PIC18F44K20-E/SSSQTP [MICROCHIP]

28/40/44-Pin Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology; 28 /40/ 44引脚闪存微控制器与10位A / D和纳瓦技术
PIC18F44K20-E/SSSQTP
型号: PIC18F44K20-E/SSSQTP
厂家: MICROCHIP    MICROCHIP
描述:

28/40/44-Pin Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
28 /40/ 44引脚闪存微控制器与10位A / D和纳瓦技术

闪存 微控制器
文件: 总420页 (文件大小:7028K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F23K20/24K20/25K20/  
26K20/43K20/44K20/45K20/  
46K20  
Data Sheet  
28/40/44-Pin  
Flash Microcontrollers  
with 10-Bit A/D and nanoWatt Technology  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS41303B-page ii  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
28/40/44-Pin Flash Microcontrollers with  
10-Bit A/D and nanoWatt Technology  
Power-Managed Modes:  
Flexible Oscillator Structure:  
• Run: CPU on, peripherals on  
• Idle: CPU off, peripherals on  
• Sleep: CPU off, peripherals off  
• Four Crystal modes, up to 64 MHz  
• 4X Phase Lock Loop (available for crystal and  
internal oscillators)  
• Two External RC modes, up to 4 MHz  
• Two External Clock modes, up to 64 MHz  
• Internal oscillator block:  
- 8 user selectable frequencies, from 31 kHz to  
16 MHz  
• Idle mode currents down to 1.0 μA, typical  
• Sleep mode current down to 0.1 μA, typical  
• Timer1 Oscillator: 1.0 μA, 32 kHz, 1.8V, typical  
• Watchdog Timer: 2.0 μA, 1.8V, typical  
• Two-Speed Oscillator Start-up  
- Provides a complete range of clock speeds  
from 31 kHz to 64 MHz when used with PLL  
- User tunable to compensate for frequency drift  
• Secondary oscillator using Timer1 @ 32 kHz  
• Fail-Safe Clock Monitor:  
Peripheral Highlights:  
• High-current sink/source 25 mA/25 mA  
• Three programmable external interrupts  
• Four independent input-change interrupts  
• 8 independent weak pull-ups  
• Programmable slew rate  
- Allows for safe shutdown if primary or secondary  
oscillator stops  
• Capture/Compare/PWM (CCP) module  
• Enhanced Capture/Compare/PWM (ECCP)  
module:  
- One, two or four PWM outputs  
- Selectable polarity  
Special Microcontroller Features:  
• C compiler optimized architecture:  
- Optional extended instruction set designed to  
optimize re-entrant code  
• Self-programmable under software control  
• Priority levels for interrupts  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 4 ms to 131s  
• Single-supply 3V In-Circuit Serial  
Programming™ (ICSP™) via two pins  
• In-Circuit Debug (ICD) via two pins  
• Operating voltage range: 1.8V to 3.6V  
• Programmable 16-level High/Low-Voltage  
Detection (HLVD) module:  
- Programmable dead time  
- Auto-Shutdown and Auto-Restart  
• Master Synchronous Serial Port (MSSP) module  
supporting 3-wire SPI (all 4 modes) and I2C™  
Master and Slave modes with address mask  
• Enhanced Addressable USART module:  
- Supports RS-485, RS-232 and LIN 2.0  
- RS-232 operation using internal oscillator  
block (no external crystal required)  
- Auto-Wake-up on Break  
- Auto-Baud Detect  
• 10-bit, up to 14-channel Analog-to-Digital  
Converter module (ADC):  
- Supports interrupt on High/Low-Voltage  
Detection  
• Programmable Brown-out Reset (BOR)  
- With software enable option  
- Auto-acquisition capability  
- Conversion available during Sleep  
- Internal 1.2V Fixed Voltage Reference (FVR)  
channel  
- Independent input multiplexing  
• Dual analog comparators  
- Rail-to-rail operation  
- Independent input multiplexing  
• Programmable On-Chip Voltage Reference  
(CVREF) module (% of VDD)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 1  
PIC18F2XK20/4XK20  
-
Program Memory  
Data Memory  
MSSP  
10-bit  
A/D  
(ch)  
CCP/  
ECCP  
(PWM)  
Timers  
8/16-bit  
(1)  
Device  
I/O  
Comp.  
Flash # Single-Word SRAM EEPROM  
(bytes) Instructions (bytes) (bytes)  
Master  
(2)  
SPI  
2
I C™  
PIC18F23K20  
PIC18F24K20  
PIC18F25K20  
PIC18F26K20  
PIC18F43K20  
PIC18F44K20  
PIC18F45K20  
PIC18F46K20  
8K  
16K  
32K  
64k  
8K  
4096  
8192  
512  
768  
256  
256  
25  
11  
11  
11  
11  
14  
14  
14  
14  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
1/3  
1/3  
1/3  
1/3  
1/3  
1/3  
1/3  
1/3  
25  
25  
25  
36  
36  
36  
36  
16384  
32768  
4096  
1536  
3936  
512  
256  
1024  
256  
16K  
32K  
64k  
8192  
768  
256  
16384  
1536  
256  
32768  
3936  
1024  
Note 1:  
2:  
One pin is input only.  
Channel count includes internal fixed voltage reference channel.  
DS41303B-page 2  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Pin Diagrams  
28-pin PDIP, SOIC, SSOP  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB7/KBI3/PGD  
RB6//KBI2/PGC  
RB5/KBI1/PGM  
RB4/KBI0/AN11/P1D  
RB3/AN9/C12IN3-/CCP2(1)  
RB2/INT2/AN8/P1B  
RB1/INT1/AN10/C12IN2-/P1C  
MCLR/VPP/RE3  
RA0/AN0/C12IN0-  
RA1/AN1/C12IN1-  
RA2/AN2/VREF-/CVREF/C2IN+  
RA3/AN3/VREF+/C1IN+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/HLVDIN/C2OUT  
VSS  
RB0/INT0/FLT0/AN12  
VDD  
OSC1/CLKIN/RA7  
VSS  
OSC2/CLKOUT/RA6  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1/P1A  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
12  
13  
14  
RC3/SCK/SCL  
40-pin PDIP  
MCLR/VPP/RE3  
RA0/AN0/C12IN0-  
1
2
3
4
5
6
7
8
9
RB7/KBI3/PGD  
RB6/KBI2/PGC  
RB5/KBI1/PGM  
RB4/KBI0/AN11  
RB3/AN9/C12IN3-/CCP2(1)  
RB2/INT2/AN8  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA1/AN1/C12IN1-  
RA2/AN2/VREF-/CVREF/C2IN+  
RA3/AN3/VREF+/C1IN+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/HLVDIN/C2OUT  
RE0/RD/AN5  
RB1/INT1/AN10/C12IN2-  
RB0/INT0/FLT0/AN12  
VDD  
VSS  
RE1/WR/AN6  
RE2/CS/AN7  
10  
VDD  
VSS  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RD7/PSP7/P1D  
RD6/PSP6/P1C  
RD5/PSP5/P1B  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
OSC1/CLKIN/RA7  
OSC2/CLKOUT/RA6  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1/P1A  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD1/PSP1  
RD2/PSP2  
28-pin QFN  
28272625242322  
RB3/AN9/C12IN3-/CCP2(1)  
RB2/INT2/AN8/P1B  
RB1/INT1/AN10/C12IN2-/P1C  
RB0/INT0/FLT0/AN12  
VDD  
RA2/AN2/VREF-/CVREF/C2IN+  
RA3/AN3/VREF+/C1IN+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/HLVDIN/C2OUT  
VSS  
1
21  
2 PIC18F23K20  
3
4
5
6
7
20  
19  
18  
17  
16  
15  
PIC18F24K20  
PIC18F25K20  
PIC18F26K20  
OSC1/CLKIN/RA7  
OSC2/CLKOUT/RA6  
VSS  
RC7/RX/DT  
8
9 1011 121314  
Note 1: RB3 is the alternate pin for CCP2 multiplexing.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 3  
PIC18F2XK20/4XK20  
Pin Diagrams (Cont.’d)  
44-pin TQFP  
NC  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
VSS  
1
2
3
4
5
6
7
8
9
RC0/T1OSO/T13CKI  
OSC2/CLKOUT/RA6  
OSC1/CLKIN/RA7  
VSS  
VDD  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4/SS/HLVDIN/C2OUT  
RA4/T0CKI/C1OUT  
PIC18F43K20  
PIC18F44K20  
PIC18F45K20  
PIC18F46K20  
VDD  
RB0/INT0/FLT0/AN12  
RB1/INT1/AN10/C12IN2-  
RB2/INT2/AN8  
10  
11  
RB3/AN9/C12IN3-/CCP2(1)  
44-pin QFN  
RC7/RX/DT  
OSC2/CLKOUT/RA6  
OSC1/CLKIN/RA7  
VSS  
VSS  
VDD  
33  
32  
31  
30  
29  
28  
27  
26  
1
2
3
4
5
6
7
8
9
RD4/PSP4  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
VSS  
PIC18F43K20  
PIC18F44K20  
PIC18F45K20  
PIC18F46K20  
VDD  
VDD  
VDD  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4/SS/HLVDIN/C2OUT  
RA4/T0CKI/C1OUT  
RB0/INT0/FLT0/AN12  
RB1/INT1/AN10/C12IN2-  
RB2/INT2/AN8  
25  
24  
23  
10  
11  
Note 1: RB3 is the alternate pin for CCP2 multiplexing.  
DS41303B-page 4  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 1:  
PIC18F4XK20 PIN SUMMARY  
2
3
4
19  
20  
21  
19  
20  
21  
RA0  
RA1  
RA2  
AN0  
AN1  
AN2  
C12IN0-  
C12IN1-  
C2IN+  
VREF-/  
CVREF  
5
6
22  
23  
24  
31  
22  
23  
24  
33  
RA3  
RA4  
RA5  
RA6  
AN3  
C1IN+  
VREF+  
T0CKI  
C1OUT  
7
AN4  
C2OUT HLVDIN  
SS  
14  
OSC2/  
CLKOUT  
13  
33  
34  
35  
36  
37  
38  
39  
40  
15  
30  
8
32  
9
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
AN12  
AN10  
AN8  
AN9  
AN11  
FLT0  
CCP2(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
OSC1/CLKIN  
INT0  
INT1  
INT2  
KBI0  
KBI1  
KBI2  
KBI3  
PGM  
PGC  
PGD  
9
10  
11  
12  
14  
15  
16  
17  
34  
C12IN2-  
10  
11  
14  
15  
16  
17  
32  
C12IN3-  
T1OSO/  
T13CKI  
16  
17  
35  
36  
35  
36  
RC1  
RC2  
CCP2(2)  
T1OSI  
CCP1/  
P1A  
18  
23  
37  
42  
37  
42  
RC3  
RC4  
SCK/  
SCL  
SDI/  
SDA  
24  
25  
26  
19  
20  
21  
22  
27  
28  
29  
30  
43  
44  
1
43  
44  
1
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
AN5  
P1B  
P1C  
P1D  
TX/CK  
RX/DT  
SDO  
38  
39  
40  
41  
2
38  
39  
40  
41  
2
PSP0  
PSP1  
PSP2  
PSP3  
PSP4  
PSP5  
PSP6  
PSP7  
3
3
4
4
5
5
8
9
25  
26  
27  
18  
25  
26  
27  
18  
RE0  
RE1  
RE2  
RD  
AN6  
AN7  
WR  
10  
1
CS  
RE3(3)  
MCLR/VPP  
VDD  
11  
32  
12  
31  
7
7
28  
6
28  
6
VDD  
VSS  
29  
NC  
NC  
NC  
30  
8
VSS  
VDD  
29  
31  
VDD  
–-  
VSS  
Note 1: CCP2 multiplexed with RB3 when CONFIG3H<0> = 0  
2: CCP2 multiplexed with RC1 when CONFIG3H<0> = 1  
3: Input only.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 5  
PIC18F2XK20/4XK20  
TABLE 2:  
PIC18F2XK20 PIN SUMMARY  
2
3
4
27  
28  
1
RA0  
RA1  
RA2  
AN0  
AN1  
AN2  
C12IN0-  
C12IN1-  
C2IN+  
VREF-/  
CVREF  
5
6
2
3
4
7
RA3  
RA4  
RA5  
RA6  
AN3  
AN4  
C1IN+  
C1OUT  
C2OUT  
VREF+  
T0CKI  
7
HLVDIN  
SS  
10  
OSC2/  
CLKOUT  
9
6
RA7  
OSC1/  
CLKIN  
21  
22  
23  
24  
25  
26  
27  
28  
11  
18  
19  
20  
21  
22  
23  
24  
25  
8
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
AN12  
AN10  
AN8  
FLT0  
P1C  
INT0  
INT1  
INT2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
C12IN2-  
C12IN3-  
P1B  
CCP2(1)  
AN9  
AN11  
P1D  
KBI0  
KBI1  
KBI2  
KBI3  
PGM  
PGC  
PGD  
T1OSO/  
T13CKI  
12  
13  
9
RC1  
RC2  
CCP2(2)  
T1OSI  
10  
CCP1/  
P1A  
14  
15  
11  
12  
RC3  
RC4  
SCK/  
SCL  
SDI/  
SDA  
16  
17  
18  
1
13  
14  
15  
26  
RC5  
RC6  
SDO  
TX/CK  
RX/DT  
RC7  
RE3(3)  
MCLR/  
VPP  
8
5
VSS  
VSS  
VDD  
19  
20  
16  
17  
Note 1: CCP2 multiplexed with RB3 when CONFIG3H<0> = 0  
2: CCP2 multiplexed with RC1 when CONFIG3H<0> = 1  
3: Input only  
DS41303B-page 6  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 25  
3.0 Power-Managed Modes ............................................................................................................................................................. 41  
4.0 Reset.......................................................................................................................................................................................... 49  
5.0 Memory Organization................................................................................................................................................................. 63  
6.0 Flash Program Memory.............................................................................................................................................................. 87  
7.0 Data EEPROM Memory ............................................................................................................................................................. 97  
8.0 8 x 8 Hardware Multiplier.......................................................................................................................................................... 101  
9.0 Interrupts .................................................................................................................................................................................. 103  
10.0 I/O Ports ................................................................................................................................................................................... 117  
11.0 Timer0 Module ......................................................................................................................................................................... 137  
12.0 Timer1 Module ......................................................................................................................................................................... 141  
13.0 Timer2 Module ......................................................................................................................................................................... 147  
14.0 Timer3 Module ......................................................................................................................................................................... 149  
15.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 153  
16.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 165  
17.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 185  
18.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 227  
19.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 255  
20.0 Comparator Module.................................................................................................................................................................. 269  
21.0 Voltage References.................................................................................................................................................................. 279  
22.0 High/Low-Voltage Detect (HLVD)............................................................................................................................................. 283  
23.0 Special Features of the CPU.................................................................................................................................................... 289  
24.0 Instruction Set Summary.......................................................................................................................................................... 305  
25.0 Development Support............................................................................................................................................................... 355  
26.0 Electrical Characteristics.......................................................................................................................................................... 359  
27.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 393  
28.0 Packaging Information.............................................................................................................................................................. 395  
Appendix A: Revision History............................................................................................................................................................. 403  
Appendix B: Device Differences ........................................................................................................................................................ 403  
The Microchip Web Site..................................................................................................................................................................... 415  
Customer Change Notification Service .............................................................................................................................................. 415  
Customer Support.............................................................................................................................................................................. 415  
Reader Response.............................................................................................................................................................................. 416  
Product Identification System ............................................................................................................................................................ 417  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 7  
PIC18F2XK20/4XK20  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS41303B-page 8  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
1.1.2  
MULTIPLE OSCILLATOR OPTIONS  
AND FEATURES  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
All of the devices in the PIC18F2XK20/4XK20 family  
offer ten different oscillator options, allowing users a  
wide range of choices in developing application  
hardware. These include:  
• PIC18F23K20  
• PIC18F24K20  
• PIC18F25K20  
• PIC18F26K20  
• PIC18F43K20  
• PIC18F44K20  
• PIC18F45K20  
• PIC18F46K20  
• Four Crystal modes, using crystals or ceramic  
resonators  
• Two External Clock modes, offering the option of  
using two pins (oscillator input and a divide-by-4  
clock output) or one pin (oscillator input, with the  
second pin reassigned as general I/O)  
This family offers the advantages of all PIC18  
microcontrollers namely, high computational  
performance at an economical price – with the addition  
of high-endurance, Flash program memory. On top of  
these features, the PIC18F2XK20/4XK20 family  
introduces design enhancements that make these  
microcontrollers a logical choice for many high-  
performance, power sensitive applications.  
• Two External RC Oscillator modes with the same  
pin options as the External Clock modes  
• An internal oscillator block which contains a  
16 MHz HFINTOSC oscillator and a 31 kHz  
LFINTOSC oscillator which together provide 8  
user selectable clock frequencies, from 31 kHz to  
16 MHz. This option frees the two oscillator pins  
for use as additional general purpose I/O.  
1.1  
New Core Features  
1.1.1  
nanoWatt TECHNOLOGY  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to both the high-speed crystal and inter-  
nal oscillator modes, which allows clock speeds of  
up to 64 MHz. Used with the internal oscillator, the  
PLL gives users a complete selection of clock  
speeds, from 31 kHz to 64 MHz – all without using  
an external crystal or clock circuit.  
All of the devices in the PIC18F2XK20/4XK20 family  
incorporate a range of features that can significantly  
reduce power consumption during operation. Key  
items include:  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal oscillator  
block, power consumption during code execution  
can be reduced by as much as 90%.  
Besides its availability as a clock source, the internal  
oscillator block provides a stable reference source that  
gives the family additional features for robust  
operation:  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled but the peripherals still  
active. In these states, power consumption can be  
reduced even further, to as little as 4% of normal  
operation requirements.  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a refer-  
ence signal provided by the LFINTOSC. If a clock  
failure occurs, the controller is switched to the  
internal oscillator block, allowing for continued  
operation or a safe application shutdown.  
On-the-fly Mode Switching: The power-  
managed modes are invoked by user code during  
operation, allowing the user to incorporate power-  
saving ideas into their application’s software  
design.  
Two-Speed Start-up: This option allows the  
internal oscillator to serve as the clock source  
from Power-on Reset, or wake-up from Sleep  
mode, until the primary clock source is available.  
Low Consumption in Key Modules: The  
power requirements for both Timer1 and the  
Watchdog Timer are minimized. See  
Section 26.0 “Electrical Characteristics”  
for values.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 9  
PIC18F2XK20/4XK20  
1.2  
Other Special Features  
1.3  
Details on Individual Family  
Members  
Memory Endurance: The Flash cells for both  
program memory and data EEPROM are rated to  
last for many thousands of erase/write cycles – up to  
10K for program memory and 100K for EEPROM.  
Data retention without refresh is conservatively  
estimated to be greater than 40 years.  
Devices in the PIC18F2XK20/4XK20 family are avail-  
able in 28-pin and 40/44-pin packages. Block diagrams  
for the two groups are shown in Figure 1-1 and  
Figure 1-2.  
The devices are differentiated from each other in five  
ways:  
Self-programmability: These devices can write  
to their own program memory spaces under inter-  
nal software control. By using a bootloader rou-  
tine located in the protected Boot Block at the top  
of program memory, it becomes possible to create  
an application that can update itself in the field.  
1. Flash program memory (8 Kbytes for  
PIC18F23K20/43K20 devices, 16 Kbytes for  
PIC18F24K20/44K20 devices, 32 Kbytes for  
PIC18F25K20/45K20 AND 64 Kbytes for  
PIC18F26K20/46K20).  
Extended Instruction Set: The PIC18F2XK20/  
4XK20 family introduces an optional extension to  
the PIC18 instruction set, which adds 8 new  
instructions and an Indexed Addressing mode.  
This extension, enabled as a device configuration  
option, has been specifically designed to optimize  
re-entrant application code originally developed in  
high-level languages, such as C.  
2. A/D channels (11 for 28-pin devices, 14 for  
40/44-pin devices).  
3. I/O ports (3 bidirectional ports on 28-pin devices,  
5 bidirectional ports on 40/44-pin devices).  
4. Parallel Slave Port (present only on 40/44-pin  
devices).  
All other features for devices in this family are identical.  
These are summarized in Table 1-1.  
Enhanced CCP module: In PWM mode, this  
module provides 1, 2 or 4 modulated outputs for  
controlling half-bridge and full-bridge drivers.  
Other features include:  
The pinouts for all devices are listed in the pin summary  
tables: Table 1 and Table 2, and I/O description tables:  
Table 1-2 and Table 1-3.  
-
Auto-Shutdown, for disabling PWM outputs  
on interrupt or other select conditions  
- Auto-Restart, to reactivate outputs once the  
condition has cleared  
- Output steering to selectively enable one or  
more of 4 outputs to provide the PWM signal.  
Enhanced Addressable USART: This serial  
communication module is capable of standard  
RS-232 operation and provides support for the LIN  
bus protocol. Other enhancements include  
automatic baud rate detection and a 16-bit Baud  
Rate Generator for improved resolution. When the  
microcontroller is using the internal oscillator  
block, the USART provides stable operation for  
applications that talk to the outside world without  
using an external crystal (or its accompanying  
power requirement).  
10-bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period and  
thus, reduce code overhead.  
Extended Watchdog Timer (WDT): This  
enhanced version incorporates a 16-bit  
postscaler, allowing an extended time-out range  
that is stable across operating voltage and  
temperature. See Section 26.0 “Electrical  
Characteristics” for time-out periods.  
DS41303B-page 10  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 1-1:  
DEVICE FEATURES  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 11  
PIC18F2XK20/4XK20  
FIGURE 1-1:  
PIC18F2XK20 (28-PIN) BLOCK DIAGRAM  
Data Bus<8>  
Table Pointer<21>  
Data Latch  
8
8
PORTA  
inc/dec logic  
21  
RA0/AN0  
RA1/AN1  
Data Memory  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/HLVDIN/C2OUT  
OSC2/CLKOUT(3)/RA6  
OSC1/CLKIN(3)/RA7  
PCLATH  
PCLATU  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
Data Address<12>  
31-Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
Access  
Bank  
Program Memory  
(8/16/32/64 Kbytes)  
12  
Data Latch  
PORTB  
RB0/INT0/FLT0/AN12  
RB1/INT1/AN10  
RB2/INT2/AN8  
inc/dec  
logic  
8
Table Latch  
RB3/AN9/CCP2(1)  
RB4/KBI0/AN11  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
Address  
Decode  
ROM Latch  
IR  
Instruction Bus <16>  
8
State machine  
control signals  
Instruction  
Decode and  
Control  
PRODH PRODL  
8 x 8 Multiply  
PORTC  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1  
3
8
W
BITOP  
8
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
8
8
Internal  
Oscillator  
Block  
OSC1(3)  
OSC2(3)  
T1OSI  
Power-up  
Timer  
RC6/TX/CK  
RC7/RX/DT  
8
8
Oscillator  
Start-up Timer  
ALU<8>  
8
LFINTOSC  
Oscillator  
Power-on  
Reset  
16 MHz  
Oscillator  
Watchdog  
Timer  
T1OSO  
Precision  
Band Gap  
Reference  
FVR  
Brown-out  
Reset  
Fail-Safe  
MCLR(2)  
VDD, VSS  
Single-Supply  
Programming  
In-Circuit  
PORTE  
Clock Monitor  
MCLR/VPP/RE3(2)  
Debugger  
Data  
EEPROM  
BOR  
Timer0  
CCP2  
Timer1  
Timer2  
Timer3  
HLVD  
FVR  
ADC  
10-bit  
FVR  
MSSP  
Comparator  
ECCP1  
EUSART  
CVREF  
Note 1: CCP2 is multiplexed with RC1 when Configuration bit CCP2MX is set, or RB3 when CCP2MX is not set.  
2: RE3 is only available when MCLR functionality is disabled.  
3: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O.  
Refer to Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional information.  
DS41303B-page 12  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 1-2:  
PIC18F4XK20 (40/44-PIN) BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Table Pointer<21>  
RA0/AN0  
RA1/AN1  
Data Latch  
8
8
inc/dec logic  
21  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
Data Memory  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/HLVDIN/C2OUT  
OSC2/CLKOUT(3)/RA6  
OSC1/CLKIN(3)/RA7  
PCLATU PCLATH  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
Data Address<12>  
PORTB  
31-Level Stack  
STKPTR  
RB0/INT0/FLT0/AN12  
RB1/INT1/AN10  
RB2/INT2/AN8  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
Access  
Bank  
Program Memory  
(8/16/32/64 Kbytes)  
RB3/AN9/CCP2(1)  
RB4/KBI0/AN11  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
12  
Data Latch  
inc/dec  
logic  
8
Table Latch  
Address  
Decode  
PORTC  
ROM Latch  
IR  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1/P1A  
RC3/SCK/SCL  
RC4/SDI/SDA  
Instruction Bus <16>  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
8
State machine  
control signals  
Instruction  
Decode and  
Control  
PRODH PRODL  
8 x 8 Multiply  
PORTD  
RD0/PSP0  
RD1/PSP1  
3
8
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
W
BITOP  
8
8
8
Internal  
Oscillator  
Block  
OSC1(3)  
OSC2(3)  
T1OSI  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
Power-up  
Timer  
8
8
Oscillator  
Start-up Timer  
ALU<8>  
8
LFINTOSC  
Oscillator  
Power-on  
Reset  
16 MHz  
Oscillator  
Watchdog  
Timer  
T1OSO  
PORTE  
RE0/RD/AN5  
Precision  
Band Gap  
Reference  
FVR  
Brown-out  
Reset  
Fail-Safe  
RE1/WR/AN6  
RE2/CS/AN7  
MCLR(2)  
VDD, VSS  
Single-Supply  
Programming  
In-Circuit  
MCLR/VPP/RE3(2)  
Clock Monitor  
Debugger  
Data  
EEPROM  
BOR  
Timer0  
Timer1  
MSSP  
Timer2  
Timer3  
HLVD  
FVR  
FVR  
ADC  
10-bit  
PSP  
Comparator  
ECCP1  
CCP2  
EUSART  
CVREF  
Note 1: CCP2 is multiplexed with RC1 when Configuration bit CCP2MX is set, or RB3 when CCP2MX is not set.  
2: RE3 is only available when MCLR functionality is disabled.  
3: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O.  
Refer to Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional information.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 13  
PIC18F2XK20/4XK20  
TABLE 1-2:  
PIC18F2XK20 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
PDIP,  
QFN  
SOIC  
MCLR/VPP/RE3  
MCLR  
1
26  
6
Master Clear (input) or programming voltage (input)  
Active-low Master Clear (device Reset) input  
Programming voltage input  
I
P
I
ST  
ST  
VPP  
RE3  
Digital input  
OSC1/CLKIN/RA7  
OSC1  
9
Oscillator crystal or external clock input  
Oscillator crystal input or external clock source input  
ST buffer when configured in RC mode; CMOS otherwise  
External clock source input. Always associated with pin  
function OSC1. (See related OSC1/CLKIN, OSC2/CLKOUT  
pins)  
I
I
ST  
CLKIN  
CMOS  
RA7  
I/O  
TTL  
General purpose I/O pin  
OSC2/CLKOUT/RA6  
OSC2  
10  
7
Oscillator crystal or clock output  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode  
In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the  
frequency of OSC1 and denotes the instruction cycle rate  
General purpose I/O pin  
CLKOUT  
RA6  
I/O  
TTL  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
DS41303B-page 14  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 1-2:  
PIC18F2XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTA is a bidirectional I/O port.  
PDIP,  
QFN  
SOIC  
RA0/AN0/C12IN0-  
RA0  
2
3
4
27  
28  
1
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O  
Analog input 0, ADC channel 0  
Comparators C1 and C2 inverting input  
AN0  
C12IN0-  
RA1/AN1/C12IN1-  
RA1  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O  
ADC input 1, ADC channel 1  
Comparators C1 and C2 inverting input  
AN1  
C12IN1-  
RA2/AN2/VREF-/CVREF/  
C2IN+  
RA2  
I/O  
TTL  
Digital I/O  
AN2  
I
I
O
I
Analog  
Analog  
Analog  
Analog  
Analog input 2, ADC channel 2  
A/D reference voltage (low) input  
Comparator reference voltage output  
Comparator C2 non-inverting input  
VREF-  
CVREF  
C2IN+  
RA3/AN3/VREF+/C1IN+  
5
2
RA3  
I/O  
TTL  
Digital I/O  
AN3  
VREF+  
C1IN+  
I
I
I
Analog  
Analog  
Analog  
Analog input 3, ADC channel 3  
A/D reference voltage (high) input  
Comparator C1 non-inverting input  
RA4/T0CKI/C1OUT  
RA4  
6
7
3
4
I/O  
I
O
ST  
ST  
CMOS  
Digital I/O  
Timer0 external clock input  
Comparator C1 output  
T0CKI  
C1OUT  
RA5/AN4/SS/HLVDIN/  
C2OUT  
RA5  
I/O  
I
I
I
O
TTL  
Analog  
TTL  
Analog  
CMOS  
Digital I/O  
AN4  
SS  
HLVDIN  
C2OUT  
Analog input 4, ADC channel 4  
SPI slave select input  
High/Low-Voltage Detect input  
Comparator C2 output  
RA6  
RA7  
See the OSC2/CLKOUT/RA6 pin  
See the OSC1/CLKIN/RA7 pin  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 15  
PIC18F2XK20/4XK20  
TABLE 1-2:  
PIC18F2XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
PDIP,  
QFN  
SOIC  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-up on each input.  
RB0/INT0/FLT0/AN12  
21  
18  
19  
RB0  
I/O  
TTL  
ST  
ST  
Digital I/O  
External interrupt 0  
PWM Fault input for CCP1  
Analog input 12, ADC channel 12  
INT0  
FLT0  
AN12  
I
I
I
Analog  
RB1/INT1/AN10/C12IN2- 22  
/P1C  
RB1  
I/O  
I
I
I
O
TTL  
ST  
Analog  
Analog  
CMOS  
Digital I/O  
External interrupt 1  
Analog input 10, ADC channel 10  
Comparators C1 and C2 inverting input  
Enhanced CCP1 PWM output  
INT1  
AN10  
C12IN2-  
P1C  
RB2/INT2/AN8/P1B  
23  
24  
25  
20  
21  
22  
RB2  
INT2  
AN8  
P1B  
I/O  
I
I
TTL  
ST  
Analog  
CMOS  
Digital I/O  
External interrupt 2  
Analog input 8, ADC channel 8  
Enhanced CCP1 PWM output  
O
RB3/AN9/C12IN3-/CCP2  
RB3  
AN9  
I/O  
I
I
TTL  
Analog  
Analog  
ST  
Digital I/O  
Analog input 9, ADC channel 9  
Comparators C1 and C2 inverting input  
Capture 2 input/Compare 2 output/PWM 2 output  
C12IN3-  
CCP2(2)  
I/O  
RB4/KBI0/AN11/P1D  
RB4  
KBI0  
AN11  
P1D  
I/O  
I
I
TTL  
TTL  
Analog  
CMOS  
Digital I/O  
Interrupt-on-change pin  
Analog input 11, ADC channel 11  
Enhanced CCP1 PWM output  
O
RB5/KBI1/PGM  
RB5  
26  
27  
28  
23  
24  
25  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O  
Interrupt-on-change pin  
Low-Voltage ICSP™ Programming enable pin  
KBI1  
PGM  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O  
Interrupt-on-change pin  
In-Circuit Debugger and ICSP™ programming clock pin  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O  
Interrupt-on-change pin  
In-Circuit Debugger and ICSP™ programming data pin  
KBI3  
PGD  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
DS41303B-page 16  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 1-2:  
PIC18F2XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTC is a bidirectional I/O port.  
PDIP,  
QFN  
SOIC  
RC0/T1OSO/T13CKI  
RC0  
11  
12  
13  
14  
15  
8
I/O  
O
I
ST  
ST  
Digital I/O  
Timer1 oscillator output  
Timer1/Timer3 external clock input  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2  
RC1  
9
I/O  
I
I/O  
ST  
Analog  
ST  
Digital I/O  
Timer1 oscillator input  
Capture 2 input/Compare 2 output/PWM 2 output  
T1OSI  
CCP2(1)  
RC2/CCP1/P1A  
RC2  
10  
11  
12  
I/O  
I/O  
O
ST  
ST  
CMOS  
Digital I/O  
Capture 1 input/Compare 1 output  
Enhanced CCP1 PWM output  
CCP1  
P1A  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode  
Synchronous serial clock input/output for I2C™ mode  
RC4/SDI/SDA  
RC4  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O  
SDI  
SDA  
SPI data in  
I2C™ data I/O  
RC5/SDO  
RC5  
16  
17  
13  
14  
I/O  
O
ST  
Digital I/O  
SPI data out  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O  
TX  
CK  
EUSART asynchronous transmit  
EUSART synchronous clock (see related RX/DT)  
RC7/RX/DT  
RC7  
18  
15  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O  
RX  
DT  
EUSART asynchronous receive  
EUSART synchronous data (see related TX/CK)  
RE3  
VSS  
VDD  
P
See MCLR/VPP/RE3 pin  
8, 19 5, 16  
20 17  
Ground reference for logic and I/O pins  
Positive supply for logic and I/O pins  
CMOS = CMOS compatible input or output  
P
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 17  
PIC18F2XK20/4XK20  
TABLE 1-3:  
Pin Name  
PIC18F4XK20 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
MCLR/VPP/RE3  
MCLR  
1
18  
32  
18  
30  
Master Clear (input) or programming voltage (input)  
Active-low Master Clear (device Reset) input  
Programming voltage input  
I
P
I
ST  
ST  
VPP  
RE3  
Digital input  
OSC1/CLKIN/RA7  
OSC1  
13  
Oscillator crystal or external clock input  
Oscillator crystal input or external clock source input  
ST buffer when configured in RC mode;  
analog otherwise  
I
I
ST  
CMOS  
TTL  
CLKIN  
External clock source input. Always associated with  
pin function OSC1 (See related OSC1/CLKIN,  
OSC2/CLKOUT pins)  
RA7  
I/O  
General purpose I/O pin  
OSC2/CLKOUT/RA6  
OSC2  
14  
33  
31  
Oscillator crystal or clock output  
O
O
Oscillator crystal output. Connects to crystal  
or resonator in Crystal Oscillator mode  
In RC mode, OSC2 pin outputs CLKOUT which  
has 1/4 the frequency of OSC1 and denotes  
the instruction cycle rate  
CLKOUT  
RA6  
I/O  
TTL  
General purpose I/O pin  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
DS41303B-page 18  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 1-3:  
Pin Name  
PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTA is a bidirectional I/O port.  
RA0/AN0/C12IN0-  
RA0  
2
3
4
19  
20  
21  
19  
20  
21  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O  
Analog input 0, ADC channel 0  
Comparator C1 and C2 inverting input  
AN0  
C12IN0-  
RA1/AN1/C12IN0-  
RA1  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O  
Analog input 1, ADC channel 1  
Comparator C1 and C2 inverting input  
AN1  
C12IN0-  
RA2/AN2/VREF-/CVREF/  
C2IN+  
RA2  
I/O  
TTL  
Digital I/O  
AN2  
I
I
O
I
Analog  
Analog  
Analog  
Analog  
Analog input 2, ADC channel 2  
A/D reference voltage (low) input  
Comparator reference voltage output  
Comparator C2 non-inverting input  
VREF-  
CVREF  
C2IN+  
RA3/AN3/VREF+/  
C1IN+  
5
22  
22  
RA3  
I/O  
TTL  
Digital I/O  
AN3  
VREF+  
C1IN+  
I
I
I
Analog  
Analog  
Analog  
Analog input 3, ADC channel 3  
A/D reference voltage (high) input  
Comparator C1 non-inverting input  
RA4/T0CKI/C1OUT  
RA4  
6
7
23  
24  
23  
24  
I/O  
I
O
ST  
ST  
CMOS  
Digital I/O  
Timer0 external clock input  
Comparator C1 output  
T0CKI  
C1OUT  
RA5/AN4/SS/HLVDIN/  
C2OUT  
RA5  
I/O  
I
I
I
O
TTL  
Analog  
TTL  
Analog  
CMOS  
Digital I/O  
AN4  
SS  
HLVDIN  
C2OUT  
Analog input 4, ADC channel 4  
SPI slave select input  
High/Low-Voltage Detect input  
Comparator C2 output  
RA6  
RA7  
See the OSC2/CLKOUT/RA6 pin  
See the OSC1/CLKIN/RA7 pin  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 19  
PIC18F2XK20/4XK20  
TABLE 1-3:  
Pin Name  
PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTB is a bidirectional I/O port. PORTB can be  
software programmed for internal weak pull-up on  
each input.  
RB0/INT0/FLT0/AN12  
33  
34  
9
8
9
RB0  
I/O  
TTL  
ST  
ST  
Digital I/O  
External interrupt 0  
PWM Fault input for Enhanced CCP1  
Analog input 12, ADC channel 12  
INT0  
FLT0  
AN12  
I
I
I
Analog  
RB1/INT1/AN10/  
C12IN2-  
RB1  
10  
I/O  
TTL  
ST  
Analog  
Analog  
Digital I/O  
External interrupt 1  
Analog input 10, ADC channel 10  
Comparator C1 and C2 inverting input  
INT1  
AN10  
C12IN2-  
I
I
I
RB2/INT2/AN8  
RB2  
35  
36  
11  
12  
10  
11  
I/O  
I
I
TTL  
ST  
Analog  
Digital I/O  
External interrupt 2  
Analog input 8, ADC channel 8  
INT2  
AN8  
RB3/AN9/C12IN3-/  
CCP2  
RB3  
AN9  
I/O  
I
I
TTL  
Analog  
Analog  
ST  
Digital I/O  
Analog input 9, ADC channel 9  
Comparator C1 and C2 inverting input  
Capture 2 input/Compare 2 output/PWM 2 output  
C12IN3-  
CCP2(2)  
I/O  
RB4/KBI0/AN11  
RB4  
37  
38  
39  
14  
15  
16  
14  
15  
16  
I/O  
I
I
TTL  
TTL  
Analog  
Digital I/O  
Interrupt-on-change pin  
Analog input 11, ADC channel 11  
KBI0  
AN11  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O  
Interrupt-on-change pin  
Low-Voltage ICSP™ Programming enable pin  
KBI1  
PGM  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O  
Interrupt-on-change pin  
In-Circuit Debugger and ICSP™ programming  
clock pin  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
40  
17  
17  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O  
Interrupt-on-change pin  
In-Circuit Debugger and ICSP™ programming  
data pin  
KBI3  
PGD  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
DS41303B-page 20  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 1-3:  
Pin Name  
PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
15  
16  
17  
18  
34  
35  
36  
37  
32  
35  
36  
37  
I/O  
O
I
ST  
ST  
Digital I/O  
Timer1 oscillator output  
Timer1/Timer3 external clock input  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O  
Timer1 oscillator input  
Capture 2 input/Compare 2 output/PWM 2 output  
T1OSI  
CCP2(1)  
RC2/CCP1/P1A  
RC2  
I/O  
I/O  
O
ST  
ST  
Digital I/O  
CCP1  
P1A  
Capture 1 input/Compare 1 output/PWM 1 output  
Enhanced CCP1 output  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O  
SCK  
Synchronous serial clock input/output for  
SPI mode  
SCL  
I/O  
ST  
Synchronous serial clock input/output for I2C™ mode  
RC4/SDI/SDA  
RC4  
23  
42  
42  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O  
SDI  
SDA  
SPI data in  
I2C™ data I/O  
RC5/SDO  
RC5  
24  
25  
43  
44  
43  
44  
I/O  
O
ST  
Digital I/O  
SPI data out  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O  
TX  
CK  
EUSART asynchronous transmit  
EUSART synchronous clock (see related RX/DT)  
RC7/RX/DT  
RC7  
26  
1
1
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O  
RX  
DT  
EUSART asynchronous receive  
EUSART synchronous data (see related TX/CK)  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 21  
PIC18F2XK20/4XK20  
TABLE 1-3:  
Pin Name  
PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTD is a bidirectional I/O port or a Parallel Slave  
Port (PSP) for interfacing to a microprocessor port.  
These pins have TTL input buffers when PSP module  
is enabled.  
RD0/PSP0  
RD0  
19  
20  
21  
22  
27  
28  
38  
39  
40  
41  
2
38  
39  
40  
41  
2
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
PSP0  
RD1/PSP1  
RD1  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
PSP1  
RD2/PSP2  
RD2  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
PSP3  
RD4/PSP4  
RD4  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
PSP4  
RD5/PSP5/P1B  
RD5  
3
3
I/O  
I/O  
O
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
Enhanced CCP1 output  
PSP5  
P1B  
RD6/PSP6/P1C  
RD6  
29  
30  
4
5
4
5
I/O  
I/O  
O
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
Enhanced CCP1 output  
PSP6  
P1C  
RD7/PSP7/P1D  
RD7  
I/O  
I/O  
O
ST  
TTL  
Digital I/O  
Parallel Slave Port data  
Enhanced CCP1 output  
PSP7  
P1D  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
DS41303B-page 22  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 1-3:  
Pin Name  
PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTE is a bidirectional I/O port  
RE0/RD/AN5  
RE0  
8
9
25  
26  
27  
25  
26  
27  
I/O  
I
ST  
TTL  
Digital I/O  
RD  
Read control for Parallel Slave Port  
(see related WR and CS pins)  
Analog input 5, ADC channel 5  
AN5  
I
Analog  
RE1/WR/AN6  
RE1  
I/O  
I
ST  
TTL  
Digital I/O  
WR  
Write control for Parallel Slave Port  
(see related CS and RD pins)  
Analog input 6, ADC channel 6  
AN6  
I
Analog  
RE2/CS/AN7  
RE2  
10  
I/O  
I
ST  
TTL  
Digital I/O  
CS  
Chip Select control for Parallel Slave Port  
(see related RD and WR)  
Analog input 7, ADC channel 7  
AN7  
RE3  
I
Analog  
P
See MCLR/VPP/RE3 pin  
VSS  
12, 31 6, 30, 6, 29  
31  
Ground reference for logic and I/O pins  
VDD  
NC  
11, 32 7, 8, 7, 28  
28, 29  
P
Positive supply for logic and I/O pins  
No connect  
13 12,13,  
33, 34  
Legend: TTL= TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set.  
2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 23  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 24  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The Oscillator module can be configured in one of ten  
primary clock modes.  
2.0  
2.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. LP  
Low-Power Crystal  
2. XT  
Crystal/Resonator  
Overview  
3. HS  
High-Speed Crystal/Resonator  
The Oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 2-1  
illustrates a block diagram of the Oscillator module.  
4. HSPLL  
High-Speed Crystal/Resonator  
with PLL enabled  
5. RC  
External Resistor/Capacitor with  
FOSC/4 output on RA6  
6. RCIO  
7. INTOSC  
External Resistor/Capacitor with I/O  
on RA6  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of two  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
Internal Oscillator with FOSC/4  
output on RA6 and I/O on RA7  
8. INTOSCIO Internal Oscillator with I/O on RA6  
and RA7  
9. EC  
External Clock with FOSC/4 output  
External Clock with I/O on RA6  
• Selectable system clock source between external  
or internal via software.  
10. ECIO  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
Primary Clock modes are selected by the FOSC<3:0>  
bits of the CONFIG1H Configuration Register. The  
HFINTOSC and LFINTOSC are factory calibrated high-  
frequency and low-frequency oscillators, respectively,  
which are used as the internal clock sources.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 2-1:  
PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
PIC18F2XK20/4XK20  
Primary Oscillator  
LP, XT, HS, RC, EC  
HSPLL, HFINTOSC/PLL  
T1OSC  
OSC2  
IDLEN  
Sleep  
Sleep  
4 x PLL  
OSC1  
OSCTUNE<6>(1)  
Peripherals  
Secondary Oscillator  
Main  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
OSCCON<6:4>  
Internal Oscillator  
16 MHz  
FOSC<3:0> OSCCON<1:0>  
CPU  
111  
110  
101  
8 MHz  
4 MHz  
Sleep  
Internal  
Oscillator  
Block  
Clock  
Control  
2 MHz  
100  
011  
010  
001  
000  
16 MHz  
1 MHz  
Source  
16 MHz  
(HFINTOSC)  
500 kHz  
250 kHz  
31 kHz  
31 kHz  
Source  
FOSC<3:0> OSCCON<1:0>  
Clock Source Option  
for other Modules  
1
0
31 kHz (LFINTOSC)  
OSCTUNE<7>  
WDT, PWRT, FSCM  
and Two-Speed Start-up  
Note 1: Operates only when HFINTOSC is the primary oscillator.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 25  
PIC18F2XK20/4XK20  
2.2.4  
CLOCK STATUS  
2.2  
Oscillator Control  
The OSTS and IOFS bits of the OSCCON register, and  
the T1RUN bit of the T1CON register, indicate which  
clock source is currently providing the main clock. The  
OSTS bit indicates that the Oscillator Start-up Timer  
has timed out and the primary clock is providing the  
device clock. The IOFS bit indicates when the internal  
oscillator block has stabilized and is providing the  
device clock in HFINTOSC Clock modes. The IOFS  
and OSTS Status bits will both be set when  
SCS<1:0> = 00 and HFINTOSC is the primary clock.  
The T1RUN bit indicates when the Timer1 oscillator is  
providing the device clock in secondary clock modes.  
When SCS<1:0> 00, only one of these three bits will  
be set at any time. If none of these bits are set, the  
LFINTOSC is providing the clock or the HFINTOSC has  
just started and is not yet stable.  
The OSCCON register (Register 2-1) controls several  
aspects of the device clock’s operation, both in full  
power operation and in power-managed modes.  
• Main System Clock Selection (SCS)  
• Internal Frequency selection bits (IRCF)  
• Clock Status bits (OSTS, IOFS)  
• Power management selection (IDLEN)  
2.2.1  
MAIN SYSTEM CLOCK SELECTION  
The System Clock Select bits, SCS<1:0>, select the  
main clock source. The available clock sources are  
• Primary clock defined by the FOSC<3:0> bits of  
CONFIG1H. The primary clock can be the primary  
oscillator, an external clock, or the internal oscilla-  
tor block.  
2.2.5  
POWER MANAGEMENT  
• Secondary clock (Timer1 oscillator)  
• Internal oscillator block (HFINTOSC and  
LFINTOSC).  
The IDLEN bit of the OSCCON register determines if  
the device goes into Sleep mode or one of the Idle  
modes when the SLEEPinstruction is executed.  
The clock source changes immediately after one or  
more of the bits is written to, following a brief clock tran-  
sition interval. The SCS bits are cleared to select the  
primary clock on all forms of Reset.  
The use of the flag and control bits in the OSCCON  
register is discussed in more detail in Section 3.0  
“Power-Managed Modes”.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit of the T1CON register. If  
the Timer1 oscillator is not enabled, then  
the main oscillator will continue to run  
from the previously selected source. The  
source will then switch to the secondary  
oscillator after the T1OSCEN bit is set.  
2.2.2  
INTERNAL FREQUENCY  
SELECTION  
The Internal Oscillator Frequency Select bits  
(IRCF<2:0>) select the frequency output of the internal  
oscillator block. The choices are the LFINTOSC source  
(31 kHz), the HFINTOSC source (16 MHz) or one of  
the frequencies derived from the HFINTOSC  
postscaler (31.25 kHz to 8 MHz). If the internal oscilla-  
tor block is supplying the main clock, changing the  
states of these bits will have an immediate change on  
the internal oscillator’s output. On device Resets, the  
output frequency of the internal oscillator is set to the  
default frequency of 1 MHz.  
2: It is recommended that the Timer1  
oscillator be operating and stable before  
selecting the secondary clock source or a  
very long delay may occur while the  
Timer1 oscillator starts.  
2.2.3  
LOW FREQUENCY SELECTION  
2.2.6  
OSCILLATOR TRANSITIONS  
When a nominal output frequency of 31 kHz is selected  
(IRCF<2:0> = 000), users may choose which internal  
oscillator acts as the source. This is done with the  
INTSRC bit of the OSCTUNE register. Setting this bit  
selects the HFINTOSC as a 31.25 kHz clock source by  
enabling the divide-by-512 output of the HFINTOSC  
postscaler. Clearing INTSRC selects LFINTOSC (nom-  
inally 31 kHz) as the clock source.  
PIC18F2XK20/4XK20 devices contain circuitry to pre-  
vent clock “glitches” when switching between clock  
sources. A short pause in the device clock occurs dur-  
ing the clock switch. The length of this pause is the sum  
of two cycles of the old clock source and three to four  
cycles of the new clock source. This formula assumes  
that the new clock source is stable.  
This option allows users to select the tunable and more  
precise HFINTOSC as a clock source, while maintain-  
ing power savings with a very low clock speed. Regard-  
less of the setting of INTSRC, LFINTOSC always  
remains the clock source for features such as the  
Watchdog Timer and the Fail-Safe Clock Monitor.  
Clock transitions are discussed in greater detail in  
Section 3.1.2 “Entering Power-Managed Modes”.  
DS41303B-page 26  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 2-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0  
IDLEN  
bit 7  
R/W-0  
IRCF2  
R/W-1  
IRCF1  
R/W-1  
IRCF0  
R-q  
OSTS(1)  
R-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
IOFS  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
q = depends on condition  
x = Bit is unknown  
bit 7  
IDLEN: Idle Enable bit  
1= Device enters Idle mode on SLEEPinstruction  
0= Device enters Sleep mode on SLEEPinstruction  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111= 16 MHz (HFINTOSC drives clock directly)  
110= 8 MHz  
101= 4 MHz  
100= 2 MHz  
011= 1 MHz(3)  
010= 500 kHz  
001= 250 kHz  
000= 31 kHz (from either HFINTOSC/512 or LFINTOSC directly)(2)  
bit 3  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the clock defined by FOSC<2:0> of the CONFIG1 register  
0= Device is running from the internal oscillator (HFINTOSC or LFINTOSC)  
bit 2  
IOFS: HFINTOSC Frequency Stable bit  
1= HFINTOSC frequency is stable  
0= HFINTOSC frequency is not stable  
bit 1-0  
SCS<1:0>: System Clock Select bits  
1x= Internal oscillator block  
01= Secondary (Timer1) oscillator  
00= Primary clock (determined by CONFIG1H[FOSC<3:0>]).  
Note 1: Reset state depends on state of the IESO Configuration bit.  
2: Source selected by the INTSRC bit of the OSCTUNE register, see text.  
3: Default output frequency of HFINTOSC on Reset.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 27  
PIC18F2XK20/4XK20  
2.3  
Clock Source Modes  
2.4  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
2.4.1 OSCILLATOR START-UP TIMER (OST)  
When the Oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the Oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 2-1.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: Clock modules  
(EC mode), quartz crystal resonators or ceramic  
resonators (LP, XT and HS modes) and Resistor-  
Capacitor (RC mode) circuits.  
• Internal clock sources are contained internally  
within the Oscillator block. The Oscillator block  
has two internal oscillators: the 16 MHz High-  
Frequency Internal Oscillator (HFINTOSC) and  
the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS<1:0>) bits of the OSCCON register. See  
Section 2.9 “Clock Switching” for additional informa-  
tion.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 2.10  
“Two-Speed Clock Start-up Mode”).  
TABLE 2-1:  
OSCILLATOR DELAY EXAMPLES  
Switch From  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
250 kHz to 16 MHz  
Sleep/POR  
Oscillator Warm-Up Delay (TWARM)  
Sleep/POR  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
EC, RC  
DC – 64 MHz  
DC – 64 MHz  
2 instruction cycles  
1 cycle of each  
LP, XT, HS  
HSPLL  
32 kHz to 40 MHz  
32 MHz to 64 MHz  
250 kHz to 16 MHz  
1024 Clock Cycles (OST)  
1024 Clock Cycles (OST) + 2 ms  
1 μs (approx.)  
Sleep/POR  
LFINTOSC (31 kHz)  
HFINTOSC  
2.4.2  
EC MODE  
FIGURE 2-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 2-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
DS41303B-page 28  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
2.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 2-3). The mode selects a low,  
medium or high gain setting of the internal inverter-  
amplifier to support various resonator types and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is best suited  
to drive resonators with a low drive level specification, for  
example, tuning fork type crystals.  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
Analysis and Design” (DS00943)  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
Figure 2-3 and Figure 2-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
FIGURE 2-4:  
CERAMIC RESONATOR  
OPERATION  
(XT OR HS MODE)  
FIGURE 2-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
PIC® MCU  
C1  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
C1  
Sleep  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
RF  
Sleep  
OSC2/CLKOUT  
(1)  
C2  
RS  
Ceramic  
Resonator  
OSC2/CLKOUT  
(1)  
C2  
RS  
Note 1: A series resistor (RS) may be required for  
ceramic resonators with low drive level.  
Note 1: A series resistor (RS) may be required for  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
quartz crystals with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 29  
PIC18F2XK20/4XK20  
2.4.4  
EXTERNAL RC MODES  
2.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The Oscillator module has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
16 MHz. The frequency of the HFINTOSC can  
be user-adjusted via software using the  
OSCTUNE register (Register 2-2).  
2.4.4.1  
RC Mode  
In RC mode, the RC circuit connects to OSC1. OSC2/  
CLKOUT outputs the RC oscillator frequency divided  
by 4. This signal may be used to provide a clock for  
external circuitry, synchronization, calibration, test or  
other application requirements. Figure 2-5 shows the  
external RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) operates at 31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FIGURE 2-5:  
EXTERNAL RC MODES  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS<1:0>) bits of the OSCCON register. See  
Section 2.9 “Clock Switching” for more information.  
VDD  
PIC® MCU  
REXT  
2.5.1 INTOSC AND INTOSCIO MODES  
OSC1/CLKIN  
Internal  
Clock  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the primary clock source.The  
FOSC<3:0> bits in the CONFIG1H Configuration  
register determine which mode is selected. See  
Section 23.0 “Special Features of the CPU” for more  
information.  
CEXT  
VSS  
(1)  
FOSC/4 or  
OSC2/CLKOUT  
(2)  
I/O  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
Recommended values: 10 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
Note 1: Alternate pin functions are listed in  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO clock mode.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
are available for general purpose I/O.  
2.4.4.2  
RCIO Mode  
2.5.2  
HFINTOSC  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 2-1). One of eight  
frequencies can be selected via software using the  
IRCF<2:0> bits of the OSCCON register. See  
Section 2.5.4 “Frequency Select Bits (IRCF)” for  
more information.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
• input threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The HFINTOSC is enabled when:  
• SCS1 = 1and IRCF<2:0> 000  
• SCS1 = 1and IRCF<2:0> = 000and INTSRC = 1  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
• IESO bit of CONFIG1H = 1enabling Two-Speed  
Start-up.  
• FCMEM bit of CONFIG1H = 1enabling Two-  
Speed Start-up and Fail-Safe mode.  
• FOSC<3:0> of CONFIG1H selects the internal  
oscillator as the primary clock  
The HF Internal Oscillator (IOFS) bit of the OSCCON  
register indicates whether the HFINTOSC is stable or not.  
DS41303B-page 30  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock Mon-  
itor (FSCM) and peripherals, are not affected by the  
change in frequency.  
2.5.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the TUN<5:0> bits of  
the OSCTUNE register (Register 2-2).  
The OSCTUNE register also implements the INTSRC  
and PLLEN bits, which control certain features of the  
internal oscillator block.  
The default value of the TUN<5:0> is ‘000000’. The  
value is a 6-bit two’s complement number.  
The INTSRC bit allows users to select which internal  
oscillator provides the clock source when the 31 kHz  
frequency option is selected. This is covered in greater  
detail in Section 2.2.3 “Low Frequency Selection”.  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
The PLLEN bit controls the operation of the frequency  
multiplier, PLL, in internal oscillator modes. For more  
details about the function of the PLLEN bit see  
Section 2.6.2 “PLL in HFINTOSC Modes”  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
REGISTER 2-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
R/W-0  
INTSRC  
bit 7  
R/W-0  
PLLEN(1)  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
INTSRC: Internal Oscillator Low-Frequency Source Select bit  
1= 31.25 kHz device clock derived from 16 MHz HFINTOSC source (divide-by-512 enabled)  
0= 31 kHz device clock derived directly from LFINTOSC internal oscillator  
PLLEN: Frequency Multiplier PLL for HFINTOSC Enable bit(1)  
1= PLL enabled for HFINTOSC (8 MHz and 16 MHz only)  
0= PLL disabled  
bit 5-0  
TUN<5:0>: Frequency Tuning bits  
011111= Maximum frequency  
011110=  
• • •  
000001=  
000000= Oscillator module is running at the factory calibrated frequency.  
111111=  
• • •  
100000= Minimum frequency  
Note 1: The PLLEN bit is active only when the HFINTOSC is the primary clock source (FOSC<2:0> = 100X) and  
the selected frequency is 8 MHz or 16 MHz. Otherwise, the PLLEN bit is unavailable and always reads ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 31  
PIC18F2XK20/4XK20  
2.5.3  
LFINTOSC  
2.5.5  
HFINTOSC FREQUENCY DRIFT  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
a 31 kHz internal clock source.  
The factory calibrates the internal oscillator block output  
(HFINTOSC) for 16 MHz. However, this frequency may  
drift as VDD or temperature changes, which can affect the  
controller operation in a variety of ways. It is possible to  
adjust the HFINTOSC frequency by modifying the value  
of the TUN<5:0> bits in the OSCTUNE register. This has  
no effect on the LFINTOSC clock source frequency.  
The output of the LFINTOSC connects to internal  
oscillator block frequency selection multiplexer (see  
Figure 2-1). Select 31 kHz, via software, using the  
IRCF<2:0> bits of the OSCCON register and the  
INTSRC bit of the OSCTUNE register. See  
Section 2.5.4 “Frequency Select Bits (IRCF)” for  
more information. The LFINTOSC is also the frequency  
for the Power-up Timer (PWRT), Watchdog Timer  
(WDT) and Fail-Safe Clock Monitor (FSCM).  
Tuning the HFINTOSC source requires knowing when to  
make the adjustment, in which direction it should be  
made and in some cases, how large a change is  
needed. Three possible compensation techniques are  
discussed in the following sections, however other tech-  
niques may be used.  
The LFINTOSC is enabled when any of the following  
are enabled:  
• IRCF<2:0> bits of the OSCCON register = 000and  
INTSRC bit of the OSCTUNE register = 1  
2.5.5.1  
Compensating with the USART  
An adjustment may be required when the USART  
begins to generate framing errors or receives data with  
errors while in Asynchronous mode. Framing errors  
indicate that the device clock frequency is too high; to  
adjust for this, decrement the value in OSCTUNE to  
reduce the clock frequency. On the other hand, errors  
in data may suggest that the clock speed is too low; to  
compensate, increment OSCTUNE to increase the  
clock frequency.  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor (FSCM)  
2.5.4  
FREQUENCY SELECT BITS (IRCF)  
The output of the 16 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 2-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the output frequency of the internal oscillators. One of  
eight frequencies can be selected via software:  
2.5.5.2  
Compensating with the Timers  
This technique compares device clock speed to some  
reference clock. Two timers may be used; one timer is  
clocked by the peripheral clock, while the other is  
clocked by a fixed reference source, such as the  
Timer1 oscillator.  
• 16 MHz  
• 8 MHz  
• 4 MHz  
• 2 MHz  
Both timers are cleared, but the timer clocked by the  
reference generates interrupts. When an interrupt  
occurs, the internally clocked timer is read and both  
timers are cleared. If the internally clocked timer value  
is greater than expected, then the internal oscillator  
block is running too fast. To adjust for this, decrement  
the OSCTUNE register.  
• 1 MHz (Default after Reset)  
• 500 kHz  
• 250 kHz  
• 31 kHz (LFINTOSC or HFINTOSC/512)  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘011’ and  
the frequency selection is set to 1 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
2.5.5.3  
Compensating with the CCP Module  
in Capture Mode  
A CCP module can use free running Timer1 (or Timer3),  
clocked by the internal oscillator block and an external  
event with a known period (i.e., AC power frequency).  
The time of the first event is captured in the  
CCPRxH:CCPRxL registers and is recorded for use later.  
When the second event causes a capture, the time of the  
first event is subtracted from the time of the second  
event. Since the period of the external event is known,  
the time difference between events can be calculated.  
If the measured time is much greater than the calcu-  
lated time, the internal oscillator block is running too  
fast; to compensate, decrement the OSCTUNE register.  
If the measured time is much less than the calculated  
time, the internal oscillator block is running too slow; to  
compensate, increment the OSCTUNE register.  
DS41303B-page 32  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
2.6.2  
PLL IN HFINTOSC MODES  
2.6  
PLL Frequency Multiplier  
The 4x frequency multiplier can be used with the inter-  
nal oscillator block to produce faster device clock  
speeds than are normally possible with an internal  
oscillator. When enabled, the PLL produces a clock  
speed of up to 64 MHz.  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who wish to use a lower frequency  
oscillator circuit or to clock the device up to its highest  
rated frequency from the crystal oscillator. This may be  
useful for customers who are concerned with EMI due  
to high-frequency crystals or users who require higher  
clock speeds from an internal oscillator. There are  
three conditions when the PLL can be used:  
Unlike HSPLL mode, the PLL is controlled through  
software. The PLLEN control bit of the OSCTUNE  
register is used to enable or disable the PLL operation  
when the HFINTOSC is used.  
• When the primary clock is HSPLL  
The PLL is available when the device is configured to  
use the internal oscillator block as its primary clock  
source (FOSC<3:0> = 1001or 1000). Additionally, the  
PLL will only function when the selected output fre-  
quency is either 8 MHz or 16 MHz (OSCCON<6:4> =  
111or 110). If both of these conditions are not met, the  
PLL is disabled.  
• When the primary clock is HFINTOSC and the  
selected frequency is 16 MHz  
• When the primary clock is HFINTOSC and the  
selected frequency is 8 MHz  
2.6.1  
HSPLL OSCILLATOR MODE  
The HSPLL mode makes use of the HS mode oscillator  
for frequencies up to 16 MHz. A PLL then multiplies the  
oscillator output frequency by 4 to produce an internal  
clock frequency up to 64 MHz. The PLLEN bit of the  
OSCTUNE register is active only when the HFINTOSC  
is the primary clock and is not available in HSPLL oscil-  
lator mode.  
The PLLEN control bit is only functional in those inter-  
nal oscillator modes where the PLL is available. In all  
other modes, it is forced to ‘0’ and is effectively  
unavailable.  
The PLL is only available to the primary oscillator when  
the FOSC<3:0> Configuration bits are programmed for  
HSPLL mode (= 0110).  
FIGURE 2-6:  
PLL BLOCK DIAGRAM  
(HS MODE)  
HS Oscillator Enable  
PLL Enable  
(from Configuration Register 1H)  
OSC2  
OSC1  
Phase  
Comparator  
HS Mode  
Crystal  
Osc  
FIN  
FOUT  
Loop  
Filter  
÷4  
VCO  
SYSCLK  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 33  
PIC18F2XK20/4XK20  
2.7  
Effects of Power-Managed Modes  
on the Various Clock Sources  
2.8  
Power-up Delays  
Power-up delays are controlled by two timers, so that  
no external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
Reset until the device power supply is stable under nor-  
mal circumstances and the primary clock is operating  
and stable. For additional information on power-up  
delays, see Section 4.5 “Device Reset Timers”.  
For more information about the modes discussed in this  
section see Section 3.0 “Power-Managed Modes”. A  
quick reference list is also available in Table 3-1.  
When PRI_IDLE mode is selected, the designated pri-  
mary oscillator continues to run without interruption.  
For all other power-managed modes, the oscillator  
using the OSC1 pin is disabled. The OSC1 pin (and  
OSC2 pin, if used by the oscillator) will stop oscillating.  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 26-9). It is enabled by clearing (= 0) the  
PWRTEN Configuration bit.  
In secondary clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the device clock. The Timer1 oscillator may  
also run in all power-managed modes if required to  
clock Timer1 or Timer3.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the  
crystal oscillator is stable (LP, XT and HS modes). The  
OST does this by counting 1024 oscillator cycles  
before allowing the oscillator to clock the device.  
In internal oscillator modes (INTOSC_RUN and  
INTOSC_IDLE), the internal oscillator block provides  
the device clock source. The 31 kHz LFINTOSC output  
can be used directly to provide the clock and may be  
enabled to support various special features, regardless  
of the power-managed mode (see Section 23.2  
“Watchdog Timer (WDT)”, Section 2.10 “Two-  
Speed Clock Start-up Mode” and Section 2.11 “Fail-  
Safe Clock Monitor” for more information on WDT,  
Fail-Safe Clock Monitor and Two-Speed Start-up). The  
HFINTOSC output at 16 MHz may be used directly to  
clock the device or may be divided down by the  
postscaler. The HFINTOSC output is disabled if the  
clock is provided directly from the LFINTOSC output.  
When the HSPLL Oscillator mode is selected, the  
device is kept in Reset for an additional 2 ms, following  
the HS mode OST delay, so the PLL can lock to the  
incoming clock frequency.  
There is a delay of interval TCSD (parameter 38,  
Table 26-9), following POR, while the controller  
becomes ready to execute instructions. This delay runs  
concurrently with any other delays. This may be the  
only delay that occurs when any of the EC, RC or INTIO  
modes are used as the primary clock source.  
When the HFINTOSC is selected as the primary clock,  
the main system clock can be delayed until the  
HFINTOSC is stable. This is user selectable by the  
HFOFST bit of the CONFIG3H Configuration register.  
When the HFOFST bit is cleared the main system clock  
is delayed until the HFINTOSC is stable. When the  
HFOFST bit is set the main system clock starts imme-  
diately. In either case the IOFS bit of the OSCCON reg-  
ister can be read to determine whether the HFINTOSC  
is operating and stable.  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The LFINTOSC is required to support WDT operation.  
The Timer1 oscillator may be operating to support a  
real-time clock. Other features may be operating that  
do not require a device clock source (i.e., SSP slave,  
PSP, INTn pins and others). Peripherals that may add  
significant current consumption are listed in  
Section 26.8 “DC Characteristics”.  
TABLE 2-2:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
OSC Mode  
OSC2 Pin  
RC, INTOSC  
RCIO  
Floating, external resistor should pull high  
Floating, external resistor should pull high  
Configured as PORTA, bit 7  
At logic low (clock/4 output)  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
At logic low (clock/4 output)  
INTOSCIO  
ECIO  
Floating, pulled by external clock  
Floating, pulled by external clock  
EC  
LP, XT, HS and HSPLL  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
Note:  
See Table 4-2 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
DS41303B-page 34  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
2.9  
Clock Switching  
2.10 Two-Speed Clock Start-up Mode  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS<1:0>) bits of the  
OSCCON register.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
2.9.1  
SYSTEM CLOCK SELECT  
(SCS<1:0>) BITS  
The System Clock Select (SCS<1:0>) bits of the OSC-  
CON register select the system clock source that is  
used for the CPU and peripherals.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the HFINTOSC  
as the clock source and go back to Sleep without  
waiting for the primary oscillator to become stable.  
• When SCS<1:0> = 00, the system clock source is  
determined by configuration of the FOSC<2:0>  
bits in the CONFIG1H Configuration register.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCCON register to  
remain clear.  
• When SCS<1:0> = 10, the system clock source is  
chosen by the internal oscillator frequency  
selected by the INTSRC bit of the OSCTUNE  
register and the IRCF<2:0> bits of the OSCCON  
register.  
When the Oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
enabled (see Section 2.4.1 “Oscillator Start-up Timer  
(OST)”). The OST will suspend program execution until  
1024 oscillations are counted. Two-Speed Start-up  
mode minimizes the delay in code execution by  
operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCCON register is set, program  
execution switches to the external oscillator.  
• When SCS<1:0> = 01, the system clock source is  
the 32.768 kHz secondary oscillator shared with  
Timer1.  
After a Reset, the SCS<1:0> bits of the OSCCON  
register are always cleared.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the  
SCS<1:0> bits of the OSCCON register.  
The user can monitor the T1RUN bit of the  
T1CON register and the IOFS and OSTS  
bits of the OSCCON register to determine  
the current system clock source.  
2.10.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
Two-Speed Start-up mode is enabled when all of the  
following settings are configured as noted:  
• Two-Speed Start-up mode is enabled by setting  
the IESO of the CONFIG1H Configuration register  
is set. Fail-Safe mode (FCMEM=1) also enables  
two-speed by default.  
2.9.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
• SCS<1:0> (of the OSCCON register) = 00.  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCCON register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<3:0> bits in the CONFIG1H  
Configuration register, or from the internal clock  
source. In particular, when the primary oscillator is the  
source of the primary clock, OSTS indicates that the  
Oscillator Start-up Timer (OST) has timed out for LP,  
XT or HS modes.  
• FOSC<2:0> bits of the CONFIG1H Configuration  
register are configured for LP, XT or HS mode.  
Two-Speed Start-up mode becomes active after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then Two-  
Speed Start-up is disabled. This is because the external  
clock oscillator does not require any stabilization time  
after POR or an exit from Sleep.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 35  
PIC18F2XK20/4XK20  
2.10.2  
TWO-SPEED START-UP  
SEQUENCE  
2.10.4  
CLOCK SWITCH TIMING  
When switching between one oscillator and another,  
the new oscillator may not be operating which saves  
power (see Figure 2-7). If this is the case, there is a  
delay after the IRCF<2:0> bits of the OSCCON register  
are modified before the frequency change takes place.  
The OSTS and IOFS bits of the OSCCON register will  
reflect the current active status of the external and  
HFINTOSC oscillators. The timing of a frequency  
selection is as follows:  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin executing by the internal  
oscillator at the frequency set in the IRCF<2:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 external clock  
cycles.  
4. OST timed out. External clock is ready.  
5. OSTS is set.  
1. IRCF<2:0> bits of the OSCCON register are  
modified.  
6. Clock switch finishes according to FIGURE 2-7:  
“Clock Switch Timing”  
2. The old clock continues to operate until the new  
clock is ready.  
2.10.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
3. Clock switch circuitry waits for two consecutive  
rising edges of the old clock after the new clock  
ready signal goes true.  
Checking the state of the OSTS bit of the OSCCON  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in CONFIG1H Configuration register,  
or the internal oscillator. OSTS = 0when the external  
oscillator is not ready, which indicates that the system  
is running from the internal oscillator.  
4. The system clock is held low starting at the next  
falling edge of the old clock.  
5. Clock switch circuitry waits for an additional two  
rising edges of the new clock.  
6. On the next falling edge of the new clock the low  
hold on the system clock is released and new  
clock is switched in as the system clock.  
7. Clock switch is complete.  
See Figure 2-1 for more details.  
If the HFINTOSC is the source of both the old and new  
frequency, there is no start-up delay before the new  
frequency is active. This is because the old and new  
frequencies are derived from the HFINTOSC via the  
postscaler and multiplexer.  
Start-up delay specifications are located in  
Section 26.0 “Electrical Characteristics”, under AC  
Specifications (Oscillator Module).  
DS41303B-page 36  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 2-7:  
High Speed  
CLOCK SWITCH TIMING  
Low Speed  
Old Clock  
(1)  
Start-up Time  
Clock Sync  
Running  
New Clock  
New Clk Ready  
IRCF <2:0>  
Select Old  
Select New  
System Clock  
Low Speed  
High Speed  
Old Clock  
(1)  
Start-up Time  
Clock Sync  
Running  
New Clock  
New Clk Ready  
IRCF <2:0>  
Select Old  
Select New  
System Clock  
Note 1: Start-up time includes TOST (1024 TOSC) for external clocks, plus TPLL (approx. 2 ms) for HSPLL mode.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 37  
PIC18F2XK20/4XK20  
2.11.3  
FAIL-SAFE CONDITION CLEARING  
2.11 Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared by either one of the  
following:  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
CONFIG1H Configuration register. The FSCM is  
applicable to all external oscillator modes (LP, XT, HS,  
EC, RC and RCIO).  
• Any Reset  
• By toggling the SCS1 bit of the OSCCON register  
Both of these conditions restart the OST. While the  
OST is running, the device continues to operate from  
the INTOSC selected in OSCCON. When the OST  
times out, the Fail-Safe condition is cleared and the  
device automatically switches over to the external clock  
source. The Fail-Safe condition need not be cleared  
before the OSCFIF flag is cleared.  
FIGURE 2-8:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch  
External  
Clock  
2.11.4  
RESET OR WAKE-UP FROM SLEEP  
S
Q
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Sample Clock  
Clock  
Failure  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit of the OSCCON register to verify  
the oscillator start-up and that the system  
Detected  
2.11.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 2-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire half-  
cycle of the sample clock elapses before the primary  
clock goes low.  
clock  
switchover  
has  
successfully  
completed.  
2.11.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSCFIF of the PIR2 register. The OSCFIF flag will  
generate an interrupt if the OSCFIE bit of the PIE2  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation. An automatic  
transition back to the failed clock source will not occur.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<2:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
DS41303B-page 38  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 2-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 2-3:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
POR, BOR  
(1)  
CONFIG1H  
IESO  
FCMEN  
FOSC3 FOSC2 FOSC1  
FOSC0  
RBIF  
INTCON  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
OSTS  
TUN3  
BCLIE  
BCLIF  
TMR0IF  
IOFS  
INT0IF  
SCS1  
TUN1  
0000 000x 0000 000x  
0011 q000 0011 q000  
0000 0000 000u uuuu  
OSCCON  
IDLEN  
IRCF2  
PLLEN  
C1IE  
IRCF1  
TUN5  
C2IE  
IRCF0  
TUN4  
EEIE  
SCS0  
TUN0  
OSCTUNE INTSRC  
TUN2  
PIE2  
OSCFIE  
OSCFIF  
HLVDIE TMR3IE CCP2IE 0000 0000 0000 0000  
HLVDIF TMR3IF CCP2IF 0000 0000 0000 0000  
PIR2  
C1IF  
C2IF  
EEIF  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 39  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 40  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
3.1.1  
CLOCK SOURCES  
3.0  
POWER-MANAGED MODES  
The SCS<1:0> bits allow the selection of one of three  
clock sources for power-managed modes. They are:  
PIC18F2XK20/4XK20 devices offer a total of seven  
operating modes for more efficient power manage-  
ment. These modes provide a variety of options for  
selective power conservation in applications where  
resources may be limited (i.e., battery-powered  
devices).  
• the primary clock, as defined by the FOSC<3:0>  
Configuration bits  
• the secondary clock (the Timer1 oscillator)  
• the internal oscillator block  
There are three categories of power-managed modes:  
3.1.2  
ENTERING POWER-MANAGED  
MODES  
• Run modes  
• Idle modes  
• Sleep mode  
Switching from one power-managed mode to another  
begins by loading the OSCCON register. The  
SCS<1:0> bits select the clock source and determine  
which Run or Idle mode is to be used. Changing these  
bits causes an immediate switch to the new clock  
source, assuming that it is running. The switch may  
also be subject to clock transition delays. These are  
discussed in Section 3.1.3 “Clock Transitions and  
Status Indicators” and subsequent sections.  
These categories define which portions of the device  
are clocked and sometimes, what speed. The Run and  
Idle modes may use any of the three available clock  
sources (primary, secondary or internal oscillator  
block); the Sleep mode does not use a clock source.  
The power-managed modes include several power-  
saving features offered on previous PIC® microcontroller  
devices. One is the clock switching feature which allows  
the controller to use the Timer1 oscillator in place of the  
primary oscillator. Also included is the Sleep mode,  
offered by all PIC® microcontroller devices, where all  
device clocks are stopped.  
Entry to the power-managed Idle or Sleep modes is  
triggered by the execution of a SLEEPinstruction. The  
actual mode that results depends on the status of the  
IDLEN bit of the OSCCON register.  
Depending on the current mode and the mode being  
switched to, a change to a power-managed mode does  
not always require setting all of these bits. Many  
transitions may be done by changing the oscillator select  
bits, or changing the IDLEN bit, prior to issuing a SLEEP  
instruction. If the IDLEN bit is already configured  
correctly, it may only be necessary to perform a SLEEP  
instruction to switch to the desired mode.  
3.1  
Selecting Power-Managed Modes  
Selecting  
decisions:  
a power-managed mode requires two  
• Whether or not the CPU is to be clocked  
• The selection of a clock source  
The IDLEN bit of the OSCCON register controls CPU  
clocking, while the SCS<1:0> bits of the OSCCON  
register select the clock source. The individual modes,  
bit settings, clock sources and affected modules are  
summarized in Table 3-1.  
TABLE 3-1:  
Mode  
POWER-MANAGED MODES  
OSCCON Bits  
Module Clocking  
Available Clock and Oscillator Source  
IDLEN(1) SCS<1:0>  
CPU  
Peripherals  
Sleep  
0
N/A  
Off  
Off  
None – All clocks are disabled  
PRI_RUN  
N/A  
00  
Clocked  
Clocked  
Primary – LP, XT, HS, HSPLL, RC, EC and  
Internal Oscillator Block(2)  
.
This is the normal full power execution mode.  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(2)  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
N/A  
N/A  
1
01  
1x  
00  
01  
1x  
Clocked  
Clocked  
Off  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Primary – LP, XT, HS, HSPLL, RC, EC  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(2)  
1
Off  
1
Off  
Note 1: IDLEN reflects its value when the SLEEPinstruction is executed.  
2: Includes HFINTOSC and HFINTOSC postscaler, as well as the LFINTOSC source.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 41  
PIC18F2XK20/4XK20  
3.1.3  
CLOCK TRANSITIONS AND STATUS  
INDICATORS  
3.2  
Run Modes  
In the Run modes, clocks to both the core and  
peripherals are active. The difference between these  
modes is the clock source.  
The length of the transition between clock sources is  
the sum of:  
• Start-up time of the new clock  
3.2.1  
PRI_RUN MODE  
• Two and one half cycles of the old clock source  
• Two and one half cycles of the new clock  
The PRI_RUN mode is the normal, full power execution  
mode of the microcontroller. This is also the default  
mode upon a device Reset, unless Two-Speed Start-up  
is enabled (see Section 2.10 “Two-Speed Clock  
Start-up Mode” for details). In this mode, the OSTS bit  
is set. The IOFS bit will be set if the HFINTOSC is the  
primary clock source and the oscillator is stable (see  
Section 2.2 “Oscillator Control”).  
Three flag bits indicate the current clock source and its  
status. They are:  
• OSTS (of the OSCCON register)  
• IOFS (of the OSCCON register)  
• T1RUN (of the T1CON register)  
In general, only one of these bits will be set while in a  
given power-managed mode. Table 3-2 shows the rela-  
tionship of the flags to the active main system clock  
source.  
3.2.2  
SEC_RUN MODE  
The SEC_RUN mode is the mode compatible to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high accuracy clock source.  
TABLE 3-2:  
SYSTEM CLOCK INDICATORS  
OSTS IOFS T1RUN Main System Clock Source  
1
0
0
1
0
1
0
1
0
0
1
0
Primary Oscillator  
HFINTOSC  
SEC_RUN mode is entered by setting the SCS<1:0>  
bits to ‘01’. When SEC_RUN mode is active all of the  
following are true:  
Secondary Oscillator  
HFINTOSC as primary clock  
• The main clock source is switched to the Timer1  
oscillator  
LFINTOSC or  
HFINTOSC is not yet stable  
0
0
0
• Primary oscillator is shut down  
• T1RUN bit of the T1CON register is set  
• OSTS bit is cleared.  
.
Note 1: Caution should be used when modifying a  
single IRCF bit. If VDD is less than 2.7V, it  
is possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SCS<1:0> bits are set to ‘01’, entry to  
SEC_RUN mode will not occur until  
T1OSCEN bit is set and Timer1 oscillator  
is ready.  
2: Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode. It acts as the trigger to place the  
controller into either the Sleep mode or  
one of the Idle modes, depending on the  
setting of the IDLEN bit.  
On transitions from SEC_RUN mode to PRI_RUN, the  
peripherals and CPU continue to be clocked from the  
Timer1 oscillator while the primary clock is started.  
When the primary clock becomes ready, a clock switch  
back to the primary clock occurs (see Figure 2-7).  
When the clock switch is complete, the T1RUN bit is  
cleared, the OSTS bit is set and the primary clock is  
providing the main system clock. The Timer1 oscillator  
continues to run as long as the T1OSCEN bit is set.  
3.1.4  
MULTIPLE FUNCTIONS OF THE  
SLEEP COMMAND  
The power-managed mode that is invoked with the  
SLEEP instruction is determined by the setting of the  
IDLEN bit of the OSCCON register at the time the  
instruction is executed. All clocks stop and minimum  
power is consumed when SLEEPis executed with the  
IDLEN bit cleared. The system clock continues to sup-  
ply a clock to the peripherals but is disconnected from  
the CPU when SLEEP is executed with the IDLEN bit  
set.  
DS41303B-page 42  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
3.2.3  
RC_RUN MODE  
3.3  
Sleep Mode  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator block using one of  
the selections from the HFINTOSC multiplexer. In this  
mode, the primary oscillator is shut down. RC_RUN  
mode provides the best power conservation of all the  
Run modes when the LFINTOSC is the main clock  
source. It works well for user applications which are not  
highly timing sensitive or do not require high-speed  
clocks at all times.  
The Power-Managed Sleep mode in the PIC18F2XK20/  
4XK20 devices is identical to the legacy Sleep mode  
offered in all other PIC® microcontroller devices. It is  
entered by clearing the IDLEN bit (the default state on  
device Reset) and executing the SLEEP instruction.  
This shuts down the selected oscillator (Figure 3-1). All  
clock source Status bits are cleared.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the LFINTOSC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the primary clock source is the internal oscillator  
block (either LFINTOSC or HFINTOSC), there are no  
distinguishable differences between PRI_RUN and  
RC_RUN modes during execution. However, a clock  
switch delay will occur during entry to and exit from  
RC_RUN mode. Therefore, if the primary clock source  
is the internal oscillator block, the use of RC_RUN  
mode is not recommended. See 2.10.4 “Clock Switch  
Timing” for details about clock switching.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source selected by the SCS<1:0> bits  
becomes ready (see Figure 3-2), or it will be clocked  
from the internal oscillator block if either the Two-  
Speed Start-up or the Fail-Safe Clock Monitor are  
enabled (see Section 23.0 “Special Features of the  
CPU”). In either case, the OSTS bit is set when the  
primary clock is providing the device clocks. The  
IDLEN and SCS bits are not affected by the wake-up.  
RC_RUN mode is entered by setting the SCS1 bit to  
1’. The SCS0 bit can be either ‘0’ or ‘1’ but should be  
0’ to maintain software compatibility with future  
devices. When the clock source is switched from the  
primary oscillator to the HFINTOSC multiplexer, the pri-  
mary oscillator is shut down and the OSTS bit is  
cleared. The IRCF bits may be modified at any time to  
immediately change the clock speed.  
3.4  
Idle Modes  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
Note:  
Caution should be used when modifying a  
single IRCF bit. If VDD is less than 2.7V, it  
is possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
If the IDLEN bit is set to a ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected by the SCS<1:0> bits; however, the CPU  
will not be clocked. The clock source Status bits are not  
affected. Setting IDLEN and executing a SLEEPinstruc-  
tion provides a quick method of switching from a given  
Run mode to its corresponding Idle mode.  
On transitions from RC_RUN mode to PRI_RUN mode,  
the device continues to be clocked from the internal  
oscillator block while the primary oscillator is started.  
When the primary oscillator becomes ready, a clock  
switch to the primary clock occurs. When the clock  
switch is complete, the IOFS bit is cleared, the OSTS  
bit is set and the primary oscillator is providing the main  
system clock. The HFINTOSC will continue to run if any  
of the conditions noted in Section 2.5.2 “HFINTOSC”  
are met. The LFINTOSC source will continue to run if  
any of the conditions noted in Section 2.5.3 “LFIN-  
TOSC” are met.  
If the WDT is selected, the LFINTOSC source will con-  
tinue to operate. If the Timer1 oscillator is enabled, it  
will also continue to run.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out, or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(parameter 38, Table 26-9) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator block will clock the CPU  
and peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or the Sleep mode, a WDT  
time-out will result in a WDT wake-up to the Run mode  
currently specified by the SCS<1:0> bits.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 43  
PIC18F2XK20/4XK20  
FIGURE 3-1:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-2:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
OSTS bit set  
DS41303B-page 44  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
3.4.1  
PRI_IDLE MODE  
3.4.2  
SEC_IDLE MODE  
This mode is unique among the three low-power Idle  
modes, in that it does not disable the primary device  
clock. For timing sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm-up” or transition from another  
oscillator.  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered from SEC_RUN by set-  
ting the IDLEN bit and executing a SLEEPinstruction. If  
the device is in another Run mode, set the IDLEN bit  
first, then set the SCS<1:0> bits to ‘01’ and execute  
SLEEP. When the clock source is switched to the  
Timer1 oscillator, the primary oscillator is shut down,  
the OSTS bit is cleared and the T1RUN bit is set.  
PRI_IDLE mode is entered from PRI_RUN mode by  
setting the IDLEN bit and executing a SLEEP instruc-  
tion. If the device is in another Run mode, set IDLEN  
first, then clear the SCS bits and execute SLEEP.  
Although the CPU is disabled, the peripherals continue  
to be clocked from the primary clock source specified  
by the FOSC<3:0> Configuration bits. The OSTS bit  
remains set (see Figure 3-3).  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After an interval  
of TCSD following the wake event, the CPU begins exe-  
cuting code being clocked by the Timer1 oscillator. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run (see Figure 3-4).  
When a wake event occurs, the CPU is clocked from the  
primary clock source. A delay of interval TCSD is  
required between the wake event and when code  
execution starts. This is required to allow the CPU to  
become ready to execute instructions. After the wake-  
up, the OSTS bit remains set. The IDLEN and SCS bits  
are not affected by the wake-up (see Figure 3-4).  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEP instruction is executed, the main  
system clock will continue to operate in the  
previously selected mode and the corre-  
sponding IDLE mode will be entered (i.e.,  
PRI_IDLE or RC_IDLE).  
FIGURE 3-3:  
TRANSITION TIMING FOR ENTRY TO IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-4:  
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
TCSD  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
Wake Event  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 45  
PIC18F2XK20/4XK20  
3.4.3  
RC_IDLE MODE  
3.5.1  
EXIT BY INTERRUPT  
In RC_IDLE mode, the CPU is disabled but the periph-  
erals continue to be clocked from the internal oscillator  
block from the HFINTOSC multiplexer output. This  
mode allows for controllable power conservation during  
Idle periods.  
Any of the available interrupt sources can cause the  
device to exit from an Idle mode or the Sleep mode to  
a Run mode. To enable this functionality, an interrupt  
source must be enabled by setting its enable bit in one  
of the INTCON or PIE registers. The PEIE bIt must also  
be set If the desired interrupt enable bit is in a PIE reg-  
ister. The exit sequence is initiated when the corre-  
sponding interrupt flag bit is set.  
From RC_RUN, this mode is entered by setting the  
IDLEN bit and executing a SLEEP instruction. If the  
device is in another Run mode, first set IDLEN, then set  
the SCS1 bit and execute SLEEP. It is recommended  
that SCS0 also be cleared, although its value is  
ignored, to maintain software compatibility with future  
devices. The HFINTOSC multiplexer may be used to  
select a higher clock frequency by modifying the IRCF  
bits before executing the SLEEPinstruction. When the  
clock source is switched to the HFINTOSC multiplexer,  
the primary oscillator is shut down and the OSTS bit is  
cleared.  
The instruction immediately following the SLEEP  
instruction is executed on all exits by interrupt from Idle  
or Sleep modes. Code execution then branches to the  
interrupt vector if the GIE/GIEH bit of the INTCON reg-  
ister is set, otherwise code execution continues without  
branching (see Section 9.0 “Interrupts”).  
A fixed delay of interval TCSD following the wake event  
is required when leaving Sleep and Idle modes. This  
delay is required for the CPU to prepare for execution.  
Instruction execution resumes on the first clock cycle  
following this delay.  
If the IRCF bits are set to any non-zero value, or the  
INTSRC bit is set, the HFINTOSC output is enabled.  
The IOFS bit becomes set, after the HFINTOSC output  
becomes stable, after an interval of TIOBST  
(parameter 39, Table 26-9). Clocks to the peripherals  
continue while the HFINTOSC source stabilizes. If the  
IRCF bits were previously at a non-zero value, or  
INTSRC was set before the SLEEPinstruction was exe-  
cuted and the HFINTOSC source was already stable,  
the IOFS bit will remain set. If the IRCF bits and  
INTSRC are all clear, the HFINTOSC output will not be  
enabled, the IOFS bit will remain clear and there will be  
no indication of the current clock source.  
3.5.2  
EXIT BY WDT TIME-OUT  
A WDT time-out will cause different actions depending  
on which power-managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in an exit from the  
power-managed mode (see Section 3.2 “Run  
Modes” and Section 3.3 “Sleep Mode”). If the device  
is executing code (all Run modes), the time-out will  
result in a WDT Reset (see Section 23.2 “Watchdog  
Timer (WDT)”).  
When a wake event occurs, the peripherals continue to  
be clocked from the HFINTOSC multiplexer output.  
After a delay of TCSD following the wake event, the CPU  
begins executing code being clocked by the  
HFINTOSC multiplexer. The IDLEN and SCS bits are  
not affected by the wake-up. The LFINTOSC source  
will continue to run if either the WDT or the Fail-Safe  
Clock Monitor is enabled.  
The WDT timer and postscaler are cleared by any one  
of the following:  
• executing a SLEEPinstruction  
• executing a CLRWDTinstruction  
• the loss of the currently selected clock source  
when the Fail-Safe Clock Monitor is enabled  
• modifying the IRCF bits in the OSCCON register  
when the internal oscillator block is the device  
clock source  
3.5  
Exiting Idle and Sleep Modes  
An exit from Sleep mode or any of the Idle modes is  
triggered by any one of the following:  
3.5.3  
EXIT BY RESET  
• an interrupt  
Exiting Sleep and Idle modes by Reset causes code  
execution to restart at address 0. See Section 4.0  
“Reset” for more details.  
• a Reset  
• a watchdog time-out  
This section discusses the triggers that cause exits  
from power-managed modes. The clocking subsystem  
actions are discussed in each of the power-managed  
modes (see Section 3.2 “Run Modes”, Section 3.3  
“Sleep Mode” and Section 3.4 “Idle Modes”).  
The exit delay time from Reset to the start of code  
execution depends on both the clock sources before  
and after the wake-up and the type of oscillator. Exit  
delays are summarized in Table 3-3.  
DS41303B-page 46  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
In these instances, the primary clock source either  
does not require an oscillator start-up delay since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (RC, EC, INTOSC,  
and INTOSCIO modes). However, a fixed delay of  
interval TCSD following the wake event is still required  
when leaving Sleep and Idle modes to allow the CPU  
to prepare for execution. Instruction execution resumes  
on the first clock cycle following this delay.  
3.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Certain exits from power-managed modes do not  
invoke the OST at all. There are two cases:  
• PRI_IDLE mode, where the primary clock source  
is not stopped and  
• the primary clock source is not any of the LP, XT,  
HS or HSPLL modes.  
TABLE 3-3:  
EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE  
(BY CLOCK SOURCES)  
Clock Source  
before Wake-up  
Clock Source  
after Wake-up  
Clock Ready Status  
Bit (OSCCON)  
Exit Delay  
LP, XT, HS  
HSPLL  
OSTS  
IOFS  
OSTS  
IOFS  
OSTS  
IOFS  
OSTS  
IOFS  
Primary Device Clock  
(PRI_IDLE mode)  
(1)  
TCSD  
EC, RC  
HFINTOSC(2)  
LP, XT, HS  
HSPLL  
(3)  
TOST  
(3)  
TOST + tPLL  
T1OSC or LFINTOSC(1)  
(1)  
EC, RC  
TCSD  
HFINTOSC(1)  
LP, XT, HS  
HSPLL  
TIOBST  
(4)  
(4)  
TOST  
(3)  
(3)  
TOST + tPLL  
HFINTOSC(2)  
(1)  
EC, RC  
TCSD  
HFINTOSC(1)  
LP, XT, HS  
HSPLL  
None  
(3)  
TOST  
TOST + tPLL  
None  
(Sleep mode)  
(1)  
EC, RC  
HFINTOSC(1)  
TCSD  
(4)  
TIOBST  
Note 1: TCSD (parameter 38) is a required delay when waking from Sleep and all Idle modes and runs concurrently  
with any other required delays (see Section 3.4 “Idle Modes”). On Reset, HFINTOSC defaults to 1 MHz.  
2: Includes both the HFINTOSC 16 MHz source and postscaler derived frequencies.  
3: TOST is the Oscillator Start-up Timer (parameter 32). tPLL is the PLL Lock-out Timer (parameter F12).  
4: Execution continues during the HFINTOSC stabilization period, TIOBST (parameter 39).  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 47  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 48  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 4-1.  
4.0  
RESET  
The PIC18F2XK20/4XK20 devices differentiate  
between various kinds of Reset:  
4.1  
RCON Register  
a) Power-on Reset (POR)  
Device Reset events are tracked through the RCON  
register (Register 4-1). The lower five bits of the regis-  
ter indicate that a specific Reset event has occurred. In  
most cases, these bits can only be cleared by the event  
and must be set by the application after the event. The  
state of these flag bits, taken together, can be read to  
indicate the type of Reset that just occurred. This is  
described in more detail in Section 4.6 “Reset State  
of Registers”.  
b) MCLR Reset during normal operation  
c) MCLR Reset during power-managed modes  
d) Watchdog Timer (WDT) Reset (during  
execution)  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
g) Stack Full Reset  
h) Stack Underflow Reset  
The RCON register also has control bits for setting  
interrupt priority (IPEN) and software control of the  
BOR (SBOREN). Interrupt priority is discussed in  
Section 9.0 “Interrupts”. BOR is covered in  
Section 4.4 “Brown-out Reset (BOR)”.  
This section discusses Resets generated by MCLR,  
POR and BOR and covers the operation of the various  
start-up timers. Stack Reset events are covered in  
Section 5.1.2.4 “Stack Full and Underflow Resets”.  
WDT Resets are covered in Section 23.2 “Watchdog  
Timer (WDT)”.  
FIGURE 4-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLRE  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
VDD  
Brown-out  
Reset  
S
BOREN  
OST/PWRT  
OST  
(2)  
1024 Cycles  
Chip_Reset  
10-bit Ripple Counter  
R
Q
OSC1  
32 μs  
(2)  
65.5 ms  
PWRT  
LFINTOSC  
11-bit Ripple Counter  
Enable PWRT  
(1)  
Enable OST  
Note 1: See Table 4-2 for time-out situations.  
2: PWRT and OST counters are reset by POR and BOR. See Sections 4.3 and 4.4.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 49  
PIC18F2XK20/4XK20  
REGISTER 4-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
R/W-1  
SBOREN(1)  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR(2)  
R/W-0  
BOR  
IPEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
SBOREN: BOR Software Enable bit(1)  
If BOREN<1:0> = 01:  
1= BOR is enabled  
0= BOR is disabled  
If BOREN<1:0> = 00, 10or 11:  
Bit is disabled and read as ‘0’.  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware or Power-on Reset)  
0= The RESET instruction was executed causing a device Reset (must be set in firmware after a  
code-executed Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Set by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit(2)  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit(3)  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs)  
Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’.  
2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this  
register and Section 4.6 “Reset State of Registers” for additional information.  
3: See Table 4-3.  
Note 1: Brown-out Reset is indicated when BOR is ‘0’ and POR is ‘1’ (assuming that both POR and BOR were set  
to ‘1’ by firmware immediately after POR).  
2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent  
Power-on Resets may be detected.  
DS41303B-page 50  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 4-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
4.2  
Master Clear (MCLR)  
The MCLR pin provides a method for triggering an  
external Reset of the device. A Reset is generated by  
holding the pin low. These devices have a noise filter in  
the MCLR Reset path which detects and ignores small  
pulses.  
VDD  
VDD  
D
PIC® MCU  
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
R
R1  
MCLR  
In PIC18F2XK20/4XK20 devices, the MCLR input can  
be disabled with the MCLRE Configuration bit. When  
MCLR is disabled, the pin becomes a digital input. See  
Section 10.6 “PORTE, TRISE and LATE Registers”  
for more information.  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
4.3  
Power-on Reset (POR)  
A
Power-on Reset pulse is generated on-chip  
2: R < 40 kΩ is recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
whenever VDD rises above a certain threshold. This  
allows the device to start in the initialized state when  
VDD is adequate for operation.  
3: R1 1 kΩ will limit any current flowing into  
MCLR from external capacitor C, in the event  
of MCLR/VPP pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
To take advantage of the POR circuitry, tie the MCLR  
pin through a resistor (1 kΩ to 10 kΩ) to VDD. This will  
eliminate external RC components usually needed to  
create a Power-on Reset delay. A minimum rise rate for  
VDD is specified (parameter D004). For a slow rise  
time, see Figure 4-2.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
POR events are captured by the POR bit of the RCON  
register. The state of the bit is set to ‘0’ whenever a  
POR occurs; it does not change for any other Reset  
event. POR is not reset to ‘1’ by any hardware event.  
To capture multiple events, the user must manually set  
the bit to ‘1’ by software following any POR.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 51  
PIC18F2XK20/4XK20  
Placing the BOR under software control gives the user  
the additional flexibility of tailoring the application to its  
environment without having to reprogram the device to  
change BOR configuration. It also allows the user to  
tailor device power consumption in software by  
eliminating the incremental current that the BOR  
consumes. While the BOR current is typically very small,  
it may have some impact in low-power applications.  
4.4  
Brown-out Reset (BOR)  
PIC18F2XK20/4XK20 devices implement a BOR circuit  
that provides the user with a number of configuration  
and power-saving options. The BOR is controlled by  
the BORV<1:0> and BOREN<1:0> bits of the  
CONFIG2L Configuration register. There are a total of  
four BOR configurations which are summarized in  
Table 4-1.  
Note:  
Even when BOR is under software control,  
the BOR Reset voltage level is still set by  
the BORV<1:0> Configuration bits. It can-  
not be changed by software.  
The BOR threshold is set by the BORV<1:0> bits. If  
BOR is enabled (any values of BOREN<1:0>, except  
00’), any drop of VDD below VBOR (parameter D005)  
for greater than TBOR (parameter 35) will reset the  
device. A Reset may or may not occur if VDD falls below  
VBOR for less than TBOR. The chip will remain in  
Brown-out Reset until VDD rises above VBOR.  
4.4.2  
DETECTING BOR  
When BOR is enabled, the BOR bit always resets to ‘0’  
on any BOR or POR event. This makes it difficult to  
determine if a BOR event has occurred just by reading  
the state of BOR alone. A more reliable method is to  
simultaneously check the state of both POR and BOR.  
This assumes that the POR and BOR bits are reset to  
1’ by software immediately after any POR event. If  
BOR is ‘0’ while POR is ‘1’, it can be reliably assumed  
that a BOR event has occurred.  
If the Power-up Timer is enabled, it will be invoked after  
VDD rises above VBOR; it then will keep the chip in  
Reset for an additional time delay, TPWRT  
(parameter 33). If VDD drops below VBOR while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be  
initialized. Once VDD rises above VBOR, the Power-up  
Timer will execute the additional time delay.  
4.4.3  
DISABLING BOR IN SLEEP MODE  
BOR and the Power-on Timer (PWRT) are  
independently configured. Enabling BOR Reset does  
not automatically enable the PWRT.  
When BOREN<1:0> = 10, the BOR remains under  
hardware control and operates as previously  
described. Whenever the device enters Sleep mode,  
however, the BOR is automatically disabled. When the  
device returns to any other operating mode, BOR is  
automatically re-enabled.  
4.4.1  
SOFTWARE ENABLED BOR  
When BOREN<1:0> = 01, the BOR can be enabled or  
disabled by the user in software. This is done with the  
SBOREN control bit of the RCON register. Setting  
SBOREN enables the BOR to function as previously  
described. Clearing SBOREN disables the BOR  
entirely. The SBOREN bit operates only in this mode;  
otherwise it is read as ‘0’.  
This mode allows for applications to recover from  
brown-out situations, while actively executing code,  
when the device requires BOR protection the most. At  
the same time, it saves additional power in Sleep mode  
by eliminating the small incremental BOR current.  
TABLE 4-1:  
BOREN1  
BOR CONFIGURATIONS  
BOR Configuration  
Status of  
SBOREN  
BOR Operation  
BOREN0  
(RCON<6>)  
0
0
1
0
1
0
Unavailable BOR disabled; must be enabled by reprogramming the Configuration bits.  
Available BOR enabled by software; operation controlled by SBOREN.  
Unavailable BOR enabled by hardware in Run and Idle modes, disabled during  
Sleep mode.  
1
1
Unavailable BOR enabled by hardware; must be disabled by reprogramming the  
Configuration bits.  
DS41303B-page 52  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The OST time-out is invoked only for XT, LP, HS and  
HSPLL modes and only on Power-on Reset, or on exit  
from all power-managed modes that stop the external  
oscillator.  
4.5  
Device Reset Timers  
PIC18F2XK20/4XK20 devices incorporate three  
separate on-chip timers that help regulate the  
Power-on Reset process. Their main function is to  
ensure that the device clock is stable before code is  
executed. These timers are:  
4.5.3  
PLL LOCK TIME-OUT  
With the PLL enabled in its PLL mode, the time-out  
sequence following a Power-on Reset is slightly  
different from other oscillator modes. A separate timer  
is used to provide a fixed time-out that is sufficient for  
the PLL to lock to the main oscillator frequency. This  
PLL lock time-out (TPLL) is typically 2 ms and follows  
the oscillator start-up time-out.  
• Power-up Timer (PWRT)  
• Oscillator Start-up Timer (OST)  
• PLL Lock Time-out  
4.5.1  
The  
POWER-UP TIMER (PWRT)  
Power-up Timer (PWRT)  
of  
PIC18F2XK20/4XK20 devices is an 11-bit counter  
which uses the LFINTOSC source as the clock input.  
This yields an approximate time interval of  
2048 x 32 μs = 65.6 ms. While the PWRT is counting,  
the device is held in Reset.  
4.5.4  
TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows:  
1. After the POR pulse has cleared, PWRT time-out  
is invoked (if enabled).  
The power-up time delay depends on the LFINTOSC  
clock and will vary from chip-to-chip due to temperature  
and process variation. See DC parameter 33 for  
details.  
2. Then, the OST is activated.  
The total time-out will vary based on oscillator  
configuration and the status of the PWRT. Figure 4-3,  
Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all  
depict time-out sequences on power-up, with the  
Power-up Timer enabled and the device operating in  
HS Oscillator mode. Figures 4-3 through 4-6 also  
apply to devices operating in XT or LP modes. For  
devices in RC mode and with the PWRT disabled, on  
the other hand, there will be no time-out at all.  
The PWRT is enabled by clearing the PWRTEN  
Configuration bit.  
4.5.2  
OSCILLATOR START-UP TIMER  
(OST)  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter 33). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, all time-outs will expire, after  
which, bringing MCLR high will allow program  
execution to begin immediately (Figure 4-5). This is  
useful for testing purposes or to synchronize more than  
one PIC18FXXK20 device operating in parallel.  
TABLE 4-2:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2) and Brown-out  
Exit from  
Configuration  
Power-Managed Mode  
PWRTEN = 0  
PWRTEN = 1  
HSPLL  
66 ms(1) + 1024 TOSC + 2 ms(2)  
66 ms(1) + 1024 TOSC  
66 ms(1)  
1024 TOSC + 2 ms(2)  
1024 TOSC + 2 ms(2)  
HS, XT, LP  
EC, ECIO  
1024 TOSC  
1024 TOSC  
RC, RCIO  
66 ms(1)  
66 ms(1)  
INTIO1, INTIO2  
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.  
2: 2 ms is the nominal time required for the PLL to lock.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 53  
PIC18F2XK20/4XK20  
FIGURE 4-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS41303B-page 54  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 4-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
5V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 4-7:  
TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 55  
PIC18F2XK20/4XK20  
Table 4-4 describes the Reset states for all of the  
Special Function Registers. These are categorized by  
Power-on and Brown-out Resets, Master Clear and  
WDT Resets and WDT wake-ups.  
4.6  
Reset State of Registers  
Some registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. All other registers are forced to a “Reset state”  
depending on the type of Reset that occurred.  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal  
operation. Status bits from the RCON register, RI, TO,  
PD, POR and BOR, are set or cleared differently in  
different Reset situations, as indicated in Table 4-3.  
These bits are used by software to determine the  
nature of the Reset.  
TABLE 4-3:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION  
FOR RCON REGISTER  
RCON Register  
STKPTR Register  
Program  
Counter  
Condition  
SBOREN  
RI  
TO  
PD POR BOR STKFUL STKUNF  
Power-on Reset  
RESETInstruction  
Brown-out Reset  
0000h  
0000h  
0000h  
0000h  
1
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
u(2)  
u(2)  
u(2)  
MCLR during Power-Managed  
Run Modes  
MCLR during Power-Managed  
Idle Modes and Sleep Mode  
0000h  
0000h  
0000h  
u(2)  
u(2)  
u(2)  
u
u
u
1
0
u
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
WDT Time-out during Full Power  
or Power-Managed Run Mode  
MCLR during Full Power  
Execution  
Stack Full Reset (STVREN = 1)  
0000h  
0000h  
u(2)  
u(2)  
u
u
u
u
u
u
u
u
u
u
1
u
u
1
Stack Underflow Reset  
(STVREN = 1)  
Stack Underflow Error (not an  
actual Reset, STVREN = 0)  
0000h  
u(2)  
u(2)  
u
u
u
0
u
0
u
u
u
u
u
u
1
u
WDT Time-out during  
Power-Managed Idle or Sleep  
Modes  
PC + 2  
Interrupt Exit from  
PC + 2(1)  
u(2)  
u
u
0
u
u
u
u
Power-Managed Modes  
Legend: u= unchanged  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (008h or 0018h).  
2: Reset state is ‘1’ for POR and unchanged for all other Resets when software BOR is enabled  
(BOREN<1:0> Configuration bits = 01and SBOREN = 1). Otherwise, the Reset state is ‘0’.  
DS41303B-page 56  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
(3)  
TOSU  
TOSH  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
---0 0000  
0000 0000  
---0 0000  
0000 0000  
---0 uuuu  
(3)  
uuuu uuuu  
(3)  
TOSL  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
N/A  
uuuu uuuu  
(3)  
STKPTR  
PCLATU  
PCLATH  
PCL  
uu-u uuuu  
---u uuuu  
uuuu uuuu  
(2)  
PC + 2  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
(1)  
INTCON  
INTCON2  
INTCON3  
INDF0  
uuuu uuuu  
(1)  
uuuu -u-u  
(1)  
uu-u u-uu  
N/A  
N/A  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as  
PORTA pins, they are disabled and read ‘0’.  
6: All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 57  
PIC18F2XK20/4XK20  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
FSR1H  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- 0000  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
FSR1L  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0011 qq00  
0-00 0101  
---- ---0  
0q-1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0011 qq00  
0-00 0101  
---- ---0  
0q-q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
---- ---u  
uq-u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
HLVDCON  
WDTCON  
(4)  
RCON  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as  
PORTA pins, they are disabled and read ‘0’.  
6: All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
DS41303B-page 58  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
xxxx xxxx  
xxxx xxxx  
--00 0000  
--00 0qqq  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
---0 0001  
0100 0-00  
0000 0000  
0000 0000  
0000 0000  
00-- ----  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
---- --00  
0000 0000  
0000 0000  
xx-0 x000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 0qqq  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
---0 0001  
0100 0-00  
0000 0000  
0000 0000  
0000 0000  
00-- ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
---- --00  
0000 0000  
0000 0000  
uu-0 u000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-- ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
0000 0000  
uu-0 u000  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F26K20 PIC18F46K20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
PSTRCON  
BAUDCTL  
PWM1CON  
ECCP1AS  
CVRCON  
CVRCON2  
TMR3H  
TMR3L  
T3CON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADR  
EEADRH  
EEDATA  
EECON2  
EECON1  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as  
PORTA pins, they are disabled and read ‘0’.  
6: All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 59  
PIC18F2XK20/4XK20  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
IPR2  
PIR2  
PIE2  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
0000 0000  
---- -111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
0000 0000  
---- -111  
1111 1111  
1111 1111  
1111 1111  
uuuu uuuu  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
(1)  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
IPR1  
PIR1  
PIE1  
(1)  
uuuu uuuu  
(1)  
-uuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
OSCTUNE  
TRISE  
TRISD  
TRISC  
TRISB  
(5)  
(5)  
(5)  
(5)  
TRISA  
1111 1111  
1111 1111  
uuuu uuuu  
LATE  
LATD  
LATC  
LATB  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
(5)  
(5)  
(5)  
(5)  
LATA  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
---- x000  
---- x---  
xxxx xxxx  
xxxx xxxx  
xxx0 0000  
---- u000  
---- u---  
uuuu uuuu  
uuuu uuuu  
uuu0 0000  
---- uuuu  
---- u---  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PORTE  
PORTD  
PORTC  
PORTB  
(5)  
(5)  
(5)  
(5)  
PORTA  
xx0x 0000  
uu0u 0000  
uuuu uuuu  
(6)  
ANSELH  
---1 1111  
1111 1111  
0000 ----  
1111 1111  
0000 0000  
0000 0000  
---1 1111  
1111 1111  
0000 ----  
1111 1111  
0000 0000  
0000 0000  
---u uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
ANSEL  
IOCB  
WPUB  
CM1CON0  
CM2CON0  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as  
PORTA pins, they are disabled and read ‘0’.  
6: All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
DS41303B-page 60  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
CM2CON1  
SLRCON  
SSPMSK  
0000 ----  
---1 1111  
1111 1111  
0000 ----  
---1 1111  
1111 1111  
uuuu ----  
---u uuuu  
uuuu uuuu  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
PIC18F2XK20 PIC18F4XK20  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as  
PORTA pins, they are disabled and read ‘0’.  
6: All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 61  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 62  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
5.1  
Program Memory Organization  
5.0  
MEMORY ORGANIZATION  
PIC18 microcontrollers implement a 21-bit program  
counter, which is capable of addressing a 2-Mbyte  
program memory space. Accessing a location between  
the upper boundary of the physically implemented  
memory and the 2-Mbyte address will return all ‘0’s (a  
NOPinstruction).  
There are three types of memory in PIC18 Enhanced  
microcontroller devices:  
• Program Memory  
• Data RAM  
• Data EEPROM  
As Harvard architecture devices, the data and program  
memories use separate busses; this allows for concur-  
rent access of the two memory spaces. The data  
EEPROM, for practical purposes, can be regarded as  
a peripheral device, since it is addressed and accessed  
through a set of control registers.  
This family of devices contain the following:  
• PIC18F23K20, PIC18F43K20: 8 Kbytes of Flash  
Memory, up to 4,096 single-word instructions  
• PIC18F24K20, PIC18F44K20: 16 Kbytes of Flash  
Memory, up to 8,192 single-word instructions  
• PIC18F25K20, PIC18F45K20: 32 Kbytes of Flash  
Memory, up to 16,384 single-word instructions  
Additional detailed information on the operation of the  
Flash program memory is provided in Section 6.0  
“Flash Program Memory”. Data EEPROM is  
discussed separately in Section 7.0 “Data EEPROM  
Memory”.  
• PIC18F26K20, PIC18F46K20: 64 Kbytes of Flash  
Memory, up to 37,768 single-word instructions  
PIC18 devices have two interrupt vectors. The Reset  
vector address is at 0000h and the interrupt vector  
addresses are at 0008h and 0018h.  
The program memory map for PIC18F2XK20/4XK20  
devices is shown in Figure 5-1. Memory block details  
are shown in Figure 23-2.  
FIGURE 5-1:  
PROGRAM MEMORY MAP AND STACK FOR PIC18F2XK20/4XK20 DEVICES  
PC<20:0>  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 31  
0000h  
Reset Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
On-Chip  
Program Memory  
1FFFh  
On-Chip  
Program Memory  
2000h  
On-Chip  
Program Memory  
3FFFh  
4000h  
PIC18F23K20/  
43K20  
On-Chip  
Program Memory  
PIC18F24K20/  
44K20  
7FFFh  
8000h  
PIC18F25K20/  
45K20  
FFFFh  
10000h  
Read ‘0’  
Read ‘0’  
Read ‘0’  
PIC18F26K20/  
46K20  
Read ‘0’  
1FFFFFh  
200000h  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 63  
PIC18F2XK20/4XK20  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, STKPTR. The stack space is not  
part of either program or data space. The Stack Pointer  
is readable and writable and the address on the top of  
the stack is readable and writable through the Top-of-  
Stack (TOS) Special File Registers. Data can also be  
pushed to, or popped from the stack, using these  
registers.  
5.1.1  
PROGRAM COUNTER  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits wide  
and is contained in three separate 8-bit registers. The  
low byte, known as the PCL register, is both readable  
and writable. The high byte, or PCH register, contains  
the PC<15:8> bits; it is not directly readable or writable.  
Updates to the PCH register are performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits; it is also not  
directly readable or writable. Updates to the PCU  
register are performed through the PCLATU register.  
A CALLtype instruction causes a push onto the stack;  
the Stack Pointer is first incremented and the location  
pointed to by the Stack Pointer is written with the  
contents of the PC (already pointing to the instruction  
following the CALL). A RETURNtype instruction causes  
a pop from the stack; the contents of the location  
pointed to by the STKPTR are transferred to the PC  
and then the Stack Pointer is decremented.  
The contents of PCLATH and PCLATU are transferred  
to the program counter by any operation that writes  
PCL. Similarly, the upper two bytes of the program  
counter are transferred to PCLATH and PCLATU by an  
operation that reads PCL. This is useful for computed  
offsets to the PC (see Section 5.1.4.1 “Computed  
GOTO”).  
The Stack Pointer is initialized to ‘00000’ after all  
Resets. There is no RAM associated with the location  
corresponding to a Stack Pointer value of ‘00000’; this  
is only a Reset value. Status bits indicate if the stack is  
full or has overflowed or has underflowed.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the Least Significant bit of PCL is fixed to  
a value of ‘0’. The PC increments by 2 to address  
sequential instructions in the program memory.  
5.1.2.1  
Top-of-Stack Access  
Only the top of the return address stack (TOS) is readable  
and writable. A set of three registers, TOSU:TOSH:TOSL,  
hold the contents of the stack location pointed to by the  
STKPTR register (Figure 5-2). This allows users to  
implement a software stack if necessary. After a CALL,  
RCALL or interrupt, the software can read the pushed  
value by reading the TOSU:TOSH:TOSL registers. These  
values can be placed on a user defined software stack. At  
return time, the software can return these values to  
TOSU:TOSH:TOSL and do a return.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
5.1.2  
RETURN ADDRESS STACK  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC is  
pushed onto the stack when a CALL or RCALL  
instruction is executed or an interrupt is Acknowledged.  
The PC value is pulled off the stack on a RETURN,  
RETLWor a RETFIEinstruction. PCLATU and PCLATH  
are not affected by any of the RETURN or CALL  
instructions.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 5-2:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack <20:0>  
11111  
11110  
11101  
Top-of-Stack Registers  
Stack Pointer  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
00010  
00001  
00000  
001A34h  
000D58h  
Top-of-Stack  
DS41303B-page 64  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or until a POR occurs.  
5.1.2.2  
Return Stack Pointer (STKPTR)  
The STKPTR register (Register 5-1) contains the Stack  
Pointer value, the STKFUL (stack full) Status bit and  
the STKUNF (stack underflow) Status bits. The value of  
the Stack Pointer can be 0 through 31. The Stack  
Pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. On Reset, the Stack Pointer value will be zero.  
The user may read and write the Stack Pointer value.  
This feature can be used by a Real-Time Operating  
System (RTOS) for return stack maintenance.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset, as the contents  
of the SFRs are not affected.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
5.1.2.3  
PUSHand POPInstructions  
Since the Top-of-Stack is readable and writable, the  
ability to push values onto the stack and pull values off  
the stack without disturbing normal program execution  
is a desirable feature. The PIC18 instruction set  
includes two instructions, PUSH and POP, that permit  
the TOS to be manipulated under software control.  
TOSU, TOSH and TOSL can be modified to place data  
or a return address on the stack.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) Configuration bit. (Refer to  
Section 23.1 “Configuration Bits” for a description of  
the device Configuration bits.) If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to zero.  
The PUSHinstruction places the current PC value onto  
the stack. This increments the Stack Pointer and loads  
the current PC value onto the stack.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and STKPTR will remain at 31.  
The POPinstruction discards the current TOS by decre-  
menting the Stack Pointer. The previous value pushed  
onto the stack then becomes the TOS value.  
REGISTER 5-1:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL(1)  
R/C-0  
STKUNF(1)  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented  
‘0’ = Bit is cleared  
C = Clearable only bit  
x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP<4:0>: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 65  
PIC18F2XK20/4XK20  
5.1.2.4  
Stack Full and Underflow Resets  
5.1.4  
LOOK-UP TABLES IN PROGRAM  
MEMORY  
Device Resets on stack overflow and stack underflow  
conditions are enabled by setting the STVREN bit in  
Configuration Register 4L. When STVREN is set, a full  
or underflow will set the appropriate STKFUL or  
STKUNF bit and then cause a device Reset. When  
STVREN is cleared, a full or underflow condition will set  
the appropriate STKFUL or STKUNF bit but not cause  
a device Reset. The STKFUL or STKUNF bits are  
cleared by the user software or a Power-on Reset.  
There may be programming situations that require the  
creation of data structures, or look-up tables, in  
program memory. For PIC18 devices, look-up tables  
can be implemented in two ways:  
• Computed GOTO  
Table Reads  
5.1.4.1  
Computed GOTO  
5.1.3  
FAST REGISTER STACK  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 5-2.  
A fast register stack is provided for the Status, WREG  
and BSR registers, to provide a “fast return” option for  
interrupts. The stack for each register is only one level  
deep and is neither readable nor writable. It is loaded  
with the current value of the corresponding register  
when the processor vectors for an interrupt. All inter-  
rupt sources will push values into the stack registers.  
The values in the registers are then loaded back into  
their associated registers if the RETFIE, FAST  
instruction is used to return from the interrupt.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW nninstructions. The  
W register is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW nn  
instructions that returns the value ‘nn’ to the calling  
function.  
If both low and high priority interrupts are enabled, the  
stack registers cannot be used reliably to return from  
low priority interrupts. If a high priority interrupt occurs  
while servicing a low priority interrupt, the stack register  
values stored by the low priority interrupt will be  
overwritten. In these cases, users must save the key  
registers by software during a low priority interrupt.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSb = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
If interrupt priority is not used, all interrupts may use the  
fast register stack for returns from interrupt. If no  
interrupts are used, the fast register stack can be used  
to restore the Status, WREG and BSR registers at the  
end of a subroutine call. To use the fast register stack  
for a subroutine call, a CALLlabel, FASTinstruction  
must be executed to save the Status, WREG and BSR  
registers to the fast register stack. A RETURN, FAST  
instruction is then executed to restore these registers  
from the fast register stack.  
EXAMPLE 5-2:  
COMPUTED GOTO USING  
AN OFFSET VALUE  
OFFSET, W  
TABLE  
MOVF  
CALL  
ORG  
TABLE  
nn00h  
ADDWF  
RETLW  
RETLW  
RETLW  
.
PCL  
nnh  
nnh  
nnh  
.
Example 5-1 shows a source code example that uses  
the fast register stack during a subroutine call and  
return.  
.
5.1.4.2  
Table Reads and Table Writes  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
EXAMPLE 5-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
CALL SUB1, FAST  
Look-up table data may be stored two bytes per pro-  
gram word by using table reads and writes. The Table  
Pointer (TBLPTR) register specifies the byte address  
and the Table Latch (TABLAT) register contains the  
data that is read from or written to program memory.  
Data is transferred to or from program memory one  
byte at a time.  
SUB1  
RETURN, FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
Table read and table write operations are discussed  
further in Section 6.1 “Table Reads and Table  
Writes”.  
DS41303B-page 66  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
5.2.2  
INSTRUCTION FLOW/PIPELINING  
5.2  
PIC18 Instruction Cycle  
An “Instruction Cycle” consists of four Q cycles: Q1  
through Q4. The instruction fetch and execute are  
pipelined in such a manner that a fetch takes one  
instruction cycle, while the decode and execute take  
another instruction cycle. However, due to the  
pipelining, each instruction effectively executes in one  
cycle. If an instruction causes the program counter to  
change (e.g., GOTO), then two cycles are required to  
complete the instruction (Example 5-3).  
5.2.1  
CLOCKING SCHEME  
The microcontroller clock input, whether from an  
internal or external source, is internally divided by four  
to generate four non-overlapping quadrature clocks  
(Q1, Q2, Q3 and Q4). Internally, the program counter is  
incremented on every Q1; the instruction is fetched  
from the program memory and latched into the  
instruction register during Q4. The instruction is  
decoded and executed during the following Q1 through  
Q4. The clocks and instruction execution flow are  
shown in Figure 5-3.  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 5-3:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
Internal  
Phase  
Clock  
PC  
PC  
PC + 2  
PC + 4  
OSC2/CLKOUT  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
EXAMPLE 5-3:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 67  
PIC18F2XK20/4XK20  
The CALL and GOTO instructions have the absolute  
program memory address embedded into the  
instruction. Since instructions are always stored on word  
boundaries, the data contained in the instruction is a  
word address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 5-4 shows how the  
instruction GOTO 0006h is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single-word instructions that the PC will be  
offset by. Section 24.0 “Instruction Set Summary”  
provides further details of the instruction set.  
5.2.3  
INSTRUCTIONS IN PROGRAM  
MEMORY  
The program memory is addressed in bytes.  
Instructions are stored as either two bytes or four bytes  
in program memory. The Least Significant Byte of an  
instruction word is always stored in a program memory  
location with an even address (LSb = 0). To maintain  
alignment with instruction boundaries, the PC  
increments in steps of 2 and the LSb will always read  
0’ (see Section 5.1.1 “Program Counter”).  
Figure 5-4 shows an example of how instruction words  
are stored in the program memory.  
FIGURE 5-4:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
0006h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 3:  
MOVFF  
123h, 456h  
and used by the instruction sequence. If the first word  
is skipped for some reason and the second word is  
executed by itself, a NOP is executed instead. This is  
necessary for cases when the two-word instruction is  
preceded by a conditional instruction that changes the  
PC. Example 5-4 shows how this works.  
5.2.4  
TWO-WORD INSTRUCTIONS  
The standard PIC18 instruction set has four two-word  
instructions: CALL, MOVFF, GOTO and LSFR. In all  
cases, the second word of the instruction always has  
1111’ as its four Most Significant bits; the other 12 bits  
are literal data, usually a data memory address.  
Note:  
See Section 5.6 “PIC18 Instruction  
Execution and the Extended Instruc-  
tion Set” for information on two-word  
instructions in the extended instruction set.  
The use of ‘1111’ in the 4 MSbs of an instruction  
specifies a special form of NOP. If the instruction is  
executed in proper sequence – immediately after the  
first word – the data in the second word is accessed  
EXAMPLE 5-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Source Code  
Object Code  
0110 0110 0000 0000 TSTFSZ  
REG1  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
; is RAM location 0?  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
MOVFF  
ADDWF  
REG3  
Object Code  
Source Code  
TSTFSZ  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
REG1  
; is RAM location 0?  
MOVFF  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
ADDWF  
REG3  
; continue code  
DS41303B-page 68  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
5.3.1  
BANK SELECT REGISTER (BSR)  
5.3  
Data Memory Organization  
Large areas of data memory require an efficient  
addressing scheme to make rapid access to any  
address possible. Ideally, this means that an entire  
address does not need to be provided for each read or  
write operation. For PIC18 devices, this is accom-  
plished with a RAM banking scheme. This divides the  
memory space into 16 contiguous banks of 256 bytes.  
Depending on the instruction, each location can be  
addressed directly by its full 12-bit address, or an 8-bit  
low-order address and a 4-bit Bank Pointer.  
Note:  
The operation of some aspects of data  
memory are changed when the PIC18  
extended instruction set is enabled. See  
Section 5.5 “Data Memory and the  
Extended Instruction Set” for more  
information.  
The data memory in PIC18 devices is implemented as  
static RAM. Each register in the data memory has a  
12-bit address, allowing up to 4096 bytes of data  
memory. The memory space is divided into as many as  
16 banks that contain 256 bytes each. Figures 5-5  
through 5-7 show the data memory organization for the  
PIC18F2XK20/4XK20 devices.  
Most instructions in the PIC18 instruction set make use  
of the Bank Pointer, known as the Bank Select Register  
(BSR). This SFR holds the 4 Most Significant bits of a  
location’s address; the instruction itself includes the  
8 Least Significant bits. Only the four lower bits of the  
BSR are implemented (BSR<3:0>). The upper four bits  
are unused; they will always read ‘0’ and cannot be  
written to. The BSR can be loaded directly by using the  
MOVLBinstruction.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratchpad operations in the user’s  
application. Any read of an unimplemented location will  
read as ‘0’s.  
The value of the BSR indicates the bank in data  
memory; the 8 bits in the instruction show the location  
in the bank and can be thought of as an offset from the  
bank’s lower boundary. The relationship between the  
BSR’s value and the bank division in data memory is  
shown in Figures 5-5 through 5-7.  
The instruction set and architecture allow operations  
across all banks. The entire data memory may be  
accessed by Direct, Indirect or Indexed Addressing  
modes. Addressing modes are discussed later in this  
subsection.  
Since up to 16 registers may share the same low-order  
address, the user must always be careful to ensure that  
the proper bank is selected before performing a data  
read or write. For example, writing what should be  
program data to an 8-bit address of F9h while the BSR  
is 0Fh will end up resetting the program counter.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle, PIC18  
devices implement an Access Bank. This is a 256-byte  
memory space that provides fast access to SFRs and  
the lower portion of GPR Bank 0 without using the Bank  
Select Register (BSR). Section 5.3.2 “Access Bank”  
provides a detailed description of the Access RAM.  
While any bank can be selected, only those banks that  
are actually implemented can be read or written to.  
Writes to unimplemented banks are ignored, while  
reads from unimplemented banks will return ‘0’s. Even  
so, the STATUS register will still be affected as if the  
operation was successful. The data memory maps in  
Figures 5-5 through 5-7 indicate which banks are  
implemented.  
In the core PIC18 instruction set, only the MOVFF  
instruction fully specifies the 12-bit address of the  
source and target registers. This instruction ignores the  
BSR completely when it executes. All other instructions  
include only the low-order address as an operand and  
must use either the BSR or the Access Bank to locate  
their target registers.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 69  
PIC18F2XK20/4XK20  
FIGURE 5-5:  
DATA MEMORY MAP FOR PIC18F23K20/43K20 DEVICES  
When ‘a’ = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
000h  
05Fh  
060h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000  
= 0001  
= 0010  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
Bank 0  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
GPR  
Bank 1  
Bank 2  
1FFh  
200h  
FFh  
00h  
FFh  
00h  
2FFh  
300h  
When ‘a’ = 1:  
= 0011  
The BSR specifies the Bank  
used by the instruction.  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 8  
Bank 9  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
3FFh  
400h  
FFh  
00h  
= 0100  
= 0101  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
FFh  
00h  
= 0110  
= 0111  
Access Bank  
FFh  
00h  
6FFh  
700h  
00h  
Access RAM Low  
5Fh  
Access RAM High  
60h  
FFh  
00h  
7FFh  
800h  
(SFRs)  
= 1000  
= 1001  
FFh  
8FFh  
900h  
FFh  
00h  
Unused  
Read 00h  
9FFh  
A00h  
FFh  
00h  
= 1010  
= 1011  
= 1100  
= 1101  
AFFh  
B00h  
FFh  
00h  
BFFh  
C00h  
FFh  
00h  
CFFh  
D00h  
FFh  
00h  
DFFh  
E00h  
FFh  
00h  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
Unused  
SFR  
FFh  
DS41303B-page 70  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 5-6:  
DATA MEMORY MAP FOR PIC18F24K20/44K20 DEVICES  
When ‘a’ = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
000h  
05Fh  
060h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000  
= 0001  
= 0010  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
Bank 0  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
GPR  
GPR  
Bank 1  
Bank 2  
1FFh  
200h  
FFh  
00h  
FFh  
00h  
2FFh  
300h  
When ‘a’ = 1:  
= 0011  
The BSR specifies the Bank  
used by the instruction.  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 8  
Bank 9  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
3FFh  
400h  
FFh  
00h  
= 0100  
= 0101  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
FFh  
00h  
= 0110  
= 0111  
Access Bank  
FFh  
00h  
6FFh  
700h  
00h  
Access RAM Low  
5Fh  
Access RAM High  
60h  
FFh  
00h  
7FFh  
800h  
(SFRs)  
= 1000  
= 1001  
FFh  
8FFh  
900h  
FFh  
00h  
Unused  
Read 00h  
9FFh  
A00h  
FFh  
00h  
= 1010  
= 1011  
= 1100  
= 1101  
AFFh  
B00h  
FFh  
00h  
BFFh  
C00h  
FFh  
00h  
CFFh  
D00h  
FFh  
00h  
DFFh  
E00h  
FFh  
00h  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
Unused  
SFR  
FFh  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 71  
PIC18F2XK20/4XK20  
FIGURE 5-7:  
DATA MEMORY MAP FOR PIC18F25K20/45K20 DEVICES  
When ‘a’ = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
000h  
05Fh  
060h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000  
= 0001  
= 0010  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
Bank 0  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
GPR  
GPR  
GPR  
GPR  
GPR  
Bank 1  
Bank 2  
1FFh  
200h  
FFh  
00h  
FFh  
00h  
2FFh  
300h  
When ‘a’ = 1:  
= 0011  
The BSR specifies the Bank  
used by the instruction.  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 8  
Bank 9  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
3FFh  
400h  
FFh  
00h  
= 0100  
= 0101  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
FFh  
00h  
= 0110  
= 0111  
Access Bank  
FFh  
00h  
6FFh  
700h  
00h  
Access RAM Low  
5Fh  
Access RAM High  
60h  
FFh  
00h  
7FFh  
800h  
(SFRs)  
= 1000  
= 1001  
FFh  
8FFh  
900h  
FFh  
00h  
9FFh  
A00h  
FFh  
00h  
Unused  
Read 00h  
= 1010  
= 1011  
= 1100  
= 1101  
AFFh  
B00h  
FFh  
00h  
BFFh  
C00h  
FFh  
00h  
CFFh  
D00h  
FFh  
00h  
DFFh  
E00h  
FFh  
00h  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
Unused  
SFR  
FFh  
DS41303B-page 72  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 5-8:  
DATA MEMORY MAP FOR PIC18F26K20/46K20 DEVICES  
When ‘a’ = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
000h  
05Fh  
060h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000  
= 0001  
= 0010  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
Bank 0  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
GPR  
GPR  
GPR  
GPR  
Bank 1  
Bank 2  
1FFh  
200h  
FFh  
00h  
FFh  
00h  
2FFh  
300h  
When ‘a’ = 1:  
= 0011  
The BSR specifies the Bank  
used by the instruction.  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 8  
Bank 9  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
3FFh  
400h  
FFh  
00h  
= 0100  
= 0101  
4FFh  
500h  
FFh  
00h  
GPR  
GPR  
GPR  
GPR  
GPR  
5FFh  
600h  
FFh  
00h  
= 0110  
= 0111  
Access Bank  
FFh  
00h  
6FFh  
700h  
00h  
Access RAM Low  
5Fh  
Access RAM High  
60h  
FFh  
00h  
7FFh  
800h  
(SFRs)  
= 1000  
= 1001  
FFh  
8FFh  
900h  
FFh  
00h  
9FFh  
A00h  
FFh  
00h  
= 1010  
= 1011  
= 1100  
= 1101  
GPR  
GPR  
GPR  
GPR  
GPR  
AFFh  
B00h  
FFh  
00h  
BFFh  
C00h  
FFh  
00h  
CFFh  
D00h  
FFh  
00h  
DFFh  
E00h  
FFh  
00h  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
GPR  
SFR  
FFh  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 73  
PIC18F2XK20/4XK20  
FIGURE 5-9:  
USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)  
Memory  
Data  
(2)  
(1)  
From Opcode  
BSR  
000h  
100h  
7
0
7
0
00h  
Bank 0  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
FFh  
00h  
Bank 1  
Bank 2  
(2)  
Bank Select  
FFh  
00h  
200h  
300h  
FFh  
00h  
Bank 3  
through  
Bank 13  
FFh  
00h  
E00h  
Bank 14  
Bank 15  
FFh  
00h  
F00h  
FFFh  
FFh  
Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to  
the registers of the Access Bank.  
2: The MOVFF instruction embeds the entire 12-bit address in the instruction.  
DS41303B-page 74  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
5.3.2  
ACCESS BANK  
5.3.3  
GENERAL PURPOSE REGISTER  
FILE  
While the use of the BSR with an embedded 8-bit  
address allows users to address the entire range of  
data memory, it also means that the user must always  
ensure that the correct bank is selected. Otherwise,  
data may be read from or written to the wrong location.  
This can be disastrous if a GPR is the intended target  
of an operation, but an SFR is written to instead.  
Verifying and/or changing the BSR for each read or  
write to data memory can become very inefficient.  
PIC18 devices may have banked memory in the GPR  
area. This is data RAM, which is available for use by all  
instructions. GPRs start at the bottom of Bank 0  
(address 000h) and grow upwards towards the bottom of  
the SFR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
5.3.4  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. SFRs start at the top of  
data memory (FFFh) and extend downward to occupy  
the top portion of Bank 15 (F60h to FFFh). A list of  
these registers is given in Table 5-1 and Table 5-2.  
To streamline access for the most commonly used data  
memory locations, the data memory is configured with  
an Access Bank, which allows users to access a  
mapped block of memory without specifying a BSR.  
The Access Bank consists of the first 96 bytes of mem-  
ory (00h-5Fh) in Bank 0 and the last 160 bytes of mem-  
ory (60h-FFh) in Block 15. The lower half is known as  
the “Access RAM” and is composed of GPRs. This  
upper half is also where the device’s SFRs are  
mapped. These two areas are mapped contiguously in  
the Access Bank and can be addressed in a linear  
fashion by an 8-bit address (Figures 5-5 through 5-7).  
The SFRs can be classified into two sets: those  
associated with the “core” device functionality (ALU,  
Resets and interrupts) and those related to the  
peripheral functions. The Reset and interrupt registers  
are described in their respective chapters, while the  
ALU’s STATUS register is described later in this  
section. Registers related to the operation of a  
peripheral feature are described in the chapter for that  
peripheral.  
The Access Bank is used by core PIC18 instructions  
that include the Access RAM bit (the ‘a’ parameter in  
the instruction). When ‘a’ is equal to ‘1’, the instruction  
uses the BSR and the 8-bit address included in the  
opcode for the data memory address. When ‘a’ is ‘0’,  
however, the instruction is forced to use the Access  
Bank address map; the current value of the BSR is  
ignored entirely.  
The SFRs are typically distributed among the  
peripherals whose functions they control. Unused SFR  
locations are unimplemented and read as ‘0’s.  
Using this “forced” addressing allows the instruction to  
operate on a data address in a single cycle, without  
updating the BSR first. For 8-bit addresses of 60h and  
above, this means that users can evaluate and operate  
on SFRs more efficiently. The Access RAM below 60h  
is a good place for data values that the user might need  
to access rapidly, such as immediate computational  
results or common program variables. Access RAM  
also allows for faster and more code efficient context  
saving and switching of variables.  
The mapping of the Access Bank is slightly different  
when the extended instruction set is enabled (XINST  
Configuration bit = 1). This is discussed in more detail  
in Section 5.5.3 “Mapping the Access Bank in  
Indexed Literal Offset Mode”.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 75  
PIC18F2XK20/4XK20  
TABLE 5-1:  
Address  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F2XK20/4XK20 DEVICES  
Name  
Address  
FD7h  
Name  
Address  
FAFh  
Name  
Address  
F87h  
Name  
(2)  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
TOSU  
TOSH  
TMR0H  
TMR0L  
T0CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
(2)  
FD6h  
FD5h  
FD4h  
FD3h  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
(2)  
TOSL  
(2)  
STKPTR  
PCLATU  
PCLATH  
PCL  
PORTE  
PORTD(3)  
PORTC  
PORTB  
PORTA  
ANSELH  
ANSEL  
IOCB  
OSCCON  
RCSTA  
EEADRH  
EEADR  
EEDATA  
FD2h HLVDCON  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
FBFh  
FBEh  
WDTCON  
RCON  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0(1)  
TMR1H  
FA7h EECON2(1)  
TMR1L  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
F9Fh  
F9Eh  
F9Dh  
F9Ch  
EECON1  
(2)  
T1CON  
(2)  
TMR2  
WPUB  
(2)  
PR2  
F7Bh CM1CON0  
F7Ah CM2CON0  
F79h CM2CON1  
T2CON  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
F78h  
F77h  
F76h  
F75h  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
SLRCON  
SSPMSK  
FEEh POSTINC0(1)  
FEDh POSTDEC0(1)  
FECh PREINC0(1)  
FEBh PLUSW0(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
F9Bh OSCTUNE  
(2)  
(2)  
FEAh  
FE9h  
FE8h  
FE7h  
FE6h POSTINC1(1)  
FE5h POSTDEC1(1)  
FE4h PREINC1(1)  
FE3h PLUSW1(1)  
FSR0H  
FSR0L  
WREG  
INDF1(1)  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
TRISE(3)  
TRISD(3)  
TRISC  
(2)  
(2)  
FBDh CCP1CON  
(2)  
FBCh  
FBBh  
CCPR2H  
CCPR2L  
(2)  
TRISB  
(2)  
FE2h  
FE1h  
FE0h  
FDFh  
FDEh POSTINC2(1)  
FDDh POSTDEC2(1)  
FDCh PREINC2(1)  
FDBh PLUSW2(1)  
FSR1H  
FSR1L  
BSR  
FBAh CCP2CON  
FB9h PSTRCON  
TRISA  
(2)  
(2)  
(2)  
(2)  
FB8h  
BAUDCTL  
(2)  
(2)  
INDF2(1)  
FB7h PWM1CON  
(2)  
(2)  
FB6h  
FB5h  
ECCP1AS  
CVRCON  
LATE(3)  
LATD(3)  
LATC  
(2)  
(2)  
FB4h CVRCON2  
(2)  
FB3h  
FB2h  
FB1h  
FB0h  
TMR3H  
TMR3L  
(2)  
FDAh  
FD9h  
FD8h  
FSR2H  
FSR2L  
LATB  
(2)  
T3CON  
SPBRGH  
LATA  
(2)  
(2)  
STATUS  
Note 1: This is not a physical register.  
2: Unimplemented registers are read as ‘0’.  
3: This register is not available on PIC18F2XK20 devices.  
DS41303B-page 76  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 5-2:  
File Name  
TOSU  
REGISTER FILE SUMMARY (PIC18F2XK20/4XK20)  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 57, 64  
0000 0000 57, 64  
0000 0000 57, 64  
00-0 0000 57, 65  
---0 0000 57, 64  
0000 0000 57, 64  
0000 0000 57, 64  
--00 0000 57, 90  
0000 0000 57, 90  
0000 0000 57, 90  
0000 0000 57, 90  
xxxx xxxx 57, 101  
xxxx xxxx 57, 101  
0000 000x 57, 105  
1111 -1-1 57, 106  
11-0 0-00 57, 107  
TOSH  
Top-of-Stack, High Byte (TOS<15:8>)  
Top-of-Stack, Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
SP4  
SP3  
SP2  
SP1  
SP0  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC, Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer, High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer, Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register, High Byte  
Product Register, Low Byte  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
57, 82  
57, 82  
57, 82  
57, 82  
57, 82  
POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) –  
value of FSR0 offset by W  
FSR0H  
FSR0L  
WREG  
INDF1  
Indirect Data Memory Address Pointer 0, High Byte  
---- 0000 57, 82  
xxxx xxxx 57, 82  
Indirect Data Memory Address Pointer 0, Low Byte  
Working Register  
xxxx xxxx  
N/A  
57  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
57, 82  
57, 82  
57, 82  
57, 82  
57, 82  
POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
N/A  
N/A  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –  
value of FSR1 offset by W  
N/A  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1, High Byte  
---- 0000 58, 82  
xxxx xxxx 58, 82  
---- 0000 58, 69  
Indirect Data Memory Address Pointer 1, Low Byte  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
58, 82  
58, 82  
58, 82  
58, 82  
58, 82  
POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –  
value of FSR2 offset by W  
FSR2H  
FSR2L  
STATUS  
Indirect Data Memory Address Pointer 2, High Byte  
---- 0000 58, 82  
xxxx xxxx 58, 82  
---x xxxx 58, 80  
Indirect Data Memory Address Pointer 2, Low Byte  
N
OV  
Z
DC  
C
Legend:  
x= unknown, u= unchanged, = unimplemented, q= value depends on condition  
Note 1:  
The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See  
Section 4.4 “Brown-out Reset (BOR)”.  
2:  
3:  
4:  
5:  
6:  
These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
The PLLEN bit is only available in specific oscillator configuration; otherwise it is disabled and reads as ‘0’. See Section 2.6.2 “PLL in  
HFINTOSC Modes”.  
The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RE3 reads as ‘0’. This bit is  
read-only.  
RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.  
When disabled, these bits read as ‘0’.  
All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 77  
PIC18F2XK20/4XK20  
TABLE 5-2:  
REGISTER FILE SUMMARY (PIC18F2XK20/4XK20) (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0H  
Timer0 Register, High Byte  
Timer0 Register, Low Byte  
0000 0000 58, 139  
xxxx xxxx 58, 139  
1111 1111 58, 137  
0011 qq00 27, 58  
0-00 0101 58, 283  
--- ---0 58, 299  
TMR0L  
T0CON  
TMR0ON  
IDLEN  
T08BIT  
IRCF2  
T0CS  
IRCF1  
IRVST  
T0SE  
IRCF0  
HLVDEN  
PSA  
OSTS  
HLVDL3  
T0PS2  
IOFS  
T0PS1  
SCS1  
HLVDL1  
T0PS0  
SCS0  
OSCCON  
HLVDCON  
WDTCON  
VDIRMAG  
HLVDL2  
HLVDL0  
SWDTEN  
RCON  
IPEN  
SBOREN(1)  
RI  
TO  
PD  
POR  
BOR  
0q-1 11q0 49, 56,  
114  
TMR1H  
TMR1L  
Timer1 Register, High Byte  
Timer1 Register, Low Bytes  
xxxx xxxx 58, 146  
xxxx xxxx 58, 146  
T1CON  
TMR2  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON 0000 0000 58, 141  
0000 0000 58, 148  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
SSP Receive Buffer/Transmit Register  
1111 1111 58, 148  
T2CON  
SSPBUF  
T2CKPS0 -000 0000 58, 147  
xxxx xxxx 58, 193,  
194  
SSPADD  
SSPSTAT  
SSP Address Register in I2C™ Slave Mode. SSP Baud Rate Reload Register in I2C Master Mode.  
0000 0000 58, 194  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000 58, 187,  
196  
SSPCON1  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
SEN  
0000 0000 58, 187,  
196  
SSPCON2  
ADRESH  
ADRESL  
ACKEN  
0000 0000 58, 197  
xxxx xxxx 59, 267  
xxxx xxxx 59, 267  
A/D Result Register, High Byte  
A/D Result Register, Low Byte  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
PSTRCON  
BAUDCTL  
PWM1CON  
ECCP1AS  
CVRCON  
CVRCON2  
TMR3H  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
CHS1  
CHS0  
GO/DONE  
ADON  
--00 0000 59, 261  
--00 ---- 59, 262  
0-00 0000 59, 263  
xxxx xxxx 59, 154  
xxxx xxxx 59, 154  
ADFM  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
Capture/Compare/PWM Register 1, High Byte  
Capture/Compare/PWM Register 1, Low Byte  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0 0000 0000 59, 165  
xxxx xxxx 59, 154  
Capture/Compare/PWM Register 2, High Byte  
Capture/Compare/PWM Register 2, Low Byte  
xxxx xxxx 59, 154  
DC2B1  
DC2B0  
STRSYNC  
CKTXP  
PDC4  
CCP2M3  
STRD  
BRG16  
PDC3  
PSSAC1  
CVR3  
CCP2M2  
STRC  
CCP2M1  
STRB  
WUE  
CCP2M0 --00 0000 59, 153  
STRA  
ABDEN  
PDC0  
---0 0001 59, 179  
0100 0-00 59, 238  
0000 0000 59, 178  
ABDOVF  
PRSEN  
ECCPASE  
CVREN  
FVREN  
RCIDL  
PDC6  
DTRXP  
PDC5  
ECCPAS1  
CVRR  
PDC2  
PSSAC0  
CVR2  
PDC1  
PSSBD1  
CVR1  
ECCPAS2  
CVROE  
FVRST  
ECCPAS0  
CVRSS  
PSSBD0 0000 0000 59, 175  
CVR0  
0000 0000 59, 281  
00-- ---- 59, 282  
xxxx xxxx 59, 151  
xxxx xxxx 59, 151  
Timer3 Register, High Byte  
Timer3 Register, Low Byte  
TMR3L  
T3CON  
RD16  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 59, 149  
Legend:  
x= unknown, u= unchanged, = unimplemented, q= value depends on condition  
Note 1:  
The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See  
Section 4.4 “Brown-out Reset (BOR)”.  
2:  
3:  
4:  
5:  
6:  
These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
The PLLEN bit is only available in specific oscillator configuration; otherwise it is disabled and reads as ‘0’. See Section 2.6.2 “PLL in  
HFINTOSC Modes”.  
The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RE3 reads as ‘0’. This bit is  
read-only.  
RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.  
When disabled, these bits read as ‘0’.  
All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
DS41303B-page 78  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 5-2:  
REGISTER FILE SUMMARY (PIC18F2XK20/4XK20) (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADR  
EEADRH  
EEDATA  
EECON2  
EECON1  
IPR2  
EUSART Baud Rate Generator Register, High Byte  
EUSART Baud Rate Generator Register, Low Byte  
EUSART Receive Register  
0000 0000 59, 227  
0000 0000 59, 227  
0000 0000 59, 228  
0000 0000 59, 227  
0000 0010 59, 236  
0000 000x 59, 237  
EUSART Transmit Register  
CSRC  
SPEN  
EEADR7  
TX9  
RX9  
TXEN  
SREN  
EEADR5  
SYNC  
CREN  
EEADR4  
SENDB  
ADDEN  
EEADR3  
BRGH  
FERR  
EEADR2  
TRMT  
OERR  
TX9D  
RX9D  
EEADR6  
EEADR1  
EEADR9  
EEADR0 0000 0000 59, 88, 97  
EEADR8 ---- --00 59, 88, 97  
0000 0000 59, 88, 97  
EEPROM Data Register  
EEPROM Control Register 2 (not a physical register)  
0000 0000 59, 88, 97  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
PSPIP(2)  
PSPIF(2)  
PSPIE(2)  
INTSRC  
IBF  
CFGS  
C1IP  
FREE  
EEIP  
WRERR  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
TUN3  
WREN  
HLVDIP  
HLVDIF  
HLVDIE  
CCP1IP  
CCP1IF  
CCP1IE  
TUN2  
WR  
RD  
xx-0 x000 59, 89, 97  
1111 1111 60, 113  
0000 0000 60, 109  
0000 0000 60, 111  
1111 1111 60, 112  
0000 0000 60, 108  
0000 0000 60, 110  
0q00 0000 31, 60  
0000 -111 60, 130  
1111 1111 60, 126  
1111 1111 60, 123  
1111 1111 60, 120  
1111 1111 60, 117  
---- -xxx 60, 129  
C2IP  
C2IF  
C2IE  
RCIP  
RCIF  
RCIE  
TUN5  
IBOV  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
TUN1  
CCP2IP  
CCP2IF  
CCP2IE  
TMR1IP  
TMR1IF  
TMR1IE  
TUN0  
PIR2  
C1IF  
EEIF  
PIE2  
C1IE  
EEIE  
IPR1  
ADIP  
TXIP  
PIR1  
ADIF  
TXIF  
PIE1  
ADIE  
PLLEN(3)  
TXIE  
OSCTUNE  
TRISE(2)  
TRISD(2)  
TRISC  
TRISB  
TUN4  
PSPMODE  
OBF  
TRISE2  
TRISE1  
TRISE0  
PORTD Data Direction Control Register  
PORTC Data Direction Control Register  
PORTB Data Direction Control Register  
TRISA  
LATE(2)  
TRISA7(5)  
TRISA6(5) Data Direction Control Register for PORTA  
PORTE Data Latch Register  
(Read and Write to Data Latch)  
LATD(2)  
LATC  
PORTD Data Latch Register (Read and Write to Data Latch)  
PORTC Data Latch Register (Read and Write to Data Latch)  
PORTB Data Latch Register (Read and Write to Data Latch)  
xxxx xxxx 60, 126  
xxxx xxxx 60, 123  
xxxx xxxx 60, 120  
xxxx xxxx 60, 117  
---- x000 60, 129  
xxxx xxxx 60, 126  
xxxx xxxx 60, 123  
xxx0 0000 60, 120  
xx0x 0000 60, 117  
---1 1111 60, 133  
1111 1111 60, 132  
0000 ---- 60, 120  
1111 1111 60, 120  
0000 0000 60, 274  
0000 0000 60, 275  
0000 ---- 61, 277  
---1 1111 61, 134  
1111 1111 61, 204  
LATB  
LATA  
LATA7(5)  
LATA6(5) PORTA Data Latch Register (Read and Write to Data Latch)  
PORTE  
PORTD(2)  
PORTC  
PORTB  
PORTA  
ANSELH(6)  
ANSEL  
RD6  
RD5  
RE3(4)  
RE2(2)  
RE1(2)  
RE0(2)  
RD0  
RD7  
RD4  
RD3  
RD2  
RD1  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
RA7(5)  
RA6(5)  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
ANS12  
ANS4  
IOCB4  
WPUB4  
C1POL  
C2POL  
C2RSEL  
SLRE  
MSK4  
ANS11  
ANS3  
ANS10  
ANS2  
ANS9  
ANS1  
ANS8  
ANS0  
ANS7(2)  
IOCB7  
WPUB7  
C1ON  
C2ON  
MC1OUT  
ANS6(2)  
IOCB6  
WPUB6  
C1OUT  
C2OUT  
MC2OUT  
ANS5(2)  
IOCB5  
WPUB5  
C1OE  
C2OE  
C1RSEL  
IOCB  
WPUB  
WPUB3  
C1SP  
C2SP  
WPUB2  
C1R  
WPUB1  
C1CH1  
C2CH1  
WPUB0  
C1CH0  
C2CH0  
CM1CON0  
CM2CON0  
CM2CON1  
SLRCON  
SSPMSK  
C2R  
SLRD  
MSK3  
SLRC  
MSK2  
SLRB  
MSK1  
SLRA  
MSK0  
MSK7  
MSK6  
MSK5  
Legend:  
x= unknown, u= unchanged, = unimplemented, q= value depends on condition  
Note 1:  
The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See  
Section 4.4 “Brown-out Reset (BOR)”.  
2:  
3:  
4:  
5:  
6:  
These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
The PLLEN bit is only available in specific oscillator configuration; otherwise it is disabled and reads as ‘0’. See Section 2.6.2 “PLL in  
HFINTOSC Modes”.  
The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RE3 reads as ‘0’. This bit is  
read-only.  
RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.  
When disabled, these bits read as ‘0’.  
All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 79  
PIC18F2XK20/4XK20  
It is recommended that only BCF, BSF, SWAPF, MOVFF  
and MOVWFinstructions are used to alter the STATUS  
register, because these instructions do not affect the Z,  
C, DC, OV or N bits in the STATUS register.  
5.3.5  
STATUS REGISTER  
The STATUS register, shown in Register 5-2, contains  
the arithmetic status of the ALU. As with any other SFR,  
it can be the operand for any instruction.  
For other instructions that do not affect Status bits, see  
the instruction set summaries in Table 24-2 and  
Table 24-3.  
If the STATUS register is the destination for an instruc-  
tion that affects the Z, DC, C, OV or N bits, the results  
of the instruction are not written; instead, the STATUS  
register is updated according to the instruction per-  
formed. Therefore, the result of an instruction with the  
STATUS register as its destination may be different  
than intended. As an example, CLRF STATUSwill set  
the Z bit and leave the remaining Status bits  
unchanged (‘000u u1uu’).  
Note:  
The C and DC bits operate as the borrow  
and digit borrow bits, respectively, in  
subtraction.  
REGISTER 5-2:  
STATUS: STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (two’s complement). It indicates whether the result was negative  
(ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
bit 2  
OV: Overflow bit  
This bit is used for signed arithmetic (two’s complement). It indicates an overflow of the 7-bit magni-  
tude which causes the sign bit (bit 7 of the result) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
bit 1  
bit 0  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
DS41303B-page 80  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The Access RAM bit ‘a’ determines how the address is  
interpreted. When ‘a’ is ‘1’, the contents of the BSR  
(Section 5.3.1 “Bank Select Register (BSR)”) are  
used with the address to determine the complete 12-bit  
address of the register. When ‘a’ is ‘0’, the address is  
interpreted as being a register in the Access Bank.  
Addressing that uses the Access RAM is sometimes  
also known as Direct Forced Addressing mode.  
5.4  
Data Addressing Modes  
Note:  
The execution of some instructions in the  
core PIC18 instruction set are changed  
when the PIC18 extended instruction set is  
enabled. See Section 5.5 “Data Memory  
and the Extended Instruction Set” for  
more information.  
A few instructions, such as MOVFF, include the entire  
12-bit address (either source or destination) in their  
opcodes. In these cases, the BSR is ignored entirely.  
While the program memory can be addressed in only  
one way – through the program counter – information  
in the data memory space can be addressed in several  
ways. For most instructions, the addressing mode is  
fixed. Other instructions may use up to three modes,  
depending on which operands are used and whether or  
not the extended instruction set is enabled.  
The destination of the operation’s results is determined  
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are  
stored back in the source register, overwriting its origi-  
nal contents. When ‘d’ is ‘0’, the results are stored in  
the W register. Instructions without the ‘d’ argument  
have a destination that is implicit in the instruction; their  
destination is either the target register being operated  
on or the W register.  
The addressing modes are:  
• Inherent  
• Literal  
• Direct  
5.4.3  
INDIRECT ADDRESSING  
• Indirect  
Indirect addressing allows the user to access a location  
in data memory without giving a fixed address in the  
instruction. This is done by using File Select Registers  
(FSRs) as pointers to the locations which are to be read  
or written. Since the FSRs are themselves located in  
RAM as Special File Registers, they can also be  
directly manipulated under program control. This  
makes FSRs very useful in implementing data struc-  
tures, such as tables and arrays in data memory.  
An additional addressing mode, Indexed Literal Offset,  
is available when the extended instruction set is  
enabled (XINST Configuration bit = 1). Its operation is  
discussed in greater detail in Section 5.5.1 “Indexed  
Addressing with Literal Offset”.  
5.4.1  
INHERENT AND LITERAL  
ADDRESSING  
Many PIC18 control instructions do not need any argu-  
ment at all; they either perform an operation that glo-  
bally affects the device or they operate implicitly on one  
register. This addressing mode is known as Inherent  
Addressing. Examples include SLEEP, RESETand DAW.  
The registers for indirect addressing are also  
implemented with Indirect File Operands (INDFs) that  
permit automatic manipulation of the pointer value with  
auto-incrementing, auto-decrementing or offsetting  
with another value. This allows for efficient code, using  
loops, such as the example of clearing an entire RAM  
bank in Example 5-5.  
Other instructions work in a similar way but require an  
additional explicit argument in the opcode. This is  
known as Literal Addressing mode because they  
require some literal value as an argument. Examples  
include ADDLWand MOVLW, which respectively, add or  
move a literal value to the W register. Other examples  
include CALL and GOTO, which include a 20-bit  
program memory address.  
EXAMPLE 5-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
LFSR  
FSR0, 100h ;  
NEXT  
CLRF  
POSTINC0  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
; NO, clear next  
; YES, continue  
5.4.2  
DIRECT ADDRESSING  
Direct addressing specifies all or part of the source  
and/or destination address of the operation within the  
opcode itself. The options are specified by the  
arguments accompanying the instruction.  
BTFSS  
BRA  
FSR0H, 1  
NEXT  
CONTINUE  
In the core PIC18 instruction set, bit-oriented and byte-  
oriented instructions use some version of direct  
addressing by default. All of these instructions include  
some 8-bit literal address as their Least Significant  
Byte. This address specifies either a register address in  
one of the banks of data RAM (Section 5.3.3 “General  
Purpose Register File”) or a location in the Access  
Bank (Section 5.3.2 “Access Bank”) as the data  
source for the instruction.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 81  
PIC18F2XK20/4XK20  
5.4.3.1  
FSR Registers and the INDF  
Operand  
5.4.3.2  
FSR Registers and POSTINC,  
POSTDEC, PREINC and PLUSW  
At the core of indirect addressing are three sets of reg-  
isters: FSR0, FSR1 and FSR2. Each represents a pair  
of 8-bit registers, FSRnH and FSRnL. Each FSR pair  
holds a 12-bit value, therefore the four upper bits of the  
FSRnH register are not used. The 12-bit FSR value can  
address the entire range of the data memory in a linear  
fashion. The FSR register pairs, then, serve as pointers  
to data memory locations.  
In addition to the INDF operand, each FSR register pair  
also has four additional indirect operands. Like INDF,  
these are “virtual” registers which cannot be directly  
read or written. Accessing these registers actually  
accesses the location to which the associated FSR  
register pair points, and also performs a specific action  
on the FSR value. They are:  
• POSTDEC: accesses the location to which the  
FSR points, then automatically decrements the  
FSR by 1 afterwards  
Indirect addressing is accomplished with a set of  
Indirect File Operands, INDF0 through INDF2. These  
can be thought of as “virtual” registers: they are  
mapped in the SFR space but are not physically  
implemented. Reading or writing to a particular INDF  
register actually accesses its corresponding FSR  
register pair. A read from INDF1, for example, reads  
the data at the address indicated by FSR1H:FSR1L.  
Instructions that use the INDF registers as operands  
actually use the contents of their corresponding FSR as  
a pointer to the instruction’s target. The INDF operand  
is just a convenient way of using the pointer.  
• POSTINC: accesses the location to which the  
FSR points, then automatically increments the  
FSR by 1 afterwards  
• PREINC: automatically increments the FSR by 1,  
then uses the location to which the FSR points in  
the operation  
• PLUSW: adds the signed value of the W register  
(range of -127 to 128) to that of the FSR and uses  
the location to which the result points in the  
operation.  
Because indirect addressing uses a full 12-bit address,  
data RAM banking is not necessary. Thus, the current  
contents of the BSR and the Access RAM bit have no  
effect on determining the target address.  
In this context, accessing an INDF register uses the  
value in the associated FSR register without changing  
it. Similarly, accessing a PLUSW register gives the  
FSR value an offset by that in the W register; however,  
neither W nor the FSR is actually changed in the  
operation. Accessing the other virtual registers  
changes the value of the FSR register.  
FIGURE 5-10:  
INDIRECT ADDRESSING  
000h  
Using an instruction with one of the  
indirect addressing registers as the  
operand....  
Bank 0  
Bank 1  
ADDWF, INDF1, 1  
100h  
200h  
300h  
Bank 2  
FSR1H:FSR1L  
...uses the 12-bit address stored in  
the FSR pair associated with that  
register....  
7
0
7
0
Bank 3  
through  
Bank 13  
x x x x 1 1 1 0  
1 1 0 0 1 1 0 0  
...to determine the data memory  
location to be used in that operation.  
E00h  
In this case, the FSR1 pair contains  
ECCh. This means the contents of  
location ECCh will be added to that  
of the W register and stored back in  
ECCh.  
Bank 14  
Bank 15  
F00h  
FFFh  
Data Memory  
DS41303B-page 82  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Operations on the FSRs with POSTDEC, POSTINC  
and PREINC affect the entire register pair; that is, roll-  
overs of the FSRnL register from FFh to 00h carry over  
to the FSRnH register. On the other hand, results of  
these operations do not change the value of any flags  
in the STATUS register (e.g., Z, N, OV, etc.).  
5.5.1  
INDEXED ADDRESSING WITH  
LITERAL OFFSET  
Enabling the PIC18 extended instruction set changes  
the behavior of indirect addressing using the FSR2  
register pair within Access RAM. Under the proper  
conditions, instructions that use the Access Bank – that  
is, most bit-oriented and byte-oriented instructions –  
can invoke a form of indexed addressing using an  
offset specified in the instruction. This special  
addressing mode is known as Indexed Addressing with  
Literal Offset, or Indexed Literal Offset mode.  
The PLUSW register can be used to implement a form  
of indexed addressing in the data memory space. By  
manipulating the value in the W register, users can  
reach addresses that are fixed offsets from pointer  
addresses. In some applications, this can be used to  
implement some powerful program control structure,  
such as software stacks, inside of data memory.  
When using the extended instruction set, this  
addressing mode requires the following:  
5.4.3.3  
Operations by FSRs on FSRs  
• The use of the Access Bank is forced (‘a’ = 0) and  
• The file address argument is less than or equal to  
5Fh.  
Indirect addressing operations that target other FSRs  
or virtual registers represent special cases. For  
example, using an FSR to point to one of the virtual  
registers will not result in successful operations. As a  
specific case, assume that FSR0H:FSR0L contains  
FE7h, the address of INDF1. Attempts to read the  
value of the INDF1 using INDF0 as an operand will  
return 00h. Attempts to write to INDF1 using INDF0 as  
the operand will result in a NOP.  
Under these conditions, the file address of the  
instruction is not interpreted as the lower byte of an  
address (used with the BSR in direct addressing), or as  
an 8-bit address in the Access Bank. Instead, the value  
is interpreted as an offset value to an Address Pointer,  
specified by FSR2. The offset and the contents of  
FSR2 are added to obtain the target address of the  
operation.  
On the other hand, using the virtual registers to write to  
an FSR pair may not occur as planned. In these cases,  
the value will be written to the FSR pair but without any  
incrementing or decrementing. Thus, writing to either  
the INDF2 or POSTDEC2 register will write the same  
value to the FSR2H:FSR2L.  
5.5.2  
INSTRUCTIONS AFFECTED BY  
INDEXED LITERAL OFFSET MODE  
Any of the core PIC18 instructions that can use direct  
addressing are potentially affected by the Indexed  
Literal Offset Addressing mode. This includes all  
byte-oriented and bit-oriented instructions, or almost  
one-half of the standard PIC18 instruction set.  
Instructions that only use Inherent or Literal Addressing  
modes are unaffected.  
Since the FSRs are physical registers mapped in the  
SFR space, they can be manipulated through all direct  
operations. Users should proceed cautiously when  
working on these registers, particularly if their code  
uses indirect addressing.  
Additionally, byte-oriented and bit-oriented instructions  
are not affected if they do not use the Access Bank  
(Access RAM bit is ‘1’), or include a file address of 60h  
or above. Instructions meeting these criteria will  
continue to execute as before. A comparison of the  
different possible addressing modes when the  
extended instruction set is enabled is shown in  
Figure 5-11.  
Similarly, operations by indirect addressing are generally  
permitted on all other SFRs. Users should exercise the  
appropriate caution that they do not inadvertently change  
settings that might affect the operation of the device.  
5.5  
Data Memory and the Extended  
Instruction Set  
Enabling the PIC18 extended instruction set (XINST  
Configuration bit = 1) significantly changes certain  
aspects of data memory and its addressing. Specifi-  
cally, the use of the Access Bank for many of the core  
PIC18 instructions is different; this is due to the intro-  
duction of a new addressing mode for the data memory  
space.  
Those who desire to use byte-oriented or bit-oriented  
instructions in the Indexed Literal Offset mode should  
note the changes to assembler syntax for this mode.  
This is described in more detail in Section 24.2.1  
“Extended Instruction Syntax”.  
What does not change is just as important. The size of  
the data memory space is unchanged, as well as its  
linear addressing. The SFR map remains the same.  
Core PIC18 instructions can still operate in both Direct  
and Indirect Addressing mode; inherent and literal  
instructions do not change at all. Indirect addressing  
with FSR0 and FSR1 also remain unchanged.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 83  
PIC18F2XK20/4XK20  
FIGURE 5-11:  
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND  
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)  
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)  
000h  
When ‘a’ = 0 and f 60h:  
The instruction executes in  
060h  
Bank 0  
Direct Forced mode. ‘f’ is inter-  
preted as a location in the  
Access RAM between 060h  
and 0FFh. This is the same as  
locations F60h to FFFh  
(Bank 15) of data memory.  
100h  
00h  
60h  
Bank 1  
through  
Bank 14  
Valid range  
for ‘f’  
Locations below 60h are not  
available in this addressing  
mode.  
FFh  
Access RAM  
F00h  
Bank 15  
SFRs  
F60h  
FFFh  
Data Memory  
When ‘a’ = 0 and f 5Fh:  
000h  
060h  
100h  
The instruction executes in  
Indexed Literal Offset mode. ‘f’  
is interpreted as an offset to the  
address value in FSR2. The  
two are added together to  
obtain the address of the target  
register for the instruction. The  
address can be anywhere in  
the data memory space.  
Bank 0  
001001da ffffffff  
Bank 1  
through  
Bank 14  
FSR2H  
FSR2L  
F00h  
F60h  
Note that in this mode, the  
correct syntax is now:  
Bank 15  
SFRs  
ADDWF [k], d  
where ‘k’ is the same as ‘f’.  
FFFh  
Data Memory  
BSR  
000h  
060h  
100h  
00000000  
When ‘a’ = 1 (all values of f):  
The instruction executes in  
Direct mode (also known as  
Direct Long mode). ‘f’ is inter-  
preted as a location in one of  
the 16 banks of the data  
memory space. The bank is  
designated by the Bank Select  
Register (BSR). The address  
can be in any implemented  
bank in the data memory  
space.  
Bank 0  
001001da ffffffff  
Bank 1  
through  
Bank 14  
F00h  
F60h  
Bank 15  
SFRs  
FFFh  
Data Memory  
DS41303B-page 84  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Remapping of the Access Bank applies only to opera-  
tions using the Indexed Literal Offset mode. Operations  
that use the BSR (Access RAM bit is ‘1’) will continue  
to use direct addressing as before.  
5.5.3  
MAPPING THE ACCESS BANK IN  
INDEXED LITERAL OFFSET MODE  
The use of Indexed Literal Offset Addressing mode  
effectively changes how the first 96 locations of Access  
RAM (00h to 5Fh) are mapped. Rather than containing  
just the contents of the bottom section of Bank 0, this  
mode maps the contents from a user defined “window”  
that can be located anywhere in the data memory  
space. The value of FSR2 establishes the lower bound-  
ary of the addresses mapped into the window, while the  
upper boundary is defined by FSR2 plus 95 (5Fh).  
Addresses in the Access RAM above 5Fh are mapped  
as previously described (see Section 5.3.2 “Access  
Bank”). An example of Access Bank remapping in this  
addressing mode is shown in Figure 5-12.  
5.6  
PIC18 Instruction Execution and  
the Extended Instruction Set  
Enabling the extended instruction set adds eight  
additional commands to the existing PIC18 instruction  
set. These instructions are executed as described in  
Section 24.2 “Extended Instruction Set”.  
FIGURE 5-12:  
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET  
ADDRESSING  
Example Situation:  
000h  
ADDWF f, d, a  
FSR2H:FSR2L = 120h  
Bank 0  
Locations in the region  
from the FSR2 pointer  
(120h) to the pointer plus  
05Fh (17Fh) are mapped  
to the bottom of the  
Access RAM (000h-05Fh).  
100h  
120h  
17Fh  
Bank 1  
Window  
00h  
Bank 1  
Bank 1 “Window”  
200h  
5Fh  
60h  
Special File Registers at  
F60h through FFFh are  
mapped to 60h through  
FFh, as usual.  
Bank 2  
through  
Bank 14  
SFRs  
Bank 0 addresses below  
5Fh can still be addressed  
by using the BSR.  
FFh  
Access Bank  
F00h  
Bank 15  
SFRs  
F60h  
FFFh  
Data Memory  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 85  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 86  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
6.0  
FLASH PROGRAM MEMORY  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
A read from program memory is executed one byte at  
a time. A write to program memory is executed on  
blocks of 64, 32 or 8 bytes at a time depending on the  
specific device (See Table 6-1). Program memory is  
erased in blocks of 64 bytes at a time. The difference  
between the write and erase block sizes requires from  
1 to 8 block writes to restore the contents of a single  
block erase. A bulk erase operation can not be issued  
from user code.  
6.1  
Table Reads and Table Writes  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
Table Read (TBLRD)  
Table Write (TBLWT)  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
TABLE 6-1:  
Device  
WRITE/ERASE BLOCK SIZES  
Write Block Erase Block  
The table read operation retrieves one byte of data  
directly from program memory and places it into the  
TABLAT register. Figure 6-1 shows the operation of a  
table read.  
Size (bytes)  
Size (bytes)  
PIC18F43K20,  
PIC18F23K20  
8
64  
The table write operation stores one byte of data from the  
TABLAT register into a write block holding register. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 6.5 “Writing  
to Flash Program Memory”. Figure 6-2 shows the  
operation of a table write with program memory and data  
RAM.  
PIC18F24K20,  
PIC18F25K20,  
PIC18F44K20,  
PIC18F45K20  
32  
64  
PIC18F26K20,  
PIC18F46K20  
64  
64  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table operations work with byte entities. Tables contain-  
ing data, rather than program instructions, are not  
required to be word aligned. Therefore, a table can start  
and end at any byte address. If a table write is being  
used to write executable code into program memory,  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer register points to a byte in program memory.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 87  
PIC18F2XK20/4XK20  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR<MSBs>)  
Note 1: During table writes the Table Pointer does not point directly to Program Memory. The LSBs of TBLPRTL  
actually point to an address within the write block holding registers. The MSBs of the Table Pointer deter-  
mine where the write block will eventually be written. The process for writing the holding registers to the  
program memory array is discussed in Section 6.5 “Writing to Flash Program Memory”.  
The FREE bit allows the program memory erase oper-  
ation. When FREE is set, an erase operation is initiated  
on the next WR command. When FREE is clear, only  
writes are enabled.  
6.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
The WREN bit is clear on power-up.  
The WRERR bit is set by hardware when the WR bit is  
set and cleared when the internal programming timer  
expires and the write operation is complete.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
Note:  
During normal operation, the WRERR is  
read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
The EECON1 register (Register 6-1) is the control  
register for memory accesses. The EECON2 register is  
not a physical register; it is used exclusively in the  
memory write and erase sequences. Reading  
EECON2 will read all ‘0’s.  
a
Reset, or  
a write operation was  
attempted improperly.  
The WR control bit initiates write operations. The WR  
bit cannot be cleared, only set, by firmware. Then WR  
bit is cleared by hardware at the completion of the write  
operation.  
The EEPGD control bit determines if the access will be  
a program or data EEPROM memory access. When  
EEPGD is clear, any subsequent operations will  
operate on the data EEPROM memory. When EEPGD  
is set, any subsequent operations will operate on the  
program memory.  
Note:  
The EEIF interrupt flag bit of the PIR2  
register is set when the write is complete.  
The EEIF flag stays set until cleared by  
firmware.  
The CFGS control bit determines if the access will be  
to the Configuration/Calibration registers or to program  
memory/data EEPROM memory. When CFGS is set,  
subsequent operations will operate on Configuration  
registers regardless of EEPGD (see Section 23.0  
“Special Features of the CPU”). When CFGS is clear,  
memory selection access is determined by EEPGD.  
DS41303B-page 88  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 6-1:  
EECON1: DATA EEPROM CONTROL 1 REGISTER  
R/W-x  
EEPGD  
bit 7  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
S = Bit can be set by software, but not cleared  
-n = Value at POR ‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row (Block) Erase Enable bit  
1= Erase the program memory block addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write-only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete.  
The WR bit can only be set (not cleared) by software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only  
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1or CFGS = 1.)  
0= Does not initiate an EEPROM read  
Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the  
error condition.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 89  
PIC18F2XK20/4XK20  
When a TBLRDis executed, all 22 bits of the TBLPTR  
determine which byte is read from program memory  
directly into the TABLAT register.  
6.2.2  
TABLAT – TABLE LATCH REGISTER  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
When a TBLWTis executed the byte in the TABLAT reg-  
ister is written, not to Flash memory but, to a holding  
register in preparation for a program memory write. The  
holding registers constitute a write block which varies  
depending on the device (See Table 6-1).The 3, 4, or 5  
LSbs of the TBLPTRL register determine which specific  
address within the holding register block is written to.  
The MSBs of the Table Pointer have no effect during  
TBLWToperations.  
6.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
The Table Pointer (TBLPTR) register addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the device ID, the user ID and the Configuration bits.  
When a program memory write is executed the entire  
holding register block is written to the Flash memory at  
the address determined by the MSbs of the TBLPTR.  
The 3, 4, or 5 LSBs are ignored during Flash memory  
writes. For more detail, see Section 6.5 “Writing to  
Flash Program Memory”.  
The Table Pointer register, TBLPTR, is used by the  
TBLRDand TBLWTinstructions. These instructions can  
update the TBLPTR in one of four ways based on the  
table operation. These operations are shown in  
Table 6-2. These operations on the TBLPTR affect only  
the low-order 21 bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer register (TBLPTR<21:6>)  
point to the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
Figure 6-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
6.2.4  
TABLE POINTER BOUNDARIES  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
TABLE 6-2:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
TABLE ERASE/WRITE  
TBLPTR<21:n+1>  
TABLE WRITE  
TBLPTR<n:0>  
(1)  
(1)  
TABLE READ – TBLPTR<21:0>  
Note 1: n = 3, 4, 5, or 6 for block sizes of 8, 16, 32 or 64 bytes, respectively.  
DS41303B-page 90  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
6.3  
Reading the Flash Program  
Memory  
The TBLRD instruction retrieves data from program  
memory and places it into data RAM. Table reads from  
program memory are performed one byte at a time.  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
(IR)  
TABLAT  
Read Register  
FETCH  
TBLRD  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVFW  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 91  
PIC18F2XK20/4XK20  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer, or through  
ICSP™ control, can larger blocks of program memory  
be bulk erased. Word erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory is:  
1. Load Table Pointer register with address of  
block being erased.  
When initiating an erase sequence from the Microcon-  
troller itself, a block of 64 bytes of program memory is  
erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased. The  
TBLPTR<5:0> bits are ignored.  
2. Set the EECON1 register for the erase operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash pro-  
gram memory. The WREN bit must be set to enable  
write operations. The FREE bit is set to select an erase  
operation.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
6. Set the WR bit. This will begin the block erase  
cycle.  
The write initiate sequence for EECON2, shown as  
steps 4 through 6 in Section 6.4.1 “Flash Program  
Memory Erase Sequence”, is used to guard against  
accidental writes. This is sometimes referred to as a  
long write.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
8. Re-enable interrupts.  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted during the long write  
cycle. The long write is terminated by the internal pro-  
gramming timer.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_BLOCK  
BSF  
BCF  
BSF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable block Erase operation  
; disable interrupts  
BCF  
Required  
Sequence  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
BSF  
DS41303B-page 92  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted during a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
6.5  
Writing to Flash Program Memory  
The programming block size is 8, 32 or 64 bytes,  
depending on the device (See Table 6-1). Word or byte  
programming is not supported.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are only as many holding registers as there are bytes  
in a write block (See Table 6-1).  
Note:  
The default value of the holding registers on  
device Resets and after write operations is  
FFh. A write of FFh to a holding register  
does not modify that byte. This means that  
individual bytes of program memory may be  
modified, provided that the change does not  
attempt to change any bit from a ‘0’ to a ‘1’.  
When modifying individual bytes, it is not  
necessary to load all holding registers  
before executing a long write operation.  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWTinstruction may need to be executed 8, 32,  
or 64 times, depending on the device, for each pro-  
gramming operation. All of the table write operations  
will essentially be short writes because only the holding  
registers are written. After all the holding registers have  
been written, the programming operation of that block  
of memory is started by configuring the EECON1 regis-  
ter for a program memory write and performing the long  
write sequence.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
(1)  
TBLPTR = xxxx00  
TBLPTR = xxxx01  
TBLPTR = xxxx02  
TBLPTR = xxxxYY  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
Note 1: YY = x7, xF, or 1F for 8, 16 or 32 byte write blocks, respectively.  
8. Disable interrupts.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write 0AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
13. Re-enable interrupts.  
3. Load Table Pointer register with address being  
erased.  
14. Repeat steps 6 to 13 for each block until all 64  
bytes are written.  
4. Execute the block erase procedure.  
15. Verify the memory (table read).  
5. Load Table Pointer register with address of first  
byte being written.  
This procedure will require about 6 ms to update each  
write block of memory. An example of the required code  
is given in Example 6-3.  
6. Write the 8, 32 or 64 byte block into the holding  
registers with auto-increment.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN to enable byte writes.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the bytes in the  
holding registers.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 93  
PIC18F2XK20/4XK20  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D'64’  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; number of bytes in erase block  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
DECFSZ  
BRA  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
COUNTER  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; load TBLPTR with the base  
; address of the memory block  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Erase operation  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
; dummy read decrement  
; point to buffer  
BSF  
TBLRD*-  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
WRITE_BUFFER_BACK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BlockSize  
COUNTER  
D’64’/BlockSize  
COUNTER2  
; number of bytes in holding register  
; number of write blocks in 64 bytes  
WRITE_BYTE_TO_HREGS  
MOVF  
MOVWF  
TBLWT+*  
POSTINC0, W  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
DS41303B-page 94  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
DECFSZ COUNTER  
; loop until holding registers are full  
BRA  
WRITE_WORD_TO_HREGS  
PROGRAM_MEMORY  
BSF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
DCFSZ  
BRA  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
COUNTER2  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start program (CPU stall)  
; repeat for remaining write blocks  
;
; re-enable interrupts  
; disable write to memory  
WRITE_BYTE_TO_HREGS  
INTCON, GIE  
EECON1, WREN  
BCF  
6.5.2  
WRITE VERIFY  
6.5.4  
PROTECTION AGAINST  
SPURIOUS WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
To protect against spurious writes to Flash program  
memory, the write initiate sequence must also be  
followed. See Section 23.0 “Special Features of the  
CPU” for more detail.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
6.6  
Flash Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and  
reprogrammed if needed. If the write operation is  
interrupted by a MCLR Reset or a WDT Time-out Reset  
during normal operation, the WRERR bit will be set  
which the user can check to decide whether a rewrite  
of the location(s) is needed.  
See Section 23.3 “Program Verification and Code  
Protection” for details on code protection of Flash  
program memory.  
TABLE 6-3:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Reset  
Valueson  
page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
57  
57  
57  
57  
57  
59  
59  
60  
60  
60  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
TABLAT  
INTCON  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
C1IP  
C1IF  
C1IE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
BCLIP  
BCLIF  
BCLIE  
WREN  
HLVDIP  
HLVDIF  
HLVDIE  
WR  
RD  
C2IP  
C2IF  
C2IE  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP  
CCP2IF  
CCP2IE  
PIR2  
PIE2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 95  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 96  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The EECON1 register (Register 7-1) is the control reg-  
ister for data and program memory access. Control bit  
EEPGD determines if the access will be to program or  
data EEPROM memory. When the EEPGD bit is clear,  
operations will access the data EEPROM memory.  
When the EEPGD bit is set, program memory is  
accessed.  
7.0  
DATA EEPROM MEMORY  
The data EEPROM is a nonvolatile memory array, sep-  
arate from the data RAM and program memory, which  
is used for long-term storage of program data. It is not  
directly mapped in either the register file or program  
memory space but is indirectly addressed through the  
Special Function Registers (SFRs). The EEPROM is  
readable and writable during normal operation over the  
entire VDD range.  
Control bit, CFGS, determines if the access will be to  
the Configuration registers or to program memory/data  
EEPROM memory. When the CFGS bit is set,  
subsequent operations access Configuration registers.  
When the CFGS bit is clear, the EEPGD bit selects  
either program Flash or data EEPROM memory.  
Four SFRs are used to read and write to the data  
EEPROM as well as the program memory. They are:  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear.  
The WRERR bit is set by hardware when the WR bit is  
set and cleared when the internal programming timer  
expires and the write operation is complete.  
• EEADRH  
The data EEPROM allows byte read and write. When  
interfacing to the data memory block, EEDATA holds  
the 8-bit data for read/write and the EEADR:EEADRH  
register pair hold the address of the EEPROM location  
being accessed.  
Note:  
During normal operation, the WRERR  
may read as ‘1’. This can indicate that a  
write operation was prematurely termi-  
nated by a Reset, or a write operation was  
attempted improperly.  
The EEPROM data memory is rated for high erase/write  
cycle endurance. A byte write automatically erases the  
location and writes the new data (erase-before-write).  
The write time is controlled by an on-chip timer; it will  
vary with voltage and temperature as well as from chip-  
to-chip. Please refer to parameter D122 (Table 26.10 in  
Section 26.0 “Electrical Characteristics”) for exact  
limits.  
The WR control bit initiates write operations. The bit  
can be set but not cleared by software. It is cleared only  
by hardware at the completion of the write operation.  
Note:  
The EEIF interrupt flag bit of the PIR2  
register is set when the write is complete.  
It must be cleared by software.  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firmware  
and cleared by hardware at the completion of the  
operation.  
7.1  
EEADR and EEADRH Registers  
The EEADR register is used to address the data  
EEPROM for read and write operations. The 8-bit  
range of the register can address a memory range of  
256 bytes (00h to FFh). The EEADRH register expands  
the range to 1024 bytes by adding an additional two  
address bits.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
table read instructions. See Section 6.1 “Table Reads  
and Table Writes” regarding table reads.  
The EECON2 register is not a physical register. It is  
used exclusively in the memory write and erase  
sequences. Reading EECON2 will read all ‘0’s.  
7.2  
EECON1 and EECON2 Registers  
Access to the data EEPROM is controlled by two  
registers: EECON1 and EECON2. These are the same  
registers which control access to the program memory  
and are used in a similar manner for the data  
EEPROM.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 97  
PIC18F2XK20/4XK20  
REGISTER 7-1:  
EECON1: DATA EEPROM CONTROL 1 REGISTER  
R/W-x  
EEPGD  
bit 7  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
S = Bit can be set by software, but not cleared  
-n = Value at POR ‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row (Block) Erase Enable bit  
1= Erase the program memory block addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write-only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete.  
The WR bit can only be set (not cleared) by software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only  
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1or CFGS = 1.)  
0= Does not initiate an EEPROM read  
Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the  
error condition.  
DS41303B-page 98  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code  
execution (i.e., runaway programs). The WREN bit  
should be kept clear at all times, except when updating  
the EEPROM. The WREN bit is not cleared by  
hardware.  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD con-  
trol bit of the EECON1 register and then set control bit,  
RD. The data is available on the very next instruction  
cycle; therefore, the EEDATA register can be read by  
the next instruction. EEDATA will hold this value until  
another read operation, or until it is written to by the  
user (during a write operation).  
After a write sequence has been initiated, EECON1,  
EEADR and EEDATA cannot be modified. The WR bit  
will be inhibited from being set unless the WREN bit is  
set. Both WR and WREN cannot be set with the same  
instruction.  
The basic process is shown in Example 7-1.  
At the completion of the write cycle, the WR bit is  
cleared by hardware and the EEPROM Interrupt Flag  
bit, EEIF, is set. The user may either enable this  
interrupt or poll this bit. EEIF must be cleared by  
software.  
7.4  
Writing to the Data EEPROM  
Memory  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data writ-  
ten to the EEDATA register. The sequence in  
Example 7-2 must be followed to initiate the write cycle.  
7.5  
Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
The write will not begin if this sequence is not exactly  
followed (write 55h to EECON2, write 0AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
BCF  
DATA_EE_ADDR  
EEADR  
EECON1, EEPGD ; Point to DATA memory  
;
; Data Memory Address to read  
BCF  
BSF  
MOVF  
EECON1, CFGS  
EECON1, RD  
EEDATA, W  
; Access EEPROM  
; EEPROM Read  
; W = EEDATA  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
DATA_EE_ADDR_LOW  
EEADR  
DATA_EE_ADDR_HI  
EEADRH  
DATA_EE_DATA  
EEDATA  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
;
; Data Memory Address to write  
;
;
;
; Data Memory Value to write  
; Point to DATA memory  
; Access EEPROM  
; Enable writes  
; Disable Interrupts  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Enable Interrupts  
Required  
Sequence  
BSF  
; User code execution  
BCF  
EECON1, WREN  
; Disable writes on write complete (EEIF set)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 99  
PIC18F2XK20/4XK20  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch or software malfunction.  
7.6  
Operation During Code-Protect  
Data EEPROM memory has its own code-protect bits in  
Configuration Words. External read and write  
operations are disabled if code protection is enabled.  
7.8  
Using the Data EEPROM  
The microcontroller itself can both read and write to the  
internal data EEPROM, regardless of the state of the  
code-protect Configuration bit. Refer to Section 23.0  
“Special Features of the CPU” for additional  
information.  
The data EEPROM is  
a high-endurance, byte  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated often).  
When variables in one section change frequently, while  
variables in another section do not change, it is possible  
to exceed the total number of write cycles to the  
EEPROM (specification D124) without exceeding the  
total number of write cycles to a single byte (specification  
D120). If this is the case, then an array refresh must be  
performed. For this reason, variables that change  
infrequently (such as constants, IDs, calibration, etc.)  
should be stored in Flash program memory.  
7.7  
Protection Against Spurious Write  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been implemented. On power-up, the WREN bit is  
cleared. In addition, writes to the EEPROM are blocked  
during the Power-up Timer period (TPWRT,  
parameter 33).  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
BCF  
BCF  
BCF  
BSF  
EEADR  
; Start at address 0  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Wait for write to complete  
Loop  
BSF  
EECON1, RD  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ  
BRA  
EEADR, F  
LOOP  
; Increment address  
; Not zero, do it again  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
TABLE 7-1:  
Name  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Reset  
Values  
on page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
EEADR  
EEADRH  
EEDATA  
EECON2  
EECON1  
IPR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
57  
59  
59  
59  
59  
59  
60  
60  
60  
EEADR7  
EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0  
EEADR9 EEADR8  
EEPROM Data Register  
EEPROM Control Register 2 (not a physical register)  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
C1IP  
C1IF  
C1IE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
BCLIP  
BCLIF  
BCLIE  
WREN  
WR  
RD  
C2IP  
C2IF  
C2IE  
HLVDIP TMR3IP CCP2IP  
HLVDIF TMR3IF CCP2IF  
HLVDIE TMR3IE CCP2IE  
PIR2  
PIE2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
DS41303B-page 100  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
8.0  
8.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
All PIC18 devices include an 8 x 8 hardware multiplier  
as part of the ALU. The multiplier performs an unsigned  
operation and yields a 16-bit result that is stored in the  
product register pair, PRODH:PRODL. The multiplier’s  
operation does not affect any flags in the STATUS  
register.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
MOVF  
MULWF  
ARG1, W  
ARG2  
Making multiplication a hardware operation allows it to  
be completed in a single instruction cycle. This has the  
advantages of higher computational throughput and  
reduced code size for multiplication algorithms and  
allows the PIC18 devices to be used in many applica-  
tions previously reserved for digital signal processors.  
A comparison of various hardware and software  
multiply operations, along with the savings in memory  
and execution time, is shown in Table 8-1.  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
8.2  
Operation  
Example 8-1 shows the instruction sequence for an 8 x 8  
unsigned multiplication. Only one instruction is required  
when one of the arguments is already loaded in the  
WREG register.  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiplication. To account for the sign bits of the argu-  
ments, each argument’s Most Significant bit (MSb) is  
tested and the appropriate subtractions are done.  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS  
Program  
Memory  
(Words)  
Time  
Cycles  
(Max)  
Multiply Method  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 μs  
100 ns  
9.1 μs  
600 ns  
24.2 μs  
2.8 μs  
25.4 μs  
4.0 μs  
27.6 μs  
400 ns  
36.4 μs  
2.4 μs  
69 μs  
1 μs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 μs  
6 μs  
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 μs  
11.2 μs  
102.6 μs  
16.0 μs  
242 μs  
28 μs  
254 μs  
40 μs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 101  
PIC18F2XK20/4XK20  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiplication. Equation 8-1 shows the  
algorithm that is used. The 32-bit result is stored in four  
registers (RES<3:0>).  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0 = ARG1H:ARG1L ARG2H:ARG2L  
16  
= (ARG1H ARG2H 2 ) +  
(ARG1H ARG2L 2 ) +  
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
(-1 ARG1H<7> ARG2H:ARG2L 2  
8
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
8
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
)
16  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
(ARG1L ARG2L)  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L->  
; PRODH:PRODL  
;
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
(RES<3:0>). To account for the sign bits of the argu-  
ments, the MSb for each argument pair is tested and  
the appropriate subtractions are done.  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS41303B-page 102  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
9.2  
Interrupt Priority  
9.0  
INTERRUPTS  
The interrupt priority feature is enabled by setting the  
IPEN bit of the RCON register. When interrupt priority  
is enabled the GIE and PEIE global interrupt enable  
bits of Compatibility mode are replaced by the GIEH  
high priority, and GIEL low priority, global interrupt  
enables. When set, the GIEH bit of the INTCON regis-  
ter enables all interrupts that have their associated  
IPRx register or INTCONx register priority bit set (high  
priority). When clear, the GIEL bit disables all interrupt  
sources including those selected as low priority. When  
clear, the GIEL bit of the INTCON register disables only  
the interrupts that have their associated priority bit  
cleared (low priority). When set, the GIEL bit enables  
the low priority sources when the GIEH bit is also set.  
The PIC18F2XK20/4XK20 devices have multiple  
interrupt sources and an interrupt priority feature that  
allows most interrupt sources to be assigned a high  
priority level or a low priority level. The high priority  
interrupt vector is at 0008h and the low priority interrupt  
vector is at 0018h. A high priority interrupt event will  
interrupt a low priority interrupt that may be in progress.  
There are ten registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
• PIR1, PIR2  
• PIE1, PIE2  
• IPR1, IPR2  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are all set, the interrupt will  
vector immediately to address 0008h for high priority,  
or 0018h for low priority, depending on level of the  
interrupting source’s priority bit. Individual interrupts  
can be disabled through their corresponding interrupt  
enable bits.  
It is recommended that the Microchip header files sup-  
plied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
9.3  
Interrupt Response  
In general, interrupt sources have three bits to control  
their operation. They are:  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. The  
GIE bit is the global interrupt enable when the IPEN bit  
is cleared. When the IPEN bit is set, enabling interrupt  
priority levels, the GIEH bit is the high priority global  
interrupt enable and the GIEL bit is the low priority  
global interrupt enable. High priority interrupt sources  
can interrupt a low priority interrupt. Low priority  
interrupts are not processed while high priority  
interrupts are in progress.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Priority bit to select high priority or low priority  
9.1  
Mid-Range Compatibility  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address (0008h  
or 0018h). Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits in the INTCONx and PIRx  
registers. The interrupt flag bits must be cleared by  
software before re-enabling interrupts to avoid  
repeating the same interrupt.  
When the IPEN bit is cleared (default state), the interrupt  
priority feature is disabled and interrupts are compatible  
with PIC® microcontroller mid-range devices. In  
Compatibility mode, the interrupt priority bits of the IPRx  
registers have no effect. The PEIE bit of the INTCON  
register is the global interrupt enable for the peripherals.  
The PEIE bit disables only the peripheral interrupt  
sources and enables the peripheral interrupt sources  
when the GIE bit is also set. The GIE bit of the INTCON  
register is the global interrupt enable which enables all  
non-peripheral interrupt sources and disables all  
interrupt sources, including the peripherals. All interrupts  
branch to address 0008h in Compatibility mode.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
For external interrupt events, such as the INT pins or  
the PORTB interrupt-on-change, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one-cycle or two-cycle  
instructions. Individual interrupt flag bits are set,  
regardless of the status of their corresponding enable  
bits or the global interrupt enable bit.  
Note:  
Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 103  
PIC18F2XK20/4XK20  
FIGURE 9-1:  
PIC18 INTERRUPT LOGIC  
Wake-up if in  
Idle or Sleep modes  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
(1)  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
SSPIF  
SSPIE  
SSPIP  
GIEH/GIE  
ADIF  
ADIE  
ADIP  
IPEN  
IPEN  
GIEL/PEIE  
RCIF  
RCIE  
RCIP  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
SSPIF  
SSPIE  
SSPIP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
ADIF  
ADIE  
ADIP  
(1)  
RBIF  
RBIE  
RBIP  
RCIF  
RCIE  
RCIP  
GIEH/GIE  
GIEL/PEIE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
Note 1: The RBIF interrupt also requires the individual pin IOCB enables.  
DS41303B-page 104  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
9.4  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
The INTCON registers are readable and writable  
registers, which contain various enable, priority and  
flag bits.  
REGISTER 9-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE/GIEH  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
PEIE/GIEL  
TMR0IE  
INT0IE  
TMR0IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts including peripherals  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all interrupts including low priority.  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority interrupts  
0= Disables all low priority interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
(2)  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared by software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared by software)  
0= The INT0 external interrupt did not occur  
(1)  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB<7:4> pins changed state (must be cleared by software)  
0= None of the RB<7:4> pins have changed state  
Note 1: A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
2: RB port change interrupts also require the individual pin IOCB enables.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 105  
PIC18F2XK20/4XK20  
REGISTER 9-2:  
INTCON2: INTERRUPT CONTROL 2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0  
INTEDG1  
INTEDG2  
TMR0IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled provided that the pin is an input and the corresponding WPUB bit is  
set.  
bit 6  
bit 5  
bit 4  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
DS41303B-page 106  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 9-3:  
INTCON3: INTERRUPT CONTROL 3 REGISTER  
R/W-1  
INT2IP  
bit 7  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT1IP  
INT2IE  
INT1IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared by software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared by software)  
0= The INT1 external interrupt did not occur  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 107  
PIC18F2XK20/4XK20  
9.5  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE of the INTCON  
register.  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Request Flag registers (PIR1 and PIR2).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt and after servicing  
that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)  
1= A read or a write operation has taken place (must be cleared by software)  
0= No read or write has occurred  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared by software)  
0= The A/D conversion is not complete or has not been started  
RCIF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The EUSART receive buffer is empty  
TXIF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The EUSART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared by software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared by software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared by software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared by software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared by software)  
0= TMR1 register did not overflow  
Note 1: The PSPIF bit is unimplemented on 28-pin devices and will read as ‘0’.  
DS41303B-page 108  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
OSCFIF  
bit 7  
R/W-0  
C1IF  
R/W-0  
C2IF  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
R/W-0  
R/W-0  
HLVDIF  
TMR3IF  
CCP2IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by software)  
0= Device clock operating  
C1IF: Comparator C1 Interrupt Flag bit  
1= Comparator C1 output has changed (must be cleared by software)  
0= Comparator C1 output has not changed  
C2IF: Comparator C2 Interrupt Flag bit  
1= Comparator C2 output has changed (must be cleared by software)  
0= Comparator C2 output has not changed  
EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared by software)  
0= The write operation is not complete or has not been started  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred (must be cleared by software)  
0= No bus collision occurred  
HLVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (direction determined by the VDIRMAG bit of the  
HLVDCON register)  
0= A low-voltage condition has not occurred  
bit 1  
bit 0  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared by software)  
0= TMR3 register did not overflow  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared by software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared by software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 109  
PIC18F2XK20/4XK20  
9.6  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two Peripheral Interrupt  
Enable registers (PIE1 and PIE2). When IPEN = 0, the  
PEIE bit must be set to enable any of these peripheral  
interrupts.  
REGISTER 9-6:  
PIE1: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1)  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TXIE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: The PSPIE bit is unimplemented on 28-pin devices and will read as ‘0’.  
DS41303B-page 110  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 9-7:  
PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2  
R/W-0  
OSCFIE  
bit 7  
R/W-0  
C1IE  
R/W-0  
C2IE  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
R/W-0  
R/W-0  
HLVDIE  
TMR3IE  
CCP2IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
C1IE: Comparator C1 Interrupt Enable bit  
1= Enabled  
0= Disabled  
C2IE: Comparator C2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit  
1= Enabled  
0= Disabled  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
HLVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 111  
PIC18F2XK20/4XK20  
9.7  
IPR Registers  
The IPR registers contain the individual priority bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Priority registers (IPR1 and IPR2). Using the priority bits  
requires that the Interrupt Priority Enable (IPEN) bit be  
set.  
REGISTER 9-8:  
IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP(1)  
bit 7  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
CCP1IP  
TMR2IP  
TMR1IP  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
bit 6  
bit 5  
bit 4  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RCIP: EUSART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: EUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Note 1: The PSPIF bit is unimplemented on 28-pin devices and will read as ‘0’.  
DS41303B-page 112  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 9-9:  
IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
OSCFIP  
bit 7  
R/W-1  
C1IP  
R/W-1  
C2IP  
R/W-1  
EEIP  
R/W-1  
BCLIP  
R/W-1  
R/W-1  
R/W-1  
HLVDIP  
TMR3IP  
CCP2IP  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
C1IP: Comparator C1 Interrupt Priority bit  
1= High priority  
0= Low priority  
C2IP: Comparator C2 Interrupt Priority bit  
1= High priority  
0= Low priority  
EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit  
1= High priority  
0= Low priority  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
HLVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 113  
PIC18F2XK20/4XK20  
9.8  
RCON Register  
The RCON register contains flag bits which are used to  
determine the cause of the last Reset or wake-up from  
Idle or Sleep modes. RCON also contains the IPEN bit  
which enables interrupt priorities.  
The operation of the SBOREN bit and the Reset flag  
bits is discussed in more detail in Section 4.1 “RCON  
Register”.  
REGISTER 9-10: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
R/W-1  
SBOREN(1)  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR(1)  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (Mid-Range Compatibility mode)  
SBOREN: Software BOR Enable bit(1)  
For details of bit operation, see Register 4-1.  
Unimplemented: Read as ‘0’  
bit 5  
bit 4  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-1.  
TO: Watchdog Time-out Flag bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 4-1.  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 4-1  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-1.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-1.  
Note 1: Actual Reset values are determined by device configuration and the nature of the device Reset.  
See Register 4-1 for additional information.  
DS41303B-page 114  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
9.9  
INTn Pin Interrupts  
9.10 TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge-triggered. If the corresponding  
INTEDGx bit in the INTCON2 register is set (= 1), the  
interrupt is triggered by a rising edge; if the bit is clear,  
the trigger is on the falling edge. When a valid edge  
appears on the RBx/INTx pin, the corresponding flag  
bit, INTxF, is set. This interrupt can be disabled by  
clearing the corresponding enable bit, INTxE. Flag bit,  
INTxF, must be cleared by software in the Interrupt  
Service Routine before re-enabling the interrupt.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit, TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L regis-  
ter pair (FFFFh 0000h) will set TMR0IF. The interrupt  
can be enabled/disabled by setting/clearing enable bit,  
TMR0IE of the INTCON register. Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit, TMR0IP of the INTCON2 register.  
See Section 11.0 “Timer0 Module” for further details  
on the Timer0 module.  
All external interrupts (INT0, INT1 and INT2) can wake-  
up the processor from Idle or Sleep modes if bit INTxE  
was set prior to going into those modes. If the Global  
Interrupt Enable bit, GIE, is set, the processor will  
branch to the interrupt vector following wake-up.  
9.11 PORTB Interrupt-on-Change  
An input change on PORTB<7:4> sets flag bit, RBIF of  
the INTCON register. The interrupt can be enabled/  
disabled by setting/clearing enable bit, RBIE of the  
INTCON register. Pins must also be individually  
enabled with the IOCB register. Interrupt priority for  
PORTB interrupt-on-change is determined by the value  
contained in the interrupt priority bit, RBIP of the  
INTCON2 register.  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits, INT1IP and  
INT2IP of the INTCON3 register. There is no priority bit  
associated with INT0. It is always a high priority inter-  
rupt source.  
9.12 Context Saving During Interrupts  
During interrupts, the return PC address is saved on  
the stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the fast return stack. If a fast  
return from interrupt is not used (see Section 5.3  
“Data Memory Organization”), the user may need to  
save the WREG, STATUS and BSR registers on entry  
to the Interrupt Service Routine. Depending on the  
user’s application, other registers may also need to be  
saved. Example 9-1 saves and restores the WREG,  
STATUS and BSR registers during an Interrupt Service  
Routine.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 115  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 116  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Reading the PORTA register reads the status of the  
pins, whereas writing to it, will write to the PORT latch.  
10.0 I/O PORTS  
Depending on the device selected and features  
enabled, there are up to five ports available. Some pins  
of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
The Data Latch (LATA) register is also memory mapped.  
Read-modify-write operations on the LATA register read  
and write the latched output value for PORTA.  
The RA4 pin is multiplexed with the Timer0 module  
clock input and one of the comparator outputs to  
become the RA4/T0CKI/C1OUT pin. Pins RA6 and  
RA7 are multiplexed with the main oscillator pins; they  
are enabled as oscillator or I/O pins by the selection of  
the main oscillator in the Configuration register (see  
Section 23.1 “Configuration Bits” for details). When  
they are not used as port pins, RA6 and RA7 and their  
associated TRIS and LAT bits are read as ‘0’.  
Each port has three registers for its operation. These  
registers are:  
• TRIS register (data direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The other PORTA pins are multiplexed with analog  
inputs, the analog VREF+ and VREF- inputs, and the  
comparator voltage reference output. The operation of  
pins RA<3:0> and RA5 as analog is selected by setting  
the ANS<4:0> bits in the ANSEL register which is the  
default setting after a Power-on Reset.  
The Data Latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
A simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 10-1.  
Pins RA0 through RA5 may also be used as comparator  
inputs or outputs by setting the appropriate bits in the  
CM1CON0 and CM2CON0 registers.  
FIGURE 10-1:  
GENERIC I/O PORT  
OPERATION  
Note:  
On a Power-on Reset, RA5 and RA<3:0>  
are configured as analog inputs and read  
as ‘0’. RA4 is configured as a digital input.  
RD LAT  
Data  
Bus  
D
Q
The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input.  
All other PORTA pins have TTL input levels and full  
CMOS output drivers.  
I/O pin(1)  
WR LAT  
or  
Port  
CK  
Data Latch  
The TRISA register controls the drivers of the PORTA  
pins, even when they are being used as analog inputs.  
The user should ensure the bits in the TRISA register  
are maintained set when using them as analog inputs.  
D
Q
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
Input  
Buffer  
EXAMPLE 10-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
LATA  
07h  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
Q
D
CLRF  
EN  
MOVLW  
MOVWF  
MOVWF  
MOVWF  
MOVLW  
; Configure A/D  
RD Port  
ADCON1 ; for digital inputs  
07h  
CMCON  
0CFh  
; Configure comparators  
; for digital input  
; Value used to  
Note 1: I/O pins have diode protection to VDD and VSS.  
; initialize data  
; direction  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
10.1 PORTA, TRISA and LATA Registers  
MOVWF  
TRISA  
PORTA is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA. Setting  
a TRISA bit (= 1) will make the corresponding PORTA  
pin an input (i.e., disable the output driver). Clearing a  
TRISA bit (= 0) will make the corresponding PORTA pin  
an output (i.e., enable the output driver and put the  
contents of the output latch on the selected pin).  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 117  
PIC18F2XK20/4XK20  
TABLE 10-1: PORTA I/O SUMMARY  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RA0/AN0/C12IN0-  
RA0  
0
1
1
O
I
DIG LATA<0> data output; not affected by analog input.  
TTL PORTA<0> data input; disabled when analog input enabled.  
AN0  
C12IN0-  
RA1  
I
ANA ADC input channel 0. Default input configuration on POR; does not  
affect digital output.  
1
I
ANA Comparators C1 and C2 inverting input, channel 0. Analog select is  
shared with ADC.  
RA1/AN1/C12IN1-  
0
1
1
O
I
DIG LATA<1> data output; not affected by analog input.  
TTL PORTA<1> data input; disabled when analog input enabled.  
AN1  
C12IN1-  
RA2  
I
ANA ADC input channel 1. Default input configuration on POR; does not  
affect digital output.  
1
0
1
1
1
I
O
I
ANA Comparators C1 and C2 inverting input, channel 1. Analog select is  
shared with ADC.  
RA2/AN2/C2IN+  
VREF-/CVREF  
DIG LATA<2> data output; not affected by analog input. Disabled when  
CVREF output enabled.  
TTL PORTA<2> data input. Disabled when analog functions enabled;  
disabled when CVREF output enabled.  
AN2  
I
ANA ADC input channel 2. Default input configuration on POR; not affected  
by analog output.  
C2IN+  
I
ANA Comparator C2 non-inverting input. Analog selection is shared with  
ADC.  
VREF-  
1
x
I
ANA ADC and comparator voltage reference low input.  
CVREF  
O
ANA Comparator voltage reference output. Enabling this feature disables  
digital I/O.  
RA3/AN3/C1IN+/  
VREF+  
RA3  
0
1
1
1
O
I
DIG LATA<3> data output; not affected by analog input.  
TTL PORTA<3> data input; disabled when analog input enabled.  
ANA A/D input channel 3. Default input configuration on POR.  
AN3  
I
C1IN+  
I
ANA Comparator C1 non-inverting input. Analog selection is shared with  
ADC.  
VREF+  
RA4  
1
0
1
1
0
0
1
1
1
1
0
0
1
I
O
I
ANA ADC and comparator voltage reference high input.  
DIG LATA<4> data output.  
RA4/T0CKI/C1OUT  
ST  
ST  
PORTA<4> data input; default configuration on POR.  
Timer0 clock input.  
T0CKI  
C1OUT  
RA5  
I
O
O
I
DIG Comparator 1 output; takes priority over port data.  
DIG LATA<5> data output; not affected by analog input.  
TTL PORTA<5> data input; disabled when analog input enabled.  
ANA A/D input channel 4. Default configuration on POR.  
TTL Slave select input for SSP (MSSP module).  
RA5/AN4/SS/  
HLVDIN/C2OUT  
AN4  
SS  
I
I
HLVDIN  
C2OUT  
RA6  
I
ANA Low-Voltage Detect external trip point input.  
O
O
I
DIG Comparator 2 output; takes priority over port data.  
DIG LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.  
OSC2/CLKOUT/  
RA6  
TTL PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes  
only.  
OSC2  
x
x
O
O
ANA Main oscillator feedback output connection (XT, HS and LP modes).  
CLKOUT  
DIG System cycle clock output (FOSC/4) in RC, INTIO1 and EC Oscillator  
modes.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
DS41303B-page 118  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 10-1: PORTA I/O SUMMARY (CONTINUED)  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
OSC1/CLKIN/RA7  
RA7  
0
1
x
x
O
I
DIG LATA<7> data output. Disabled in external oscillator modes.  
TTL PORTA<7> data input. Disabled in external oscillator modes.  
ANA Main oscillator input connection.  
OSC1  
CLKIN  
I
I
ANA Main clock input connection.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
RA7(1)  
RA6(1)  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
60  
60  
60  
60  
61  
60  
60  
59  
LATA  
LATA7(1) LATA6(1) PORTA Data Latch Register (Read and Write to Data Latch)  
TRISA7(1) TRISA6(1) PORTA Data Direction Control Register  
ANS7(2)  
TRISA  
ANSEL  
ANS6(2) ANS5(2)  
ANS4  
SLRE  
ANS3  
SLRD  
C1SP  
C2SP  
CVR3  
ANS2  
SLRC  
C1R  
ANS1  
SLRB  
ANS0  
SLRA  
SLRCON  
CM1CON  
CM2CON  
CVRCON  
C1ON  
C2ON  
CVREN  
C1OUT  
C2OUT  
CVROE  
C1OE  
C2OE  
CVRR  
C1POL  
C2POL  
CVRSS  
C1CH1  
C2CH1  
CVR1  
C1CH0  
C2CH0  
CVR0  
C2R  
CVR2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator  
configuration; otherwise, they are read as ‘0’.  
2: Not implemented on PIC18F2XK20 devices.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 119  
PIC18F2XK20/4XK20  
10.3.2  
INTERRUPT-ON-CHANGE  
10.2 PORTB, TRISB and LATB  
Registers  
Four of the PORTB pins (RB<7:4>) are individually  
configurable as interrupt-on-change pins. Control bits  
in the IOCB register enable (when set) or disable (when  
clear) the interrupt function for each pin.  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., disable the output driver). Clearing a  
TRISB bit (= 0) will make the corresponding PORTB  
pin an output (i.e., enable the output driver and put the  
contents of the output latch on the selected pin).  
When set, the RBIE bit of the INTCON register enables  
interrupts on all pins which also have their correspond-  
ing IOCB bit set. When clear, the RBIE bit disables all  
interrupt-on-changes.  
Only pins configured as inputs can cause this interrupt  
to occur (i.e., any RB<7:4> pin configured as an output  
is excluded from the interrupt-on-change comparison).  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register read and write the latched output value for  
PORTB.  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTB. The ‘mismatch’ outputs of the last read are  
OR’d together to set the PORTB Change Interrupt flag  
bit (RBIF) in the INTCON register.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
LATB  
0Fh  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
This interrupt can wake the device from the Sleep  
mode, or any of the Idle modes. The user, in the  
Interrupt Service Routine, can clear the interrupt in the  
following manner:  
CLRF  
MOVLW  
MOVWF  
; Set RB<4:0> as  
ADCON1 ; digital I/O pins  
;(required if config bit  
a) Any read or write of PORTB to clear the mis-  
match condition (except when PORTB is the  
source or destination of a MOVFF instruction).  
; PBADEN is set)  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
MOVLW  
MOVWF  
0CFh  
b) Clear the flag bit, RBIF.  
A mismatch condition will continue to set the RBIF flag bit.  
Reading or writing PORTB will end the mismatch  
condition and allow the RBIF bit to be cleared. The latch  
holding the last read value is not affected by a MCLR nor  
Brown-out Reset. After either one of these Resets, the  
RBIF flag will continue to be set if a mismatch is present.  
TRISB  
10.3 Additional PORTB Pin Functions  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF  
interrupt flag may not get set. Furthermore,  
since a read or write on a port affects all bits  
of that port, care must be taken when using  
multiple pins in Interrupt-on-change mode.  
Changes on one pin may not be seen while  
servicing changes on another pin.  
PORTB pins RB<7:4> have an interrupt-on-change  
option. All PORTB pins have a weak pull-up option. An  
alternate CCP2 peripheral option is available on RB3.  
10.3.1  
WEAK PULL-UPS  
Each of the PORTB pins has an individually controlled  
weak internal pull-up. When set, each bit of the WPUB  
register enables the corresponding pin pull-up. When  
cleared, the RBPU bit of the INTCON2 register enables  
pull-ups on all pins which also have their corresponding  
WPUB bit set. When set, the RBPU bit disables all  
weak pull-ups. The weak pull-up is automatically turned  
off when the port pin is configured as an output. The  
pull-ups are disabled on a Power-on Reset.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
Note:  
On a Power-on Reset, RB<4:0> are  
configured as analog inputs by default and  
read as ‘0’; RB<7:5> are configured as  
digital inputs.  
10.3.3  
ALTERNATE CCP2 OPTION  
RB3 can be configured as the alternate peripheral pin  
for the CCP2 module by clearing the CCP2MX Config-  
uration bit of CONFIG3H. The default state of the  
CCP2MX Configuration bit is ‘1’ which selects RC1 as  
the CCP2 peripheral pin.  
When the PBADEN Configuration bit is set  
to ‘1’, RB<4:0> will alternatively be  
configured as digital inputs on POR.  
DS41303B-page 120  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 10-3: PORTB I/O SUMMARY  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RB0/INT0/FLT0/  
AN12  
RB0  
0
1
O
I
DIG LATB<0> data output; not affected by analog input.  
TTL PORTB<0> data input; Programmable weak pull-up. Disabled when  
(1)  
analog input enabled.  
INT0  
FLT0  
AN12  
RB1  
1
1
1
0
1
I
I
ST  
ST  
External interrupt 0 input.  
Enhanced PWM Fault input (ECCP1 module); enabled by software.  
(1)  
I
ANA A/D input channel 12.  
RB1/INT1/AN10/  
C12IN2-/P1C  
O
I
DIG LATB<1> data output; not affected by analog input.  
TTL PORTB<1> data input; Programmable weak pull-up. Disabled when  
(1)  
analog input enabled.  
INT1  
AN10  
1
1
1
I
I
I
ST  
External Interrupt 1 input.  
(1)  
ANA ADC input channel 10.  
C12IN2-  
ANA Comparators C1 and C2 inverting input, channel 2. Analog select is  
shared with ADC.  
P1C  
RB2  
0
0
1
O
O
I
DIG ECCP PWM output (28-pin devices only).  
RB2/INT2/AN8/  
P1B  
DIG LATB<2> data output; not affected by analog input.  
TTL PORTB<2> data input; Programmable weak pull-up. Disabled when  
(1)  
analog input enabled.  
INT2  
AN8  
P1B  
RB3  
1
1
0
0
1
I
I
ST  
External interrupt 2 input.  
(1)  
ANA ADC input channel 8.  
O
O
I
DIG ECCP PWM output (28-pin devices only).  
DIG LATB<3> data output; not affected by analog input.  
TTL PORTB<3> data input; Programmable weak pull-up. Disabled when  
RB3/AN9/C12IN3-/  
CCP2  
(1)  
analog input enabled.  
(1)  
AN9  
1
1
I
I
ANA ADC input channel 9.  
C12IN3-  
ANA Comparators C1 and C2 inverting input, channel 3. Analog select is  
shared with ADC.  
(2)  
CCP2  
0
1
0
1
O
I
DIG CCP2 compare and PWM output.  
ST  
CCP2 capture input  
RB4/KBI0/AN11/  
P1D  
RB4  
O
I
DIG LATB<4> data output; not affected by analog input.  
TTL PORTB<4> data input; Programmable weak pull-up. Disabled when  
(1)  
analog input enabled.  
KBI0  
AN11  
P1D  
1
1
0
0
1
1
x
I
I
TTL Interrupt-on-pin change.  
(1)  
ANA ADC input channel 11.  
O
O
I
DIG ECCP PWM output (28-pin devices only).  
DIG LATB<5> data output.  
RB5/KBI1/PGM  
RB5  
TTL PORTB<5> data input; Programmable weak pull-up.  
TTL Interrupt-on-pin change.  
KBI1  
PGM  
I
I
ST  
Single-Supply Programming mode entry (ICSP™). Enabled by LVP  
Configuration bit; all other pin functions disabled.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Configuration on POR is determined by the PBADEN Configuration bit. Pins are configured as analog inputs by default  
when PBADEN is set and digital inputs when PBADEN is cleared.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is ‘0’. Default assignment is RC1.  
3: All other pin functions are disabled when ICSP or ICD are enabled.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 121  
PIC18F2XK20/4XK20  
TABLE 10-3: PORTB I/O SUMMARY (CONTINUED)  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RB6/KBI2/PGC  
RB6  
0
1
1
x
0
1
1
x
x
O
I
DIG LATB<6> data output.  
TTL PORTB<6> data input; Programmable weak pull-up.  
TTL Interrupt-on-pin change.  
KBI2  
PGC  
RB7  
I
(3)  
I
ST  
Serial execution (ICSP) clock input for ICSP and ICD operation.  
RB7/KBI3/PGD  
O
I
DIG LATB<7> data output.  
TTL PORTB<7> data input; Programmable weak pull-up.  
TTL Interrupt-on-pin change.  
KBI3  
PGD  
I
(3)  
O
I
DIG Serial execution data output for ICSP and ICD operation.  
(3)  
ST  
Serial execution data input for ICSP and ICD operation.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Configuration on POR is determined by the PBADEN Configuration bit. Pins are configured as analog inputs by default  
when PBADEN is set and digital inputs when PBADEN is cleared.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is ‘0’. Default assignment is RC1.  
3: All other pin functions are disabled when ICSP or ICD are enabled.  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
60  
60  
60  
60  
60  
61  
57  
57  
57  
60  
LATB  
PORTB Data Latch Register (Read and Write to Data Latch)  
PORTB Data Direction Control Register  
TRISB  
WPUB  
WPUB7  
IOCB7  
WPUB6  
IOCB6  
WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0  
IOCB  
IOCB5  
IOCB4  
SLRE  
SLRCON  
INTCON  
INTCON2  
INTCON3  
ANSELH  
SLRD  
RBIE  
SLRC  
TMR0IF  
TMR0IP  
SLRB  
INT0IF  
SLRA  
RBIF  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBPU  
INT2IP  
INTEDG0 INTEDG1 INTEDG2  
RBIP  
INT1IP  
INT2IE  
ANS12  
INT1IE  
ANS11  
INT2IF  
ANS9  
INT1IF  
ANS8  
ANS10  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTB.  
DS41303B-page 122  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
EXAMPLE 10-3:  
INITIALIZING PORTC  
10.4 PORTC, TRISC and LATC  
Registers  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., disable the output driver). Clearing a  
TRISC bit (= 0) will make the corresponding PORTC  
pin an output (i.e., enable the output driver and put the  
contents of the output latch on the selected pin).  
CLRF  
LATC  
MOVLW  
MOVWF  
0CFh  
TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register read and write the latched output value for  
PORTC.  
PORTC is multiplexed with several peripheral functions  
(Table 10-5). The pins have Schmitt Trigger input buff-  
ers. RC1 is the default configuration for the CCP2  
peripheral pin. The CCP2 function can be relocated to  
the RB3 pin by clearing the CCP2MX bit of Configura-  
tion Word CONFIG3H. The default state of the  
CCP2MX Configuration bit is ‘1’.  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. The  
EUSART and MSSP peripherals override the TRIS bit  
to make a pin an output or an input, depending on the  
peripheral configuration. Refer to the corresponding  
peripheral section for additional information.  
Note:  
On a Power-on Reset, these pins are con-  
figured as digital inputs.  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 123  
PIC18F2XK20/4XK20  
TABLE 10-5: PORTC I/O SUMMARY  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RC0/T1OSO/  
T13CKI  
RC0  
0
1
x
O
I
DIG  
ST  
LATC<0> data output.  
PORTC<0> data input.  
T1OSO  
O
ANA  
Timer1 oscillator output; enabled when Timer1 oscillator enabled.  
Disables digital I/O.  
T13CKI  
RC1  
1
0
1
x
I
O
I
ST  
DIG  
ST  
Timer1/Timer3 counter input.  
LATC<1> data output.  
RC1/T1OSI/CCP2  
PORTC<1> data input.  
T1OSI  
I
ANA  
Timer1 oscillator input; enabled when Timer1 oscillator enabled.  
Disables digital I/O.  
(1)  
CCP2  
0
1
0
1
0
1
0
O
I
DIG  
ST  
CCP2 compare and PWM output; takes priority over port data.  
CCP2 capture input.  
RC2/CCP1/P1A  
RC2  
CCP1  
P1A  
O
I
DIG  
ST  
LATC<2> data output.  
PORTC<2> data input.  
O
I
DIG  
ST  
ECCP1 compare or PWM output; takes priority over port data.  
ECCP1 capture input.  
O
DIG  
ECCP1 Enhanced PWM output, channel A. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RC3/SCK/SCL  
RC3  
SCK  
SCL  
RC4  
0
1
0
1
0
1
0
1
1
1
1
0
1
0
0
1
1
O
I
DIG  
ST  
LATC<3> data output.  
PORTC<3> data input.  
O
I
DIG  
ST  
SPI clock output (MSSP module); takes priority over port data.  
SPI clock input (MSSP module).  
2
O
I
DIG  
I C™ clock output (MSSP module); takes priority over port data.  
2
2
I C/SMB I C clock input (MSSP module); input type depends on module setting.  
RC4/SDI/SDA  
O
I
DIG  
ST  
LATC<4> data output.  
PORTC<4> data input.  
SDI  
I
ST  
SPI data input (MSSP module).  
2
SDA  
O
I
DIG  
I C data output (MSSP module); takes priority over port data.  
2
2
I C/SMB I C data input (MSSP module); input type depends on module setting.  
RC5/SDO  
RC5  
O
I
DIG  
ST  
LATC<5> data output.  
PORTC<5> data input.  
SDO  
RC6  
O
O
I
DIG  
DIG  
ST  
SPI data output (MSSP module); takes priority over port data.  
LATC<6> data output.  
RC6/TX/CK  
PORTC<6> data input.  
TX  
CK  
O
DIG  
Asynchronous serial transmit data output (USART module); takes  
priority over port data. User must configure as output.  
1
O
DIG  
Synchronous serial clock output (USART module); takes priority over  
port data.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (USART module).  
LATC<7> data output.  
RC7/RX/DT  
RC7  
PORTC<7> data input.  
RX  
DT  
I
ST  
Asynchronous serial receive data input (USART module).  
O
DIG  
Synchronous serial data output (USART module); takes priority over  
port data.  
1
I
ST  
Synchronous serial data input (USART module). User must configure  
as an input.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
2
2
I C/SMB = I C/SMBus input buffer; x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. Alternate assignment is RB3.  
DS41303B-page 124  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
60  
60  
60  
58  
59  
59  
59  
58  
59  
59  
59  
61  
LATC  
PORTC Data Latch Register (Read and Write to Data Latch)  
PORTC Data Direction Control Register  
TRISC  
T1CON  
RD16  
RD16  
CSRC  
SPEN  
WCOL  
P1M1  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
T3CON  
TXSTA  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
CKP  
SENDB  
ADDEN  
SSPM3  
BRGH  
FERR  
TRMT  
OERR  
SSPM1  
TX9D  
RX9D  
RCSTA  
SSPCON1  
CCP1CON  
CCP2CON  
ECCP1AS  
SLRCON  
SSPOV  
P1M0  
SSPEN  
DC1B1  
DC2B1  
SSPM2  
SSPM0  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
SLRE SLRD SLRC SLRB SLRA  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 125  
PIC18F2XK20/4XK20  
PORTD can also be configured as an 8-bit wide micro-  
processor port (Parallel Slave Port) by setting control  
bit, PSPMODE (TRISE<4>). In this mode, the input  
buffers are TTL. See Section 10.9 “Parallel Slave  
Port” for additional information on the Parallel Slave  
Port (PSP).  
10.5 PORTD, TRISD and LATD  
Registers  
Note:  
PORTD is only available on 40/44-pin  
devices.  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., disable the output driver). Clearing a  
TRISD bit (= 0) will make the corresponding PORTD  
pin an output (i.e., enable the output driver and put the  
contents of the output latch on the selected pin).  
Note:  
When the enhanced PWM mode is used  
with either dual or quad outputs, the PSP  
functions of PORTD are automatically  
disabled.  
EXAMPLE 10-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
The Data Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register read and write the latched output value for  
PORTD.  
CLRF  
LATD  
All pins on PORTD are implemented with Schmitt Trig-  
ger input buffers. Each pin is individually configurable  
as an input or output.  
MOVLW  
MOVWF  
0CFh  
Three of the PORTD pins are multiplexed with outputs  
P1B, P1C and P1D of the enhanced CCP module. The  
operation of these additional PWM output pins is  
covered in greater detail in Section 16.0 “Enhanced  
Capture/Compare/PWM (ECCP) Module”.  
TRISD  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
DS41303B-page 126  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 10-7: PORTD I/O SUMMARY  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RD0/PSP0  
RD0  
0
1
x
x
0
1
x
x
0
1
x
x
0
1
x
x
0
1
x
x
0
1
x
x
0
O
I
DIG  
ST  
LATD<0> data output.  
PORTD<0> data input.  
PSP0  
RD1  
O
I
DIG  
TTL  
DIG  
ST  
PSP read data output (LATD<0>); takes priority over port data.  
PSP write data input.  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5/P1B  
O
I
LATD<1> data output.  
PORTD<1> data input.  
PSP1  
RD2  
O
I
DIG  
TTL  
DIG  
ST  
PSP read data output (LATD<1>); takes priority over port data.  
PSP write data input.  
O
I
LATD<2> data output.  
PORTD<2> data input.  
PSP2  
RD3  
O
I
DIG  
TTL  
DIG  
ST  
PSP read data output (LATD<2>); takes priority over port data.  
PSP write data input.  
O
I
LATD<3> data output.  
PORTD<3> data input.  
PSP3  
RD4  
O
I
DIG  
TTL  
DIG  
ST  
PSP read data output (LATD<3>); takes priority over port data.  
PSP write data input.  
O
I
LATD<4> data output.  
PORTD<4> data input.  
PSP4  
RD5  
O
I
DIG  
TTL  
DIG  
ST  
PSP read data output (LATD<4>); takes priority over port data.  
PSP write data input.  
O
I
LATD<5> data output.  
PORTD<5> data input.  
PSP5  
P1B  
O
I
DIG  
TTL  
DIG  
PSP read data output (LATD<5>); takes priority over port data.  
PSP write data input.  
O
ECCP1 Enhanced PWM output, channel B; takes priority over port and  
PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RD6/PSP6/P1C  
RD6  
PSP6  
P1C  
0
1
x
x
0
O
I
DIG  
ST  
LATD<6> data output.  
PORTD<6> data input.  
O
I
DIG  
TTL  
DIG  
PSP read data output (LATD<6>); takes priority over port data.  
PSP write data input.  
O
ECCP1 Enhanced PWM output, channel C; takes priority over port and  
PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RD7/PSP7/P1D  
RD7  
PSP7  
P1D  
0
1
x
x
0
O
I
DIG  
ST  
LATD<7> data output.  
PORTD<7> data input.  
O
I
DIG  
TTL  
DIG  
PSP read data output (LATD<7>); takes priority over port data.  
PSP write data input.  
O
ECCP1 Enhanced PWM output, channel D; takes priority over port and  
PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; x= Don’t care  
(TRIS bit does not affect port direction or is overridden for this option).  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 127  
PIC18F2XK20/4XK20  
TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
60  
60  
60  
60  
59  
61  
PORTD Data Latch Register (Read and Write to Data Latch)  
PORTD Data Direction Control Register  
TRISD  
TRISE  
IBF  
P1M1  
OBF  
P1M0  
IBOV  
DC1B1  
PSPMODE  
DC1B0  
TRISE2  
TRISE1  
TRISE0  
CCP1CON  
SLRCON  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
SLRD SLRC SLRB SLRA  
SLRE  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTD.  
DS41303B-page 128  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The fourth pin of PORTE (MCLR/VPP/RE3) is an input  
only pin. Its operation is controlled by the MCLRE  
10.6 PORTE, TRISE and LATE  
Registers  
Configuration bit. When selected as  
a port pin  
Depending on the particular PIC18F2XK20/4XK20  
device selected, PORTE is implemented in two  
different ways.  
(MCLRE = 0), it functions as a digital input only pin; as  
such, it does not have TRIS or LAT bits associated with its  
operation. Otherwise, it functions as the device’s Master  
Clear input. In either configuration, RE3 also functions as  
the programming voltage input during programming.  
10.6.1  
PORTE IN PIC18F4XK20 DEVICES  
For PIC18F4XK20 devices, PORTE is a 4-bit wide port.  
Three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/  
AN7) are individually configurable as inputs or outputs.  
These pins have Schmitt Trigger input buffers. When  
selected as an analog input, these pins will read as ‘0’s.  
Note:  
On a Power-on Reset, RE3 is enabled as  
digital input only if Master Clear  
functionality is disabled.  
a
EXAMPLE 10-5:  
INITIALIZING PORTE  
The corresponding data direction register is TRISE.  
Setting a TRISE bit (= 1) will make the corresponding  
PORTE pin an input (i.e., disable the output driver).  
Clearing a TRISE bit (= 0) will make the corresponding  
PORTE pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
CLRF  
PORTE  
LATE  
1Fh  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
MOVLW  
ANDWF  
MOVLW  
; Configure analog pins  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
ANSEL,w; for digital only  
05h  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISE  
; Set RE<0> as input  
; RE<1> as output  
; RE<2> as input  
Note:  
On a Power-on Reset, RE<2:0> are  
configured as analog inputs.  
The upper four bits of the TRISE register also control  
the operation of the Parallel Slave Port. Their operation  
is explained in Register 10-1.  
10.6.2  
PORTE IN PIC18F2XK20 DEVICES  
For PIC18F2XK20 devices, PORTE is only available  
when Master Clear functionality is disabled  
(MCLR = 0). In these cases, PORTE is a single bit,  
input only port comprised of RE3 only. The pin operates  
as previously described.  
The Data Latch register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register, read and write the latched output value for  
PORTE.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 129  
PIC18F2XK20/4XK20  
REGISTER 10-1: TRISE: PORTE/PSP CONTROL REGISTER (PIC18F4XK20 DEVICES ONLY)  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
IBF: Input Buffer Full Status bit  
1= A word has been received and waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read (must be cleared by software)  
0= No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TRISE2: RE2 Direction Control bit  
1= Input  
0= Output  
bit 1  
bit 0  
TRISE1: RE1 Direction Control bit  
1= Input  
0= Output  
TRISE0: RE0 Direction Control bit  
1= Input  
0= Output  
DS41303B-page 130  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 10-9: PORTE I/O SUMMARY  
TRIS  
Setting  
I/O  
Type  
Pin  
Function  
I/O  
Description  
RE0/RD/AN5  
RE0  
0
1
1
1
0
1
1
1
0
1
1
1
O
I
DIG  
ST  
LATE<0> data output; not affected by analog input.  
PORTE<0> data input; disabled when analog input enabled.  
PSP read enable input (PSP enabled).  
RD  
I
TTL  
ANA  
DIG  
ST  
AN5  
RE1  
I
A/D input channel 5; default input configuration on POR.  
LATE<1> data output; not affected by analog input.  
PORTE<1> data input; disabled when analog input enabled.  
PSP write enable input (PSP enabled).  
RE1/WR/AN6  
RE2/CS/AN7  
MCLR/VPP/  
O
I
WR  
AN6  
RE2  
I
TTL  
ANA  
DIG  
ST  
I
A/D input channel 6; default input configuration on POR.  
LATE<2> data output; not affected by analog input.  
PORTE<2> data input; disabled when analog input enabled.  
PSP write enable input (PSP enabled).  
O
I
CS  
AN7  
I
TTL  
ANA  
ST  
I
A/D input channel 7; default input configuration on POR.  
MCLR  
I
External Master Clear input; enabled when MCLRE Configuration bit is  
set.  
(1,2)  
RE3  
VPP  
I
I
ANA  
ST  
High-voltage detection; used for ICSP™ mode entry detection. Always  
available, regardless of pin mode.  
(2)  
RE3  
PORTE<3> data input; enabled when MCLRE Configuration bit is  
clear.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: RE3 is available on both PIC18F2XK20 and PIC18F4XK20 devices. All other PORTE pins are only implemented on  
PIC18F4XK20 devices.  
2: RE3 does not have a corresponding TRIS bit to control data direction.  
TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
PORTE  
LATE(2)  
TRISE  
RE3(1,2)  
RE2  
RE1  
RE0  
60  
60  
60  
61  
60  
LATE Data Output Register  
IBF  
OBF  
IBOV  
PSPMODE  
SLRE  
ANS4  
TRISE2  
SLRC  
ANS2  
TRISE1  
SLRB  
TRISE0  
SLRA  
SLRCON  
ANSEL  
SLRD  
ANS3  
ANS7  
ANS6  
ANS5  
ANS1  
ANS0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTE.  
Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0).  
2: RE3 is the only PORTE bit implemented on both PIC18F2XK20 and PIC18F2XK20 devices. All other bits  
are implemented only when PORTE is implemented (i.e., PIC18F4XK20 devices).  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 131  
PIC18F2XK20/4XK20  
buffer and cause all reads of that pin to return ‘0’ while  
allowing analog functions of that pin to operate  
correctly.  
10.7 Port Analog Control  
Some port pins are multiplexed with analog functions  
such as the Analog-to-Digital Converter and compara-  
tors. When these I/O pins are to be used as analog  
inputs it is necessary to disable the digital input buffer  
to avoid excessive current caused by improper biasing  
of the digital input. Individual control of the digital input  
buffers on pins which share analog functions is pro-  
vided by the ANSEL and ANSELH registers. Setting an  
ANSx bit high will disable the associated digital input  
The state of the ANSx bits has no affect on digital  
output functions. A pin with the associated TRISx bit  
clear and ANSx bit set will still operate as a digital  
output but the input mode will be analog. This can  
cause unexpected behavior when performing read-  
modify-write operations on the affected port.  
REGISTER 10-2: ANSEL: ANALOG SELECT REGISTER 1  
R/W-1  
ANS7(1)  
R/W-1  
ANS6(1)  
R/W-1  
ANS5(1)  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ANS7: RE2 Analog Select Control bit(1)  
1= Digital input buffer of RE2 is disabled  
0= Digital input buffer of RE2 is enabled  
ANS6: RE1 Analog Select Control bit(1)  
1= Digital input buffer of RE1 is disabled  
0= Digital input buffer of RE1 is enabled  
ANS5: RE0 Analog Select Control bit(1)  
1= Digital input buffer of RE0 is disabled  
0= Digital input buffer of RE0 is enabled  
ANS4: RA5 Analog Select Control bit  
1= Digital input buffer of RA5 is disabled  
0= Digital input buffer of RA5 is enabled  
ANS3: RA3 Analog Select Control bit  
1= Digital input buffer of RA3 is disabled  
0= Digital input buffer of RA3 is enabled  
ANS2: RA2 Analog Select Control bit  
1= Digital input buffer of RA2 is disabled  
0= Digital input buffer of RA2 is enabled  
ANS1: RA1 Analog Select Control bit  
1= Digital input buffer of RA1 is disabled  
0= Digital input buffer of RA1 is enabled  
ANS0: RA0 Analog Select Control bit  
1= Digital input buffer of RA0 is disabled  
0= Digital input buffer of RA0 is enabled  
Note 1: These bits are not implemented on PIC18F2XK20 devices.  
DS41303B-page 132  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 10-3: ANSELH: ANALOG SELECT REGISTER 2  
U-0  
U-0  
U-0  
R/W-1(1)  
ANS12  
R/W-1(1)  
ANS11  
R/W-1(1)  
ANS10  
R/W-1(1)  
ANS9  
R/W-1(1)  
ANS8  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
ANS12: RB0 Analog Select Control bit  
1= Digital input buffer of RB0 is disabled  
0= Digital input buffer of RB0 is enabled  
bit 3  
bit 2  
bit 1  
bit 0  
ANS11: RB4 Analog Select Control bit  
1= Digital input buffer of RB4 is disabled  
0= Digital input buffer of RB4 is enabled  
ANS10: RB1 Analog Select Control bit  
1= Digital input buffer of RB1 is disabled  
0= Digital input buffer of RB1 is enabled  
ANS9: RB3 Analog Select Control bit  
1= Digital input buffer of RB3 is disabled  
0= Digital input buffer of RB3 is enabled  
ANS8: RB2 Analog Select Control bit  
1= Digital input buffer of RB2 is disabled  
0= Digital input buffer of RB2 is enabled  
Note 1: Default state is determined by the PBADEN bit of CONFIG3H. The default state is ‘0’ When  
PBADEN = ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 133  
PIC18F2XK20/4XK20  
10.8 Port Slew Rate Control  
The output slew rate of each port is programmable to  
select either the standard transition rate or a reduced  
transition rate of 0.1 times the standard to minimize  
EMI. The reduced transition time is the default slew  
rate for all ports.  
REGISTER 10-4: SLRCON: SLEW RATE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-1  
SLRE(1)  
R/W-1  
SLRD(1)  
R/W-1  
SLRC  
R/W-1  
SLRB  
R/W-1  
SLRA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
SLRE: PORTE Slew Rate Control bit(1)  
1= All outputs on PORTE slew at 0.1 times the standard rate  
0= All outputs on PORTE slew at the standard rate  
bit 3  
bit 2  
bit 1  
bit 0  
SLRD: PORTD Slew Rate Control bit(1)  
1= All outputs on PORTD slew at 0.1 times the standard rate  
0= All outputs on PORTD slew at the standard rate  
SLRC: PORTC Slew Rate Control bit  
1= All outputs on PORTC slew at 0.1 times the standard rate  
0= All outputs on PORTC slew at the standard rate  
SLRB: PORTB Slew Rate Control bit  
1= All outputs on PORTB slew at 0.1 times the standard rate  
0= All outputs on PORTB slew at the standard rate  
SLRA: PORTA Slew Rate Control bit  
1= All outputs on PORTA slew at 0.1 times the standard rate(2)  
0= All outputs on PORTA slew at the standard rate  
Note 1: These bits are not implemented on PIC18F2XK20 devices.  
2: The slew rate of RA6 defaults to standard rate when the pin is used as CLKOUT.  
DS41303B-page 134  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The timing for the control signals in Write and Read  
modes is shown in Figure 10-3 and Figure 10-4,  
respectively.  
10.9 Parallel Slave Port  
Note:  
The Parallel Slave Port is only available on  
PIC18F4XK20 devices.  
FIGURE 10-2:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE PORT)  
In addition to its function as a general I/O port, PORTD  
can also operate as an 8-bit wide Parallel Slave Port  
(PSP) or microprocessor port. PSP operation is  
controlled by the 4 upper bits of the TRISE register  
(Register 10-1). Setting control bit, PSPMODE  
(TRISE<4>), enables PSP operation as long as the  
enhanced CCP module is not operating in dual output  
or quad output PWM mode. In Slave mode, the port is  
asynchronously readable and writable by the external  
world.  
One bit of PORTD  
Data Bus  
D
Q
RDx pin  
WR LATD  
or  
WR PORTD  
CK  
Data Latch  
TTL  
The PSP can directly interface to an 8-bit  
microprocessor data bus. The external microprocessor  
can read or write the PORTD latch as an 8-bit latch.  
Setting the control bit, PSPMODE, enables the PORTE  
I/O pins to become control inputs for the microprocessor  
port. When set, port pin RE0 is the RD input, RE1 is the  
WR input and RE2 is the CS (Chip Select) input. For this  
functionality, the corresponding data direction bits of the  
TRISE register (TRISE<2:0>) must be configured as  
inputs (set) and the ANSEL<7:5> bits must be cleared.  
Q
D
RD PORTD  
RD LATD  
EN  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low and ends when either are  
detected high. The PSPIF and IBF flag bits are both set  
when the write ends.  
PORTE Pins  
Read  
RD  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The data in PORTD is read  
out and the OBF bit is clear. If the user writes new data  
to PORTD to set OBF, the data is immediately read out;  
however, the OBF bit is not set.  
TTL  
Chip Select  
TTL  
CS  
Write  
WR  
TTL  
When either the CS or RD lines are detected high, the  
PORTD pins return to the input state and the PSPIF bit  
is set. User applications should wait for PSPIF to be set  
before servicing the PSP; when this happens, the IBF  
and OBF bits can be polled and the appropriate action  
taken.  
Note:  
I/O pins have diode protection to VDD and VSS.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 135  
PIC18F2XK20/4XK20  
FIGURE 10-3:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 10-4:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 10-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
RE0  
60  
60  
60  
60  
60  
60  
61  
57  
60  
60  
60  
60  
PORTD Data Latch Register (Read and Write to Data Latch)  
PORTD Data Direction Control Register  
TRISD  
PORTE  
LATE  
RE3  
RE2  
RE1  
LATE Data Output bits  
TRISE  
SLRCON  
INTCON  
PIR1  
IBF  
OBF  
IBOV  
PSPMODE  
SLRE  
INT0IE  
TXIF  
TRISE2  
SLRC  
TRISE1  
SLRB  
TRISE0  
SLRA  
SLRD  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ANS3  
GIE/GIEH PEIE/GIEL TMR0IF  
TMR0IF  
CCP1IF  
INT0IF  
TMR2IF  
RBIF  
PSPIF  
PSPIE  
PSPIP  
ANS7  
ADIF  
ADIE  
ADIP  
ANS6  
RCIF  
RCIE  
RCIP  
ANS5  
TMR1IF  
PIE1  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TXIP  
ANSEL  
ANS4  
ANS2  
ANS1  
ANS0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
DS41303B-page 136  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The T0CON register (Register 11-1) controls all  
aspects of the module’s operation, including the  
prescale selection. It is both readable and writable.  
11.0 TIMER0 MODULE  
The Timer0 module incorporates the following features:  
• Software selectable operation as a timer or  
counter in both 8-bit or 16-bit modes  
A simplified block diagram of the Timer0 module in 8-bit  
mode is shown in Figure 11-1. Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
• Readable and writable registers  
• Dedicated 8-bit, software programmable  
prescaler  
• Selectable clock source (internal or external)  
• Edge select for external clock  
• Interrupt-on-overflow  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
TMR0ON  
T08BIT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS<2:0>: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 137  
PIC18F2XK20/4XK20  
11.1 Timer0 Operation  
11.2 Timer0 Reads and Writes in  
16-Bit Mode  
Timer0 can operate as either a timer or a counter; the  
mode is selected with the T0CS bit of the T0CON  
register. In Timer mode (T0CS = 0), the module  
increments on every clock by default unless a different  
prescaler value is selected (see Section 11.3  
“Prescaler”). Timer0 incrementing is inhibited for two  
instruction cycles following a TMR0 register write. The  
user can work around this by adjusting the value written  
to the TMR0 register to compensate for the anticipated  
missing increments.  
TMR0H is not the actual high byte of Timer0 in 16-bit  
mode; it is actually a buffered version of the real high  
byte of Timer0 which is neither directly readable nor  
writable (refer to Figure 11-2). TMR0H is updated with  
the contents of the high byte of Timer0 during a read of  
TMR0L. This provides the ability to read all 16 bits of  
Timer0 without the need to verify that the read of the  
high and low byte were valid. Invalid reads could  
otherwise occur due to a rollover between successive  
reads of the high and low byte.  
The Counter mode is selected by setting the T0CS bit  
(= 1). In this mode, Timer0 increments either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit, T0SE of the T0CON register; clearing this bit  
selects the rising edge. Restrictions on the external  
clock input are discussed below.  
Similarly, a write to the high byte of Timer0 must also  
take place through the TMR0H Buffer register. Writing  
to TMR0H does not directly affect Timer0. Instead, the  
high byte of Timer0 is updated with the contents of  
TMR0H when a write occurs to TMR0L. This allows all  
16 bits of Timer0 to be updated at once.  
An external clock source can be used to drive Timer0;  
however, it must meet certain requirements (see  
Table 26-10) to ensure that the external clock can be  
synchronized with the internal phase clock (TOSC).  
There is a delay between synchronization and the  
onset of incrementing the timer/counter.  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM (8-BIT MODE)  
FOSC/4  
0
1
0
1
Set  
TMR0IF  
on Overflow  
Sync with  
Internal  
Clocks  
TMR0L  
8
Programmable  
Prescaler  
T0CKI pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
T0PS<2:0>  
PSA  
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS41303B-page 138  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM (16-BIT MODE)  
FOSC/4  
0
1
0
1
Sync with  
Internal  
Clocks  
Set  
TMR0IF  
on Overflow  
TMR0  
High Byte  
TMR0L  
Programmable  
Prescaler  
T0CKI pin  
8
(2 TCY Delay)  
T0SE  
T0CS  
3
Read TMR0L  
Write TMR0L  
T0PS<2:0>  
PSA  
8
8
TMR0H  
8
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
11.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.3 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not directly readable or writable;  
its value is set by the PSA and T0PS<2:0> bits of the  
T0CON register which determine the prescaler  
assignment and prescale ratio.  
The prescaler assignment is fully under software  
control and can be changed “on-the-fly” during program  
execution.  
11.4 Timer0 Interrupt  
Clearing the PSA bit assigns the prescaler to the  
Timer0 module. When the prescaler is assigned,  
prescale values from 1:2 through 1:256 in integer  
power-of-2 increments are selectable.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode, or from  
FFFFh to 0000h in 16-bit mode. This overflow sets the  
TMR0IF flag bit. The interrupt can be masked by clear-  
ing the TMR0IE bit of the INTCON register. Before  
re-enabling the interrupt, the TMR0IF bit must be  
cleared by software in the Interrupt Service Routine.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, etc.) clear the prescaler count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
Since Timer0 is shut down in Sleep mode, the TMR0  
interrupt cannot awaken the processor from Sleep.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
Timer0 Register, Low Byte  
Timer0 Register, High Byte  
58  
58  
57  
58  
60  
TMR0H  
INTCON  
T0CON  
TRISA  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
T0SE  
RA4  
RBIE  
PSA  
RA3  
TMR0IF  
T0PS2  
RA2  
INT0IF  
T0PS1  
RA1  
RBIF  
T0PS0  
RA0  
TMR0ON  
RA7(1)  
T08BIT  
RA6(1)  
T0CS  
RA5  
Legend: Shaded cells are not used by Timer0.  
Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary  
oscillator modes. When disabled, these bits read as ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 139  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 140  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
A simplified block diagram of the Timer1 module is  
shown in Figure 12-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 12-2.  
12.0 TIMER1 MODULE  
The Timer1 timer/counter module incorporates the  
following features:  
The module incorporates its own low-power oscillator  
to provide an additional clocking option. The Timer1  
oscillator can also be used as a low-power clock source  
for the microcontroller in power-managed operation.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR1H  
and TMR1L)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
• Selectable internal or external clock source and  
Timer1 oscillator options  
• Interrupt-on-overflow  
Timer1 is controlled through the T1CON Control  
register (Register 12-1). It also contains the Timer1  
Oscillator Enable bit (T1OSCEN). Timer1 can be  
enabled or disabled by setting or clearing control bit,  
TMR1ON of the T1CON register.  
• Reset on CCP Special Event Trigger  
• Device clock status flag (T1RUN)  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of TImer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= Main system clock is derived from Timer1 oscillator  
0= Main system clock is derived from another source  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 141  
PIC18F2XK20/4XK20  
instruction cycle (FOSC/4). When the bit is set, Timer1  
increments on every rising edge of either the Timer1  
external clock input or the Timer1 oscillator, if enabled.  
12.1 Timer1 Operation  
Timer1 can operate in one of the following modes:  
• Timer  
When the Timer1 oscillator is enabled, the digital  
circuitry associated with the RC1/T1OSI and  
RC0/T1OSO/T13CKI pins is disabled. This means the  
values of TRISC<1:0> are ignored and the pins are  
read as ‘0’.  
• Synchronous Counter  
• Asynchronous Counter  
The operating mode is determined by the clock select  
bit, TMR1CS of the T1CON register. When TMR1CS is  
cleared (= 0), Timer1 increments on every internal  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
On/Off  
T1OSO/T13CKI  
T1OSI  
1
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T1OSO/T13CKI  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
8
Read TMR1L  
Write TMR1L  
8
8
TMR1H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS41303B-page 142  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 12-1: CAPACITOR SELECTION FOR  
THE TIMER OSCILLATOR  
12.2 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit of the  
T1CON register is set, the address for TMR1H is  
mapped to a buffer register for the high byte of Timer1.  
A read from TMR1L will load the contents of the high  
byte of Timer1 into the Timer1 high byte buffer. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without the need to determine  
whether a read of the high byte, followed by a read of  
the low byte, has become invalid due to a rollover or  
carry between reads.  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
27 pF(1)  
27 pF(1)  
Note 1: Microchip suggests these values only as a  
starting point in validating the oscillator  
circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external  
Writing to TMR1H does not directly affect Timer1.  
Instead, the high byte of Timer1 is updated with the  
contents of TMR1H when a write occurs to TMR1L.  
This allows all 16 bits of Timer1 to be updated at once.  
components.  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
4: Capacitor values are for design guidance  
only.  
12.3.1  
USING TIMER1 AS A  
CLOCK SOURCE  
The Timer1 oscillator is also available as a clock source  
in power-managed modes. By setting the clock select  
bits, SCS<1:0> of the OSCCON register, to ‘01’, the  
device switches to SEC_RUN mode; both the CPU and  
peripherals are clocked from the Timer1 oscillator. If the  
IDLEN bit of the OSCCON register is cleared and a  
SLEEP instruction is executed, the device enters  
SEC_IDLE mode. Additional details are available in  
Section 3.0 “Power-Managed Modes”.  
12.3 Timer1 Oscillator  
An on-chip crystal oscillator circuit is incorporated  
between pins T1OSI (input) and T1OSO (amplifier  
output). It is enabled by setting the Timer1 Oscillator  
Enable bit, T1OSCEN of the T1CON register. The  
oscillator is a low-power circuit rated for 32 kHz crystals.  
It will continue to run during all power-managed modes.  
The circuit for a typical LP oscillator is shown in  
Figure 12-3. Table 12-1 shows the capacitor selection  
for the Timer1 oscillator.  
Whenever the Timer1 oscillator is providing the clock  
source, the Timer1 system clock status flag, T1RUN of  
the T1CON register, is set. This can be used to deter-  
mine the controller’s current clocking mode. It can also  
indicate which clock source is currently being used by  
the Fail-Safe Clock Monitor. If the Clock Monitor is  
enabled and the Timer1 oscillator fails while providing  
the clock, polling the T1RUN bit will indicate whether  
the clock is being provided by the Timer1 oscillator or  
another source.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 12-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
C1  
27 pF  
PIC® MCU  
T1OSI  
XTAL  
32.768 kHz  
T1OSO  
C2  
27 pF  
Note:  
See the Notes with Table 12-1 for additional  
information about capacitor selection.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 143  
PIC18F2XK20/4XK20  
12.3.2  
LOW-POWER TIMER1 OPTION  
12.4 Timer1 Interrupt  
The Timer1 oscillator can operate at two distinct levels  
of power consumption based on device configuration.  
When the LPT1OSC Configuration bit of the  
CONFIG3H register is set, the Timer1 oscillator oper-  
ates in a low-power mode. When LPT1OSC is not set,  
Timer1 operates at a higher power level. Power con-  
sumption for a particular mode is relatively constant,  
regardless of the device’s operating mode. The default  
Timer1 configuration is the higher power mode.  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow,  
which is latched in the TMR1IF interrupt flag bit of the  
PIR1 register. This interrupt can be enabled or disabled  
by setting or clearing the TMR1IE Interrupt Enable bit  
of the PIE1 register.  
12.5 Resetting Timer1 Using the CCP  
Special Event Trigger  
As the low-power Timer1 mode tends to be more  
sensitive to interference, high noise environments may  
cause some oscillator instability. The low-power option is,  
therefore, best suited for low noise applications where  
power conservation is an important design consideration.  
If either of the CCP modules is configured to use Timer1  
and generate a Special Event Trigger in Compare mode  
(CCP1M<3:0> or CCP2M<3:0> = 1011), this signal will  
reset Timer1. The trigger from CCP2 will also start an  
A/D conversion if the A/D module is enabled (see  
Section 15.3.4 “Special Event Trigger” for more  
information).  
12.3.3  
TIMER1 OSCILLATOR LAYOUT  
CONSIDERATIONS  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low-power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
The module must be configured as either a timer or a  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRH:CCPRL register pair  
effectively becomes a period register for Timer1.  
The oscillator circuit, shown in Figure 12-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
special Event Trigger, the write operation will take  
precedence.  
If a high-speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in Output Compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 12-4, may be helpful when used on a  
single-sided PCB or in addition to a ground plane.  
Note:  
The Special Event Triggers from the CCP2  
module will not set the TMR1IF interrupt  
flag bit of the PIR1 register.  
FIGURE 12-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
VDD  
VSS  
OSC1  
OSC2  
RC0  
RC1  
RC2  
Note: Not drawn to scale.  
DS41303B-page 144  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Since the register pair is 16 bits wide, a 32.768 kHz  
clock source will take 2 seconds to count up to over-  
flow. To force the overflow at the required one-second  
intervals, it is necessary to preload it; the simplest  
method is to set the MSb of TMR1H with a BSFinstruc-  
tion. Note that the TMR1L register is never preloaded  
or altered; doing so may introduce cumulative error  
over many cycles.  
12.6 Using Timer1 as a Real-Time Clock  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.3 “Timer1 Oscillator”  
above) gives users the option to include RTC function-  
ality to their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1), as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow triggers the interrupt and calls  
the routine, which increments the seconds counter by  
one; additional counters for minutes and hours are  
incremented on overflows of the less significant  
counters.  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
80h  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
secs  
; No, done  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
mins  
; No, done  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
hours  
; No, done  
; Reset hours  
; Done  
hours  
RETURN  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 145  
PIC18F2XK20/4XK20  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
57  
60  
60  
60  
58  
58  
58  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
TMR1H  
T1CON  
Timer1 Register, Low Byte  
Timer1 Register, High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: Shaded cells are not used by the Timer1 module.  
Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.  
DS41303B-page 146  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
In normal operation, TMR2 is incremented from 00h on  
each clock (FOSC/4). A 4-bit counter/prescaler on the  
clock input gives direct input, divide-by-4 and  
divide-by-16 prescale options; these are selected by  
the prescaler control bits, T2CKPS<1:0> of the T2CON  
register. The value of TMR2 is compared to that of the  
period register, PR2, on each clock cycle. When the  
two values match, the comparator generates a match  
signal as the timer output. This signal also resets the  
value of TMR2 to 00h on the next cycle and drives the  
output counter/postscaler (see Section 13.2 “Timer2  
Interrupt”).  
The Timer2 module timer incorporates the following  
features:  
• 8-bit timer and period registers (TMR2 and PR2,  
respectively)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4 and  
1:16)  
• Software programmable postscaler (1:1 through  
1:16)  
• Interrupt on TMR2-to-PR2 match  
• Optional use as the shift clock for the MSSP  
module  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset, whereas the PR2 register initializes to  
FFh. Both the prescaler and postscaler counters are  
cleared on the following events:  
The module is controlled through the T2CON register  
(Register 13-1), which enables or disables the timer  
and configures the prescaler and postscaler. Timer2  
can be shut off by clearing control bit, TMR2ON of the  
T2CON register, to minimize power consumption.  
• a write to the TMR2 register  
• a write to the T2CON register  
A simplified block diagram of the module is shown in  
Figure 13-1.  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T2OUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 147  
PIC18F2XK20/4XK20  
13.2 Timer2 Interrupt  
13.3 Timer2 Output  
Timer2 can also generate an optional device interrupt.  
The Timer2 output signal (TMR2-to-PR2 match) pro-  
vides the input for the 4-bit output counter/postscaler.  
This counter generates the TMR2 match interrupt flag  
which is latched in TMR2IF of the PIR1 register. The  
interrupt is enabled by setting the TMR2 Match Inter-  
rupt Enable bit, TMR2IE of the PIE1 register.  
The unscaled output of TMR2 is available primarily to  
the CCP modules, where it is used as a time base for  
operations in PWM mode.  
Timer2 can be optionally used as the shift clock source  
for the MSSP module operating in SPI mode. Addi-  
tional information is provided in Section 17.0 “Master  
Synchronous Serial Port (MSSP) Module”.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, T2OUTPS<3:0> of the T2CON register.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
4
1:1 to 1:16  
Set TMR2IF  
Postscaler  
T2OUTPS<3:0>  
T2CKPS<1:0>  
2
TMR2 Output  
(to PWM or MSSP)  
TMR2/PR2  
Match  
Reset  
1:1, 1:4, 1:16  
Prescaler  
PR2  
FOSC/4  
Comparator  
TMR2  
8
8
8
Internal Data Bus  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
57  
60  
60  
60  
58  
58  
58  
PIR1  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
TXIE  
TXIP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.  
DS41303B-page 148  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
A simplified block diagram of the Timer3 module is  
shown in Figure 14-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 14-2.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter incorporates these  
features:  
The Timer3 module is controlled through the T3CON  
register (Register 14-1). It also selects the clock source  
options for the CCP modules (see Section 15.1.1  
“CCP Modules and Timer Resources” for more  
information).  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR3H  
and TMR3L)  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt-on-overflow  
• Module Reset on CCP Special Event Trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6,3  
T3CCP<2:1>: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the capture/compare clock source for CCP1 and CP2  
01= Timer3 is the capture/compare clock source for CCP2 and  
Timer1 is the capture/compare clock source for CCP1  
00= Timer1 is the capture/compare clock source for CCP1 and CP2  
bit 5-4  
bit 2  
T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the device clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first  
falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 149  
PIC18F2XK20/4XK20  
The operating mode is determined by the clock select  
bit, TMR3CS of the T3CON register. When TMR3CS is  
cleared (= 0), Timer3 increments on every internal  
instruction cycle (FOSC/4). When the bit is set, Timer3  
increments on every rising edge of the Timer1 external  
clock input or the Timer1 oscillator, if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of three modes:  
• Timer  
• Synchronous Counter  
• Asynchronous Counter  
As with Timer1, the digital circuitry associated with the  
RC1/T1OSI and RC0/T1OSO/T13CKI pins is disabled  
when the Timer1 oscillator is enabled. This means the  
values of TRISC<1:0> are ignored and the pins are  
read as ‘0’.  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T1OSO/T13CKI  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
TMR3CS  
Timer3  
On/Off  
T3CKPS<1:0>  
T3SYNC  
TMR3ON  
CCP1/CCP2 Special Event Trigger  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
CCP1/CCP2 Select from T3CON<6,3>  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS41303B-page 150  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T13CKI/T1OSO  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T3CKPS<1:0>  
T3SYNC  
Timer3  
On/Off  
TMR3CS  
TMR3ON  
CCP1/CCP2 Special Event Trigger  
CCP1/CCP2 Select from T3CON<6,3>  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
on Overflow  
8
Read TMR1L  
Write TMR1L  
8
8
TMR3H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
14.2 Timer3 16-Bit Read/Write Mode  
14.3 Using the Timer1 Oscillator as the  
Timer3 Clock Source  
Timer3 can be configured for 16-bit reads and writes  
(see Figure 14-2). When the RD16 control bit of the  
T3CON register is set, the address for TMR3H is  
mapped to a buffer register for the high byte of Timer3.  
A read from TMR3L will load the contents of the high  
byte of Timer3 into the Timer3 High Byte Buffer register.  
This provides the user with the ability to accurately read  
all 16 bits of Timer1 without having to determine  
whether a read of the high byte, followed by a read of  
the low byte, has become invalid due to a rollover  
between reads.  
The Timer1 internal oscillator may be used as the clock  
source for Timer3. The Timer1 oscillator is enabled by  
setting the T1OSCEN bit of the T1CON register. To use  
it as the Timer3 clock source, the TMR3CS bit must  
also be set. As previously noted, this also configures  
Timer3 to increment on every rising edge of the  
oscillator source.  
The Timer1 oscillator is described in Section 12.0  
“Timer1 Module”.  
A write to the high byte of Timer3 must also take place  
through the TMR3H Buffer register. The Timer3 high  
byte is updated with the contents of TMR3H when a  
write occurs to TMR3L. This allows a user to write all  
16 bits to both the high and low bytes of Timer3 at once.  
14.4 Timer3 Interrupt  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and overflows to 0000h. The  
Timer3 interrupt, if enabled, is generated on overflow  
and is latched in interrupt flag bit, TMR3IF of the PIR2  
register. This interrupt can be enabled or disabled by  
setting or clearing the Timer3 Interrupt Enable bit,  
TMR3IE of the PIE2 register.  
The high byte of Timer3 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer3 High Byte Buffer register.  
Writes to TMR3H do not clear the Timer3 prescaler.  
The prescaler is only cleared on writes to TMR3L.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 151  
PIC18F2XK20/4XK20  
14.5 Resetting Timer3 Using the CCP  
Special Event Trigger  
If either of the CCP modules is configured to use  
Timer3 and to generate a Special Event Trigger  
in Compare mode (CCP1M<3:0> or CCP2M<3:0> =  
1011), this signal will reset Timer3. It will also start an  
A/D conversion if the A/D module is enabled (see  
Section 15.3.4 “Special Event Trigger” for more  
information).  
The module must be configured as either a timer or  
synchronous counter to take advantage of this feature.  
When used this way, the CCPR2H:CCPR2L register  
pair effectively becomes a period register for Timer3.  
If Timer3 is running in Asynchronous Counter mode,  
the Reset operation may not work.  
In the event that a write to Timer3 coincides with a  
Special Event Trigger from a CCP module, the write will  
take precedence.  
Note:  
The Special Event Triggers from the CCP2  
module will not set the TMR3IF interrupt  
flag bit of the PIR2 register.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
HLVDIF  
HLVDIE  
HLVDIP  
INT0IF  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
57  
60  
60  
60  
59  
59  
58  
59  
OSCFIF  
OSCFIE  
OSCFIP  
C1IF  
C1IE  
C1IP  
C2IF  
C2IE  
C2IP  
CCP2IF  
CCP2IE  
CCP2IP  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Timer3 Register, Low Byte  
Timer3 Register, High Byte  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
DS41303B-page 152  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The Capture and Compare operations described in this  
chapter apply to both standard and enhanced CCP  
modules.  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
PIC18F2XK20/4XK20 devices have two CCP  
Capture/Compare/PWM) modules. Each module  
contains a 16-bit register which can operate as a 16-bit  
Capture register, a 16-bit Compare register or a PWM  
Master/Slave Duty Cycle register.  
Note: Throughout this section and Section 16.0  
“Enhanced Capture/Compare/PWM (ECCP)  
Module”, references to the register and bit  
names for CCP modules are referred to  
generically by the use of ‘x’ or ‘y’ in place of the  
specific module number. Thus, “CCPxCON”  
might refer to the control register for CCP1,  
CCP2 or ECCP1. “CCPxCON” is used  
throughout these sections to refer to the  
module control register, regardless of whether  
the CCP module is a standard or enhanced  
implementation.  
CCP1 is implemented as an enhanced CCP module with  
standard Capture and Compare modes and enhanced  
PWM modes. The ECCP implementation is discussed in  
Section 16.0 “Enhanced Capture/Compare/PWM  
(ECCP) Module”. CCP2 is implemented as a standard  
CCP module without the enhanced features.  
REGISTER 15-1: CCP2CON: STANDARD CAPTURE/COMPARE/PWM CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC2B1  
DC2B0  
CCP2M3  
CCP2M2  
CCP2M1  
CCP2M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DC2B<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCP2 Module  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs  
(DC2B<9:2>) of the duty cycle are found in CCPR2L.  
bit 3-0  
CCP2M<3:0>: CCP2 Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCP2 module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCP2IF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode: initialize CCP2 pin low; on compare match, force CCP2 pin high  
(CCP2IF bit is set)  
1001= Compare mode: initialize CCP2 pin high; on compare match, force CCP2 pin low  
(CCP2IF bit is set)  
1010= Compare mode: generate software interrupt on compare match (CCP2IF bit is set,  
CCP2 pin reflects I/O state)  
1011= Compare mode: trigger special event, reset timer, start A/D conversion on  
CCP2 match (CCP2IF bit is set)  
11xx= PWM mode  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 153  
PIC18F2XK20/4XK20  
The assignment of a particular timer to a module is  
determined by the Timer-to-CCP enable bits in the  
T3CON register (Register 14-1). Both modules can be  
active at the same time and can share the same timer  
resource if they are configured to operate in the same  
mode (Capture/Compare or PWM). The interactions  
between the two modules are summarized in Figure 15-1  
and Figure 15-2. In Asynchronous Counter mode, the  
capture operation will not work reliably.  
15.1 CCP Module Configuration  
Each Capture/Compare/PWM module is associated  
with a control register (generically, CCPxCON) and a  
data register (CCPRx). The data register, in turn, is  
comprised of two 8-bit registers: CCPRxL (low byte)  
and CCPRxH (high byte). All registers are both  
readable and writable.  
15.1.1  
CCP MODULES AND TIMER  
RESOURCES  
15.1.2  
CCP2 PIN ASSIGNMENT  
The CCP modules utilize Timers 1, 2 or 3, depending  
on the mode selected. Timer1 and Timer3 are available  
to modules in Capture or Compare modes, while  
Timer2 is available for modules in PWM mode.  
The pin assignment for CCP2 (Capture input, Compare  
and PWM output) can change, based on device config-  
uration. The CCP2MX Configuration bit determines the  
pin with which CCP2 is multiplexed. By default, it is  
assigned to RC1 (CCP2MX = 1). If the Configuration bit  
is cleared, CCP2 is multiplexed with RB3.  
TABLE 15-1: CCP MODE – TIMER  
RESOURCE  
Changing the pin assignment of CCP2 does not  
automatically change any requirements for configuring  
the port pin. Users must always verify that the  
appropriate TRIS register is configured correctly for  
CCP2 operation, regardless of where it is located.  
CCP/ECCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
TABLE 15-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES  
CCP1 Mode CCP2 Mode  
Interaction  
Capture  
Capture  
Each module can use TMR1 or TMR3 as the time base. The time base can be different  
for each CCP.  
Capture  
Compare CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3  
(depending upon which time base is used). Automatic A/D conversions on trigger event  
can also be done. Operation of CCP1 could be affected if it is using the same timer as a  
time base.  
Compare  
Compare  
Capture  
CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3  
(depending upon which time base is used). Operation of CCP2 could be affected if it is  
using the same timer as a time base.  
Compare Either module can be configured for the Special Event Trigger to reset the time base.  
Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if  
both modules are using the same time base.  
Capture  
Compare  
PWM(1)  
PWM(1)  
PWM(1)  
PWM  
PWM  
None  
None  
None  
Capture  
Compare None  
PWM Both PWMs will have the same frequency and update rate (TMR2 interrupt).  
Note 1: Includes standard and enhanced PWM operation.  
DS41303B-page 154  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
(CCP2 SHOWN)  
15.2 Capture Mode  
In Capture mode, the CCPRxH:CCPRxL register pair  
captures the 16-bit value of the TMR1 or TMR3  
registers when an event occurs on the corresponding  
CCPx pin. An event is defined as one of the following:  
CLRF  
CCP2CON  
; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
• every falling edge  
• every rising edge  
; value and CCP ON  
; Load CCP2CON with  
; this value  
MOVWF CCP2CON  
• every 4th rising edge  
• every 16th rising edge  
The event is selected by the mode select bits,  
CCPxM<3:0> of the CCPxCON register. When a cap-  
ture is made, the interrupt request flag bit, CCPxIF, is  
set; it must be cleared by software. If another capture  
occurs before the value in register CCPRx is read, the  
old captured value is overwritten by the new captured  
value.  
15.2.1  
CCP PIN CONFIGURATION  
In Capture mode, the appropriate CCPx pin should be  
configured as an input by setting the corresponding  
TRIS direction bit.  
Note:  
If the CCPx pin is configured as an output,  
a write to the port can cause a capture  
condition.  
15.2.2  
TIMER1/TIMER3 MODE SELECTION  
The timers that are to be used with the capture feature  
(Timer1 and/or Timer3) must be running in Timer mode or  
Synchronized Counter mode. In Asynchronous Counter  
mode, the capture operation may not work. The timer to  
be used with each CCP module is selected in the T3CON  
register (see Section 15.1.1 “CCP Modules and Timer  
Resources”).  
15.2.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit clear to avoid false inter-  
rupts. The interrupt flag bit, CCPxIF, should also be  
cleared following any such change in operating mode.  
15.2.4  
CCP PRESCALER  
There are four prescaler settings in Capture mode; they  
are specified as part of the operating mode selected by  
the mode select bits (CCPxM<3:0>). Whenever the  
CCP module is turned off or Capture mode is disabled,  
the prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a
non-zero prescaler. Example 15-1 shows the  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 155  
PIC18F2XK20/4XK20  
FIGURE 15-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3  
TMR3L  
Set CCP1IF  
T3CCP2  
Enable  
CCP1 pin  
Prescaler  
÷ 1, 4, 16  
and  
Edge Detect  
CCPR1H  
CCPR1L  
TMR1  
Enable  
T3CCP2  
TMR1H  
TMR3H  
TMR1L  
TMR3L  
4
4
CCP1CON<3:0>  
Q1:Q4  
Set CCP2IF  
4
CCP2CON<3:0>  
T3CCP1  
T3CCP2  
TMR3  
Enable  
CCP2 pin  
Prescaler  
÷ 1, 4, 16  
and  
Edge Detect  
CCPR2H  
CCPR2L  
TMR1L  
TMR1  
Enable  
T3CCP2  
T3CCP1  
TMR1H  
DS41303B-page 156  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
15.3 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation will not work reliably.  
In Compare mode, the 16-bit CCPRx register value is  
constantly compared against either the TMR1 or TMR3  
register pair value. When a match occurs, the CCPx pin  
can be:  
• driven high  
15.3.3  
SOFTWARE INTERRUPT MODE  
• driven low  
When the Generate Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the corresponding CCPx pin is  
not affected. Only the CCPxIF interrupt flag is affected.  
• toggled (high-to-low or low-to-high)  
• remain unchanged (that is, reflects the state of the  
I/O latch)  
15.3.4  
SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of the mode  
select bits (CCPxM<3:0>). At the same time, the inter-  
rupt flag bit, CCPxIF, is set.  
Both CCP modules are equipped with a Special Event  
Trigger. This is an internal hardware signal generated  
in Compare mode to trigger actions by other modules.  
The Special Event Trigger is enabled by selecting  
the Compare Special Event Trigger mode  
(CCPxM<3:0> = 1011).  
15.3.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
For either CCP module, the Special Event Trigger resets  
the timer register pair for whichever timer resource is  
currently assigned as the module’s time base. This  
allows the CCPRx registers to serve as a programmable  
period register for either timer.  
Note:  
Clearing the CCPxCON register will force  
the CCPx compare output latch (depend-  
ing on device configuration) to the default  
low level. This is not the PORTB or  
PORTC I/O data latch.  
The Special Event Trigger for CCP2 can also start an  
A/D conversion. In order to do this, the A/D converter  
must already be enabled.  
FIGURE 15-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger  
(Timer1/Timer3 Reset)  
Set CCP1IF  
CCPR1H  
CCPR1L  
CCP1 pin  
S
R
Q
Output  
Logic  
Compare  
Match  
Comparator  
TRIS  
Output Enable  
4
CCP1CON<3:0>  
TMR1H  
TMR3H  
TMR1L  
TMR3L  
0
0
1
1
Special Event Trigger  
(Timer1/Timer3 Reset, A/D Trigger)  
T3CCP1  
T3CCP2  
Set CCP2IF  
CCP2 pin  
S
R
Q
Compare  
Match  
Output  
Logic  
Comparator  
TRIS  
Output Enable  
4
CCPR2H  
CCPR2L  
CCP2CON<3:0>  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 157  
PIC18F2XK20/4XK20  
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
RCON  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
57  
56  
60  
60  
60  
60  
60  
60  
60  
60  
58  
58  
58  
59  
59  
59  
59  
59  
59  
59  
59  
59  
IPEN  
SBOREN  
ADIF  
PIR1  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
OSCFIF  
OSCFIE  
OSCFIP  
RCIF  
RCIE  
RCIP  
C2IF  
C2IE  
C2IP  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
CCP1IF  
TMR2IF TMR1IF  
PIE1  
ADIE  
ADIP  
C1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
PIR2  
HLVDIF  
TMR3IF  
CCP2IF  
PIE2  
C1IE  
HLVDIE TMR3IE CCP2IE  
HLVDIP TMR3IP CCP2IP  
IPR2  
C1IP  
TRISB  
PORTB Data Direction Control Register  
PORTC Data Direction Control Register  
Timer1 Register, Low Byte  
TRISC  
TMR1L  
TMR1H  
T1CON  
TMR3H  
TMR3L  
T3CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
Timer1 Register, High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Timer3 Register, High Byte  
Timer3 Register, Low Byte  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Capture/Compare/PWM Register 1, Low Byte  
Capture/Compare/PWM Register 1, High Byte  
P1M1  
P1M0  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register 2, Low Byte  
Capture/Compare/PWM Register 2, High Byte  
DC2B1  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.  
DS41303B-page 158  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The PWM output (Figure 15-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
15.4 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCP2 pin for the CCP module and the  
P1A through P1D pins for the ECCP module. Hereafter  
the modulated output pin will be referred to as the CCPx  
pin. The duty cycle, period and resolution are  
determined by the following registers:  
FIGURE 15-4:  
CCP PWM OUTPUT  
Period  
Pulse Width  
• PR2  
TMR2 = PR2  
• T2CON  
• CCPRxL  
• CCPxCON  
TMR2 = CCPRxL:DCxB<1:0>  
TMR2 = 0  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCPx pin. Since the CCPx pin is multiplexed  
with the PORT data latch, the TRIS for that pin must be  
cleared to enable the CCPx pin output driver.  
Note:  
Clearing the CCPxCON register will  
relinquish CCPx control of the CCPx pin.  
Figure 15-3 shows a simplified block diagram of PWM  
operation.  
Figure 15-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 15.4.7  
“Setup for PWM Operation”.  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
DCxB<1:0>  
Duty Cycle Registers  
CCPRxL  
CCPRxH(2) (Slave)  
Comparator  
CCPx  
R
S
Q
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCPx pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPRxH is a read-only register.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 159  
PIC18F2XK20/4XK20  
15.4.1  
PWM PERIOD  
15.4.2  
PWM DUTY CYCLE  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 15-1.  
The PWM duty cycle is specified by writing a 10-bit  
value to multiple registers: CCPRxL register and  
DCxB<1:0> bits of the CCPxCON register. The  
CCPRxL contains the eight MSbs and the DCxB<1:0>  
bits of the CCPxCON register contain the two LSbs.  
CCPRxL and DCxB<1:0> bits of the CCPxCON  
register can be written to at any time. The duty cycle  
value is not latched into CCPRxH until after the period  
completes (i.e., a match between PR2 and TMR2  
registers occurs). While using the PWM, the CCPRxH  
register is read-only.  
EQUATION 15-1: PWM PERIOD  
PWM Period = [(PR2) + 1] • 4 TOSC •  
(TMR2 Prescale Value)  
Note: TOSC = 1/FOSC.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
Equation 15-2 is used to calculate the PWM pulse  
width.  
• TMR2 is cleared  
Equation 15-3 is used to calculate the PWM duty cycle  
ratio.  
• The CCPx pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH.  
EQUATION 15-2: PULSE WIDTH  
Pulse Width = (CCPRxL:DCxB<1:0>) •  
TOSC (TMR2 Prescale Value)  
Note:  
The Timer2 postscaler (see Section 13.1  
“Timer2 Operation”) is not used in the  
determination of the PWM frequency.  
EQUATION 15-3: DUTY CYCLE RATIO  
(CCPRxL:DCxB<1:0>)  
Duty Cycle Ratio = ----------------------------------------------------------  
4(PR2 + 1)  
The CCPRxH register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
When the 10-bit time base matches the CCPRxH and  
2-bit latch, then the CCPx pin is cleared (see  
Figure 15-3).  
DS41303B-page 160  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
15.4.3  
PWM RESOLUTION  
EQUATION 15-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log[4(PR2 + 1)]  
Resolution = ----------------------------------------- bits  
log(2)  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 15-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
TABLE 15-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 15-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 161  
PIC18F2XK20/4XK20  
15.4.4  
OPERATION IN POWER-MANAGED  
MODES  
15.4.7  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCPx  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
1. Disable the PWM pin (CCPx) output drivers by  
setting the associated TRIS bit.  
2. For the ECCP module only: Select the desired  
PWM outputs (P1A through P1D) by setting the  
appropriate steering bits of the PSTRCON  
register.  
In PRI_IDLE mode, the primary clock will continue to  
clock the CCP module without change. In all other  
power-managed modes, the selected power-managed  
mode clock will clock Timer2. Other power-managed  
mode clocks will most likely be different than the  
primary clock frequency.  
3. Set the PWM period by loading the PR2 register.  
4. Configure the CCP module for the PWM mode  
by loading the CCPxCON register with the  
appropriate values.  
5. Set the PWM duty cycle by loading the CCPRxL  
register and CCPx bits of the CCPxCON register.  
15.4.5  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
6. Configure and start Timer2:  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 2.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for additional details.  
• Clear the TMR2IF interrupt flag bit of the  
PIR1 register.  
• Set the Timer2 prescale value by loading the  
T2CKPS bits of the T2CON register.  
• Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
15.4.6  
EFFECTS OF RESET  
7. Enable PWM output after a new PWM cycle has  
started:  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
• Wait until Timer2 overflows (TMR2IF bit of  
the PIR1 register is set).  
• Enable the CCPx pin output driver by  
clearing the associated TRIS bit.  
DS41303B-page 162  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 15-7: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
57  
56  
60  
60  
60  
60  
60  
58  
58  
58  
59  
59  
59  
59  
59  
59  
59  
59  
IPEN  
PSPIF  
PSPIE  
PSPIP  
SBOREN  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
TMR2IF  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
ADIE  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
ADIP  
TRISB  
TRISC  
TMR2  
PR2  
PORTB Data Direction Control Register  
PORTC Data Direction Control Register  
Timer2 Register  
Timer2 Period Register  
T2CON  
CCPR1L  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Capture/Compare/PWM Register 1, Low Byte  
CCPR1H Capture/Compare/PWM Register 1, High Byte  
CCP1CON  
CCPR2L  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
Capture/Compare/PWM Register 2, Low Byte  
CCPR2H Capture/Compare/PWM Register 2, High Byte  
CCP2CON DC2B1 DC2B0  
ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC PDC0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PWM or Timer2.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 163  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 164  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The enhanced features are discussed in detail in  
Section 16.4 “PWM (Enhanced Mode)”. Capture,  
Compare and single-output PWM functions of the  
ECCP module are the same as described for the  
standard CCP module.  
16.0 ENHANCED  
CAPTURE/COMPARE/PWM  
(ECCP) MODULE  
CCP1 is implemented as a standard CCP module with  
enhanced PWM capabilities. These include:  
The control register for the enhanced CCP module is  
shown in Register 16-1. It differs from the CCP2CON  
register in that the two Most Significant bits are  
implemented to control PWM functionality.  
• Provision for 2 or 4 output channels  
• Output steering  
• Programmable polarity  
• Programmable dead-band control  
• Automatic shutdown and restart.  
REGISTER 16-1: CCP1CON: ENHANCED CAPTURE/COMPARE/PWM CONTROL REGISTER  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
P1M<1:0>: Enhanced PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input/output; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output: P1A, P1B, P1C and P1D controlled by steering (See Section 16.4.7 “Pulse Steering  
Mode”).  
01= Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins  
11= Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B<1:0>: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in  
CCPR1L.  
bit 3-0  
CCP1M<3:0>: Enhanced CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Reserved  
0010= Compare mode, toggle output on match  
0011= Capture mode  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize CCP1 pin low, set output on compare match (set CCP1IF)  
1001= Compare mode, initialize CCP1 pin high, clear output on compare match (set CCP1IF)  
1010= Compare mode, generate software interrupt only, CCP1 pin reverts to I/O state  
1011= Compare mode, trigger special event (ECCP resets TMR1 or TMR3, sets CC1IF bit)  
1100= PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101= PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110= PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111= PWM mode; P1A, P1C active-low; P1B, P1D active-low  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 165  
PIC18F2XK20/4XK20  
In addition to the expanded range of modes available  
through the CCP1CON register and ECCP1AS  
register, the ECCP module has two additional registers  
associated with Enhanced PWM operation and  
auto-shutdown features. They are:  
16.3 Standard PWM Mode  
When configured in Single Output mode, the ECCP  
module functions identically to the standard CCP  
module in PWM mode, as described in Section 15.4  
“PWM Mode”. This is also sometimes referred to as  
“Single CCP” mode, as in Table 16-1.  
• PWM1CON (Dead-band delay)  
• PSTRCON (output steering)  
16.1 ECCP Outputs and Configuration  
The enhanced CCP module may have up to four PWM  
outputs, depending on the selected operating mode.  
These outputs, designated P1A through P1D, are  
multiplexed with I/O pins on PORTC and PORTD (for  
PIC18F4XK20 devices) or PORTB (for PIC18F2XK20  
devices). The outputs that are active depend on the  
CCP operating mode selected. The pin assignments  
are summarized in Table 16-1.  
To configure the I/O pins as PWM outputs, the proper  
PWM mode must be selected by setting the P1M<1:0>  
and CCP1M<3:0> bits. The appropriate TRISC and  
TRISD direction bits for the port pins must also be set  
as outputs.  
16.1.1  
ECCP MODULES AND TIMER  
RESOURCES  
Like the standard CCP modules, the ECCP module can  
utilize Timers 1, 2 or 3, depending on the mode  
selected. Timer1 and Timer3 are available for modules  
in Capture or Compare modes, while Timer2 is  
available for modules in PWM mode. Interactions  
between the standard and enhanced CCP modules are  
identical to those described for standard CCP modules.  
Additional details on timer resources are provided in  
Section 15.1.1  
“CCP  
Modules  
and  
Timer  
Resources”.  
16.2 Capture and Compare Modes  
Except for the operation of the Special Event Trigger  
discussed below, the Capture and Compare modes of  
the ECCP module are identical in operation to that of  
CCP2. These are discussed in detail in Section 15.2  
“Capture Mode” and Section 15.3 “Compare  
Mode”. No changes are required when moving  
between 28-pin and 40/44-pin devices.  
16.2.1  
SPECIAL EVENT TRIGGER  
The Special Event Trigger output of ECCP1 resets the  
TMR1 or TMR3 register pair, depending on which timer  
resource is currently selected. This allows the CCPR1  
register to effectively be a 16-bit programmable period  
register for Timer1 or Timer3.  
DS41303B-page 166  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The PWM outputs are multiplexed with I/O pins and are  
designated P1A, P1B, P1C and P1D. The polarity of the  
PWM pins is configurable and is selected by setting the  
CCP1M bits in the CCP1CON register appropriately.  
16.4 PWM (Enhanced Mode)  
The Enhanced PWM Mode can generate a PWM signal  
on up to four different output pins with up to 10-bits of  
resolution. It can do this through four different PWM  
output modes:  
Table 16-1 shows the pin assignments for each  
Enhanced PWM mode.  
• Single PWM  
Figure 16-1 shows an example of a simplified block  
diagram of the Enhanced PWM module.  
• Half-Bridge PWM  
• Full-Bridge PWM, Forward mode  
• Full-Bridge PWM, Reverse mode  
Note:  
To prevent the generation of an  
incomplete waveform when the PWM is  
first enabled, the ECCP module waits until  
the start of a new PWM period before  
generating a PWM signal.  
To select an Enhanced PWM mode, the P1M bits of the  
CCP1CON register must be set appropriately.  
Note:  
The PWM Enhanced mode is available on  
the Enhanced Capture/Compare/PWM  
module (CCP1) only.  
FIGURE 16-1:  
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE  
DC1B<1:0>  
P1M<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
CCP1/P1A  
P1B  
TRIS  
TRIS  
TRIS  
TRIS  
CCPR1H (Slave)  
Comparator  
P1B  
Output  
Controller  
R
S
Q
P1C  
P1C  
(1)  
TMR2  
P1D  
P1D  
Comparator  
PR2  
Clear Timer2,  
toggle PWM pin and  
latch duty cycle  
PWM1CON  
Note 1: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit  
time base.  
Note 1: The TRIS register value for each PWM output must be configured appropriately.  
2: Clearing the CCPxCON register will relinquish ECCP control of all PWM output pins.  
3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.  
TABLE 16-1: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES  
ECCP Mode  
P1M<1:0>  
CCP1/P1A  
P1B  
P1C  
P1D  
Single  
00  
10  
01  
11  
Yes(1)  
Yes  
Yes(1)  
Yes  
Yes(1)  
No  
Yes(1)  
No  
Half-Bridge  
Full-Bridge, Forward  
Full-Bridge, Reverse  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Note 1: Outputs are enabled by pulse steering in Single mode. See Register 16-4.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 167  
PIC18F2XK20/4XK20  
FIGURE 16-2:  
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH  
STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
P1A Modulated  
P1B Modulated  
P1A Active  
(Half-Bridge)  
P1B Inactive  
(Full-Bridge,  
Forward)  
01  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 16.4.6 “Programmable Dead-Band Delay  
mode”).  
DS41303B-page 168  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 16-3:  
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
(Half-Bridge)  
(Full-Bridge,  
Forward)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 16.4.6 “Programmable Dead-Band Delay  
mode”).  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 169  
PIC18F2XK20/4XK20  
Since the P1A and P1B outputs are multiplexed with  
the PORT data latches, the associated TRIS bits must  
be cleared to configure P1A and P1B as outputs.  
16.4.1  
HALF-BRIDGE MODE  
In Half-Bridge mode, two pins are used as outputs to  
drive push-pull loads. The PWM output signal is output  
on the CCPx/P1A pin, while the complementary PWM  
output signal is output on the P1B pin (see  
Figure 16-5). This mode can be used for Half-Bridge  
applications, as shown in Figure 16-5, or for Full-Bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
FIGURE 16-4:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
Period  
Period  
Pulse Width  
In Half-Bridge mode, the programmable dead-band delay  
can be used to prevent shoot-through current in  
Half-Bridge power devices. The value of the PDC<6:0>  
bits of the PWM1CON register sets the number of  
instruction cycles before the output is driven active. If the  
value is greater than the duty cycle, the corresponding  
output remains inactive during the entire cycle. See  
Section 16.4.6 “Programmable Dead-Band Delay  
mode” for more details of the dead-band delay  
operations.  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
FIGURE 16-5:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
-
P1A  
Load  
FET  
Driver  
+
-
P1B  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
DS41303B-page 170  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
16.4.2  
FULL-BRIDGE MODE  
In Full-Bridge mode, all four pins are used as outputs.  
An example of Full-Bridge application is shown in  
Figure 16-6.  
In the Forward mode, pin CCP1/P1A is driven to its  
active state, pin P1D is modulated, while P1B and P1C  
will be driven to their inactive state as shown in  
Figure 16-7.  
In the Reverse mode, P1C is driven to its active state,  
pin P1B is modulated, while P1A and P1D will be driven  
to their inactive state as shown Figure 16-7.  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORT data latches. The associated TRIS bits must  
be cleared to configure the P1A, P1B, P1C and P1D  
pins as outputs.  
FIGURE 16-6:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
P1B  
Load  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 171  
PIC18F2XK20/4XK20  
FIGURE 16-7:  
EXAMPLE OF FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Pulse Width  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Pulse Width  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as active-high.  
DS41303B-page 172  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The Full-Bridge mode does not provide dead-band  
delay. As one output is modulated at a time, dead-band  
delay is generally not required. There is a situation  
where dead-band delay is required. This situation  
occurs when both of the following conditions are true:  
16.4.2.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge mode, the P1M1 bit in the CCP1CON  
register allows users to control the forward/reverse  
direction. When the application firmware changes this  
direction control bit, the module will change to the new  
direction on the next PWM cycle.  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
A direction change is initiated in software by changing  
the P1M1 bit of the CCP1CON register. The following  
sequence occurs prior to the end of the current PWM  
period:  
Figure 16-9 shows an example of the PWM direction  
changing from forward to reverse, at a near 100% duty  
cycle. In this example, at time t1, the output P1A and  
P1D become inactive, while output P1C becomes  
active. Since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
will flow through power devices QC and QD (see  
Figure 16-6) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
• The modulated outputs (P1B and P1D) are placed  
in their inactive state.  
• The associated unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite  
direction.  
• PWM modulation resumes at the beginning of the  
next period.  
See Figure 16-8 for an illustration of this sequence.  
If changing PWM direction at high duty cycle is required  
for an application, two possible solutions for eliminating  
the shoot-through current are:  
1. Reduce PWM duty cycle for one PWM period  
before changing directions.  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
FIGURE 16-8:  
EXAMPLE OF PWM DIRECTION CHANGE  
(1)  
Period  
Period  
Signal  
P1A (Active-High)  
P1B (Active-High)  
Pulse Width  
P1C (Active-High)  
P1D (Active-High)  
(2)  
Pulse Width  
Note 1: The direction bit P1M1 of the CCP1CON register is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle. The  
modulated P1B and P1D signals are inactive at this time. The length of this time is (1/FOSC) TMR2 prescale  
value.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 173  
PIC18F2XK20/4XK20  
FIGURE 16-9:  
EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
PW  
P1C  
P1D  
PW  
TON  
External Switch C  
External Switch D  
TOFF  
Potential  
T = TOFF TON  
Shoot-Through Current  
Note 1: All signals are shown as active-high.  
2: TON is the turn on delay of power switch QC and its driver.  
3: TOFF is the turn off delay of power switch QD and its driver.  
16.4.3  
START-UP CONSIDERATIONS  
When any PWM mode is used, the application  
hardware must use the proper external pull-up and/or  
pull-down resistors on the PWM output pins.  
Note:  
When the microcontroller is released from  
Reset, all of the I/O pins are in the  
high-impedance state. The external cir-  
cuits must keep the power switch devices  
in the Off state until the microcontroller  
drives the I/O pins with the proper signal  
levels or activates the PWM output(s).  
The CCP1M<1:0> bits of the CCP1CON register allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output pins  
(P1A/P1C and P1B/P1D). The PWM output polarities  
must be selected before the PWM pin output drivers are  
enabled. Changing the polarity configuration while the  
PWM pin output drivers are enable is not recommended  
since it may result in damage to the application circuits.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is  
initialized. Enabling the PWM pin output drivers at the  
same time as the Enhanced PWM modes may cause  
damage to the application circuit. The Enhanced PWM  
modes must be enabled in the proper Output mode and  
complete a full PWM cycle before enabling the PWM  
pin output drivers. The completion of a full PWM cycle  
is indicated by the TMR2IF bit of the PIR1 register  
being set as the second PWM period begins.  
DS41303B-page 174  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
A shutdown condition is indicated by the ECCPASE  
(Auto-Shutdown Event Status) bit of the ECCPAS  
register. If the bit is a ‘0’, the PWM pins are operating  
normally. If the bit is a ‘1’, the PWM outputs are in the  
shutdown state.  
16.4.4  
ENHANCED PWM  
AUTO-SHUTDOWN MODE  
The PWM mode supports an Auto-Shutdown mode that  
will disable the PWM outputs when an external  
shutdown event occurs. Auto-Shutdown mode places  
the PWM output pins into a predetermined state. This  
mode is used to help prevent the PWM from damaging  
the application.  
When a shutdown event occurs, two things happen:  
The ECCPASE bit is set to ‘1’. The ECCPASE will  
remain set until cleared in firmware or an auto-restart  
occurs (see Section 16.4.5 “Auto-Restart Mode”).  
The auto-shutdown sources are selected using the  
ECCPAS<2:0> bits of the ECCPAS register. A shutdown  
event may be generated by:  
The enabled PWM pins are asynchronously placed in  
their shutdown states. The PWM output pins are  
grouped into pairs [P1A/P1C] and [P1B/P1D]. The state  
of each pin pair is determined by the PSSAC and  
PSSBD bits of the ECCPAS register. Each pin pair may  
be placed into one of three states:  
• A logic ‘0’ on the INT pin  
• Comparator C1  
• Comparator C2  
• Setting the ECCPASE bit in firmware  
• Drive logic ‘1’  
• Drive logic ‘0’  
• Tri-state (high-impedance)  
REGISTER 16-2: ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE  
ECCPAS2  
ECCPAS1  
ECCPAS0  
PSSAC1  
PSSAC0  
PSSBD1  
PSSBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
0= ECCP outputs are operating  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits  
000= Auto-Shutdown is disabled  
001= Comparator C1OUT output is high  
010= Comparator C2OUT output is high  
011= Either Comparator C1OUT or C2OUT is high  
100= VIL on INT pin  
101= VIL on INT pin or Comparator C1OUT output is high  
110= VIL on INT pin or Comparator C2OUT output is high  
111= VIL on INT pin or Comparator C1OUT or Comparator C2OUT is high  
bit 3-2  
bit 1-0  
PSSACn: Pins P1A and P1C Shutdown State Control bits  
00= Drive pins P1A and P1C to ‘0’  
01= Drive pins P1A and P1C to ‘1’  
1x= Pins P1A and P1C tri-state  
PSSBDn: Pins P1B and P1D Shutdown State Control bits  
00= Drive pins P1B and P1D to ‘0’  
01= Drive pins P1B and P1D to ‘1’  
1x= Pins P1B and P1D tri-state  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 175  
PIC18F2XK20/4XK20  
Note 1: The auto-shutdown condition is  
a
level-based signal, not an edge-based  
signal. As long as the level is present, the  
auto-shutdown will persist.  
2: Writing to the ECCPASE bit is disabled  
while an auto-shutdown condition  
persists.  
3: Once the auto-shutdown condition has  
been removed and the PWM restarted  
(either through firmware or auto-restart)  
the PWM signal will always restart at the  
beginning of the next PWM period.  
FIGURE 16-10:  
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
ECCPASE  
Cleared by  
Firmware  
Start of  
Shutdown  
Shutdown  
PWM  
PWM Period  
Event Occurs Event Clears  
Resumes  
16.4.5  
AUTO-RESTART MODE  
The Enhanced PWM can be configured to automati-  
cally restart the PWM signal once the auto-shutdown  
condition has been removed. Auto-restart is enabled by  
setting the PRSEN bit in the PWM1CON register.  
If auto-restart is enabled, the ECCPASE bit will remain  
set as long as the auto-shutdown condition is active.  
When the auto-shutdown condition is removed, the  
ECCPASE bit will be cleared via hardware and normal  
operation will resume.  
FIGURE 16-11:  
PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
DS41303B-page 176  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
16.4.6  
PROGRAMMABLE DEAD-BAND  
DELAY MODE  
FIGURE 16-12:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
In Half-Bridge applications where all power switches  
are modulated at the PWM frequency, the power  
switches normally require more time to turn off than to  
turn on. If both the upper and lower power switches are  
switched at the same time (one turned on, and the  
other turned off), both switches may be on for a short  
period of time until one switch completely turns off.  
Period  
Period  
Pulse Width  
(2)  
(2)  
P1A  
td  
td  
During this brief interval,  
a very high current  
P1B  
(shoot-through current) will flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from  
flowing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
In Half-Bridge mode,  
a
digitally programmable  
2: Output signals are shown as active-high.  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Figure 16-12 for  
illustration. The lower seven bits of the associated  
PWM1CON register (Register 16-3) sets the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
FIGURE 16-13:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 177  
PIC18F2XK20/4XK20  
REGISTER 16-3: PWM1CON: ENHANCED PWM CONTROL REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared by software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
PDCn = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal  
should transition active and the actual time it transitions active  
DS41303B-page 178  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
16.4.7  
PULSE STEERING MODE  
In Single Output mode, pulse steering allows any of the  
PWM pins to be the modulated signal. Additionally, the  
same PWM signal can be simultaneously available on  
multiple pins.  
Note:  
The associated TRIS bits must be set to  
output (‘0’) to enable the pin output driver  
in order to see the PWM signal on the pin.  
While the PWM Steering mode is active, CCP1M<1:0>  
bits of the CCP1CON register select the PWM output  
polarity for the P1<D:A> pins.  
Once the Single Output mode is selected  
(CCP1M<3:2> = 11 and P1M<1:0> = 00 of the  
CCP1CON register), the user firmware can bring out  
the same PWM signal to one, two, three or four output  
pins by setting the appropriate STR<D:A> bits of the  
PSTRCON register, as shown in Table 16-1.  
The PWM auto-shutdown operation also applies to  
PWM Steering mode as described in Section 16.4.4  
“Enhanced PWM Auto-shutdown mode”. An  
auto-shutdown event will only affect pins that have  
PWM outputs enabled.  
REGISTER 16-4: PSTRCON: PULSE STEERING CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
STRD  
R/W-0  
STRC  
R/W-0  
STRB  
R/W-1  
STRA  
STRSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
STRSYNC: Steering Sync bit  
1= Output steering update occurs on next PWM period  
0= Output steering update occurs at the beginning of the instruction cycle boundary  
bit 3  
bit 2  
bit 1  
bit 0  
STRD: Steering Enable bit D  
1= P1D pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1D pin is assigned to port pin  
STRC: Steering Enable bit C  
1= P1C pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1C pin is assigned to port pin  
STRB: Steering Enable bit B  
1= P1B pin has the PWM waveform with polarity control from CCPxM<1:0>  
0 = P1B pin is assigned to port pin  
STRA: Steering Enable bit A  
1= P1A pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1A pin is assigned to port pin  
Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11and  
P1M<1:0> = 00.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 179  
PIC18F2XK20/4XK20  
FIGURE 16-14:  
SIMPLIFIED STEERING  
BLOCK DIAGRAM  
STRA  
P1A Signal  
CCP1M1  
P1A pin  
1
PORT Data  
STRB  
0
TRIS  
P1B pin  
CCP1M0  
1
PORT Data  
STRC  
0
TRIS  
P1C pin  
1
CCP1M1  
PORT Data  
0
TRIS  
STRD  
P1D pin  
1
CCP1M0  
PORT Data  
0
TRIS  
Note 1: Port outputs are configured as shown when  
the CCP1CON register bits P1M<1:0> = 00  
and CCP1M<3:2> = 11.  
2: Single PWM output requires setting at least  
one of the STRx bits.  
DS41303B-page 180  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Figures 16-15 and 16-16 illustrate the timing diagrams  
of the PWM steering depending on the STRSYNC  
setting.  
16.4.7.1  
Steering Synchronization  
The STRSYNC bit of the PSTRCON register gives the  
user two selections of when the steering event will  
happen. When the STRSYNC bit is ‘0’, the steering  
event will happen at the end of the instruction that  
writes to the PSTRCON register. In this case, the  
output signal at the P1<D:A> pins may be an  
incomplete PWM waveform. This operation is useful  
when the user firmware needs to immediately remove  
a PWM signal from the pin.  
When the STRSYNC bit is ‘1’, the effective steering  
update will happen at the beginning of the next PWM  
period. In this case, steering on/off the PWM output will  
always produce a complete PWM waveform.  
FIGURE 16-15:  
EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)  
PWM Period  
PWM  
STRn  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
FIGURE 16-16:  
EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION  
(STRSYNC = 1)  
PWM  
STRn  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 181  
PIC18F2XK20/4XK20  
16.4.8  
OPERATION IN POWER-MANAGED  
MODES  
In Sleep mode, all clock sources are disabled. Timer2  
will not increment and the state of the module will not  
change. If the ECCP pin is driving a value, it will con-  
tinue to drive that value. When the device wakes up, it  
will continue from this state. If Two-Speed Start-ups are  
enabled, the initial start-up frequency from HFINTOSC  
and the postscaler may not be stable immediately.  
In PRI_IDLE mode, the primary clock will continue to  
clock the ECCP module without change. In all other  
power-managed modes, the selected power-managed  
mode clock will clock Timer2. Other power-managed  
mode clocks will most likely be different than the  
primary clock frequency.  
16.4.8.1  
Operation with Fail-Safe  
Clock Monitor  
If the Fail-Safe Clock Monitor is enabled, a clock failure  
will force the device into the RC_RUN Power-Managed  
mode and the OSCFIF bit of the PIR2 register will be  
set. The ECCP will then be clocked from the internal  
oscillator clock source, which may have a different  
clock frequency than the primary clock.  
See the previous section for additional details.  
16.4.9  
EFFECTS OF A RESET  
Both Power-on Reset and subsequent Resets will force  
all ports to Input mode and the CCP registers to their  
Reset states.  
This forces the enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
DS41303B-page 182  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 16-2: REGISTERS ASSOCIATED WITH ECCP1 MODULE AND TIMER1 TO TIMER3  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
57  
56  
60  
60  
60  
60  
60  
60  
60  
60  
60  
58  
58  
58  
58  
58  
58  
59  
59  
59  
59  
59  
59  
59  
59  
IPEN  
PSPIF  
SBOREN  
ADIF  
BOR  
RCIF  
RCIE  
RCIP  
C2IF  
C2IE  
C2IP  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
CCP1IF  
CCP1IE  
CCP1IP  
HLVDIF  
HLVDIE  
HLVDIP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TMR1IF  
TMR1IE  
TMR1IP  
CCP2IF  
CCP2IE  
CCP2IP  
PIE1  
PSPIE  
ADIE  
ADIP  
C1IF  
IPR1  
PSPIP  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
PIE2  
C1IE  
IPR2  
C1IP  
TRISB  
TRISC  
TRISD  
TMR1L  
TMR1H  
T1CON  
TMR2  
PORTB Data Direction Control Register  
PORTC Data Direction Control Register  
PORTD Data Direction Control Register  
Timer1 Register, Low Byte  
Timer1 Register, High Byte  
RD16  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
T1RUN  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
T2CON  
PR2  
Timer2 Period Register  
TMR3L  
TMR3H  
T3CON  
CCPR1L  
CCPR1H  
CCP1CON  
Timer3 Register, Low Byte  
Timer3 Register, High Byte  
RD16  
T3CCP2  
T3CKPS1 T3CKPS0  
T3CCP1  
T3SYNC TMR3CS TMR3ON  
CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register 1, Low Byte  
Capture/Compare/PWM Register 1, High Byte  
(1)  
(1)  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
PSSAC1  
(1)  
(1)  
ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0  
PSSAC0 PSSBD1  
PSSBD0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
PWM1CON  
PRSEN  
PDC6  
PDC5  
PDC4  
PDC3  
PDC2  
PDC1  
PDC0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during ECCP operation.  
Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 183  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 184  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
17.3 SPI Mode  
17.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
17.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out – SDO  
• Serial Data In – SDI/SDA  
• Serial Clock – SCK/SCL  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select – SS  
Figure 17-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
FIGURE 17-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
Read  
Write  
• Master mode  
• Multi-Master mode  
• Slave mode  
SSPBUF Reg  
SSPSR Reg  
17.2 Control Registers  
SDI/SDA  
SDO  
The MSSP module has seven associated registers.  
These include:  
Shift  
Clock  
bit 0  
• SSPSTA – STATUS register  
• SSPCON1 – First Control register  
• SSPCON2 – Second Control register  
• SSPBUF – Transmit/Receive buffer  
• SSPSR – Shift register (not directly accessible)  
• SSPADD – Address register  
SS  
Control  
Enable  
SS  
Edge  
Select  
• SSPMSK – Address Mask register  
The use of these registers and their individual Configu-  
ration bits differ significantly depending on whether the  
MSSP module is operated in SPI or I2C mode.  
2
Clock Select  
Additional details are provided under the individual  
sections.  
SSPM<3:0>  
SMP:CKE  
2
4
TMR2 Output  
(
)
2
SCK/SCL  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TX/RX in SSPSR  
TRIS bit  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 185  
PIC18F2XK20/4XK20  
SSPSR is the shift register used for shifting data in  
and out. SSPBUF provides indirect access to the  
SSPSR register. SSPBUF is the buffer register to  
which data bytes are written, and from which data  
bytes are read.  
17.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
• SSPCON1 – Control Register  
• SSPSTAT – STATUS register  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• SSPBUF – Serial Receive/Transmit Buffer  
• SSPSR – Shift Register (Not directly accessible)  
SSPCON1 and SSPSTAT are the control and STATUS  
registers in SPI mode operation. The SSPCON1 regis-  
ter is readable and writable. The lower 6 bits of the  
SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
During  
transmission,  
the  
SSPBUF  
is  
not  
double-buffered. A write to SSPBUF will write to both  
SSPBUF and SSPSR.  
REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
bit 6  
CKE: SPI Clock Select bit(1)  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Note 1: Polarity of clock state is set by the CKP bit of the SSPCON1 register.  
DS41303B-page 186  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 17-2: SSPCON1: MSSP CONTROL 1 REGISTER (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared by software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit(1)  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of over-  
flow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the  
SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared by software).  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit(2)  
1= Enables serial port and configures SCK, SDO, SDI and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits(3)  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by  
writing to the SSPBUF register.  
2: When enabled, these pins must be properly configured as input or output.  
3: Bit combinations not specifically listed here are either reserved or implemented in I2C mode only.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 187  
PIC18F2XK20/4XK20  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. The  
Buffer Full bit, BF of the SSPSTAT register, indicates  
when SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the MSSP interrupt  
is used to determine when the transmission/reception  
has completed. The SSPBUF must be read and/or  
written. If the interrupt method is not going to be used,  
then software polling can be done to ensure that a write  
collision does not occur. Example 17-1 shows the  
loading of the SSPBUF (SSPSR) for data transmission.  
17.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP STATUS register (SSPSTAT)  
indicates the various status conditions.  
• Slave Select mode (Slave mode only)  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then, the Buffer Full detect bit, BF of the  
SSPSTAT register, and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored and the write collision detect bit WCOL  
of the SSPCON1 register, will be set. User software  
must clear the WCOL bit so that it can be determined if  
the following write(s) to the SSPBUF register  
completed successfully.  
EXAMPLE 17-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP  
BTFSS  
BRA  
SSPSTAT, BF  
LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF  
SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF  
RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF  
TXDATA, W  
SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS41303B-page 188  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
17.3.3  
ENABLING SPI I/O  
17.3.4  
TYPICAL CONNECTION  
To enable the serial port, SSP Enable bit, SSPEN of the  
SSPCON1 register, must be set. To reset or reconfig-  
ure SPI mode, clear the SSPEN bit, reinitialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed as follows:  
Figure 17-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have corresponding TRIS bit cleared  
• SCK (Master mode) must have corresponding  
TRIS bit cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCK (Slave mode) must have corresponding  
TRIS bit set  
• Master sends dummy data – Slave sends data  
• SS must have corresponding TRIS bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 17-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xxb  
SPI Slave SSPM<3:0> = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
Processor 1  
Processor 2  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 189  
PIC18F2XK20/4XK20  
The clock polarity is selected by appropriately  
programming the CKP bit of the SSPCON1 register.  
This then, would give waveforms for SPI  
communication as shown in Figure 17-3, Figure 17-5  
and Figure 17-6, where the MSB is transmitted first. In  
Master mode, the SPI clock rate (bit rate) is user  
programmable to be one of the following:  
17.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 17-2) is to  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and Status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 64 MHz) of  
16.00 Mbps.  
Figure 17-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 17-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41303B-page 190  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
must be high. When the SS pin is low, transmission and  
reception are enabled and the SDO pin is driven. When  
the SS pin goes high, the SDO pin is no longer driven,  
even if in the middle of a transmitted byte and becomes  
a floating output. External pull-up/pull-down resistors  
may be desirable depending on the application.  
17.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Before enabling the module in SPI Slave mode, the clock  
line must match the proper Idle state. The clock line can  
be observed by reading the SCK pin. The Idle state is  
determined by the CKP bit of the SSPCON1 register.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: When the SPI is used in Slave mode with  
CKE set the SS pin control must also be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
17.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). The pin must not be driven  
low for the SS pin to function as an input. The data latch  
FIGURE 17-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 191  
PIC18F2XK20/4XK20  
FIGURE 17-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 17-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 3  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 7  
SDI  
(SMP = 0)  
bit 0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41303B-page 192  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Transmit/Receive Shift register. When all 8 bits have  
been received, the MSSP interrupt flag bit will be set  
and if enabled, will wake the device.  
17.3.8  
OPERATION IN POWER-MANAGED  
MODES  
In SPI Master mode, module clocks may be operating  
at a different speed than when in full power mode; in  
the case of the Sleep mode, all clocks are halted.  
17.3.9  
EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
In all Idle modes, a clock is provided to the peripherals.  
That clock could be from the primary clock source, the  
secondary clock (Timer1 oscillator at 32.768 kHz) or  
the INTOSC source. See Section 3.0 “Power-Man-  
aged Modes” for additional information.  
17.3.10 BUS MODE COMPATIBILITY  
Table 17-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
In most cases, the speed that the master clocks SPI  
data is not important; however, this should be  
evaluated for each system.  
TABLE 17-1: SPI BUS MODES  
When MSSP interrupts are enabled, after the master  
completes sending data, an MSSP interrupt will wake  
the controller:  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
• from Sleep, in slave mode  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
• from Idle, in slave or master mode  
If an exit from Sleep or Idle mode is not desired, MSSP  
interrupts should be disabled.  
In SPI master mode, when the Sleep mode is selected,  
all module clocks are halted and the transmis-  
sion/reception will remain in that state until the devices  
wakes. After the device returns to Run mode, the mod-  
ule will resume transmitting and receiving data.  
There is also an SMP bit which controls when the data  
is sampled.  
In SPI Slave mode, the SPI Transmit/Receive Shift  
register operates asynchronously to the device. This  
allows the device to be placed in any power-managed  
mode and data to be shifted into the SPI  
TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TRISA3  
TRISC3  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
TRISA2  
TRISC2  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
58  
58  
58  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR2IF  
TMR1IF  
PIE1  
TXIE  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
TXIP  
TRISA  
TRISA7(2) TRISA6(2) TRISA5  
TRISA4  
TRISC4  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
TRISC  
SSPBUF  
SSPCON1  
SSPSTAT  
TRISC7 TRISC6 TRISC5  
SSP Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
Legend: Shaded cells are not used by the MSSP in SPI mode.  
Note 1: These bits are unimplemented in 28-pin devices; always maintain these bits clear.  
2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary  
oscillator modes. When disabled, these bits read as ‘0’.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 193  
PIC18F2XK20/4XK20  
2
17.4.1  
REGISTERS  
17.4 I C Mode  
The MSSP module has seven registers for I2C  
operation. These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call  
support) and provides interrupts on Start and Stop bits  
in hardware to determine a free bus (multi-master  
function). The MSSP module implements the standard  
mode specifications as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP STATUS register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
Two pins are used for data transfer:  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
• Serial clock (SCL) – SCK/SCL  
• Serial data (SDA) – SDI/SDA  
• MSSP Address Register (SSPADD)  
• MSSP Address Mask (SSPMSK)  
The user must configure these pins as inputs with the  
corresponding TRIS bits.  
SSPCON1, SSPCON2 and SSPSTAT are the control  
and STATUS registers in I2C mode operation. The  
SSPCON1 and SSPCON2 registers are readable and  
writable. The lower 6 bits of the SSPSTAT are read-only.  
The upper two bits of the SSPSTAT are read/write.  
FIGURE 17-7:  
MSSP BLOCK DIAGRAM  
(I2C™ MODE)  
Internal  
Data Bus  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Read  
Write  
When the SSP is configured in Master mode, the lower  
seven bits of SSPADD act as the Baud Rate Generator  
reload value. When the SSP is configured for I2C slave  
mode the SSPADD register holds the slave device  
address. The SSP can be configured to respond to a  
range of addresses by qualifying selected bits of the  
address register with the SSPMSK register.  
SSPBUF Reg  
SCK/SCL  
SDI/SDA  
Shift  
Clock  
SSPSR Reg  
MSb  
LSb  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPMSK Reg  
Match Detect  
SSPADD Reg  
Addr Match  
During  
transmission,  
the  
SSPBUF  
is  
not  
double-buffered. A write to SSPBUF will write to both  
SSPBUF and SSPSR.  
Set, Reset  
S, P bits  
(SSPSTAT Reg)  
Start and  
Stop bit Detect  
DS41303B-page 194  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P(1)  
R-0  
S(1)  
R-0  
R/W(2, 3)  
R-0  
UA  
R-0  
BF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for high-speed mode (400 kHz)  
bit 6  
bit 5  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit(1)  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
S: Start bit(1)  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
R/W: Read/Write Information bit (I2C mode only)(2, 3)  
In Slave mode:  
1= Read  
0= Write  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
bit 1  
bit 0  
UA: Update Address bit (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= SSPBUF is full  
0= SSPBUF is empty  
In Receive mode:  
1= SSPBUF is full (does not include the ACK and Stop bits)  
0= SSPBUF is empty (does not include the ACK and Stop bits)  
Note 1: This bit is cleared on Reset and when SSPEN is cleared.  
2: This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or not ACK bit.  
3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 195  
PIC18F2XK20/4XK20  
REGISTER 17-4: SSPCON1: MSSP CONTROL 1 REGISTER (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a trans-  
mission to be started (must be cleared by software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared by  
software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must be cleared  
by software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
When enabled, the SDA and SCL pins must be properly configured as input or output.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.  
DS41303B-page 196  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER (I2C MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
ACKDT(2)  
R/W-0  
ACKEN(1)  
R/W-0  
RCEN(1)  
R/W-0  
PEN(1)  
R/W-0  
RSEN(1)  
R/W-0  
SEN(1)  
ACKSTAT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Generate interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)(2)  
1= Not Acknowledge  
0= Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)(1)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (Master mode only)(1)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)(1)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
bit 1  
bit 0  
RSEN: Repeated Start Condition Enable bit (Master mode only)(1)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enable/Stretch Enable bit(1)  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, these bits may not  
be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).  
2: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 197  
PIC18F2XK20/4XK20  
17.4.2  
OPERATION  
17.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
SSPEN bit of the SSPCON1 register.  
The SSPCON1 register allows control of the I2C  
operation. Four mode selection bits of the SSPCON1  
register allow one of the following I2C modes to be  
selected:  
• I2C Master mode, clock = (FOSC/4) x (SSPADD + 1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode, slave is  
Idle  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The Buffer Full bit, BF, is set.  
3. An ACK pulse is generated.  
4. MSSP Interrupt Flag bit, SSPIF of the PIR1 reg-  
ister, is set (interrupt is generated, if enabled) on  
the falling edge of the ninth SCL pulse.  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain,  
provided these pins are programmed to inputs by  
setting the appropriate TRIS bits. To ensure proper  
operation of the module, pull-up resistors must be  
provided externally to the SCL and SDA pins.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W of the SSPSTAT register must specify  
a write so the slave device will receive the second  
address byte. For a 10-bit address, the first byte would  
equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two  
MSbs of the address. The sequence of events for 10-bit  
address is as follows, with steps 7 through 9 for the  
slave-transmitter:  
17.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs. The MSSP module will override the  
input state with the output data when required  
(slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits  
1. Receive first (high) byte of address (bits SSPIF,  
BF and UA (of the SSPSTAT register are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit, SSPIF.  
When an address is matched, or the data transfer after  
an address match is received, the hardware  
automatically will generate the Acknowledge (ACK)  
pulse and load the SSPBUF register with the received  
value currently in the SSPSR register.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set). If the address  
matches then the SCL is held until the next step.  
Otherwise the SCL line is not held.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
5. Update the SSPADD register with the first (high)  
byte of address. (This will clear bit UA and  
release a held SCL line.)  
• The Buffer Full bit, BF bit of the SSPSTAT regis-  
ter, is set before the transfer is received.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit, SSPIF.  
• The overflow bit, SSPOV bit of the SSPCON1  
register, is set before the transfer is received.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF of the PIR1 register is  
set. The BF bit is cleared by reading the SSPBUF  
register, while bit SSPOV is cleared through software.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit, SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter 100 and  
parameter 101 (See Table 26-19).  
DS41303B-page 198  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
17.4.3.2  
Reception  
17.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin SCK/SCL is held low  
regardless of SEN (see Section 17.4.4 “Clock  
Stretching” for more detail). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPBUF register  
which also loads the SSPSR register. Then pin  
SCK/SCL should be enabled by setting the CKP bit of  
the SSPCON1 register. The eight data bits are shifted  
out on the falling edge of the SCL input. This ensures  
that the SDA signal is valid during the SCL high time  
(Figure 17-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF bit of the SSPSTAT  
register is set, or bit SSPOV bit of the SSPCON1  
register is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit, SSPIF of the PIR1 register, must be  
cleared by software. The SSPSTAT register is used to  
determine the status of the byte.  
When the SEN bit of the SSPCON2 register is set,  
SCK/SCL will be held low (clock stretch) following  
each data transfer. The clock must be released by  
setting the CKP bit of the SSPCON1 register. See  
Section 17.4.4 “Clock Stretching” for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT  
register) and the slave monitors for another occurrence  
of the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin SCK/SCL must be enabled by setting bit  
CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared by software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 199  
PIC18F2XK20/4XK20  
2
FIGURE 17-8:  
I C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS41303B-page 200  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
2
FIGURE 17-9:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 201  
PIC18F2XK20/4XK20  
FIGURE 17-10:  
I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS41303B-page 202  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
2
FIGURE 17-11:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 203  
PIC18F2XK20/4XK20  
This register must be initiated prior to setting  
SSPM<3:0> bits to select the I2C Slave mode (7-bit or  
10-bit address).  
17.4.3.4  
SSP Mask Register  
An SSP Mask (SSPMSK) register is available in I2C  
Slave mode as a mask for the value held in the  
SSPSR register during an address comparison  
operation. A zero (‘0’) bit in the SSPMSK register has  
the effect of making the corresponding bit in the  
SSPSR register a “don’t care”.  
The SSP Mask register is active during:  
• 7-bit Address mode: address compare of A<7:1>.  
• 10-bit Address mode: address compare of A<7:0>  
only. The SSP mask has no effect during the  
reception of the first (high) byte of the address.  
This register is reset to all ‘1’s upon any Reset  
condition and, therefore, has no effect on standard  
SSP operation until written with a mask value.  
REGISTER 17-6: SSPMSK: SSP MASK REGISTER  
R/W-1  
MSK7  
R/W-1  
MSK6  
R/W-1  
MSK5  
R/W-1  
MSK4  
R/W-1  
MSK3  
R/W-1  
MSK2  
R/W-1  
MSK1  
R/W-1  
MSK0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
1= The received address bit n is compared to SSPADD<n> to detect I2C address match  
0= The received address bit n is not used to detect I2C address match  
MSK<0>: Mask bit for I2C Slave mode, 10-bit Address(1)  
I2C Slave mode, 10-bit Address (SSPM<3:0> = 0111):  
1= The received address bit 0 is compared to SSPADD<0> to detect I2C address match  
0= The received address bit 0 is not used to detect I2C address match  
Note 1: The MSK0 bit is used only in 10-bit slave mode. In all other modes, this bit has no effect.  
DS41303B-page 204  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
17.4.4  
CLOCK STRETCHING  
17.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7-bit and 10-bit Slave modes implement  
automatic clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the  
ninth clock if the BF bit is clear. This occurs regardless  
of the state of the SEN bit.  
The SEN bit of the SSPCON2 register allows clock  
stretching to be enabled during receives. Setting SEN  
will cause the SCL pin to be held low at the end of  
each data receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another data transfer sequence (see  
Figure 17-9).  
17.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence if the BF  
bit is set, the CKP bit of the SSPCON1 register is  
automatically cleared, forcing the SCL output to be  
held low. The CKP being cleared to ‘0’ will assert the  
SCL line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCL line low, the user has time to service the ISR  
and read the contents of the SSPBUF before the  
master device can initiate another data transfer  
sequence. This will prevent buffer overruns from  
occurring (see Figure 17-13).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set by software  
regardless of the state of the BF bit.  
17.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is con-  
trolled during the first two address sequences by the  
state of the UA bit, just as it is in 10-bit Slave Receive  
mode. The first two addresses are followed by a third  
address sequence which contains the high-order bits  
of the 10-bit address and the R/W bit set to ‘1’. After  
the third address sequence is performed, the UA bit is  
not set, the module is now configured in Transmit  
mode and clock stretching is controlled by the BF flag  
as in 7-bit Slave Transmit mode (see Figure 17-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set by software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
17.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 205  
PIC18F2XK20/4XK20  
17.4.4.5  
Clock Synchronization and  
the CKP bit  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’. However, clearing the CKP bit will not assert the  
SCL output low until the SCL output is already sam-  
pled low. Therefore, the CKP bit will not assert the  
SCL line until an external I2C master device has  
already asserted the SCL line. The SCL output will  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCL. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCL (see  
Figure 17-12).  
FIGURE 17-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX – 1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON1  
DS41303B-page 206  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
2
FIGURE 17-13:  
I C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 207  
PIC18F2XK20/4XK20  
FIGURE 17-14:  
I2C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
DS41303B-page 208  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
17.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually  
determines which device will be the slave addressed by  
the master. The exception is the general call address  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit of the SSPSTAT register is set. If the general call  
address is sampled when the GCEN bit is set, while the  
slave is configured in 10-bit Address mode, then the  
second half of the address is not necessary, the UA bit  
will not be set and the slave will begin receiving data  
after the Acknowledge (Figure 17-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the  
GCEN bit of the SSPCON2 is set. Following a Start bit  
detect, 8 bits are shifted into the SSPSR and the  
address is compared against the SSPADD. It is also  
compared to the general call address and fixed in hard-  
ware.  
FIGURE 17-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
9
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared by software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 209  
PIC18F2XK20/4XK20  
17.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set, or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP interrupt, if enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start condition  
• Stop condition  
Once Master mode is enabled, the user has six  
options.  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 17-16:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM<3:0>  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
DS41303B-page 210  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
17.4.6.1  
1. The user generates a Start condition by setting  
the SEN bit of the SSPCON2 register.  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit of the SSPCON2 register.  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDA, while SCL outputs the  
serial clock. Serial data is received 8 bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. Start and Stop conditions indicate the beginning  
and end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit of the SSPCON2 register.  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 17.4.7 “Baud Rate” for more detail.  
11. The user generates a Stop condition by setting  
the PEN bit of the SSPCON2 register.  
12. Interrupt is generated once the Stop condition is  
complete.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 211  
PIC18F2XK20/4XK20  
Once the given operation is complete (i.e.,  
transmission of the last data bit is followed by ACK), the  
internal clock will automatically stop counting and the  
SCL pin will remain in its last state.  
17.4.7  
BAUD RATE  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the SSPADD register  
(Figure 17-17). When a write occurs to SSPBUF, the  
Baud Rate Generator will automatically begin counting.  
The BRG counts down to ‘0’ and stops until another  
reload has taken place. The BRG count is decre-  
mented twice per instruction cycle (TCY) on the Q2 and  
Q4 clocks. In I2C Master mode, the BRG is reloaded  
automatically. One half of the SCL period is equal to  
Table 17-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
[(SSPADD+1) 2]/FOSC. Therefore SSPADD  
(FCY/FSCL) -1.  
=
FIGURE 17-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM<3:0>  
SSPADD<7:0>  
SSPM<3:0>  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKOUT  
FOSC/2  
TABLE 17-3: I2C™ CLOCK RATE W/BRG  
FSCL  
FOSC  
FCY  
BRG Value  
(2 Rollovers of BRG)  
64 MHz  
64 MHz  
64 MHz  
40 MHz  
40 MHz  
40 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
16 MHz  
16 MHz  
16 MHz  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
27h  
32h  
3Fh  
18h  
1Fh  
63h  
09h  
0Ch  
27h  
02h  
09h  
00h  
400 kHz(1)  
313.7 kHz  
250 kHz  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
4 MHz  
100 kHz  
1 MHz(1)  
4 MHz  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
DS41303B-page 212  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
17.4.7.1  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 17-18).  
FIGURE 17-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX – 1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 213  
PIC18F2XK20/4XK20  
17.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
Note:  
If at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag, BCLIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
To initiate a Start condition, the user sets the Start  
Enable bit, SEN bit of the SSPCON2 register. If the  
SDA and SCL pins are sampled high, the Baud Rate  
Generator is reloaded with the contents of  
SSPADD<6:0> and starts its count. If SCL and SDA are  
both sampled high when the Baud Rate Generator  
times out (TBRG), the SDA pin is driven low. The action  
of the SDA being driven low while SCL is high is the  
Start condition and causes the S bit of the SSPSTAT1  
register to be set. Following this, the Baud Rate Gener-  
ator is reloaded with the contents of SSPADD<6:0>  
and resumes its count. When the Baud Rate Generator  
times out (TBRG), the SEN bit of the SSPCON2 register  
will be automatically cleared by hardware; the Baud  
Rate Generator is suspended, leaving the SDA line  
held low and the Start condition is complete.  
17.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
FIGURE 17-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd bit  
1st bit  
SDA  
TBRG  
SCL  
TBRG  
S
DS41303B-page 214  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
17.4.9  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
A Repeated Start condition occurs when the RSEN bit  
of the SSPCON2 register is programmed high and the  
I2C logic module is in the Idle state. When the RSEN bit  
is set, the SCL pin is asserted low. When the SCL pin  
is sampled low, the Baud Rate Generator is loaded with  
the contents of SSPADD<5:0> and begins counting.  
The SDA pin is released (brought high) for one Baud  
Rate Generator count (TBRG). When the Baud Rate  
Generator times out, if SDA is sampled high, the SCL  
pin will be deasserted (brought high). When SCL is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of SSPADD<6:0> and begins count-  
ing. SDA and SCL must be sampled high for one TBRG.  
This action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG while SCL is high. Following  
this, the RSEN bit of the SSPCON2 register will be  
automatically cleared and the Baud Rate Generator will  
not be reloaded, leaving the SDA pin held low. As soon  
as a Start condition is detected on the SDA and SCL  
pins, the S bit of the SSPSTAT register will be set. The  
SSPIF bit will not be set until the Baud Rate Generator  
has timed out.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
Immediately following the SSPIF bit getting set, the user  
may write the SSPBUF with the 7-bit address in 7-bit  
mode or the default first address in 10-bit mode. After the  
first eight bits are transmitted and an ACK is received,  
the user may then transmit an additional eight bits of  
address (10-bit mode) or eight bits of data (7-bit mode).  
17.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
FIGURE 17-20:  
REPEAT START CONDITION WAVEFORM  
S bit set by hardware  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SCL (no change).  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
RSEN bit set by hardware  
on falling edge of ninth clock,  
end of Xmit  
Write to SSPBUF occurs here  
TBRG  
SCL  
TBRG  
Sr = Repeated Start  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 215  
PIC18F2XK20/4XK20  
17.4.10 I2C MASTER MODE  
TRANSMISSION  
17.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit of the SSPCON2  
register is cleared when the slave has sent an Acknowl-  
edge (ACK = 0) and is set when the slave does not  
Acknowledge (ACK = 1). A slave sends an Acknowl-  
edge when it has recognized its address (including a  
general call), or when the slave has properly received  
its data.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full flag bit, BF and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification  
parameter 106). SCL is held low for one Baud Rate  
Generator rollover count (TBRG). Data should be valid  
before SCL is released high (see data setup time spec-  
ification parameter 107). When the SCL pin is released  
high, it is held that way for TBRG. The data on the SDA  
pin must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received prop-  
erly. The status of ACK is written into the ACKDT bit on  
the falling edge of the ninth clock. If the master receives  
an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 17-21).  
17.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN bit of the SSPCON2  
register.  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPSR. After the falling edge of the eighth clock, the  
receive enable flag is automatically cleared, the con-  
tents of the SSPSR are loaded into the SSPBUF, the  
BF flag bit is set, the SSPIF flag bit is set and the Baud  
Rate Generator is suspended from counting, holding  
SCL low. The MSSP is now in Idle state awaiting the  
next command. When the buffer is read by the CPU,  
the BF flag bit is automatically cleared. The user can  
then send an Acknowledge bit at the end of reception  
by setting the Acknowledge Sequence Enable, ACKEN  
bit of the SSPCON2 register.  
After the write to the SSPBUF, each bit of the address  
will be shifted out on the falling edge of SCL until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
deassert the SDA pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDA pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT Status bit of the  
SSPCON2 register. Following the falling edge of the  
ninth clock transmission of the address, the SSPIF is  
set, the BF flag is cleared and the Baud Rate Generator  
is turned off until another write to the SSPBUF takes  
place, holding SCL low and allowing SDA to float.  
17.4.11.1 BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
17.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
17.4.11.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
17.4.10.1 BF Status Flag  
In Transmit mode, the BF bit of the SSPSTAT register  
is set when the CPU writes to SSPBUF and is cleared  
when all 8 bits are shifted out.  
17.4.10.2 WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared by software.  
DS41303B-page 216  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
2
FIGURE 17-21:  
I C™ MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 217  
PIC18F2XK20/4XK20  
2
FIGURE 17-22:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
DS41303B-page 218  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
17.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
17.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN bit of the SSPCON2 register. At the end of a  
receive/transmit, the SCL line is held low after the  
falling edge of the ninth clock. When the PEN bit is set,  
the master will assert the SDA line low. When the SDA  
line is sampled low, the Baud Rate Generator is  
reloaded and counts down to ‘0’. When the Baud Rate  
Generator times out, the SCL pin will be brought high  
and one TBRG (Baud Rate Generator rollover count)  
later, the SDA pin will be deasserted. When the SDA  
pin is sampled high while SCL is high, the P bit of the  
SSPSTAT register is set. A TBRG later, the PEN bit is  
cleared and the SSPIF bit is set (Figure 17-24).  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN bit of the  
SSPCON2 register. When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 17-23).  
17.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
17.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 17-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
SSPIF set at  
the end of receive  
software  
Cleared in  
software  
SSPIF set at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 17-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2,  
set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 219  
PIC18F2XK20/4XK20  
17.4.14 SLEEP OPERATION  
17.4.17 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or com-  
plete byte transfer occurs, wake the processor from  
Sleep (if the MSSP interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA, by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
I2C port to its Idle state (Figure 17-25).  
17.4.15 EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
17.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit of the SSPSTAT register is set,  
or the bus is Idle, with both the S and P bits clear. When  
the bus is busy, enabling the SSP interrupt will gener-  
ate the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDA line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed by  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condi-  
tion was in progress when the bus collision occurred, the  
condition is aborted, the SDA and SCL lines are deas-  
serted and the respective control bits in the SSPCON2  
register are cleared. When the user services the bus col-  
lision Interrupt Service Routine and if the I2C bus is free,  
the user can resume communication by asserting a Start  
condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FIGURE 17-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
Data changes  
while SCL = 0  
SDA line pulled low  
by another source  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
DS41303B-page 220  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 17-28). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to 0; if the SCL pin is sampled as ‘0’  
during this time, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
17.4.17.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 17-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 17-27).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address fol-  
lowing the Start condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLIF flag is set and  
the MSSP module is reset to its Idle state  
(Figure 17-26).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 17-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared by software  
S
SSPIF  
SSPIF and BCLIF are  
cleared by software  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 221  
PIC18F2XK20/4XK20  
FIGURE 17-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
by software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 17-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
by software  
SDA = 0, SCL = 1,  
set SSPIF  
DS41303B-page 222  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, Figure 17-29).  
If SDA is sampled high, the BRG is reloaded and begins  
counting. If SDA goes from high-to-low before the BRG  
times out, no bus collision occurs because no two  
masters can assert SDA at exactly the same time.  
17.4.17.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If SCL goes from high-to-low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition,  
see Figure 17-30.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to 0. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is  
complete.  
FIGURE 17-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared by software  
0’  
S
0’  
SSPIF  
FIGURE 17-30:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
by software  
0’  
S
SSPIF  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 223  
PIC18F2XK20/4XK20  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 17-31). If the SCL pin is  
sampled low before SDA is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 17-32).  
17.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 17-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 17-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
DS41303B-page 224  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 17-4: SUMMARY OF REGISTERS ASSOCIATED WITH I2C™  
Reset  
Values on  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPR1  
PSPIP  
PSPIF  
PSPIE  
ADIP  
ADIF  
ADIE  
RCIP  
RCIF  
RCIE  
TXIP  
TXIF  
TXIE  
SSPIP  
SSPIF  
SSPIE  
BCLIP  
BCLIF  
BCLIE  
CCP1IP  
CCP1IF  
CCP1IE  
TMR2IP  
TMR2IF  
TMR2IE  
TMR1IP  
TMR1IF  
TMR1IE  
60  
60  
60  
60  
60  
60  
58  
58  
58  
58  
61  
58  
60  
PIR1  
PIE1  
IPR2  
PIR2  
PIE2  
2
2
SSPADD  
SSPBUF  
SSPCON1  
SSPCON2  
SSPMSK  
SSPSTAT  
TRISC  
SSP Address Register in I C™ Slave Mode. SSP Baud Rate Reload Register in I C Master Mode.  
SSP Receive Buffer/Transmit Register  
WCOL  
GCEN  
MSK7  
SMP  
SSPOV  
ACKSTAT  
MSK6  
SSPEN  
ACKDT  
MSK5  
D/A  
CKP  
ACKEN  
MSK4  
P
SSPM3  
RCEN  
MSK3  
S
SSPM2  
PEN  
SSPM1  
RSEN  
MSK1  
UA  
SSPM0  
SEN  
MSK2  
R/W  
MSK0  
BF  
CKE  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Legend:  
— = unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 225  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 226  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The EUSART module includes the following capabilities:  
18.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer  
independent of device program execution. The  
EUSART, also known as a Serial Communications  
Interface (SCI), can be configured as a full-duplex  
asynchronous system or half-duplex synchronous  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Programmable clock and data polarity  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
system.  
Full-Duplex  
mode  
is  
useful  
for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 18-1 and Figure 18-2.  
FIGURE 18-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
BRG16  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4  
x16 x64  
TX9D  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
SPBRGH  
SPBRG  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 227  
PIC18F2XK20/4XK20  
FIGURE 18-2:  
EUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RCIDL  
RX/DT pin  
RSR Register  
MSb  
Stop (8)  
LSb  
0
START  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
BRG16  
n
+ 1  
Multiplier  
x4  
x16 x64  
SYNC  
BRGH  
BRG16  
1
X
1
1
0
1
0
0
0
1
0
0
0
FIFO  
SPBRGH  
SPBRG  
X
X
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCTL)  
These registers are detailed in Register 18-1,  
Register 18-2 and Register 18-3, respectively.  
For all modes of EUSART operation, the TRIS control  
bits corresponding to the RX/DT and TX/CK pins should  
be set to ‘1’. The EUSART control will automatically  
reconfigure the pin from input to output, as needed.  
DS41303B-page 228  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
18.1 EUSART Asynchronous Mode  
Note 1: When the SPEN bit is set the RX/DT I/O pin  
is automatically configured as an input,  
regardless of the state of the corresponding  
TRIS bit and whether or not the EUSART  
receiver is enabled. The RX/DT pin data  
can be read via a normal PORT read but  
PORT latch data output is precluded.  
The EUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud  
Rate Generator is used to derive standard baud rate  
frequencies from the system oscillator. See Table 18-5  
for examples of baud rate configurations.  
2: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
18.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
18.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
18.1.1.3  
Transmit Data Polarity  
The EUSART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
The polarity of the transmit data can be controlled with  
the CKTXP bit of the BAUDCTL register. The default  
state of this bit is ‘0’ which selects high true transmit  
idle and data bits. Setting the CKTXP bit to ‘1’ will invert  
the transmit data resulting in low true idle and data bits.  
The CKTXP bit controls transmit data polarity only in  
Asynchronous mode. In Synchronous mode the  
CKTXP bit has a different function.  
18.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
18.1.1.4  
Transmit Interrupt Flag  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the TX/CK I/O pin as an output. If the TX/CK  
pin is shared with an analog peripheral the analog I/O  
function must be disabled by clearing the corresponding  
ANSEL bit.  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 229  
PIC18F2XK20/4XK20  
18.1.1.5  
TSR Status  
18.1.1.7  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user needs to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRGH:SPBRG register pair and  
the BRGH and BRG16 bits to achieve the desired  
baud rate (see Section 18.3 “EUSART Baud  
Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Set the CKTXP control bit if inverted transmit  
data polarity is desired.  
18.1.1.6  
Transmitting 9-Bit Characters  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
EUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
6. If interrupts are desired, set the TXIE interrupt  
enable bit. An interrupt will occur immediately  
provided that the GIE and PEIE bits of the  
INTCON register are also set.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 18.1.2.8 “Address  
Detection” for more information on the Address mode.  
8. Load 8-bit data into the TXREG register. This  
will start the transmission.  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
DS41303B-page 230  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 18-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
Word 2  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg  
Transmit Shift Reg  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 18-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
57  
60  
60  
60  
59  
59  
59  
59  
59  
59  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TMR2IF  
TMR1IF  
PIE1  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TXIP  
RCSTA  
TXREG  
TXSTA  
BAUDCTL  
SPBRGH  
SPBRG  
CREN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDOVF  
RCIDL  
DTRXP  
CKTXP  
ABDEN  
EUSART Baud Rate Generator Register, High Byte  
EUSART Baud Rate Generator Register, Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 231  
PIC18F2XK20/4XK20  
18.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
18.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 18.1.2.5 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode would typically be used in  
RS-232 systems. The receiver block diagram is shown  
in Figure 18-2. The data is received on the RX/DT pin  
and drives the data recovery block. The data recovery  
block is actually a high-speed shifter operating at 16  
times the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to  
a
two character  
First-In-First-Out (FIFO) memory. The FIFO buffering  
allows reception of two complete characters and the  
start of a third character before software must start  
servicing the EUSART receiver. The FIFO and RSR  
registers are not directly accessible by software.  
Access to the received data is via the RCREG register.  
18.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the EUSART. Clearing the SYNC bit  
of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART. The RX/DT I/O  
pin must be configured as an input by setting the  
corresponding TRIS control bit. If the RX/DT pin is  
shared with an analog peripheral the analog I/O function  
must be disabled by clearing the corresponding ANSEL  
bit.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 18.1.2.6  
“Receive Overrun Error” for more  
information on overrun errors.  
18.1.2.3  
Receive Data Polarity  
The polarity of the receive data can be controlled with  
the DTRXP bit of the BAUDCTL register. The default  
state of this bit is ‘0’ which selects high true receive idle  
and data bits. Setting the DTRXP bit to ‘1’ will invert the  
receive data resulting in low true idle and data bits. The  
DTRXP bit controls receive data polarity only in Asyn-  
chronous mode. In synchronous mode the DTRXP bit  
has a different function.  
Note:  
When the SPEN bit is set the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or not  
the EUSART transmitter is enabled. The  
PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
DS41303B-page 232  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
18.1.2.4  
Receive Interrupts  
18.1.2.7  
Receiving 9-bit Characters  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set, the EUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
RCIF interrupts are enabled by setting the following  
bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the  
INTCON register  
18.1.2.8  
Address Detection  
• GIE global interrupt enable bit of the INTCON  
register  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
The RCIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit. All other characters will be ignored.  
18.1.2.5  
Receive Framing Error  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the EUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
18.1.2.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated If a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCSTA register.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 233  
PIC18F2XK20/4XK20  
18.1.2.9  
Asynchronous Reception Set-up:  
18.1.2.10 9-bit Address Detection Mode Set-up  
1. Initialize the SPBRGH:SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 18.3 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 18.3 “EUSART  
Baud Rate Generator (BRG)”).  
2. Enable the serial port by setting the SPEN bit  
and the RX/DT pin TRIS bit. The SYNC bit must  
be clear for asynchronous operation.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
4. If 9-bit reception is desired, set the RX9 bit.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
5. Set the DTRXP if inverted receive polarity is  
desired.  
6. Enable reception by setting the CREN bit.  
4. Enable 9-bit reception by setting the RX9 bit.  
7. The RCIF interrupt flag bit will be set when a  
character is transferred from the RSR to the  
receive buffer. An interrupt will be generated if  
the RCIE interrupt enable bit was also set.  
5. Enable address detection by setting the ADDEN  
bit.  
6. Set the DTRXP if inverted receive polarity is  
desired.  
8. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
7. Enable reception by setting the CREN bit.  
8. The RCIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the RSR to the receive buffer. An interrupt  
will be generated if the RCIE interrupt enable bit  
was also set.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
9. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
10. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
11. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
12. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
RCIDL  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS41303B-page 234  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
57  
60  
60  
60  
59  
59  
60  
59  
59  
59  
59  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TXIE  
IPR1  
TXIP  
RCSTA  
RCREG  
TRISC  
TXSTA  
BAUDCTL  
SPBRGH  
SPBRG  
CREN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
TRISC7  
CSRC  
TRISC6  
TX9  
TRISC5  
TXEN  
TRISC4  
SYNC  
TRISC3  
SENDB  
BRG16  
TRISC2  
BRGH  
TRISC1 TRISC0  
TRMT  
WUE  
TX9D  
ABDOVF  
RCIDL  
DTRXP  
CKTXP  
ABDEN  
EUSART Baud Rate Generator Register, High Byte  
EUSART Baud Rate Generator Register, Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 235  
PIC18F2XK20/4XK20  
The first (preferred) method uses the OSCTUNE  
register to adjust the HFINTOSC output. Adjusting the  
value in the OSCTUNE register allows for fine resolution  
changes to the system clock source. See Section 2.5  
“Internal Clock Modes” for more information.  
18.2 Clock Accuracy with  
Asynchronous Operation  
The factory calibrates the internal oscillator block out-  
put (HFINTOSC). However, the HFINTOSC frequency  
may drift as VDD or temperature changes, and this  
directly affects the asynchronous baud rate. Two meth-  
ods may be used to adjust the baud rate clock, but both  
require a reference clock source of some kind.  
The other method adjusts the value in the Baud Rate  
Generator. This can be done automatically with the  
Auto-Baud Detect feature (see Section 18.3.1  
“Auto-Baud Detect”). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
(1)  
TXEN  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
(1)  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS41303B-page 236  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 237  
PIC18F2XK20/4XK20  
REGISTER 18-3: BAUDCTL: BAUD RATE CONTROL REGISTER  
R-0  
R-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
DTRXP  
CKTXP  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been detected and the receiver is active  
Synchronous mode:  
Don’t care  
DTRXP: Data/Receive Polarity Select bit  
Asynchronous mode:  
1= Receive data (RX) is inverted (active-low)  
0= Receive data (RX) is not inverted (active-high)  
Synchronous mode:  
1= Data (DT) is inverted (active-low)  
0= Data (DT) is not inverted (active-high)  
bit 4  
CKTXP: Clock/Transmit Polarity Select bit  
Asynchronous mode:  
1= Idle state for transmit (TX) is low  
0= Idle state for transmit (TX) is high  
Synchronous mode:  
1= Data changes on the falling edge of the clock and is sampled on the rising edge of the clock  
0= Data changes on the rising edge of the clock and is sampled on the falling edge of the clock  
bit 3  
BRG16: 16-bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used (SPBRGH:SPBRG)  
0= 8-bit Baud Rate Generator is used (SPBRG)  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= Receiver is waiting for a falling edge. No character will be received but RCIF will be set on the falling  
edge. WUE will automatically clear on the rising edge.  
0= Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care  
DS41303B-page 238  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
make sure that the receive operation is Idle before  
changing the system clock.  
18.3 EUSART Baud Rate Generator  
(BRG)  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the  
asynchronous and synchronous EUSART operation.  
By default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDCTL register selects 16-bit  
mode.  
EXAMPLE 18-1:  
CALCULATING BAUD  
RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The SPBRGH:SPBRG register pair determines the  
period of the free running baud rate timer. In  
Asynchronous mode the multiplier of the baud rate  
period is determined by both the BRGH bit of the TXSTA  
register and the BRG16 bit of the BAUDCTL register. In  
Synchronous mode, the BRGH bit is ignored.  
FOSC  
--------------------------------------------------------------------  
=
Desired Baud Rate  
64([SPBRGH:SPBRG] + 1)  
Solving for SPBRGH:SPBRG:  
FOSC  
---------------------------------------------  
Table 18-3 contains the formulas for determining the  
baud rate. Example 18-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
Desired Baud Rate  
---------------------------------------------  
X =  
=
1  
64  
16000000  
-----------------------  
9600  
64  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 18-5. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
-----------------------  
1  
= [25.042] = 25  
16000000  
64(25 + 1)  
--------------------------  
=
Calculated Baud Rate  
= 9615  
Writing a new value to the SPBRGH, SPBRG register  
pair causes the BRG timer to be reset (or cleared). This  
ensures that the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
Calc. Baud Rate Desired Baud Rate  
--------------------------------------------------------------------------------------------  
Error =  
Desired Baud Rate  
(9615 9600)  
----------------------------------  
=
= 0.16%  
9600  
TABLE 18-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRGH, SPBRG register pair  
TABLE 18-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Reset Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on page  
TXSTA  
RCSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
CKTXP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
59  
59  
59  
59  
59  
BAUDCTL ABDOVF RCIDL  
DTRXP  
ABDEN  
SPBRGH EUSART Baud Rate Generator Register, High Byte  
SPBRG EUSART Baud Rate Generator Register, Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 239  
PIC18F2XK20/4XK20  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 64.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
239  
119  
29  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
143  
71  
17  
16  
8
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
9615  
10417  
19.23k  
0.16  
0.00  
0.16  
103  
95  
51  
27  
23  
14  
12  
2
58.82k  
2.12  
16  
8
57.60k  
7
57.60k  
115.2k 111.11k -3.55  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
Error  
(decimal)  
(decimal)  
(decimal)  
0.00  
0.00  
0.00  
0.00  
300  
1200  
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 64.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
103  
95  
51  
16  
8
71  
65  
35  
11  
5
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9615  
0.16  
0.00  
0.16  
2.12  
-3.55  
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
19.23k  
57.97k  
0.16  
0.64  
207  
68  
34  
115.2k 114.29k -0.79  
DS41303B-page 240  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 64.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRGH  
SPBRGH  
:SPBRG  
(decimal)  
SPBRGH  
:SPBRG  
(decimal)  
SPBRGH  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
:SPBRG  
(decimal)  
:SPBRG  
(decimal)  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
300.0  
1200.1  
2399  
0.00  
0.01  
-0.02  
-0.08  
0.00  
0.16  
0.64  
13332  
3332  
1666  
416  
383  
207  
68  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.03  
1200.5  
2398  
0.01  
0.04  
-0.08  
0.16  
0.00  
0.16  
2.12  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
2400  
2400  
9592  
9600  
9615  
9600  
10417  
19.23k  
57.97k  
10378  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
58.82k  
10473  
19.20k  
57.60k  
115.2k  
65  
51  
35  
19  
16  
11  
115.2k 114.29k -0.79  
34  
9
111.11k -3.55  
8
5
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRGH  
:SPBRG  
(decimal)  
SPBRGH  
:SPBRG  
(decimal)  
SPBRGH  
:SPBRG  
(decimal)  
SPBRGH  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
:SPBRG  
(decimal)  
Error  
300  
1200  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2400  
2404  
9615  
10417  
19.23k  
55556  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
47  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
25  
12  
8
1
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 241  
PIC18F2XK20/4XK20  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 64.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRGH  
SPBRGH  
SPBRGH  
SPBRGH  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
:SPBRG  
(decimal)  
:SPBRG  
(decimal)  
:SPBRG  
(decimal)  
:SPBRG  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
300  
0.00  
0.00  
0.00  
-0.02  
0.00  
0.04  
-0.08  
53332  
13332  
6666  
1666  
1535  
832  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200.1  
2399.5  
9592  
0.00  
0.01  
-0.02  
-0.08  
0.00  
0.16  
0.64  
13332  
3332  
1666  
416  
383  
207  
68  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
1200  
2400  
2400  
2400  
9598.1  
10417  
19.21k  
57.55k  
9600  
9600  
10425  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
57.97k  
10433  
19.20k  
57.60k  
115.2k  
277  
115.2k 115.11k -0.08  
138  
39  
114.29k -0.79  
34  
23  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRGH  
:SPBRG  
(decimal)  
SPBRGH  
SPBRGH  
SPBRGH  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
:SPBRG  
(decimal)  
:SPBRG  
(decimal)  
:SPBRG  
(decimal)  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0.00  
0.16  
-0.79  
2.12  
6666  
1666  
832  
207  
191  
103  
34  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2400  
2401  
2398  
2400  
9600  
9615  
9615  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
23  
51  
47  
12  
16  
15  
16  
8
7
DS41303B-page 242  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
and SPBRG registers are clocked at 1/8th the BRG  
base clock rate. The resulting byte measurement is the  
average bit time when clocked at full speed.  
18.3.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud detection will occur on the byte  
following the Break character (see  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”) which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges including the Stop bit edge.  
Section 18.3.2  
“Auto-Wake-up  
on  
Break”).  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible.  
Setting the ABDEN bit of the BAUDCTL register starts  
the auto-baud calibration sequence (Figure 18-6).  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. On the first rising edge of  
the receive line, after the Start bit, the SPBRG begins  
counting up using the BRG counter clock as shown in  
Table 18-6. The fifth rising edge will occur on the RX  
pin at the end of the eighth bit period. At that time, an  
accumulated value totaling the proper BRG period is  
left in the SPBRGH:SPBRG register pair, the ABDEN  
bit is automatically cleared, and the RCIF interrupt flag  
is set. A read operation on the RCREG needs to be  
performed to clear the RCIF interrupt. RCREG content  
should be discarded. When calibrating for modes that  
do not use the SPBRGH register the user can verify  
that the SPBRG register did not overflow by checking  
for 00h in the SPBRGH register.  
3: During the auto-baud process, the  
auto-baud counter starts counting at 1.  
Upon completion of the auto-baud  
sequence, to achieve maximum accuracy,  
subtract 1 from the SPBRGH:SPBRG  
register pair.  
TABLE 18-6:  
BRG16 BRGH  
BRG COUNTER CLOCK RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
0
0
0
1
FOSC/64  
FOSC/16  
FOSC/512  
FOSC/128  
1
1
0
1
FOSC/16  
FOSC/4  
FOSC/128  
FOSC/32  
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits as shown in Table 18-6. During ABD,  
both the SPBRGH and SPBRG registers are used as a  
16-bit counter, independent of the BRG16 bit setting.  
While calibrating the baud rate period, the SPBRGH  
Note:  
During the ABD sequence, SPBRG and  
SPBRGH registers are both used as a 16-bit  
counter, independent of BRG16 setting.  
FIGURE 18-6:  
AUTOMATIC BAUD RATE CALIBRATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
Edge #4  
bit 7  
bit 6  
Edge #5  
Stop bit  
RX pin  
Start  
bit 0  
bit 2  
bit 4  
BRG Clock  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXh  
XXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 243  
PIC18F2XK20/4XK20  
18.3.2  
AUTO-WAKE-UP ON BREAK  
18.3.2.1  
Special Considerations  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The Auto-Wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line.  
This feature is available only in Asynchronous mode.  
Break Character  
To avoid character errors or character fragments during  
a wake-up event, the wake-up character must be all  
zeros.  
When the wake-up is enabled the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
The Auto-Wake-up feature is enabled by setting the  
WUE bit of the BAUDCTL register. Once set, the normal  
receive sequence on RX/DT is disabled, and the  
EUSART remains in an Idle state, monitoring for a  
wake-up event independent of the CPU mode. A  
wake-up event consists of a high-to-low transition on the  
RX/DT line. (This coincides with the start of a Sync Break  
or a wake-up signal character for the LIN protocol.)  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be 10 or more bit times, 13-bit  
times recommended for LIN bus, or any number of bit  
times for standard RS-232 devices.  
The EUSART module generates an RCIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 18-7), and asynchronously if  
the device is in Sleep mode (Figure 18-8). The interrupt  
condition is cleared by reading the RCREG register.  
Oscillator Startup Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS/PLL mode). The Sync  
Break (or wake-up signal) character must be of  
sufficient length, and be followed by a sufficient  
interval, to allow enough time for the selected oscillator  
to start and provide proper initialization of the EUSART.  
The WUE bit is automatically cleared by the low-to-high  
transition on the RX line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
WUE Bit  
The wake-up event causes a receive interrupt by  
setting the RCIF bit. The WUE bit is cleared by  
hardware by a rising edge on RX/DT. The interrupt  
condition is then cleared by software by reading the  
RCREG register and discarding its contents.  
To ensure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process  
before setting the WUE bit. If a receive operation is not  
occurring, the WUE bit may then be set just prior to  
entering the Sleep mode.  
FIGURE 18-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3Q4  
OSC1  
Auto Cleared  
Bit set by user  
WUE bit  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
DS41303B-page 244  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 18-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3  
Q1  
Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RX/DT Line  
Note 1  
RCIF  
Cleared due to User Read of RCREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal is  
still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
18.3.3  
BREAK CHARACTER SEQUENCE  
18.3.4  
RECEIVING A BREAK CHARACTER  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by 12 ‘0’ bits and a Stop bit.  
The Enhanced EUSART module can receive a Break  
character in two ways.  
The first method to detect a Break character uses the  
FERR bit of the RCSTA register and the Received data  
as indicated by RCREG. The Baud Rate Generator is  
assumed to have been initialized to the expected baud  
rate.  
To send a Break character, set the SENDB and TXEN  
bits of the TXSTA register. The Break character trans-  
mission is then initiated by a write to the TXREG. The  
value of data written to TXREG will be ignored and all  
0’s will be transmitted.  
A Break character has been received when;  
• RCIF bit is set  
• FERR bit is set  
• RCREG = 00h  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The second method uses the Auto-Wake-up feature  
described in Section 18.3.2 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RX/DT, cause an  
RCIF interrupt, and receive the next data byte followed  
by another interrupt.  
The TRMT bit of the TXSTA register indicates when the  
transmit operation is active or Idle, just as it does during  
normal transmission. See Figure 18-9 for the timing of  
the Break character sequence.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDCTL register before placing the EUSART in  
Sleep mode.  
18.3.3.1  
Break and Sync Transmit Sequence  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 245  
PIC18F2XK20/4XK20  
FIGURE 18-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXIF bit  
(Transmit  
interrupt Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
DS41303B-page 246  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
18.4.1.2  
Clock Polarity  
18.4 EUSART Synchronous Mode  
A clock polarity option is provided for Microwire  
compatibility. Clock polarity is selected with the CKTXP  
bit of the BAUDCTL register. Setting the CKTXP bit  
sets the clock Idle state as high. When the CKTXP bit  
is set, the data changes on the falling edge of each  
clock and is sampled on the rising edge of each clock.  
Clearing the CKTXP bit sets the Idle state as low. When  
the CKTXP bit is cleared, the data changes on the  
rising edge of each clock and is sampled on the falling  
edge of each clock.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary  
circuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and  
transmit shift registers. Since the data line is  
bidirectional, synchronous operation is half-duplex  
only. Half-duplex refers to the fact that master and  
slave devices can receive and transmit data but not  
both simultaneously. The EUSART can operate as  
either a master or slave device.  
18.4.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the EUSART is configured for  
synchronous master transmit operation.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character the new character data is held in the  
TXREG until the last bit of the previous character has  
been transmitted. If this is the first character, or the pre-  
vious character has been completely flushed from the  
TSR, the data in the TXREG is immediately transferred  
to the TSR. The transmission of the character com-  
mences immediately following the transfer of the data  
to the TSR from the TXREG.  
Start and Stop bits are not used in synchronous  
transmissions.  
18.4.1  
SYNCHRONOUS MASTER MODE  
The following bits are used to configure the EUSART  
for Synchronous Master operation:  
• SYNC = 1  
• CSRC = 1  
Each data bit changes on the leading edge of the mas-  
ter clock and remains valid until the subsequent leading  
clock edge.  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
18.4.1.4  
Data Polarity  
The polarity of the transmit and receive data can be  
controlled with the DTRXP bit of the BAUDCTL regis-  
ter. The default state of this bit is ‘0’ which selects high  
true transmit and receive data. Setting the DTRXP bit  
to ‘1’ will invert the data resulting in low true transmit  
and receive data.  
The TRIS bits corresponding to the RX/DT and TX/CK  
pins should be set.  
18.4.1.1  
Master Clock  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a master transmits the clock on the TX/CK line. The  
TX/CK pin output driver is automatically enabled when  
the EUSART is configured for synchronous transmit or  
receive operation. Serial data bits change on the leading  
edge to ensure they are valid at the trailing edge of each  
clock. One clock cycle is generated for each data bit.  
Only as many clock cycles are generated as there are  
data bits.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 247  
PIC18F2XK20/4XK20  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
18.4.1.5  
Synchronous Master Transmission  
Set-up:  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 18.3 “EUSART  
Baud Rate Generator (BRG)”).  
6. If interrupts are desired, set the TXIE, GIE and  
PEIE interrupt enable bits.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC. Set the  
TRIS bits corresponding to the RX/DT and  
TX/CK I/O pins.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
8. Start transmission by loading data to the TXREG  
register.  
FIGURE 18-10:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 18-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS41303B-page 248  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TRISC3  
TMR0IF  
INT0IF  
RBIF  
57  
60  
60  
60  
59  
60  
59  
59  
59  
59  
59  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
RCIF  
RCIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TXIE  
IPR1  
ADIP  
RCIP  
TXIP  
RCSTA  
TRISC  
TXREG  
TXSTA  
BAUDCTL  
SPBRGH  
SPBRG  
RX9  
SREN  
TRISC5  
CREN  
TRISC4  
FERR  
OERR  
RX9D  
TRISC7  
TRISC6  
TRISC2  
TRISC1  
TRISC0  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDOVF  
RCIDL  
DTRXP  
CKTXP  
ABDEN  
EUSART Baud Rate Generator Register, High Byte  
EUSART Baud Rate Generator Register, Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 249  
PIC18F2XK20/4XK20  
18.4.1.6  
Synchronous Master Reception  
18.4.1.8  
Receive Overrun Error  
Data is received at the RX/DT pin. The RX/DT pin  
output driver must be disabled by setting the  
corresponding TRIS bits when the EUSART is  
configured for synchronous master receive operation.  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register or by clearing the  
SPEN bit which resets the EUSART.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
18.4.1.9  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit is set and the  
character is automatically transferred to the two  
character receive FIFO. The Least Significant eight bits  
of the top character in the receive FIFO are available in  
RCREG. The RCIF bit remains set as long as there are  
un-read characters in the receive FIFO.  
18.4.1.10 Synchronous Master Reception  
Set-up:  
1. Initialize the SPBRGH, SPBRG register pair for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
18.4.1.7  
Slave Clock  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TX/CK line. The  
TX/CK pin output driver must be disabled by setting the  
associated TRIS bit when the device is configured for  
synchronous slave transmit or receive operation. Serial  
data bits change on the leading edge to ensure they are  
valid at the trailing edge of each clock. One data bit is  
transferred for each clock cycle. Only as many clock  
cycles should be received as there are data bits.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC. Disable  
RX/DT and TX/CK output drivers by setting the  
corresponding TRIS bits.  
3. Ensure bits CREN and SREN are clear.  
4. If using interrupts, set the GIE and PEIE bits of  
the INTCON register and set RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
6. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
7. Interrupt flag bit RCIF will be set when reception  
of a character is complete. An interrupt will be  
generated if the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
DS41303B-page 250  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 18-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
FERR  
INT0IF  
RBIF  
57  
60  
60  
60  
59  
59  
59  
59  
59  
59  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
TXIE  
IPR1  
TXIP  
RCSTA  
RCREG  
TXSTA  
CREN  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCTL ABDOVF  
RCIDL  
DTRXP  
CKTXP  
ABDEN  
SPBRGH EUSART Baud Rate Generator Register, High Byte  
SPBRG EUSART Baud Rate Generator Register, Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
Note 1: Reserved in 28-pin devices; always maintain these bits clear.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 251  
PIC18F2XK20/4XK20  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
18.4.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
18.4.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit. Set the TRIS bits corresponding to  
the RX/DT and TX/CK I/O pins.  
RX/DT and TX/CK pin output drivers must be disabled  
by setting the corresponding TRIS bits.  
2. Clear the CREN and SREN bits.  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
18.4.2.1  
EUSART Synchronous Slave  
Transmit  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 18.4.1.3  
“Synchronous Master Transmission”), except in the  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
6. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
case of the Sleep mode.  
7. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TRISC3  
TMR0IF  
INT0IF  
RBIF  
57  
60  
60  
60  
59  
60  
59  
59  
59  
59  
59  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
RCIF  
RCIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TXIE  
IPR1  
ADIP  
RCIP  
TXIP  
RCSTA  
TRISC  
TXREG  
TXSTA  
BAUDCTL  
SPBRGH  
SPBRG  
RX9  
SREN  
TRISC5  
CREN  
TRISC4  
FERR  
OERR  
RX9D  
TRISC7  
TRISC6  
TRISC2  
TRISC1  
TRISC0  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDOVF  
RCIDL  
DTRXP  
CKTXP  
ABDEN  
EUSART Baud Rate Generator Register, High Byte  
EUSART Baud Rate Generator Register, Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear.  
DS41303B-page 252  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
18.4.2.3  
EUSART Synchronous Slave  
Reception  
18.4.2.4  
Synchronous Slave Reception  
Set-up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 18.4.1.6 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit. Set the TRIS bits corresponding to  
the RX/DT and TX/CK I/O pins.  
2. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
RCIE bit.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never Idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Set the CREN bit to enable reception.  
• SREN bit, which is a “don't care” in Slave mode  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
5. The RCIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCIE bit was set.  
6. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
7. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
8. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
57  
60  
60  
60  
59  
59  
59  
59  
59  
59  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TMR2IF TMR1IF  
PIE1  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TXIP  
RCSTA  
RCREG  
TXSTA  
BAUDCTL  
SPBRGH  
SPBRG  
CREN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDOVF  
RCIDL  
DTRXP  
CKTXP  
ABDEN  
EUSART Baud Rate Generator Register, High Byte  
EUSART Baud Rate Generator Register, Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
Note 1: Reserved in 28-pin devices; always maintain these bits clear.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 253  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 254  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
19.0 ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESL and ADRESH).  
The ADC voltage reference is software selectable to  
either VDD or a voltage applied to the external reference  
pins.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
Figure 19-1 shows the block diagram of the ADC.  
FIGURE 19-1:  
ADC BLOCK DIAGRAM  
VCFG1 = 0  
VCFG1 = 1  
AVSS  
VREF-  
AVDD  
VCFG0 = 0  
VCFG0 = 1  
VREF+  
0000  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
AN12  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
ADC  
10  
GO/DONE  
0= Left Justify  
1= Right Justify  
ADFM  
ADON  
10  
Unused  
Unused  
VSS  
ADRESH ADRESL  
FVR  
CHS<3:0>  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 255  
PIC18F2XK20/4XK20  
19.1.4  
SELECTING AND CONFIGURING  
ACQUISITION TIME  
19.1 ADC Configuration  
When configuring and using the ADC the following  
functions must be considered:  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
• Port configuration  
• Channel selection  
Acquisition time is set with the ACQT<2:0> bits of the  
ADCON2 register. Acquisition delays cover a range of  
2 to 20 TAD. When the GO/DONE bit is set, the A/D  
module continues to sample the input for the selected  
acquisition time, then automatically begins a conver-  
sion. Since the acquisition time is programmed, there is  
no need to wait for an acquisition time between select-  
ing a channel and setting the GO/DONE bit.  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• Results formatting  
19.1.1  
PORT CONFIGURATION  
The ANSEL, ANSELH, TRISA, TRISB and TRISE reg-  
isters all configure the A/D port pins. Any port pin  
needed as an analog input should have its correspond-  
ing ANSx bit set to disable the digital input buffer and  
TRISx bit set to disable the digital output driver. If the  
TRISx bit is cleared, the digital output level (VOH or  
VOL) will be converted.  
Manual  
acquisition  
is  
selected  
when  
ACQT<2:0> = 000. When the GO/DONE bit is set,  
sampling is stopped and a conversion begins. The user  
is responsible for ensuring the required acquisition time  
has passed between selecting the desired input  
channel and setting the GO/DONE bit. This option is  
also the default Reset state of the ACQT<2:0> bits and  
is compatible with devices that do not offer  
programmable acquisition times.  
The A/D operation is independent of the state of the  
ANSx bits and the TRIS bits.  
Note 1: When reading the PORT register, all pins  
with their corresponding ANSx bit set  
read as cleared (a low level). However,  
analog conversion of pins configured as  
digital inputs (ANSx bit cleared and  
TRISx bit set) will be accurately  
converted.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. When an acquisition time is programmed, there  
is no indication of when the acquisition time ends and  
the conversion begins.  
19.1.5  
CONVERSION CLOCK  
2: Analog levels on any pin with the corre-  
sponding ANSx bit cleared may cause the  
digital input buffer to consume current out  
of the device’s specification limits.  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON2 register. There  
are seven possible clock options:  
3: The PBADEN bit in Configuration  
Register 3H configures PORTB pins to  
reset as analog or digital pins by  
controlling how the bits in ANSELH are  
reset.  
• FOSC/2  
• FOSC/4  
• FOSC/8  
• FOSC/16  
• FOSC/32  
19.1.2  
CHANNEL SELECTION  
• FOSC/64  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11 TAD periods  
as shown in Figure 19-3.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 19.2  
“ADC Operation” for more information.  
For correct conversion, the appropriate TAD specification  
must be met. See A/D conversion requirements in  
Table 26-25 for more information. Table 19-1 gives  
examples of appropriate ADC clock selections.  
19.1.3  
ADC VOLTAGE REFERENCE  
The VCFG bits of the ADCON1 register provide  
independent control of the positive and negative  
voltage references. The positive voltage reference can  
be either VDD or an external voltage source. Likewise,  
the negative voltage reference can be either VSS or an  
external voltage source.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
DS41303B-page 256  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the global interrupt must be disabled. If the  
global interrupt is enabled, execution will switch to the  
Interrupt Service Routine. Please see Section 19.1.6  
“Interrupts” for more information.  
19.1.6  
INTERRUPTS  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
Conversion. The ADC interrupt flag is the ADIF bit in  
the PIR1 register. The ADC interrupt enable is the ADIE  
bit in the PIE1 register. The ADIF bit must be cleared by  
software.  
Note:  
The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
TABLE 19-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
ADC Clock Period (TAD)  
ADC Clock Source ADCS<2:0>  
Device Frequency (FOSC)  
64 MHz  
16 MHz  
4 MHz  
1 MHz  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
31.25 ns(2)  
62.5 ns(2)  
400 ns(2)  
250 ns(2)  
500 ns(2)  
1.0 μs  
125 ns(2)  
250 ns(2)  
500 ns(2)  
1.0 μs  
500 ns(2)  
1.0 μs  
2.0 μs  
4.0 μs(3)  
8.0 μs(3)  
16.0 μs(3)  
32.0 μs(3)  
64.0 μs(3)  
1-4 μs(1,4)  
2.0 μs  
4.0 μs(3)  
8.0 μs(3)  
16.0 μs(3)  
1-4 μs(1,4)  
2.0 μs  
4.0 μs(3)  
1-4 μs(1,4)  
1-4 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 1.7 μs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
19.1.7  
RESULT FORMATTING  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON2 register controls the output format.  
Figure 19-2 shows the two output formats.  
FIGURE 19-2:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
(ADFM = 0)  
MSB  
bit 7  
LSB  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 7  
bit 0  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 257  
PIC18F2XK20/4XK20  
Figure 19-3 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT<2:0> bits  
are cleared. A conversion is started after the following  
instruction to allow entry into SLEEP mode before the  
conversion begins.  
19.2 ADC Operation  
19.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will, depend-  
ing on the ACQT bits of the ADCON2 register, either  
immediately start the Analog-to-Digital conversion or  
start an acquisition delay followed by the Analog-to-  
Digital conversion.  
Figure 19-4 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT<2:0> bits  
are set to ‘010’ which selects a 4 TAD acquisition time  
before the conversion starts.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 19.2.9 “A/D Conver-  
sion Procedure”.  
FIGURE 19-3:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY - TAD  
TAD8 TAD9 TAD10 TAD11  
2 TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7  
b4  
b1  
b0  
b9  
b8  
b7  
b6  
b5  
b3  
b2  
Conversion starts  
Discharge  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
On the following cycle:  
ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 19-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
6
7
8
9
10  
b1  
11 2 TAD  
b0  
1
2
3
4
1
2
3
4
5
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Discharge  
Conversion starts  
(Holding capacitor is disconnected from analog input)  
Set GO bit  
(Holding capacitor continues  
acquiring input)  
On the following cycle:  
ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
DS41303B-page 258  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
19.2.2  
COMPLETION OF A CONVERSION  
19.2.7  
ADC OPERATION DURING SLEEP  
When the conversion is complete, the ADC module will:  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
• Clear the GO/DONE bit  
• Set the ADIF flag bit  
• Update the ADRESH:ADRESL registers with new  
conversion result  
19.2.3  
DISCHARGE  
The discharge phase is used to initialize the value of  
the capacitor array. The array is discharged after every  
sample. This feature helps to optimize the unity-gain  
amplifier, as the circuit always needs to charge the  
capacitor array, rather than charge/discharge based on  
previous measure values.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
19.2.4  
TERMINATING A CONVERSION  
19.2.8  
SPECIAL EVENT TRIGGER  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared by software. The  
ADRESH:ADRESL registers will not be updated with  
the partially complete Analog-to-Digital conversion  
sample. Instead, the ADRESH:ADRESL register pair  
will retain the value of the previous conversion.  
The CCP2 Special Event Trigger allows periodic ADC  
measurements without software intervention. When  
this trigger occurs, the GO/DONE bit is set by hardware  
and the Timer1 or Timer3 counter resets to zero.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
See Section 15.3.4 “Special Event Trigger” for more  
information.  
19.2.5  
DELAY BETWEEN CONVERSIONS  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can  
be started. After this wait, the currently selected  
channel is reconnected to the charge holding capacitor  
commencing the next acquisition.  
19.2.6  
ADC OPERATION IN POWER-  
MANAGED MODES  
The selection of the automatic acquisition time and A/D  
conversion clock is determined in part by the clock  
source and frequency while in a power-managed mode.  
If the A/D is expected to operate while the device is in  
a
power-managed mode, the ACQT<2:0> and  
ADCS<2:0> bits in ADCON2 should be updated in  
accordance with the clock source to be used in that  
mode. After entering the mode, an A/D acquisition or  
conversion may be started. Once started, the device  
should continue to be clocked by the same clock  
source until the conversion has been completed.  
If desired, the device may be placed into the  
corresponding Idle mode during the conversion. If the  
device clock frequency is less than 1 MHz, the A/D FRC  
clock source should be selected.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 259  
PIC18F2XK20/4XK20  
19.2.9  
A/D CONVERSION PROCEDURE  
EXAMPLE 19-1:  
A/D CONVERSION  
;This code block configures the ADC  
;for polling, Vdd and Vss as reference, Frc  
clock and AN0 input.  
;
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
1. Configure Port:  
• Disable pin output driver (See TRIS register)  
• Configure pin as analog  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Select result format  
;Conversion start & polling for completion  
; are included.  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
B’10101111’ ;right justify, Frc,  
ADCON2 ; & 12 TAD ACQ time  
B’00000000’ ;ADC ref = Vdd,Vss  
ADCON1  
;
TRISA,0  
ANSEL,0  
;Set RA0 to input  
;Set RA0 to analog  
BSF  
MOVLW  
MOVWF  
BSF  
ADCPoll:  
BTFSC  
BRA  
B’00000001’ ;AN0, ADC on  
• Select acquisition delay  
ADCON0  
;
• Turn on ADC module  
ADCON0,GO  
;Start conversion  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
• Enable ADC interrupt  
ADCON0,GO  
ADCPoll  
;Is conversion done?  
;No, test again  
; Result is complete - store 2 MSbits in  
; RESULTHI and 8 LSbits in RESULTLO  
MOVFF  
MOVFF  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
ADRESH,RESULTHI  
ADRESL,RESULTLO  
.
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Software delay required if ACQT bits are  
set to zero delay. See Section 19.3 “A/D  
Acquisition Requirements”.  
DS41303B-page 260  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
19.2.10 ADC REGISTER DEFINITIONS  
The following registers are used to control the opera-  
tion of the ADC.  
Note:  
Analog pin control is performed by the  
ANSEL and ANSELH registers. For ANSEL  
and ANSELH registers, see Register 10-2  
and Register 10-3, respectively.  
REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHS<3:0>: Analog Channel Select bits  
0000= AN0  
0001= AN1  
0010= AN2  
0011= AN3  
0100= AN4  
0101= AN5(1)  
0110= AN6(1)  
0111= AN7(1)  
1000= AN8  
1001= AN9  
1010= AN10  
1011= AN11  
1100= AN12  
1101= Reserved  
1110= Reserved  
1111= FVR (1.2 Volt Fixed Voltage Reference)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: These channels are not implemented on PIC18F2XK20 devices.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 261  
PIC18F2XK20/4XK20  
REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
VCFG1  
VCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
VCFG1: Negative Voltage Reference select bit  
1= Negative voltage reference supplied externally through VREF- pin.  
0= Negative voltage reference supplied internally by VSS.  
bit 4  
VCFG0: Positive Voltage Reference select bit  
1= Positive voltage reference supplied externally through VREF+ pin.  
0= Positive voltage reference supplied internally by VDD.  
bit 3-0  
Unimplemented: Read as ‘0’  
DS41303B-page 262  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Conversion Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT<2:0>: A/D Acquisition time select bits. Acquisition time is the duration that the A/D charge hold-  
ing capacitor remains connected to A/D channel from the instant the GO/DONE bit is set until conver-  
sions begins.  
000= 0(1)  
001= 2 TAD  
010= 4 TAD  
011= 6 TAD  
100= 8 TAD  
101= 12 TAD  
110= 16 TAD  
111= 20 TAD  
bit 2-0  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC(1) (clock derived from a dedicated internal oscillator = 600 kHz nominal)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC(1) (clock derived from a dedicated internal oscillator = 600 kHz nominal)  
Note 1: When the A/D clock source is selected as FRC then the start of conversion is delayed by one instruction  
cycle after the GO/DONE bit is set to allow the SLEEPinstruction to be executed.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 263  
PIC18F2XK20/4XK20  
REGISTER 19-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 19-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
REGISTER 19-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 19-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
DS41303B-page 264  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
an A/D acquisition must be done before the conversion  
can be started. To calculate the minimum acquisition  
time, Equation 19-1 may be used. This equation  
assumes that 1/2 LSb error is used (1024 steps for the  
ADC). The 1/2 LSb error is the maximum error allowed  
for the ADC to meet its specified resolution.  
19.3 A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 19-5. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD), see Figure 19-5.  
The maximum recommended impedance for analog  
sources is 10 kΩ. As the source impedance is  
decreased, the acquisition time may be decreased.  
After the analog input channel is selected (or changed),  
EQUATION 19-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 3.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
2047  
= VCHOLD  
-----------  
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 –  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
Tc  
--------  
1
2047  
VAPPLIED 1 eRC = VAPPLIED 1 –  
;combining [1] and [2]  
-----------  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/2047)  
= 13.5pF(1kΩ + 700Ω + 10kΩ) ln(0.0004885)  
= 1.20µs  
Therefore:  
TACQ = 5µS + 1.20µS + [(50°C- 25°C)(0.05µS/°C)]  
= 7.45µS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 265  
PIC18F2XK20/4XK20  
FIGURE 19-5:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
Rss  
Rs  
CHOLD = 13.5 pF  
VSS/VREF-  
(1)  
CPIN  
5 pF  
VA  
I LEAKAGE  
VT = 0.6V  
Discharge  
Switch  
3.5V  
3.0V  
2.5V  
2.0V  
1.5V  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
= Interconnect Resistance  
= Sampling Switch  
RIC  
SS  
100  
.1  
1
10  
CHOLD  
= Sample/Hold Capacitance  
Rss (kΩ)  
Note 1: See Section 26.0 “Electrical Characteristics”.  
FIGURE 19-6:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1/2 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1/2 LSB ideal  
Zero-Scale  
Transition  
VDD/VREF+  
VSS/VREF-  
DS41303B-page 266  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 19-2: REGISTERS ASSOCIATED WITH A/D OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
HLVDIF  
HLVDIE  
HLVDIP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
57  
60  
60  
60  
60  
60  
60  
59  
59  
59  
59  
59  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
OSCFIF  
OSCFIE  
OSCFIP  
ADIF  
ADIE  
ADIP  
C1IF  
C1IE  
C1IP  
RCIF  
RCIE  
RCIP  
C2IF  
C2IE  
C2IP  
TMR1IF  
TMR1IE  
TMR1IP  
CCP2IF  
CCP2IE  
CCP2IP  
IPR1  
PIR2  
PIE2  
IPR2  
ADRESH A/D Result Register, High Byte  
ADRESL A/D Result Register, Low Byte  
ADCON0  
ADCON1  
ADCON2  
ANSEL  
ANSELH  
PORTA  
TRISA  
CHS3  
VCFG1  
ACQT2  
ANS5(1)  
CHS2  
VCFG0  
ACQT1  
ANS4  
CHS1  
CHS0 GO/DONE ADON  
ADFM  
ANS7(1)  
ANS6(1)  
ACQT0  
ANS3  
ANS11  
RA3  
ADCS2  
ANS2  
ANS10  
RA2  
ADCS1  
ANS1  
ANS9  
RA1  
ADCS0  
ANS0  
ANS8  
RA0  
ANS12  
RA7(2)  
RA6(2)  
RA5  
RA4  
TRISA7(2) TRISA6(2) PORTA Data Direction Control Register  
PORTB  
TRISB  
RB7  
PORTB Data Direction Control Register  
PORTB Data Latch Register (Read and Write to Data Latch)  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
LATB  
PORTE(4)  
TRISE(4)  
LATE(4)  
IBF  
OBF  
IBOV  
PSPMODE  
RE3(3)  
RE2  
RE1  
RE0  
TRISE2  
TRISE1  
TRISE0  
PORTE Data Latch Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: These bits are unimplemented on PIC18F2XK20 devices; always maintain these bits clear.  
2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary  
oscillator modes. When disabled, these bits read as ‘0’.  
3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is ‘0’.  
4: These registers are not implemented on PIC18F2XK20 devices.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 267  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 268  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 20-1:  
SINGLE COMPARATOR  
20.0 COMPARATOR MODULE  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
The comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of the program execution. The Analog  
Comparator module includes the following features:  
VIN+  
VIN-  
+
Output  
VIN-  
VIN+  
• Independent comparator control  
• Programmable input selection  
• Comparator output is available internally/externally  
• Programmable output polarity  
• Interrupt-on-change  
Output  
• Wake-up from Sleep  
• Programmable Speed/Power optimization  
• PWM shutdown  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
• Programmable and fixed voltage reference  
20.1  
Comparator Overview  
A single comparator is shown in Figure 20-1 along with  
the relationship between the analog input levels and  
the digital output. When the analog voltage at VIN+ is  
less than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 269  
PIC18F2XK20/4XK20  
FIGURE 20-2:  
COMPARATOR C1 SIMPLIFIED BLOCK DIAGRAM  
C1CH<1:0>  
2
To  
Data Bus  
D
Q
Q1  
C12IN0-  
C12IN1-  
C12IN2-  
C12IN3-  
EN  
0
RD_CM1CON0  
Set C1IF  
1
MUX  
2
D
Q
Q3*RD_CM1CON0  
Reset  
EN  
To PWM Logic  
C1OE  
3
CL  
(1)  
C1ON  
C1  
C1R  
C1VIN-  
C1VIN+  
-
C1IN+  
0
MUX  
1
C1OUT  
+
(2)  
CVREF  
FVR  
C1OUT pin  
0
MUX  
1
C1SP  
C1POL  
C1VREF  
C1RSEL  
Note 1: When C1ON = 0, the C1 comparator will produce a ‘0’ output to the XOR Gate.  
2: Output shown for reference only. See I/O port pin block diagram for more detail.  
3: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
4: Q1 is held high during Sleep mode.  
FIGURE 20-3:  
COMPARATOR C2 SIMPLIFIED BLOCK DIAGRAM  
To  
Data Bus  
D
Q
Q1  
EN  
RD_CM2CON0  
C2CH<1:0>  
Set C2IF  
2
D
Q
Q3*RD_CM2CON0  
To PWM Logic  
EN  
(1)  
C2ON  
C2  
C12IN0-  
0
CL  
C2OE  
NRESET  
C2OUT  
C12IN1-  
C12IN2-  
C12IN3-  
1
MUX  
2
C2VIN-  
C2VIN+  
(2)  
C2OUT pin  
3
C2SP  
C2POL  
C2R  
C2IN+  
0
MUX  
1
CVREF  
FVR  
0
MUX  
1
C2VREF  
Note 1: When C2ON = 0, the C2 comparator will produce a ‘0’ output to the XOR Gate.  
2: Output shown for reference only. See I/O port pin block diagram for more detail.  
3: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
4: Q1 is held high during Sleep mode.  
C2RSEL  
DS41303B-page 270  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
20.2 Comparator Control  
Note 1: The CxOE bit overrides the PORT data  
latch. Setting the CxON has no impact on  
the port override.  
Each comparator has  
Configuration register: CM1CON0 for Comparator C1  
and CM2CON0 for Comparator C2. In addition,  
a
separate control and  
Comparator C2 has  
CM2CON1, for controlling the interaction with Timer1 and  
simultaneous reading of both comparator outputs.  
a
second control register,  
2: The internal output of the comparator is  
latched with each instruction cycle.  
Unless otherwise specified, external  
outputs are not latched.  
The CM1CON0 and CM2CON0 registers (see Registers  
20-1 and 20-2, respectively) contain the control and  
Status bits for the following:  
20.2.5  
COMPARATOR OUTPUT POLARITY  
Inverting the output of the comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of the comparator output can be inverted by  
setting the CxPOL bit of the CMxCON0 register.  
Clearing the CxPOL bit results in a non-inverted output.  
• Enable  
• Input selection  
• Reference selection  
• Output selection  
• Output polarity  
• Speed selection  
Table 20-1 shows the output state versus input  
conditions, including polarity control.  
TABLE 20-1: COMPARATOR OUTPUT  
STATE VS. INPUT  
20.2.1  
COMPARATOR ENABLE  
Setting the CxON bit of the CMxCON0 register enables  
the comparator for operation. Clearing the CxON bit  
disables the comparator resulting in minimum current  
consumption.  
CONDITIONS  
Input Condition  
CxPOL  
CxOUT  
CxVIN- > CxVIN+  
CxVIN- < CxVIN+  
CxVIN- > CxVIN+  
CxVIN- < CxVIN+  
0
0
1
1
0
1
1
0
20.2.2  
COMPARATOR INPUT SELECTION  
The CxCH<1:0> bits of the CMxCON0 register direct  
one of four analog input pins to the comparator  
inverting input.  
20.2.6  
COMPARATOR SPEED SELECTION  
Note:  
To use CxIN+ and C12INx- pins as analog  
inputs, the appropriate bits must be set in  
the ANSEL register and the corresponding  
TRIS bits must also be set to disable the  
output drivers.  
The trade-off between speed or power can be opti-  
mized during program execution with the CxSP control  
bit. The default state for this bit is ‘1’ which selects the  
normal speed mode. Device power consumption can  
be optimized at the cost of slower comparator propaga-  
tion delay by clearing the CxSP bit to ‘0’.  
20.2.3  
COMPARATOR REFERENCE  
SELECTION  
20.3 Comparator Response Time  
Setting the CxR bit of the CMxCON0 register directs an  
internal voltage reference or an analog input pin to the  
non-inverting input of the comparator. See  
Section 21.0 “VOLTAGE REFERENCESfor more  
information on the Internal Voltage Reference module.  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the  
comparator differs from the settling time of the voltage  
reference. Therefore, both of these times must be  
considered when determining the total response time  
to a comparator input change. See the Comparator and  
Voltage Reference Specifications in Section 26.0  
“Electrical Characteristics” for more details.  
20.2.4  
COMPARATOR OUTPUT  
SELECTION  
The output of the comparator can be monitored by  
reading either the CxOUT bit of the CMxCON0 register  
or the MCxOUT bit of the CM2CON1 register. In order  
to make the output available for an external connection,  
the following conditions must be true:  
• CxOE bit of the CMxCON0 register must be set  
• Corresponding TRIS bit must be cleared  
• CxON bit of the CMxCON0 register must be set  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 271  
PIC18F2XK20/4XK20  
20.4.1  
PRESETTING THE MISMATCH  
LATCHES  
20.4 Comparator Interrupt Operation  
The comparator interrupt flag can be set whenever  
there is a change in the output value of the comparator.  
Changes are recognized by means of a mismatch  
circuit which consists of two latches and an exclusive-  
or gate (see Figure 20-2 and Figure 20-3). One latch is  
updated with the comparator output level when the  
CMxCON0 register is read. This latch retains the value  
until the next read of the CMxCON0 register or the  
occurrence of a Reset. The other latch of the mismatch  
circuit is updated on every Q1 system clock. A  
mismatch condition will occur when a comparator  
output change is clocked through the second latch on  
the Q1 clock cycle. At this point the two mismatch  
latches have opposite output levels which is detected  
by the exclusive-or gate and fed to the interrupt  
circuitry. The mismatch condition persists until either  
the CMxCON0 register is read or the comparator  
output returns to the previous state.  
The comparator mismatch latches can be preset to the  
desired state before the comparators are enabled.  
When the comparator is off the CxPOL bit controls the  
CxOUT level. Set the CxPOL bit to the desired CxOUT  
non-interrupt level while the CxON bit is cleared. Then,  
configure the desired CxPOL level in the same instruc-  
tion that the CxON bit is set. Since all register writes are  
performed as a Read-Modify-Write, the mismatch  
latches will be cleared during the instruction Read  
phase and the actual configuration of the CxON and  
CxPOL bits will be occur in the final Write phase.  
FIGURE 20-4:  
COMPARATOR  
INTERRUPT TIMING W/O  
CMxCON0 READ  
Q1  
Q3  
Note 1: A write operation to the CMxCON0  
register will also clear the mismatch  
condition because all writes include a read  
operation at the beginning of the write  
cycle.  
CxIN+  
TRT  
CxOUT  
Set CxIF (edge)  
CxIF  
reset by software  
2: Comparator interrupts will operate correctly  
regardless of the state of CxOE.  
FIGURE 20-5:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMxCON0 READ  
The comparator interrupt is set by the mismatch edge  
and not the mismatch level. This means that the inter-  
rupt flag can be reset without the additional step of  
reading or writing the CMxCON0 register to clear the  
mismatch registers. When the mismatch registers are  
cleared, an interrupt will occur upon the comparator’s  
return to the previous state, otherwise no interrupt will  
be generated.  
Q1  
Q3  
CxIN+  
TRT  
CxOUT  
Set CxIF (edge)  
CxIF  
Software will need to maintain information about the  
status of the comparator output, as read from the  
CMxCON0 register, or CM2CON1 register, to determine  
the actual change that has occurred. See Figures 20-4  
and 20-5.  
cleared by CMxCON0 read  
reset by software  
The CxIF bit of the PIR2 register is the comparator  
interrupt flag. This bit must be reset by software by  
clearing it to ‘0’. Since it is also possible to write a ‘1’ to  
this register, an interrupt can be generated.  
Note 1: If a change in the CMxCON0 register  
(CxOUT) should occur when a read oper-  
ation is being executed (start of the Q2  
cycle), then the CxIF interrupt flag of the  
PIR2 register may not get set.  
In mid-range Compatibility mode the CxIE bit of the  
PIE2 register and the PEIE and GIE bits of the INTCON  
register must all be set to enable comparator interrupts.  
If any of these bits are cleared, the interrupt is not  
enabled, although the CxIF bit of the PIR2 register will  
still be set if an interrupt condition occurs.  
2: When either comparator is first enabled,  
bias circuitry in the Comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is stable.  
Allow about 1 μs for bias settling then clear  
the mismatch condition and interrupt flags  
before enabling comparator interrupts.  
DS41303B-page 272  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
20.5 Operation During Sleep  
The comparator, if enabled before entering Sleep mode,  
remains active during Sleep. The additional current  
consumed by the comparator is shown separately in the  
Section 26.0 “Electrical Characteristics”. If the  
comparator is not used to wake the device, power  
consumption can be minimized while in Sleep mode by  
turning off the comparator. Each comparator is turned off  
by clearing the CxON bit of the CMxCON0 register.  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CxIE bit of the PIE2 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the SLEEPinstruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the Interrupt Service Routine.  
20.6 Effects of a Reset  
A device Reset forces the CMxCON0 and CM2CON1  
registers to their Reset states. This forces both  
comparators and the voltage references to their Off  
states.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 273  
PIC18F2XK20/4XK20  
REGISTER 20-1: CM1CON0: COMPARATOR 1 CONTROL REGISTER 0  
R/W-0  
C1ON  
R-0  
R/W-0  
C1OE  
R/W-0  
R/W-0  
C1SP  
R/W-0  
C1R  
R/W-0  
R/W-0  
C1OUT  
C1POL  
C1CH1  
C1CH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
C1ON: Comparator C1 Enable bit  
1= Comparator C1 is enabled  
0= Comparator C1 is disabled  
C1OUT: Comparator C1 Output bit  
If C1POL = 1(inverted polarity):  
C1OUT = 0when C1VIN+ > C1VIN-  
C1OUT = 1when C1VIN+ < C1VIN-  
If C1POL = 0(non-inverted polarity):  
C1OUT = 1when C1VIN+ > C1VIN-  
C1OUT = 0when C1VIN+ < C1VIN-  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
C1OE: Comparator C1 Output Enable bit  
1= C1OUT is present on the C1OUT pin(1)  
0= C1OUT is internal only  
C1POL: Comparator C1 Output Polarity Select bit  
1= C1OUT logic is inverted  
0= C1OUT logic is not inverted  
C1SP: Comparator C1 Speed/Power Select bit  
1= C1 operates in normal power, higher speed mode  
0= C1 operates in low-power, low-speed mode  
C1R: Comparator C1 Reference Select bit (non-inverting input)  
1= C1VIN+ connects to C1VREF output  
0= C1VIN+ connects to C1IN+ pin  
C1CH<1:0>: Comparator C1 Channel Select bit  
00= C12IN0- pin of C1 connects to C1VIN-  
01= C12IN1- pin of C1 connects to C1VIN-  
10= C12IN2- pin of C1 connects to C1VIN-  
11= C12IN3- pin of C1 connects to C1VIN-  
Note 1: Comparator output requires the following three conditions: C1OE = 1, C1ON = 1and corresponding port  
TRIS bit = 0.  
DS41303B-page 274  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 20-2: CM2CON0: COMPARATOR 2 CONTROL REGISTER 0  
R/W-0  
C2ON  
R-0  
R/W-0  
C2OE  
R/W-0  
R/W-0  
C2SP  
R/W-0  
C2R  
R/W-0  
R/W-0  
C2OUT  
C2POL  
C2CH1  
C2CH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
C2ON: Comparator C2 Enable bit  
1= Comparator C2 is enabled  
0= Comparator C2 is disabled  
C2OUT: Comparator C2 Output bit  
If C2POL = 1(inverted polarity):  
C2OUT = 0when C2VIN+ > C2VIN-  
C2OUT = 1when C2VIN+ < C2VIN-  
If C2POL = 0(non-inverted polarity):  
C2OUT = 1when C2VIN+ > C2VIN-  
C2OUT = 0when C2VIN+ < C2VIN-  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
C2OE: Comparator C2 Output Enable bit  
1= C2OUT is present on C2OUT pin(1)  
0= C2OUT is internal only  
C2POL: Comparator C2 Output Polarity Select bit  
1= C2OUT logic is inverted  
0= C2OUT logic is not inverted  
C2SP: Comparator C2 Speed/Power Select bit  
1= C2 operates in normal power, higher speed mode  
0= C2 operates in low-power, low-speed mode  
C2R: Comparator C2 Reference Select bits (non-inverting input)  
1= C2VIN+ connects to C2VREF  
0= C2VIN+ connects to C2IN+ pin  
C2CH<1:0>: Comparator C2 Channel Select bits  
00= C12IN0- pin of C2 connects to C2VIN-  
01= C12IN1- pin of C2 connects to C2VIN-  
10= C12IN2- pin of C2 connects to C2VIN-  
11= C12IN3- pin of C2 connects to C2VIN-  
Note 1: Comparator output requires the following three conditions: C2OE = 1, C2ON = 1and corresponding port  
TRIS bit = 0.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 275  
PIC18F2XK20/4XK20  
20.7 Analog Input Connection  
Considerations  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
A simplified circuit for an analog input is shown in  
Figure 20-6. Since the analog input pins share their  
connection with a digital input, they have reverse  
biased ESD protection diodes to VDD and VSS. The  
analog input, therefore, must be between VSS and VDD.  
If the input voltage deviates from this range by more  
than 0.6V in either direction, one of the diodes is  
forward biased and a latch-up may occur.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
FIGURE 20-6:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
AIN  
(1)  
ILEAKAGE  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
Note 1: See Section 26.0 “Electrical Characteristics”.  
DS41303B-page 276  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
20.8.2  
INTERNAL REFERENCE  
SELECTION  
20.8 Additional Comparator Features  
There are two additional comparator features:  
There are two internal voltage references available to  
the non-inverting input of each comparator. One of  
these is the 1.2V Fixed Voltage Reference (FVR) and  
the other is the variable Comparator Voltage Reference  
(CVREF). The CxRSEL bit of the CM2CON register  
determines which of these references is routed to the  
Comparator Voltage reference output (CXVREF). Fur-  
ther routing to the comparator is accomplished by the  
CxR bit of the CMxCON0 register. See Section 21.1  
“Comparator Voltage Reference” and Figure 20-2  
and Figure 20-3 for more detail.  
• Simultaneous read of comparator outputs  
• Internal reference selection  
20.8.1  
SIMULTANEOUS COMPARATOR  
OUTPUT READ  
The MC1OUT and MC2OUT bits of the CM2CON1  
register are mirror copies of both comparator outputs.  
The ability to read both outputs simultaneously from a  
single register eliminates the timing skew of reading  
separate registers.  
Note 1: Obtaining the status of C1OUT or C2OUT  
by reading CM2CON1 does not affect the  
comparator interrupt mismatch registers.  
REGISTER 20-3: CM2CON1: COMPARATOR 2 CONTROL REGISTER 1  
R-0  
R-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
MC1OUT  
MC2OUT  
C1RSEL  
C2RSEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
MC1OUT: Mirror Copy of C1OUT bit  
MC2OUT: Mirror Copy of C2OUT bit  
C1RSEL: Comparator C1 Reference Select bit  
1= FVR (1.2 Volt fixed voltage reference) routed to C1VREF input  
0= CVREF routed to C1VREF input  
bit 4  
C2RSEL: Comparator C2 Reference Select bit  
1= FVR (1.2 Volt fixed voltage reference) routed to C2VREF input  
0= CVREF routed to C2VREF input  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 277  
PIC18F2XK20/4XK20  
TABLE 20-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CM1CON0  
CM2CON0  
C1ON  
C2ON  
C1OUT  
C2OUT  
C1OE  
C2OE  
C1POL  
C2POL  
C1SP  
C2SP  
C1R  
C2R  
C1CH1  
C2CH1  
C1CH0  
C2CH0  
60  
60  
61  
59  
59  
57  
60  
60  
60  
60  
60  
60  
CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL  
CVRCON  
CVRCON2  
INTCON  
PIR2  
CVREN  
FVREN  
CVROE  
FVRST  
CVRR  
CVRSS  
CVR3  
CVR2  
CVR1  
CVR0  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
EEIE  
EEIP  
RA4  
RBIE  
BCLIF  
BCLIE  
BCLIP  
RA3  
TMR0IF  
HLVDIF  
INT0IF  
RBIF  
OSCFIF  
OSCFIE  
OSCFIP  
RA7(1)  
C1IF  
C1IE  
C2IF  
C2IE  
C2IP  
RA5  
TMR3IF CCP2IF  
PIE2  
HLVDIE TMR3IE CCP2IE  
HLVDIP TMR3IP CCP2IP  
IPR2  
C1IP  
RA6(1)  
PORTA  
LATA  
RA2  
RA1  
RA0  
LATA7(1)  
LATA6(1) PORTA Data Latch Register (Read and Write to Data Latch)  
TRISA  
TRISA7(1) TRISA6(1) PORTA Data Direction Control Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
Note 1: PORTA<7:6> and their direction and latch bits are individually configured as port pins based on various  
primary oscillator modes. When disabled, these bits read as ‘0’.  
DS41303B-page 278  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
21.1.3  
OUTPUT CLAMPED TO VSS  
21.0 VOLTAGE REFERENCES  
The CVREF output voltage can be set to Vss with no  
power consumption by configuring CVRCON as  
follows:  
There are two independent voltage references  
available:  
• Programmable Comparator Voltage Reference  
• 1.2V Fixed Voltage Reference  
• CVREN = 0  
• CVRR = 1  
• CVR<3:0> = 0000  
21.1 Comparator Voltage Reference  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
The Comparator Voltage Reference module provides  
an internally generated voltage reference for the com-  
parators. The following features are available:  
21.1.4  
OUTPUT RATIOMETRIC TO VDD  
• Independent from Comparator operation  
• Two 16-level voltage ranges  
• Output clamped to VSS  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 26.0  
“Electrical Characteristics”.  
• Ratiometric with VDD  
• 1.2 Fixed Reference Voltage (FVR)  
The CVRCON register (Figure 21-1) controls the  
Voltage Reference module shown in Figure 21-1.  
21.1.5  
VOLTAGE REFERENCE OUTPUT  
The CVREF voltage reference can be output to the  
device CVREF pin by setting the CVROE bit of the CVR-  
CON register to ‘1’. Selecting the reference voltage for  
output on the CVREF pin automatically overrides the  
digital output buffer and digital input threshold detector  
functions of that pin. Reading the CVREF pin when it  
has been configured for reference voltage output will  
always return a ‘0’.  
21.1.1  
INDEPENDENT OPERATION  
The comparator voltage reference is independent of  
the comparator configuration. Setting the CVREN bit of  
the CVRCON register will enable the voltage reference  
by allowing current to flow in the CVREF voltage divider.  
When both the CVREN bit is cleared, current flow in the  
CVREF voltage divider is disabled minimizing the power  
drain of the voltage reference peripheral.  
Due to the limited current drive capability, a buffer must  
be used on the voltage reference output for external  
connections to CVREF. Figure 21-2 shows an example  
buffering technique.  
21.1.2  
OUTPUT VOLTAGE SELECTION  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the CVRR bit of the CVRCON register.  
The 16 levels are set with the CVR<3:0> bits of the  
CVRCON register.  
21.1.6  
OPERATION DURING SLEEP  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The CVREF output voltage is determined by the following  
equations:  
21.1.7  
EFFECTS OF A RESET  
EQUATION 21-1: CVREF OUTPUT VOLTAGE  
A device Reset affects the following:  
CVRR = 1 (low range):  
CVREF = (VR<3:0>/24) × CVRSRC  
• Comparator voltage reference is disabled  
• Fixed voltage reference is disabled  
CVRR = 0 (high range):  
• CVREF is removed from the CVREF pin  
• The high-voltage range is selected  
CVREF = (CVRSRC/4) + (VR<3:0> × CVRSRC/32)  
CVRSRC = VDD or [(VREF+) - (VREF-)]  
• The CVR<3:0> range select bits are cleared  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 21-1.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 279  
PIC18F2XK20/4XK20  
21.2.1  
FVR STABILIZATION PERIOD  
21.2 FVR Reference Module  
When the Fixed Voltage Reference module is enabled, it  
will require some time for the reference and its amplifier  
circuits to stabilize. The user program must include a  
small delay routine to allow the module to settle. The  
FVRST stable bit of the CVRCON2 register also indicates  
that the FVR reference has been operating long enough  
to be stable. See Section 26.0 “Electrical  
Characteristics” for the minimum delay requirement.  
The FVR reference is a stable fixed voltage reference,  
independent of VDD, with a nominal output voltage of  
1.2V. This reference can be enabled by setting the  
FVREN bit of the CVRCON2 register to ‘1’. The FVR  
defaults to on when any one or more of the HFINTOSC,  
HLVD, or BOR functions are enabled. The FVR voltage  
reference can be routed to the comparators or an ADC  
input channel.  
FIGURE 21-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
VREF+  
VDD  
8R  
CVRSS = 0  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
8R  
CVRSS = 1  
VREF-  
CVRSS = 0  
FVR  
1.2 Volt Fixed  
FVREN  
Reference  
FVRST  
From HVLD and  
BOR circuits  
EN  
DS41303B-page 280  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 21-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC18F2XK20/4XK20  
CVREF  
(1)  
R
Module  
+
Buffered CVREF Output  
CVREF  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the voltage reference Configuration bits, CVR<3:0> and CVRR.  
REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
R/W-0  
CVROE(1)  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the CVREF pin  
0= CVREF voltage is disconnected from the CVREF pin  
bit 5  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.667 CVRSRC, with CVRSRC/24 step size (low range)  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)  
bit 4  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = (VREF+) – (VREF-)  
0= Comparator reference source, CVRSRC = VDD – VSS  
bit 3-0  
CVR<3:0>: Comparator VREF Value Selection bits (0 (CVR<3:0>) 15)  
When CVRR = 1:  
CVREF = ((CVR<3:0>)/24) (CVRSRC)  
When CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) (CVRSRC)  
Note 1: CVROE overrides the TRISA<2> bit setting.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 281  
PIC18F2XK20/4XK20  
REGISTER 21-2: CVRCON2: COMPARATOR VOLTAGE REFERENCE CONTROL 2 REGISTER  
R/W-0  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FVREN  
FVRST  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
FVREN: Fixed Voltage Reference Enable bit  
1= FVR circuit powered on  
0= FVR circuit not enabled by FVREN. Other peripherals may enable FVR.  
FVRST: Fixed Voltage Stable Status bit  
1= FVR is stable and can be used.  
0= FVR is not stable and should not be used.  
bit 5-0  
Unimplemented: Read as ‘0’.  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CVRCON  
CVRCON2  
CM1CON0  
CM2CON0  
CM2CON1  
TRISA  
CVREN  
FVREN  
C1ON  
CVROE  
FVRST  
C1OUT  
C2OUT  
CVRR  
CVRSS  
CVR3  
CVR2  
CVR1  
CVR0  
60  
59  
60  
60  
61  
60  
C1OE  
C2OE  
C1POL  
C2POL  
C1SP  
C2SP  
C1R  
C2R  
C1CH1  
C2CH1  
C1CH0  
C2CH0  
C2ON  
MC1OUT MC2OUT C1RSEL C2RSEL  
TRISA7(1) TRISA6(1) PORTA Data Direction Control Register  
Legend: Shaded cells are not used with the comparator voltage reference.  
Note 1: PORTA pins are enabled based on oscillator configuration.  
DS41303B-page 282  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The block diagram for the HLVD module is shown in  
Figure 22-1.  
22.0 HIGH/LOW-VOLTAGE  
DETECT (HLVD)  
The module is enabled by setting the HLVDEN bit.  
Each time that the HLVD module is enabled, the cir-  
cuitry requires some time to stabilize. The IRVST bit is  
a read-only bit and is used to indicate when the circuit  
is stable. The module can only generate an interrupt  
after the circuit is stable and IRVST is set.  
PIC18F2XK20/4XK20 devices have a High/Low-Voltage  
Detect module (HLVD). This is a programmable circuit  
that allows the user to specify both a device voltage trip  
point and the direction of change from that point. If the  
device experiences an excursion past the trip point in  
that direction, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to the interrupt.  
The VDIRMAG bit determines the overall operation of  
the module. When VDIRMAG is cleared, the module  
monitors for drops in VDD below a predetermined set  
point. When the bit is set, the module monitors for rises  
in VDD above the set point.  
The High/Low-Voltage Detect Control register  
(Register 22-1) completely controls the operation of the  
HLVD module. This allows the circuitry to be “turned  
off” by the user under software control, which  
minimizes the current consumption for the device.  
REGISTER 22-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER  
R/W-0  
U-0  
R-0  
R/W-0  
R/W-0  
HLVDL3(1)  
R/W-1  
HLVDL2(1)  
R/W-0  
HLVDL1(1)  
R/W-1  
HLVDL0(1)  
VDIRMAG  
IRVST  
HLVDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented  
‘0’ = Bit is cleared  
C = Clearable only bit  
x = Bit is unknown  
bit 7  
VDIRMAG: Voltage Direction Magnitude Select bit  
1= Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)  
0= Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range  
0= Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage  
range and the HLVD interrupt should not be enabled  
bit 4  
HLVDEN: High/Low-Voltage Detect Power Enable bit  
1= HLVD enabled  
0= HLVD disabled  
bit 3-0  
HLVDL<3:0>: Voltage Detection Limit bits(1)  
1111= External analog input is used (input comes from the HLVDIN pin)  
1110= Maximum setting  
.
.
.
0000= Minimum setting  
Note 1: See Table 26-3 for specifications.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 283  
PIC18F2XK20/4XK20  
The trip point voltage is software programmable to any  
one of 16 values. The trip point is selected by  
programming the HLVDL<3:0> bits of the HLVDCON  
register.  
22.1 Operation  
When the HLVD module is enabled, a comparator uses  
an internally generated reference voltage as the set  
point. The set point is compared with the trip point,  
where each node in the resistor divider represents a  
trip point voltage. The “trip point” voltage is the voltage  
level at which the device detects a high or low-voltage  
event, depending on the configuration of the module.  
When the supply voltage is equal to the trip point, the  
voltage tapped off of the resistor array is equal to the  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal by setting the HLVDIF bit.  
The HLVD module has an additional feature that allows  
the user to supply the trip voltage to the module from an  
external source. This mode is enabled when bits  
HLVDL<3:0> are set to ‘1111’. In this state, the  
comparator input is multiplexed from the external input  
pin, HLVDIN. This gives users flexibility because it  
allows them to configure the High/Low-Voltage Detect  
interrupt to occur at any voltage in the valid operating  
range.  
FIGURE 22-1:  
HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)  
Externally Generated  
Trip Point  
VDD  
VDD  
HLVDL<3:0>  
HLVDCON  
Register  
HLVDIN  
VDIRMAG  
HLVDEN  
HLVDIN  
Set  
HLVDIF  
HLVDEN  
BOREN  
Internal Voltage  
Reference  
DS41303B-page 284  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Depending on the application, the HLVD module does  
not need to be operating constantly. To decrease the  
current requirements, the HLVD circuitry may only  
need to be enabled for short periods where the voltage  
is checked. After doing the check, the HLVD module  
may be disabled.  
22.2 HLVD Setup  
The following steps are needed to set up the HLVD  
module:  
1. Write the value to the HLVDL<3:0> bits that  
selects the desired HLVD trip point.  
2. Set the VDIRMAG bit to detect high voltage  
22.4 HLVD Start-up Time  
(VDIRMAG = 1) or low voltage (VDIRMAG = 0).  
3. Enable the HLVD module by setting the  
HLVDEN bit.  
The internal reference voltage of the HLVD module,  
specified in electrical specification parameter D420,  
may be used by other internal circuitry, such as the  
Programmable Brown-out Reset. If the HLVD or other  
circuits using the voltage reference are disabled to  
lower the device’s current consumption, the reference  
voltage circuit will require time to become stable before  
a low or high-voltage condition can be reliably  
detected. This start-up time, TIRVST, is an interval that  
is independent of device clock speed. It is specified in  
electrical specification parameter 36.  
4. Clear the HLVD interrupt flag bit of the PIR2  
register, which may have been set from a  
previous interrupt.  
5. Enable the HLVD interrupt if interrupts are  
desired by setting the HLVDIE bit of the PIE2  
register, and the GIE and PEIE bits of the  
INTCON register. An interrupt will not be gener-  
ated until the IRVST bit is set.  
22.3 Current Consumption  
The HLVD interrupt flag is not enabled until TIRVST has  
expired and a stable reference voltage is reached. For  
this reason, brief excursions beyond the set point may  
not be detected during this interval. Refer to Figure 22-2  
or Figure 22-3.  
When the module is enabled, the HLVD comparator  
and voltage divider are enabled and will consume static  
current. The total current consumption, when enabled,  
is specified in electrical specification parameter D022B.  
FIGURE 22-2:  
LOW-VOLTAGE DETECT OPERATION (VDIRMAG = 0)  
CASE 1:  
HLVDIF may not be set  
VDD  
VHLVD  
HLVDIF  
Enable HLVD  
IRVST  
TIVRST  
HLVDIF cleared by software  
Internal Reference is stable  
CASE 2:  
VDD  
VHLVD  
HLVDIF  
Enable HLVD  
TIVRST  
IRVST  
Internal Reference is stable  
HLVDIF cleared by software  
HLVDIF cleared by software,  
HLVDIF remains set since HLVD condition still exists  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 285  
PIC18F2XK20/4XK20  
FIGURE 22-3:  
HIGH-VOLTAGE DETECT OPERATION (VDIRMAG = 1)  
CASE 1:  
HLVDIF may not be set  
VHLVD  
VDD  
HLVDIF  
Enable HLVD  
IRVST  
TIVRST  
HLVDIF cleared by software  
Internal Reference is stable  
CASE 2:  
VHLVD  
VDD  
HLVDIF  
Enable HLVD  
TIVRST  
IRVST  
Internal Reference is stable  
HLVDIF cleared by software  
HLVDIF cleared by software,  
HLVDIF remains set since HLVD condition still exists  
DS41303B-page 286  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 22-4:  
TYPICAL LOW-VOLTAGE  
DETECT APPLICATION  
22.5 Applications  
In many applications, the ability to detect a drop below,  
or rise above, a particular threshold is desirable. For  
example, the HLVD module could be periodically  
enabled to detect Universal Serial Bus (USB) attach or  
detach. This assumes the device is powered by a lower  
voltage source than the USB when detached. An attach  
would indicate a high-voltage detect from, for example,  
3.3V to 5V (the voltage on USB) and vice versa for a  
detach. This feature could save a design a few extra  
components and an attach signal (input pin).  
VA  
VB  
For general battery applications, Figure 22-4 shows a  
possible voltage curve. Over time, the device voltage  
decreases. When the device voltage reaches voltage  
VA, the HLVD logic generates an interrupt at time TA.  
The interrupt could cause the execution of an ISR,  
which would allow the application to perform  
TB  
VA = HLVD trip point  
TA  
Time  
“housekeeping tasks” and perform  
a
controlled  
Legend:  
VB = Minimum valid device  
shutdown before the device voltage exits the valid  
operating range at TB. The HLVD, thus, would give the  
operating voltage  
application  
a time window, represented by the  
difference between TA and TB, to safely exit.  
TABLE 22-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HLVDCON VDIRMAG  
IRVST  
HLVDEN HLVDL3 HLVDL2 HLVDL1 HLVDL0  
58  
57  
60  
60  
60  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
HLVDIF  
INT0IF  
RBIF  
OSCFIF  
OSCFIE  
OSCFIP  
C1IF  
C1IE  
C1IP  
C2IF  
C2IE  
C2IP  
TMR3IF CCP2IF  
PIE2  
EEIE  
EEIP  
HLVDIE TMR3IE CCP2IE  
HLVDIP TMR3IP CCP2IP  
IPR2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the HLVD module.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 287  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 288  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
23.0 SPECIAL FEATURES OF  
THE CPU  
PIC18F2XK20/4XK20 devices include several features  
intended to maximize reliability and minimize cost through  
elimination of external components. These are:  
• Oscillator Selection  
• Resets:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming™  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 2.0  
“Oscillator Module (With Fail-Safe Clock Monitor)”.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, PIC18F2XK20/4XK20  
devices have a Watchdog Timer, which is either  
permanently enabled via the Configuration bits or  
software controlled (if configured as disabled).  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure. Two-  
Speed Start-up enables code to be executed almost  
immediately on start-up, while the primary clock source  
completes its start-up delays.  
All of these features are enabled and configured by  
setting the appropriate Configuration register bits.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 289  
PIC18F2XK20/4XK20  
23.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’) or left unprogrammed (read as ‘1’) to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h-3FFFFFh), which  
can only be accessed using table reads and table writes.  
Programming the Configuration registers is done in a  
manner similar to programming the Flash memory. The  
WR bit in the EECON1 register starts a self-timed write  
to the Configuration register. In normal operation mode,  
a TBLWT instruction with the TBLPTR pointing to the  
Configuration register sets up the address and the data  
for the Configuration register write. Setting the WR bit  
starts a long write to the Configuration register. The  
Configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell. For additional details  
on Flash programming, refer to Section 6.5 “Writing  
to Flash Program Memory”.  
TABLE 23-1: CONFIGURATION BITS AND DEVICE IDs  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H IESO  
FCMEN  
FOSC3  
BORV0  
FOSC2  
FOSC1  
FOSC0  
00-- 0111  
---1 1111  
---1 1111  
1--- 1011  
10-- -1-1  
---- 1111  
11-- ----  
---- 1111  
111- ----  
---- 1111  
-1-- ----  
300002h CONFIG2L  
300003h CONFIG2H  
BORV1  
BOREN1 BOREN0 PWRTEN  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
300005h CONFIG3H MCLRE  
HFOFST LPT1OSC PBADEN CCP2MX  
300006h CONFIG4L DEBUG XINST  
CP3  
LVP  
CP1  
STVREN  
CP0  
(1)  
(1)  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
CPD  
CPB  
CP2  
(1)  
(1)  
WRT3  
WRT2  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
(1)  
(1)  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
(2)  
(2)  
3FFFFEh DEVID1  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
qqqq qqqq  
(2)  
3FFFFFh DEVID2  
0000 1100  
Legend:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition.  
Shaded cells are unimplemented, read as ‘0’.  
Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set.  
2: See Register 23-12 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.  
DS41303B-page 290  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH  
R/P-0  
IESO  
R/P-0  
U-0  
U-0  
R/P-0  
R/P-1  
R/P-1  
R/P-1  
FCMEN  
FOSC3  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
IESO: Internal/External Oscillator Switchover bit  
1= Oscillator Switchover mode enabled  
0= Oscillator Switchover mode disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
FOSC<3:0>: Oscillator Selection bits  
11xx= External RC oscillator, CLKOUT function on RA6  
101x= External RC oscillator, CLKOUT function on RA6  
1001= Internal oscillator block, CLKOUT function on RA6, port function on RA7  
1000= Internal oscillator block, port function on RA6 and RA7  
0111= External RC oscillator, port function on RA6  
0110= HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)  
0101= EC oscillator, port function on RA6  
0100= EC oscillator, CLKOUT function on RA6  
0011= External RC oscillator, CLKOUT function on RA6  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 291  
PIC18F2XK20/4XK20  
REGISTER 23-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1(1)  
BORV0(1)  
BOREN1(2)  
BOREN0(2)  
PWRTEN(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value when device is unprogrammed  
bit 7-5  
bit 4-3  
Unimplemented: Read as ‘0’  
BORV<1:0>: Brown-out Reset Voltage bits(1)  
11= VBOR set to 1.8V nominal  
10= VBOR set to 2.2V nominal  
01= VBOR set to 2.7V nominal  
00= VBOR set to 3.0V nominal  
bit 2-1  
BOREN<1:0>: Brown-out Reset Enable bits(2)  
11= Brown-out Reset enabled in hardware only (SBOREN is disabled)  
10= Brown-out Reset enabled in hardware only and disabled in Sleep mode  
(SBOREN is disabled)  
01= Brown-out Reset enabled and controlled by software (SBOREN is enabled)  
00= Brown-out Reset disabled in hardware and software  
bit 0  
PWRTEN: Power-up Timer Enable bit(2)  
1= PWRT disabled  
0= PWRT enabled  
Note 1: See Section 26.1 “DC Characteristics: Supply Voltage” for specifications.  
2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.  
REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTEN  
bit 0  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value when device is unprogrammed  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT is always enabled. SWDTEN bit has no effect  
0= WDT is controlled by SWDTEN bit of the WDTCON register  
DS41303B-page 292  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 23-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH  
R/P-1  
U-0  
U-0  
U-0  
R/P-1  
R/P-0  
R/P-1  
R/P-1  
MCLRE  
HFOFST  
LPT1OSC  
PBADEN  
CCP2MX  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value when device is unprogrammed  
bit 7  
MCLRE: MCLR Pin Enable bit  
1= MCLR pin enabled; RE3 input pin disabled  
0= RE3 input pin enabled; MCLR disabled  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
HFOFST: HFINTOSC Fast Start-up  
1= HFINTOSC starts clocking the CPU without waiting for the oscillator to stabilize.  
0= The system clock is held off until the HFINTOSC is stable.  
bit 2  
bit 1  
LPT1OSC: Low-Power Timer1 Oscillator Enable bit  
1= Timer1 configured for low-power operation  
0= Timer1 configured for higher power operation  
PBADEN: PORTB A/D Enable bit  
(Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.)  
1= PORTB<4:0> pins are configured as analog input channels on Reset  
0= PORTB<4:0> pins are configured as digital I/O on Reset  
bit 0  
CCP2MX: CCP2 MUX bit  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RB3  
REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW  
R/P-1  
R/P-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
DEBUG  
XINST  
STVREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug  
XINST: Extended Instruction Set Enable bit  
1= Instruction set extension and Indexed Addressing mode enabled  
0= Instruction set extension and Indexed Addressing mode disabled (Legacy mode)  
bit 5-3  
bit 2  
Unimplemented: Read as ‘0’  
LVP: Single-Supply ICSP Enable bit  
1= Single-Supply ICSP enabled  
0= Single-Supply ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 293  
PIC18F2XK20/4XK20  
REGISTER 23-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW  
R/C-1  
CP0  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP3(1)  
R/C-1  
CP2(1)  
R/C-1  
CP1  
bit 0  
bit 7  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CP3: Code Protection bit(1)  
1= Block 3 not code-protected  
0= Block 3 code-protected  
bit 2  
bit 1  
bit 0  
CP2: Code Protection bit(1)  
1= Block 2 not code-protected  
0= Block 2 code-protected  
CP1: Code Protection bit  
1= Block 1 not code-protected  
0= Block 1 code-protected  
CP0: Code Protection bit  
1= Block 0 not code-protected  
0= Block 0 code-protected  
Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set.  
REGISTER 23-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH  
U-0  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
bit 6  
CPB: Boot Block Code Protection bit  
1= Boot block not code-protected  
0= Boot block code-protected  
bit 5-0  
Unimplemented: Read as ‘0’  
DS41303B-page 294  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 23-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW  
R/C-1  
WRT0  
U-0  
U-0  
U-0  
U-0  
R/C-1  
WRT3(1)  
R/C-1  
WRT2(1)  
R/C-1  
WRT1  
bit 0  
bit 7  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRT3: Write Protection bit(1)  
1= Block 3 not write-protected  
0= Block 3 write-protected  
bit 2  
bit 1  
bit 0  
WRT2: Write Protection bit(1)  
1= Block 2 not write-protected  
0= Block 2 write-protected  
WRT1: Write Protection bit  
1= Block 1 not write-protected  
0= Block 1 write-protected  
WRT0: Write Protection bit  
1= Block 0 not write-protected  
0= Block 0 write-protected  
Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set.  
REGISTER 23-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH  
R/C-1  
R/C-1  
R-1  
WRTC(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
bit 7  
bit 0  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
1= Boot block not write-protected  
0= Boot block write-protected  
WRTC: Configuration Register Write Protection bit(1)  
1= Configuration registers not write-protected  
0= Configuration registers write-protected  
bit 4-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 295  
PIC18F2XK20/4XK20  
REGISTER 23-10: CONFIG7L: CONFIGURATION REGISTER 7 LOW  
U-0  
U-0  
U-0  
U-0  
R/C-1  
EBTR3(1)  
R/C-1  
EBTR2(1)  
R/C-1  
R/C-1  
EBTR1  
EBTR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
EBTR3: Table Read Protection bit(1)  
1= Block 3 not protected from table reads executed in other blocks  
0= Block 3 protected from table reads executed in other blocks  
bit 2  
bit 1  
bit 0  
EBTR2: Table Read Protection bit(1)  
1= Block 2 not protected from table reads executed in other blocks  
0= Block 2 protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit  
1= Block 1 not protected from table reads executed in other blocks  
0= Block 1 protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit  
1= Block 0 not protected from table reads executed in other blocks  
0= Block 0 protected from table reads executed in other blocks  
Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set.  
REGISTER 23-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH  
U-0  
R/C-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot block not protected from table reads executed in other blocks  
0= Boot block protected from table reads executed in other blocks  
bit 5-0  
Unimplemented: Read as ‘0’  
DS41303B-page 296  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
REGISTER 23-12: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2XK20/4XK20  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7-5  
DEV<2:0>: Device ID bits  
010= PIC18F45K20  
011= PIC18F25K20  
100= PIC18F44K20  
101= PIC18F24K20  
110= PIC18F43K20  
111= PIC18F23K20  
bit 4-0  
REV<4:0>: Revision ID bits  
These bits are used to indicate the device revision.  
REGISTER 23-13: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2XK20/4XK20  
R
R
R
R
R
R
R
R
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable only bit  
-n = Value when device is unprogrammed  
bit 7-0 DEV<10:3>: Device ID bits  
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the  
part number.  
0010 0000= PIC18F2XK20/4XK20 devices  
Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified  
by using the entire DEV<10:0> bit sequence.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 297  
PIC18F2XK20/4XK20  
23.2 Watchdog Timer (WDT)  
For PIC18F2XK20/4XK20 devices, the WDT is driven  
by the LFINTOSC source. When the WDT is enabled,  
the clock source is also enabled. The nominal WDT  
period is 4 ms and has the same stability as the LFIN-  
TOSC oscillator.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
selected by a multiplexer, controlled by bits in Configu-  
ration Register 2H. Available periods range from 4 ms  
to 131.072 seconds (2.18 minutes). The WDT and  
postscaler are cleared when any of the following events  
occur: a SLEEPor CLRWDTinstruction is executed, the  
IRCF bits of the OSCCON register are changed or a  
clock failure has occurred.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
2: Changing the setting of the IRCF bits of  
the OSCCON register clears the WDT  
and postscaler counts.  
3: When a CLRWDTinstruction is executed,  
the postscaler count will be cleared.  
FIGURE 23-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
WDTEN  
WDT Counter  
Wake-up  
from Power  
Managed Modes  
÷128  
LFINTOSC Source  
Change on IRCF bits  
CLRWDT  
WDT  
Reset  
Reset  
Programmable Postscaler  
1:1 to 1:32,768  
All Device Resets  
4
WDTPS<3:0>  
Sleep  
DS41303B-page 298  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
23.2.1  
CONTROL REGISTER  
Register 23-14 shows the WDTCON register. This is a  
readable and writable register which contains a control  
bit that allows software to override the WDT enable  
Configuration bit, but only if the Configuration bit has  
disabled the WDT.  
REGISTER 23-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Enable or Disable the Watchdog Timer bit(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.  
TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
IPEN  
SBOREN  
RI  
TO  
PD  
POR  
BOR  
56  
WDTCON  
SWDTEN  
58  
CONFIG2H  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
292  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 299  
PIC18F2XK20/4XK20  
Each of the five blocks has three code protection bits  
associated with them. They are:  
23.3 Program Verification and  
Code Protection  
• Code-Protect bit (CPn)  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PIC® microcontroller devices.  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
Figure 23-2 shows the program memory organization  
for 8, 16 and 32-Kbyte devices and the specific code  
protection bit associated with each block. The actual  
locations of the bits are summarized in Table 23-3.  
The user program memory is divided into five blocks.  
One of these is a boot block of 0.5K or 2K bytes,  
depending on the device. The remainder of the mem-  
ory is divided into individual blocks on binary bound-  
aries.  
FIGURE 23-2:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2XK20/4XK20  
MEMORY SIZE/DEVICE  
Block Code Protection  
8 Kbytes  
16 Kbytes  
32 Kbytes  
64 Kbytes  
Controlled By:  
(PIC18FX3K20)  
(PIC18FX4K20)  
(PIC18FX5K20)  
(PIC18FX6K20)  
Boot Block  
(000h-1FFh)  
Boot Block  
(000h-7FFh)  
Boot Block  
(000h-7FFh)  
Boot Block  
(000h-7FFh)  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
Block 0  
(200h-FFFh)  
Block 0  
(800h-1FFFh)  
Block 0  
(800h-1FFFh)  
Block 0  
(800h-3FFFh)  
Block 1  
(1000h-1FFFh)  
Block 1  
(2000h-3FFFh)  
Block 1  
(2000h-3FFFh)  
Block 1  
(4000h-7FFFh)  
Block 2  
(4000h-5FFFh)  
Block 2  
(8000h-BFFFh)  
Block 3  
(6000h-7FFFh)  
Block 3  
(C000h-FFFFh)  
Unimplemented  
Unimplemented  
Read ‘0’s  
Read ‘0’s  
(2000h-1FFFFFh) (4000h-1FFFFFh)  
Unimplemented  
Unimplemented  
(Unimplemented  
Memory Space)  
Read ‘0’s  
Read ‘0’s  
(8000h-1FFFFFh) (10000h-1FFFFFh)  
TABLE 23-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
CPD  
CPB  
CP3(1)  
WRT3(1)  
CP2(1)  
WRT2(1)  
CP1  
CP0  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
EBTR3(1) EBTR2(1) EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set.  
DS41303B-page 300  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
instruction that executes from a location outside of that  
block is not allowed to read and will result in reading ‘0’s.  
Figures 23-3 through 23-5 illustrate table write and table  
read protection.  
23.3.1  
PROGRAM MEMORY  
CODE PROTECTION  
The program memory may be read to or written from  
any location using the table read and table write  
instructions. The device ID may be read with table  
reads. The Configuration registers may be read and  
written with the table read and table write instructions.  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code pro-  
tection bits are only set to ‘1’ by a full chip  
erase or block erase function. The full chip  
erase and block erase functions can only  
be initiated via ICSP or an external  
programmer.  
In normal execution mode, the CPn bits have no direct  
effect. CPn bits inhibit external reads and writes. A block  
of user memory may be protected from table writes if the  
WRTn Configuration bit is ‘0’. The EBTRn bits control  
table reads. For a block of user memory with the EBTRn  
bit cleared to ‘0’, a table READinstruction that executes  
from within that block is allowed to read. A table read  
FIGURE 23-3:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
WRTB, EBTRB = 11  
000800h  
TBLPTR = 0008FFh  
PC = 001FFEh  
WRT0, EBTR0 = 01  
TBLWT*  
TBLWT*  
001FFFh  
002000h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
003FFFh  
004000h  
PC = 005FFEh  
005FFFh  
006000h  
007FFFh  
Results: All table writes disabled to Blockn whenever WRTn = 0.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 301  
PIC18F2XK20/4XK20  
FIGURE 23-4:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0007FFh  
000800h  
TBLPTR = 0008FFh  
PC = 003FFEh  
WRT0, EBTR0 = 10  
001FFFh  
002000h  
TBLRD*  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
003FFFh  
004000h  
005FFFh  
006000h  
WRT3, EBTR3 = 11  
007FFFh  
Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 23-5:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
0007FFh  
000800h  
TBLPTR = 0008FFh  
PC = 001FFEh  
TBLRD*  
001FFFh  
002000h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
003FFFh  
004000h  
005FFFh  
006000h  
007FFFh  
Results: Table reads permitted within Blockn, even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
DS41303B-page 302  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to the following pins:  
23.3.2  
DATA EEPROM  
CODE PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits internal and external writes to data  
EEPROM. The CPU can always read data EEPROM  
under normal operation, regardless of the protection bit  
settings.  
• MCLR/VPP/RE3  
• VDD  
• VSS  
• RB7  
• RB6  
This will interface to the In-Circuit Debugger module  
available from Microchip or one of the third party devel-  
opment tool companies.  
23.3.3  
CONFIGURATION REGISTER  
PROTECTION  
The Configuration registers can be write-protected.  
The WRTC bit controls protection of the Configuration  
registers. In normal execution mode, the WRTC bit is  
readable only. WRTC can only be written via ICSP or  
an external programmer.  
23.7 Single-Supply ICSP Programming  
The LVP Configuration bit enables Single-Supply ICSP  
Programming (formerly known as Low-Voltage ICSP  
Programming or LVP). When Single-Supply Program-  
ming is enabled, the microcontroller can be programmed  
without requiring high voltage being applied to the  
MCLR/VPP/RE3 pin, but the RB5/KBI1/PGM pin is then  
dedicated to controlling Program mode entry and is not  
available as a general purpose I/O pin.  
23.4 ID Locations  
Eight memory locations (200000h-200007h) are  
designated as ID locations, where the user can store  
checksum or other code identification numbers. These  
locations are both readable and writable during normal  
execution through the TBLRD and TBLWT instructions  
or during program/verify. The ID locations can be read  
when the device is code-protected.  
While programming, using Single-Supply Programming  
mode, VDD is applied to the MCLR/VPP/RE3 pin as in  
normal execution mode. To enter Programming mode,  
VDD is applied to the PGM pin.  
Note 1: High-voltage programming is always  
available, regardless of the state of the  
LVP bit or the PGM pin, by applying VIHH  
to the MCLR pin.  
23.5  
In-Circuit Serial Programming  
PIC18F2XK20/4XK20 devices can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
2: By default, Single-Supply ICSP is  
enabled in unprogrammed devices (as  
supplied from Microchip) and erased  
devices.  
3: When Single-Supply Programming is  
enabled, the RB5 pin can no longer be  
used as a general purpose I/O pin.  
4: When LVP is enabled, externally pull the  
PGM pin to VSS to allow normal program  
execution.  
23.6 In-Circuit Debugger  
When the DEBUG Configuration bit is programmed to  
a ‘0’, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB® IDE. When the microcontroller has  
this feature enabled, some resources are not available  
for general use. Table 23-4 shows which resources are  
required by the background debugger.  
If Single-Supply ICSP Programming mode will not be  
used, the LVP bit can be cleared. RB5/KBI1/PGM then  
becomes available as the digital I/O pin, RB5. The LVP  
bit may be set or cleared only when using standard  
high-voltage programming (VIHH applied to the MCLR/  
VPP/RE3 pin). Once LVP has been disabled, only the  
standard high-voltage programming is available and  
must be used to program the device.  
TABLE 23-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
2 levels  
Memory that is not code-protected can be erased using  
either a block erase, or erased row by row, then written  
at any specified VDD. If code-protected memory is to be  
erased, a block erase is required.  
Stack:  
Program Memory:  
Data Memory:  
512 bytes  
10 bytes  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 303  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 304  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
The literal instructions may use some of the following  
operands:  
24.0 INSTRUCTION SET SUMMARY  
PIC18F2XK20/4XK20 devices incorporate the standard  
set of 75 PIC18 core instructions, as well as an extended  
set of 8 new instructions, for the optimization of code that  
is recursive or that utilizes a software stack. The  
extended set is discussed later in this section.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
24.1 Standard Instruction Set  
The control instructions may use some of the following  
operands:  
The standard PIC18 instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from these  
PIC® MCU instruction sets. Most instructions are a sin-  
gle program memory word (16 bits), but there are four  
instructions that require two program memory loca-  
tions.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
• No operand required  
(specified by ‘—’)  
All instructions are a single word, except for four  
double-word instructions. These instructions were  
made double-word to contain the required information  
in 32 bits. In the second word, the 4 MSbs are ‘1’s. If  
this second word is executed as an instruction (by  
itself), it will execute as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 24-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 24-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 μs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 μs.  
Two-word branch instructions (if true) would take 3 μs.  
2. The destination of the result (specified by ‘d’)  
3. The accessed memory (specified by ‘a’)  
The file register designator ‘f’ specifies which file  
register is to be used by the instruction. The destination  
designator ‘d’ specifies where the result of the opera-  
tion is to be placed. If ‘d’ is zero, the result is placed in  
the WREG register. If ‘d’ is one, the result is placed in  
the file register specified in the instruction.  
Figure 24-1 shows the general formats that the instruc-  
tions can have. All examples use the convention ‘nnh’  
to represent a hexadecimal number.  
The Instruction Set Summary, shown in Table 24-2,  
lists the standard instructions recognized by the  
Microchip Assembler (MPASMTM).  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
2. The bit in the file register (specified by ‘b’)  
3. The accessed memory (specified by ‘a’)  
Section 24.1.1 “Standard Instruction Set” provides  
a description of each instruction.  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register  
designator ‘f’ represents the number of the file in which  
the bit is located.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 305  
PIC18F2XK20/4XK20  
TABLE 24-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
Bit address within an 8-bit file register (0 to 7).  
BSR  
Bank Select Register. Used to select the current RAM bank.  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
C, DC, Z, OV, N  
d
Destination select bit  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination: either the WREG register or the specified register file location.  
8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).  
12-bit Register file address (000h to FFFh). This is the source address.  
12-bit Register file address (000h to FFFh). This is the destination address.  
Global Interrupt Enable bit.  
f
f
s
d
GIE  
k
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions or the direct address for  
CALL/BRANCHand RETURNinstructions.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Power-down bit.  
PCH  
PCLATH  
PCLATU  
PD  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
TBLPTR  
TABLAT  
TO  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Time-out bit.  
TOS  
u
Top-of-Stack.  
Unused or unchanged.  
Watchdog Timer.  
WDT  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for  
compatibility with all Microchip software tools.  
z
z
{
7-bit offset value for indirect addressing of register files (source).  
7-bit offset value for indirect addressing of register files (destination).  
Optional argument.  
s
d
}
[text]  
(text)  
[expr]<n>  
Indicates an indexed address.  
The contents of text.  
Specifies bit nof the register indicated by the pointer expr.  
Assigned to.  
< >  
Register bit field.  
In the set of.  
italics  
User defined term (font is Courier).  
DS41303B-page 306  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 24-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
OPCODE f (FILE #)  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
d
a
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 7Fh  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
1111  
n<19:8> (literal)  
S = Fast bit  
15  
11 10  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 307  
PIC18F2XK20/4XK20  
TABLE 24-2: PIC18FXXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and CARRY bit to f  
1
1
1
1
1
0010 01da0 ffff  
ffff C, DC, Z, OV, N  
ffff C, DC, Z, OV, N  
ffff Z, N  
1, 2  
1, 2  
1,2  
2
1, 2  
4
4
1, 2  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2  
1, 2, 3, 4  
4
1, 2  
1, 2  
1
0010 0da  
0001 01da  
0110 101a  
0001 11da  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
ffff  
Z
ffff Z, N  
ffff None  
ffff None  
ffff None  
ffff C, DC, Z, OV, N  
ffff None  
ffff None  
ffff C, DC, Z, OV, N  
ffff None  
ffff None  
ffff Z, N  
ffff Z, N  
ffff None  
ffff  
ffff None  
ffff None  
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
f, a  
f, a  
f, a  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a  
1 (2 or 3) 0110 010a  
1 (2 or 3) 0110 000a  
f, d, a Decrement f  
1
0000 01da  
DECFSZ  
DCFSNZ  
INCF  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1 (2 or 3) 0010 11da  
1 (2 or 3) 0100 11da  
1
1 (2 or 3) 0011 11da  
1 (2 or 3) 0100 10da  
1
1
2
0010 10da  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
0001 00da  
0101 00da  
1100 ffff  
1111 ffff  
0110 111a  
0000 001a  
0110 110a  
0011 01da  
0100 01da  
0011 00da  
0100 00da  
0110 100a  
0101 01da  
MOVFF  
f , f  
Move f (source) to 1st word  
s
d
s
f (destination) 2nd word  
d
MOVWF  
MULWF  
NEGF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
1, 2  
1, 2  
ffff C, DC, Z, OV, N  
ffff C, Z, N  
ffff Z, N  
ffff C, Z, N  
ffff Z, N  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
f, a  
Set f  
ffff None  
ffff C, DC, Z, OV, N  
1, 2  
1, 2  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da  
0101 10da  
ffff  
ffff  
ffff C, DC, Z, OV, N  
ffff C, DC, Z, OV, N  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap nibbles in f  
f, a Test f, skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da  
ffff  
ffff  
ffff  
ffff None  
ffff None  
ffff Z, N  
4
1, 2  
1 (2 or 3) 0110 011a  
0001 10da  
1
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOPunless the  
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory  
locations have a valid instruction.  
DS41303B-page 308  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb LSb  
BIT-ORIENTED OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba  
1000 bbba  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff None  
ffff None  
ffff None  
ffff None  
ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba  
1 (2 or 3) 1010 bbba  
1
0111 bbba  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010  
1110 0110  
1110 0011  
1110 0111  
1110 0101  
1110 0001  
1110 0100  
1101 0nnn  
1110 0000  
1110 110s  
1111 kkkk  
0000 0000  
0000 0000  
1110 1111  
1111 kkkk  
0000 0000  
1111 xxxx  
0000 0000  
0000 0000  
1101 1nnn  
0000 0000  
0000 0000  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
kkkk  
kkkk  
0000  
0000  
kkkk  
kkkk  
0000  
xxxx  
0000  
0000  
nnnn  
1111  
0001  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
kkkk None  
kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
Call subroutine 1st word  
2nd word  
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
CLRWDT  
DAW  
GOTO  
n
1
1
2
0100 TO, PD  
0111  
C
kkkk None  
kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
1
1
1
1
2
1
2
0000 None  
xxxx None  
0110 None  
0101 None  
nnnn None  
1111 All  
4
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device Reset  
Return from interrupt enable  
s
000s GIE/GIEH,  
PEIE/GIEL  
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100  
0000 0000  
0000 0000  
kkkk  
0001  
0000  
kkkk None  
001s None  
0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOPunless the  
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory  
locations have a valid instruction.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 309  
PIC18F2XK20/4XK20  
TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit) 2nd word  
1
1
1
2
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
to FSR(f)  
1st word  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
Exclusive OR literal with WREG  
1
1
1
2
1
1
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOPunless the  
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory  
locations have a valid instruction.  
DS41303B-page 310  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
24.1.1  
STANDARD INSTRUCTION SET  
ADDLW  
ADD literal to W  
ADDWF  
ADD W to f  
Syntax:  
ADDLW  
k
Syntax:  
ADDWF  
f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed in  
W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example:  
ADDLW  
15h  
Before Instruction  
10h  
After Instruction  
25h  
W
=
Words:  
Cycles:  
1
1
W
=
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWF  
REG, 0, 0  
Before Instruction  
W
=
17h  
REG  
=
0C2h  
After Instruction  
W
REG  
=
=
0D9h  
0C2h  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 311  
PIC18F2XK20/4XK20  
ADDWFC  
ADD W and CARRY bit to f  
ANDLW  
AND literal with W  
Syntax:  
ADDWFC  
f {,d {,a}}  
Syntax:  
ANDLW  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
The contents of W are AND’ed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the CARRY flag and data mem-  
ory location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Example:  
ANDLW  
05Fh  
Before Instruction  
W
=
A3h  
03h  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWFC  
REG, 0, 1  
Before Instruction  
CARRY bit =  
1
02h  
4Dh  
REG  
W
=
=
After Instruction  
CARRY bit =  
0
02h  
50h  
REG  
W
=
=
DS41303B-page 312  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
ANDWF  
AND W with f  
BC  
Branch if Carry  
Syntax:  
ANDWF  
f {,d {,a}}  
Syntax:  
BC  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if CARRY bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the CARRY bit is ‘1’, then the program  
will branch.  
Description:  
The contents of W are AND’ed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Words:  
1
1
Cycles:  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
ANDWF  
REG, 0, 0  
Example:  
HERE  
BC  
5
Before Instruction  
Before Instruction  
W
REG  
=
=
17h  
C2h  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If CARRY  
PC  
If CARRY  
PC  
=
=
=
=
1;  
address (HERE + 12)  
0;  
address (HERE + 2)  
W
REG  
=
=
02h  
C2h  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 313  
PIC18F2XK20/4XK20  
BCF  
Bit Clear f  
BN  
Branch if Negative  
Syntax:  
BCF f, b {,a}  
Syntax:  
BN  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if NEGATIVE bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the NEGATIVE bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in register ‘f’ is cleared.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Example:  
BCF  
FLAG_REG, 7, 0  
C7h  
47h  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Before Instruction  
FLAG_REG =  
After Instruction  
FLAG_REG =  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If NEGATIVE  
PC  
If NEGATIVE  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
DS41303B-page 314  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
BNC  
n
Syntax:  
BNN  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if CARRY bit is ‘0’  
(PC) + 2 + 2n PC  
if NEGATIVE bit is ‘0’  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the CARRY bit is ‘0’, then the program  
will branch.  
Description:  
If the NEGATIVE bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If CARRY  
PC  
If CARRY  
PC  
=
=
=
=
0;  
If NEGATIVE  
PC  
If NEGATIVE  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 315  
PIC18F2XK20/4XK20  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
BNOV  
n
Syntax:  
BNZ  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if OVERFLOW bit is ‘0’  
(PC) + 2 + 2n PC  
if ZERO bit is ‘0’  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the OVERFLOW bit is ‘0’, then the  
program will branch.  
Description:  
If the ZERO bit is ‘0’, then the program  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If OVERFLOW =  
PC  
0;  
If ZERO  
PC  
If ZERO  
PC  
=
=
=
=
0;  
=
address (Jump)  
address (Jump)  
If OVERFLOW =  
1;  
1;  
PC  
=
address (HERE + 2)  
address (HERE + 2)  
DS41303B-page 316  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
BRA  
Unconditional Branch  
BSF  
Bit Set f  
Syntax:  
BRA  
n
Syntax:  
BSF f, b {,a}  
Operands:  
Operation:  
-1024 n 1023  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
(PC) + 2 + 2n PC  
Status Affected: None  
Operation:  
1 f<b>  
Encoding:  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Description:  
Add the 2’s complement number ‘2n’ to  
the PC. Since the PC will have incre-  
mented to fetch the next instruction, the  
new address will be PC + 2 + 2n. This  
instruction is a two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
HERE  
BRA Jump  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
Example:  
BSF  
FLAG_REG, 7, 1  
0Ah  
8Ah  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 317  
PIC18F2XK20/4XK20  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
BTFSC f, b {,a}  
Syntax:  
BTFSS f, b {,a}  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped. If bit ‘b’ is ‘0’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped. If bit ‘b’ is ‘1’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh).  
See Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh).  
See Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS41303B-page 318  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
BTG f, b {,a}  
Syntax:  
BOV  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if OVERFLOW bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the OVERFLOW bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BTG  
PORTC, 4, 0  
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
=
0111 0101 [75h]  
0110 0101 [65h]  
Example:  
HERE  
BOV Jump  
Before Instruction  
=
PC  
=
address (HERE)  
After Instruction  
If OVERFLOW =  
PC  
If OVERFLOW =  
PC  
1;  
=
address (Jump)  
0;  
=
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 319  
PIC18F2XK20/4XK20  
BZ  
Branch if Zero  
CALL  
Subroutine Call  
Syntax:  
BZ  
n
Syntax:  
CALL k {,s}  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if ZERO bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(Status) STATUSS,  
(BSR) BSRS  
Description:  
If the ZERO bit is ‘1’, then the program  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
(PC + 4) is pushed onto the return  
stack. If ‘s’ = 1, the W, Status and BSR  
registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs (default). Then, the  
20-bit value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
2
2
operation  
operation  
operation  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read literal PUSH PC to Read literal  
‘k’<7:0>,  
stack  
‘k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If ZERO  
PC  
If ZERO  
PC  
=
=
=
=
1;  
Example:  
HERE  
CALL THERE, 1  
address (Jump)  
Before Instruction  
PC  
After Instruction  
0;  
address (HERE + 2)  
=
address (HERE)  
PC  
=
address (THERE)  
TOS  
WS  
=
=
=
address (HERE + 4)  
W
BSR  
Status  
BSRS  
STATUSS=  
DS41303B-page 320  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
CLRF f {,a}  
Syntax:  
CLRWDT  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register.  
Description:  
CLRWDTinstruction resets the  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits, TO  
and PD, are set.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
No  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
CLRWDT  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WDT Counter  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
=
=
=
=
00h  
0
1
Example:  
CLRF  
FLAG_REG, 1  
PD  
1
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
5Ah  
00h  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 321  
PIC18F2XK20/4XK20  
CPFSEQ  
Compare f with W, skip if f = W  
COMF  
Complement f  
Syntax:  
CPFSEQ f {,a}  
Syntax:  
COMF f {,d {,a}}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) = (W)  
(unsigned comparison)  
Operation:  
(f) dest  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction.  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, 0, 0  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
REG  
=
13h  
After Instruction  
If skip:  
REG  
W
=
=
13h  
ECh  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG, 0  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
HERE  
W
REG  
=
=
?
?
After Instruction  
If REG  
PC  
=
=
W;  
Address (EQUAL)  
If REG  
PC  
=
W;  
Address (NEQUAL)  
DS41303B-page 322  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
CPFSGT  
Compare f with W, skip if f > W  
CPFSLT  
Compare f with W, skip if f < W  
Syntax:  
CPFSGT f {,a}  
Syntax:  
CPFSLT f {,a}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
Operation:  
(f) – (W),  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
If skip and followed by 2-word instruction:  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
If skip and followed by 2-word instruction:  
operation  
operation  
operation  
operation  
Q1  
No  
operation  
No  
Q2  
No  
operation  
No  
Q3  
No  
operation  
No  
Q4  
No  
operation  
No  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
operation  
operation  
operation  
operation  
Before Instruction  
PC  
W
=
=
Address (HERE)  
Example:  
HERE  
NGREATER  
GREATER  
CPFSGT REG, 0  
:
:
?
After Instruction  
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Before Instruction  
Address (LESS)  
W;  
Address (NLESS)  
PC  
W
=
=
Address (HERE)  
?
After Instruction  
If REG  
PC  
>
=
W;  
Address (GREATER)  
If REG  
PC  
=
W;  
Address (NGREATER)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 323  
PIC18F2XK20/4XK20  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
DAW  
None  
Syntax:  
DECF f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) – 1 dest  
(W<3:0>) W<3:0>;  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> + DC > 9] or [C = 1] then  
(W<7:4>) + 6 + DC W<7:4> ;  
else  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
(W<7:4>) + DC W<7:4>  
Status Affected:  
Encoding:  
C
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in W,  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example1:  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
DAW  
Before Instruction  
W
C
DC  
=
=
=
A5h  
0
0
Example:  
DECF  
CNT,  
1, 0  
Before Instruction  
After Instruction  
CNT  
Z
After Instruction  
=
01h  
0
=
W
=
05h  
1
0
C
DC  
=
=
CNT  
Z
=
=
00h  
1
Example 2:  
Before Instruction  
W
=
CEh  
C
DC  
=
=
0
0
After Instruction  
W
=
34h  
C
DC  
=
=
1
0
DS41303B-page 324  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
DECFSZ f {,d {,a}}  
Syntax:  
DCFSNZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
Operation:  
(f) – 1 dest,  
skip if result = 0  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction,  
which is already fetched, is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is not ‘0’, the next  
instruction, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
Process  
Data  
Write to  
destination  
register ‘f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
After Instruction  
=
Address (HERE)  
=
?
CNT  
=
CNT - 1  
0;  
If CNT  
=
=
=
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1,  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
PC  
Address (CONTINUE)  
0;  
If CNT  
PC  
Address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 325  
PIC18F2XK20/4XK20  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
GOTO  
k
Syntax:  
INCF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
0 k 1048575  
k PC<20:1>  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
kkk  
k kkk  
kkkk  
kkkk  
kkkk  
7
0
8
k
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
anywhere within entire  
2-Mbyte memory range. The 20-bit  
value ‘k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
Words:  
Cycles:  
1
1
No  
operation  
No  
No  
No  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
GOTO THERE  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
PC  
=
Address (THERE)  
Example:  
INCF  
CNT, 1, 0  
Before Instruction  
CNT  
Z
=
FFh  
0
=
=
=
C
?
DC  
?
After Instruction  
CNT  
Z
=
00h  
1
=
=
=
C
1
DC  
1
DS41303B-page 326  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
INFSNZ  
Increment f, skip if not 0  
INCFSZ  
Increment f, skip if 0  
Syntax:  
INFSNZ f {,d {,a}}  
Syntax:  
INCFSZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result 0  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0100  
10da  
ffff  
ffff  
0011  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is not ‘0’, the next  
instruction, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction,  
which is already fetched, is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
=
=
=
=
=
=
0;  
Address (ZERO)  
0;  
Address (NZERO)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 327  
PIC18F2XK20/4XK20  
IORLW  
Inclusive OR literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
IORLW  
k
Syntax:  
IORWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .OR. k W  
N, Z  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
eight-bit literal ‘k’. The result is placed in  
W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example:  
IORLW  
35h  
Before Instruction  
W
=
9Ah  
BFh  
After Instruction  
Words:  
Cycles:  
1
1
W
=
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
IORWF RESULT, 0, 1  
Before Instruction  
RESULT =  
13h  
91h  
W
=
After Instruction  
RESULT =  
13h  
93h  
W
=
DS41303B-page 328  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
LFSR f, k  
Syntax:  
MOVF f {,d {,a}}  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
k kkk  
11  
kkkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
File Select Register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
Location ‘f’ can be anywhere in the  
256-byte bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Example:  
LFSR 2, 3ABh  
After Instruction  
Words:  
Cycles:  
1
1
FSR2H  
FSR2L  
=
=
03h  
ABh  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
Example:  
MOVF  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
22h  
FFh  
After Instruction  
REG  
W
=
=
22h  
22h  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 329  
PIC18F2XK20/4XK20  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
MOVFF f ,f  
Syntax:  
MOVLW k  
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
k BSR  
None  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The eight-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR). The value  
of BSR<7:4> always remains ‘0’,  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Description:  
The contents of source register ‘f ’ are  
regardless of the value of k :k .  
s
7 4  
moved to destination register ‘f ’.  
d
Words:  
Cycles:  
1
1
Location of source ‘f ’ can be anywhere  
s
in the 4096-byte data space (000h to  
FFFh) and location of destination ‘f ’  
can also be anywhere from 000h to  
FFFh.  
Either source or destination can be W  
(a useful special situation).  
d
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write literal  
‘k’ to BSR  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Example:  
MOVLB  
5
Before Instruction  
BSR Register =  
After Instruction  
BSR Register =  
02h  
05h  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
33h  
11h  
After Instruction  
REG1  
REG2  
=
=
33h  
33h  
DS41303B-page 330  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
MOVLW  
Move literal to W  
MOVWF  
Move W to f  
Syntax:  
MOVLW  
k
Syntax:  
MOVWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 k 255  
k W  
None  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight-bit literal ‘k’ is loaded into W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank.  
1
1
Cycles:  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example:  
MOVLW  
5Ah  
After Instruction  
W
=
5Ah  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG, 0  
Before Instruction  
W
REG  
=
=
4Fh  
FFh  
After Instruction  
W
REG  
=
=
4Fh  
4Fh  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 331  
PIC18F2XK20/4XK20  
MULLW  
Multiply literal with W  
MULWF  
Multiply W with f  
Syntax:  
MULLW  
k
Syntax:  
MULWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and the  
8-bit literal ‘k’. The 16-bit result is  
placed in the PRODH:PRODL register  
pair. PRODH contains the high byte.  
W is unchanged.  
None of the Status flags are affected.  
Note that neither overflow nor carry is  
possible in this operation. A zero result  
is possible but not detected.  
Description:  
An unsigned multiplication is carried  
out between the contents of W and the  
register file location ‘f’. The 16-bit  
result is stored in the PRODH:PRODL  
register pair. PRODH contains the  
high byte. Both W and ‘f’ are  
unchanged.  
None of the Status flags are affected.  
Note that neither overflow nor carry is  
possible in this operation. A zero  
result is possible but not detected.  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used  
to select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
f 95 (5Fh). See Section 24.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
Example:  
MULLW  
0C4h  
Before Instruction  
Words:  
Cycles:  
1
1
W
PRODH  
PRODL  
=
=
=
E2h  
?
?
Q Cycle Activity:  
Q1  
After Instruction  
W
Q2  
Q3  
Q4  
=
=
=
E2h  
ADh  
08h  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
PRODH  
PRODL  
registers  
PRODH:  
PRODL  
Example:  
MULWF  
REG, 1  
Before Instruction  
W
=
C4h  
REG  
PRODH  
PRODL  
=
=
=
B5h  
?
?
After Instruction  
W
=
C4h  
REG  
PRODH  
PRODL  
=
=
=
B5h  
8Ah  
94h  
DS41303B-page 332  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
NEGF f {,a}  
Syntax:  
NOP  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
None  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in the  
data memory location ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Description:  
Words:  
No operation.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
Q4  
Decode  
No  
operation  
No  
operation  
operation  
Example:  
None.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [3Ah]  
1100 0110 [C6h]  
=
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 333  
PIC18F2XK20/4XK20  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
POP  
Syntax:  
PUSH  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
(TOS) bit bucket  
(PC + 2) TOS  
None  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implementing a  
software stack by modifying TOS and  
then pushing it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
PUSH  
No  
No  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PC + 2 onto  
return stack  
operation  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)  
TOS  
PC  
=
=
345Ah  
0124h  
=
=
0031A2h  
014332h  
After Instruction  
After Instruction  
PC  
=
=
=
0126h  
0126h  
345Ah  
TOS  
TOS  
PC  
=
=
014332h  
NEW  
Stack (1 level down)  
DS41303B-page 334  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
RCALL  
n
Syntax:  
RESET  
None  
Operands:  
Operation:  
-1024 n 1023  
Operands:  
Operation:  
(PC) + 2 TOS,  
(PC) + 2 + 2n PC  
Reset all registers and flags that are  
affected by a MCLR Reset.  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset by software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
PUSH PCto  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 335  
PIC18F2XK20/4XK20  
RETFIE  
Return from Interrupt  
RETLW  
Return literal to W  
Syntax:  
RETFIE {s}  
Syntax:  
RETLW k  
Operands:  
Operation:  
s [0,1]  
Operands:  
Operation:  
0 k 255  
(TOS) PC,  
k W,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) Status,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight-bit literal ‘k’.  
The program counter is loaded from the  
top of the stack (the return address).  
The high address latch (PCLATH)  
remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers, WS,  
STATUSS and BSRS, are loaded into  
their corresponding registers, W,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
POP PC  
from stack,  
Write to W  
Status and BSR. If ‘s’ = 0, no update of  
these registers occurs (default).  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
POP PC  
from stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
; Begin table  
;
Example:  
RETFIE  
1
:
:
After Interrupt  
PC  
W
=
=
=
=
=
TOS  
WS  
RETLW kn  
; End of table  
BSR  
Status  
GIE/GIEH, PEIE/GIEL  
BSRS  
STATUSS  
1
Before Instruction  
W
=
07h  
After Instruction  
W
=
value of kn  
DS41303B-page 336  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
RETURN {s}  
Syntax:  
RLCF f {,d {,a}}  
Operands:  
Operation:  
s [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) Status,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the CARRY  
flag. If ‘d’ is ‘0’, the result is placed in  
W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used to  
select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers, WS, STATUSS and BSRS,  
are loaded into their corresponding  
registers, W, Status and BSR. If  
‘s’ = 0, no update of these registers  
occurs (default).  
Words:  
Cycles:  
1
2
f 95 (5Fh). See Section 24.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
POP PC  
from stack  
register f  
C
No  
No  
No  
No  
Words:  
Cycles:  
1
1
operation  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
RETURN  
Q2  
Q3  
Q4  
After Instruction:  
PC = TOS  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLCF  
REG, 0, 0  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
1110 0110  
W
C
=
=
1100 1100  
1
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 337  
PIC18F2XK20/4XK20  
RLNCF  
Rotate Left f (No Carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
RLNCF f {,d {,a}}  
Syntax:  
RRCF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the CARRY  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, 0, 0  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
1110 0110  
W
C
=
=
0111 0011  
0
DS41303B-page 338  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
RRNCF  
Rotate Right f (No Carry)  
SETF  
Set f  
Syntax:  
RRNCF f {,d {,a}}  
Syntax:  
SETF f {,a}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If ‘a’  
is ‘1’, then the bank will be selected as  
per the BSR value (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG, 1  
Q Cycle Activity:  
Q1  
Before Instruction  
REG  
After Instruction  
REG  
=
=
5Ah  
FFh  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 339  
PIC18F2XK20/4XK20  
SLEEP  
Enter Sleep mode  
SUBFWB  
Subtract f from W with borrow  
Syntax:  
SLEEP  
None  
Syntax:  
SUBFWB f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and CARRY flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’ (default).  
Description:  
The Power-down Status bit (PD) is  
cleared. The Time-out Status bit (TO)  
is set. Watchdog Timer and its  
postscaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used  
to select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
f 95 (5Fh). See Section 24.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Example:  
SLEEP  
Words:  
Cycles:  
1
1
Before Instruction  
TO  
PD  
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
TO  
PD  
=
=
1 †  
0
Example 1:  
SUBFWB  
REG, 1, 0  
If WDT causes wake-up, this bit is cleared.  
Before Instruction  
REG  
W
C
=
=
=
3
2
1
After Instruction  
REG  
W
C
=
FF  
2
=
=
=
=
0
Z
0
1
N
; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
=
=
=
2
5
1
C
After Instruction  
REG  
W
C
=
2
3
1
0
=
=
=
=
Z
N
0
; result is positive  
Example 3:  
SUBFWB  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
=
1
2
0
C
After Instruction  
REG  
W
C
=
0
2
1
1
0
=
=
=
=
Z
; result is zero  
N
DS41303B-page 340  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
SUBLW  
Subtract W from literal  
SUBWF  
Subtract W from f  
Syntax:  
SUBLW  
k
Syntax:  
SUBWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used  
to select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
f 95 (5Fh). See Section 24.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example 1:  
SUBLW 02h  
Before Instruction  
W
C
=
=
01h  
?
After Instruction  
W
C
Z
=
01h  
=
=
=
1
0
0
; result is positive  
N
Words:  
Cycles:  
1
1
Example 2:  
SUBLW 02h  
Before Instruction  
Q Cycle Activity:  
Q1  
W
C
=
=
02h  
?
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
C
Z
=
00h  
=
=
=
1
1
0
; result is zero  
N
Example 1:  
SUBWF  
REG, 1, 0  
Before Instruction  
Example 3:  
SUBLW 02h  
REG  
W
C
=
3
2
?
Before Instruction  
=
=
W
C
=
=
03h  
?
After Instruction  
After Instruction  
REG  
W
C
=
1
2
1
0
0
W
C
Z
=
FFh ; (2’s complement)  
=
=
=
=
=
=
=
0
0
1
; result is negative  
; result is positive  
Z
N
N
Example 2:  
Before Instruction  
SUBWF  
REG, 0, 0  
REG  
W
=
=
=
2
2
?
C
After Instruction  
REG  
W
C
=
2
0
1
1
0
=
=
=
=
; result is zero  
Z
N
Example 3:  
Before Instruction  
SUBWF  
REG, 1, 0  
REG  
W
=
=
=
1
2
?
C
After Instruction  
REG  
W
C
=
FFh ;(2’s complement)  
2
0
0
1
=
=
=
=
; result is negative  
Z
N
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 341  
PIC18F2XK20/4XK20  
SUBWFB  
Subtract W from f with Borrow  
SWAPF  
Swap f  
SUBWFB f {,d {,a}}  
Syntax:  
Syntax:  
SWAPF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0101  
10da  
ffff  
ffff  
Status Affected:  
Encoding:  
None  
Description:  
Subtract W and the CARRY flag  
0011  
10da  
ffff  
ffff  
(borrow) from register ‘f’ (2’s comple-  
ment method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
REG  
W
=
=
=
19h  
0Dh  
1
(0001 1001)  
(0000 1101)  
Example:  
SWAPF  
REG, 1, 0  
C
Before Instruction  
After Instruction  
REG  
=
53h  
35h  
REG  
=
0Ch  
0Dh  
1
(0000 1011)  
(0000 1101)  
After Instruction  
W
=
=
=
=
REG  
=
C
Z
0
N
0
; result is positive  
Example 2:  
SUBWFB REG, 0, 0  
Before Instruction  
REG  
W
=
=
=
1Bh  
1Ah  
0
(0001 1011)  
(0001 1010)  
C
After Instruction  
REG  
W
C
=
1Bh  
00h  
1
(0001 1011)  
=
=
=
=
Z
1
; result is zero  
N
0
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
=
=
=
03h  
0Eh  
1
(0000 0011)  
(0000 1101)  
W
C
After Instruction  
REG  
=
F5h  
(1111 0100)  
; [2’s comp]  
W
=
=
=
=
0Eh  
0
0
1
(0000 1101)  
C
Z
N
; result is negative  
DS41303B-page 342  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
Syntax:  
TBLRD ( *; *+; *-; +*)  
None  
Example1:  
TBLRD *+ ;  
Operands:  
Operation:  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY (00A356h)  
=
=
=
55h  
00A356h  
34h  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1 TBLPTR;  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) + 1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
After Instruction  
TABLAT  
TBLPTR  
=
=
34h  
00A357h  
Example2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY (01A357h)  
MEMORY (01A358h)  
After Instruction  
=
=
=
=
AAh  
01A357h  
12h  
34h  
TABLAT  
TBLPTR  
=
=
34h  
01A358h  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR[0] = 0: LeastSignificantByte  
of Program Memory  
Word  
TBLPTR[0] = 1: Most Significant Byte  
of Program Memory  
Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
operation (Read Program operation (Write TABLAT)  
Memory)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 343  
PIC18F2XK20/4XK20  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
TBLWT ( *; *+; *-; +*)  
None  
Example1:  
TBLWT *+;  
Operands:  
Operation:  
Before Instruction  
if TBLWT*,  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A356h  
(TABLAT) Holding Register;  
TBLPTR – No Change;  
if TBLWT*+,  
(TABLAT) Holding Register;  
(TBLPTR) + 1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) – 1 TBLPTR;  
if TBLWT+*,  
(TBLPTR) + 1 TBLPTR;  
(TABLAT) Holding Register;  
=
FFh  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A357h  
=
55h  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(01389Ah)  
HOLDING REGISTER  
(01389Bh)  
=
=
34h  
01389Ah  
Status Affected: None  
=
FFh  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
=
FFh  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
=
=
34h  
01389Bh  
HOLDING REGISTER  
(01389Ah)  
HOLDING REGISTER  
(01389Bh)  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program  
Memory (P.M.). (Refer to Section 6.0  
“Flash Program Memory” for additional  
details on programming Flash memory.)  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2-MByte address range.  
The LSb of the TBLPTR selects which  
byte of the program memory location to  
access.  
=
=
FFh  
34h  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
Decode  
operation operation operation  
No  
No No No  
operation operation operation operation  
(Read  
TABLAT)  
(Write to  
Holding  
Register )  
DS41303B-page 344  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with W  
Syntax:  
TSTFSZ f {,a}  
Syntax:  
XORLW k  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example:  
XORLW  
0AFh  
Before Instruction  
W
=
B5h  
1Ah  
Words:  
Cycles:  
1
After Instruction  
1(2)  
W
=
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
PC  
If CNT  
PC  
=
=
=
00h,  
Address (ZERO)  
00h,  
Address (NZERO)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 345  
PIC18F2XK20/4XK20  
XORWF  
Exclusive OR W with f  
Syntax:  
XORWF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in the register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 24.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
AFh  
B5h  
After Instruction  
REG  
W
=
=
1Ah  
B5h  
DS41303B-page 346  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
A summary of the instructions in the extended instruc-  
tion set is provided in Table 24-3. Detailed descriptions  
are provided in Section 24.2.2 “Extended Instruction  
Set”. The opcode field descriptions in Table 24-1  
(page 306) apply to both the standard and extended  
PIC18 instruction sets.  
24.2 Extended Instruction Set  
In addition to the standard 75 instructions of the PIC18  
instruction set, PIC18F2XK20/4XK20 devices also  
provide an optional extension to the core CPU  
functionality. The added features include eight  
additional instructions that augment indirect and  
indexed addressing operations and the implementation  
of Indexed Literal Offset Addressing mode for many of  
the standard PIC18 instructions.  
Note:  
The instruction set extension and the  
Indexed Literal Offset Addressing mode  
were designed for optimizing applications  
written in C; the user may likely never use  
these instructions directly in assembler.  
The syntax for these commands is pro-  
vided as a reference for users who may be  
reviewing code that has been generated  
by a compiler.  
The additional features of the extended instruction set  
are disabled by default. To enable them, users must set  
the XINST Configuration bit.  
The instructions in the extended set can all be  
classified as literal operations, which either manipulate  
the File Select Registers, or use them for indexed  
addressing. Two of the instructions, ADDFSR and  
SUBFSR, each have an additional special instantiation  
for using FSR2. These versions (ADDULNK and  
SUBULNK) allow for automatic return after execution.  
24.2.1  
EXTENDED INSTRUCTION SYNTAX  
Most of the extended instructions use indexed  
arguments, using one of the File Select Registers and  
some offset to specify a source or destination register.  
When an argument for an instruction serves as part of  
indexed addressing, it is enclosed in square brackets  
(“[ ]”). This is done to indicate that the argument is used  
as an index or offset. MPASM™ Assembler will flag an  
error if it determines that an index or offset value is not  
bracketed.  
The extended instructions are specifically implemented  
to optimize re-entrant program code (that is, code that  
is recursive or that uses a software stack) written in  
high-level languages, particularly C. Among other  
things, they allow users working in high-level  
languages to perform certain operations on data  
structures more efficiently. These include:  
When the extended instruction set is enabled, brackets  
are also used to indicate index arguments in byte-  
oriented and bit-oriented instructions. This is in addition  
to other changes in their syntax. For more details, see  
Section 24.2.3.1 “Extended Instruction Syntax with  
Standard PIC18 Commands”.  
• dynamic allocation and deallocation of software  
stack space when entering and leaving  
subroutines  
• function pointer invocation  
• software Stack Pointer manipulation  
• manipulation of variables located in a software  
stack  
Note:  
In the past, square brackets have been  
used to denote optional arguments in the  
PIC18 and earlier instruction sets. In this  
text and going forward, optional  
arguments are denoted by braces (“{ }”).  
TABLE 24-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
ADDFSR  
ADDULNK  
CALLW  
f, k  
k
Add literal to FSR  
Add literal to FSR2 and return  
Call subroutine using WREG  
1
2
2
2
1110 1000 ffkk kkkk  
1110 1000 11kk kkkk  
0000 0000 0001 0100  
1110 1011 0zzz zzzz  
1111 ffff ffff ffff  
1110 1011 1zzz zzzz  
1111 xxxx xzzz zzzz  
1110 1010 kkkk kkkk  
None  
None  
None  
None  
MOVSF  
zs, fd Move zs (source) to 1st word  
fd (destination) 2nd word  
zs, zd Move zs (source) to 1st word  
MOVSS  
PUSHL  
2
1
None  
None  
zd (destination)  
Store literal at FSR2,  
decrement FSR2  
2nd word  
k
SUBFSR  
SUBULNK  
f, k  
k
Subtract literal from FSR  
Subtract literal from FSR2 and  
return  
1
2
1110 1001 ffkk kkkk  
1110 1001 11kk kkkk  
None  
None  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 347  
PIC18F2XK20/4XK20  
24.2.2  
EXTENDED INSTRUCTION SET  
ADDFSR  
Add Literal to FSR  
ADDULNK  
Add Literal to FSR2 and Return  
Syntax:  
ADDFSR f, k  
Syntax:  
ADDULNK k  
Operands:  
0 k 63  
f [ 0, 1, 2 ]  
FSR(f) + k FSR(f)  
None  
Operands:  
Operation:  
0 k 63  
FSR2 + k FSR2,  
(TOS) PC  
None  
Operation:  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1110  
1000  
ffkk  
kkkk  
1110  
1000  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of the FSR specified by ‘f’.  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
The instruction takes two cycles to  
execute; a NOPis performed during  
the second cycle.  
This may be thought of as a special  
case of the ADDFSRinstruction,  
where f = 3 (binary ‘11’); it operates  
only on FSR2.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
ADDFSR 2, 23h  
Example:  
Words:  
Cycles:  
1
2
Before Instruction  
FSR2  
After Instruction  
FSR2  
=
03FFh  
0422h  
Q Cycle Activity:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
ADDULNK 23h  
Example:  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
0422h  
(TOS)  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).  
DS41303B-page 348  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
CALLW  
Subroutine Call Using WREG  
MOVSF  
Move Indexed to f  
Syntax:  
CALLW  
None  
Syntax:  
MOVSF [z ], f  
s
d
Operands:  
Operation:  
Operands:  
0 z 127  
s
0 f 4095  
d
(PC + 2) TOS,  
(W) PCL,  
Operation:  
((FSR2) + z ) f  
s
d
(PCLATH) PCH,  
(PCLATU) PCU  
Status Affected:  
None  
Encoding:  
1st word (source)  
2nd word (destin.)  
Status Affected:  
Encoding:  
None  
1110  
1111  
1011  
ffff  
0zzz  
ffff  
zzzz  
ffff  
s
0000  
0000  
0001  
0100  
d
Description  
First, the return address (PC + 2) is  
pushed onto the return stack. Next, the  
contents of W are written to PCL; the  
existing value is discarded. Then, the  
contents of PCLATH and PCLATU are  
latched into PCH and PCU,  
respectively. The second cycle is  
executed as a NOPinstruction while the  
new next instruction is fetched.  
Description:  
The contents of the source register are  
moved to destination register ‘f ’. The  
d
actual address of the source register is  
determined by adding the 7-bit literal  
offset ‘z ’ in the first word to the value of  
s
FSR2. The address of the destination  
register is specified by the 12-bit literal  
‘f ’ in the second word. Both addresses  
d
can be anywhere in the 4096-byte data  
space (000h to FFFh).  
The MOVSFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
If the resultant source address points to  
an indirect addressing register, the  
value returned will be 00h.  
Unlike CALL, there is no option to  
update W, Status or BSR.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
2
2
Decode  
Read  
WREG  
PUSH PC to  
stack  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Example:  
HERE  
CALLW  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
Before Instruction  
PC  
=
address (HERE)  
PCLATH =  
PCLATU =  
10h  
00h  
06h  
No dummy  
read  
W
=
After Instruction  
PC  
TOS  
=
=
001006h  
address (HERE + 2)  
Example:  
MOVSF  
[05h], REG2  
PCLATH =  
PCLATU =  
10h  
00h  
06h  
Before Instruction  
FSR2  
=
80h  
33h  
W
=
Contents  
of 85h  
REG2  
=
=
11h  
After Instruction  
FSR2  
=
80h  
Contents  
of 85h  
REG2  
=
=
33h  
33h  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 349  
PIC18F2XK20/4XK20  
MOVSS  
Move Indexed to Indexed  
PUSHL  
Store Literal at FSR2, Decrement FSR2  
Syntax:  
MOVSS [z ], [z ]  
Syntax:  
PUSHL k  
s
d
Operands:  
0 z 127  
s
Operands:  
Operation:  
0 k 255  
0 z 127  
d
k (FSR2),  
FSR2 – 1 FSR2  
Operation:  
((FSR2) + z ) ((FSR2) + z )  
s d  
Status Affected:  
None  
Status Affected: None  
Encoding:  
1st word (source)  
2nd word (dest.)  
Encoding:  
1111  
1010  
kkkk  
kkkk  
1110  
1111  
1011  
xxxx  
1zzz  
xzzz  
zzzz  
zzzz  
s
d
Description:  
The 8-bit literal ‘k’ is written to the data  
memory address specified by FSR2. FSR2  
is decremented by 1 after the operation.  
This instruction allows users to push values  
onto a software stack.  
Description  
The contents of the source register are  
moved to the destination register. The  
addresses of the source and destination  
registers are determined by adding the  
7-bit literal offsets ‘z ’ or ‘z ’,  
Words:  
Cycles:  
1
1
s
d
respectively, to the value of FSR2. Both  
registers can be located anywhere in  
the 4096-byte data memory space  
(000h to FFFh).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
The MOVSSinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Decode  
Read ‘k’  
Process  
data  
Write to  
destination  
If the resultant source address points to  
an indirect addressing register, the  
value returned will be 00h. If the  
resultant destination address points to  
an indirect addressing register, the  
instruction will execute as a NOP.  
Example:  
PUSHL 08h  
Before Instruction  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01ECh  
00h  
Words:  
2
2
After Instruction  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01EBh  
08h  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Decode  
Determine  
dest addr  
Determine  
dest addr  
Write  
to dest reg  
Example:  
MOVSS [05h], [06h]  
Before Instruction  
FSR2  
=
=
=
80h  
33h  
11h  
Contents  
of 85h  
Contents  
of 86h  
After Instruction  
FSR2  
=
=
=
80h  
33h  
33h  
Contents  
of 85h  
Contents  
of 86h  
DS41303B-page 350  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
SUBFSR  
Subtract Literal from FSR  
SUBULNK  
Subtract Literal from FSR2 and Return  
Syntax:  
SUBFSR f, k  
0 k 63  
f [ 0, 1, 2 ]  
FSR(f) – k FSRf  
None  
Syntax:  
SUBULNK k  
Operands:  
Operands:  
Operation:  
0 k 63  
FSR2 – k FSR2  
(TOS) PC  
Operation:  
Status Affected:  
Encoding:  
Status Affected: None  
1110  
1001  
ffkk  
kkkk  
Encoding:  
1110  
1001  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is subtracted from  
the contents of the FSR specified by  
‘f’.  
Description:  
The 6-bit literal ‘k’ is subtracted from the  
contents of the FSR2. A RETURNis then  
executed by loading the PC with the TOS.  
The instruction takes two cycles to  
execute; a NOPis performed during the  
second cycle.  
This may be thought of as a special case of  
the SUBFSRinstruction, where f = 3 (binary  
11’); it operates only on FSR2.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Example:  
SUBFSR 2, 23h  
03FFh  
Q2  
Q3  
Q4  
Before Instruction  
FSR2  
After Instruction  
FSR2  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
=
No  
Operation  
No  
Operation  
No  
Operation  
No  
Operation  
=
03DCh  
Example:  
SUBULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
03DCh  
(TOS)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 351  
PIC18F2XK20/4XK20  
24.2.3  
BYTE-ORIENTED AND  
BIT-ORIENTED INSTRUCTIONS IN  
INDEXED LITERAL OFFSET MODE  
24.2.3.1  
Extended Instruction Syntax with  
Standard PIC18 Commands  
When the extended instruction set is enabled, the file  
register argument, ‘f’, in the standard byte-oriented and  
bit-oriented commands is replaced with the literal offset  
value, ‘k’. As already noted, this occurs only when ‘f’ is  
less than or equal to 5Fh. When an offset value is used,  
it must be indicated by square brackets (“[ ]”). As with  
the extended instructions, the use of brackets indicates  
to the compiler that the value is to be interpreted as an  
index or an offset. Omitting the brackets, or using a  
value greater than 5Fh within brackets, will generate an  
error in the MPASM Assembler.  
Note: Enabling the PIC18 instruction set  
extension may cause legacy applications  
to behave erratically or fail entirely.  
In addition to eight new commands in the extended set,  
enabling the extended instruction set also enables  
Indexed Literal Offset Addressing mode (Section 5.5.1  
“Indexed Addressing with Literal Offset”). This has  
a significant impact on the way that many commands of  
the standard PIC18 instruction set are interpreted.  
When the extended set is disabled, addresses  
embedded in opcodes are treated as literal memory  
locations: either as a location in the Access Bank (‘a’ =  
0), or in a GPR bank designated by the BSR (‘a’ = 1).  
When the extended instruction set is enabled and ‘a’ =  
0, however, a file register argument of 5Fh or less is  
interpreted as an offset from the pointer value in FSR2  
and not as a literal address. For practical purposes, this  
means that all instructions that use the Access RAM bit  
as an argument – that is, all byte-oriented and bit-  
oriented instructions, or almost half of the core PIC18  
instructions – may behave differently when the  
extended instruction set is enabled.  
If the index argument is properly bracketed for Indexed  
Literal Offset Addressing, the Access RAM argument is  
never specified; it will automatically be assumed to be  
0’. This is in contrast to standard operation (extended  
instruction set disabled) when ‘a’ is set on the basis of  
the target address. Declaring the Access RAM bit in  
this mode will also generate an error in the MPASM  
Assembler.  
The destination argument, ‘d’, functions as before.  
In the latest versions of the MPASM™ assembler,  
language support for the extended instruction set must  
be explicitly invoked. This is done with either the  
command line option, /y, or the PE directive in the  
source listing.  
When the content of FSR2 is 00h, the boundaries of the  
Access RAM are essentially remapped to their original  
values. This may be useful in creating backward  
compatible code. If this technique is used, it may be  
necessary to save the value of FSR2 and restore it  
when moving back and forth between C and assembly  
routines in order to preserve the Stack Pointer. Users  
must also keep in mind the syntax requirements of the  
extended instruction set (see Section 24.2.3.1  
“Extended Instruction Syntax with Standard PIC18  
Commands”).  
24.2.4  
CONSIDERATIONS WHEN  
ENABLING THE EXTENDED  
INSTRUCTION SET  
It is important to note that the extensions to the instruc-  
tion set may not be beneficial to all users. In particular,  
users who are not writing code that uses a software  
stack may not benefit from using the extensions to the  
instruction set.  
Although the Indexed Literal Offset Addressing mode  
can be very useful for dynamic stack and pointer  
manipulation, it can also be very annoying if a simple  
arithmetic operation is carried out on the wrong  
register. Users who are accustomed to the PIC18  
programming must keep in mind that, when the  
extended instruction set is enabled, register addresses  
of 5Fh or less are used for Indexed Literal Offset  
Addressing.  
Additionally, the Indexed Literal Offset Addressing  
mode may create issues with legacy applications  
written to the PIC18 assembler. This is because  
instructions in the legacy code may attempt to address  
registers in the Access Bank below 5Fh. Since these  
addresses are interpreted as literal offsets to FSR2  
when the instruction set extension is enabled, the  
application may read or write to the wrong data  
addresses.  
Representative examples of typical byte-oriented and  
bit-oriented instructions in the Indexed Literal Offset  
Addressing mode are provided on the following page to  
show how execution is affected. The operand condi-  
tions shown in the examples are applicable to all  
instructions of these types.  
When porting an application to the PIC18F2XK20/  
4XK20, it is very important to consider the type of code.  
A large, re-entrant application that is written in ‘C’ and  
would benefit from efficient compilation will do well  
when using the instruction set extensions. Legacy  
applications that heavily use the Access Bank will most  
likely not benefit from using the extended instruction  
set.  
DS41303B-page 352  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
ADD W to Indexed  
(Indexed Literal Offset mode)  
Bit Set Indexed  
BSF  
ADDWF  
(Indexed Literal Offset mode)  
Syntax:  
ADDWF  
[k] {,d}  
Syntax:  
BSF [k], b  
Operands:  
0 k 95  
d [0,1]  
Operands:  
0 f 95  
0 b 7  
Operation:  
(W) + ((FSR2) + k) dest  
Operation:  
1 ((FSR2) + k)<b>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0010  
01d0  
kkkk  
kkkk  
1000  
bbb0  
kkkk  
kkkk  
Description:  
The contents of W are added to the  
contents of the register indicated by  
FSR2, offset by the value ‘k’.  
If ‘d’ is ‘0’, the result is stored in W. If ‘d’  
is ‘1’, the result is stored back in  
register ‘f’ (default).  
Description:  
Bit ‘b’ of the register indicated by FSR2,  
offset by the value ‘k’, is set.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
BSF  
[FLAG_OFST], 7  
Decode  
Read ‘k’  
Process  
Data  
Write to  
destination  
Before Instruction  
FLAG_OFST  
FSR2  
Contents  
of 0A0Ah  
=
=
0Ah  
0A00h  
Example:  
ADDWF  
[OFST], 0  
=
55h  
D5h  
Before Instruction  
After Instruction  
W
OFST  
FSR2  
=
=
=
17h  
2Ch  
0A00h  
Contents  
of 0A0Ah  
=
Contents  
of 0A2Ch  
=
20h  
After Instruction  
W
=
=
37h  
20h  
Set Indexed  
(Indexed Literal Offset mode)  
Contents  
of 0A2Ch  
SETF  
Syntax:  
SETF [k]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 95  
FFh ((FSR2) + k)  
None  
0110  
1000  
kkkk  
kkkk  
The contents of the register indicated by  
FSR2, offset by ‘k’, are set to FFh.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write  
register  
Example:  
SETF  
[OFST]  
2Ch  
Before Instruction  
OFST  
=
=
FSR2  
0A00h  
Contents  
of 0A2Ch  
=
00h  
After Instruction  
Contents  
of 0A2Ch  
=
FFh  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 353  
PIC18F2XK20/4XK20  
24.2.5  
SPECIAL CONSIDERATIONS WITH  
MICROCHIP MPLAB® IDE TOOLS  
The latest versions of Microchip’s software tools have  
been designed to fully support the extended instruction  
set of the PIC18F2XK20/4XK20 family of devices. This  
includes the MPLAB C18  
assembly language and  
Development Environment (IDE).  
C
compiler, MPASM  
MPLAB Integrated  
When selecting target device for software  
a
development, MPLAB IDE will automatically set default  
Configuration bits for that device. The default setting for  
the XINST Configuration bit is ‘0’, disabling the  
extended instruction set and Indexed Literal Offset  
Addressing mode. For proper execution of applications  
developed to take advantage of the extended  
instruction set, XINST must be set during  
programming.  
To develop software for the extended instruction set,  
the user must enable support for the instructions and  
the Indexed Addressing mode in their language tool(s).  
Depending on the environment being used, this may be  
done in several ways:  
• A menu option, or dialog box within the  
environment, that allows the user to configure the  
language tool and its settings for the project  
• A command line option  
• A directive in the source code  
These options vary between different compilers,  
assemblers and development environments. Users are  
encouraged to review the documentation accompanying  
their development systems for the appropriate  
information.  
DS41303B-page 354  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
25.1 MPLAB Integrated Development  
Environment Software  
25.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 355  
PIC18F2XK20/4XK20  
25.2 MPASM Assembler  
25.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
25.6 MPLAB SIM Software Simulator  
25.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
25.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41303B-page 356  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
25.7 MPLAB ICE 2000  
High-Performance  
25.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
25.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
25.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 357  
PIC18F2XK20/4XK20  
25.11 PICSTART Plus Development  
Programmer  
25.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
25.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS41303B-page 358  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, and MCLR) .................................................. -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.0V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause  
latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the  
MCLR/VPP/RE3 pin, rather than pulling this pin directly to VSS.  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 359  
PIC18F2XK20/4XK20  
FIGURE 26-1:  
PIC18F2XK20/4XK20 VOLTAGE-FREQUENCY GRAPH  
3.5V  
3.0V  
2.7V  
2.2V  
1.8V  
10  
20  
30 32  
40  
50  
60 64  
Frequency (MHz)  
DS41303B-page 360  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.1 DC Characteristics:Supply Voltage, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
PIC18F2XK20/4XK20  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
D001 VDD  
D002 VDR  
Supply Voltage  
1.8  
1.5  
3.6  
V
V
RAM Data Retention  
Voltage(1)  
D003 VPOR  
D004 SVDD  
D005 VBOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
0.7  
V
See section on Power-on Reset for details  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset Voltage  
BORV<1:0> = 11  
BORV<1:0> = 10  
BORV<1:0> = 01  
BORV<1:0> = 00  
1.8  
V
V
V
V
2.3  
2.8  
3.1  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM  
data.  
26.2 DC Characteristics: Power-Down Current, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Device Characteristics  
Typ Max Units  
Conditions  
D006  
D007  
Power-down Current (IPD)(1) 0.1  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
0.5  
2
VDD = 1.8V, (Sleep mode)  
VDD = 3.0V, (Sleep mode)  
10  
0.1  
0.5  
2
+25°C  
+85°C  
+125°C  
10  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 361  
PIC18F2XK20/4XK20  
26.3 DC Characteristics: RC Run Supply Current, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Device Characteristics  
Supply Current (IDD)(1, 2)  
Typ Max Units  
Conditions  
D008  
7
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
8
VDD = 1.8V  
VDD = 3.0V  
12  
32  
14  
15  
21  
48  
0.5  
0.5  
0.8  
0.8  
2.7  
2.7  
5.2  
5.2  
FOSC = 31 kHz  
(RC_RUN mode,  
LFINTOSC source)  
D008A  
+25°C  
+85°C  
+125°C  
D009  
D009A  
D010  
mA -40°C TO +85°C  
mA -40°C to +125°C  
mA -40°C TO +85°C  
mA -40°C to +125°C  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
FOSC = 1 MHz  
(RC_RUN mode,  
HF-INTOSC source)  
-40°C TO +85°C  
-40°C to +125°C  
-40°C TO +85°C  
-40°C to +125°C  
mA  
mA  
mA  
mA  
FOSC = 16 MHz  
(RC_RUN mode,  
HF-INTOSC source)  
D010A  
VDD = 3.0V  
Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and tempera-  
ture, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
2: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
DS41303B-page 362  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.4 DC Characteristics: RC Idle Supply Current, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Device Characteristics  
Typ Max Units  
Conditions  
Supply Current (IDD)(1, 2)  
D011  
3.0  
4.5  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
VDD = 1.8V  
VDD = 3.0V  
9.0  
+85°C  
FOSC = 31 kHz  
(RC_IDLE mode,  
LFINTOSC source)  
TBD  
3.0  
+125°C  
D011A  
-40°C  
4.5  
+25°C  
9.0  
+85°C  
TBD  
250  
250  
400  
400  
1.0  
+125°C  
D012  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
FOSC = 1 MHz  
(RC_IDLE mode,  
HF-INTOSC source)  
D012A  
D013  
FOSC = 16 MHz  
(RC_IDLE mode,  
HF-INTOSC source)  
1.0  
D013A  
2.0  
2.0  
Legend: TBD = To Be Determined.  
Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and tempera-  
ture, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
2: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 363  
PIC18F2XK20/4XK20  
26.5 DC Characteristics: Primary Run Supply Current, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
Typ Max Units  
-40°C TA +125°C  
Param  
No.  
Device Characteristics  
Supply Current (IDD)(1, 2)  
Conditions  
D012  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
0.5  
0.5  
0.8  
0.8  
3.0  
3.0  
6.5  
6.5  
14  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
FOSC = 1 MHz  
(PRI_RUN,  
EC oscillator)  
D012A  
D013  
FOSC = 20 MHz  
(PRI_RUN,  
EC oscillator)  
D013A  
D014  
FOSC = 64 MHz  
(PRI_RUN,  
EC oscillator)  
14  
D014A  
D015  
18  
18  
2.7  
2.7  
5.2  
5.2  
14  
FOSC = 4 MHz  
16 MHz Internal  
(PRI_RUN HS+PLL)  
D015A  
D016  
FOSC = 16 MHz  
64 MHz Internal  
(PRI_RUN HS+PLL)  
14  
D016A  
18  
18  
Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and tempera-  
ture, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
2: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
DS41303B-page 364  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.6 DC Characteristics: Primary Idle Supply Current, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
Typ Max Units  
-40°C TA +125°C  
Param  
No.  
Device Characteristics  
Conditions  
Supply Current (IDD)(1, 2)  
250  
250  
400  
400  
1.0  
μA  
μA  
D017  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
D017A  
D018  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
FOSC = 20 MHz  
(PRI_IDLEmode,  
EC oscillator)  
1.0  
D018A  
D019  
2.0  
2.0  
TBD  
TBD  
TBD  
TBD  
FOSC = 64 MHz  
(PRI_IDLEmode,  
EC oscillator)  
D019A  
Legend: TBD = To Be Determined.  
Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and tempera-  
ture, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
2: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 365  
PIC18F2XK20/4XK20  
26.7 DC Characteristics: Secondary Oscillator Supply Current, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Device Characteristics  
Supply Current (IDD)(1, 2)  
Typ Max Units  
Conditions  
D020  
7
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
8
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
FOSC = 32 kHz(3)  
(SEC_RUN mode,  
Timer1 as clock)  
14  
14  
15  
24  
1.0  
1.5  
3.5  
1.0  
1.5  
3.5  
D020A  
D021  
FOSC = 32 kHz(3)  
(SEC_IDLE mode,  
Timer1 as clock)  
D021A  
Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and tempera-  
ture, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
2: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
3: Low-Power mode on T1 osc.  
DS41303B-page 366  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.8 DC Characteristics: Peripheral Supply Current, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Device Characteristics  
Typ Max Units  
Conditions  
Module Differential Currents (ΔIWDT, ΔIBOR, ΔIHLVD, ΔIOSCB, ΔIAD)  
D022  
(ΔIWDT)  
Watchdog Timer 1.5  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
1.5  
2.0  
2.0  
3.0  
VDD = 1.8V  
VDD = 3.0V  
+85°C  
-40°C  
+25°C  
3.0  
+85°C  
(2)  
D022A  
(ΔIBOR)  
Brown-out Reset  
40  
45  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.7V  
VDD = 3.3V  
Sleep mode,  
BOREN<1:0> = 10  
0
μA  
-40°C to +85°C  
VDD = 3.3V  
(2)  
D022B  
(ΔIHLVD)  
High/Low-Voltage Detect  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C to +85°C  
-40°C to +85°C  
-40°C  
VDD = 1.8V  
VDD = 3.3V  
TBD  
1
D025  
(ΔIOSCB)  
Timer1 Oscillator  
(1)  
1
+25°C  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
32 kHz on Timer1  
1
+85°C  
1
-40°C  
(1)  
1
+25°C  
32 kHz on Timer1  
1
+85°C  
D025A  
(ΔIOSCB)  
Timer1 Oscillator  
5
-40°C  
(3)  
5
+25°C  
32 kHz on Timer1  
5
+85°C  
5
-40°C  
(3)  
5
+25°C  
32 kHz on Timer1  
5
+85°C  
D026  
(ΔIAD)  
A/D Converter TBD  
TBD  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
VDD = 1.8V  
VDD = 3.0V  
A/D on, not converting  
Comparators TBD  
D027  
(ΔICOMP)  
D028  
CVREF TBD  
μA  
-40°C to +85°C  
(ΔICVREF)  
Legend: TBD = To Be Determined.  
Note 1: Low-Power mode on T1 osc.  
2: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
3: High-Power mode in T1 osc.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 367  
PIC18F2XK20/4XK20  
26.9 DC Characteristics: Input/Output Characteristics, PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +125°C  
Param  
No.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D031  
VSS  
0.15 VDD  
V
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032  
D033  
MCLR  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
OSC1  
HS, HSPLL modes  
D033A  
D033B  
D034  
OSC1  
OSC1  
T13CKI  
VSS  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
0.3 VDD  
V
V
V
RC, EC modes(1)  
XT, LP modes  
VIH  
Input High Voltage  
I/O ports:  
D040  
D041  
with TTL buffer  
0.25 VDD + 0.8V  
VDD  
V
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
D043  
MCLR  
OSC1  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
HS, HSPLL modes  
D043A  
D043B  
D043C  
D044  
OSC1  
OSC1  
OSC1  
T13CKI  
0.8 VDD  
0.9 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
EC mode  
RC mode(1)  
XT, LP modes  
1.6  
IIL  
Input Leakage Current(2,3)  
D060  
I/O ports  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
5
5
μA Vss VPIN VDD  
μA Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070  
IPURB  
50  
400  
μA VDD = 3.0V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that  
the PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS41303B-page 368  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.9 DC Characteristics: Input/Output Characteristics, PIC18F2XK20/4XK20 (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +125°C  
Param  
No.  
Symbol  
Characteristic  
Output Low Voltage  
Min  
Max  
Units  
Conditions  
VOL  
D080  
D083  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 3.0V,  
-40°C to +85°C  
OSC2/CLKOUT  
IOL = 1.6 mA, VDD = 3.0V,  
(RC, RCIO, EC, ECIO modes)  
-40°C to +85°C  
VOH  
Output High Voltage(3)  
D090  
D092  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 3.0V,  
-40°C to +85°C  
OSC2/CLKOUT  
IOH = -1.3 mA, VDD = 3.0V,  
(RC, RCIO, EC, ECIO modes)  
-40°C to +85°C  
Capacitive Loading Specs  
on Output Pins  
D100(4)  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes  
when external clock is  
used to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF I2C™ Specification  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that  
the PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 369  
PIC18F2XK20/4XK20  
26.10 Memory Programming Requirements  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Internal Program Memory  
Programming Specifications(1)  
D110  
D113  
VPP  
Voltage on MCLR/VPP/RE3 pin  
9.00  
13.25  
10  
V
(Note 3)  
IDDP  
Supply Current during  
Programming  
mA  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
1.8  
100K  
3.6  
E/W -40°C to +125°C  
D121 VDRW VDD for Read/Write  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
V
Using EECON to read/write  
4
ms  
40  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh(2)  
1M  
10M  
E/W -40°C to +125°C  
Program Flash Memory  
Cell Endurance  
3.6  
3.6  
D130  
D131  
D132  
D133  
EP  
1.8  
1.8  
10K  
E/W -40°C to +125°C  
VPR  
VIW  
TIW  
VDD for Read  
V
VDD for Row Erase or Write  
Self-timed Write Cycle Time  
V
2
ms  
D134 TRETD Characteristic Retention  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: These specifications are for programming the on-chip program memory through the use of table write  
instructions.  
2: Refer to Section 7.8 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
3: Required only if single-supply programming is disabled.  
DS41303B-page 370  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 26-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: 1.8V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated).  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
CM01  
VIOFF  
0
±7.5  
±15  
VDD  
mV  
V
CM02  
CM03  
CM04  
CM05  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time  
CMRR  
TRESP  
55  
dB  
ns  
μs  
150  
400  
10  
Note 1  
TMC2OV Comparator Mode Change to  
Output Valid*  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions  
from VSS to VDD.  
TABLE 26-2: CVREF VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 1.8V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated).  
Param  
No.  
Sym  
Characteristics  
Step Size(2)  
Min  
Typ  
Max  
Units  
Comments  
CV01*  
CLSB  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02*  
CACC  
Absolute Accuracy  
1/4  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03*  
CV04*  
CR  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
Ω
CST  
10  
μs  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while CVRR = 1and CVR3:CVR0 transitions from ‘0000’ to ‘1111’.  
TABLE 26-3: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS  
Operating Conditions: 1.8V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated).  
Standard Operating Conditions (unless otherwise stated)  
VR Voltage Reference Specifications  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristics  
VR voltage output  
Min  
Typ  
Max  
Units  
Comments  
VR01  
VR02  
VROUT  
TBD  
1.2  
TBD  
TBD  
V
TCVOUT Voltage drift temperature  
coefficient  
TBD  
ppm/°C  
VR03  
VR04  
ΔVROUT/ Voltage drift with respect to  
TBD  
TBD  
μV/V  
μs  
ΔVDD  
VDD regulation  
TSTABLE Settling Time  
TBD  
Legend: TBD = To Be Determined  
*
These parameters are characterized but not tested.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 371  
PIC18F2XK20/4XK20  
FIGURE 26-2:  
HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(HLVDIF can be  
cleared by software)  
VHLVD  
(HLVDIF set by hardware)  
HLVDIF  
TABLE 26-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ† Max  
Units  
Conditions  
D420  
HLVD Voltage on VDD LVV = 0000  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.3  
3.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Transition High-to-Low  
LVV = 0001  
LVV = 0010  
LVV = 0011  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
DS41303B-page 372  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.11 AC (Timing) Characteristics  
26.11.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
using one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C™ specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T13CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-impedance)  
Low  
Valid  
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 373  
PIC18F2XK20/4XK20  
26.11.2 TIMING CONDITIONS  
The temperature and voltages specified in Table 26-4  
apply to all timing specifications unless otherwise  
noted. Figure 26-3 specifies the load conditions for the  
timing specifications.  
TABLE 26-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
Operating voltage VDD range as described in DC spec Section 26.1 and  
Section 26.9.  
-40°C TA +125°C  
AC CHARACTERISTICS  
FIGURE 26-3:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
and including D and E outputs as ports  
VSS  
DS41303B-page 374  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
26.11.3 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 26-4:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
3
4
3
4
2
CLKOUT  
TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKIN  
DC  
64  
MHz EC, ECIO Oscillator mode  
Frequency(1)  
Oscillator Frequency(1)  
DC  
0.1  
4
4
4
MHz RC Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz HS + PLL Oscillator mode  
kHz LP Oscillator mode  
25  
4
16  
5
33  
1
TOSC  
External CLKIN Period(1)  
Oscillator Period(1)  
15.6  
250  
250  
ns  
ns  
ns  
EC, ECIO Oscillator mode  
RC Oscillator mode  
10,000  
XT Oscillator mode  
40  
62.5  
250  
250  
ns  
ns  
HS Oscillator mode  
HS + PLL Oscillator mode  
30  
100  
30  
2.5  
10  
μs  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
LP Oscillator mode  
TCY = 4/FOSC  
2
3
TCY  
Instruction Cycle Time(1)  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
XT Oscillator mode  
LP Oscillator mode  
HS Oscillator mode  
XT Oscillator mode  
LP Oscillator mode  
HS Oscillator mode  
4
TOSR,  
TOSF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKIN pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 375  
PIC18F2XK20/4XK20  
TABLE 26-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
4
64  
64  
2
MHz HS mode only  
F11  
F12  
F13  
FSYS On-Chip VCO System Frequency  
32  
-2  
MHz HS mode only  
trc  
PLL Start-up Time (Lock Time)  
ms  
%
ΔCLK CLKOUT Stability (Jitter)  
+2  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 26-8: AC CHARACTERISTICS: INTERNAL OSCILLATORS ACCURACY  
PIC18F2XK20/4XK20  
Standard Operating Conditions (unless otherwise stated)  
PIC18F2XK20/4XK20  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Min  
Typ  
Max  
Units  
Conditions  
HFINTOSC Accuracy @ Freq = 16 MHz, 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz(1)  
1
1
%
%
%
+25°C  
VDD = 1.8-3.6V  
VDD = 1.8-3.6V  
VDD = 1.8-3.6V  
-2  
+2  
+5  
0°C to +85°C  
-40°C to +125°C  
-5  
LFINTOSC Accuracy @ Freq = 31 kHz(2)  
26.562  
35.938 kHz -40°C to +125°C  
VDD = 1.8-3.6V  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.  
2: INTOSC frequency after calibration.  
3: Change of INTOSC frequency as VDD changes.  
FIGURE 26-5:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Note:  
Refer to Figure 26-3 for load conditions.  
DS41303B-page 376  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 26-9: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL OSC1 to CLKOUT ↓  
TosH2ckH OSC1 to CLKOUT ↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
TckR  
TckF  
CLKOUT Rise Time  
CLKOUT Fall Time  
TckL2ioV CLKOUT to Port Out Valid  
TioV2ckH Port In Valid before CLKOUT ↑  
TckH2ioI Port In Hold after CLKOUT ↑  
TosH2ioV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
0
150  
TosH2ioI OSC1 (Q2 cycle) to Port Input Invalid  
100  
(I/O in hold time)  
19  
TioV2osH Port Input Valid to OSC1 (I/O in setup time)  
0
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
20  
TioR  
TioF  
TINP  
TRBP  
TRCP  
Port Output Rise Time  
21  
Port Output Fall Time  
22†  
23†  
24†  
INT pin High or Low Time  
TCY  
TCY  
20  
RB7:RB4 Change INT High or Low Time  
RC7:RC4 Change INT High or Low Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x TOSC.  
FIGURE 26-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 26-3 for load conditions.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 377  
PIC18F2XK20/4XK20  
FIGURE 26-7:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 26-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
μs  
ms  
31  
Watchdog Timer Time-out Period  
(no postscaler)  
4.00  
TBD  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
1024 TOSC  
65.5  
2
1024 TOSC  
TBD  
ms  
μs  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
μs VDD BVDD (see D005)  
μs  
TIVRST Time for Internal Reference  
Voltage to become Stable  
20  
50  
37  
38  
39  
THLVD High/Low-Voltage Detect Pulse Width  
200  
5
1
10  
μs  
μs  
ms  
VDD VHLVD  
TCSD  
CPU Start-up Time  
TIOBST Time for INTOSC to Stabilize  
Legend: TBD = To Be Determined  
FIGURE 26-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 26-3 for load conditions.  
DS41303B-page 378  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TABLE 26-11: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
T0CKI High Pulse Width  
Min  
Max Units Conditions  
40  
41  
42  
Tt0H  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4,..., 256)  
45  
46  
47  
Tt1H  
Tt1L  
T13CKI  
High Time  
Synchronous, no prescaler  
0.5 TCY + 20  
10  
ns  
ns  
Synchronous,  
with prescaler  
Asynchronous  
30  
0.5 TCY + 5  
10  
ns  
ns  
ns  
T13CKI Low Synchronous, no prescaler  
Time  
Synchronous,  
with prescaler  
Asynchronous  
30  
ns  
Tt1P  
Ft1  
T13CKI  
Input Period  
Synchronous  
Asynchronous  
Greater of:  
20 ns or  
(TCY + 40)/N  
ns N = prescale  
value (1, 2, 4, 8)  
60  
DC  
50  
ns  
kHz  
T13CKI Oscillator Input Frequency Range  
48  
Tcke2tmrI Delay from External T13CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
FIGURE 26-9:  
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note:  
Refer to Figure 26-3 for load conditions.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 379  
PIC18F2XK20/4XK20  
TABLE 26-12: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
10  
ns  
ns  
Time  
With  
prescaler  
51  
52  
TccH  
TccP  
CCPx Input  
High Time  
No prescaler  
0.5 TCY + 20  
10  
ns  
ns  
With  
prescaler  
CCPx Input Period  
3 TCY + 40  
N
ns  
N = prescale  
value (1, 4 or 16)  
53  
54  
TccR  
TccF  
CCPx Output Fall Time  
CCPx Output Fall Time  
25  
25  
ns  
ns  
FIGURE 26-10:  
PARALLEL SLAVE PORT TIMING (PIC18F4XK20)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note:  
Refer to Figure 26-3 for load conditions.  
TABLE 26-13: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F4XK20)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH  
Data In Valid before WR or CS ↑  
(setup time)  
20  
ns  
63  
64  
65  
66  
TwrH2dtI  
TrdL2dtV  
TrdH2dtI  
TibfINH  
WR or CS to Data–In Invalid (hold time)  
RD and CS to Data–Out Valid  
RD or CS to Data–Out Invalid  
20  
10  
80  
ns  
ns  
ns  
30  
Inhibit of the IBF Flag bit being Cleared from  
3 TCY  
WR or CS ↑  
DS41303B-page 380  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 26-11:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 26-3 for load conditions.  
TABLE 26-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
Tb2b  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
ns  
75  
76  
78  
TdoR  
TdoF  
TscR  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
25  
25  
25  
ns  
ns  
ns  
SCK Output Rise Time  
(Master mode)  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
25  
50  
ns  
ns  
TscH2doV, SDO Data Output Valid after SCK Edge  
TscL2doV  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 381  
PIC18F2XK20/4XK20  
FIGURE 26-12:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 26-3 for load conditions.  
TABLE 26-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
TscH  
TscL  
Characteristic  
Min  
Max Units Conditions  
71  
SCK Input High Time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
Tb2b  
Last Clock Edge of Byte 1 to the 1st Clock Edge  
of Byte 2  
1.5 TCY + 40  
100  
ns (Note 2)  
TscH2diL,  
TscL2diL  
Hold Time of SDI Data Input to SCK Edge  
ns  
75  
76  
78  
TdoR  
TdoF  
TscR  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
25  
25  
25  
ns  
ns  
ns  
SCK Output Rise Time  
(Master mode)  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
25  
50  
ns  
ns  
TscH2doV, SDO Data Output Valid after SCK Edge  
TscL2doV  
81  
TdoV2scH, SDO Data Output Setup to SCK Edge  
TdoV2scL  
TCY  
ns  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS41303B-page 382  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 26-13:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
MSb  
LSb  
SDO  
SDI  
bit 6 - - - - - -1  
77  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note:  
Refer to Figure 26-3 for load conditions.  
TABLE 26-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
Tb2b  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
ns  
75  
76  
77  
78  
79  
80  
TdoR  
TdoF  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TssH2doZ SSto SDO Output High-Impedance  
TscR  
TscF  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after SCK Edge  
TscL2doV  
83  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5 TCY + 40  
ns  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 383  
PIC18F2XK20/4XK20  
FIGURE 26-14:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 26-3 for load conditions.  
TABLE 26-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TssL2scL  
TCY  
ns  
71  
TscH  
TscL  
Tb2b  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCK Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
75  
76  
77  
78  
TdoR  
TdoF  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
10  
25  
25  
50  
25  
ns  
ns  
ns  
ns  
TssH2doZ SSto SDO Output High-Impedance  
TscR  
SCK Output Rise Time  
(Master mode)  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
25  
50  
ns  
ns  
TscH2doV, SDO Data Output Valid after SCK Edge  
TscL2doV  
82  
83  
TssL2doV SDO Data Output Valid after SS Edge  
50  
ns  
ns  
TscH2ssH, SS after SCK Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS41303B-page 384  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 26-15:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 26-3 for load conditions.  
TABLE 26-18: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
FIGURE 26-16:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 26-3 for load conditions.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 385  
PIC18F2XK20/4XK20  
TABLE 26-19: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time  
100 kHz mode  
4.0  
μs  
μs  
PIC18FXXXX must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
0.6  
PIC18FXXXX must operate  
at a minimum of 10 MHz  
SSP Module  
1.5 TCY  
4.7  
101  
TLOW  
Clock Low Time  
100 kHz mode  
μs  
μs  
PIC18FXXXX must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18FXXXX must operate  
at a minimum of 10 MHz  
SSP Module  
1.5 TCY  
102  
103  
TR  
TF  
SDA and SCL Rise 100 kHz mode  
1000  
ns  
ns  
Time  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
SDA and SCL Fall 100 kHz mode  
Time  
300  
ns  
ns  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
Only relevant for Repeated  
Start condition  
91  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold  
Time  
0
0.9  
TSU:DAT Data Input Setup  
Time  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO Stop Condition  
Setup Time  
109  
110  
TAA  
Output Valid from  
Clock  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system but the requirement,  
TSU:DAT 250 ns, must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the  
standard mode I2C bus specification), before the SCL line is released.  
DS41303B-page 386  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 26-17:  
MASTER SSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 26-3 for load conditions.  
TABLE 26-20: MASTER SSP I2C™ BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
FIGURE 26-18:  
MASTER SSP I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 26-3 for load conditions.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 387  
PIC18F2XK20/4XK20  
TABLE 26-21: MASTER SSP I2C™ BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock Low Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TF  
SDA and SCL  
Fall Time  
ns  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TSU:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start  
400 kHz mode  
ms  
condition  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
91  
THD:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
0
0.9  
ms  
TSU:DAT Data Input  
Setup Time  
250  
ns  
ns  
(Note 2)  
100  
TSU:STO Stop Condition  
Setup Time  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
109  
TAA  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
3500  
1000  
ns  
ns  
110  
TBUF  
CB  
Bus Free Time  
4.7  
1.3  
ms Time the bus must be free  
before a new transmission  
ms  
can start  
pF  
D102  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter 107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the  
SCL line is released.  
DS41303B-page 388  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 26-19:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 26-3 for load conditions.  
122  
TABLE 26-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
40  
20  
ns  
ns  
121  
122  
Tckrf  
Clock Out Rise Time and Fall Time  
(Master mode)  
Tdtrf  
Data Out Rise Time and Fall Time  
20  
ns  
FIGURE 26-20:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 26-3 for load conditions.  
TABLE 26-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (MASTER & SLAVE)  
Data Hold before CK (DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
Data Hold after CK (DT hold time)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 389  
PIC18F2XK20/4XK20  
TABLE 26-24: A/D CONVERTER CHARACTERISTICS: PIC18F2XK20/4XK20  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
A01  
NR  
Resolution  
10  
bit ΔVREF 3.0V  
A03  
A04  
A06  
A07  
A10  
A20  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
<±1  
<±1  
<±3  
<±3  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
Monotonicity  
Guaranteed(1)  
VSS VAIN VREF  
VDD < 3.0V  
VDD 3.0V  
ΔVREF Reference Voltage Range  
1.8  
3
V
V
(VREFH – VREFL)  
A21  
A22  
A25  
A30  
VREFH Reference Voltage High  
VDD/2  
VSS – 0.3V  
VREFL  
VDD + 0.6  
VDD – 3.0V  
VREFH  
V
V
VREFL  
VAIN  
Reference Voltage Low  
Analog Input Voltage  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
2.5  
kΩ  
A50  
IREF  
VREF Input Current(2)  
5
150  
μA During VAIN acquisition.  
μA During A/D conversion  
cycle.  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.  
DS41303B-page 390  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
FIGURE 26-21:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
.. .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 26-25: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
0.7  
TBD  
11  
25.0(1)  
μs TOSC based, VREF 3.0V  
μs A/D RC mode  
TAD  
1
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including acquisition time) (Note 2)  
12  
Acquisition Time (Note 3)  
1.4  
TBD  
μs -40°C to +85°C  
μs  
0°C to +85°C  
135  
TSWC  
TDIS  
Switching Time from Convert Sample  
(Note 4)  
TBD  
Discharge Time  
0.2  
μs  
Legend: TBD = To Be Determined  
Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2: ADRES register may be read on the following TCY cycle.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50  
Ω.  
4: On the following cycle of the device clock.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 391  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 392  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
27.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and tables are not available at this time.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 393  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 394  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
28.0 PACKAGING INFORMATION  
28.1 Package Marking Information  
28-Lead PDIP  
Example  
PIC18F25K20-E/SP  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
e
3
YYWWNNN  
0610017  
28-Lead SOIC (7.50 mm)  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC18F25K20-E/SO  
0610017  
e3  
YYWWNNN  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18F45K20-E/P  
0610017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 395  
PIC18F2XK20/4XK20  
Package Marking Information (Continued)  
28-Lead SSOP  
Example  
PIC18F25K20-E/SS  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
e
3
0610017  
YYWWNNN  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
18F24K20  
-E/ML  
0610017  
e
3
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F45K20  
-E/ML  
0610017  
e
3
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F44K20  
-E/PT  
e
3
0610017  
DS41303B-page 396  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
28.2 Package Details  
The following sections give the technical details of the packages.  
28-Lead Skinny Plastic Dual In-Line (SP or PJ) – 300 mil Body [SPDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
INCHES  
NOM  
28  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 397  
PIC18F2XK20/4XK20  
28-Lead Plastic Small Outline (SO or OI) – Wide, 7.50 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
1.27 BSC  
Overall Height  
A
2.65  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
2.05  
0.10  
0.30  
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
7.50 BSC  
17.90 BSC  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
1.40 REF  
Foot Angle Top  
Lead Thickness  
Lead Width  
0°  
0.18  
0.31  
5°  
8°  
c
0.33  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-052B  
DS41303B-page 398  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
40-Lead Plastic Dual In-Line (P or PL) – 600 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
40  
.100 BSC  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
.250  
.195  
A2  
A1  
E
.125  
.015  
.590  
.485  
1.980  
.115  
.008  
.030  
.014  
.625  
.580  
2.095  
.200  
.015  
.070  
.023  
.700  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-016B  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 399  
PIC18F2XK20/4XK20  
28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN]  
with 0.55 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
N
e
28  
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
6.00 BSC  
3.70  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
3.65  
4.20  
6.00 BSC  
3.70  
D2  
b
3.65  
0.23  
0.50  
0.20  
4.20  
0.35  
0.70  
0.30  
L
0.55  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-105B  
DS41303B-page 400  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
MAX  
Number of Pins  
N
e
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
8.00 BSC  
6.45  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
6.30  
6.80  
8.00 BSC  
6.45  
D2  
b
6.30  
0.25  
0.30  
0.20  
6.80  
0.38  
0.50  
0.30  
L
0.40  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-103B  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 401  
PIC18F2XK20/4XK20  
44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
MAX  
Number of Leads  
Lead Pitch  
N
e
0.80 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
0.09  
0.30  
11°  
0.20  
0.45  
13°  
b
0.37  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-076B  
DS41303B-page 402  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision A (JULY 2006)  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Original data sheet for PIC18F2XK20/4XK20 devices.  
Revision B (03/2007)  
Added  
part  
numbers  
PIC18F26K20  
and  
PIC18F46K20; Replaced Development Support  
Section; Replaced Package Drawings.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F23K20 PIC18F24K20 PIC18F25K20 PIC18F26K20 PIC18F43K20 PIC18F44K20 PIC18F45K20 PIC18F46K20  
8192  
4096  
19  
16384  
8192  
19  
32768  
16384  
19  
65536  
32768  
19  
8192  
4096  
20  
16384  
8192  
20  
32768  
16384  
20  
65536  
32768  
20  
Program Memory  
(Bytes)  
Program Memory  
(Instructions)  
Interrupt Sources  
I/O Ports  
Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C,  
(E)  
(E)  
(E)  
(E)  
D, E  
D, E  
D, E  
D, E  
Capture/Compare/PWM  
Modules  
1
1
1
1
1
1
1
1
Enhanced  
1
1
1
1
1
1
1
1
Capture/Compare/PWM  
Modules  
Parallel  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Communications (PSP)  
10-bit Analog-to-Digital  
Module  
11 input  
channels  
11 input  
channels  
11 input  
channels  
11 input  
channels  
14 input  
channels  
14 input  
channels  
14 input  
channels  
14 input  
channels  
Packages  
28-pin PDIP  
28-pin PDIP  
28-pin PDIP  
28-pin PDIP  
40-pin PDIP  
40-pin PDIP  
40-pin PDIP  
40-pin PDIP  
28-pin SOIC 28-pin SOIC 28-pin SOIC 28-pin SOIC 44-pin TQFP 44-pin TQFP 44-pin TQFP 44-pin TQFP  
28-pin SSOP 28-pin SSOP 28-pin SSOP 28-pin SSOP 44-pin QFN 44-pin QFN 44-pin QFN 44-pin QFN  
28-pin QFN 28-pin QFN 28-pin QFN 28-pin QFN  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 403  
PIC18F2XK20/4XK20  
NOTES:  
DS41303B-page 404  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
INDEX  
A
B
A/D  
Bank Select Register (BSR) .............................................. 69  
Baud Rate Generator ...................................................... 210  
BAUDCTL Register .......................................................... 234  
BC .................................................................................... 307  
BCF ................................................................................. 308  
BF .................................................................................... 214  
BF Status Flag ................................................................. 214  
Block Diagrams  
Analog Port Pins, Configuring .................................. 261  
Associated Registers ............................................... 261  
Conversions ............................................................. 252  
Converter Characteristics ........................................ 384  
Discharge ................................................................. 253  
Selecting and Configuring Acquisition Time ............ 250  
Special Event Trigger (ECCP) ................................. 164  
Absolute Maximum Ratings ............................................. 353  
AC (Timing) Characteristics ............................................. 367  
Load Conditions for Device Timing Specifications ... 368  
Parameter Symbology ............................................. 367  
Temperature and Voltage Specifications ................. 368  
Timing Conditions .................................................... 368  
AC Characteristics  
ADC ......................................................................... 249  
ADC Transfer Function ............................................ 260  
Analog Input Model .......................................... 260, 270  
Baud Rate Generator .............................................. 210  
Capture Mode Operation ......................................... 154  
CCP PWM ............................................................... 157  
Clock Source ............................................................. 25  
Comparator 1 ........................................................... 264  
Comparator 2 ........................................................... 264  
Comparator Voltage Reference ............................... 274  
Compare Mode Operation ....................................... 155  
Crystal Operation ....................................................... 29  
EUSART Receive .................................................... 224  
EUSART Transmit ................................................... 223  
External POR Circuit (Slow VDD Power-up) .............. 51  
External RC Mode ..................................................... 30  
Fail-Safe Clock Monitor (FSCM) ................................ 38  
Generic I/O Port ....................................................... 115  
High/Low-Voltage Detect with External Input .......... 278  
Interrupt Logic .......................................................... 102  
Internal RC Accuracy ............................................... 370  
Access Bank  
Mapping with Indexed Literal Offset Mode ................. 84  
ACKSTAT ........................................................................ 214  
ACKSTAT Status Flag ..................................................... 214  
ADC ................................................................................. 249  
Acquisition Requirements ........................................ 259  
Block Diagram .......................................................... 249  
Calculating Acquisition Time .................................... 259  
Channel Selection .................................................... 250  
Configuration ............................................................ 250  
Conversion Clock ..................................................... 250  
Conversion Procedure ............................................. 254  
Internal Sampling Switch (RSS) IMPEDANCE ............. 259  
Interrupts .................................................................. 251  
Operation ................................................................. 252  
Operation During Sleep ........................................... 253  
Port Configuration .................................................... 250  
Power Management ................................................. 253  
Reference Voltage (VREF) ........................................ 250  
Result Formatting ..................................................... 251  
Source Impedance ................................................... 259  
Special Event Trigger ............................................... 253  
Starting an A/D Conversion ..................................... 251  
ADCON0 Register ............................................................ 255  
ADCON1 Register .................................................... 256, 257  
ADDFSR .......................................................................... 342  
ADDLW ............................................................................ 305  
ADDULNK ........................................................................ 342  
ADDWF ............................................................................ 305  
ADDWFC ......................................................................... 306  
ADRESH Register (ADFM = 0) ........................................ 258  
ADRESH Register (ADFM = 1) ........................................ 258  
ADRESL Register (ADFM = 0) ......................................... 258  
ADRESL Register (ADFM = 1) ......................................... 258  
Analog Input Connection Considerations ......................... 270  
Analog-to-Digital Converter. See ADC  
2
MSSP (I C Master Mode) ........................................ 208  
2
MSSP (I C Mode) .................................................... 192  
MSSP (SPI Mode) ................................................... 183  
On-Chip Reset Circuit ................................................ 49  
PIC18F2XK20 ............................................................ 12  
PIC18F4XK20 ............................................................ 13  
PLL (HS Mode) .......................................................... 33  
PORTD and PORTE (Parallel Slave Port) ............... 133  
PWM (Enhanced) .................................................... 165  
Reads from Flash Program Memory ......................... 89  
Resonator Operation ................................................. 29  
Table Read Operation ............................................... 85  
Table Write Operation ............................................... 86  
Table Writes to Flash Program Memory .................... 91  
Timer0 in 16-Bit Mode ............................................. 137  
Timer0 in 8-Bit Mode ............................................... 136  
Timer1 ..................................................................... 140  
Timer1 (16-Bit Read/Write Mode) ............................ 140  
Timer2 ..................................................................... 146  
Timer3 ..................................................................... 148  
Timer3 (16-Bit Read/Write Mode) ............................ 149  
Voltage Reference Output Buffer Example ............. 275  
Watchdog Timer ...................................................... 292  
BN .................................................................................... 308  
BNC ................................................................................. 309  
BNN ................................................................................. 309  
BNOV .............................................................................. 310  
BNZ ................................................................................. 310  
BOR. See Brown-out Reset.  
ANDLW ............................................................................ 306  
ANDWF ............................................................................ 307  
ANSEL (PORT Analog Control) ....................................... 130  
ANSEL Register ............................................................... 130  
ANSELH Register ............................................................ 131  
Assembler  
BOV ................................................................................. 313  
BRA ................................................................................. 311  
Break Character (12-bit) Transmit and Receive .............. 241  
BRG. See Baud Rate Generator.  
MPASM Assembler .................................................. 350  
Brown-out Reset (BOR) ..................................................... 52  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 405  
PIC18F2XK20/4XK20  
Detecting ....................................................................52  
Disabling in Sleep Mode ............................................52  
Software Enabled .......................................................52  
BSF ..................................................................................311  
BTFSC .............................................................................312  
BTFSS ..............................................................................312  
BTG ..................................................................................313  
BZ .....................................................................................314  
CM1CON0 Register ......................................................... 268  
CM2CON0 Register ......................................................... 269  
CM2CON1 Register ......................................................... 271  
Code Examples  
16 x 16 Signed Multiply Routine .............................. 100  
16 x 16 Unsigned Multiply Routine .......................... 100  
8 x 8 Signed Multiply Routine .................................... 99  
8 x 8 Unsigned Multiply Routine ................................ 99  
A/D Conversion ........................................................ 254  
Changing Between Capture Prescalers ................... 153  
Clearing RAM Using Indirect Addressing .................. 80  
Computed GOTO Using an Offset Value ................... 66  
Data EEPROM Read ................................................. 97  
Data EEPROM Refresh Routine ................................ 98  
Data EEPROM Write ................................................. 97  
Erasing a Flash Program Memory Row ..................... 90  
Fast Register Stack ................................................... 66  
Implementing a Timer1 Real-Time Clock ................ 143  
Initializing PORTA .................................................... 115  
Initializing PORTB .................................................... 118  
Initializing PORTC ................................................... 121  
Initializing PORTD ................................................... 124  
Initializing PORTE .................................................... 127  
Loading the SSPBUF (SSPSR) Register ................. 186  
Reading a Flash Program Memory Word .................. 89  
Saving Status, WREG and BSR Registers in RAM . 113  
Writing to Flash Program Memory ....................... 92–93  
Code Protection ............................................................... 283  
COMF .............................................................................. 316  
Comparator  
C
C Compilers  
MPLAB C18 .............................................................350  
MPLAB C30 .............................................................350  
CALL ................................................................................314  
CALLW .............................................................................343  
Capture (CCP Module) .....................................................153  
Associated Registers ...............................................156  
CCP Pin Configuration .............................................153  
CCPRxH:CCPRxL Registers ...................................153  
Prescaler ..................................................................153  
Software Interrupt ....................................................153  
Timer1/Timer3 Mode Selection ................................153  
Capture (ECCP Module) ..................................................164  
Capture/Compare/PWM (CCP) ........................................151  
Capture Mode. See Capture.  
CCP Mode and Timer Resources ............................152  
CCPRxH Register ....................................................152  
CCPRxL Register .....................................................152  
Compare Mode. See Compare.  
Interaction of Two CCP Modules .............................152  
Module Configuration ...............................................152  
PWM Mode ..............................................................157  
Duty Cycle ........................................................158  
Effects of Reset ................................................160  
Example PWM Frequencies & Resolutions  
Associated Registers ............................................... 272  
Operation ................................................................. 263  
Operation During Sleep ........................................... 267  
Response Time ........................................................ 265  
Comparator Module ......................................................... 263  
C1 Output State Versus Input Conditions ................ 265  
Comparator Specifications ............................................... 365  
Comparator Voltage Reference (CVREF)  
Fosc=20 MHZ ..........................................159  
Fosc=40 MHZ ..........................................159  
Fosc=8 MHZ ............................................159  
Operation in Sleep Mode .................................160  
Setup for Operation ..........................................160  
System Clock Frequency Changes ..................160  
PWM Period .............................................................158  
Setup for PWM Operation ........................................160  
CCP1CON Register .........................................................163  
CCP2CON Register .........................................................151  
Clock Accuracy with Asynchronous Operation ................232  
Clock Sources  
Associated registers ...................................................39  
External Modes ..........................................................28  
EC ......................................................................28  
HS ......................................................................29  
LP .......................................................................29  
OST ....................................................................28  
RC ......................................................................30  
XT ......................................................................29  
Internal Modes ...........................................................30  
Frequency Selection ..........................................32  
HFINTOSC .........................................................30  
INTOSC .............................................................30  
INTOSCIO ..........................................................30  
LFINTOSC .........................................................32  
Selecting the 31 kHz Source ......................................26  
Selection Using OSCCON Register ...........................26  
Clock Switching ..................................................................35  
CLRF ................................................................................315  
CLRWDT ..........................................................................315  
Response Time ........................................................ 265  
Comparator Voltage Reference (CVREF)  
Associated Registers ............................................... 276  
Effects of a Reset ............................................ 267, 273  
Operation During Sleep ........................................... 273  
Overview .................................................................. 273  
Comparators  
Effects of a Reset .................................................... 267  
Compare (CCP Module) .................................................. 155  
Associated Registers ............................................... 156  
CCPRx Register ...................................................... 155  
Pin Configuration ..................................................... 155  
Software Interrupt .................................................... 155  
Special Event Trigger ...................................... 150, 155  
Timer1/Timer3 Mode Selection ................................ 155  
Compare (ECCP Module) ................................................ 164  
Special Event Trigger .............................................. 164  
Computed GOTO ............................................................... 66  
CONFIG1H Register ........................................................ 285  
CONFIG2H Register ........................................................ 286  
CONFIG2L Register ........................................................ 286  
CONFIG3H Register ........................................................ 287  
CONFIG4L Register ........................................................ 287  
CONFIG5H Register ........................................................ 288  
CONFIG5L Register ........................................................ 288  
CONFIG6H Register ........................................................ 289  
CONFIG6L Register ........................................................ 289  
DS41303B-page 406  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
CONFIG7H Register ........................................................ 290  
CONFIG7L Register ......................................................... 290  
Configuration Bits ............................................................. 284  
Configuration Register Protection .................................... 297  
Context Saving During Interrupts ..................................... 113  
CPFSEQ .......................................................................... 316  
CPFSGT .......................................................................... 317  
CPFSLT ........................................................................... 317  
Customer Change Notification Service ............................ 409  
Customer Notification Service .......................................... 409  
Customer Support ............................................................ 409  
CVREF Voltage Reference Specifications ........................ 365  
Device Reset Timers ......................................................... 53  
Oscillator Start-up Timer (OST) ................................. 53  
PLL Lock Time-out .................................................... 53  
Power-up Timer (PWRT) ........................................... 53  
Time-out Sequence ................................................... 53  
DEVID1 Register ............................................................. 291  
DEVID2 Register ............................................................. 291  
Direct Addressing .............................................................. 81  
E
ECCPAS Register ............................................................ 173  
EECON1 Register ........................................................ 87, 96  
Effect on Standard PIC Instructions ................................. 346  
Effects of Power Managed Modes on Various  
D
Data Addressing Modes ..................................................... 80  
Comparing Addressing Modes with the  
Clock Sources ........................................................... 34  
Effects of Reset  
Extended Instruction Set Enabled ..................... 83  
Direct .......................................................................... 80  
Indexed Literal Offset ................................................. 82  
Instructions Affected .......................................... 82  
Indirect ....................................................................... 80  
Inherent and Literal .................................................... 80  
Data EEPROM  
PWM mode .............................................................. 160  
Electrical Characteristics ................................................. 353  
Enhanced Capture/Compare/PWM (ECCP) .................... 163  
Associated Registers ............................................... 181  
Capture and Compare Modes ................................. 164  
Capture Mode. See Capture (ECCP Module).  
Enhanced PWM Mode ............................................. 165  
Auto-Restart .................................................... 174  
Auto-shutdown ................................................ 173  
Direction Change in Full-Bridge Output Mode . 171  
Full-Bridge Application ..................................... 169  
Full-Bridge Mode ............................................. 169  
Half-Bridge Application .................................... 168  
Half-Bridge Application Examples ................... 175  
Half-Bridge Mode ............................................. 168  
Output Relationships (Active-High and  
Code Protection ....................................................... 297  
Data EEPROM Memory ..................................................... 95  
Associated Registers ................................................. 98  
EEADR Register ........................................................ 95  
EECON1 and EECON2 Registers ............................. 95  
Operation During Code-Protect ................................. 98  
Protection Against Spurious Write ............................. 98  
Reading ...................................................................... 97  
Using .......................................................................... 98  
Write Verify ................................................................ 97  
Writing ........................................................................ 97  
Data Memory ..................................................................... 69  
Access Bank .............................................................. 74  
and the Extended Instruction Set ............................... 82  
Bank Select Register (BSR) ....................................... 69  
General Purpose Registers ........................................ 74  
Map for PIC18F23K20/43K20 .................................... 70  
Map for PIC18F24K20/44K20 .................................... 71  
Map for PIC18F25K20/45K20 .................................... 72  
Special Function Registers ........................................ 74  
DAW ................................................................................. 318  
DC and AC Characteristics  
Active-Low) .............................................. 166  
Output Relationships Diagram ......................... 167  
Programmable Dead Band Delay .................... 175  
Shoot-through Current ..................................... 175  
Start-up Considerations ................................... 172  
Outputs and Configuration ....................................... 164  
Standard PWM Mode .............................................. 164  
Timer Resources ..................................................... 164  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) ............................. 223  
Errata ................................................................................... 8  
EUSART .......................................................................... 223  
Asynchronous Mode ................................................ 225  
12-bit Break Transmit and Receive ................. 241  
Associated Registers, Receive ........................ 231  
Associated Registers, Transmit ....................... 227  
Auto-Wake-up on Break .................................. 240  
Baud Rate Generator (BRG) ........................... 235  
Clock Accuracy ................................................ 232  
Receiver .......................................................... 228  
Setting up 9-bit Mode with Address Detect ..... 230  
Transmitter ...................................................... 225  
Baud Rate Generator (BRG)  
Graphs and Tables .................................................. 387  
DC Characteristics  
Input/Output ............................................................. 362  
Peripheral Supply Current ........................................ 361  
Power-Down Current ............................................... 355  
Primary Idle Supply Current ..................................... 359  
Primary Run Supply Current .................................... 358  
RC Idle Supply Current ............................................ 357  
RC Run Supply Current ........................................... 356  
Secondary Oscillator Supply Current ....................... 360  
Supply Voltage ......................................................... 355  
DCFSNZ .......................................................................... 319  
DECF ............................................................................... 318  
DECFSZ ........................................................................... 319  
Development Support ...................................................... 349  
Device Differences ........................................................... 397  
Device Overview .................................................................. 9  
Details on Individual Family Members ....................... 10  
Features (table) .......................................................... 11  
New Core Features ...................................................... 9  
Other Special Features .............................................. 10  
Associated Registers ....................................... 235  
Auto Baud Rate Detect .................................... 239  
Baud Rate Error, Calculating ........................... 235  
Baud Rates, Asynchronous Modes ................. 236  
Formulas .......................................................... 235  
High Baud Rate Select (BRGH Bit) ................. 235  
Clock polarity  
Synchronous Mode .......................................... 243  
Data polarity  
Asychronous Receive ...................................... 228  
Asychronous Transmit ..................................... 225  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 407  
PIC18F2XK20/4XK20  
Synchronous Mode ..........................................243  
Interrupts  
Characteristics ......................................................... 366  
Current Consumption ............................................... 279  
Effects of a Reset .................................................... 281  
Operation ................................................................. 278  
During Sleep .................................................... 281  
Asychronous Receive ......................................229  
Asychronous Transmit .....................................225  
Synchronous Master Mode .............................. 243, 247  
Associated Registers, Receive ........................246  
Associated Registers, Transmit ............... 244, 247  
Reception .........................................................245  
Transmission ....................................................243  
Synchronous Slave Mode  
Setup ....................................................................... 279  
Start-up Time ........................................................... 279  
Typical Application ................................................... 281  
HLVD. See High/Low-Voltage Detect. ............................. 277  
HLVDCON Register ......................................................... 277  
Associated Registers, Receive ........................248  
Reception .........................................................248  
Transmission ....................................................247  
Extended Instruction Set  
I
I/O Ports ........................................................................... 115  
2
I C Mode (MSSP)  
Acknowledge Sequence Timing .............................. 217  
Baud Rate Generator .............................................. 210  
Bus Collision  
ADDFSR ..................................................................342  
ADDULNK ................................................................342  
and Using MPLAB Tools ..........................................348  
CALLW .....................................................................343  
Considerations for Use ............................................346  
MOVSF ....................................................................343  
MOVSS ....................................................................344  
PUSHL .....................................................................344  
SUBFSR ..................................................................345  
SUBULNK ................................................................345  
Syntax ......................................................................341  
During a Repeated Start Condition .................. 221  
During a Stop Condition .................................. 222  
Clock Arbitration ...................................................... 211  
Clock Stretching ....................................................... 203  
10-Bit Slave Receive Mode (SEN = 1) ............ 203  
10-Bit Slave Transmit Mode ............................ 203  
7-Bit Slave Receive Mode (SEN = 1) .............. 203  
7-Bit Slave Transmit Mode .............................. 203  
Clock Synchronization and the CKP bit (SEN = 1) .. 204  
Effects of a Reset .................................................... 218  
General Call Address Support ................................. 207  
F
Fail-Safe Clock Monitor .............................................. 38, 283  
Fail-Safe Condition Clearing ......................................38  
Fail-Safe Detection ....................................................38  
Fail-Safe Operation ....................................................38  
Reset or Wake-up from Sleep ....................................38  
Fast Register Stack ............................................................66  
Firmware Instructions .......................................................299  
Flash Program Memory ......................................................85  
Associated Registers .................................................93  
Control Registers .......................................................86  
EECON1 and EECON2 .....................................86  
TABLAT (Table Latch) Register .........................88  
TBLPTR (Table Pointer) Register ......................88  
Erase Sequence ........................................................90  
Erasing .......................................................................90  
Operation During Code-Protect .................................93  
Reading ......................................................................89  
Table Pointer  
2
I C Clock Rate w/BRG ............................................. 210  
Master Mode ............................................................ 208  
Operation ......................................................... 209  
Reception ........................................................ 214  
Repeated Start Condition Timing .................... 213  
Start Condition Timing ..................................... 212  
Transmission ................................................... 214  
Multi-Master Communication, Bus Collision  
and Arbitration ................................................. 218  
Multi-Master Mode ................................................... 218  
Operation ................................................................. 196  
Read/Write Bit Information (R/W Bit) ............... 196, 197  
Registers ................................................................. 192  
Serial Clock (RC3/SCK/SCL) ................................... 197  
Slave Mode .............................................................. 196  
Addressing ....................................................... 196  
Reception ........................................................ 197  
Transmission ................................................... 197  
Sleep Operation ....................................................... 218  
Stop Condition Timing ............................................. 217  
ID Locations ............................................................. 283, 297  
INCF ................................................................................ 320  
INCFSZ ............................................................................ 321  
In-Circuit Debugger .......................................................... 297  
In-Circuit Serial Programming (ICSP) ...................... 283, 297  
Indexed Literal Offset Addressing  
and Standard PIC18 Instructions ............................. 346  
Indexed Literal Offset Mode ............................................. 346  
Indirect Addressing ............................................................ 81  
INFSNZ ............................................................................ 321  
Initialization Conditions for all Registers ...................... 57–60  
Instruction Cycle ................................................................ 67  
Clocking Scheme ....................................................... 67  
Instruction Flow/Pipelining ................................................. 67  
Instruction Set .................................................................. 299  
ADDLW .................................................................... 305  
ADDWF .................................................................... 305  
ADDWF (Indexed Literal Offset Mode) .................... 347  
Boundaries Based on Operation ........................88  
Table Pointer Boundaries ..........................................88  
Table Reads and Table Writes ..................................85  
Write Sequence .........................................................91  
Writing To ...................................................................91  
Protection Against Spurious Writes ...................93  
Unexpected Termination ....................................93  
Write Verify ........................................................93  
G
General Call Address Support .........................................207  
GOTO ...............................................................................320  
H
Hardware Multiplier ............................................................99  
Introduction ................................................................99  
Operation ...................................................................99  
Performance Comparison ..........................................99  
High/Low-Voltage Detect .................................................277  
Applications ..............................................................281  
Associated Registers ...............................................281  
DS41303B-page 408  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
ADDWFC ................................................................. 306  
ANDLW .................................................................... 306  
ANDWF .................................................................... 307  
BC ............................................................................ 307  
BCF .......................................................................... 308  
BN ............................................................................ 308  
BNC ......................................................................... 309  
BNN ......................................................................... 309  
BNOV ....................................................................... 310  
BNZ .......................................................................... 310  
BOV ......................................................................... 313  
BRA .......................................................................... 311  
BSF .......................................................................... 311  
BSF (Indexed Literal Offset Mode) .......................... 347  
BTFSC ..................................................................... 312  
BTFSS ..................................................................... 312  
BTG .......................................................................... 313  
BZ ............................................................................ 314  
CALL ........................................................................ 314  
CLRF ........................................................................ 315  
CLRWDT .................................................................. 315  
COMF ...................................................................... 316  
CPFSEQ .................................................................. 316  
CPFSGT .................................................................. 317  
CPFSLT ................................................................... 317  
DAW ......................................................................... 318  
DCFSNZ .................................................................. 319  
DECF ....................................................................... 318  
DECFSZ ................................................................... 319  
Extended Instruction Set .......................................... 341  
General Format ........................................................ 301  
GOTO ...................................................................... 320  
INCF ......................................................................... 320  
INCFSZ .................................................................... 321  
INFSNZ .................................................................... 321  
IORLW ..................................................................... 322  
IORWF ..................................................................... 322  
LFSR ........................................................................ 323  
MOVF ....................................................................... 323  
MOVFF .................................................................... 324  
MOVLB .................................................................... 324  
MOVLW ................................................................... 325  
MOVWF ................................................................... 325  
MULLW .................................................................... 326  
MULWF .................................................................... 326  
NEGF ....................................................................... 327  
NOP ......................................................................... 327  
Opcode Field Descriptions ....................................... 300  
POP ......................................................................... 328  
PUSH ....................................................................... 328  
RCALL ..................................................................... 329  
RESET ..................................................................... 329  
RETFIE .................................................................... 330  
RETLW .................................................................... 330  
RETURN .................................................................. 331  
RLCF ........................................................................ 331  
RLNCF ..................................................................... 332  
RRCF ....................................................................... 332  
RRNCF .................................................................... 333  
SETF ........................................................................ 333  
SETF (Indexed Literal Offset Mode) ........................ 347  
SLEEP ..................................................................... 334  
SUBFWB .................................................................. 334  
SUBLW .................................................................... 335  
SUBWF .................................................................... 335  
SUBWFB ................................................................. 336  
SWAPF .................................................................... 336  
TBLRD ..................................................................... 337  
TBLWT .................................................................... 338  
TSTFSZ ................................................................... 339  
XORLW ................................................................... 339  
XORWF ................................................................... 340  
INTCON Register ............................................................. 103  
INTCON Registers ................................................... 103–105  
INTCON2 Register ........................................................... 104  
INTCON3 Register ........................................................... 105  
Inter-Integrated Circuit. See I C.  
Internal Oscillator Block  
HFINTOSC Frequency Drift ....................................... 32  
PLL in HFINTOSC Modes ......................................... 33  
Internal RC Oscillator  
Use with WDT .......................................................... 292  
Internal Sampling Switch (RSS) IMPEDANCE ..................... 259  
Internet Address .............................................................. 409  
Interrupt Sources ............................................................. 283  
ADC ......................................................................... 251  
Capture Complete (CCP) ........................................ 153  
Compare Complete (CCP) ...................................... 155  
Interrupt-on-Change (RB7:RB4) .............................. 118  
INTn Pin ................................................................... 113  
PORTB, Interrupt-on-Change .................................. 113  
TMR0 ....................................................................... 113  
TMR0 Overflow ........................................................ 137  
TMR1 Overflow ........................................................ 139  
TMR3 Overflow ................................................ 147, 149  
Interrupts ......................................................................... 101  
IORLW ............................................................................. 322  
IORWF ............................................................................. 322  
IPR Registers ................................................................... 110  
IPR1 Register .................................................................. 110  
IPR2 Register .................................................................. 111  
2
L
LFSR ............................................................................... 323  
Low-Voltage ICSP Programming. See Single-Supply  
ICSP Programming  
M
Master Clear (MCLR) ......................................................... 51  
Master Synchronous Serial Port (MSSP). See MSSP.  
Memory Organization ........................................................ 63  
Data Memory ............................................................. 69  
Program Memory ....................................................... 63  
Microchip Internet Web Site ............................................. 409  
MOVF .............................................................................. 323  
MOVFF ............................................................................ 324  
MOVLB ............................................................................ 324  
MOVLW ........................................................................... 325  
MOVSF ............................................................................ 343  
MOVSS ............................................................................ 344  
MOVWF ........................................................................... 325  
MPLAB ASM30 Assembler, Linker, Librarian .................. 350  
MPLAB ICD 2 In-Circuit Debugger .................................. 351  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator ................................................... 351  
MPLAB ICE 4000 High-Performance Universal  
In-Circuit Emulator ................................................... 351  
MPLAB Integrated Development Environment Software . 349  
MPLAB PM3 Device Programmer ................................... 351  
MPLINK Object Linker/MPLIB Object Librarian ............... 350  
MSSP  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 409  
PIC18F2XK20/4XK20  
ACK Pulse ........................................................ 196, 197  
Control Registers (general) ......................................183  
I C Mode. See I C Mode.  
Module Overview .....................................................183  
SPI Master/Slave Connection ..................................187  
SPI Mode. See SPI Mode.  
RA4/T0CKI/C1OUT ............................................. 15, 19  
RA5/AN4/SS/HLVDIN/C2OUT ............................. 15, 19  
RB0/INT0/FLT0/AN12 .......................................... 16, 20  
RB1/INT1/AN10/C12IN2- ........................................... 20  
RB1/INT1/AN10/P1C/C12IN2- ................................... 16  
RB2/INT2/AN8 ........................................................... 20  
RB2/INT2/AN8/P1B ................................................... 16  
RB3/AN9/CCP2/C12IN3- ..................................... 16, 20  
RB4/KBI0/AN11 ......................................................... 20  
RB4/KBI0/AN11/P1D ................................................. 16  
RB5/KBI1/PGM .................................................... 16, 20  
RB6/KBI2/PGC .................................................... 16, 20  
RB7/KBI3/PGD .................................................... 16, 20  
RC0/T1OSO/T13CKI ........................................... 17, 21  
RC1/T1OSI/CCP2 ................................................ 17, 21  
RC2/CCP1/P1A ................................................... 17, 21  
RC3/SCK/SCL ..................................................... 17, 21  
RC4/SDI/SDA ...................................................... 17, 21  
RC5/SDO ............................................................. 17, 21  
RC6/TX/CK .......................................................... 17, 21  
RC7/RX/DT .......................................................... 17, 21  
RD0/PSP0 ................................................................. 22  
RD1/PSP1 ................................................................. 22  
RD2/PSP2 ................................................................. 22  
RD3/PSP3 ................................................................. 22  
RD4/PSP4 ................................................................. 22  
RD5/PSP5/P1B ......................................................... 22  
RD6/PSP6/P1C ......................................................... 22  
RD7/PSP7/P1D ......................................................... 22  
RE0/RD/AN5 .............................................................. 23  
RE1/WR/AN6 ............................................................. 23  
RE2/CS/AN7 .............................................................. 23  
VDD ...................................................................... 17, 23  
VSS ...................................................................... 17, 23  
Pinout I/O Descriptions  
2
2
SSPBUF Register ....................................................188  
SSPSR Register ......................................................188  
MULLW ............................................................................326  
MULWF ............................................................................326  
N
NEGF ...............................................................................327  
NOP .................................................................................327  
O
OSCCON Register .............................................................27  
Oscillator Configuration  
EC ..............................................................................25  
ECIO ..........................................................................25  
HS ..............................................................................25  
HSPLL ........................................................................25  
INTOSC .....................................................................25  
INTOSCIO ..................................................................25  
LP ...............................................................................25  
RC ..............................................................................25  
RCIO ..........................................................................25  
XT ..............................................................................25  
Oscillator Module ...............................................................25  
HFINTOSC .................................................................25  
LFINTOSC .................................................................25  
Oscillator Selection ..........................................................283  
Oscillator Start-up Timer (OST) ................................... 34, 53  
Oscillator Switching  
Fail-Safe Clock Monitor ..............................................38  
Two-Speed Clock Start-up .........................................35  
Oscillator Transitions ..........................................................26  
Oscillator, Timer1 ..................................................... 139, 149  
Oscillator, Timer3 .............................................................147  
OSCTUNE Register ...........................................................31  
PIC18F2XK20 ............................................................ 14  
PIC18F4XK20 ............................................................ 18  
PIR Registers ................................................................... 106  
PIR1 Register .................................................................. 106  
PIR2 Register .................................................................. 107  
PLL Frequency Multiplier ................................................... 33  
HSPLL Oscillator Mode ............................................. 33  
POP ................................................................................. 328  
POR. See Power-on Reset.  
P
P1A/P1B/P1C/P1D.See Enhanced  
Capture/Compare/PWM (ECCP) .............................165  
Packaging Information .....................................................389  
Marking ....................................................................389  
Parallel Slave Port (PSP) .........................................124, 133  
Associated Registers ...............................................134  
CS (Chip Select) ......................................................133  
PORTD ....................................................................133  
RD (Read Input) .......................................................133  
Select (PSPMODE Bit) .................................... 124, 133  
WR (Write Input) ......................................................133  
PICSTART Plus Development Programmer ....................352  
PIE Registers ...................................................................108  
PIE1 Register ...................................................................108  
PIE2 Register ...................................................................109  
Pin Functions  
PORTA  
Associated Registers ............................................... 117  
LATA Register ......................................................... 115  
PORTA Register ...................................................... 115  
TRISA Register ........................................................ 115  
PORTB  
Associated Registers ............................................... 120  
LATB Register ......................................................... 118  
PORTB Register ...................................................... 118  
TRISB Register ........................................................ 118  
PORTC  
Associated Registers ............................................... 123  
LATC Register ......................................................... 121  
PORTC Register ...................................................... 121  
RC3/SCK/SCL Pin ................................................... 197  
TRISC Register ........................................................ 121  
PORTD  
MCLR/VPP/RE3 .................................................... 14, 18  
OSC1/CLKI/RA7 .................................................. 14, 18  
OSC2/CLKO/RA6 ................................................ 14, 18  
RA0/AN0/C12IN0- ................................................ 15, 19  
RA1/AN1/C12IN0- ......................................................19  
RA1/AN1/C12IN1- ......................................................15  
RA2/AN2/VREF-/CVREF/C2IN+ ............................. 15, 19  
RA3/AN3/VREF+/C1IN+ ........................................ 15, 19  
Associated Registers ............................................... 126  
LATD Register ......................................................... 124  
Parallel Slave Port (PSP) Function .......................... 124  
PORTD Register ...................................................... 124  
DS41303B-page 410  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
TRISD Register ........................................................ 124  
PORTE  
Operation with Fail-Safe Clock Monitor ................... 180  
Pulse Steering ......................................................... 177  
Steering Synchronization ......................................... 179  
PWM Mode. See Enhanced Capture/Compare/PWM ..... 165  
PWM1CON Register ........................................................ 176  
Associated Registers ............................................... 129  
LATE Register .......................................................... 127  
PORTE Register ...................................................... 127  
PSP Mode Select (PSPMODE Bit) .......................... 124  
TRISE Register ........................................................ 127  
Power Managed Modes ..................................................... 41  
and A/D Operation ................................................... 253  
and PWM Operation ................................................ 180  
and SPI Operation ................................................... 191  
Clock Transitions and Status Indicators ..................... 42  
Effects on Clock Sources ........................................... 34  
Entering ...................................................................... 41  
Exiting Idle and Sleep Modes .................................... 46  
by Interrupt ......................................................... 46  
by Reset ............................................................. 46  
by WDT Time-out ............................................... 46  
Without a Start-up Delay .................................... 47  
Idle Modes ................................................................. 43  
PRI_IDLE ........................................................... 45  
RC_IDLE ............................................................ 46  
SEC_IDLE ......................................................... 45  
Multiple Sleep Functions ............................................ 42  
Run Modes ................................................................. 42  
PRI_RUN ........................................................... 42  
RC_RUN ............................................................ 43  
SEC_RUN .......................................................... 42  
Selecting .................................................................... 41  
Sleep Mode ................................................................ 43  
Summary (table) ........................................................ 41  
Power-on Reset (POR) ...................................................... 51  
Power-up Timer (PWRT) ........................................... 53  
Time-out Sequence .................................................... 53  
Power-up Delays ................................................................ 34  
Power-up Timer (PWRT) ................................................... 34  
Prescaler, Timer0 ............................................................. 137  
PRI_IDLE Mode ................................................................. 45  
PRI_RUN Mode ................................................................. 42  
Program Counter ............................................................... 64  
PCL, PCH and PCU Registers ................................... 64  
PCLATH and PCLATU Registers .............................. 64  
Program Memory  
and Extended Instruction Set ..................................... 84  
Code Protection ....................................................... 295  
Instructions ................................................................. 68  
Two-Word .......................................................... 68  
Interrupt Vector .......................................................... 63  
Look-up Tables .......................................................... 66  
Map and Stack (diagram) ........................................... 63  
Reset Vector .............................................................. 63  
Program Verification and Code Protection ....................... 294  
Associated Registers ............................................... 294  
Programming, Device Instructions ................................... 299  
PSP. See Parallel Slave Port.  
PSTRCON Register ......................................................... 177  
Pulse Steering .................................................................. 177  
PUSH ............................................................................... 328  
PUSH and POP Instructions .............................................. 65  
PUSHL ............................................................................. 344  
PWM (CCP Module)  
R
RAM. See Data Memory.  
RC_IDLE Mode .................................................................. 46  
RC_RUN Mode .................................................................. 43  
RCALL ............................................................................. 329  
RCON Register .......................................................... 50, 112  
Bit Status During Initialization .................................... 56  
RCREG ............................................................................ 230  
RCSTA Register .............................................................. 233  
Reader Response ............................................................ 410  
Register  
RCREG Register ..................................................... 239  
Register File ....................................................................... 74  
Register File Summary ................................................ 76–78  
Registers  
ADCON0 (ADC Control 0) ....................................... 255  
ADCON1 (ADC Control 1) ............................... 256, 257  
ADRESH (ADC Result High) with ADFM = 0) ......... 258  
ADRESH (ADC Result High) with ADFM = 1) ......... 258  
ADRESL (ADC Result Low) with ADFM = 0) ........... 258  
ADRESL (ADC Result Low) with ADFM = 1) ........... 258  
ANSEL (Analog Select 1) ........................................ 130  
ANSEL (PORT Analog Control) ............................... 130  
ANSELH (Analog Select 2) ...................................... 131  
ANSELH (PORT Analog Control) ............................ 131  
BAUDCTL (Baud Rate Control) ............................... 234  
BAUDCTL (EUSART Baud Rate Control) ............... 234  
CCP1CON (Enhanced Capture/Compare/PWM  
Control) ............................................................ 163  
CCP2CON (Standard Capture/Compare/  
PWM Control) .................................................. 151  
CM1CON0 (C1 Control) .......................................... 268  
CM2CON0 (C2 Control) .......................................... 269  
CM2CON1 (C2 Control) .......................................... 271  
CONFIG1H (Configuration 1 High) .......................... 285  
CONFIG2H (Configuration 2 High) .......................... 286  
CONFIG2L (Configuration 2 Low) ........................... 286  
CONFIG3H (Configuration 3 High) .......................... 287  
CONFIG4L (Configuration 4 Low) ........................... 287  
CONFIG5H (Configuration 5 High) .......................... 288  
CONFIG5L (Configuration 5 Low) ........................... 288  
CONFIG6H (Configuration 6 High) .......................... 289  
CONFIG6L (Configuration 6 Low) ........................... 289  
CONFIG7H (Configuration 7 High) .......................... 290  
CONFIG7L (Configuration 7 Low) ........................... 290  
CVRCON (Comparator Voltage Reference Control)  
CVRCON Register ........................................... 275  
CVRCON2 (Comparator Voltage Reference Control 2)  
CVRCON2 Register ......................................... 276  
DEVID1 (Device ID 1) .............................................. 291  
DEVID2 (Device ID 2) .............................................. 291  
ECCPAS (Enhanced CCP Auto-shutdown Control) 173  
EECON1 (Data EEPROM Control 1) ................... 87, 96  
HLVDCON (High/Low-Voltage Detect Control) ....... 277  
INTCON (Interrupt Control) ..................................... 103  
INTCON2 (Interrupt Control 2) ................................ 104  
INTCON3 (Interrupt Control 3) ................................ 105  
IPR1 (Peripheral Interrupt Priority 1) ....................... 110  
IPR2 (Peripheral Interrupt Priority 2) ....................... 111  
OSCCON (Oscillator Control) .................................... 27  
Associated Registers ............................................... 161  
PWM (ECCP Module)  
Effects of a Reset ..................................................... 180  
Operation in Power Managed Modes ...................... 180  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 411  
PIC18F2XK20/4XK20  
OSCTUNE (Oscillator Tuning) ...................................31  
PIE1 (Peripheral Interrupt Enable 1) ........................108  
PIE2 (Peripheral Interrupt Enable 2) ........................109  
PIR1 (Peripheral Interrupt Request 1) .....................106  
PIR2 (Peripheral Interrupt Request 2) .....................107  
PSTRCON (Pulse Steering Control) ........................177  
PWM1CON (Enhanced PWM Control) ....................176  
RCON (Reset Control) ....................................... 50, 112  
RCON (Reset control) ..............................................112  
RCSTA (Receive Status and Control) ......................233  
SLRCON (PORT Slew Rate Control) .......................132  
Special Event Trigger ...................................................... 253  
Special Event Trigger. See Compare (ECCP Mode).  
Special Event Trigger. See Compare (ECCP Module).  
Special Features of the CPU ........................................... 283  
Special Function Registers ................................................ 74  
Map ............................................................................ 75  
SPI Mode (MSSP)  
Associated Registers ............................................... 191  
Bus Mode Compatibility ........................................... 191  
Effects of a Reset .................................................... 191  
Enabling SPI I/O ...................................................... 187  
Master Mode ............................................................ 188  
Master/Slave Connection ......................................... 187  
Operation ................................................................. 186  
Operation in Power Managed Modes ...................... 191  
Serial Clock .............................................................. 183  
Serial Data In ........................................................... 183  
Serial Data Out ........................................................ 183  
Slave Mode .............................................................. 189  
Slave Select ............................................................. 183  
Slave Select Synchronization .................................. 189  
SPI Clock ................................................................. 188  
Typical Connection .................................................. 187  
SS .................................................................................... 183  
SSPCON1 Register ................................................. 185, 194  
SSPCON2 Register ......................................................... 195  
SSPMSK Register ........................................................... 202  
SSPOV ............................................................................ 214  
SSPOV Status Flag ......................................................... 214  
SSPSTAT Register .................................................. 184, 193  
R/W Bit ............................................................ 196, 197  
Stack Full/Underflow Resets .............................................. 66  
Standard Instructions ....................................................... 299  
STATUS Register .............................................................. 79  
STKPTR Register .............................................................. 65  
SUBFSR .......................................................................... 345  
SUBFWB ......................................................................... 334  
SUBLW ............................................................................ 335  
SUBULNK ........................................................................ 345  
SUBWF ............................................................................ 335  
SUBWFB ......................................................................... 336  
SWAPF ............................................................................ 336  
2
SSPCON1 (MSSP Control 1, I C Mode) .................194  
SSPCON1 (MSSP Control 1, SPI Mode) .................185  
2
SSPCON2 (MSSP Control 2, I C Mode) .................195  
SSPMSK (SSP Mask) ..............................................202  
SSPSTAT (MSSP Status, SPI Mode) .............. 184, 193  
STATUS .....................................................................79  
STKPTR (Stack Pointer) ............................................65  
T0CON (Timer0 Control) ..........................................135  
T1CON (Timer1 Control) ..........................................139  
T2CON (Timer2 Control) ..........................................145  
T3CON (Timer3 Control) ..........................................147  
TRISE (PORTE/PSP Control) ..................................128  
TXSTA (Transmit Status and Control) .....................232  
WDTCON (Watchdog Timer Control) .......................293  
RESET .............................................................................329  
Reset State of Registers ....................................................56  
Resets ........................................................................ 49, 283  
Brown-out Reset (BOR) ...........................................283  
Oscillator Start-up Timer (OST) ...............................283  
Power-on Reset (POR) ............................................283  
Power-up Timer (PWRT) .........................................283  
RETFIE ............................................................................330  
RETLW .............................................................................330  
RETURN ..........................................................................331  
Return Address Stack ........................................................64  
Return Stack Pointer (STKPTR) ........................................65  
Revision History ...............................................................397  
RLCF ................................................................................331  
RLNCF .............................................................................332  
RRCF ...............................................................................332  
RRNCF .............................................................................333  
S
T
SCK ..................................................................................183  
SDI ...................................................................................183  
SDO .................................................................................183  
SEC_IDLE Mode ................................................................45  
SEC_RUN Mode ................................................................42  
Serial Clock, SCK .............................................................183  
Serial Data In (SDI) ..........................................................183  
Serial Data Out (SDO) .....................................................183  
Serial Peripheral Interface. See SPI Mode.  
SETF ................................................................................333  
Shoot-through Current .....................................................175  
Single-Supply ICSP Programming.  
Slave Select (SS) .............................................................183  
Slave Select Synchronization ...........................................189  
SLEEP ..............................................................................334  
Sleep  
T0CON Register .............................................................. 135  
T1CON Register .............................................................. 139  
T2CON Register .............................................................. 145  
T3CON Register .............................................................. 147  
Table Pointer Operations (table) ........................................ 88  
Table Reads/Table Writes ................................................. 66  
TBLRD ............................................................................. 337  
TBLWT ............................................................................. 338  
Time-out in Various Situations (table) ................................ 53  
Timer0 .............................................................................. 135  
Associated Registers ............................................... 137  
Operation ................................................................. 136  
Overflow Interrupt .................................................... 137  
Prescaler ................................................................. 137  
Prescaler Assignment (PSA Bit) .............................. 137  
Prescaler Select (T0PS2:T0PS0 Bits) ..................... 137  
Prescaler. See Prescaler, Timer0.  
OSC1 and OSC2 Pin States ......................................34  
Sleep Mode ........................................................................43  
SLRCON Register ............................................................132  
Software Simulator (MPLAB SIM) ....................................350  
SPBRG .............................................................................235  
SPBRGH ..........................................................................235  
Reads and Writes in 16-Bit Mode ............................ 136  
Source Edge Select (T0SE Bit) ............................... 136  
Source Select (T0CS Bit) ......................................... 136  
Switching Prescaler Assignment ............................. 137  
DS41303B-page 412  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
Timer1 .............................................................................. 139  
16-Bit Read/Write Mode ........................................... 141  
Associated Registers ............................................... 144  
Interrupt .................................................................... 142  
Operation ................................................................. 140  
Oscillator .......................................................... 139, 141  
Oscillator Layout Considerations ............................. 142  
Overflow Interrupt .................................................... 139  
Resetting, Using the CCP Special Event Trigger ..... 142  
Special Event Trigger (ECCP) ................................. 164  
TMR1H Register ...................................................... 139  
TMR1L Register ....................................................... 139  
Use as a Real-Time Clock ....................................... 143  
Timer2 .............................................................................. 145  
Associated Registers ............................................... 146  
Interrupt .................................................................... 146  
Operation ................................................................. 145  
Output ...................................................................... 146  
Timer3 .............................................................................. 147  
16-Bit Read/Write Mode ........................................... 149  
Associated Registers ............................................... 150  
Operation ................................................................. 148  
Oscillator .......................................................... 147, 149  
Overflow Interrupt ............................................ 147, 149  
Special Event Trigger (CCP) .................................... 150  
TMR3H Register ...................................................... 147  
TMR3L Register ....................................................... 147  
Timing Diagrams  
High/Low-Voltage Detect Operation  
(VDIRMAG = 0) ............................................... 279  
High/Low-Voltage Detect Operation  
(VDIRMAG = 1) ............................................... 280  
I C Bus Data ............................................................ 379  
I C Bus Start/Stop Bits ............................................ 379  
I C Master Mode (7 or 10-Bit Transmission) ........... 215  
I C Master Mode (7-Bit Reception) ......................... 216  
I C Slave Mode (10-Bit Reception, SEN = 0) .......... 200  
I C Slave Mode (10-Bit Reception, SEN = 1) .......... 206  
I C Slave Mode (10-Bit Transmission) .................... 201  
I C Slave Mode (7-bit Reception, SEN = 0) ............ 198  
I C Slave Mode (7-Bit Reception, SEN = 1) ............ 205  
I C Slave Mode (7-Bit Transmission) ...................... 199  
I C Slave Mode General Call Address  
2
2
2
2
2
2
2
2
2
2
2
Sequence (7 or 10-Bit Address Mode) ............ 207  
I C Stop Condition Receive or Transmit Mode ........ 217  
2
Internal Oscillator Switch Timing ............................... 37  
2
Master SSP I C Bus Data ....................................... 381  
2
Master SSP I C Bus Start/Stop Bits ........................ 381  
Parallel Slave Port (PIC18F4XK20) ......................... 374  
Parallel Slave Port (PSP) Read ............................... 134  
Parallel Slave Port (PSP) Write ............................... 134  
PWM Auto-shutdown  
Auto-restart Enabled ........................................ 174  
Firmware Restart ............................................. 174  
PWM Direction Change ........................................... 171  
PWM Direction Change at Near 100% Duty Cycle .. 172  
PWM Output (Active-High) ...................................... 166  
PWM Output (Active-Low) ....................................... 167  
Repeat Start Condition ............................................ 213  
Reset, Watchdog Timer (WDT), Oscillator Start-up  
Timer (OST), Power-up Timer (PWRT) ........... 371  
Send Break Character Sequence ............................ 242  
Slave Synchronization ............................................. 189  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................ 55  
SPI Mode (Master Mode) ........................................ 188  
SPI Mode (Slave Mode, CKE = 0) ........................... 190  
SPI Mode (Slave Mode, CKE = 1) ........................... 190  
Synchronous Reception (Master Mode, SREN) ...... 246  
Synchronous Transmission ..................................... 244  
Synchronous Transmission (Through TXEN) .......... 244  
Time-out Sequence on POR w/PLL Enabled  
A/D Conversion ........................................................ 385  
Acknowledge Sequence .......................................... 217  
Asynchronous Reception ......................................... 230  
Asynchronous Transmission .................................... 226  
Asynchronous Transmission (Back to Back) ........... 227  
Auto Wake-up Bit (WUE) During Normal Operation 240  
Auto Wake-up Bit (WUE) During Sleep ................... 241  
Automatic Baud Rate Calculator .............................. 239  
Baud Rate Generator with Clock Arbitration ............ 211  
BRG Reset Due to SDA Arbitration During  
Start Condition ................................................. 220  
Brown-out Reset (BOR) ........................................... 372  
Bus Collision During a Repeated Start  
Condition (Case 1) ........................................... 221  
Bus Collision During a Repeated Start  
Condition (Case 2) ........................................... 221  
Bus Collision During a Start Condition (SCL = 0) .... 220  
Bus Collision During a Stop Condition (Case 1) ...... 222  
Bus Collision During a Stop Condition (Case 2) ...... 222  
Bus Collision During Start Condition (SDA only) ..... 219  
Bus Collision for Transmit and Acknowledge ........... 218  
Capture/Compare/PWM (CCP) ................................ 373  
CLKO and I/O .......................................................... 370  
Clock Synchronization ............................................. 204  
Clock/Instruction Cycle .............................................. 67  
Comparator Output .................................................. 263  
Example SPI Master Mode (CKE = 0) ..................... 375  
Example SPI Master Mode (CKE = 1) ..................... 376  
Example SPI Slave Mode (CKE = 0) ....................... 377  
Example SPI Slave Mode (CKE = 1) ....................... 378  
External Clock (All Modes except PLL) .................... 369  
Fail-Safe Clock Monitor (FSCM) ................................ 39  
First Start Bit Timing ................................................ 212  
Full-Bridge PWM Output .......................................... 170  
Half-Bridge PWM Output ................................. 168, 175  
High/Low-Voltage Detect Characteristics ................ 366  
(MCLR Tied to VDD) .......................................... 55  
Time-out Sequence on Power-up (MCLR  
Not Tied to VDD, Case 1) ................................... 54  
Time-out Sequence on Power-up (MCLR  
Not Tied to VDD, Case 2) ................................... 54  
Time-out Sequence on Power-up (MCLR  
Tied to VDD, VDD Rise < TPWRT) ....................... 54  
Timer0 and Timer1 External Clock .......................... 372  
Transition for Entry to Sleep Mode ............................ 44  
Transition for Wake from Sleep (HSPLL) .................. 44  
Transition Timing for Entry to Idle Mode .................... 45  
Transition Timing for Wake from Idle to Run Mode ... 45  
USART Synchronous Receive (Master/Slave) ........ 383  
USART Synchronous Transmission (Master/Slave) 383  
Timing Diagrams and Specifications ............................... 369  
A/D Conversion Requirements ................................ 385  
Capture/Compare/PWM Requirements ................... 374  
CLKO and I/O Requirements ................................... 371  
Example SPI Mode Requirements  
(Master Mode, CKE = 0) .................................. 375  
(Master Mode, CKE = 1) .................................. 376  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 413  
PIC18F2XK20/4XK20  
(Slave Mode, CKE = 0) ....................................377  
(Slave Mode, CKE = 1) ....................................378  
External Clock Requirements ..................................369  
W
Wake-up on Break ........................................................... 240  
Watchdog Timer (WDT) ........................................... 283, 292  
Associated Registers ............................................... 293  
Control Register ....................................................... 293  
Programming Considerations .................................. 292  
WCOL ...................................................... 212, 213, 214, 217  
WCOL Status Flag ................................... 212, 213, 214, 217  
WDTCON Register .......................................................... 293  
WWW Address ................................................................ 409  
WWW, On-Line Support ...................................................... 8  
2
I C Bus Data Requirements (Slave Mode) ..............380  
2
I C Bus Start/Stop Bits Requirements (Slave Mode) .....  
379  
2
Master SSP I C Bus Data Requirements ................382  
Master SSP I C Bus Start/Stop Bits Requirements .381  
2
Parallel Slave Port Requirements (PIC18F4X20) ....374  
PLL Clock .................................................................370  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset  
Requirements ...................................................372  
Timer0 and Timer1 External Clock Requirements ...373  
USART Synchronous Receive Requirements .........383  
USART Synchronous Transmission Requirements .383  
Top-of-Stack Access ..........................................................64  
TRISE Register ................................................................128  
PSPMODE Bit ..........................................................124  
TSTFSZ ............................................................................339  
Two-Speed Clock Start-up Mode .......................................35  
Two-Speed Start-up .........................................................283  
Two-Word Instructions  
X
XORLW ............................................................................ 339  
XORWF ........................................................................... 340  
Example Cases ..........................................................68  
TXREG .............................................................................225  
TXSTA Register ...............................................................232  
BRGH Bit .................................................................235  
V
Voltage Reference. See Comparator Voltage  
Reference (CVREF)  
Voltage References  
Fixed Voltage Reference (FVR) ...............................274  
VR Stabilization ........................................................274  
VREF. SEE ADC Reference Voltage  
DS41303B-page 414  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 415  
PIC18F2XK20/4XK20  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F2XK20/4XK20  
DS41303B  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41303B-page 416  
Advance Information  
© 2007 Microchip Technology Inc.  
PIC18F2XK20/4XK20  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC18F45K20-E/P 301 = Extended temp.,  
PDIP package, Extended VDD limits, QTP pat-  
tern #301.  
b)  
c)  
PIC18F23K20-E/SO = Extended temp., SOIC  
package.  
Device:  
PIC18F23K20(1), PIC18F24K20(1), PIC18F25K20(1)  
,
PIC18F44K20-E/P = Extended temp., PDIP  
package.  
PIC18F26K20(1), PIC18F43K20(1), PIC18F44K20(1)  
PIC18F45K20(1), PIC18F46K20(1)  
,
Temperature  
Range:  
E
=
-40°C to +125°C (Extended)  
Package:  
ML  
P
PT  
SO  
SP  
SS  
=
=
=
=
=
=
QFN  
PDIP  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny Plastic DIP  
SSOP  
Note 1:  
T
=
in tape and reel PLCC, and TQFP  
packages only.  
Pattern:  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2007 Microchip Technology Inc.  
Advance Information  
DS41303B-page 417  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS41303B-page 418  
Advance Information  
© 2007 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY