic generates an interrupt. This occurs at  
time, TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to perform “housekeeping tasks” and to shut  
down the system. Voltage point, VB, is the minimum  
valid operating voltage specification. This occurs at  
time, TB. The difference, TB TA, is the total time for  
shutdown.  
22.6 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the LVD module to be turned off.  
FIGURE 22-3:  
TYPICAL LOW-VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
TABLE 22-1: REGISTERS ASSOCIATED WITH LOW-VOLTAGE DETECT MODULE  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LVDCON  
INTCON  
IPR2  
IRVST  
LVDEN  
INT0IE  
EEIP  
LVDL3  
RBIE  
LVDL2  
TMR0IF  
LVDIP  
LVDIF  
LVDL1  
INT0IF  
LVDL0  
RBIF  
GIE/GIEH PEIE/GIEL TMR0IE  
OSCFIP  
OSCFIF  
OSCFIE  
CCP2IP  
CCP2IF  
CCP2IE  
PIR2  
EEIF  
PIE2  
EEIE  
LVDIE  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the LVD module.  
2010 Microchip Technology Inc.  
DS39616D-page 261  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 262  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
23.1 Configuration Bits  
23.0 SPECIAL FEATURES OF THE  
CPU  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select  
various device configurations. These bits are mapped  
starting at program memory location 300000h.  
PIC18F2331/2431/4331/4431 devices include several  
features intended to maximize system reliability and min-  
imize cost through elimination of external components.  
These are:  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h-3FFFFFh),  
which can only be accessed using table reads and  
table writes.  
• Oscillator Selection  
• Resets:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Programming the Configuration registers is done in a  
manner similar to programming the Flash memory. The  
EECON1 register WR bit starts a self-timed write to the  
Configuration register. In normal operation mode, a  
TBLWT instruction with the TBLPTR pointing to the  
Configuration register sets up the address and the data  
for the Configuration register write. Setting the WR bit  
starts a long write to the Configuration register. The  
Configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell. For additional details  
on Flash programming, refer to Section 8.5 “Writing  
to Flash Program Memory”.  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming™ (ICSP™)  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 3.0  
“Oscillator Configurations”.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, PIC18F2331/2431/4331/  
4431 devices have a Watchdog Timer, which is either  
permanently enabled via the Configuration bits, or  
software-controlled (if configured as disabled).  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure. Two-  
Speed Start-up enables code to be executed almost  
immediately on start-up, while the primary clock source  
completes its start-up delays.  
All of these features are enabled and configured by  
setting the appropriate Configuration register bits.  
2010 Microchip Technology Inc.  
DS39616D-page 263  
PIC18F2331/2431/4331/4431  
TABLE 23-1: CONFIGURATION BITS AND DEVICE IDs  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300000h CONFIG1L  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
300004h CONFIG3L  
IESO  
FCMEN  
---- ----  
11-- 1111  
---- 1111  
--11 1111  
--11 11--  
1--1 11-1  
1--- -1-1  
---- ----  
---- 1111  
11-- ----  
---- 1111  
111- ----  
---- 1111  
-1-- ----  
FOSC3  
BORV1  
FOSC2 FOSC1  
FOSC0  
BORV0 BOREN PWRTEN  
WINEN  
T1OSCMX  
WDTPS3  
HPOL  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
LPOL  
PWMPIN  
(1)  
(1)  
(1)  
(1)  
(1)  
300005h CONFIG3H MCLRE  
300006h CONFIG4L DEBUG  
EXCLKMX  
PWM4MX SSPMX  
FLTAMX  
LVP  
STVREN  
300007h CONFIG4H  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
(1)  
(1)  
CP3  
CP2  
CP1  
CP0  
CPD  
CPB  
(1)  
(1)  
(1)  
(1)  
WRT3  
WRT2  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
(2)  
(2)  
3FFFFEh DEVID1  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
xxxx xxxx  
(2)  
3FFFFFh DEVID2  
0000 0101  
Legend:  
x= unknown, u= unchanged, -= unimplemented. Shaded cells are unimplemented, read as ‘0’.  
Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.  
2: See Register 23-13 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.  
REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)  
R/P-1  
IESO  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
FCMEN  
FOSC3  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7  
bit 6  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode enabled  
0= Internal External Switchover mode disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
FOSC<3:0>: Oscillator Selection bits  
11xx= External RC oscillator, CLKO function on RA6  
1001= Internal oscillator block, CLKO function on RA6 and port function on RA7 (INTIO1)  
1000= Internal oscillator block, port function on RA6 and port function on RA7 (INTIO2)  
0111= External RC oscillator, port function on RA6  
0110= HS oscillator, PLL enabled (clock frequency = 4 x FOSC1)  
0101= EC oscillator, port function on RA6 (ECIO)  
0100= EC oscillator, CLKO function on RA6 (EC)  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
DS39616D-page 264  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 23-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
BOREN(1)  
R/P-1  
PWRTEN(1)  
bit 0  
BORV1  
BORV0  
bit 7  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7-4  
bit 3-2  
Unimplemented: Read as ‘0’  
BORV<1:0>: Brown-out Reset Voltage bits  
11= Reserved  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit(1)  
1= Brown-out Reset is enabled  
0= Brown-out Reset is disabled  
PWRTEN: Power-up Timer Enable bit(1)  
1= PWRT is disabled  
0= PWRT is enabled  
Note 1: Having BOREN = 1does not automatically override the PWRTEN to ‘0’, nor automatically enables the  
Power-up Timer.  
2010 Microchip Technology Inc.  
DS39616D-page 265  
PIC18F2331/2431/4331/4431  
REGISTER 23-3:  
CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WINEN  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
WDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
WINEN: Watchdog Timer Window Enable bit  
1= WDT window is disabled  
0= WDT window is enabled  
bit 4-1  
WDTPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT is enabled  
0= WDT is disabled (control is placed on the SWDTEN bit)  
DS39616D-page 266  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 23-4: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)  
U-0  
U
R/P-1  
R/P-1  
HPOL(1)  
R/P-1  
LPOL(1)  
R/P-1  
PWMPIN(3)  
U
U
T1OSCMX  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
U = Unchanged from programmed state  
-n = Value when device is unprogrammed  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
T1OSCMX: Timer1 Oscillator Mode bit  
1= Low-power Timer1 operation when microcontroller is in Sleep mode  
0= Standard (legacy) Timer1 oscillator operation  
bit 4  
HPOL: High Side Transistors Polarity bit (i.e., Odd PWM Output Polarity Control bit)(1)  
1= PWM1, 3, 5 and 7 are active-high (default)(2)  
0= PWM1, 3, 5 and 7 are active-low(2)  
bit 3  
LPOL: Low Side Transistors Polarity bit (i.e., Even PWM Output Polarity Control bit)(1)  
1= PWM0, 2, 4 and 6 are active-high (default)(2)  
0= PWM0, 2, 4 and 6 are active-low(2)  
bit 2  
PWMPIN: PWM Output Pins Reset State Control bit(3)  
1= PWM outputs are disabled upon Reset (default)  
0= PWM outputs drive active states upon Reset  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: Polarity control bits, HPOL and LPOL, define PWM signal output active and inactive states; PWM states  
generated by the Fault inputs or PWM manual override.  
2: PWM6 and PWM7 output channels are only available on PIC18F4331/4431 devices.  
3: When PWMPIN = 0, PWMEN<2:0> = 101if the device has eight PWM output pins (40 and 44-pin  
devices) and PWMEN<2:0> = 100if the device has six PWM output pins (28-pin devices). PWM output  
polarity is defined by HPOL and LPOL.  
2010 Microchip Technology Inc.  
DS39616D-page 267  
PIC18F2331/2431/4331/4431  
REGISTER 23-5: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)  
R/P-1  
U
U
R/P-1  
R/P-1  
R/P-1  
U
R/P-1  
MCLRE(1)  
EXCLKMX(1) PWM4MX(1)  
SSPMX(1)  
FLTAMX(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7  
MCLRE: MCLR Pin Enable bit(1)  
1= MCLR pin is enabled; RE3 input pin is disabled  
0= RE3 input pin is enabled; MCLR is disabled  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
EXCLKMX: TMR0/T5CKI External Clock MUX bit(1)  
1= TMR0/T5CKI external clock input is multiplexed with RC3  
0= TMR0/T5CKI external clock input is multiplexed with RD0  
bit 3  
bit 2  
PWM4MX: PWM4 MUX bit(1)  
1= PWM4 output is multiplexed with RB5  
0= PWM4 output is multiplexed with RD5  
SSPMX: SSP I/O MUX bit(1)  
1= SCK/SCL clocks and SDA/SDI data are multiplexed with RC5 and RC4, respectively. SDO output  
is multiplexed with RC7.  
0= SCK/SCL clocks and SDA/SDI data are multiplexed with RD3 and RD2, respectively. SDO output  
is multiplexed with RD1.  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
FLTAMX: FLTA MUX bit(1)  
1= FLTA input is multiplexed with RC1  
0= FLTA input is multiplexed with RD4  
Note 1: Unimplemented in PIC18F2331/2431 devices; maintain this bit set.  
DS39616D-page 268  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 23-6: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
DEBUG  
STVREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background debugger is disabled; RB6 and RB7 are configured as general purpose I/O pins  
0= Background debugger is enabled; RB6 and RB7 are dedicated to In-Circuit Debug  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
LVP: Single-Supply ICSP™ Enable bit  
1= Single-Supply ICSP is enabled  
0= Single-Supply ICSP is disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
2010 Microchip Technology Inc.  
DS39616D-page 269  
PIC18F2331/2431/4331/4431  
REGISTER 23-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP3(1,2)  
R/C-1  
CP2(1,2)  
R/C-1  
CP1(2)  
R/C-1  
CP0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CP3: Code Protection bit(1,2)  
1= Block 3 is not code-protected  
0= Block 3 is code-protected  
bit 2  
bit 1  
bit 0  
CP2: Code Protection bit(1,2)  
1= Block 2 is not code-protected  
0= Block 2 is code-protected  
CP1: Code Protection bit(2)  
1= Block 1 is not code-protected  
0= Block 1 is code-protected  
CP0: Code Protection bit(2)  
1= Block 0 is not code-protected  
0= Block 0 is code-protected  
Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.  
2: Refer to Figure 23-5 for block boundary addresses.  
REGISTER 23-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)  
R/C-1  
CPD(1)  
R/C-1  
CPB(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7  
CPD: Data EEPROM Code Protection bit(1)  
1= Data EEPROM is not code-protected  
0= Data EEPROM is code-protected  
bit 6  
CPB: Boot Block Code Protection bit(1)  
1= Boot Block is not code-protected  
0= Boot Block is code-protected  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: Refer to Figure 23-5 for block boundary addresses.  
DS39616D-page 270  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 23-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
WRT3(1,2)  
R/P-1  
WRT2(1,2)  
R/P-1  
WRT1(2)  
R/P-1  
WRT0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRT3: Write Protection bit(1,2)  
1= Block 3 is not write-protected  
0= Block 3 is write-protected  
bit 2  
bit 1  
bit 0  
WRT2: Write Protection bit(1,2)  
1= Block 2 is not write-protected  
0= Block 2 is write-protected  
WRT1: Write Protection bit(2)  
1= Block 1 is not write-protected  
0= Block 1 is write-protected  
WRT0: Write Protection bit(2)  
1= Block 0 is not write-protected  
0= Block 0 is write-protected  
Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.  
2: Refer to Figure 23-5 for block boundary addresses.  
REGISTER 23-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)  
R/P-1  
WRTD(2)  
R/P-1  
WRTB(2)  
R-1  
WRTC(1,2)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7  
WRTD: Data EEPROM Write Protection bit(2)  
1= Data EEPROM is not write-protected  
0= Data EEPROM is write-protected  
bit 6  
WRTB: Boot Block Write Protection bit(2)  
1= Boot block is not write-protected  
0= Boot block is write-protected  
bit 5  
WRTC: Configuration Register Write Protection bit(1,2)  
1= Configuration registers are not write-protected  
0= Configuration registers are write-protected  
bit 4-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.  
2: Refer to Figure 23-5 for block boundary addresses.  
2010 Microchip Technology Inc.  
DS39616D-page 271  
PIC18F2331/2431/4331/4431  
REGISTER 23-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
EBTR0(2,3)  
EBTR3(1,2,3) EBTR2(1,2,3) EBTR1(2,3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
EBTR3: Table Read Protection bit(1,2,3)  
1= Block 3 is not protected from table reads executed in other blocks  
0= Block 3 is protected from table reads executed in other blocks  
bit 2  
bit 1  
bit 0  
EBTR2: Table Read Protection bit(1,2,3)  
1= Block 2 is not protected from table reads executed in other blocks  
0= Block 2 is protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit(2,3)  
1= Block 1 is not protected from table reads executed in other blocks  
0= Block 1 is protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit(2,3)  
1= Block 0 is not protected from table reads executed in other blocks  
0= Block 0 is protected from table reads executed in other blocks  
Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.  
2: Refer to Figure 23-5 for block boundary addresses.  
3: Enabling the corresponding CPx bit is recommended to protect the block from external read operations.  
REGISTER 23-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)  
U-0  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
(1,2)  
EBTRB  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value when device is unprogrammed  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
U = Unchanged from programmed state  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
(1,2)  
EBTRB: Boot Block Table Read Protection bit  
1= Boot block is not protected from table reads executed in other blocks  
0= Boot block is protected from table reads executed in other blocks  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: Enabling the corresponding CPx bit is recommended to protect the block from external read operations.  
2: Refer to Figure 23-5 for block boundary addresses.  
DS39616D-page 272  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 23-13: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2331/2431/4331/4431 DEVICES  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7-5  
DEV<2:0>: Device ID bits  
These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.  
000= PIC18F4331  
001= PIC18F4431  
100= PIC18F2331  
101= PIC18F2431  
bit 4-0  
REV<4:0>: Revision ID bits  
These bits are used to indicate the device revision.  
REGISTER 23-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2331/2431/4331/4431 DEVICES  
R
R
R
R
R
R
R
R
DEV10(1)  
DEV9(1)  
DEV8(1)  
DEV7(1)  
DEV6(1)  
DEV5(1)  
DEV4(1)  
DEV3(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
U = Unchanged from programmed state  
bit 7-0  
DEV<10:3>: Device ID bits(1)  
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the  
part number  
0000 0101= PIC18F2331/2431/4331/4431 devices  
Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by  
using the entire DEV<10:0> bit sequence.  
2010 Microchip Technology Inc.  
DS39616D-page 273  
PIC18F2331/2431/4331/4431  
23.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F2331/2431/4331/4431 devices, the WDT is  
driven by the INTRC source. When the WDT is  
enabled, the clock source is also enabled. The nominal  
WDT period is 4 ms and has the same stability as the  
INTRC oscillator.  
2: Changing the setting of the IRCF bits  
(OSCCON<6:4>) clears the WDT and  
postscaler counts.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
3: When a CLRWDTinstruction is executed,  
the postscaler count will be cleared.  
selected by  
a multiplexer, controlled by bits in  
4: If WINEN = 0, then CLRWDTmust be exe-  
cuted only when WDTW = 1; otherwise, a  
device Reset will result.  
Configuration Register 2H (see Register 23-3).  
Available periods range from 4 ms to 131.072 seconds  
(2.18 minutes). The WDT and postscaler are cleared  
when any of the following events occur: execute a  
SLEEP or CLRWDT instruction, the IRCF bits  
(OSCCON<6:4>) are changed or a clock failure has  
occurred (see Section 23.4.1 “FSCM and the  
Watchdog Timer”).  
23.2.1  
CONTROL REGISTER  
Register 23-15 shows the WDTCON register. This is a  
readable and writable register. The SWDTEN bit allows  
software to enable or disable the WDT, but only if the  
Configuration bit has disabled the WDT. The WDTW bit  
is a read-only bit that indicates when the WDT count is  
in the fourth quadrant (i.e., when the 8-bit WDT value is  
b11000000’ or greater).  
Adjustments to the internal oscillator clock period using  
the OSCTUNE register also affect the period of the  
WDT by the same factor. For example, if the INTRC  
period is increased by 3%, then the WDT period is  
increased by 3%.  
FIGURE 23-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
INTRC Control  
WDT Counter  
125  
WDTEN  
Wake-up  
from Sleep  
INTRC Source  
Change on IRCF bits  
CLRWDT  
WDT  
Reset  
Reset  
Programmable Postscaler  
1:1 to 1:32,768  
All Device Resets  
WDT  
4
WDTPS<3:0>  
Sleep  
DS39616D-page 274  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
REGISTER 23-15: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN(1)  
bit 0  
WDTW  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WDTW: Watchdog Timer Window bit  
1= WDT count is in fourth quadrant  
0= WDT count is not in fourth quadrant  
bit 6-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Enable/Disable for Watchdog Timer bit(1)  
1= WDT is turned on  
0= WDT is turned off  
Note 1: If the WDTEN Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTEN  
Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.  
TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
WINEN  
WDTPS3 WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
IPEN  
WDTW  
RI  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
2010 Microchip Technology Inc.  
DS39616D-page 275  
PIC18F2331/2431/4331/4431  
In all other power-managed modes, Two-Speed Start-  
23.3 Two-Speed Start-up  
up is not used. The device will be clocked by the  
currently selected clock source until the primary clock  
source becomes available. The setting of the IESO  
Configuration bit is ignored.  
The Two-Speed Start-up feature helps to minimize the  
latency period from oscillator start-up to code execution  
by allowing the microcontroller to use the INTRC oscil-  
lator as a clock source until the primary clock source is  
available. It is enabled by setting the IESO bit in  
Configuration Register 1H (CONFIG1H<7>).  
23.3.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
Two-Speed Start-up is available only if the primary  
oscillator mode is LP, XT, HS or HSPLL (Crystal-Based  
modes). Other sources do not require a OST start-up  
delay; for these, Two-Speed Start-up is disabled.  
While using the INTRC oscillator in Two-Speed Start-  
up, the device still obeys the normal command  
sequences for entering power-managed modes,  
including serial SLEEP instructions (refer to  
Section 4.1.4 “Multiple Sleep Commands”). In  
practice, this means that user code can change the  
SCS<1:0> bit settings and issue SLEEP commands  
before the OST times out. This would allow an applica-  
tion to briefly wake-up, perform routine “housekeeping”  
tasks and return to Sleep before the device starts to  
operate from the primary oscillator.  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the  
internal oscillator block as the clock source, following  
the time-out of the Power-up Timer after a Power-on  
Reset is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
User code can also check if the primary clock source is  
currently providing the system clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the system clock.  
Otherwise, the internal oscillator block is providing the  
clock during wake-up from Reset or Sleep mode.  
Because the OSCCON register is cleared on Reset  
events, the INTOSC (or postscaler) clock source is not  
initially available after a Reset event; the INTRC clock  
is used directly at its base frequency. To use a higher  
clock speed on wake-up, the INTOSC or postscaler  
clock sources can be selected to provide a higher clock  
speed by setting bits IRCF<2:0> immediately after  
Reset. For wake-ups from Sleep, the INTOSC or post-  
scaler clock sources can be selected by setting  
IRCF<2:0> prior to entering Sleep mode.  
FIGURE 23-2:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
TOST  
(1)  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
PC + 4  
PC + 6  
Wake from Interrupt Event  
DS39616D-page 276  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
To use a higher clock speed on wake-up, the INTOSC  
or postscaler clock sources can be selected to provide  
23.4 Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) allows the  
microcontroller to continue operation, in the event of an  
external oscillator failure, by automatically switching  
the system clock to the internal oscillator block. The  
FSCM function is enabled by setting the Fail-Safe  
Clock Monitor Enable bit, FCMEN (CONFIG1H<6>).  
a higher clock speed by setting bits, IRCF<2:0>, imme-  
diately after Reset. For wake-ups from Sleep, the  
INTOSC or postscaler clock sources can be selected  
by setting the IRCF<2:0> bits prior to entering Sleep  
mode.  
Adjustments to the internal oscillator block using the  
OSCTUNE register also affect the period of the FSCM  
by the same factor. This can usually be neglected, as  
the clock frequency being monitored is generally much  
higher than the sample clock frequency.  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provide  
an instant backup clock in the event of a clock failure.  
Clock monitoring (shown in Figure 23-3) is  
accomplished by creating a sample clock signal, which  
is the INTRC output divided by 64. This allows ample  
time between FSCM sample clocks for a peripheral  
clock edge to occur. The peripheral system clock and  
the sample clock are presented as inputs to the Clock  
Monitor latch (CM). The CM is set on the falling edge of  
the system clock source, but cleared on the rising edge  
of the sample clock.  
The FSCM will detect failures of the primary or second-  
ary clock sources only. If the internal oscillator block  
fails, no failure would be detected, nor would any action  
be possible.  
23.4.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a  
separate divider and counter, disabling the WDT has  
no effect on the operation of the INTRC oscillator when  
the FSCM is enabled.  
FIGURE 23-3:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
As already noted, the clock source is switched to the  
INTOSC clock when a clock failure is detected.  
Depending on the frequency selected by the  
IRCF<2:0> bits, this may mean a substantial change in  
the speed of code execution. If the WDT is enabled  
with a small prescale value, a decrease in clock speed  
allows a WDT time-out to occur and a subsequent  
device Reset. For this reason, Fail-Safe Clock Monitor  
events also reset the WDT and postscaler, allowing it to  
start timing from when execution speed was changed  
and decreasing the likelihood of an erroneous time-out.  
Peripheral  
Clock  
S
Q
INTRC  
Source  
C
Q
÷ 64  
(32 s)  
488 Hz  
(2.048 ms)  
Clock  
Failure  
Detected  
23.4.2  
EXITING FAIL-SAFE OPERATION  
The fail-safe condition is terminated by either a device  
Reset, or by entering a power-managed mode. On Reset,  
the controller starts the primary clock source specified in  
Configuration Register 1H (with any required start-up  
delays that are required for the oscillator mode, such as  
the OST or PLL timer). The INTOSC multiplexer provides  
the system clock until the primary clock source becomes  
ready (similar to a Two-Speed Start-up). The clock system  
source is then switched to the primary clock (indicated by  
the OSTS bit in the OSCCON register becoming set). The  
Fail-Safe Clock Monitor then resumes monitoring the  
peripheral clock.  
Clock failure is tested for on the falling edge of the  
sample clock. If a sample clock falling edge occurs  
while the CM is still set, a clock failure has been  
detected (Figure 23-4). This causes the following:  
• the FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>);  
• the system clock source is switched to the internal  
oscillator block (OSCCON is not updated to show  
the current clock source – this is the fail-safe  
condition); and  
• the WDT is reset.  
Since the postscaler frequency from the internal  
oscillator block may not be sufficiently stable, it may be  
desirable to select another clock configuration and  
enter an alternate power-managed mode (see  
Section 23.3.1 “Special Considerations for Using  
Two-Speed Start-up” and Section 4.1.4 “Multiple  
Sleep Commands” for more details). This can be  
done to attempt a partial recovery or execute a  
controlled shutdown.  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTOSC multiplexer. The OSCCON register will remain in  
its Reset state until a power-managed mode is entered.  
Entering a power-managed mode by loading the  
OSCCON register and executing a SLEEP instruction  
will clear the fail-safe condition. When the fail-safe  
condition is cleared, the clock monitor will resume  
monitoring the peripheral clock.  
2010 Microchip Technology Inc.  
DS39616D-page 277  
PIC18F2331/2431/4331/4431  
FIGURE 23-4:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
23.4.3  
FSCM INTERRUPTS IN  
POWER-MANAGED MODES  
23.4.4  
POR OR WAKE FROM SLEEP  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or low-power Sleep mode. When the primary  
system clock is EC, RC or INTRC modes, monitoring  
can begin immediately following these events.  
As previously mentioned, entering a power-managed  
mode clears the fail-safe condition. By entering a  
power-managed mode, the clock multiplexer selects  
the clock source selected by the OSCCON register.  
Fail-safe monitoring of the power-managed clock  
source resumes in the power-managed mode.  
For oscillator modes involving a crystal or resonator  
(HS, HSPLL, LP or XT), the situation is somewhat  
different. Since the oscillator may require a start-up  
time considerably longer than the FCSM sample clock  
time, a false clock failure may be detected. To prevent  
this, the internal oscillator block is automatically  
configured as the system clock and functions until the  
primary clock is stable (the OST and PLL timers have  
timed out). This is identical to Two-Speed Start-up  
mode. Once the primary clock is stable, the INTRC  
returns to its role as the FSCM source.  
If an oscillator failure occurs during power-managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTOSC multiplexer. An automatic transition  
back to the failed clock source will not occur.  
If the interrupt is disabled, the device will not exit the  
power-managed mode on oscillator failure. Instead, the  
device will continue to operate as before, but clocked  
by the INTOSC multiplexer. While in Idle mode, subse-  
quent interrupts will cause the CPU to begin executing  
instructions while being clocked by the INTOSC  
multiplexer. The device will not transition to a different  
clock source until the fail-safe condition is cleared.  
Note:  
The same logic that prevents false  
oscillator failure interrupts on POR or wake  
from Sleep will also prevent the detection  
of the oscillator’s failure to start at all  
following these events. This can be  
avoided by monitoring the OSTS bit and  
using a timing routine to determine if the  
oscillator is taking too long to start. Even  
so, no oscillator failure interrupt will be  
flagged.  
As noted in Section 23.3.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration, and enter an  
alternate power-managed mode, while waiting for the  
primary system clock to become stable. When the new  
powered-managed mode is selected, the primary clock  
is disabled.  
DS39616D-page 278  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Each of the five blocks has three code protection bits  
associated with them. They are:  
23.5 Program Verification and  
Code Protection  
• Code-Protect bit (CPn)  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PIC® devices.  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
Figure 23-5 shows the program memory organization  
for 8 and 16-Kbyte devices, and the specific code  
protection bit associated with each block. The actual  
locations of the bits are summarized in Table 23-3.  
The user program memory is divided into five blocks.  
One of these is a Boot Block of 512 bytes. The  
remainder of the memory is divided into four blocks on  
binary boundaries.  
FIGURE 23-5:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2331/2431/4331/4431  
MEMORY SIZE/DEVICE  
Block Code Protection  
Controlled By:  
8 Kbytes  
(PIC18F2331/4331)  
Address  
Range  
16 Kbytes  
(PIC18F2431/4431)  
Address  
Range  
0000h  
0FFFh  
0000h  
01FFh  
Boot Block  
Boot Block  
Block 0  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
0200h  
0200h  
Block 0  
Block 1  
0FFFh  
1000h  
0FFFh  
1000h  
Block 1  
Block 2  
Block 3  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
1FFFh  
1FFFh  
2000h  
2FFFh  
3000h  
Unimplemented  
Read ‘0’s  
3FFFh  
3FFFh  
TABLE 23-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CPD  
CPB  
CP3(1)  
CP2(1)  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
WRT3(1) WRT2(1)  
WRT1  
WRT0  
CONFIG6H WRTD  
WRTB  
WRTC  
CONFIG7L  
CONFIG7H  
EBTR3(1) EBTR2(1) EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.  
2010 Microchip Technology Inc.  
DS39616D-page 279  
PIC18F2331/2431/4331/4431  
23.5.1  
PROGRAM MEMORY  
CODE PROTECTION  
Note:  
Code protection bits may only be written  
to a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code  
protection bits are only set to ‘1’ by a full  
chip erase or block erase function. The full  
chip erase and block erase functions can  
only be initiated via ICSP or an external  
programmer.  
The program memory may be read to, or written from,  
any location using the table read and table write  
instructions. The Device ID may be read with table  
reads. The Configuration registers may be read and  
written with the table read and table write instructions.  
In normal execution mode, the CPn bits have no direct  
effect. CPn bits inhibit external reads and writes. A block  
of user memory may be protected from table writes if the  
WRTn Configuration bit is ‘0’. The EBTRn bits control  
table reads. For a block of user memory with the EBTRn  
bit set to ‘0’, a table read instruction that executes from  
within that block is allowed to read. A table read instruc-  
tion that executes from a location outside of that block is  
not allowed to read, and will result in reading ‘0’s.  
Figures 23-6 through 23-8 illustrate table write and table  
read protection.  
FIGURE 23-6:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 0007FEh  
WRT0, EBTR0 = 01  
TBLWT *  
TBLWT *  
0007FFh  
000800h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
000FFFh  
001000h  
PC = 0017FEh  
0017FFh  
001800h  
001FFFh  
Results: All table writes are disabled to Blockn whenever WRTn = 0.  
DS39616D-page 280  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 23-7:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Configuration Bit Settings  
Program Memory  
000000h  
WRTB, EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 000FFEh  
WRT0, EBTR0 = 10  
0007FFh  
000800h  
TBLRD *  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
000FFFh  
001000h  
0017FFh  
001800h  
WRT3, EBTR3 = 11  
001FFFh  
Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.  
The TABLAT register returns a value of ‘0’.  
FIGURE 23-8:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Configuration Bit Settings  
Program Memory  
000000h  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 0007FEh  
TBLRD *  
0007FFh  
000800h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
000FFFh  
001000h  
0017FFh  
001800h  
001FFFh  
Results: Table reads permitted within Blockn, even when EBTRBn = 0.  
The TABLAT register returns the value of the data at the location TBLPTR.  
2010 Microchip Technology Inc.  
DS39616D-page 281  
PIC18F2331/2431/4331/4431  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, VSS,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip or one of  
the third party development tool companies.  
23.5.2  
DATA EEPROM  
CODE PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read and write data EEPROM  
regardless of the protection bit settings.  
23.9 Single-Supply ICSP™  
Programming  
23.5.3  
CONFIGURATION REGISTER  
PROTECTION  
The LVP bit in Configuration Register 4L  
(CONFIG4L<2>)  
enables  
Single-Supply  
ICSP  
The Configuration registers can be write-protected.  
The WRTC bit controls protection of the Configuration  
registers. In normal execution mode, the WRTC bit is  
readable only. WRTC can only be written via ICSP or  
an external programmer.  
Programming. When LVP is enabled, the microcontroller  
can be programmed without requiring high voltage being  
applied to the MCLR/VPP pin, but the RB5/PGM pin is  
then dedicated to controlling Program mode entry and is  
not available as a general purpose I/O pin.  
LVP is enabled in erased devices.  
23.6 ID Locations  
While programming, using Single-Supply Program-  
ming, VDD is applied to the MCLR/VPP pin as in normal  
execution mode. To enter Programming mode, VDD is  
applied to the PGM pin.  
Eight memory locations (200000h-200007h) are  
designated as ID locations, where the user can store  
checksum or other code identification numbers. These  
locations are both readable and writable during normal  
execution through the TBLRDand TBLWTinstructions,  
or during program/verify. The ID locations can be read  
when the device is code-protected.  
Note 1: High-voltage programming is always  
available, regardless of the state of the  
LVP bit or the PGM pin, by applying VIHH  
to the MCLR pin.  
2: When Single-Supply Programming is  
enabled, the RB5 pin can no longer be  
used as a general purpose I/O pin.  
23.7  
In-Circuit Serial Programming  
PIC18F2331/2431/4331/4431 microcontrollers can be  
serially programmed while in the end application circuit.  
This is simply done with two lines for clock and data,  
and three other lines for power, ground and the  
programming voltage. This allows customers to manu-  
facture boards with unprogrammed devices, and then  
program the microcontroller just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware to be programmed.  
3: When LVP is enabled externally, pull the  
PGM pin to VSS to allow normal program  
execution.  
If Single-Supply ICSP Programming mode will not be  
used, the LVP bit can be cleared and RB5/PGM  
becomes available as the digital I/O pin RB5. The LVP  
bit may be set or cleared only when using standard  
high-voltage programming (VIHH applied to the MCLR/  
VPP pin). Once LVP has been disabled, only the  
standard high-voltage programming is available and  
must be used to program the device.  
23.8 In-Circuit Debugger  
When the DEBUG bit in the CONFIG4L Configuration  
register is programmed to a ‘0’, the In-Circuit Debugger  
functionality is enabled. This function allows simple  
debugging functions when used with MPLAB® IDE.  
When the microcontroller has this feature enabled,  
some resources are not available for general use.  
Table 23-4 shows which resources are required by the  
background debugger.  
Memory that is not code-protected can be erased using  
either a block erase, or erased row by row, then written  
at any specified VDD. If code-protected memory is to be  
erased, a block erase is required. If a block erase is to  
be performed when using Single-Supply Programming,  
the device must be supplied with VDD of 4.5V to 5.5V.  
TABLE 23-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
Stack:  
2 levels  
Program Memory:  
Data Memory:  
<1 Kbytes  
16 bytes  
DS39616D-page 282  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
The control instructions may use some of the following  
operands:  
24.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PIC® instruction sets, while maintaining an  
easy migration from these PIC instruction sets.  
• A program memory address (specified by ‘n’)  
• The mode of the call or return instructions  
(specified by ‘s’)  
Most instructions are a single program memory word  
(16 bits), but there are three instructions that require  
two program memory locations.  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for three  
double-word instructions. These three instructions were  
made double word instructions so that all the required  
information is available in these 32 bits. In the second  
word, the 4 MSbs are ‘1’s. If this second word is  
executed as an instruction (by itself), it will execute as a  
NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 24-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 24-1 shows the opcode field  
descriptions.  
The double word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 s. If a conditional test is  
true or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 s.  
Two-word branch instructions (if true) would take 3 s.  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator, ‘f’, specifies which file  
register is to be used by the instruction.  
Figure 24-1 shows the general formats that the  
instructions can have.  
The destination designator, ‘d’, specifies where the result  
of the operation is to be placed. If ‘d’ is ‘0’, the result is  
placed in the WREG register. If ‘d’ is ‘1’, the result is  
placed in the file register specified in the instruction.  
All examples use the format ‘nnh’ to represent a hexa-  
decimal number, where ‘h’ signifies a hexadecimal  
digit.  
All bit-oriented instructions have three operands:  
The Instruction Set Summary, shown in Table 24-2,  
lists the instructions recognized by the Microchip  
Assembler (MPASMTM Assembler). Section 24.2  
“Instruction Set” provides a description of each  
instruction.  
1. The file register (specified by ‘f’)  
2. The bit in the file register  
(specified by ‘b’)  
3. The accessed memory  
(specified by ‘a’)  
24.1 Read-Modify-Write Operations  
The bit field designator, ‘b’, selects the number of the bit  
affected by the operation, while the file register desig-  
nator, ‘f’, represents the number of the file in which the  
bit is located.  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion or the destination designator, ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
The literal instructions may use some of the following  
operands:  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
For example, a “BCF PORTB, 1” instruction will read  
PORTB, clear bit 1 of the data, then write the result back  
to PORTB. The read operation would have the unin-  
tended result that any condition that sets the RBIF flag  
would be cleared. The R-M-W operation may also copy  
the level of an input pin to its corresponding output latch.  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
2010 Microchip Technology Inc.  
DS39616D-page 283  
PIC18F2331/2431/4331/4431  
TABLE 24-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit:  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit:  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination either the WREG register or the specified register file locations.  
8-bit register file address (0x00 to 0xFF).  
fs  
12-bit register file address (0x000 to 0xFFF). This is the source address.  
12-bit register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
fd  
k
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No Change to register (such as TBLPTR with table reads and writes).  
Post-Increment register (such as TBLPTR with table reads and writes).  
Post-Decrement register (such as TBLPTR with table reads and writes).  
Pre-Increment register (such as TBLPTR with table reads and writes).  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for  
Call/Branch and Return instructions.  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return Mode Select bit:  
s = 0: do not update into/from Shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged.  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’).  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
TABLAT  
TOS  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Top-of-Stack.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Global Interrupt Enable bit.  
Watchdog Timer.  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit.  
PD  
Power-Down bit.  
C, DC, Z, OV, N  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
Optional.  
[
]
)
(
Contents.  
< >  
Assigned to.  
Register bit field.  
In the set of.  
italics  
User-defined term (font is Courier New).  
DS39616D-page 284  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 24-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
OPCODE f (FILE #)  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
d
a
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
MOVFF MYREG1, MYREG2  
OPCODE  
f (Source FILE #)  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTOand Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
S
OPCODE  
12 11  
n<7:0> (literal)  
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
8 7  
OPCODE  
n<7:0> (literal)  
2010 Microchip Technology Inc.  
DS39616D-page 285  
PIC18F2331/2431/4331/4431  
TABLE 24-2: PIC18FXXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
DECFSZ  
DCFSNZ  
INCF  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, a  
f, a  
f, a  
Compare f with WREG, Skip = 1 (2 or 3) 0110 001a ffff ffff None  
Compare f with WREG, Skip > 1 (2 or 3) 0110 010a ffff ffff None  
Compare f with WREG, Skip < 1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
f, d, a Decrement f  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
1
1
2
1, 2, 3, 4  
1, 2  
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
4
1, 2  
1, 2  
1
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
f , f  
Move f (source) to 1st word  
s
d
s
f (destination) 2nd word  
d
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
RRNCF  
SETF  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
Borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
Borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap Nibbles in f  
f, a Test f, Skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, b, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39616D-page 286  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb LSb  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
Call Subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to Address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C, DC  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
Pop Top of Return Stack (TOS) 1  
Push Top of Return Stack (TOS) 1  
Relative Call  
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
2
1
2
Software Device Reset  
Return from Interrupt Enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with Literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
2010 Microchip Technology Inc.  
DS39616D-page 287  
PIC18F2331/2431/4331/4431  
TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add Literal and WREG  
AND Literal with WREG  
Inclusive OR Literal with WREG  
Load Literal (12-bit) 2nd word  
1
1
1
2
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
to FSRx  
1st word  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move Literal to BSR<3:0>  
Move Literal to WREG  
Multiply Literal with WREG  
Return with Literal in WREG  
Subtract WREG from Literal  
1
1
1
2
1
Exclusive OR Literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with Post-Increment  
Table Read with Post-Decrement  
Table Read with Pre-Increment  
Table Write  
Table Write with Post-Increment  
Table Write with Post-Decrement  
Table Write with Pre-Increment  
2 (5)  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39616D-page 288  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
24.2 Instruction Set  
ADDLW  
ADD Literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed in  
W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register, ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register, ‘f’. If ‘a’  
is ‘0’, the Access Bank will be selected.  
If ‘a’ is ‘1’, the BSR is used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
ADDLW  
0x15  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
Before Instruction  
0x10  
After Instruction  
0x25  
destination  
W
=
Example:  
ADDWF  
REG, W  
W
=
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
2010 Microchip Technology Inc.  
DS39616D-page 289  
PIC18F2331/2431/4331/4431  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location, ‘f’. If ‘d’ is ‘0’, the result is placed  
in W. If ‘d’ is ‘1’, the result is placed in  
data memory location, ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to  
W
Words:  
Cycles:  
1
1
Example:  
ANDLW  
0x5F  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
W
=
0xA3  
0x03  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
Example:  
ADDWFC  
REG, W  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
REG  
W
=
=
0x02  
0x50  
DS39616D-page 290  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
ANDWF  
AND W with f  
BC  
Branch if Carry  
Syntax:  
[ label ] ANDWF  
f [,d [,a]]  
Syntax:  
[ label ] BC  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the program  
will branch.  
Description:  
The contents of W are ANDed with  
register, ‘f’. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register, ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
Q1  
Q2  
Q3  
Q4  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Example:  
ANDWF  
REG, W  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
W
REG  
=
=
0x02  
0xC2  
Example:  
HERE  
BC JUMP  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
PC  
=
=
=
=
1;  
address (JUMP)  
0;  
address (HERE + 2)  
If Carry  
PC  
2010 Microchip Technology Inc.  
DS39616D-page 291  
PIC18F2331/2431/4331/4431  
BCF  
Bit Clear f  
BN  
Branch if Negative  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
[ label ] BN  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register, ‘f’, is cleared. If ‘a’ is  
0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
program will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Example:  
BCF  
FLAG_REG, 7  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
FLAG_REG = 0x47  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
If Negative  
PC  
DS39616D-page 292  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Carry bit is ‘0’,  
(PC) + 2 + 2n PC  
if Negative bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
If Carry  
PC  
After Instruction  
If Negative  
PC  
=
=
=
=
0;  
=
=
=
=
0;  
address (Jump)  
1;  
address (HERE + 2)  
address (Jump)  
1;  
address (HERE + 2)  
If Carry  
PC  
If Negative  
PC  
2010 Microchip Technology Inc.  
DS39616D-page 293  
PIC18F2331/2431/4331/4431  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if Zero bit is ‘0’,  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Overflow bit is ‘0’,  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the program  
will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
After Instruction  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
1;  
address (HERE + 2)  
address (Jump)  
1;  
address (HERE + 2)  
If Overflow  
PC  
DS39616D-page 294  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
BRA  
Unconditional Branch  
BSF  
Bit Set f  
Syntax:  
[ label ] BRA  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Add the 2’s complement number, ‘2n’,  
to the PC. Since the PC will have incre-  
mented to fetch the next instruction, the  
new address will be PC + 2 + 2n. This  
instruction is a two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register, ‘f’, is set. If ‘a’ is ‘0’,  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Example:  
BSF  
FLAG_REG, 7  
Example:  
HERE  
BRA Jump  
Before Instruction  
FLAG_REG  
Before Instruction  
=
=
0x0A  
0x8A  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
FLAG_REG  
After Instruction  
PC  
2010 Microchip Technology Inc.  
DS39616D-page 295  
PIC18F2331/2431/4331/4431  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register, ‘f’, is ‘0’, then the next  
instruction is skipped.  
Description:  
If bit ‘b’ in register, ‘f’, is ‘1’, then the next  
instruction is skipped.  
If bit ‘b’ is ‘0’, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
If bit ‘b’ is ‘1’, then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOPis  
executed instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note:  
3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
After Instruction  
If FLAG<1>  
PC  
=
=
=
=
0;  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
address (FALSE)  
1;  
address (TRUE)  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
DS39616D-page 296  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if Overflow bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location, ‘f’, is  
inverted. If ‘a’ is ‘0’, the Access Bank will  
be selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected as  
per the BSR value.  
program will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Example:  
BTG  
PORTC,  
4
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
=
0111 0101 [0x75]  
0110 0101 [0x65]  
If No Jump:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BOV JUMP  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
=
=
=
=
1;  
address (JUMP)  
0;  
address (HERE + 2)  
If Overflow  
PC  
2010 Microchip Technology Inc.  
DS39616D-page 297  
PIC18F2331/2431/4331/4431  
BZ  
Branch if Zero  
CALL  
Subroutine Call  
Syntax:  
[ label ] BZ  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>;  
if s = 1:  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, the return address  
(PC + 4) is pushed onto the return  
stack. If ‘s’ = 1, the W, STATUS and  
BSR registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs. Then, the  
20-bit value, ‘k’, is loaded into  
PC<20:1>. CALLis a two-cycle  
instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
operation  
No  
operation  
operation  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
Stack  
‘k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
Before Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
PC  
=
address (HERE)  
After Instruction  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
1;  
Example:  
HERE  
CALL THERE,FAST  
address (Jump)  
0;  
address (HERE + 2)  
Before Instruction  
PC  
After Instruction  
=
address (HERE)  
PC  
=
address (THERE)  
TOS  
WS  
BSRS  
STATUSS  
=
=
=
=
address (HERE + 4)  
W
BSR  
STATUS  
DS39616D-page 298  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f,  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified reg-  
ister. If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected as  
per the BSR value.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the post-  
scaler of the WDT. Status bits TO and  
PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Example:  
CLRF  
FLAG_REG  
Example:  
CLRWDT  
Before Instruction  
FLAG_REG  
Before Instruction  
=
=
0x5A  
0x00  
WDT Counter  
=
?
After Instruction  
FLAG_REG  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
=
=
=
0x00  
0
1
1
PD  
2010 Microchip Technology Inc.  
DS39616D-page 299  
PIC18F2331/2431/4331/4431  
COMF  
Complement f  
CPFSEQ  
Compare f with W, Skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register, ‘f’, are comple-  
mented. If ‘d’ is ‘0’, the result is stored in  
W. If ‘d’ is ‘1’, the result is stored back in  
register, ‘f’. If ‘a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Description:  
Compares the contents of data memory  
location, ‘f’, to the contents of W by  
performing an unsigned subtraction.  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
Process  
Data  
Write to  
destination  
1(2)  
register ‘f’  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Example:  
COMF  
REG, W  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
REG  
W
=
=
0x13  
0xEC  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
W
REG  
=
=
=
HERE  
?
?
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS39616D-page 300  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) W),  
Operation:  
(f) –W),  
skip if (f) > (W)  
skip if (f) < (W)  
(unsigned comparison)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location, ‘f’, to the contents of the W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a two-  
cycle instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value.  
Description:  
Compares the contents of data memory  
location, ‘f’, to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
CPFSGT REG  
NGREATER  
GREATER  
:
:
Before Instruction  
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
PC  
W
=
=
Address (HERE)  
?
After Instruction  
After Instruction  
If REG  
PC  
If REG  
PC  
<
=
=
W;  
If REG  
PC  
If REG  
PC  
=
=
W;  
Address (LESS)  
W;  
Address (NLESS)  
Address (GREATER)  
W;  
Address (NGREATER)  
2010 Microchip Technology Inc.  
DS39616D-page 301  
PIC18F2331/2431/4331/4431  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
Syntax:  
[ label ] DECF f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then,  
(W<3:0>) + 6 W<3:0>;  
else,  
Operation:  
(f) – 1 dest  
(W<3:0>) W<3:0>;  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> 9] or [C = 1] then,  
(W<7:4>) + 6 W<7:4>;  
else,  
Description:  
Decrement register, ‘f’,. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register, ‘f’. If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
(W<7:4>) W<7:4>  
Status Affected:  
Encoding:  
C, DC  
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the 8-bit value in W,  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result. The Carry bit may be set by DAW  
regardless of its setting prior to the DAW  
instruction.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
Words:  
Cycles:  
1
1
destination  
Example:  
DECF  
CNT,  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
CNT  
Z
=
=
0x01  
0
Decode  
Read  
register W  
Process  
Data  
Write  
W
Example 1:  
DAW  
After Instruction  
CNT  
Z
=
=
0x00  
1
Before Instruction  
W
=
0xA5  
C
DC  
=
=
0
0
After Instruction  
W
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
W
C
DC  
=
=
=
0xCE  
0
0
After Instruction  
W
=
0x34  
C
DC  
=
=
1
0
DS39616D-page 302  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if Not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
Operation:  
(f) – 1 dest,  
skip if result = 0  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register, ‘f’, are  
Description:  
The contents of register, ‘f’, are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register, ‘f’.  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register, ‘f’.  
If the result is ‘0’, the next instruction,  
which is already fetched, is discarded,  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as per  
the BSR value.  
If the result is not ‘0’, the next  
instruction, which is already fetched, is  
discarded, and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
=
Address (HERE)  
=
?
After Instruction  
TEMP  
CNT  
=
CNT – 1  
0;  
Address (CONTINUE)  
0;  
=
=
=
=
TEMP – 1,  
0;  
Address (ZERO)  
0;  
If CNT  
=
=
=
If TEMP  
PC  
If TEMP  
PC  
PC  
If CNT  
PC  
Address (HERE + 2)  
Address (NZERO)  
2010 Microchip Technology Inc.  
DS39616D-page 303  
PIC18F2331/2431/4331/4431  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO  
0 k 1048575  
k PC<20:1>  
None  
k
Syntax:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
Description:  
The contents of register, ‘f’, are  
anywhere within entire 2-Mbyte memory  
range. The 20-bit value, ‘k’, is loaded  
into PC<20:1>. GOTOis always a  
two-cycle  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register, ‘f’. If ‘a’ is ‘0’,  
the Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value.  
instruction.  
Words:  
Cycles:  
2
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Q2  
Q3  
Q4  
Write to PC  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
INCF  
CNT,  
Example:  
GOTO THERE  
Before Instruction  
CNT  
Z
C
=
0xFF  
After Instruction  
=
=
=
0
?
?
PC  
=
Address (THERE)  
DC  
After Instruction  
CNT  
Z
C
=
0x00  
=
=
=
1
1
1
DC  
DS39616D-page 304  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
INCFSZ  
Increment f, Skip if 0  
INFSNZ  
Increment f, Skip if Not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]]  
Syntax:  
[ label ] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
Operation:  
(f) + 1 dest,  
skip if result = 0  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register, ‘f’, are  
Description:  
The contents of register, ‘f’, are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register, ‘f’.  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register, ‘f’.  
If the result is ‘0’, the next instruction,  
which is already fetched, is discarded,  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
If the result is not ‘0’, the next  
instruction, which is already fetched, is  
discarded, and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
=
=
=
=
=
=
2010 Microchip Technology Inc.  
DS39616D-page 305  
PIC18F2331/2431/4331/4431  
IORLW  
Inclusive OR Literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW  
0 k 255  
(W) .OR. k W  
N, Z  
k
Syntax:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
8-bit literal, ‘k’. The result is placed in  
W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register, ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register, ‘f’. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected as  
per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
Words:  
Cycles:  
1
1
Example:  
IORLW  
0x9A  
0x35  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
W
=
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
0xBF  
Example:  
IORWF RESULT, W  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS39616D-page 306  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]]  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
k kkk  
11  
kkkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
file select register pointed to by ‘f’.  
Description:  
The contents of register, ‘f’, are moved  
to a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register, ‘f’. Location, ‘f’,  
can be anywhere in the 256-byte bank.  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected as  
per the BSR value.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
LFSR 2, 0x3AB  
Q2  
Q3  
Q4  
After Instruction  
FSR2H  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
=
=
0x03  
0xAB  
FSR2L  
Example:  
MOVF  
REG, W  
0x22  
Before Instruction  
REG  
W
=
=
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
2010 Microchip Technology Inc.  
DS39616D-page 307  
PIC18F2331/2431/4331/4431  
MOVFF  
Move f to f  
MOVLB  
Move Literal to Low Nibble in BSR  
Syntax:  
[ label ] MOVFF f ,f  
Syntax:  
[ label ] MOVLB  
0 k 255  
k BSR  
k
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
None  
Status Affected:  
None  
0000  
0001  
0000  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The 8-bit literal, ‘k’, is loaded into the  
Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
s
d
Words:  
Cycles:  
1
1
Description:  
The contents of source register, ‘f ’, are  
s
moved to destination register, ‘f ’.  
d
Location of source, ‘f ’, can be any-  
where in the 4096-byte data space  
(000h to FFFh) and location of destina-  
s
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write  
literal ‘k’ to  
BSR  
tion, ‘f ’, can also be anywhere from  
d
000h to FFFh.  
Either source or destination can be W  
(a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Example:  
MOVLB  
5
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
The MOVFFinstruction should not be  
used to modify interrupt settings while  
any interrupt is enabled (see the note  
on page 97).  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
=
=
0x33  
0x33  
REG2  
DS39616D-page 308  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
MOVLW  
Move Literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW  
0 k 255  
k W  
k
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The 8-bit literal, ‘k’, is loaded into W.  
Description:  
Move data from W to register, ‘f’.  
1
1
Location, ‘f’, can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value.  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
Words:  
Cycles:  
1
1
Example:  
MOVLW  
0x5A  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
W
=
0x5A  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
2010 Microchip Technology Inc.  
DS39616D-page 309  
PIC18F2331/2431/4331/4431  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and  
the 8-bit literal, ‘k’. The 16-bit result  
is placed in PRODH:PRODL register  
pair. PRODH contains the high byte.  
W is unchanged.  
Description:  
An unsigned multiplication is carried  
out between the contents of W and  
the register file location, ‘f’. The  
16-bit result is stored in the  
PRODH:PRODL register pair.  
None of the Status flags are affected.  
Note that neither Overflow nor Carry  
is possible in this operation. A Zero  
result is possible but not detected.  
PRODH contains the high byte.  
Both W and ‘f’ are unchanged.  
None of the Status flags are affected.  
Note that neither Overflow nor Carry  
is possible in this operation. A Zero  
result is possible but not detected. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’= 1, then the bank will be selected  
as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
Words:  
Cycles:  
1
1
registers  
PRODH:  
PRODL  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
MULLW  
0xC4  
0xE2  
?
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Before Instruction  
registers  
PRODH:  
PRODL  
W
PRODH  
PRODL  
=
=
=
After Instruction  
W
Example:  
MULWF  
REG  
=
=
=
0xE2  
0xAD  
0x08  
Before Instruction  
PRODH  
PRODL  
W
REG  
PRODH  
PRODL  
=
=
=
=
0xC4  
0xB5  
?
?
After Instruction  
W
=
=
=
=
0xC4  
0xB5  
0x8A  
0x94  
REG  
PRODH  
PRODL  
DS39616D-page 310  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location, ‘f’, is negated using two’s  
complement. The result is placed in the  
data memory location, ‘f’. If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
Description:  
Words:  
No operation.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
operation  
Q4  
Decode  
No  
No  
operation  
Words:  
Cycles:  
1
1
operation  
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
=
2010 Microchip Technology Inc.  
DS39616D-page 311  
PIC18F2331/2431/4331/4431  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(TOS) bit bucket  
None  
(PC + 2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows to implement a  
software stack by modifying TOS, and  
then push it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
PUSH  
No  
No  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PC + 2 onto  
return stack  
operation  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)  
TOS  
PC  
=
=
0x00345A  
0x000124  
=
=
0x0031A2  
0x014332  
After Instruction  
After Instruction  
PC  
TOS  
=
=
=
0x000126  
0x000126  
0x00345A  
TOS  
PC  
=
=
0x014332  
NEW  
Stack (1 level down)  
DS39616D-page 312  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that are  
affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
PUSH PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
2010 Microchip Technology Inc.  
DS39616D-page 313  
PIC18F2331/2431/4331/4431  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW  
0 k 255  
k
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
k W,  
1 GIE/GIEH or PEIE/GIEL;  
if s = 1:  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the 8-bit literal, ‘k’. The  
program counter is loaded from the top  
of the stack (the return address). The  
high address latch (PCLATH) remains  
unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low-priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers, WS,  
STATUSS and BSRS, are loaded into  
their corresponding registers, W,  
STATUS and BSR. If ‘s’ = 0, no update  
of these registers occurs.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
POP PC  
from stack,  
Write to W  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
POP PC  
from stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE  
1
After Interrupt  
:
PC  
W
BSR  
STATUS  
=
=
=
=
=
TOS  
WS  
BSRS  
STATUSS  
1
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
GIE/GIEH, PEIE/GIEL  
After Instruction  
W
=
value of kn  
DS39616D-page 314  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ]  
RLCF f [,d [,a]]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC;  
if s = 1:  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register, ‘f’, are rotated  
one bit to the left through the Carry flag.  
If ‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in regis-  
ter, ‘f’. If ‘a’ is ‘0’, the Access Bank will  
be selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be selected  
as per the BSR value.  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers, WS, STATUSS and BSRS,  
are loaded into their corresponding  
registers, W, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs.  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Decode  
No  
operation  
Process  
Data  
POP PC  
from stack  
Decode  
Write to  
destination  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
RLCF  
REG, W  
Before Instruction  
REG  
C
=
=
1110 0110  
0
Example:  
RETURN  
After Interrupt  
After Instruction  
PC = TOS  
REG  
W
=
=
=
1110 0110  
1100 1100  
1
C
2010 Microchip Technology Inc.  
DS39616D-page 315  
PIC18F2331/2431/4331/4431  
RLNCF  
Rotate Left f (No Carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ]  
RLNCF f [,d [,a]]  
Syntax:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register, ‘f’, are rotated  
one bit to the left. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
stored back in register, ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected, overrid-  
ing the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the BSR  
value.  
Description:  
The contents of register, ‘f’, are rotated  
one bit to the right through the Carry  
Flag. If ‘d’ is ‘0’, the result is placed in  
W. If ‘d’ is ‘1’, the result is placed back  
in register, ‘f’. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ is ‘1’, then the bank will  
be selected as per the BSR value.  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG  
Example:  
RRCF  
REG, W  
Before Instruction  
REG  
After Instruction  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
C
=
=
1110 0110  
0
REG  
=
After Instruction  
REG  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39616D-page 316  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
RRNCF  
Rotate Right f (No Carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ is ‘1’, then the bank will  
be selected as per the BSR value.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register, ‘f’, are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register, ‘f’. If ‘a’ is ‘0’,  
the Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is ‘1’, then  
the bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG  
Q Cycle Activity:  
Q1  
Before Instruction  
REG  
=
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
REG  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, W  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
2010 Microchip Technology Inc.  
DS39616D-page 317  
PIC18F2331/2431/4331/4431  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register, ‘f’, and the Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored in  
register, ‘f’. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ is ‘1’, then the bank will be  
selected as per the BSR value.  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. Watchdog Timer and its post-  
scaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
SLEEP  
Example 1:  
SUBFWB REG  
Before Instruction  
Before Instruction  
TO  
PD  
=
=
?
?
REG  
W
C
=
=
=
0x03  
0x02  
0x01  
After Instruction  
After Instruction  
TO  
PD  
=
=
1 †  
0
REG  
W
C
Z
N
=
0xFF  
0x02  
0x00  
0x00  
=
=
=
=
If WDT causes wake-up, this bit is cleared.  
0x01 ; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
Z
N
=
2
3
1
0
0
=
=
=
=
; result is positive  
Example 3:  
SUBFWB  
REG, 1, 0  
Before Instruction  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
Z
N
=
0
2
1
1
0
=
=
=
=
; result is zero  
DS39616D-page 318  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ] SUBLW  
0 k 255  
k
[ label ] SUBWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the 8-bit  
literal, ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register, ‘f’ (2’s  
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register, ‘f’.  
If = ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ is ‘1’, then the bank will be selected  
as per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
Example 1:  
SUBLW 0x02  
Words:  
Cycles:  
1
1
Before Instruction  
W
C
=
=
1
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
C
Z
=
1
=
=
=
1
0
0
; result is positive  
Example 1:  
SUBWF REG  
N
Before Instruction  
Example 2:  
SUBLW 0x02  
REG  
W
C
=
=
=
3
2
?
Before Instruction  
W
C
=
=
2
?
After Instruction  
REG  
W
C
Z
N
=
1
2
1
0
0
After Instruction  
=
=
=
=
W
C
Z
=
0
; result is positive  
=
=
=
1
1
0
; result is zero  
N
Example 2:  
Before Instruction  
SUBWF REG, W  
Example 3:  
Before Instruction  
SUBLW 0x02  
REG  
W
C
=
=
=
2
2
?
W
C
=
=
3
?
After Instruction  
After Instruction  
W
C
Z
=
FF ; (2’s complement)  
REG  
W
C
Z
N
=
2
0
=
=
=
0
0
1
; result is negative  
=
=
=
=
1
1
0
; result is zero  
N
Example 3:  
Before Instruction  
SUBWF REG  
REG  
W
C
=
=
=
0x01  
0x02  
?
After Instruction  
REG  
W
C
Z
N
=
0xFFh ; (2’s complement)  
0x02  
0x00 ; result is negative  
0x00  
0x01  
=
=
=
=
2010 Microchip Technology Inc.  
DS39616D-page 319  
PIC18F2331/2431/4331/4431  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
[ label ] SWAPF f [,d [,a]]  
[ label ] SUBWFB f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Operation:  
(f) – (W) – (C) dest  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0101  
10da  
ffff  
ffff  
0011  
10da  
ffff  
ffff  
Description:  
Subtract W and the Carry flag (borrow)  
from register, ‘f’ (2’s complement  
Description:  
The upper and lower nibbles of register,  
‘f’, are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register, ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected, overrid-  
ing the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the BSR  
value.  
method). If ‘d’ is ‘0’, the result is stored in  
W. If ‘d’ is ‘1’, the result is stored back in  
register, ‘f’. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ is ‘1’, then the bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
Example:  
SWAPF  
REG  
REG  
W
C
=
=
=
0x19  
0x0D  
0x01  
(0001 1001)  
(0000 1101)  
Before Instruction  
REG  
=
0x53  
0x35  
After Instruction  
After Instruction  
REG  
=
REG  
W
C
Z
N
=
0x0C  
0x0D  
0x01  
0x00  
0x00  
(0000 1011)  
(0000 1101)  
=
=
=
=
; result is positive  
Example 2:  
SUBWFB REG, 0, 0  
Before Instruction  
REG  
W
C
=
=
=
0x1B  
0x1A  
0x00  
(0001 1011)  
(0001 1010)  
(0001 1011)  
; result is zero  
After Instruction  
REG  
W
C
Z
N
=
0x1B  
0x00  
0x01  
0x01  
0x00  
=
=
=
=
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
W
C
=
=
=
0x03  
0x0E  
0x01  
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
0xF5  
(1111 0100)  
; [2’s comp]  
W
C
Z
=
=
=
=
0x0E  
0x00  
0x00  
0x01  
(0000 1101)  
N
; result is negative  
DS39616D-page 320  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TBLRD  
Table Read  
TBLRD  
Table Read (cont’d)  
Syntax:  
[ label ]  
TBLRD ( *; *+; *-; +*)  
Example 1:  
TBLRD *+ ;  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT,  
TBLPTR – No Change;  
if TBLRD *+,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
(Prog Mem (TBLPTR)) TABLAT,  
(TBLPTR) + 1 TBLPTR;  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT,  
(TBLPTR) – 1 TBLPTR;  
if TBLRD +*,  
Example 2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
=
=
=
=
0xAA  
0x01A357  
0x12  
TBLPTR  
(TBLPTR) + 1 TBLPTR,  
(Prog Mem (TBLPTR)) TABLAT  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
After Instruction  
0x34  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
nn = 0  
*
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR[0] = 0: Least Significant Byte of  
Program Memory Word  
TBLPTR[0] = 1: Most Significant Byte of  
Program Memory Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
2010 Microchip Technology Inc.  
DS39616D-page 321  
PIC18F2331/2431/4331/4431  
TBLWT  
Table Write  
TBLWT Table Write (Continued)  
Syntax:  
[ label ] TBLWT ( *; *+; *-; +*)  
Words:  
Cycles:  
1
2
Operands:  
Operation:  
None  
if TBLWT*,  
Q Cycle Activity:  
Q1  
(TABLAT) Holding Register,  
TBLPTR – No Change;  
if TBLWT*+,  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
(TABLAT) Holding Register,  
(TBLPTR) + 1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register,  
(TBLPTR) – 1 TBLPTR;  
if TBLWT+*,  
No  
operation  
No  
operation  
(Read  
No  
operation  
No  
operation  
(Write to  
Holding  
Register )  
TABLAT)  
(TBLPTR) + 1 TBLPTR,  
(TABLAT) Holding Register  
Example 1:  
TBLWT *+;  
Status Affected: None  
Before Instruction  
TABLAT  
=
0x55  
Encoding:  
0000  
0000  
0000  
11nn  
nn = 0 *  
=1 *+  
TBLPTR  
HOLDING REGISTER  
(0x00A356)  
=
0x00A356  
=
0xFF  
=2 *-  
=3 +*  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x00A356)  
=
=
0x55  
0x00A357  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program Memory  
(P.M.). (Refer to Section 8.0 “Flash Pro-  
gram Memory” for additional details on  
programming Flash memory.)  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2-Mbyte address range.  
The LSb of the TBLPTR selects which  
byte of the program memory location to  
access.  
=
0x55  
Example 2:  
Before Instruction  
TBLWT +*;  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389A  
=
=
0xFF  
0xFF  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389B  
TBLPTR[0] = 0: Least Significant Byte  
of Program Memory  
Word  
=
=
0xFF  
0x34  
TBLPTR[0] = 1: Most Significant Byte  
of Program Memory  
Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
DS39616D-page 322  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal, ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction, fetched  
during the current instruction execution,  
is discarded and a NOPis executed,  
making this a two-cycle instruction. If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Example:  
XORLW 0xAF  
= 0xB5  
Before Instruction  
Q Cycle Activity:  
Q1  
W
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
W
=
0x1A  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
:
Before Instruction  
PC = Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
Address (ZERO)  
0x00,  
PC  
If CNT  
PC  
Address (NZERO)  
2010 Microchip Technology Inc.  
DS39616D-page 323  
PIC18F2331/2431/4331/4431  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register, ‘f’. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in the register, ‘f’. If ‘a’ is  
0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS39616D-page 324  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
25.1 MPLAB Integrated Development  
Environment Software  
25.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
DS39616D-page 325  
PIC18F2331/2431/4331/4431  
25.2 MPLAB C Compilers for Various  
Device Families  
25.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
25.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
25.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
25.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS39616D-page 326  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
25.7 MPLAB SIM Software Simulator  
25.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip’s most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash micro-  
controllers and dsPIC® DSCs with the powerful, yet  
easy-to-use graphical user interface of MPLAB  
Integrated Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer’s PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
25.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
25.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer’s PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the Reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2010 Microchip Technology Inc.  
DS39616D-page 327  
PIC18F2331/2431/4331/4431  
25.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
25.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
25.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39616D-page 328  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
26.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk byall ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2010 Microchip Technology Inc.  
DS39616D-page 329  
PIC18F2331/2431/4331/4431  
FIGURE 26-1:  
PIC18F2331/2431/4331/4431 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F2X31/4X31  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
Frequency  
FIGURE 26-2:  
PIC18LF2331/2431/4331/4431 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LF2X31/4X31  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
4 MHz  
Frequency  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz  
Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
DS39616D-page 330  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
26.1 DC Characteristics: Supply Voltage  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
D001  
VDD  
Supply Voltage  
PIC18LF2X31/4X31  
2.0  
4.2  
5.5  
5.5  
V
V
V
V
V
PIC18F2X31/4X31  
D001C  
D001D  
D002  
AVDD  
AVSS  
VDR  
Analog Supply Voltage  
VDD – 0.3  
VDD + 0.3  
VSS + 0.3  
Analog Ground Voltage VSS – 0.3  
RAM Data Retention  
1.5  
(1)  
Voltage  
D003  
D004  
D005A  
VPOR  
SVDD  
VBOR  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
0.7  
V
See section on Power-on Reset for details  
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset Voltage  
PIC18LF2X31/4X31 Industrial Low Voltage (-10C to +85C)  
BORV<1:0> = 11  
BORV<1:0> = 10  
BORV<1:0> = 01  
BORV<1:0> = 00  
N/A  
2.50  
3.88  
4.18  
N/A  
2.72  
4.22  
4.54  
N/A  
2.94  
4.56  
4.90  
V
V
V
V
Reserved  
D005B  
PIC18LF2X31/4X31 Industrial Low Voltage (-40C to -10C)  
BORV<1:0> = 11  
BORV<1:0>= 10  
BORV<1:0> = 01  
BORV<1:0> = 00  
N/A  
2.34  
3.63  
3.90  
N/A  
2.72  
4.22  
4.54  
N/A  
3.10  
4.81  
5.18  
V
V
V
V
Reserved  
D005C  
D005D  
D005E  
D005F  
Legend:  
PIC18F2X31/4X31 Industrial (-10C to +85C)  
BORV<1:0>= 1x  
BORV<1:0> = 01  
BORV<1:0> = 00  
N/A  
3.88  
4.18  
N/A  
4.22  
4.54  
N/A  
4.56  
4.90  
V
V
V
Reserved  
(Note 2)  
(Note 2)  
PIC18F2X31/4X31 Industrial (-40C to -10C)  
BORV<1:0>= 1x  
BORV<1:0> = 01  
BORV<1:0> = 00  
N/A  
N/A  
3.90  
N/A  
N/A  
4.54  
N/A  
N/A  
5.18  
V
V
V
Reserved  
Reserved  
(Note 2)  
PIC18F2X31/4X31 Extended (-10C to +85C)  
BORV<1:0> = 1x  
BORV<1:0> = 01  
BORV<1:0> = 00  
N/A  
3.88  
4.18  
N/A  
4.22  
4.54  
N/A  
4.56  
4.90  
V
V
V
Reserved  
(Note 2)  
(Note 2)  
PIC18F2X31/4X31 Extended (-40C to -10C, +85C to +125C)  
BORV<1:0> = 1x  
BORV<1:0> = 01  
BORV<1:0> = 00  
N/A  
N/A  
3.90  
N/A  
N/A  
4.54  
N/A  
N/A  
5.18  
V
V
V
Reserved  
Reserved  
(Note 2)  
Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
2: When BOR is on and BORV<1:0> = 0x, the device will operate correctly at 40 MHz for any VDD at which the BOR allows  
execution.  
2010 Microchip Technology Inc.  
DS39616D-page 331  
PIC18F2331/2431/4331/4431  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(1)  
Power-Down Current (IPD)  
PIC18LF2X31/4X31 0.1  
0.5  
0.5  
1.9  
0.5  
0.5  
1.9  
2.0  
2.0  
6.5  
33  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
VDD = 2.0V  
(Sleep mode)  
0.1  
+25°C  
+85°C  
-40°C  
0.2  
PIC18LF2X31/4X31 0.1  
VDD = 3.0V  
(Sleep mode)  
0.1  
+25°C  
+85°C  
-40°C  
0.3  
All devices 0.1  
0.1  
0.4  
5
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
(Sleep mode)  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula: Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39616D-page 332  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial) (Continued)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X31/4X31  
PIC18LF2X31/4X31  
All devices  
8
9
40  
40  
A  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
A  
A  
A  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
VDD = 2.0V  
11  
40  
25  
25  
20  
55  
55  
50  
0.25  
68  
FOSC = 31 kHz  
68  
VDD = 3.0V  
VDD = 5.0V  
(RC_RUN mode,  
68  
Internal oscillator source)  
180  
180  
180  
1
PIC18LF2X31/4X31 140  
220  
220  
220  
330  
330  
330  
550  
550  
550  
2.8  
600  
600  
600  
900  
900  
900  
1.8  
1.8  
1.8  
6
145  
VDD = 2.0V  
VDD = 3.0V  
155  
PIC18LF2X31/4X31 215  
FOSC = 1 MHz  
(RC_RUN mode,  
Internal oscillator source)  
225  
235  
All devices 385  
390  
VDD = 5.0V  
405  
0.7  
PIC18LF2X31/4X31 410  
425  
VDD = 2.0V  
VDD = 3.0V  
435  
PIC18LF2X31/4X31 650  
FOSC = 4 MHz  
(RC_RUN mode,  
Internal oscillator source)  
670  
680  
All devices 1.2  
1.2  
1.2  
2.2  
VDD = 5.0V  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula: Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2010 Microchip Technology Inc.  
DS39616D-page 333  
PIC18F2331/2431/4331/4431  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial) (Continued)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X31/4X31 4.7  
8
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
5.0  
8
VDD = 2.0V  
5.8  
11  
PIC18LF2X31/4X31 7.0  
11  
FOSC = 31 KHz  
7.8  
8.7  
11  
VDD = 3.0V  
VDD = 5.0V  
(RC_IDLE mode,  
15  
Internal oscillator source)  
All devices  
12  
14  
16  
16  
14  
22  
200  
75  
850  
150  
150  
150  
180  
180  
180  
300  
300  
300  
750  
275  
275  
275  
375  
375  
375  
800  
800  
800  
1.6  
PIC18LF2X31/4X31  
85  
VDD = 2.0V  
VDD = 3.0V  
95  
PIC18LF2X31/4X31 110  
FOSC = 1 MHz  
(RC_IDLE mode,  
125  
135  
Internal oscillator source)  
All devices 180  
195  
VDD = 5.0V  
200  
300  
PIC18LF2X31/4X31 175  
185  
VDD = 2.0V  
VDD = 3.0V  
195  
PIC18LF2X31/4X31 265  
FOSC = 4 MHz  
(RC_IDLE mode,  
280  
300  
Internal oscillator source)  
All devices 475  
500  
505  
0.7  
VDD = 5.0V  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula: Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39616D-page 334  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial) (Continued)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X31/4X31 150  
250  
250  
250  
350  
350  
350  
1.0  
1.0  
1.0  
2.1  
600  
600  
600  
1.0  
1.0  
1.0  
2.0  
2.0  
2.0  
4.2  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
150  
VDD = 2.0V  
160  
A  
PIC18LF2X31/4X31 340  
A  
FOSC = 1 MHZ  
(PRI_RUN,  
EC oscillator)  
300  
A  
VDD = 3.0V  
VDD = 5.0V  
280  
A  
All devices 0.72  
mA  
mA  
mA  
mA  
A  
0.63  
0.57  
0.9  
PIC18LF2X31/4X31 440  
450  
A  
VDD = 2.0V  
VDD = 3.0V  
460  
A  
PIC18LF2X31/4X31 0.80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
FOSC = 4 MHz  
(PRI_RUN,  
0.78  
0.77  
EC oscillator)  
All devices 1.6  
1.5  
VDD = 5.0V  
1.5  
2.0  
All devices  
10  
FOSC = 25 MHz  
(PRI_RUN,  
EC oscillator)  
28  
mA  
+125°C  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
All devices 9.5  
12  
12  
12  
15  
15  
15  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
9.7  
FOSC = 40 MHZ  
(PRI_RUN,  
EC oscillator)  
9.9  
All devices 11.9  
12.1  
12.3  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula: Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2010 Microchip Technology Inc.  
DS39616D-page 335  
PIC18F2331/2431/4331/4431  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial) (Continued)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X31/4X31  
35  
35  
35  
55  
50  
60  
50  
50  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
60  
PIC18LF2X31/4X31  
80  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
80  
+25°C  
+85°C  
-40°C  
VDD = 3.0V  
VDD = 5.0V  
100  
150  
150  
150  
400  
All devices 105  
110  
115  
300  
+25°C  
+85°C  
+125°C  
PIC18LF2X31/4X31 135  
180  
180  
180  
280  
280  
280  
525  
525  
525  
1.7  
A  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
140  
VDD = 2.0V  
VDD = 3.0V  
140  
PIC18LF2X31/4X31 215  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
225  
+25°C  
+85°C  
-40°C  
230  
All devices 410  
420  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
430  
1.2  
All devices  
18  
FOSC = 25 MHz  
(PRI_IDLE mode,  
EC oscillator)  
22  
mA  
+125°C  
VDD = 5.0V  
VDD = 4.2 V  
All devices 3.2  
4.1  
4.1  
4.1  
5.1  
5.1  
5.1  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
3.2  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
3.3  
All devices 4.0  
4.1  
4.1  
VDD = 5.0V  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula: Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39616D-page 336  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial) (Continued)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LF2X31/4X31 5.1  
9
9
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-10°C  
+25°C  
+70°C  
-10°C  
5.8  
VDD = 2.0V  
7.9  
11  
12  
12  
14  
20  
20  
25  
850  
PIC18LF2X31/4X31 7.9  
(4)  
FOSC = 32 kHz  
8.9  
+25°C  
+70°C  
-10°C  
VDD = 3.0V  
VDD = 5.0V  
(SEC_RUN mode,  
Timer1 as clock)  
10.5  
All devices 12.5  
16.3  
18.9  
150  
+25°C  
+70°C  
+125°C  
PIC18LF2X31/4X31 9.2  
15  
15  
18  
30  
30  
35  
80  
80  
85  
850  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-10°C  
+25°C  
+70°C  
-10°C  
9.6  
VDD = 2.0V  
VDD = 3.0V  
12.7  
PIC18LF2X31/4X31 22.0  
(4)  
FOSC = 32 kHz  
21.0  
20.0  
+25°C  
+70°C  
-10°C  
(SEC_IDLE mode,  
Timer1 as clock)  
All devices  
30  
45  
+25°C  
+70°C  
+125°C  
VDD = 5.0V  
45  
250  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula: Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2010 Microchip Technology Inc.  
DS39616D-page 337  
PIC18F2331/2431/4331/4431  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial) (Continued)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
Module Differential Currents (IWDT, IBOR, ILVD, IOSCB, IAD)  
D022  
(IWDT)  
Watchdog Timer 1.5  
4.0  
4.0  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
2.2  
3.1  
2.5  
3.3  
4.7  
3.7  
4.5  
6.1  
22  
VDD = 2.0V  
VDD = 3.0V  
5.0  
6.0  
6.0  
+25°C  
+85°C  
-40°C  
7.0  
10.0  
10.0  
13.0  
44  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
D022A  
(IBOR)  
Brown-out Reset  
19  
24  
40  
35.0  
45.0  
75  
-40C to +85C  
-40C to +85C  
+125°C  
VDD = 3.0V  
VDD = 5.0V  
D022B  
(ILVD)  
Low-Voltage Detect 8.5  
25.0  
35.0  
45.0  
66  
-40C to +85C  
-40C to +85C  
-40C to +85C  
+125°C  
VDD = 2.0V  
VDD = 3.0V  
16  
20  
VDD = 5.0V  
35  
D025  
(IOSCB)  
Timer1 Oscillator 1.7  
3.5  
-40C  
(4)  
(4)  
1.8  
3.5  
+25°C  
VDD = 2.0V  
32 kHz on Timer1  
32 kHz on Timer1  
2.1  
4.5  
+85°C  
2.2  
4.5  
-40C  
2.6  
4.5  
+25°C  
VDD = 3.0V  
VDD = 5.0V  
2.8  
5.5  
+85°C  
3.0  
6.0  
-40C  
3.3  
6.0  
+25°C  
(4)  
32 kHz on Timer1  
3.6  
7.0  
+85°C  
42  
70  
+125°C  
D026  
(IAD)  
A/D Converter 1.0  
3.0  
-40C to +85C  
-40C to +85C  
-40C to +85C  
+125°C  
VDD = 2.0V  
VDD = 3.0V  
1.0  
2.0  
4.0  
A/D on, not converting  
10.0  
950  
VDD = 5.0V  
150  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula: Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39616D-page 338  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
26.3 DC Characteristics: PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
VIH  
IIL  
Input Low Voltage  
I/O Ports:  
with TTL Buffer  
D030  
D030A  
D031  
VSS  
0.15 VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger Buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
I2C™ enabled  
D032  
MCLR  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032A  
OSC1 and T1OSI  
LP, XT, HS, HSPLL  
modes(1)  
EC mode(1)  
D033  
OSC1  
VSS  
0.2 VDD  
V
Input High Voltage  
I/O Ports:  
D040  
D040A  
D041  
with TTL Buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger Buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
I2C™ enabled  
D042  
MCLR  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042A  
OSC1 and T1OSI  
LP, XT, HS, HSPLL  
modes(1)  
EC mode(1)  
D043  
D060  
OSC1  
0.8 VDD  
VDD  
V
Input Leakage Current(2,3)  
I/O Ports  
+200 nA  
A VDD < 5.5V,  
VSS VPIN VDD,  
Pin at high-impedance  
+50 nA  
VDD < 3V,  
VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
1  
1  
A Vss VPIN VDD  
A Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB Weak Pull-up Current  
D070  
IPURB  
50  
400  
A VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
2010 Microchip Technology Inc.  
DS39616D-page 339  
PIC18F2331/2431/4331/4431  
26.3 DC Characteristics: PIC18F2331/2431/4331/4431 (Industrial, Extended)  
PIC18LF2331/2431/4331/4431 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
I/O Ports  
D080  
D083  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40C to +85C  
OSC2/CLKO  
IOL = 1.6 mA, VDD = 4.5V,  
(RC, RCIO, EC, ECIO modes)  
-40C to +85C  
VOH  
Output High Voltage(3)  
D090  
D092  
I/O Ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40C to +85C  
OSC2/CLKO  
IOH = -1.3 mA, VDD = 4.5V,  
(RC, RCIO, EC, ECIO modes)  
-40C to +85C  
Capacitive Loading Specs  
on Output Pins  
D100  
COSC2 OSC2 Pin  
15  
pF In XT, HS and LP modes  
when external clock is  
used to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O Pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF I2C™ Specification  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39616D-page 340  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 26-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Internal Program Memory  
Programming Specifications(1)  
D110  
D112  
D113  
VPP  
IPP  
Voltage on MCLR/VPP pin  
Current into MCLR/VPP pin  
9.00  
13.25  
300  
1
V
(Note 3)  
A  
mA  
IDDP  
Supply Current during  
Programming  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
100K  
VMIN  
1M  
E/W -40C to +85C  
D121 VDRW VDD for Read/Write  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
4
ms  
40  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh(2)  
1M  
10M  
E/W -40°C to +85°C  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10K  
100K  
E/W -40C to +85C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
VIE  
VDD for Block Erase  
4.5  
4.5  
5.5  
5.5  
V
V
Using ICSP™ port  
Using ICSP port  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
D132B VPEW VDD for Self-Timed Write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133  
TIE  
ICSP™ Block Erase Cycle Time  
1
4
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133A TIW  
Self-Timed Write Cycle Time  
2
ms  
D134 TRETD Characteristic Retention  
40  
100  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: These specifications are for programming the on-chip program memory through the use of table write  
instructions.  
2: Refer to Section 7.9 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
3: Required only if Single-Supply Programming is disabled.  
2010 Microchip Technology Inc.  
DS39616D-page 341  
PIC18F2331/2431/4331/4431  
FIGURE 26-3:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 26-2: LOW-VOLTAGE DETECT CHARACTERISTICS  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D420A VLVD  
LVD Voltage on VDD Transition High-to-Low  
PIC18LF2X31/4X31 LVDL<3:0> = 0000  
LVDL<3:0> = 0001  
Industrial Low Voltage (-10°C to +85°C)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Reserved  
Reserved  
LVDL<3:0> = 0010  
2.08  
2.26  
2.35  
2.55  
2.64  
2.82  
3.09  
3.29  
3.38  
3.56  
3.75  
3.93  
4.23  
2.26  
2.45  
2.55  
2.77  
2.87  
3.07  
3.36  
3.57  
3.67  
3.87  
4.07  
4.28  
4.60  
2.44  
2.65  
2.76  
2.99  
3.10  
3.31  
3.63  
3.86  
3.96  
4.18  
4.40  
4.62  
4.96  
LVDL<3:0> = 0011  
LVDL<3:0> = 0100  
LVDL<3:0> = 0101  
LVDL<3:0> = 0110  
LVDL<3:0> = 0111  
LVDL<3:0> = 1000  
LVDL<3:0> = 1001  
LVDL<3:0> = 1010  
LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Legend:  
Shading of rows is to assist in readability of the table.  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
DS39616D-page 342  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 26-2: LOW-VOLTAGE DETECT CHARACTERISTICS (CONTINUED)  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D420B VLVD  
LVD Voltage on VDD Transition High-to-Low  
PIC18LF2X31/4X31 LVDL<3:0> = 0000  
LVDL<3:0> = 0001  
Industrial Low Voltage (-40°C to -10°C)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Reserved  
Reserved  
LVDL<3:0> = 0010  
1.99  
2.16  
2.25  
2.43  
2.53  
2.70  
2.96  
3.14  
3.23  
3.41  
3.58  
3.76  
4.04  
2.26  
2.45  
2.55  
2.77  
2.87  
3.07  
3.36  
3.57  
3.67  
3.87  
4.07  
4.28  
4.60  
2.53  
2.75  
2.86  
3.10  
3.21  
3.43  
3.77  
4.00  
4.11  
4.34  
4.56  
4.79  
5.15  
LVDL<3:0> = 0011  
LVDL<3:0> = 0100  
LVDL<3:0> = 0101  
LVDL<3:0> = 0110  
LVDL<3:0> = 0111  
LVDL<3:0> = 1000  
LVDL<3:0> = 1001  
LVDL<3:0> = 1010  
LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
D420C VLVD  
D420D VLVD  
D420E VLVD  
D420F VLVD  
LVD Voltage on VDD Transition High-to-Low  
PIC18F2X31/4X31 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Industrial (-10°C to +85°C)  
3.93  
4.23  
4.28  
4.60  
4.62  
4.96  
V
V
LVD Voltage on VDD Transition High-to-Low  
PIC18F2X31/4X31 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Industrial (-40°C to -10°C)  
3.76  
4.04  
4.28  
4.60  
4.79  
5.15  
V
V
Reserved  
LVD Voltage on VDD Transition High-to-Low  
PIC18F2X31/4X31 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Extended (-10°C to +85°C)  
3.94  
4.23  
4.28  
4.60  
4.62  
4.96  
V
V
LVD Voltage on VDD Transition High-to-Low  
PIC18F2X31/4X31 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Extended (-40°C to -10°C, +85°C to +125°C)  
3.77  
4.05  
4.28  
4.60  
4.79  
5.15  
V
V
Reserved  
Legend:  
Shading of rows is to assist in readability of the table.  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
2010 Microchip Technology Inc.  
DS39616D-page 343  
PIC18F2331/2431/4331/4431  
26.4 AC (Timing) Characteristics  
26.4.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
Invalid (High-Impedance)  
Low  
Valid  
L
High-Impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
DS39616D-page 344  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
26.4.2  
TIMING CONDITIONS  
Note: Because of space limitations, the generic  
terms “PIC18FXX31” and “PIC18LFXX31”  
The temperature and voltages specified in Table 26-3  
apply to all timing specifications unless otherwise  
noted. Figure 26-4 specifies the load conditions for the  
timing specifications.  
are used throughout this section to refer to  
the PIC18F2331/2431/4331/4431 and  
PIC18LF2331/2431/4331/4431 families of  
devices specifically, and only those  
devices.  
TABLE 26-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 26.1 and  
Section 26.3. LF parts operate for industrial temperatures only.  
FIGURE 26-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
2010 Microchip Technology Inc.  
DS39616D-page 345  
PIC18F2331/2431/4331/4431  
26.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 26-5:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
3
4
3
4
2
TABLE 26-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
Oscillator Frequency(1)  
DC  
DC  
0.1  
4
40  
4
MHz EC, ECIO  
MHz RC osc  
MHz XT osc  
MHz HS osc  
4
25  
4
10  
MHz HS + PLL osc  
kHz LP Osc mode  
5
200  
1
TOSC  
External CLKI Period(1)  
Oscillator Period(1)  
25  
250  
250  
ns  
ns  
ns  
EC, ECIO  
RC osc  
XT osc  
10,000  
25  
100  
250  
250  
ns  
ns  
HS osc  
HS + PLL osc  
25  
100  
30  
2.5  
10  
s  
ns  
ns  
s  
ns  
ns  
ns  
ns  
LP osc  
2
3
TCY  
Instruction Cycle Time(1)  
TCY = 4/FOSC  
XT osc  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
LP osc  
HS osc  
XT osc  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
LP osc  
HS osc  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS39616D-page 346  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 26-5: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
F10  
F11  
F12  
F13  
FOSC Oscillator Frequency Range  
FSYS On-Chip VCO System Frequency  
TPLL PLL Start-up Time (Lock Time)  
CLK CLKO Stability (Jitter)  
4
10  
40  
2
MHz HS mode only  
16  
-2  
MHz HS mode only  
ms  
%
+2  
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
TABLE 26-6: INTERNAL RC ACCURACY  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial)  
Param  
Device  
No.  
Min  
Typ  
Max  
Units  
Conditions  
(1)  
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz  
F2  
F3  
PIC18LF2331/2431/4331/4431  
All devices  
-15  
+/-5  
+/-5  
+15  
+15  
%
%
25°C  
25°C  
VDD = 3.0V  
VDD = 5.0V  
-15  
(2)  
INTRC Accuracy @ Freq = 31 kHz  
F5  
PIC18LF2331/2431/4331/4431 26.562  
All devices 26.562  
35.938  
35.938  
kHz  
kHz  
25°C  
25°C  
VDD = 3.0V  
VDD = 5.0V  
F6  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.  
2: INTRC frequency after calibration.  
2010 Microchip Technology Inc.  
DS39616D-page 347  
PIC18F2331/2431/4331/4431  
FIGURE 26-6:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
19  
18  
16  
I/O Pin  
(Input)  
15  
17  
I/O Pin  
(Output)  
New Value  
Old Value  
20, 21  
TABLE 26-7: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
10  
TosH2ckL OSC1 to CLKO   
TosH2ckH OSC1 to CLKO   
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
TckR  
TckF  
CLKO Rise Time  
CLKO Fall Time  
TckL2ioV CLKO to Port Out Valid  
TioV2ckH Port In Valid before CLKO   
TckH2ioI Port In Hold after CLKO   
TosH2ioV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns (Note 1)  
0.25 TCY + 25  
ns (Note 1)  
0
ns (Note 1)  
150  
ns  
ns  
ns  
TosH2ioI OSC1 (Q2 cycle) to  
Port Input Invalid  
PIC18FXX31  
PIC18LFXX31  
100  
200  
(I/O in hold time)  
19  
TioV2osH Port Input Valid to OSC1 (I/O in setup  
0
ns  
time)  
20  
TioR  
TioF  
Port Output Rise Time  
Port Output Fall Time  
PIC18FXX31  
PIC18LFXX31  
PIC18FXX31  
PIC18LFXX31  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
20A  
21  
21A  
22†  
23†  
TINP  
INTx Pin High or Low Time  
TCY  
TCY  
TRBP  
RB<7:4> Change INTx High or Low Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
DS39616D-page 348  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 26-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer Reset  
31  
34  
34  
I/O Pins  
FIGURE 26-8:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
(nominal)  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
2010 Microchip Technology Inc.  
DS39616D-page 349  
PIC18F2331/2431/4331/4431  
TABLE 26-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TMCL  
TWDT  
MCLR Pulse Width (low)  
2
s  
ms  
31  
Watchdog Timer Time-out Period  
(no postscaler)  
4.00  
32  
33  
TOST  
Oscillation Start-up Timer Period  
1024 TOSC  
1024 TOSC  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
65.5  
ms  
34  
TIOZ  
I/O High-impedance from MCLR  
2
s  
Low or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
s VDD BVDD (see D005)  
s  
TIRVST Time for Internal Reference  
Voltage to become Stable  
20  
50  
37  
38  
39  
TLVD  
TCSD  
Low-Voltage Detect Pulse Width  
CPU Start-up Time  
200  
10  
1
s  
s  
ms  
VDD VLVD  
TIOBST Time for INTOSC to Stabilize  
DS39616D-page 350  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 26-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or TMR1  
TABLE 26-9: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
T0CKI High Pulse Width  
Min  
Max  
Units  
Conditions  
VDD = 2V  
40  
Tt0H  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI High Synchronous, no prescaler  
Time  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous,  
with prescaler  
PIC18FXX31  
10  
PIC18LFXX31  
PIC18FXX31  
PIC18LFXX31  
25  
Asynchronous  
30  
50  
T1CKI  
Synchronous, no prescaler  
0.5 TCY + 5  
Low Time  
Synchronous,  
with prescaler  
PIC18FXX31  
10  
25  
30  
50  
PIC18LFXX31  
PIC18FXX31  
PIC18LFXX31  
Asynchronous  
47  
48  
Tt1P  
Ft1  
T1CKI Input Synchronous  
Period  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI Oscillator Input Frequency Range  
Tcke2tmrI Delay from External T1CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
2010 Microchip Technology Inc.  
DS39616D-page 351  
PIC18F2331/2431/4331/4431  
FIGURE 26-10:  
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
TABLE 26-10: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
With  
prescaler  
PIC18FXX31  
PIC18LFXX31  
10  
20  
51  
TccH  
CCPx Input High No prescaler  
0.5 TCY + 20  
Time  
With  
prescaler  
PIC18FXX31  
PIC18LFXX31  
10  
20  
52  
53  
TccP  
TccR  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
CCPx Output Fall Time  
CCPx Output Fall Time  
PIC18FXX31  
PIC18LFXX31  
PIC18FXX31  
PIC18LFXX31  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
DS39616D-page 352  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 26-11:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SCK  
(CKP = 0)  
78  
79  
SCK  
(CKP = 1)  
78  
79  
80  
bit 6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
TABLE 26-11: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
73  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
20  
ns  
ns  
73A  
74  
Tb2b  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
40  
ns  
75  
TdoR  
SDO Data Output Rise Time PIC18FXX31  
PIC18LFXX31  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO Data Output Fall Time  
SCK Output Rise Time  
SCK Output Fall Time  
PIC18FXX31  
PIC18LFXX31  
79  
80  
TscF  
TscH2doV, SDO Data Output Valid after PIC18FXX31  
TscL2doV SCK Edge  
PIC18LFXX31  
2010 Microchip Technology Inc.  
DS39616D-page 353  
PIC18F2331/2431/4331/4431  
FIGURE 26-12:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
81  
SCK  
(CKP = 0)  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
TABLE 26-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
73  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
20  
ns  
ns  
ns  
73A  
74  
Tb2b  
Last Clock Edge of Byte 1 to the 1st Clock Edge  
of Byte 2  
1.5 TCY + 40  
40  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
75  
TdoR  
SDO Data Output Rise Time PIC18FXX31  
PIC18LFXX31  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO Data Output Fall Time  
SCK Output Rise Time  
PIC18FXX31  
PIC18LFXX31  
79  
80  
TscF  
SCK Output Fall Time  
TscH2doV, SDO Data Output Valid after PIC18FXX31  
TscL2doV SCK Edge  
PIC18LFXX31  
81  
TdoV2scH, SDO Data Output Setup to SCK Edge  
TdoV2scL  
TCY  
DS39616D-page 354  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 26-13:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
LSb  
SDO  
SDI  
bit 6 - - - - - -1  
bit 6 - - - -1  
77  
75, 76  
MSb In  
74  
LSb In  
73  
TABLE 26-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TCY  
ns  
TssL2scL  
71  
TscH  
SCK Input High Time  
SCK Input Low Time  
Continuous  
Single byte  
Continuous  
Single byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
ns (Note 1)  
TscL  
1.25 TCY + 30  
ns  
72A  
73  
40  
20  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
40  
ns  
75  
TdoR  
SDO Data Output Rise Time  
PIC18FXX31  
PIC18LFXX31  
25  
45  
25  
50  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
80  
TdoF  
SDO Data Output Fall Time  
TssH2doZ SS to SDO Output High-Impedance  
10  
TscH2doV, SDO Data Output Valid after SCK Edge PIC18FXX31  
TscL2doV  
PIC18LFXX31  
83  
TscH2ssH, SS after SCK Edge  
1.5 TCY + 40  
TscL2ssH  
Note 1: Requires the use of Parameter 73A.  
2: Only if Parameter 71A and 72A are used.  
2010 Microchip Technology Inc.  
DS39616D-page 355  
PIC18F2331/2431/4331/4431  
FIGURE 26-14:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
TABLE 26-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
TB2B  
SCK Input High Time  
SCK Input Low Time  
Continuous  
Single byte  
Continuous  
Single byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
40  
75  
TdoR  
SDO Data Output Rise Time  
PIC18FXX31  
PIC18LFXX31  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
80  
TdoF  
SDO Data Output Fall Time  
25  
TssH2doZ SS to SDO Output High-Impedance  
10  
50  
TscH2doV, SDO Data Output Valid after SCK  
TscL2doV Edge  
PIC18FXX31  
PIC18LFXX31  
PIC18FXX31  
PIC18LFXX31  
50  
100  
50  
82  
83  
TssL2doV SDO Data Output Valid after SS   
Edge  
100  
TscH2ssH, SS after SCK Edge  
1.5 TCY + 40  
TscL2ssH  
Note 1: Requires the use of Parameter 73A.  
2: Only if Parameter 71A and 72A are used.  
DS39616D-page 356  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
FIGURE 26-15:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
Stop  
Condition  
Start  
Condition  
TABLE 26-15: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4000  
600  
THD:STO Stop Condition  
Hold Time  
4700  
600  
FIGURE 26-16:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
2010 Microchip Technology Inc.  
DS39616D-page 357  
PIC18F2331/2431/4331/4431  
TABLE 26-16: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
Clock High Time  
4.0  
s  
PIC18FXX31 must operate at  
a minimum of 1.5 MHz  
100  
THIGH  
400 kHz mode  
0.6  
s  
PIC18FXX31 must operate at  
a minimum of 10 MHz  
SSP module  
1.5 TCY  
4.7  
Clock Low Time  
100 kHz mode  
s  
s  
PIC18FXX31 must operate at  
a minimum of 1.5 MHz  
101  
TLOW  
400 kHz mode  
1.3  
PIC18FXX31 must operate at  
a minimum of 10 MHz  
SSP Module  
1.5 TCY  
SDA and SCL Rise  
Time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
102  
103  
TR  
TF  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
SDA and SCL Fall  
Time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
Start Condition Setup 100 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
s  
s  
s  
s  
ns  
s  
ns  
ns  
s  
s  
ns  
ns  
s  
s  
Only relevant for Repeated  
Start condition  
90  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
Time  
400 kHz mode  
Start Condition Hold  
Time  
100 kHz mode  
400 kHz mode  
After this period, the first clock  
pulse is generated  
91  
Data Input Hold Time 100 kHz mode  
400 kHz mode  
106  
107  
92  
0
0.9  
Data Input Setup  
Time  
100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
Stop Condition Setup 100 kHz mode  
Time  
400 kHz mode  
Output Valid From  
Clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
109  
110  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
TBUF  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)  
of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2
2
2: A Fast mode I C bus device can be used in a Standard mode I C bus system, but the requirement, TSU:DAT 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line,.  
2
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification), before the SCL line  
is released.  
DS39616D-page 358  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 26-17: SSP I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
100  
101  
102  
103  
90  
THIGH  
Clock High Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ns  
TLOW  
TR  
Clock Low Time 100 kHz mode  
400 kHz mode  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
1000  
300  
300  
300  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
TF  
SDA and SCL  
Fall Time  
ns  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
TSU:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start  
condition  
400 kHz mode  
ms  
91  
THD:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
ns  
0
0.9  
ms  
TSU:DAT Data Input  
Setup Time  
250  
ns  
100  
ns  
TSU:STO Stop Condition  
Setup Time  
2(TOSC)(BRG + 1)  
ms  
2(TOSC)(BRG + 1)  
ms  
109  
110  
TAA  
Output Valid  
from Clock  
3500  
1000  
ns  
ns  
TBUF  
Bus Free Time  
4.7  
1.3  
ms Time the bus must be  
free before a new  
ms  
transmission can start  
pF  
D102 CB  
Bus Capacitive Loading  
400  
2010 Microchip Technology Inc.  
DS39616D-page 359  
PIC18F2331/2431/4331/4431  
FIGURE 26-17:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK/SS  
Pin  
121  
121  
RC7/RX/DT/SDO  
Pin  
120  
122  
TABLE 26-18: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
PIC18FXX31  
PIC18LFXX31  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock Out Rise Time and Fall Time PIC18FXX31  
(Master mode)  
PIC18LFXX31  
PIC18FXX31  
PIC18LFXX31  
50  
Data Out Rise Time and Fall Time  
20  
50  
FIGURE 26-18:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK/SS  
Pin  
125  
RC7/RX/DT/SDO  
Pin  
126  
TABLE 26-19: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (MASTER & SLAVE)  
Data Hold before CK (DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
Data Hold after CK (DT hold time)  
DS39616D-page 360  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
TABLE 26-20: A/D CONVERTER CHARACTERISTICS  
PIC18LF2331/2431/4331/4431  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2331/2431/4331/4431  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial)  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Device Supply  
AVDD  
AVSS  
IAD  
Analog VDD Supply  
Analog VSS Supply  
VDD – 0.3  
VSS – 0.3  
VDD + 0.3  
VSS + 0.3  
V
V
Module Current  
(during conversion)  
500  
250  
A  
VDD = 5V  
A VDD = 2.5V  
IADO  
Module Current Off  
1.0  
A  
AC Timing Parameters  
A10  
A11  
A12  
FTHR  
Throughput Rate  
200  
75  
ksps VDD = 5V, single channel  
ksps VDD < 3V, single channel  
TAD  
A/D Clock Period  
385  
1000  
20,000  
20,000  
ns  
ns  
VDD = 5V  
VDD = 3V  
TRC  
A/D Internal RC Oscillator Period  
500  
750  
10000  
1500  
2250  
20000  
ns  
ns  
ns  
PIC18F parts  
PIC18LF parts  
AVDD < 3.0V  
(1)  
A13  
A14  
A16  
TCNV  
TACQ  
TTC  
Conversion Time  
12  
12  
12  
TAD  
TAD  
(2)  
(2)  
Acquisition Time  
2
Conversion Start from External  
1/4 TCY  
Reference Inputs  
A20  
VREF  
Reference Voltage for 10-Bit  
Resolution (VREF+ – VREF-)  
1.5  
1.8  
AVDD – AVSS  
AVDD – AVSS  
V
V
VDD 3V  
VDD < 3V  
A21  
A22  
A23  
VREFH  
VREFL  
IREF  
Reference Voltage High (AVDD or VREF+)  
Reference Voltage Low (AVSS or VREF-)  
Reference Current  
1.5V  
AVDD  
V
V
VDD 3V  
AVSS  
VREFH – 1.5V  
150 A  
75 A  
VDD = 5V  
VDD = 2.5V  
Analog Input Characteristics  
(3)  
A26  
A30  
VAIN  
ZAIN  
Input Voltage  
AVSS – 0.3  
AVDD + 0.3  
2.5  
V
Recommended Impedance of Analog  
Voltage Source  
k  
A31  
ZCHIN  
Analog Channel Input Impedance  
10.0  
kVDD = 3.0V  
DC Performance  
A41  
A42  
NR  
Resolution  
10 bits  
EIL  
Integral Nonlinearity  
<1  
<1  
LSb VDD 3.0V  
VREFH 3.0V  
A43  
A45  
A46  
A47  
EIL  
Differential Nonlinearity  
Offset Error  
0.5  
LSb VDD 3.0V  
VREFH 3.0V  
EOFF  
EGA  
<1.5  
<1.5  
LSb VDD 3.0V  
VREFH 3.0V  
Gain Error  
0.5  
LSb VDD 3.0V  
VREFH 3.0V  
(4)  
Monotonicity  
guaranteed  
VDD 3.0V  
VREFH 3.0V  
Note 1: Conversion time does not include acquisition time. See Section 21.0 “10-Bit High-Speed Analog-to-Digital Converter  
(A/D) Module” for a full discussion of acquisition time requirements.  
2: In Sequential modes, TACQ should be 12 TAD or greater.  
3: For VDD < 2.7V and temperature below 0°C, VAIN should be limited to range < VDD/2.  
4: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2010 Microchip Technology Inc.  
DS39616D-page 361  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 362  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
28-Lead SPDIP (Skinny PDIP)  
Example  
e
3
PIC18F2331-I/SP  
1010017  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
28-Lead SOIC  
Example  
e
3
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC18F2431-E/SO  
1010017  
YYWWNNN  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
18F2431  
-I/ML  
1010017  
e
3
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS39616D-page 363  
PIC18F2331/2431/4331/4431  
27.1 Package Marking Information (Continued)  
40-Lead PDIP  
Example  
e
3
XXXXXXXXXXXXXXXXXX  
PIC18F4331-I/P  
1010017  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F4431  
3
e
-I/PT  
1010017  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F4431  
e3  
-I/ML  
1010017  
DS39616D-page 364  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
27.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢋꢌꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢈꢍꢖꢇMꢇꢗꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢈꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ<  
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
M
ꢁꢎꢕꢕ  
ꢁꢀꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢕ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢀꢁ-ꢖꢘ  
ꢁꢀꢀꢕ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢀ-ꢘ  
M
ꢁ-ꢀꢕ  
ꢁꢎ<ꢘ  
ꢀꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕꢘꢕ  
ꢁꢕꢀ<  
M
ꢁ--ꢘ  
ꢁꢎꢛꢘ  
ꢀꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜꢕ1  
2010 Microchip Technology Inc.  
DS39616D-page 365  
PIC18F2331/2431/4331/4431  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈꢙꢅꢎꢎꢇ#ꢓꢐꢎꢊꢋꢄꢇꢕꢈ#ꢖꢇMꢇ$ꢊꢆꢄ%ꢇ&'(ꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈ#ꢔ)  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅꢏ  
M
ꢎꢁꢕꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢎꢁ?ꢘ  
M
ꢕꢁ-ꢕ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢀꢕꢁ-ꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅ@ꢋꢓ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
ꢜꢁꢘꢕꢅ1ꢐ,  
ꢀꢜꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢜꢘ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢀ  
ꢀꢁꢖꢕꢅꢝ.3  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈꢅ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢟ  
ꢕꢁꢀ<  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁ--  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢎ1  
DS39616D-page 366  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS39616D-page 367  
PIC18F2331/2431/4331/4431  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇ./.ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
0ꢊꢐ1ꢇꢘ'((ꢇꢙꢙꢇ)ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ,ꢐ1  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
ꢕꢁ-ꢕ  
ꢕꢁꢘꢘ  
M
-ꢁ?ꢘ  
ꢖꢁꢎꢕ  
ꢒꢎ  
)
9
-ꢁ?ꢘ  
ꢕꢁꢎ-  
ꢕꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢖꢁꢎꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢜꢕ  
M
C
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕꢘ1  
DS39616D-page 368  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇ./.ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
0ꢊꢐ1ꢇꢘ'((ꢇꢙꢙꢇ)ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ,ꢐ1  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
2010 Microchip Technology Inc.  
DS39616D-page 369  
PIC18F2331/2431/4331/4431  
2ꢘꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢍꢖꢇMꢇ.ꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢖꢕ  
ꢁꢀꢕꢕꢅ1ꢐ,  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢎꢘꢕ  
ꢁꢀꢛꢘ  
M
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢘ  
ꢁꢕꢀꢘ  
ꢁꢘꢛꢕ  
ꢁꢖ<ꢘ  
ꢀꢁꢛ<ꢕ  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕ-ꢕ  
ꢁꢕꢀꢖ  
M
ꢁ?ꢎꢘ  
ꢁꢘ<ꢕ  
ꢎꢁꢕꢛꢘ  
ꢁꢎꢕꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎ-  
ꢁꢜꢕꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ?1  
DS39616D-page 370  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ31ꢊꢋꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ4ꢅꢑꢉꢇꢕꢍ3ꢖꢇMꢇ5ꢘ/5ꢘ/5ꢇꢙꢙꢇꢚꢛꢆꢌ%ꢇꢀ'ꢘꢘꢇꢙꢙꢇꢜ3*+ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ<ꢕꢅ1ꢐ,  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅ9ꢈꢆ#!  
9ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
9
M
ꢀꢁꢎꢕ  
ꢀꢁꢕꢘ  
ꢕꢁꢀꢘ  
ꢕꢁꢜꢘ  
ꢕꢁꢛꢘ  
ꢕꢁꢕꢘ  
ꢕꢁꢖꢘ  
ꢕꢁ?ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢀꢁꢕꢕꢅꢝ.3  
-ꢁꢘꢟ  
ꢕꢟ  
ꢜꢟ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.
.ꢀ  
ꢒꢀ  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ9ꢈꢄꢑ&ꢍ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢁꢕꢛ  
ꢕꢁ-ꢕ  
ꢀꢀꢟ  
ꢕꢁꢎꢕ  
ꢕꢁꢖꢘ  
ꢀ-ꢟ  
)
ꢕꢁ-ꢜ  
ꢀꢎꢟ  
ꢀꢎꢟ  
ꢀꢀꢟ  
ꢀ-ꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ,ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢓ&ꢃꢋꢄꢆꢇDꢅ!ꢃEꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ?1  
2010 Microchip Technology Inc.  
DS39616D-page 371  
PIC18F2331/2431/4331/4431  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ31ꢊꢋꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ4ꢅꢑꢉꢇꢕꢍ3ꢖꢇMꢇ5ꢘ/5ꢘ/5ꢇꢙꢙꢇꢚꢛꢆꢌ%ꢇꢀ'ꢘꢘꢇꢙꢙꢇꢜ3*+ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS39616D-page 372  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇꢁ/ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
?ꢁ-ꢕ  
?ꢁ<ꢕ  
ꢒꢎ  
)
9
?ꢁ-ꢕ  
ꢕꢁꢎꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
?ꢁ<ꢕ  
ꢕꢁ-<  
ꢕꢁꢘꢕ  
M
C
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕ-1  
2010 Microchip Technology Inc.  
DS39616D-page 373  
PIC18F2331/2431/4331/4431  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇꢁ/ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS39616D-page 374  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Revision D (September 2010)  
APPENDIX A: REVISION HISTORY  
Revision A (June 2003)  
Section 2.0 “Guidelines for Getting Started with  
PIC18F Microcontrollers” has been updated with  
more detailed explanations. Changes have been made  
to the port summary tables in Section 11.0 “I/O  
Ports”. Section 26.0 “Electrical Characteristics”  
has been updated to include extended temperature  
data. Packaging diagrams have been replaced with  
new diagrams in Section 27.0 “Packaging  
Information”. There have been minor text edits  
throughout the document.  
Original data sheet for PIC18F2331/2431/4331/4431  
devices.  
Revision B (December 2003)  
The Electrical Specifications in Section 26.0 “Electri-  
cal Characteristics” have been updated and there  
have been minor corrections to the data sheet text.  
Revision C (June 2007)  
APPENDIX B: DEVICE  
DIFFERENCES  
The data sheet has been updated with all known Data  
Sheet Errata items and there have been minor  
corrections made to the data sheet text. Also, the  
packaging diagrams have been updated in  
Section 27.0 “Packaging Information”.  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F2331  
PIC18F2431  
PIC18F4331  
PIC18F4431  
Program Memory (Bytes)  
Program Memory (Instructions)  
Interrupt Sources  
4096  
2048  
22  
8192  
4096  
22  
4096  
2048  
34  
8192  
4096  
34  
I/O Ports  
Ports A, B, C, D, E Ports A, B, C, D, E Ports A, B, C, D, E Ports A, B, C, D, E  
Capture/Compare/PWM Modules  
2
1
2
1
2
1
2
1
Enhanced Capture/Compare/  
PWM Modules  
10-Bit Analog-to-Digital Module  
Packages  
5 Input Channels  
5 Input Channels  
9 Input Channels  
9 Input Channels  
28-Pin SPDIP  
28-Pin SOIC  
28-Pin QFN  
28-Pin SPDIP  
28-Pin SOIC  
28-Pin QFN  
40-Pin PDIP  
44-Pin TQFP  
44-Pin QFN  
40-Pin PDIP  
44-Pin TQFP  
44-Pin QFN  
2010 Microchip Technology Inc.  
DS39616D-page 375  
PIC18F2331/2431/4331/4431  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for  
converting from previous versions of a device to the  
ones listed in this data sheet. Typically, these changes  
are due to the differences in the process technology  
used. An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
This section discusses how to migrate from a baseline  
device (i.e., PIC16C5X) to an enhanced MCU device  
(i.e., PIC18FXXX).  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
DS39616D-page 376  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
APPENDIX E: MIGRATION FROM  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
MID-RANGE TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18F442.” The changes discussed, while device-  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
A detailed discussion of the migration pathway and  
differences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXX) is provided in AN726, “PIC17CXXX to  
PIC18FXXX Migration.”  
This Application Note is available on Microchip’s  
web site: www.Microchip.com.  
This Application Note is available on Microchip’s  
web site: www.Microchip.com.  
2010 Microchip Technology Inc.  
DS39616D-page 377  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 378  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
INDEX  
On-Chip Reset Circuit................................................. 47  
PIC18F2331/2431 ...................................................... 14  
A
A/D.................................................................................... 239  
Acquisition Requirements ......................................... 249  
Associated Registers ................................................ 255  
Calculating the Minimum Required  
PIC18F4331/4431 ...................................................... 15  
PLL ............................................................................. 30  
Power Control PWM Module .................................... 174  
PWM (Standard)....................................................... 149  
PWM I/O Pin............................................................. 198  
PWM Module, One Output Pair,  
Acquisition Time ............................................... 250  
Configuring................................................................ 247  
Configuring Analog Port Pins.................................... 252  
Conversions.............................................................. 253  
Converter Characteristics ......................................... 361  
Operation in Power-Managed Modes ....................... 252  
Result Buffer ............................................................. 249  
Selecting and Configuring Automatic  
Complementary Mode ...................................... 175  
PWM Module, One Output Pair,  
Independent Mode ........................................... 175  
PWM Time Base....................................................... 177  
QEI ........................................................................... 161  
RC Oscillator .............................................................. 31  
RCIO Oscillator........................................................... 31  
Reads from Flash Program Memory .......................... 89  
Recommended Minimum Connections....................... 25  
Acquisition Time ............................................... 251  
Selecting the Conversion Clock................................ 251  
Special Event Trigger (CCP)..................................... 147  
Voltage References .................................................. 251  
Absolute Maximum Ratings .............................................. 329  
AC (Timing) Characteristics.............................................. 344  
Load Conditions for Device  
Timing Specifications........................................ 345  
Parameter Symbology .............................................. 344  
Temperature and Voltage Specifications.................. 345  
Timing Conditions ..................................................... 345  
ACK Pulse................................................................. 212, 214  
ADDLW ............................................................................. 289  
ADDWF............................................................................. 289  
ADDWFC .......................................................................... 290  
Analog-to-Digital Converter. See A/D.  
2
SSP (I C Mode)........................................................ 212  
SSP (SPI Mode) ....................................................... 209  
System Clock.............................................................. 35  
Table Read Operation ................................................ 85  
Table Write Operation ................................................ 86  
Table Writes to Flash Program Memory..................... 91  
Timer0 in 16-Bit Mode .............................................. 128  
Timer0 in 8-Bit Mode ................................................ 128  
Timer1 ...................................................................... 132  
Timer1 (16-Bit Read/Write Mode)............................. 132  
Timer2 ...................................................................... 137  
Timer5 ...................................................................... 140  
Velocity Measurement.............................................. 167  
Watchdog Timer ....................................................... 274  
BN..................................................................................... 292  
BNC .................................................................................. 293  
BNN .................................................................................. 293  
BNOV ............................................................................... 294  
BNZ .................................................................................. 294  
BOR. See Brown-out Reset.  
ANDLW ............................................................................. 290  
ANDWF............................................................................. 291  
Application Notes  
AN578 (Use of the SSP Module in the  
2
I C Multi-Master Environment) ......................... 205  
Assembler  
MPASM Assembler................................................... 326  
Auto-Wake-up on Sync Break Character.......................... 231  
BOV .................................................................................. 297  
BRA .................................................................................. 295  
Brown-out Reset (BOR).............................................. 49, 263  
BSF................................................................................... 295  
BTFSC.............................................................................. 296  
BTFSS .............................................................................. 296  
BTG .................................................................................. 297  
BZ ..................................................................................... 298  
B
BC ..................................................................................... 291  
BCF................................................................................... 292  
BF Bit ................................................................................ 206  
Block Diagrams  
A/D............................................................................ 246  
Analog Input Model................................................... 250  
Capture Mode Operation .......................................... 146  
Center Connected Load............................................ 194  
Compare Mode Operation ........................................ 147  
Dead-Time Control Unit for One  
PWM Output Pair.............................................. 191  
EUSART Receive ..................................................... 229  
EUSART Transmit .................................................... 227  
External Clock Input, EC............................................. 31  
External Components for Timer1 LP Oscillator......... 133  
External Power-on Reset Circuit  
(Slow VDD Power-up).......................................... 49  
Fail-Safe Clock Monitor............................................. 277  
Generic I/O Port........................................................ 113  
Input Capture for IC1 ................................................ 153  
Input Capture for IC2 and IC3................................... 154  
Interrupt Logic............................................................. 98  
Low-Voltage Detect with External Input.................... 258  
Motion Feedback Module.......................................... 152  
C
C Compilers  
MPLAB C18.............................................................. 326  
CALL................................................................................. 298  
Capture (CCP Module) ..................................................... 146  
Associated Registers................................................ 148  
CCP Pin Configuration ............................................. 146  
CCPR1H:CCPR1L Registers ................................... 146  
Prescaler .................................................................. 146  
Software Interrupt..................................................... 146  
Timer1 Mode Selection............................................. 146  
Capture/Compare/PWM (CCP) ........................................ 145  
Capture Mode. See Capture.  
CCP1........................................................................ 145  
CCPR1H Register ............................................ 145  
CCPR1L Register............................................. 145  
2010 Microchip Technology Inc.  
DS39616D-page 379  
PIC18F2331/2431/4331/4431  
CCP2 ........................................................................145  
D
CCPR2H Register.............................................145  
D/A Bit............................................................................... 206  
CCPR2L Register .............................................145  
Compare Mode. See Compare.  
Data Addressing Modes ..................................................... 75  
Direct .......................................................................... 75  
Indirect........................................................................ 75  
Inherent and Literal..................................................... 75  
Data EEPROM Memory...................................................... 79  
Associated Registers.................................................. 83  
EEADR Register......................................................... 79  
EECON1 and EECON2 Registers.............................. 79  
Operation During Code-Protect .................................. 82  
Protection Against Spurious Write.............................. 81  
Reading ...................................................................... 81  
Using .......................................................................... 82  
Write Verify................................................................. 81  
Writing ........................................................................ 81  
Data Memory ...................................................................... 67  
Access Bank............................................................... 68  
Bank Select Register (BSR) ....................................... 68  
General Purpose Register (GPR) File ........................ 68  
Map for PIC18F2331/2431/4331/4431 ....................... 67  
Special Function Registers (SFRs)............................. 69  
DAW ................................................................................. 302  
DC Characteristics............................................................ 339  
Power-Down and Supply Current ............................. 332  
Supply Voltage ......................................................... 331  
DCFSNZ ........................................................................... 303  
DECF................................................................................ 302  
DECFSZ ........................................................................... 303  
Development Support....................................................... 325  
Device Differences............................................................ 375  
Device Overview................................................................. 11  
Features (table) .......................................................... 13  
New Core Features..................................................... 11  
Other Special Features............................................... 12  
Device Reset Timers  
Timer Resources.......................................................145  
CKE Bit..............................................................................206  
CKP Bit..............................................................................207  
Clock Sources.....................................................................34  
Effects of Power-Managed Modes..............................37  
Selection Using OSCCON Register............................34  
Clocking Scheme/Instruction Cycle.....................................65  
CLRF.................................................................................299  
CLRWDT...........................................................................299  
Code Examples  
Changing Between Capture Prescalers....................146  
Computed GOTO Using an Offset Value....................64  
Data EEPROM Read ..................................................81  
Data EEPROM Refresh Routine.................................82  
Data EEPROM Write ..................................................81  
Erasing a Flash Program Memory Row ......................90  
Fast Register Stack.....................................................64  
How to Clear RAM (Bank 1) Using  
Indirect Addressing .............................................75  
Implementing a Real-Time Clock Using a  
Timer1 Interrupt Service ...................................135  
Initializing PORTA.....................................................113  
Initializing PORTB.....................................................116  
Initializing PORTC.....................................................119  
Initializing PORTD.....................................................122  
Initializing PORTE.....................................................124  
Reading a Flash Program Memory Word ...................89  
Saving STATUS, WREG and BSR  
Registers in RAM..............................................112  
Writing to Flash Program Memory ........................93–94  
16 x 16 Signed Multiply Routine .................................96  
16 x 16 Unsigned Multiply Routine .............................96  
8 x 8 Signed Multiply Routine .....................................95  
8 x 8 Unsigned Multiply Routine .................................95  
Code Protection ........................................................ 263, 279  
Associated Registers ................................................279  
Data EEPROM..........................................................282  
Program Memory ......................................................280  
COMF................................................................................300  
Compare (CCP Module)....................................................147  
Associated Registers ................................................148  
CCP Pin Configuration..............................................147  
CCPR1 Register .......................................................147  
CCPR2 Register .......................................................147  
Software Interrupt Mode ...........................................147  
Special Event Trigger................................................147  
Timer1 Mode Selection .............................................147  
Configuration Bits..............................................................263  
Configuration Register Protection .....................................282  
Conversion Considerations...............................................376  
CPFSEQ ...........................................................................300  
CPFSGT............................................................................301  
CPFSLT ............................................................................301  
Crystal Oscillator/Ceramic Resonators ...............................29  
Customer Change Notification Service .............................387  
Customer Notification Service...........................................387  
Customer Support.............................................................387  
Oscillator Start-up Timer (OST).................................. 50  
PLL Lock Time-out...................................................... 50  
Power-up Timer (PWRT) ............................................ 50  
Time-out Sequence .................................................... 50  
Direct Addressing ............................................................... 76  
E
Electrical Characteristics .................................................. 329  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) .............................. 217  
Equations  
A/D Acquisition Time ................................................ 249  
Conversion Time for Multi-Channel Modes .............. 254  
Minimum A/D Holding Capacitor Charging Time...... 249  
PWM Period for Free-Running Mode ....................... 185  
PWM Period for Up/Down Count Mode.................... 185  
PWM Resolution....................................................... 185  
16 x 16 Signed Multiplication Algorithm...................... 96  
16 x 16 Unsigned Multiplication Algorithm.................. 96  
Errata.................................................................................... 9  
DS39616D-page 380  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
EUSART  
Asynchronous Mode ................................................. 226  
H
Hardware Multiplier............................................................. 95  
Introduction................................................................. 95  
Operation.................................................................... 95  
Performance Comparison........................................... 95  
Associated Registers, Receive ......................... 230  
Associated Registers, Transmit ........................ 228  
Auto-Wake-up on Sync Break .......................... 231  
Receiver............................................................ 229  
Receiving a Break Character............................ 232  
Setting Up 9-Bit Mode with Address Detect...... 229  
Transmitter........................................................ 226  
12-Bit Break Character Sequence .................... 232  
I
I/O Ports ........................................................................... 113  
ID Locations.............................................................. 263, 282  
INCF ................................................................................. 304  
INCFSZ............................................................................. 305  
In-Circuit Debugger........................................................... 282  
In-Circuit Serial Programming (ICSP)....................... 263, 282  
Independent PWM Mode.................................................. 193  
Duty Cycle Assignment ............................................ 193  
Indirect Addressing............................................................. 76  
INFSNZ............................................................................. 305  
Initialization Conditions for All Registers....................... 54–59  
Instruction Flow/Pipelining.................................................. 65  
Instruction Set  
Baud Rate Generator (BRG)..................................... 221  
Associated Registers........................................ 222  
Auto-Baud Rate Detect..................................... 225  
Baud Rate Error, Calculating ............................ 222  
Baud Rates, Asynchronous Modes .................. 222  
High Baud Rate Select (BRGH Bit) .................. 221  
Power-Managed Mode Operation..................... 221  
Sampling........................................................... 221  
Serial Port Enable (SPEN Bit)................................... 217  
Synchronous Master Mode....................................... 233  
Associated Registers, Receive ......................... 236  
Associated Registers, Transmit ........................ 234  
Reception.......................................................... 235  
Transmission .................................................... 233  
Synchronous Slave Mode......................................... 237  
Associated Registers, Receive ......................... 238  
Associated Registers, Transmit ........................ 237  
Reception.......................................................... 238  
Transmission .................................................... 237  
External Clock Input............................................................ 31  
ADDLW..................................................................... 289  
ADDWF .................................................................... 289  
ADDWFC.................................................................. 290  
ANDLW..................................................................... 290  
ANDWF .................................................................... 291  
BC............................................................................. 291  
BCF .......................................................................... 292  
BN............................................................................. 292  
BNC.......................................................................... 293  
BNN.......................................................................... 293  
BNOV ....................................................................... 294  
BNZ .......................................................................... 294  
BOV.......................................................................... 297  
BRA .......................................................................... 295  
BSF........................................................................... 295  
BTFSC...................................................................... 296  
BTFSS...................................................................... 296  
BTG .......................................................................... 297  
BZ............................................................................. 298  
CALL......................................................................... 298  
CLRF ........................................................................ 299  
CLRWDT .................................................................. 299  
COMF....................................................................... 300  
CPFSEQ................................................................... 300  
CPFSGT................................................................... 301  
CPFSLT.................................................................... 301  
DAW ......................................................................... 302  
DCFSNZ................................................................... 303  
DECF........................................................................ 302  
DECFSZ ................................................................... 303  
General Format ........................................................ 285  
GOTO....................................................................... 304  
INCF ......................................................................... 304  
INCFSZ..................................................................... 305  
INFSNZ..................................................................... 305  
IORLW...................................................................... 306  
IORWF...................................................................... 306  
LFSR ........................................................................ 307  
MOVF ....................................................................... 307  
MOVFF..................................................................... 308  
MOVLB..................................................................... 308  
F
Fail-Safe Clock Monitor............................................. 263, 277  
Exiting ....................................................................... 277  
Interrupts in Power-Managed Modes........................ 278  
POR or Wake From Sleep ........................................ 278  
WDT During Oscillator Failure .................................. 277  
Fail-Safe Clock Monitor (FSCM)....................................... 263  
Fast Register Stack............................................................. 64  
Flash Program Memory ...................................................... 85  
Associated Registers .................................................. 94  
Control Registers ........................................................ 86  
EECON1 and EECON2 ...................................... 86  
Erase Sequence ......................................................... 90  
Erasing........................................................................ 90  
Operation During Code-Protect .................................. 94  
Reading....................................................................... 89  
TABLAT Register........................................................ 88  
Table Pointer............................................................... 88  
Boundaries Based on Operation......................... 88  
Table Pointer Boundaries ........................................... 88  
Table Reads and Table Writes ................................... 85  
Unexpected Termination of Write Operation............... 94  
Write Sequence .......................................................... 92  
Write Verify ................................................................. 94  
Writing......................................................................... 91  
FSCM. See Fail-Safe Clock Monitor.  
G
Getting Started.................................................................... 25  
GOTO ............................................................................... 304  
2010 Microchip Technology Inc.  
DS39616D-page 381  
PIC18F2331/2431/4331/4431  
2
MOVLW ....................................................................309  
MOVWF ....................................................................309  
MULLW .....................................................................310  
MULWF.....................................................................310  
NEGF ........................................................................311  
NOP ..........................................................................311  
POP ..........................................................................312  
PUSH ........................................................................312  
RCALL ......................................................................313  
Read-Modify-Write Operations .................................283  
RESET ......................................................................313  
RETFIE .....................................................................314  
RETLW .....................................................................314  
RETURN ...................................................................315  
RLCF.........................................................................315  
RLNCF ......................................................................316  
RRCF ........................................................................316  
RRNCF .....................................................................317  
SETF.........................................................................317  
SLEEP ......................................................................318  
SUBFWB...................................................................318  
SUBLW .....................................................................319  
SUBWF.....................................................................319  
SUBWFB...................................................................320  
Summary...................................................................283  
Summary Table.........................................................286  
SWAPF .....................................................................320  
TBLRD ......................................................................321  
TBLWT......................................................................322  
TSTFSZ ....................................................................323  
XORLW.....................................................................323  
XORWF.....................................................................324  
I C Mode  
Operation.................................................................. 212  
I C Mode (SSP)  
Addressing................................................................ 213  
2
Associated Registers................................................ 216  
Master Mode............................................................. 216  
Mode Selection......................................................... 212  
Multi-Master Mode.................................................... 216  
Operation.................................................................. 212  
Reception ................................................................. 214  
Slave Mode............................................................... 212  
SCL and SDA Pins ........................................... 212  
Transmission ............................................................ 215  
L
LFSR................................................................................. 307  
Low-Voltage Detect .......................................................... 257  
Applications .............................................................. 261  
Associated Registers................................................ 261  
Characteristics.......................................................... 342  
Current Consumption................................................ 259  
Effects of a Reset ..................................................... 261  
Operation.................................................................. 259  
Operation During Sleep ............................................ 261  
Setup ........................................................................ 259  
Start-up Time............................................................ 260  
LVD. See Low-Voltage Detect.  
M
Master Clear (MCLR).......................................................... 49  
Memory Organization ......................................................... 61  
Data Memory .............................................................. 67  
Program Memory........................................................ 61  
Memory Programming Requirements............................... 341  
MFM  
INTCON Register  
RBIF Bit.....................................................................116  
INTCON Registers ..............................................................99  
2
2
Input Capture  
Inter-Integrated Circuit (I C). See I C Mode.  
Edge Capture Mode ......................................... 156  
Entering and Timing ......................................... 159  
IC Interrupts...................................................... 159  
Pulse-Width Measurement Mode ..................... 157  
Special Event Trigger (CAP1 Only).................. 160  
State Change.................................................... 158  
Time Base Reset Summary.............................. 160  
Timer5 Reset.................................................... 159  
Input Capture (IC) Submode..................................... 153  
Input Capture Mode  
Internal Oscillator Block ......................................................32  
Adjustment..................................................................32  
INTIO Modes...............................................................32  
INTRC Output Frequency ...........................................32  
OSCTUNE Register....................................................32  
Internal RC Oscillator  
Use with WDT...........................................................274  
Internet Address................................................................387  
Interrupt Sources...............................................................263  
Capture Complete (CCP)..........................................146  
Interrupt-on-Change (RB7:RB4) ...............................116  
INTx Pin ....................................................................112  
PORTB, Interrupt-on-Change ...................................112  
TMR0 ........................................................................112  
TMR1 Overflow .........................................................131  
TMR2 to PR2 Match (PWM) ............................. 136, 149  
Interrupts.............................................................................97  
Context Saving, During .............................................112  
Interrupts, Enable Bits  
Period Measurement Mode .............................. 157  
Noise Filters.............................................................. 169  
Microchip Internet Web Site.............................................. 387  
Migration From Baseline to Enhanced Devices................ 376  
Migration From High-End to Enhanced Devices............... 377  
Migration From Mid-Range to Enhanced Devices............ 377  
Motion Feedback Module (MFM)...................................... 151  
Associated Registers................................................ 171  
Summary of Features ............................................... 151  
MOVF ............................................................................... 307  
MOVFF ............................................................................. 308  
MOVLB ............................................................................. 308  
MOVLW ............................................................................ 309  
MOVWF............................................................................ 309  
MPLAB ASM30 Assembler, Linker, Librarian................... 326  
MPLAB Integrated Development  
CCP1 Enable (CCP1IE Bit).......................................146  
Interrupts, Flag Bits  
CCP1 Flag (CCP1IF Bit)...........................................146  
CCP1IF Flag (CCP1IF Bit)........................................147  
CCP2IF Flag (CCP2IF Bit)........................................147  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) ..........................................................116  
INTOSC, INTRC. See Internal Oscillator Block.  
IORLW ..............................................................................306  
IORWF ..............................................................................306  
IPR Registers....................................................................108  
Environment Software .............................................. 325  
MPLAB PM3 Device Programmer .................................... 328  
MPLAB REAL ICE In-Circuit Emulator System ................ 327  
DS39616D-page 382  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
MPLINK Object Linker/MPLIB Object Librarian ................ 326  
MULLW ............................................................................. 310  
MULWF............................................................................. 310  
RD2/SDI/SDA............................................................. 23  
RD3/SCK/SCL............................................................ 23  
RD4/FLTA................................................................... 23  
RD5/PWM4................................................................. 23  
RD6/PWM6................................................................. 23  
RD7/PWM7................................................................. 23  
RE0/AN6..................................................................... 24  
RE1/AN7..................................................................... 24  
RE2/AN8..................................................................... 24  
VDD ....................................................................... 18, 24  
VSS ....................................................................... 24, 18  
Pinout I/O Descriptions  
PIC18F2331/2431 ...................................................... 16  
PIC18F4331/4431 ...................................................... 19  
PIR Registers.................................................................... 102  
PLL  
HSPLL Mode .............................................................. 30  
Multiplier ..................................................................... 30  
POP .................................................................................. 312  
POR. See Power-on Reset.  
N
NEGF ................................................................................ 311  
NOP .................................................................................. 311  
O
Opcode Field Descriptions................................................ 284  
Oscillator Configuration....................................................... 29  
EC............................................................................... 29  
ECIO ........................................................................... 29  
HS............................................................................... 29  
HSPLL......................................................................... 29  
Internal Oscillator Block .............................................. 32  
INTIO1 ........................................................................ 29  
INTIO2 ........................................................................ 29  
LP................................................................................ 29  
RC............................................................................... 29  
RCIO........................................................................... 29  
XT ............................................................................... 29  
Oscillator Selection ........................................................... 263  
Oscillator Start-up Timer (OST) .................................. 37, 263  
Oscillator Switching............................................................. 34  
Oscillator Transitions .......................................................... 37  
Oscillator, Timer1.............................................................. 131  
PORTA  
Associated Registers................................................ 115  
LATA Register .......................................................... 113  
PORTA Register....................................................... 113  
TRISA Register......................................................... 113  
PORTB  
Associated Registers................................................ 118  
LATB Register .......................................................... 116  
PORTB Register....................................................... 116  
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) ........ 116  
TRISB Register......................................................... 116  
PORTC  
Associated Registers................................................ 121  
LATC Register.......................................................... 119  
PORTC Register....................................................... 119  
TRISC Register ........................................................ 119  
PORTD  
P
P (Stop) Bit........................................................................ 206  
Packaging Information ...................................................... 363  
Details....................................................................... 365  
Marking ..................................................................... 363  
PIE Registers.................................................................... 105  
Pin Diagrams ........................................................................ 4  
Pin Functions  
MCLR/VPP................................................................... 16  
MCLR/VPP/RE3........................................................... 19  
OSC1/CLKI/RA7 ................................................... 16, 19  
OSC2/CLKO/RA6 ................................................. 16, 19  
RA0/AN0............................................................... 16, 20  
RA1/AN1............................................................... 16, 20  
RA2/AN2/VREF-/CAP1/INDX................................. 16, 20  
RA3/AN3/VREF+/CAP2/QEA................................. 16, 20  
RA4/AN4/CAP3/QEB............................................ 16, 20  
RA5/AN5/LVDIN ......................................................... 20  
RB0/PWM0 ........................................................... 17, 21  
RB1/PWM1 ........................................................... 17, 21  
RB2/PWM2 ........................................................... 17, 21  
RB3/PWM3 ........................................................... 17, 21  
RB4/KBIO/PWM5........................................................ 17  
RB4/KBI0/PWM5 ........................................................ 21  
RB5/KBI1/PWM4/PGM ......................................... 17, 21  
RB6/KBI2/PGC ..................................................... 17, 21  
RB7/KBI3/PGD ..................................................... 17, 21  
RC0/T1OSO/T1CKI .............................................. 18, 22  
RC1/T1OSI/CCP2/FLTA....................................... 18, 22  
RC2/CCP1 .................................................................. 18  
RC2/CCP1/FLTB ........................................................ 22  
RC3/T0CKI/T5CKI/INT0........................................ 18, 22  
RC4/INT1/SDI/SDA............................................... 18, 22  
RC5/INT2/SCK/SCL.............................................. 18, 22  
RC6/TX/CK/SS ..................................................... 18, 22  
RC7/RX/DT/SDO .................................................. 18, 22  
RD0/T0CKI/T5CKI ...................................................... 23  
RD1/SDO.................................................................... 23  
Associated Registers................................................ 123  
LATD Register.......................................................... 122  
PORTD Register....................................................... 122  
TRISD Register ........................................................ 122  
PORTE  
Associated Registers................................................ 125  
LATE Register .......................................................... 124  
PORTE Register....................................................... 124  
TRISE Register......................................................... 124  
Postscaler, WDT  
Assignment (PSA Bit)............................................... 129  
Rate Select (T0PS2:T0PS0 Bits).............................. 129  
Power-Managed Modes...................................................... 39  
Clock Sources ............................................................ 39  
Clock Transitions and Status Indicators ..................... 40  
Entering ...................................................................... 39  
Exiting Idle and Sleep Modes..................................... 45  
By Interrupt......................................................... 45  
By Reset............................................................. 45  
By WDT Time-out............................................... 45  
Without an Oscillator Start-up Delay .................. 46  
Idle Modes.................................................................. 43  
PRI_IDLE ........................................................... 44  
RC_IDLE ............................................................ 45  
SEC_IDLE.......................................................... 44  
Multiple Sleep Commands.......................................... 40  
2010 Microchip Technology Inc.  
DS39616D-page 383  
PIC18F2331/2431/4331/4431  
Run Modes..................................................................40  
PRI_RUN ............................................................40  
RC_RUN.............................................................41  
SEC_RUN...........................................................40  
Selecting .....................................................................39  
Sleep Mode.................................................................43  
Summary (table) .........................................................39  
Power-on Reset (POR) ............................................... 49, 263  
Power-up Delays.................................................................37  
Power-up Timer (PWRT).............................................37, 263  
Prescaler, Timer0..............................................................129  
Assignment (PSA Bit) ...............................................129  
Rate Select (T0PS2:T0PS0 Bits) ..............................129  
Prescaler, Timer2..............................................................150  
PRI_IDLE Mode ..................................................................44  
PRI_RUN Mode ..................................................................40  
Program Counter (PC) ........................................................62  
Program Memory  
PWM (CCP Module)  
Associated Registers................................................ 150  
CCPR1H:CCPR1L Registers.................................... 149  
Duty Cycle ................................................................ 149  
Example Frequencies/Resolutions ........................... 150  
Period ....................................................................... 149  
PR2 Register, Writing ............................................... 149  
Setup for PWM Operation......................................... 150  
TMR2 to PR2 Match ......................................... 136, 149  
PWM Period...................................................................... 185  
Q
Q Clock............................................................................. 150  
QEI  
and IC Shared Interrupts .......................................... 170  
Configuration ............................................................ 162  
Direction of Rotation ................................................. 163  
Interrupts .................................................................. 164  
Operation.................................................................. 163  
Operation in Sleep Mode.......................................... 170  
3x Input Capture............................................... 170  
Sampling Modes....................................................... 163  
Velocity Measurement .............................................. 167  
Quadrature Encoder Interface (QEI)................................. 161  
Instructions..................................................................66  
Two-Word ...........................................................66  
Interrupt Vector ...........................................................61  
Map and Stack  
PIC18F2331/4331...............................................61  
PIC18F2431/4431...............................................61  
Reset Vector ...............................................................61  
Program Verification..........................................................279  
Pulse-Width Modulation. See PWM (CCP Module).  
PUSH ................................................................................312  
PUSH and POP Instructions ...............................................64  
PWM  
R
R/W Bit...................................................... 206, 213, 214, 215  
RAM. See Data Memory.  
RC Oscillator....................................................................... 31  
RCIO Oscillator Mode................................................. 31  
RC_IDLE Mode................................................................... 45  
RC_RUN Mode................................................................... 41  
RCALL .............................................................................. 313  
RCSTA Register  
SPEN Bit................................................................... 217  
Reader Response............................................................. 388  
Registers  
Associated Registers ................................................203  
Complementary Operation........................................190  
Control Registers ......................................................176  
Dead-Time Generators .............................................191  
Duty Cycle.................................................................187  
Center-Aligned..................................................189  
Comparison.......................................................187  
Edge-Aligned ....................................................188  
Register Buffers ................................................188  
Registers...........................................................187  
Fault Inputs ...............................................................199  
Functionality..............................................................176  
Modes  
Continuous Up/Down Count .............................180  
Free-Running....................................................180  
Single-Shot .......................................................180  
Output and Polarity Control.......................................198  
Output Override ........................................................194  
Single-Pulse Operation .............................................194  
Special Event Trigger................................................202  
Time Base.................................................................176  
Interrupts...........................................................181  
Continuous Up/Down  
ADCHS (A/D Channel Select) .................................. 244  
ADCON0 (A/D Control 0).......................................... 240  
ADCON1 (A/D Control 1).......................................... 241  
ADCON2 (A/D Control 2).......................................... 242  
ADCON3 (A/D Control 3).......................................... 243  
ANSEL0 (Analog Select 0) ....................................... 245  
ANSEL1 (Analog Select 1) ....................................... 245  
BAUDCON (Baud Rate Control)............................... 220  
CAPxCON (Input Capture x Control)........................ 155  
CCPxCON (CCPx Control)....................................... 145  
CONFIG1H (Configuration 1 High)........................... 264  
CONFIG2H (Configuration 2 High)........................... 266  
CONFIG2L (Configuration 2 Low) ............................ 265  
CONFIG3H (Configuration 3 High)........................... 268  
CONFIG3L (Configuration 3 Low) ............................ 267  
CONFIG4L (Configuration 4 Low) ............................ 269  
CONFIG5H (Configuration 5 High)........................... 270  
CONFIG5L (Configuration 5 Low) ............................ 270  
CONFIG6H (Configuration 6 High)........................... 271  
CONFIG6L (Configuration 6 Low) ............................ 271  
CONFIG7H (Configuration 7 High)........................... 272  
CONFIG7L (Configuration 7 Low) ............................ 272  
DEVID1 (Device ID 1)............................................... 273  
Count Mode ......................................182  
Double Update Mode................................184  
Free-Running Mode..................................181  
Single-Shot Mode .....................................182  
Postscaler .........................................................181  
Prescaler...........................................................180  
Update Lockout.........................................................202  
DS39616D-page 384  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
DEVID2 (Device ID 2)............................................... 273  
Serial Data Out (SDO) Pin................................................ 205  
SETF ................................................................................ 317  
Single-Supply ICSP Programming.................................... 282  
Slave Select (SS) Pin ....................................................... 205  
SLEEP .............................................................................. 318  
Sleep  
OSC1 and OSC2 Pin States....................................... 37  
Software Simulator (MPLAB SIM) .................................... 327  
Special Event Trigger. See Compare (CCP Module).  
Special Features of the CPU ............................................ 263  
Special Function Registers  
Map............................................................................. 69  
SPI Mode (SSP) ............................................................... 205  
Associated Registers................................................ 211  
Serial Clock .............................................................. 205  
Serial Data In............................................................ 205  
Serial Data Out......................................................... 205  
Slave Select.............................................................. 205  
SS..................................................................................... 205  
SSP  
DFLTCON (Digital Filter Control).............................. 169  
DTCON (Dead-Time Control) ................................... 192  
EECON1 (Data EEPROM Control 1).......................... 87  
EECON1 (EEPROM Control 1)................................... 80  
FLTCONFIG (Fault Configuration)............................ 201  
INTCON (Interrupt Control)......................................... 99  
INTCON2 (Interrupt Control 2).................................. 100  
INTCON3 (Interrupt Control 3).................................. 101  
IPR1 (Peripheral Interrupt Priority 1)......................... 108  
IPR2 (Peripheral Interrupt Priority 2)......................... 109  
IPR3 (Peripheral Interrupt Priority 3)......................... 110  
LVDCON (Low-Voltage Detect Control).................... 257  
OSCCON (Oscillator Control) ..................................... 36  
OSCTUNE (Oscillator Tuning).................................... 33  
OVDCOND (Output Override Control)...................... 196  
OVDCONS (Output State) ........................................ 196  
PIE1 (Peripheral Interrupt Enable 1)......................... 105  
PIE2 (Peripheral Interrupt Enable 2)......................... 106  
PIE3 (Peripheral Interrupt Enable 3)......................... 107  
PIR1 (Peripheral Interrupt Request (Flag) 1)............ 102  
PIR2 (Peripheral Interrupt Request (Flag) 2)............ 103  
PIR3 (Peripheral Interrupt Request (Flag) 3)............ 104  
PTCON0 (PWM Timer Control 0) ............................. 178  
PTCON1 (PWM Timer Control 1) ............................. 178  
PWMCON0 (PWM Control 0) ................................... 179  
PWMCON1 (PWM Control 1) ................................... 180  
QEICON (QEI Control).............................................. 162  
RCON (Reset Control)........................................ 48, 111  
RCSTA (Receive Status and Control)....................... 219  
SSPCON (SSP Control)............................................ 207  
SSPSTAT (SSP Status)............................................ 206  
STATUS...................................................................... 74  
STKPTR (Stack Pointer)............................................. 63  
Summary............................................................... 70–73  
TRISE ....................................................................... 124  
TXSTA (Transmit Status and Control) ...................... 218  
T0CON (Timer0 Control)........................................... 127  
T1CON (Timer1 Control)........................................... 131  
T2CON (Timer2 Control)........................................... 136  
T5CON (Timer5 Control)........................................... 139  
WDTCON (Watchdog Timer Control) ....................... 275  
RESET .............................................................................. 313  
Reset................................................................................... 47  
Resets............................................................................... 263  
RETFIE ............................................................................. 314  
RETLW ............................................................................. 314  
RETURN ........................................................................... 315  
Return Address Stack......................................................... 62  
Return Stack Pointer (STKPTR) ......................................... 62  
Revision History................................................................ 375  
RLCF................................................................................. 315  
RLNCF .............................................................................. 316  
RRCF ................................................................................ 316  
RRNCF ............................................................................. 317  
Overview.  
TMR2 Output for Clock Shift............................. 136, 137  
SSPEN Bit ........................................................................ 207  
SSPM<3:0> Bits ............................................................... 208  
SSPOV Bit ........................................................................ 207  
Stack Full/Underflow Resets............................................... 64  
Status Bits, Significance and Initialization for  
RCON Register........................................................... 53  
SUBFWB .......................................................................... 318  
SUBLW............................................................................. 319  
SUBWF............................................................................. 319  
SUBWFB .......................................................................... 320  
SWAPF............................................................................. 320  
Synchronous Serial Port. See SSP.  
T
TABLAT Register................................................................ 88  
Table Pointer Operations (table)......................................... 88  
TBLPTR Register................................................................ 88  
TBLRD.............................................................................. 321  
TBLWT ............................................................................. 322  
Time-out in Various Situations (table)................................. 50  
Timer0 .............................................................................. 127  
Associated Registers................................................ 129  
Clock Source Edge Select (T0SE Bit) ...................... 129  
Clock Source Select (T0CS Bit) ............................... 129  
Interrupt .................................................................... 129  
Operation.................................................................. 129  
Prescaler .................................................................. 129  
Switching Assignment ...................................... 129  
Prescaler. See Prescaler, Timer0.  
16-Bit Mode Timer Reads and Writes ...................... 129  
Timer1 .............................................................................. 131  
Associated Registers................................................ 135  
Interrupt .................................................................... 134  
Operation.................................................................. 132  
Oscillator........................................................... 131, 133  
Layout Considerations...................................... 133  
Overflow Interrupt..................................................... 131  
Resetting, Using a Special Event Trigger  
S
S (Start) Bit ....................................................................... 206  
SCK................................................................................... 205  
SCL ................................................................................... 212  
SDI.................................................................................... 205  
SDO .................................................................................. 205  
SEC_IDLE Mode................................................................. 44  
SEC_RUN Mode................................................................. 40  
Serial Clock (SCK) Pin...................................................... 205  
Serial Data In (SDI) Pin..................................................... 205  
Output (CCP).................................................... 134  
Special Event Trigger (CCP) .................................... 147  
TMR1H Register....................................................... 131  
TMR1L Register ....................................................... 131  
Use as a Real-Time Clock (RTC)............................. 134  
16-Bit Read/Write Mode ........................................... 134  
2010 Microchip Technology Inc.  
DS39616D-page 385  
PIC18F2331/2431/4331/4431  
Timer2...............................................................................136  
Associated Registers ................................................137  
Interrupt.....................................................................137  
Operation ..................................................................136  
Postscaler. See Postscaler, Timer2.  
Low-Voltage Detect .................................................. 260  
Low-Voltage Detect Characteristics.......................... 342  
Noise Filter................................................................ 170  
Pulse-Width Measurement Mode ............................. 157  
PWM Output............................................................. 149  
PWM Output Override (Example 1).......................... 197  
PWM Output Override (Example 2).......................... 197  
PWM Override Bits in Complementary Mode........... 195  
PWM Period Buffer Updates in  
Continuous Up/Down Count Mode................... 186  
PWM Period Buffer Updates in  
Free-Running Mode.......................................... 186  
PWM Time Base Interrupt, Continuous  
Prescaler. See Prescaler, Timer2.  
PR2 Register.............................................................136  
SSP Clock Shift................................................. 136, 137  
TMR2 Register..........................................................136  
TMR2 to PR2 Match Interrupt ........................... 136, 149  
Timer5...............................................................................139  
Associated Registers ................................................143  
Interrupt.....................................................................142  
Noise Filter................................................................142  
Operation ..................................................................140  
Continuous Count and Single-Shot...................141  
Sleep Mode.......................................................142  
Prescaler...................................................................141  
Special Event Trigger  
Up/Down Count Mode ...................................... 183  
PWM Time Base Interrupt, Continuous  
Up/Down Count Mode with  
Double Updates................................................ 184  
PWM Time Base Interrupt, Free-Running Mode ...... 181  
PWM Time Base Interrupt, Single-Shot Mode.......... 182  
QEI Inputs When Sampled by Filter ......................... 165  
QEI Reset on Period Match...................................... 165  
QEI Reset with the Index Input................................. 166  
Reset, Watchdog Timer (WDT), Oscillator  
Output ...............................................................142  
Reset Input........................................................142  
16-Bit Read/Write and Write Modes .........................141  
16-Bit Read-Modify-Write..........................................141  
Timing Diagrams  
Start-up Timer (OST), Power-up  
Automatic Baud Rate Calculation .............................225  
Auto-Wake-up Bit (WUE) During  
Timer (PWRT) .................................................. 349  
Send Break Character Sequence............................. 232  
Slow Rise Time (MCLR Tied to VDD,  
Normal Operation..............................................231  
Auto-Wake-up Bit (WUE) During Sleep ....................231  
Brown-out Reset (BOR)............................................349  
Capture/Compare/PWM (All CCP Modules).............352  
CAPx Interrupts and IC1 Special Event Trigger........159  
CLKO and I/O ...........................................................348  
Clock, Instruction Cycle ..............................................65  
Dead-Time Insertion for Complementary PWM ........191  
Duty Cycle Update Times in Continuous  
VDD Rise > TPWRT)............................................. 52  
SPI Mode (Master Mode).......................................... 210  
SPI Mode (Slave Mode with CKE = 0)...................... 210  
SPI Mode (Slave Mode with CKE = 1)...................... 211  
Start of Center-Aligned PWM ................................... 189  
Time-out Sequence on POR w/PLL Enabled  
(MCLR Tied to VDD) ........................................... 53  
Time-out Sequence on Power-up  
Up/Down Count Mode.......................................188  
Duty Cycle Update Times in Continuous  
(MCLR Not Tied to VDD): Case 1 ....................... 51  
Time-out Sequence on Power-up  
Up/Down Count Mode with  
(MCLR Not Tied to VDD): Case 2 ....................... 52  
Time-out Sequence on Power-up  
Double Updates ................................................189  
Edge Capture Mode..................................................156  
Edge-Aligned PWM...................................................188  
EUSART Asynchronous Reception ..........................230  
EUSART Asynchronous Transmission .....................227  
EUSART Asynchronous Transmission  
(Back to Back)...................................................227  
EUSART Synchronous Receive (Master/Slave) .......360  
EUSART Synchronous Reception  
(Master Mode, SREN).......................................235  
EUSART Synchronous Transmission .......................233  
EUSART Synchronous Transmission  
(Through TXEN)................................................234  
EUSART SynchronousTransmission  
(Master/Slave)...................................................360  
Example SPI Master Mode (CKE = 0) ......................353  
Example SPI Master Mode (CKE = 1) ......................354  
Example SPI Slave Mode (CKE = 0) ........................355  
Example SPI Slave Mode (CKE = 1) ........................356  
External Clock (All Modes Except PLL) ....................346  
Fail-Safe Clock Monitor.............................................278  
Input Capture on State Change, Hall Effect  
(MCLR Tied to VDD, VDD Rise TPWRT)............... 51  
Timer0 and Timer1 External Clock ........................... 351  
Transition for Entry to Idle Mode................................. 44  
Transition for Entry to SEC_RUN Mode ..................... 41  
Transition for Entry to Sleep Mode ............................. 43  
Transition for Two-Speed Start-up  
(INTOSC to HSPLL) ......................................... 276  
Transition for Wake From Idle to Run Mode............... 44  
Transition for Wake From Sleep (HSPLL) .................. 43  
Transition From RC_RUN Mode to  
PRI_RUN Mode.................................................. 42  
Transition From SEC_RUN Mode to  
PRI_RUN Mode (HSPLL)................................... 41  
Transition to RC_RUN Mode...................................... 42  
Velocity Measurement .............................................. 168  
Timing Diagrams and Specifications ................................ 346  
Capture/Compare/PWM Requirements  
(All CCP Modules)............................................ 352  
CLKO and I/O Requirements.................................... 348  
EUSART Synchronous Receive Requirements........ 360  
EUSART Synchronous Transmission  
Sensor Mode....................................................158  
I C Bus Data.............................................................357  
I C Bus Start/Stop Bits..............................................357  
I C Reception (7-Bit Address)...................................214  
Requirements ................................................... 360  
Example SPI Mode Requirements  
(Master Mode, CKE = 0)................................... 353  
Example SPI Mode Requirements  
2
2
2
2
I C Transmission (7-Bit Address) .............................215  
(Master Mode, CKE = 1)................................... 354  
DS39616D-page 386  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
Example SPI Mode Requirements  
(Slave Mode, CKE = 0)..................................... 355  
Example SPI Slave Mode Requirements  
U
UA Bit ............................................................................... 206  
(CKE = 1).......................................................... 356  
External Clock Requirements ................................... 346  
Internal RC Accuracy................................................ 347  
W
Watchdog Timer (WDT)............................................ 263, 274  
Associated Registers................................................ 275  
Control Register........................................................ 274  
During Oscillator Failure........................................... 277  
Programming Considerations................................... 274  
WWW Address ................................................................. 387  
WWW, On-Line Support ....................................................... 9  
2
I C Bus Data Requirements (Slave Mode) ............... 358  
2
I C Bus Start/Stop Bits Requirements  
(Slave Mode) .................................................... 357  
PLL Clock.................................................................. 347  
Reset, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and Brown-out  
X
Reset Requirements......................................... 350  
SSP I C Bus Data Requirements ............................. 359  
2
XORLW ............................................................................ 323  
XORWF ............................................................................ 324  
Timer0 and Timer1 External Clock  
Requirements ................................................... 351  
Top-of-Stack Access........................................................... 62  
TSTFSZ ............................................................................ 323  
Two-Speed Start-up.................................................. 263, 276  
Two-Word Instructions  
Example Cases........................................................... 66  
TXSTA Register  
BRGH Bit .................................................................. 221  
T0CON Register  
PSA Bit...................................................................... 129  
T0CS Bit.................................................................... 129  
T0PS2:T0PS0 Bits.................................................... 129  
T0SE Bit.................................................................... 129  
2010 Microchip Technology Inc.  
DS39616D-page 387  
PIC18F2331/2431/4331/4431  
NOTES:  
DS39616D-page 388  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2010 Microchip Technology Inc.  
DS39616D-page 389  
PIC18F2331/2431/4331/4431  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS39616D  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC18F2331/2431/4331/4431  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39616D-page 390  
2010 Microchip Technology Inc.  
PIC18F2331/2431/4331/4431  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a) PIC18LF4431-I/P 301 = Industrial temp.,  
PDIP package, Extended VDD limits,  
QTP pattern #301.  
b) PIC18LF2331-I/SO = Industrial temp.,  
SOIC package, Extended VDD limits.  
c) PIC18F4331-I/P = Industrial temp., PDIP  
package, normal VDD limits.  
(1)  
Device  
PIC18F2331/2431/4331/4431  
,
(1,2)  
PIC18F2331/2431/4331/4431T  
;
VDD range 4.2V to 5.5V  
(1)  
PIC18LF2331/2431/4331/4431  
,
(1,2)  
PIC18LF2331/2431/4331/44310T  
;
VDD range 2.0V to 5.5V  
Temperature  
Range  
I
E
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
Note 1: F = Standard Voltage Range  
LF = Wide Voltage Range  
Package  
PT = TQFP (Thin Quad Flatpack)  
SO = SOIC  
2: T = in Tape and Reel – SOIC  
and TQFP Packages only.  
SP = Skinny Plastic DIP  
P
= PDIP  
ML = QFN  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2010 Microchip Technology Inc.  
DS39616D-page 391  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS39616D-page 392  
2010 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY