PIC18F6620T-I/PT [MICROCHIP]

8-BIT, FLASH, 25 MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-64;
PIC18F6620T-I/PT
型号: PIC18F6620T-I/PT
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, FLASH, 25 MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-64

时钟 微控制器 外围集成电路
文件: 总380页 (文件大小:6058K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F6520/8520/6620/  
8620/6720/8720  
64/80-Pin High-Performance, 256 Kbit to 1 Mbit  
Enhanced Flash Microcontrollers with A/D  
High-Performance RISC CPU:  
Analog Features:  
• C compiler optimized architecture/instruction set:  
- Source code compatible with the PIC16 and  
PIC17 instruction sets  
• Linear program memory addressing to 128 Kbytes  
• Linear data memory addressing to 3840 bytes  
• 1 Kbyte of data EEPROM  
• 10-bit, up to 16-channel Analog-to-Digital  
Converter (A/D):  
- Conversion available during Sleep  
• Programmable 16-level Low-Voltage Detection  
(LVD) module:  
- Supports interrupt on Low-Voltage Detection  
• Programmable Brown-out Reset (PBOR)  
• Dual analog comparators:  
• Up to 10 MIPs operation:  
- DC – 40 MHz osc./clock input  
- 4 MHz – 10 MHz osc./clock input with PLL active  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
• 31-level, software accessible hardware stack  
• 8 x 8 Single Cycle Hardware Multiplier  
- Programmable input/output configuration  
Special Microcontroller Features:  
• 100,000 erase/write cycle Enhanced Flash  
program memory typical  
• 1,000,000 erase/write cycle Data EEPROM  
memory typical  
• 1 second programming time  
External Memory Interface  
(PIC18F8X20 Devices Only):  
• Flash/Data EEPROM Retention: > 40 years  
• Self-reprogrammable under software control  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own On-Chip  
RC Oscillator for reliable operation  
• Programmable code protection  
• Address capability of up to 2 Mbytes  
• 16-bit interface  
Peripheral Features:  
• High current sink/source 25 mA/25 mA  
• Four external interrupt pins  
• Timer0 module: 8-bit/16-bit timer/counter  
• Timer1 module: 16-bit timer/counter  
• Timer2 module: 8-bit timer/counter  
• Timer3 module: 16-bit timer/counter  
• Timer4 module: 8-bit timer/counter  
• Secondary oscillator clock option – Timer1/Timer3  
• Five Capture/Compare/PWM (CCP) modules:  
- Capture is 16-bit, max. resolution 6.25 ns (TCY/16)  
- Compare is 16-bit, max. resolution 100 ns (TCY)  
- PWM output: PWM resolution is 1 to 10-bit  
• Master Synchronous Serial Port (MSSP) module  
with two modes of operation:  
• Power saving Sleep mode  
• Selectable oscillator options including:  
- 4X Phase Lock Loop (of primary oscillator)  
- Secondary Oscillator (32 kHz) clock input  
• In-Circuit Serial Programming™ (ICSP™) via  
two pins  
• MPLAB® In-Circuit Debug (ICD) via two pins  
CMOS Technology:  
• Low-power, high-speed Flash technology  
• Fully static design  
• Wide operating voltage range (2.0V to 5.5V)  
• Industrial and Extended temperature ranges  
- 3-wire SPI (supports all 4 SPI modes)  
- I2C™ Master and Slave mode  
• Two Addressable USART modules:  
- Supports RS-485 and RS-232  
• Parallel Slave Port (PSP) module  
Program Memory  
Data Memory  
MSSP  
10-bit  
I/O A/D  
(ch)  
Max  
FOSC  
(MHz)  
CCP  
(PWM)  
Timers  
8-bit/16-bit Bus  
Ext  
Device  
USART  
# Single-Word SRAM EEPROM  
Instructions (bytes) (bytes)  
Master  
Bytes  
SPI  
2
I C  
PIC18F6520 32K  
PIC18F6620 64K  
PIC18F6720 128K  
PIC18F8520 32K  
PIC18F8620 64K  
PIC18F8720 128K  
16384  
32768  
65536  
16384  
32768  
65536  
2048  
3840  
3840  
2048  
3840  
3840  
1024  
1024  
1024  
1024  
1024  
1024  
52  
52  
52  
68  
68  
68  
12  
12  
12  
16  
16  
16  
5
5
5
5
5
5
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
2
2
2
2
2
2
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
N
N
N
Y
Y
Y
40  
25  
25  
40  
25  
25  
2003-2013 Microchip Technology Inc.  
DS39609C-page 1  
PIC18F6520/8520/6620/8620/6720/8720  
Pin Diagrams  
64-Pin TQFP  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RB0/INT0  
RE1/WR  
RE0/RD  
1
RB1/INT1  
2
RB2/INT2  
RG0/CCP3  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4  
MCLR/VPP  
RG4/CCP5  
VSS  
3
RB3/INT3  
4
RB4/KBI0  
5
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
6
7
PIC18F6520  
PIC18F6620  
PIC18F6720  
8
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
RF7/SS  
RB7/KBI3/PGD  
RC5/SDO  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
RF3/AN8  
RF2/AN7/C1OUT  
Note 1: CCP2 is multiplexed with RC1 when CCP2MX is set.  
DS39609C-page 2  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Pin Diagrams (Continued)  
80-Pin TQFP  
RH2/A18  
RH3/A19  
1
2
RJ2/WRL  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
RJ3/WRH  
RB0/INT0  
RB1/INT1  
(3)  
RE1/WR/AD9  
RE0/RD/AD8  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
(3)  
RG0/CCP3  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4  
MCLR/VPP  
RG4/CCP5  
VSS  
RB2/INT2  
RB3/INT3/CCP2  
RB4/KBI0  
(1)  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
RB7/KBI3/PGD  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
RJ7/UB  
PIC18F8520  
PIC18F8620  
PIC18F8720  
VDD  
RF7/SS  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RF3/AN8  
RF2/AN7/C1OUT  
RH7/AN15  
RH6/AN14  
RJ6/LB  
Note 1: CCP2 is multiplexed with RC1 when CCP2MX is set.  
2: CCP2 is multiplexed by default with RE7 when the device is configured in Microcontroller mode.  
3: PSP is available only in Microcontroller mode.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 3  
PIC18F6520/8520/6620/8620/6720/8720  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 21  
3.0 Reset.......................................................................................................................................................................................... 29  
4.0 Memory Organization................................................................................................................................................................. 39  
5.0 Flash Program Memory.............................................................................................................................................................. 61  
6.0 External Memory Interface ......................................................................................................................................................... 71  
7.0 Data EEPROM Memory ............................................................................................................................................................. 79  
8.0 8 X 8 Hardware Multiplier........................................................................................................................................................... 85  
9.0 Interrupts .................................................................................................................................................................................... 87  
10.0 I/O Ports ................................................................................................................................................................................... 103  
11.0 Timer0 Module ......................................................................................................................................................................... 131  
12.0 Timer1 Module ......................................................................................................................................................................... 135  
13.0 Timer2 Module ......................................................................................................................................................................... 141  
14.0 Timer3 Module ......................................................................................................................................................................... 143  
15.0 Timer4 Module ......................................................................................................................................................................... 147  
16.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 149  
17.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 157  
18.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART).............................................................. 197  
19.0 10-Bit Analog-to-Digital Converter (A/D) Module ..................................................................................................................... 213  
20.0 Comparator Module.................................................................................................................................................................. 223  
21.0 Comparator Voltage Reference Module................................................................................................................................... 229  
22.0 Low-Voltage Detect.................................................................................................................................................................. 233  
23.0 Special Features of the CPU.................................................................................................................................................... 239  
24.0 Instruction Set Summary.......................................................................................................................................................... 259  
25.0 Development Support............................................................................................................................................................... 301  
26.0 Electrical Characteristics .......................................................................................................................................................... 305  
27.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 341  
28.0 Packaging Information.............................................................................................................................................................. 355  
Appendix A: Revision History............................................................................................................................................................. 361  
Appendix B: Device Differences......................................................................................................................................................... 361  
Appendix C: Conversion Considerations ........................................................................................................................................... 362  
Appendix D: Migration from Mid-range to Enhanced Devices ........................................................................................................... 362  
Appendix E: Migration from High-end to Enhanced Devices ............................................................................................................. 363  
The Microchip Web Site..................................................................................................................................................................... 375  
Customer Change Notification Service .............................................................................................................................................. 375  
Customer Support.............................................................................................................................................................................. 375  
Reader Response .............................................................................................................................................................................. 376  
PIC18F6520/8520/6620/8620/6720/8720 Product Identification System .......................................................................................... 377  
DS39609C-page 4  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 5  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 6  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
With the addition of new operating modes, the External  
Memory Interface offers many new options, including:  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
• Operating the microcontroller entirely from external  
memory  
• PIC18F6520  
• PIC18F6620  
• PIC18F6720  
• PIC18F8520  
• PIC18F8620  
• PIC18F8720  
• Using combinations of on-chip and external  
memory, up to the 2-Mbyte limit  
• Using external Flash memory for reprogrammable  
application code, or large data tables  
This family offers the same advantages of all PIC18  
microcontrollers namely, high computational  
• Using external RAM devices for storing large  
amounts of variable data  
performance at an economical price – with the addition of  
high endurance Enhanced Flash program memory. The  
PIC18FXX20 family also provides an enhanced range of  
program memory options and versatile analog features  
that make it ideal for complex, high-performance  
applications.  
1.1.3  
EASY MIGRATION  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between the 64-pin  
members, between the 80-pin members, or even  
jumping from 64-pin to 80-pin devices.  
1.1  
Key Features  
1.1.1  
EXPANDED MEMORY  
The PIC18FXX20 family introduces the widest range of  
on-chip, Enhanced Flash program memory available  
on PIC® microcontrollers – up to 128 Kbyte (or 65,536  
words), the largest ever offered by Microchip. For users  
with more modest code requirements, the family also  
includes members with 32 Kbyte or 64 Kbyte.  
1.1.4  
OTHER SPECIAL FEATURES  
Communications: The PIC18FXX20 family  
incorporates a range of serial communications  
peripherals, including 2 independent USARTs and  
a Master SSP module, capable of both SPI and  
I2C (Master and Slave) modes of operation. For  
PIC18F8X20 devices, one of the general purpose  
I/O ports can be reconfigured as an 8-bit Parallel  
Slave Port for direct processor-to-processor  
communications.  
Other memory features are:  
Data RAM and Data EEPROM: The  
PIC18FXX20 family also provides plenty of room  
for application data. Depending on the device,  
either 2048 or 3840 bytes of data RAM are  
available. All devices have 1024 bytes of data  
EEPROM for long-term retention of nonvolatile  
data.  
CCP Modules: All devices in the family  
incorporate five Capture/Compare/PWM modules  
to maximize flexibility in control applications. Up  
to four different time bases may be used to  
perform several different operations at once.  
Memory Endurance: The Enhanced Flash cells  
for both program memory and data EEPROM are  
rated to last for many thousands of erase/write  
cycles – up to 100,000 for program memory and  
1,000,000 for EEPROM. Data retention without  
refresh is conservatively estimated to be greater  
than 40 years.  
Analog Features: All devices in the family  
feature 10-bit A/D converters, with up to 16 input  
channels, as well as the ability to perform  
conversions during Sleep mode. Also included  
are dual analog comparators with programmable  
input and output configuration, a programmable  
Low-Voltage Detect module and a programmable  
Brown-out Reset module.  
1.1.2  
EXTERNAL MEMORY INTERFACE  
In the event that 128 Kbytes of program memory is  
inadequate for an application, the PIC18F8X20  
members of the family also implement an External  
Memory Interface. This allows the controller’s internal  
program counter to address a memory space of up to  
2 Mbytes, permitting a level of data access that few  
8-bit devices can claim.  
Self-programmability: These devices can write  
to their own program memory spaces under inter-  
nal software control. By using a bootloader routine  
located in the protected Boot Block at the top of  
program memory, it becomes possible to create  
an application that can update itself in the field.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 7  
PIC18F6520/8520/6620/8620/6720/8720  
3. A/D channels (12 for PIC18F6X20 devices,  
1.2  
Details on Individual Family  
Members  
16 for PIC18F8X20)  
4. I/O pins (52 on PIC18F6X20 devices, 68 on  
PIC18F8X20)  
The PIC18FXX20 devices are available in 64-pin and  
80-pin packages. They are differentiated from each  
other in five ways:  
5. External program memory interface (present  
only on PIC18F8X20 devices)  
1. Flash program memory (32 Kbytes for  
All other features for devices in the PIC18FXX20 family  
are identical. These are summarized in Table 1-1.  
PIC18FX520  
devices,  
64 Kbytes  
for  
PIC18FX620 devices and 128 Kbytes for  
PIC18FX720 devices)  
Block diagrams of the PIC18F6X20 and PIC18F8X20  
devices are provided in Figure 1-1 and Figure 1-2,  
respectively. The pinouts for these device families are  
listed in Table 1-2.  
2. Data RAM (2048 bytes for PIC18FX520  
devices, 3840 bytes for PIC18FX620 and  
PIC18FX720 devices)  
TABLE 1-1:  
PIC18FXX20 DEVICE FEATURES  
Features  
PIC18F6520  
PIC18F6620  
PIC18F6720  
PIC18F8520  
PIC18F8620  
PIC18F8720  
Operating Frequency  
DC – 40 MHz  
32K  
DC – 25 MHz  
64K  
DC – 25 MHz  
128K  
DC – 40 MHz  
32K  
DC – 25 MHz  
64K  
DC – 25 MHz  
128K  
Program Memory  
(Bytes)  
Program Memory  
(Instructions)  
16384  
2048  
1024  
No  
32768  
3840  
1024  
No  
65536  
3840  
1024  
No  
16384  
2048  
1024  
Yes  
32768  
3840  
1024  
Yes  
65536  
3840  
1024  
Yes  
Data Memory  
(Bytes)  
Data EEPROM  
Memory (Bytes)  
External Memory  
Interface  
Interrupt Sources  
I/O Ports  
17  
17  
17  
18  
18  
18  
Ports A, B, C, Ports A, B, C, D, Ports A, B, C, D, Ports A, B, C,  
Ports A, B, C,  
Ports A, B, C,  
D, E, F, G  
E, F, G  
E, F, G  
D, E, F, G, H, J D, E, F, G, H, J D, E, F, G, H, J  
Timers  
5
5
5
5
5
5
5
5
5
5
5
5
Capture/Compare/  
PWM Modules  
Serial Communications  
MSSP,  
MSSP,  
MSSP,  
MSSP,  
MSSP,  
MSSP,  
Addressable  
USART (2)  
Addressable  
USART (2)  
Addressable  
USART (2)  
Addressable  
USART (2)  
Addressable  
USART (2)  
Addressable  
USART (2)  
Parallel Communications  
PSP  
PSP  
PSP  
PSP  
PSP  
PSP  
10-bit Analog-to-Digital  
Module  
12 input  
channels  
12 input  
channels  
12 input  
channels  
16 input  
channels  
16 input  
channels  
16 input  
channels  
Resets (and Delays)  
POR, BOR,  
RESET  
POR, BOR,  
RESET  
POR, BOR,  
RESET  
POR, BOR,  
RESET  
POR, BOR,  
RESET  
POR, BOR,  
RESET  
Instruction,  
Stack Full,  
Instruction,  
Stack Full,  
Instruction,  
Stack Full,  
Instruction,  
Stack Full,  
Instruction,  
Stack Full,  
Instruction,  
Stack Full,  
Stack Underflow Stack Underflow Stack Underflow Stack Underflow Stack Underflow Stack Underflow  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
Programmable  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Low-Voltage Detect  
Programmable  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Brown-out Reset  
Instruction Set  
Package  
77 Instructions 77 Instructions  
64-pin TQFP 64-pin TQFP  
77 Instructions 77 Instructions 77 Instructions 77 Instructions  
64-pin TQFP 80-pin TQFP 80-pin TQFP 80-pin TQFP  
DS39609C-page 8  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 1-1:  
PIC18F6X20 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Table Pointer<21>  
inc/dec logic  
Data Latch  
Data RAM  
21  
8
8
21  
RA5/AN4/LVDIN  
RA6  
Address Latch  
12  
21  
PCLATU PCLATH  
PORTB  
RB0/INT0  
RB1/INT1  
Address<12>  
PCU PCH PCL  
Program Counter  
RB2/INT2  
RB3/INT3  
RB4/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Bank0, F  
Address Latch  
31 Level Stack  
Program Memory  
12  
Data Latch  
inc/dec  
logic  
Decode  
PORTC  
Table Latch  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
8
16  
ROM Latch  
IR  
RC6/TX1/CK1  
RC7/RX1/DT1  
8
PORTD  
PORTE  
PRODH PRODL  
8 x 8 Multiply  
RD7/PSP7:RD0/PSP0  
Instruction  
Decode &  
Control  
8
3
RE0/RD  
RE1/WR  
RE2/CS  
RE3  
RE4  
RE5  
WREG  
8
BITOP  
8
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
Oscillator  
Start-up Timer  
Timing  
Generation  
8
ALU<8>  
RE6  
RE7/CCP2  
Power-on  
Reset  
8
Watchdog  
Timer  
PORTF  
RF0/AN5  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
RF3/AN8  
RF4/AN9  
RF5/AN10/CVREF  
RF6/AN11  
RF7/SS  
MCLR/VPP  
VDD, VSS  
PORTG  
Synchronous  
Serial Port  
RG0/CCP3  
Data  
EEPROM  
USART2  
USART1  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4  
RG4/CCP5  
BOR  
LVD  
Timer2  
CCP3  
Timer3  
Timer0  
CCP1  
Timer1  
CCP2  
Timer4  
CCP5  
10-bit  
A/D  
CCP4  
Comparator  
2003-2013 Microchip Technology Inc.  
DS39609C-page 9  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 1-2:  
PIC18F8X20 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/LVDIN  
RA6  
Table Pointer<21>  
21  
Data Latch  
8
8
Data RAM  
21  
inc/dec logic  
Address Latch  
12  
PORTB  
21  
PCLATU PCLATH  
RB0/INT0  
RB1/INT1  
RB2/INT2  
Address<12>  
PCU PCH PCL  
Program Counter  
RB3/INT3/CCP2  
RB4/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Bank0, F  
Address Latch  
31 Level Stack  
Program Memory  
12  
Data Latch  
PORTC  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
inc/dec  
logic  
Decode  
Table Latch  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX1/CK1  
RC7/RX1/DT1  
8
16  
ROM Latch  
IR  
AD15:AD0, A19:A16(1)  
PORTD  
PORTE  
RD7/PSP7/AD7:  
RD0/PSP0/AD0  
8
PRODH PRODL  
8 x 8 Multiply  
RE0/RD/AD8  
RE1/WR/AD9  
RE2/CS/AD10  
RE3/AD11  
Instruction  
Decode &  
Control  
8
3
RE4/AD12  
RE5/AD13  
RE6/AD14  
WREG  
8
BITOP  
8
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
RE7/CCP2/AD15  
Oscillator  
Start-up Timer  
Timing  
Generation  
8
PORTF  
RF0/AN5  
ALU<8>  
Power-on  
Reset  
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
RF3/AN8  
RF4/AN9  
RF5/AN10/CVREF  
RF6/AN11  
8
Watchdog  
Timer  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
RF7/SS  
PORTG  
RG0/CCP3  
MCLR/VPP  
VDD, VSS  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4  
RG4/CCP5  
PORTH  
PORTJ  
RH3/AD19:RH0/AD16  
RH7/AN15:RH4/AN12  
Synchronous  
Serial Port  
Data  
EEPROM  
USART1  
USART2  
RJ0/ALE  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
BOR  
LVD  
Timer2  
Timer3  
Timer0  
Timer1  
Timer4  
RJ6/LB  
RJ7/UB  
10-bit  
A/D  
Comparator  
CCP1  
CCP2  
CCP3  
CCP4  
CCP5  
Note 1: External memory interface pins are physically multiplexed with PORTD (AD7:AD0), PORTE (AD15:AD8) and PORTH (A19:A16).  
DS39609C-page 10  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
MCLR/VPP  
MCLR  
7
9
Master Clear (input) or programming  
voltage (output).  
I
ST  
Master Clear (Reset) input. This pin is  
an active-low Reset to the device.  
Programming voltage input.  
VPP  
P
OSC1/CLKI  
OSC1  
39  
49  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock  
source input. ST buffer when configured  
in RC mode; otherwise CMOS.  
I
I
CMOS/ST  
CMOS  
CLKI  
External clock source input. Always  
associated with pin function OSC1  
(see OSC1/CLKI, OSC2/CLKO pins).  
OSC2/CLKO/RA6  
OSC2  
40  
50  
Oscillator crystal or clock output.  
Oscillator crystal output.  
O
O
Connects to crystal or resonator in  
Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO,  
which has 1/4 the frequency of OSC1  
and denotes the instruction cycle rate.  
General purpose I/O pin.  
CLKO  
RA6  
I/O  
TTL  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 11  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
24  
23  
22  
30  
29  
28  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
21  
28  
27  
27  
34  
33  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (High) input.  
AN3  
VREF+  
RA4/T0CKI  
RA4  
I/O  
I
ST/OD  
ST  
Digital I/O – Open-drain when  
configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/LVDIN  
RA5  
I/O  
TTL  
Digital I/O.  
AN4  
LVDIN  
I
I
Analog  
Analog  
Analog input 4.  
Low-Voltage Detect input.  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
DS39609C-page 12  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTB is a bidirectional I/O port. PORTB  
can be software programmed for internal  
weak pull-ups on all inputs.  
RB0/INT0  
RB0  
48  
47  
46  
45  
58  
57  
56  
55  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3/CCP2  
RB3  
I/O  
I/O  
I/O  
TTL  
ST  
ST  
Digital I/O.  
INT3  
External interrupt 3.  
Capture2 input, Compare2 output,  
PWM2 output.  
CCP2(1)  
RB4/KBI0  
RB4  
44  
43  
54  
53  
I/O  
I
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
KBI1  
PGM  
I/O  
ST  
Low-Voltage ICSP Programming enable  
pin.  
RB6/KBI2/PGC  
RB6  
42  
37  
52  
47  
I/O  
I
I/O  
TTL  
ST  
ST  
Digital I/O.  
KBI2  
PGC  
Interrupt-on-change pin.  
In-Circuit Debugger and  
ICSP programming clock.  
RB7/KBI3/PGD  
RB7  
I/O  
I/O  
TTL  
ST  
Digital I/O.  
KBI3  
PGD  
Interrupt-on-change pin.  
In-Circuit Debugger and  
ICSP programming data.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 13  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
29  
36  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
T1OSI  
Timer1 oscillator input.  
Capture2 input/Compare2 output/  
PWM2 output.  
CCP2(2)  
RC2/CCP1  
RC2  
33  
34  
43  
44  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture1 input/Compare1 output/  
PWM1 output.  
CCP1  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Synchronous serial clock input/output  
for SPI mode.  
SCK  
SCL  
I/O  
ST  
Synchronous serial clock input/output  
for I2C mode.  
RC4/SDI/SDA  
RC4  
35  
45  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SPI data in.  
I2C data I/O.  
SDI  
SDA  
RC5/SDO  
RC5  
36  
31  
46  
37  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
USART 1 asynchronous transmit.  
USART 1 synchronous clock  
(see RX1/DT1).  
RC7/RX1/DT1  
RC7  
32  
38  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
USART 1 asynchronous receive.  
USART 1 synchronous data  
(see TX1/CK1).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
DS39609C-page 14  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTD is a bidirectional I/O port. These  
pins have TTL input buffers when external  
memory is enabled.  
RD0/PSP0/AD0  
RD0  
58  
55  
54  
53  
52  
51  
50  
49  
72  
69  
68  
67  
66  
65  
64  
63  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 0.  
PSP0  
AD0(3)  
RD1/PSP1/AD1  
RD1  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 1.  
PSP1  
AD1(3)  
RD2/PSP2/AD2  
RD2  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 2.  
PSP2  
AD2(3)  
RD3/PSP3/AD3  
RD3  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 3.  
PSP3  
AD3(3)  
RD4/PSP4/AD4  
RD4  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 4.  
PSP4  
AD4(3)  
RD5/PSP5/AD5  
RD5  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 5.  
PSP5  
AD5(3)  
RD6/PSP6/AD6  
RD6  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 6.  
PSP6  
AD6(3)  
RD7/PSP7/AD7  
RD7  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 7.  
PSP7  
AD7(3)  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 15  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTE is a bidirectional I/O port.  
RE0/RD/AD8  
RE0  
2
1
4
3
I/O  
I
ST  
TTL  
Digital I/O.  
Read control for Parallel Slave Port  
(see WR and CS pins).  
RD  
AD8(3)  
I/O  
TTL  
External memory address/data 8.  
RE1/WR/AD9  
RE1  
I/O  
I
ST  
TTL  
Digital I/O.  
Write control for Parallel Slave Port  
(see CS and RD pins).  
WR  
AD9(3)  
I/O  
TTL  
External memory address/data 9.  
RE2/CS/AD10  
64  
78  
RE2  
CS  
I/O  
I
ST  
TTL  
Digital I/O.  
Chip select control for Parallel Slave  
Port (see RD and WR).  
AD10(3)  
I/O  
TTL  
External memory address/data 10.  
RE3/AD11  
RE3  
63  
62  
61  
60  
59  
77  
76  
75  
74  
73  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 11.  
AD11(3)  
RE4/AD12  
RE4  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 12.  
AD12  
RE5/AD13  
RE5  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 13.  
AD13(3)  
RE6/AD14  
RE6  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 14.  
AD14(3)  
RE7/CCP2/AD15  
RE7  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture2 input/Compare2 output/  
PWM2 output.  
CCP2(1,4)  
AD15(3)  
I/O  
TTL  
External memory address/data 15.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
DS39609C-page 16  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTF is a bidirectional I/O port.  
RF0/AN5  
RF0  
18  
17  
24  
23  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 5.  
AN5  
RF1/AN6/C2OUT  
RF1  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
16  
18  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF1  
15  
14  
13  
17  
16  
15  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF1  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF1  
I/O  
I
O
ST  
Analog  
Analog  
Digital I/O.  
Analog input 10.  
Comparator VREF output.  
AN10  
CVREF  
RF6/AN11  
RF6  
12  
11  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/SS  
RF7  
I/O  
I
ST  
TTL  
Digital I/O.  
SPI slave select input.  
SS  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 17  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTG is a bidirectional I/O port.  
RG0/CCP3  
RG0  
3
4
5
6
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture3 input/Compare3 output/  
PWM3 output.  
CCP3  
RG1/TX2/CK2  
RG1  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
USART 2 asynchronous transmit.  
USART 2 synchronous clock  
(see RX2/DT2).  
RG2/RX2/DT2  
RG2  
5
7
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
USART 2 asynchronous receive.  
USART 2 synchronous data  
(see TX2/CK2).  
RG3/CCP4  
RG3  
6
8
8
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture4 input/Compare4 output/  
PWM4 output.  
CCP4  
RG4/CCP5  
RG4  
10  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture5 input/Compare5 output/  
PWM5 output.  
CCP5  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
DS39609C-page 18  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTH is a bidirectional I/O port(5)  
.
RH0/A16  
RH0  
79  
80  
1
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 16.  
A16  
RH1/A17  
RH1  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 17.  
A17  
RH2/A18  
RH2  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 18.  
A18  
RH3/A19  
RH3  
2
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 19.  
A19  
RH4/AN12  
RH4  
22  
21  
20  
19  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 12.  
AN12  
RH5/AN13  
RH5  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 13.  
AN13  
RH6/AN14  
RH6  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 14.  
AN14  
RH7/AN15  
RH7  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 15.  
AN15  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 19  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 1-2:  
Pin Name  
PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
PIC18F6X20 PIC18F8X20  
PORTJ is a bidirectional I/O port(5)  
.
RJ0/ALE  
RJ0  
62  
61  
60  
59  
39  
40  
41  
42  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address latch enable.  
ALE  
RJ1/OE  
RJ1  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory output enable.  
OE  
RJ2/WRL  
RJ2  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory write low control.  
WRL  
RJ3/WRH  
RJ3  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory write high control.  
WRH  
RJ4/BA0  
RJ4  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory Byte Address 0 control.  
BA0  
RJ5/CE  
RJ5  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory chip enable control.  
CE  
RJ6/LB  
RJ6  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory low byte select.  
LB  
RJ7/UB  
RJ7  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory high byte select.  
UB  
VSS  
VDD  
9, 25,  
41, 56  
11, 31,  
51, 70  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
10, 26,  
38, 57  
12, 32,  
48, 71  
P
(6)  
AVSS  
20  
19  
26  
25  
P
P
Ground reference for analog modules.  
Positive supply for analog modules.  
(6)  
AVDD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except  
Microcontroller).  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X20 devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.  
6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for  
proper operation of the part in user or ICSP modes. See parameter D001A for details.  
DS39609C-page 20  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Ranges Tested:  
Oscillator Types  
Mode  
Freq  
C1  
C2  
The PIC18FXX20 devices can be operated in eight  
different oscillator modes. The user can program three  
configuration bits (FOSC2, FOSC1 and FOSC0) to  
select one of these eight modes:  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-68 pF  
15-68 pF  
68-100 pF  
15-68 pF  
15-68 pF  
HS  
8.0 MHz  
16.0 MHz  
10-68 pF  
10-22 pF  
10-68 pF  
10-22 pF  
1. LP  
Low-Power Crystal  
2. XT  
Crystal/Resonator  
These values are for design guidance only.  
See notes following this table.  
3. HS  
High-Speed Crystal/Resonator  
4. HS+PLL  
High-Speed Crystal/Resonator  
with PLL enabled  
Resonators Used:  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
0.5%  
5. RC  
External Resistor/Capacitor  
0.5%  
0.5%  
0.5%  
6. RCIO  
External Resistor/Capacitor with  
I/O pin enabled  
7. EC  
External Clock  
All resonators used did not have built-in capacitors.  
8. ECIO  
External Clock with I/O pin  
enabled  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use high  
gain HS mode, try a lower frequency  
resonator, or switch to a crystal oscillator.  
In XT, LP, HS or HS+PLL Oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections.  
The PIC18FXX20 oscillator design requires the use of  
a parallel cut crystal.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
Note:  
Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturer’s  
specifications.  
appropriate  
components,  
performance.  
values  
or  
of  
verify  
external  
oscillator  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
CONFIGURATION)  
(1)  
C1  
OSC1  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
Sleep  
(2)  
RS  
(1)  
C2  
PIC18FXX20  
OSC2  
Note 1: See Table 2-1 and Table 2-2 for recommended  
values of C1 and C2.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
3: RF varies with the oscillator mode chosen.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 21  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LPOSCCONFIGURATION)  
Ranges Tested:  
Mode  
Freq  
C1  
C2  
OSC1  
Clock from  
Ext. System  
LP  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
4 MHz  
8 MHz  
20 MHz  
PIC18FXX20  
OSC2  
15-22 pF  
15-22 pF  
Open  
XT  
HS  
15-22 pF  
15-22 pF  
15-22 pF  
15-22 pF  
2.3  
RC Oscillator  
For timing insensitive applications, the “RC” and  
“RCIO” device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit, due  
to normal process parameter variation. Furthermore,  
the difference in lead frame capacitance between pack-  
age types will also affect the oscillation frequency,  
especially for low CEXT values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used. Figure 2-3 shows how the  
R/C combination is connected.  
Capacitor values are for design guidance only.  
These capacitors were tested with the above crystal  
frequencies for basic start-up and operation. These  
values are not optimized.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
See the notes following this table for additional  
information.  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use the  
HS mode or switch to a crystal oscillator.  
FIGURE 2-3:  
RC OSCILLATOR MODE  
VDD  
3: Since each resonator/crystal has its  
own characteristics, the user should  
consult the resonator/crystal manufac-  
turer for appropriate values of external  
REXT  
Internal  
OSC1  
Clock  
CEXT  
VSS  
components,  
performance.  
or  
verify  
oscillator  
PIC18FXX20  
OSC2/CLKO  
FOSC/4  
4: RS may be required to avoid overdriving  
crystals with low drive level specification.  
Recommended values: 3 k  REXT 100 k  
5: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
CEXT > 20 pF  
The RCIO Oscillator mode functions like the RC mode,  
except that the OSC2 pin becomes an additional  
general purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6).  
An external clock source may also be connected to the  
OSC1 pin in the HS, XT and LP modes, as shown in  
Figure 2-2.  
DS39609C-page 22  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 2-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
(ECIOCONFIGURATION)  
2.4  
External Clock Input  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. The  
feedback device between OSC1 and OSC2 is turned  
off in these modes to save current. There is a maximum  
1.5 s start-up required after a Power-on Reset, or  
wake-up from Sleep mode.  
OSC1  
Clock from  
Ext. System  
PIC18FXX20  
I/O (OSC2)  
RA6  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
Oscillator mode.  
2.5  
HS/PLL  
A Phase Locked Loop circuit (PLL) is provided as a  
programmable option for users that want to multiply the  
frequency of the incoming crystal oscillator signal by 4.  
For an input clock frequency of 10 MHz, the internal  
clock frequency will be multiplied to 40 MHz. This is  
useful for customers who are concerned with EMI due  
to high-frequency crystals.  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION  
(EC CONFIGURATION)  
OSC1  
Clock from  
Ext. System  
The PLL is one of the modes of the FOSC<2:0> config-  
uration bits. The oscillator mode is specified during  
device programming.  
PIC18FXX20  
OSC2  
FOSC/4  
The PLL can only be enabled when the oscillator con-  
figuration bits are programmed for HS mode. If they are  
programmed for any other mode, the PLL is not  
enabled and the system clock will come directly from  
OSC1. Also, PLL operation cannot be changed “on-  
the-fly”. To enable or disable it, the controller must  
either cycle through a Power-on Reset, or switch the  
clock source from the main oscillator to the Timer1  
oscillator and back again. See Section 2.6 “Oscillator  
Switching Feature” for details on oscillator switching.  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO Oscillator mode.  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out that is called TPLL.  
FIGURE 2-6:  
PLL BLOCK DIAGRAM  
(from Configuration  
bit Register)  
HS Osc  
PLL Enable  
Phase  
Comparator  
OSC2  
OSC1  
FIN  
Loop  
Filter  
VCO  
FOUT  
Crystal  
Osc  
SYSCLK  
Divide by 4  
2003-2013 Microchip Technology Inc.  
DS39609C-page 23  
PIC18F6520/8520/6620/8620/6720/8720  
execution mode. Figure 2-7 shows a block diagram of  
the system clock sources. The clock switching feature  
is enabled by programming the Oscillator Switching  
Enable (OSCSEN) bit in Configuration Register 1H to a  
0’. Clock switching is disabled in an erased device.  
See Section 12.0 “Timer1 Module” for further details  
of the Timer1 oscillator. See Section 23.0 “Special  
Features of the CPU” for Configuration register  
details.  
2.6  
Oscillator Switching Feature  
The PIC18FXX20 devices include a feature that allows  
the system clock source to be switched from the main  
oscillator to an alternate low-frequency clock source.  
For the PIC18FXX20 devices, this alternate clock  
source is the Timer1 oscillator. If a low-frequency  
crystal (32 kHz, for example) has been attached to the  
Timer1 oscillator pins and the Timer1 oscillator has  
been enabled, the device can switch to a low-power  
FIGURE 2-7:  
DEVICE CLOCK SOURCES  
PIC18FXX20  
Main Oscillator  
OSC2  
TOSC/4  
4 x PLL  
Sleep  
TOSC  
TSCLK  
OSC1  
Timer1 Oscillator  
T1OSO  
TT1P  
T1OSCEN  
Clock  
Source  
Enable  
Oscillator  
T1OSI  
Clock Source Option  
for other Modules  
DS39609C-page 24  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
Note:  
The Timer1 oscillator must be enabled  
and operating to switch the system clock  
source. The Timer1 oscillator is enabled  
by setting the T1OSCEN bit in the Timer1  
Control register (T1CON). If the Timer1  
oscillator is not enabled, then any write to  
the SCS bit will be ignored (SCS bit forced  
cleared) and the main oscillator will  
continue to be the system clock source.  
The system clock source switching is performed under  
software control. The system clock switch bit, SCS  
(OSCCON<0>), controls the clock switching. When the  
SCS bit is ‘0’, the system clock source comes from the  
main oscillator that is selected by the FOSC configura-  
tion bits in Configuration Register 1H. When the SCS  
bit is set, the system clock source will come from the  
Timer1 oscillator. The SCS bit is cleared on all forms of  
Reset.  
REGISTER 2-1:  
OSCCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
SCS  
bit 7  
bit 0  
bit 7-1 Unimplemented: Read as ‘0’  
bit 0 SCS: System Clock Switch bit  
When OSCSEN Configuration bit = 0and T1OSCEN bit is set:  
1= Switch to Timer1 oscillator/clock pin  
0= Use primary oscillator/clock input pin  
When OSCSEN and T1OSCEN are in other states:  
Bit is forced clear.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 25  
PIC18F6520/8520/6620/8620/6720/8720  
A timing diagram indicating the transition from the main  
oscillator to the Timer1 oscillator is shown in Figure 2-8.  
The Timer1 oscillator is assumed to be running all the  
time. After the SCS bit is set, the processor is frozen at  
the next occurring Q1 cycle. After eight synchronization  
cycles are counted from the Timer1 oscillator, operation  
resumes. No additional delays are required after the  
synchronization cycles.  
2.6.2  
OSCILLATOR TRANSITIONS  
PIC18FXX20 devices contain circuitry to prevent  
“glitches” when switching between oscillator sources.  
Essentially, the circuitry waits for eight rising edges of  
the clock source that the processor is switching to. This  
ensures that the new clock source is stable and that its  
pulse width will not be less than the shortest pulse  
width of the two clock sources.  
FIGURE 2-8:  
TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q1 Q2 Q3 Q4 Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
TSCS  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1:Delay on internal system clock is eight oscillator cycles for synchronization.  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
If the main oscillator is configured for an external  
crystal (HS, XT, LP), then the transition will take place  
after an oscillator start-up time (TOST) has occurred. A  
timing diagram, indicating the transition from the  
Timer1 oscillator to the main oscillator for HS, XT and  
LP modes, is shown in Figure 2-9.  
FIGURE 2-9:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, XT, LP)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q3  
Q4  
Q1  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
OSC2  
TOSC  
Internal  
System Clock  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC + 6  
PC  
PC + 2  
Note 1:TOST = 1024 TOSC (drawing not to scale).  
DS39609C-page 26  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
If the main oscillator is configured for HS-PLL mode, an  
frequency. A timing diagram, indicating the transition  
from the Timer1 oscillator to the main oscillator for  
HS-PLL mode, is shown in Figure 2-10.  
oscillator start-up time (TOST), plus an additional PLL  
time-out (TPLL), will occur. The PLL time-out is typically  
2 ms and allows the PLL to lock to the main oscillator  
FIGURE 2-10:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
OSC2  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1:TOST = 1024 TOSC (drawing not to scale).  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator start-up time-out.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram,  
indicating the transition from the Timer1 oscillator to the  
main oscillator for RC, RCIO, EC and ECIO modes, is  
shown in Figure 2-11.  
FIGURE 2-11:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
T1OSI  
OSC1  
TOSC  
6
1
4
5
7
8
2
3
OSC2  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1:RC Oscillator mode assumed.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 27  
PIC18F6520/8520/6620/8620/6720/8720  
2.7  
Effects of Sleep Mode on the  
On-Chip Oscillator  
2.8  
Power-up Delays  
Power up delays are controlled by two timers so that no  
external Reset circuitry is required for most  
applications. The delays ensure that the device is kept  
in Reset until the device power supply and clock are  
stable. For additional information on Reset operation,  
see Section 3.0 “Reset”.  
When the device executes a SLEEPinstruction, the on-  
chip clocks and oscillator are turned off and the device  
is held at the beginning of an instruction cycle (Q1  
state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
switching currents have been removed, Sleep mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
that will operate during Sleep will increase the current  
consumed during Sleep. The user can wake from  
Sleep through external Reset, Watchdog Timer Reset  
or through an interrupt.  
The first timer is the Power-up Timer (PWRT), which  
optionally provides a fixed delay of 72 ms (nominal) on  
power-up only (POR and BOR). The second timer is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in Reset until the crystal oscillator is stable.  
With the PLL enabled (HS/PLL Oscillator mode), the  
time-out sequence following a Power-on Reset is differ-  
ent from other oscillator modes. The time-out sequence  
is as follows: First, the PWRT time-out is invoked after  
a POR time delay has expired. Then, the Oscillator  
Start-up Timer (OST) is invoked. However, this is still  
not a sufficient amount of time to allow the PLL to lock  
at high frequencies. The PWRT timer is used to provide  
an additional fixed 2 ms (nominal) time-out to allow the  
PLL ample time to lock to the incoming clock frequency.  
TABLE 2-3:  
OSC Mode  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
OSC2 Pin  
RC  
Floating, external resistor should pull high  
At logic low  
RCIO  
Floating, external resistor should pull high  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
At logic low  
ECIO  
Floating  
Floating  
EC  
LP, XT and HS  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
Note:  
See Table 3-1 in Section 3.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
DS39609C-page 28  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Most registers are not affected by a WDT wake-up,  
3.0  
RESET  
since this is viewed as the resumption of normal  
operation. Status bits from the RCON register, RI, TO,  
PD, POR and BOR, are set or cleared differently in  
different Reset situations, as indicated in Table 3-2.  
These bits are used in software to determine the nature  
of the Reset. See Table 3-3 for a full description of the  
Reset states of all registers.  
The PIC18FXX20 devices differentiate between  
various kinds of Reset:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
e) Programmable Brown-out Reset (PBOR)  
f) RESETInstruction  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses. The MCLR pin is not driven low by  
any internal Resets, including the WDT.  
g) Stack Full Reset  
h) Stack Underflow Reset  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” on Power-on Reset, MCLR, WDT Reset, Brown-  
out Reset, MCLR Reset during Sleep and by the  
RESETinstruction.  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESETInstruction  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
WDT  
Time-out  
Reset  
MCLR  
WDT  
Module  
Sleep  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BOREN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
Q
R
OSC1  
PWRT  
10-bit Ripple Counter  
On-chip  
RC OSC(1)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 3-1 for time-out situations.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 29  
PIC18F6520/8520/6620/8620/6720/8720  
3.1  
Power-on Reset (POR)  
3.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR  
circuitry, tie the MCLR pin through a 1 kto 10 k  
resistor to VDD. This will eliminate external RC  
components usually needed to create a Power-on  
Reset delay. A minimum rise rate for VDD is specified  
(parameter D004). For a slow rise time, see Figure 3-2.  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycles (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset, or wake-up from  
Sleep.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
3.4  
PLL Lock Time-out  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to  
provide a fixed time-out that is sufficient for the PLL to  
lock to the main oscillator frequency. This PLL lock  
time-out (TPLL) is typically 2 ms and follows the  
oscillator start-up time-out.  
FIGURE 3-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
VDD  
3.5  
Brown-out Reset (BOR)  
A configuration bit, BOREN, can disable (if clear/  
programmed), or enable (if set) the Brown-out Reset  
circuitry. If VDD falls below parameter D005 for greater  
than parameter #35, the brown-out situation will reset  
the chip. A Reset may not occur if VDD falls below  
parameter D005 for less than parameter #35. The chip  
will remain in Brown-out Reset until VDD rises above  
BVDD. If the Power-up Timer is enabled, it will be  
invoked after VDD rises above BVDD; it then will keep  
the chip in Reset for an additional time delay (parame-  
ter #33). If VDD drops below BVDD while the Power-up  
Timer is running, the chip will go back into a Brown-out  
Reset and the Power-up Timer will be initialized. Once  
VDD rises above BVDD, the Power-up Timer will  
execute the additional time delay.  
D
R
R1  
MCLR  
PIC18FXX20  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 1 kto 10 kwill limit any current flow-  
ing into MCLR from external capacitor C, in  
the event of MCLR/VPP pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
3.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired. Then, OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figures 3-3 through 3-7 depict time-out sequences on  
power-up.  
3.2  
Power-up Timer (PWRT)  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33) only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in Reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/  
disable the PWRT.  
Since the time-outs occur from the POR pulse, the  
time-outs will expire if MCLR is kept low long enough.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes, or to  
synchronize more than one PIC18FXX20 device  
operating in parallel.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
Table 3-2 shows the Reset conditions for some Special  
Function Registers, while Table 3-3 shows the Reset  
conditions for all of the registers.  
DS39609C-page 30  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2)  
Wake-up from  
Sleep or  
Oscillator Switch  
Oscillator  
Configuration  
Brown-out  
PWRTE = 0  
PWRTE = 1  
HS with PLL enabled(1)  
72 ms + 1024 TOSC  
+ 2ms  
1024 TOSC  
+ 2 ms  
72 ms(2) + 1024 TOSC  
+ 2 ms  
1024 TOSC + 2 ms  
HS, XT, LP  
EC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
1.5 s  
72 ms(2) + 1024 TOSC  
72 ms(2)  
1024 TOSC  
1.5 s(3)  
External RC  
72 ms  
72 ms(2)  
Note 1: 2 ms is the nominal time required for the 4xPLL to lock.  
2: 72 ms is the nominal power-up timer delay, if implemented.  
3: 1.5 s is the recovery time from Sleep. There is no recovery time from oscillator switch.  
REGISTER 3-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-1  
POR  
R/W-1  
BOR  
bit 7  
Note 1: Refer to Section 4.14 “RCON Register” for bit definitions.  
bit 0  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
0--1 1100  
0--u uuuu  
1
u
1
u
1
u
0
u
0
u
u
u
u
u
MCLR Reset during normal  
operation  
Software Reset during normal  
operation  
0000h  
0000h  
0000h  
0--0 uuuu  
0--u uu11  
0--u uu11  
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
1
u
1
u
Stack Full Reset during normal  
operation  
Stack Underflow Reset during  
normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0--u 10uu  
0--u 01uu  
u--u 00uu  
0--1 11u0  
u--u 00uu  
u
1
u
1
u
1
0
0
1
1
0
1
0
1
0
u
u
u
1
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
PC + 2  
0000h  
PC + 2(1)  
Brown-out Reset  
Interrupt wake-up from Sleep  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
2003-2013 Microchip Technology Inc.  
DS39609C-page 31  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 3-3:  
Register  
TOSU  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 1111  
1100 0000  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
N/A  
PIC18F6X20 PIC18F8X20  
---0 0000  
TOSH  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0 PIC18F6X20 PIC18F8X20  
POSTDEC0 PIC18F6X20 PIC18F8X20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC0  
PLUSW0  
FSR0H  
FSR0L  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
WREG  
INDF1  
POSTINC1 PIC18F6X20 PIC18F8X20  
POSTDEC1 PIC18F6X20 PIC18F8X20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC1  
PLUSW1  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
DS39609C-page 32  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
FSR1H  
FSR1L  
BSR  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
---- xxxx  
xxxx xxxx  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
INDF2  
POSTINC2 PIC18F6X20 PIC18F8X20  
POSTDEC2 PIC18F6X20 PIC18F8X20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC2  
PLUSW2  
FSR2H  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
0--q 11qq  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
0--q qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
--uu uuuu  
---- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 33  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
xxxx xxxx  
xxxx xxxx  
--00 0000  
--00 0000  
0--- -000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
---- ----  
xx-0 x000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 0000  
0--- -000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
---- ----  
uu-0 u000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
u--- -uuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- ----  
uu-0 u000  
CCP1CON PIC18F6X20 PIC18F8X20  
CCPR2H  
CCPR2L  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
CCP2CON PIC18F6X20 PIC18F8X20  
CCPR3H  
CCPR3L  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
CCP3CON PIC18F6X20 PIC18F8X20  
CVRCON  
CMCON  
TMR3H  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
TMR3L  
T3CON  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
DS39609C-page 34  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
IPR3  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
--11 1111  
--00 0000  
--00 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
0111 1111  
0000 0000  
0000 0000  
0-00 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
xxxx xxxx  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
--11 1111  
--00 0000  
--00 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
0111 1111  
0000 0000  
0000 0000  
0-00 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
--uu uuuu  
--uu uuuu  
--uu uuuu  
-u-u uuuu  
-u-u uuuu(1)  
-u-u uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu  
u-uu --uu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
MEMCON  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5,6)  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA(5,6)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 35  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
PORTJ  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
xxxx xxxx  
0000 xxxx  
---x xxxx  
x000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000(5)  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
uuuu uuuu  
0000 uuuu  
uuuu uuuu  
u000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000(5)  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
u000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
PORTA(5,6) PIC18F6X20 PIC18F8X20  
TMR4  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PR4  
T4CON  
CCPR4H  
CCPR4L  
CCP4CON PIC18F6X20 PIC18F8X20  
CCPR5H  
CCPR5L  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
CCP5CON PIC18F6X20 PIC18F8X20  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
PIC18F6X20 PIC18F8X20  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
DS39609C-page 36  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 3-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA 1 kRESISTOR)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2003-2013 Microchip Technology Inc.  
DS39609C-page 37  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 3-6:  
SLOW RISE TIME (MCLR TIED TO VDD VIA 1 kRESISTOR)  
5V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POR W/PLL ENABLED  
(MCLR TIED TO VDD VIA 1 kRESISTOR)  
VDD  
MCLR  
IINTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
DS39609C-page 38  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
4.1.1  
PIC18F8X20 PROGRAM MEMORY  
MODES  
4.0  
MEMORY ORGANIZATION  
There are three memory blocks in PIC18FXX20  
devices. They are:  
PIC18F8X20 devices differ significantly from their  
PIC18 predecessors in their utilization of program  
memory. In addition to available on-chip Flash program  
memory, these controllers can also address up to  
2 Mbytes of external program memory through the  
External Memory Interface. There are four distinct  
operating modes available to the controllers:  
• Program Memory  
• Data RAM  
• Data EEPROM  
Data and program memory use separate busses,  
which allows for concurrent access of these blocks.  
Additional detailed information for Flash program  
memory and data EEPROM is provided in Section 5.0  
“Flash Program Memory” and Section 7.0 “Data  
EEPROM Memory”, respectively.  
• Microprocessor (MP)  
• Microprocessor with Boot Block (MPBB)  
• Extended Microcontroller (EMC)  
• Microcontroller (MC)  
In addition to on-chip Flash, the PIC18F8X20 devices  
are also capable of accessing external program mem-  
ory through an external memory bus. Depending on the  
selected operating mode (discussed in Section 4.1.1  
“PIC18F8X20 Program Memory Modes”), the con-  
trollers may access either internal or external program  
memory exclusively, or both internal and external mem-  
ory in selected blocks. Additional information on the  
External Memory Interface is provided in Section 6.0  
“External Memory Interface”.  
The Program Memory mode is determined by setting  
the two Least Significant bits of the CONFIG3L config-  
uration byte, as shown in Register 4-1. (See also  
Section 23.1 “Configuration Bits” for additional  
details on the device configuration bits.)  
The Program Memory modes operate as follows:  
• The Microprocessor Mode permits access only  
to external program memory; the contents of the  
on-chip Flash memory are ignored. The 21-bit  
program counter permits access to a 2-Mbyte  
linear program memory space.  
4.1  
Program Memory Organization  
• The Microprocessor with Boot Block Mode  
accesses on-chip Flash memory from addresses  
000000h to 0007FFh for PIC18F8520 devices  
and from 000000h to 0001FFh for PIC18F8620  
and PIC18F8720 devices. Above this, external  
program memory is accessed all the way up to  
the 2-Mbyte limit. Program execution automati-  
cally switches between the two memories, as  
required.  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ‘0’s (a NOP  
instruction).  
Devices in the PIC18FXX20 family can be divided into  
three groups, based on program memory size. The  
PIC18FX520 devices (PIC18F6520 and PIC18F8520)  
have 32 Kbytes of on-chip Flash memory, equivalent to  
16,384 single-word instructions. The PIC18FX620  
devices (PIC18F6620 and PIC18F8620) have  
64 Kbytes of on-chip Flash memory, equivalent to  
• The Microcontroller Mode accesses only on-  
chip Flash memory. Attempts to read above the  
physical limit of the on-chip Flash (7FFFh for the  
PIC18F8520, 0FFFFh for the PIC18F8620,  
1FFFFh for the PIC18F8720) causes a read of all  
0’s (a NOPinstruction). The Microcontroller mode  
is also the only operating mode available to  
PIC18F6X20 devices.  
32,768  
single-word  
instructions.  
Finally,  
the  
PIC18FX720 devices (PIC18F6720 and PIC18F8720)  
have 128 Kbytes of on-chip Flash memory, equivalent  
to 65,536 single-word instructions.  
For all devices, the Reset vector address is at 0000h  
and the interrupt vector addresses are at 0008h and  
0018h.  
• The Extended Microcontroller Mode allows  
access to both internal and external program  
memories as a single block. The device can  
access its entire on-chip Flash memory; above  
this, the device accesses external program  
memory up to the 2-Mbyte program space limit.  
As with Boot Block mode, execution automatically  
switches between the two memories, as required.  
The program memory maps for all of the PIC18FXX20  
devices are compared in Figure 4-1.  
In all modes, the microcontroller has complete access  
to data RAM and EEPROM.  
Figure 4-2 compares the memory maps of the different  
Program Memory modes. The differences between on-  
chip and external memory access limitations are more  
fully explained in Table 4-1.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 39  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 4-1:  
INTERNAL PROGRAM MEMORY MAP AND STACK FOR PIC18FXX20 DEVICES  
PC<20:0>  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 31  
000000h  
000008h  
000000h  
000008h  
000000h  
000008h  
Reset Vector  
High Priority  
Interrupt Vector  
000018h  
000018h  
000018h  
Low Priority  
Interrupt Vector  
On-Chip Flash  
Program Memory  
On-Chip Flash  
Program Memory  
007FFFh  
008000h  
On-Chip Flash  
Program Memory  
00FFFFh  
010000h  
01FFFFh  
020000h  
Read ‘0’  
Read ‘0’  
Read ‘0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
PIC18FX520  
(32 Kbyte)  
PIC18FX620  
(64 Kbyte)  
PIC18FX720  
(128 Kbyte)  
Note:  
Size of memory regions not to scale.  
TABLE 4-1:  
Operating Mode  
Microprocessor  
MEMORY ACCESS FOR PIC18F8X20 PROGRAM MEMORY MODES  
Internal Program Memory  
External Program Memory  
Execution  
From  
Table Read  
Execution  
From  
Table Read  
From  
Table Write To  
Table Write To  
From  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Microprocessor  
with Boot Block  
Microcontroller  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Extended  
Microcontroller  
DS39609C-page 40  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 4-1:  
CONFIG3L CONFIGURATION BYTE  
R/P-1  
WAIT  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PM1  
R/P-1  
PM0  
bit 7  
bit 0  
bit 7  
WAIT: External Bus Data Wait Enable bit  
1= Wait selections unavailable, device will not wait  
0= Wait programmed by WAIT1 and WAIT0 bits of MEMCOM register (MEMCOM<5:4>)  
bit 6-2  
bit 1-0  
Unimplemented: Read as ‘0’  
PM1:PM0: Processor Data Memory Mode Select bits  
11= Microcontroller mode  
10= Microprocessor mode  
01= Microcontroller with Boot Block mode  
00= Extended Microcontroller mode  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown  
- n = Value after erase  
FIGURE 4-2:  
MEMORY MAPS FOR PIC18F8X20 PROGRAM MEMORY MODES  
Microprocessor  
with Boot Block  
Mode (MPBB)  
Extended  
Microcontroller  
Mode (EMC)  
Microprocessor  
Mode (MP)  
Microcontroller  
Mode (MC)  
000000h  
000000h  
000000h  
000000h  
On-Chip  
Program  
Memory  
(No  
On-Chip  
On-Chip  
Program  
Memory  
On-Chip  
Program  
Memory  
Program  
Memory  
access)  
Boot  
Boot+1  
Boundary  
Boundary+1  
Boundary  
Boundary+1  
External  
Program  
Memory  
Reads  
0’s  
External  
Program  
Memory  
External  
Program  
Memory  
1FFFFFh  
1FFFFFh  
1FFFFFh  
1FFFFFh  
External  
Memory  
External  
Memory  
On-Chip  
Flash  
On-Chip  
Flash  
External On-Chip  
Memory Flash  
On-Chip  
Flash  
Boundary Values for Microprocessor with Boot Block, Microcontroller and Extended Microcontroller modes(1)  
Available  
Memory Mode(s)  
Device  
Boot  
Boot+1  
Boundary  
Boundary+1  
PIC18F6520  
PIC18F6620  
PIC18F6720  
PIC18F8520  
PIC18F8620  
PIC18F8720  
0007FFh  
0001FFh  
0001FFh  
0007FFh  
0001FFh  
0001FFh  
000800h  
000200h  
000200h  
000800h  
000200h  
000200h  
007FFFh  
00FFFFh  
01FFFFh  
007FFFh  
00FFFFh  
01FFFFh  
008000h  
010000h  
020000h  
008000h  
010000h  
020000h  
MC  
MC  
MC  
MP, MPBB, MC, EMC  
MP, MPBB, MC, EMC  
MP, MPBB, MC, EMC  
Note 1: PIC18F6X20 devices are included here for completeness, to show the boundaries of their Boot Blocks and program memory spaces.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 41  
PIC18F6520/8520/6620/8620/6720/8720  
4.2.2  
RETURN STACK POINTER  
(STKPTR)  
4.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed, or an interrupt  
is Acknowledged. The PC value is pulled off the stack  
on a RETURN, RETLWor a RETFIEinstruction. PCLATU  
and PCLATH are not affected by any of the RETURNor  
CALLinstructions.  
The STKPTR register contains the stack pointer value,  
the STKFUL (Stack Full) status bit and the STKUNF  
(Stack Underflow) status bits. Register 4-2 shows the  
STKPTR register. The value of the stack pointer can be  
0 through 31. The stack pointer increments when val-  
ues are pushed onto the stack and decrements when  
values are popped off the stack. At Reset, the stack  
pointer value will be ‘0’. The user may read and write  
the stack pointer value. This feature can be used by a  
Real-Time Operating System for return stack  
maintenance.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit stack pointer, with the stack pointer initialized to  
00000b after all Resets. There is no RAM associated  
with stack pointer 00000b. This is only a Reset value.  
During a CALLtype instruction, causing a push onto the  
stack, the stack pointer is first incremented and the  
RAM location pointed to by the stack pointer is written  
with the contents of the PC. During a RETURN type  
instruction, causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR are  
transferred to the PC and then the stack pointer is  
decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
The action that takes place when the stack becomes  
full, depends on the state of the STVREN (Stack Over-  
flow Reset Enable) configuration bit. Refer to  
Section 24.0 “Instruction Set Summary” for a  
description of the device configuration bits. If STVREN  
is set (default), the 31st push will push the (PC + 2)  
value onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the stack  
pointer will be set to ‘0’.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable and  
the address on the top of the stack is readable and writ-  
able through SFR registers. Data can also be pushed  
to, or popped from the stack using the top-of-stack  
SFRs. Status bits indicate if the stack pointer is at, or  
beyond the 31 levels provided.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and STKPTR will remain at 31.  
4.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL, hold the  
contents of the stack location pointed to by the  
STKPTR register. This allows users to implement a  
software stack if necessary. After a CALL, RCALL or  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at ‘0’. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken.  
The user must disable the global interrupt enable bits  
during this time to prevent inadvertent stack  
operations.  
DS39609C-page 42  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 4-2:  
STKPTR REGISTER  
R/C-0  
R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKFUL(1) STKUNF(1)  
bit 7  
bit 0  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 can only be cleared in user software or by a POR.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
FIGURE 4-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
0x00  
TOSH  
0x1A  
TOSL  
0x34  
00010  
00011  
0x001A34 00010  
0x000D58 00001  
00000  
Top-of-Stack  
4.2.3  
PUSH AND POP INSTRUCTIONS  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program  
execution, is a desirable option. To push the current PC  
value onto the stack, a PUSH instruction can be  
executed. This will increment the stack pointer and load  
the current PC value onto the stack. TOSU, TOSH and  
TOSL can then be modified to place a return address  
on the stack.  
These Resets are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the  
appropriate STKFUL or STKUNF bit, but not cause a  
device Reset. When the STVREN bit is enabled, a full  
or underflow condition will set the appropriate STKFUL  
or STKUNF bit and then cause a device Reset. The  
STKFUL or STKUNF bits are only cleared by the user  
software or a POR Reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POP instruction. The POP  
instruction discards the current TOS by decrementing  
the stack pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 43  
PIC18F6520/8520/6620/8620/6720/8720  
4.3  
Fast Register Stack  
4.4  
PCL, PCLATH and PCLATU  
A “fast interrupt return” option is available for interrupts.  
A Fast Register Stack is provided for the Status, WREG  
and BSR registers and is only one in depth. The stack  
is not readable or writable and is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. The values in the  
registers are then loaded back into the working regis-  
ters, if the FAST RETURNinstruction is used to return  
from the interrupt.  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits  
wide. The low byte is called the PCL register; this reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable; updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable; updates to the PCU register may  
be performed through the PCLATU register.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority  
interrupt will be overwritten.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of the PCL is fixed to a value of  
0’. The PC increments by 2 to address sequential  
instructions in the program memory.  
If high priority interrupts are not disabled during low  
priority interrupts, users must save the key registers in  
software during a low priority interrupt.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
If no interrupts are used, the fast register stack can be  
used to restore the Status, WREG and BSR registers at  
the end of a subroutine call. To use the fast register  
stack for a subroutine call, a FAST CALL instruction  
must be executed.  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the  
program counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 4.8.1  
“Computed GOTO”).  
Example 4-1 shows a source code example that uses  
the fast register stack.  
EXAMPLE 4-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
4.5  
Clocking Scheme/Instruction  
Cycle  
CALL SUB1, FAST  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the  
program counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 4-4.  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
FIGURE 4-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC+2  
PC+4  
PC  
OSC2/CLKO  
(RC mode)  
Execute INST (PC-2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+2)  
Fetch INST (PC+4)  
DS39609C-page 44  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
4.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined, such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 4-2).  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 4-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed”  
from the pipeline, while the new instruction is being fetched and then executed.  
word boundaries, the data contained in the instruction  
4.7  
Instructions in Program Memory  
is a word address. The word address is written to  
PC<20:1>, which accesses the desired byte address in  
program memory. Instruction #2 in Figure 4-5 shows  
how the instruction “GOTO 000006h” is encoded in the  
program memory. Program branch instructions, which  
encode a relative address offset, operate in the same  
manner. The offset value stored in a branch instruction  
represents the number of single-word instructions that  
the PC will be offset by. Section 24.0 “Instruction Set  
Summary” provides further details of the instruction  
set.  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 4-5 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read ‘0’ (see Section 4.4 “PCL,  
PCLATH and PCLATU”).  
The CALL and GOTO instructions have an absolute  
program memory address embedded into the  
instruction. Since instructions are always stored on  
FIGURE 4-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations   
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1: MOVLW  
055h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 2: GOTO  
000006h  
Instruction 3: MOVFF  
123h, 456h  
2003-2013 Microchip Technology Inc.  
DS39609C-page 45  
PIC18F6520/8520/6620/8620/6720/8720  
word of the instruction is executed by itself (first word  
was skipped), it will execute as a NOP. This action is  
necessary when the two-word instruction is preceded  
by a conditional instruction that changes the PC. A pro-  
gram example that demonstrates this concept is shown  
in Example 4-3. Refer to Section 24.0 “Instruction  
Set Summary” for further details of the instruction set.  
4.7.1  
TWO-WORD INSTRUCTIONS  
The PIC18FXX20 devices have four two-word instruc-  
tions: MOVFF, CALL, GOTOand LFSR. The second word  
of these instructions has the 4 MSBs set to ‘1’s and is  
a special kind of NOPinstruction. The lower 12 bits of  
the second word contain data to be used by the instruc-  
tion. If the first word of the instruction is executed, the  
data in the second word is accessed. If the second  
EXAMPLE 4-3:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
0010 0100 0000 0000 ADDWF  
CASE 2:  
REG3  
; continue code  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
REG3 ; continue code  
0010 0100 0000 0000 ADDWF  
4.8.2  
TABLE READS/TABLE WRITES  
4.8  
Look-up Tables  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
Look-up tables are implemented two ways. These are:  
• Computed GOTO  
Table Reads  
Look-up table data may be stored 2 bytes per program  
word by using table reads and writes. The Table Pointer  
(TBLPTR) specifies the byte address and the Table  
Latch (TABLAT) contains the data that is read from, or  
written to program memory. Data is transferred to/from  
program memory, one byte at a time.  
4.8.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions, that returns the value 0xnnto the calling  
function.  
A description of the table read/table write operation is  
shown in Section 5.0 “Flash Program Memory”.  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
DS39609C-page 46  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
4.9.1  
GENERAL PURPOSE  
REGISTER FILE  
4.9  
Data Memory Organization  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. The data  
memory map is in turn divided into 16 banks of  
256 bytes each. The lower 4 bits of the Bank Select  
Register (BSR<3:0>) select which bank will be  
accessed. The upper 4 bits of the BSR are not  
implemented.  
The register file can be accessed either directly or indi-  
rectly. Indirect addressing operates using a File Select  
Register and corresponding Indirect File Operand. The  
operation of indirect addressing is shown in  
Section 4.12 “Indirect Addressing, INDF and FSR  
Registers”.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
The data memory space contains both Special Func-  
tion Registers (SFR) and General Purpose Registers  
(GPR). The SFRs are used for control and status of the  
controller and peripheral functions, while GPRs are  
used for data storage and scratch pad operations in the  
user’s application. The SFRs start at the last location of  
Bank 15 (0FFFh) and extend downwards. Any remain-  
ing space beyond the SFRs in the Bank may be imple-  
mented as GPRs. GPRs start at the first location of  
Data RAM is available for use as General Purpose  
Registers by all instructions. The top section of Bank 15  
(F60h to FFFh) contains SFRs. All other banks of data  
memory contain GPR registers, starting with Bank 0.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 4-2 and Table 4-3.  
Bank  
0 and grow upwards. Any read of an  
unimplemented location will read as ‘0’s.  
PIC18FX520 devices have 2048 bytes of data RAM,  
extending from Bank 0 to Bank 7 (000h through 7FFh).  
PIC18FX620 and PIC18FX720 devices have  
3840 bytes of data RAM, extending from Bank 0 to  
Bank 14 (000h through EFFh). The organization of the  
data memory space for these devices is shown in  
Figure 4-6 and Figure 4-7.  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature. The  
SFRs are typically distributed among the peripherals  
whose functions they control.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSRn) and a corresponding Indi-  
rect File Operand (INDFn). Each FSR holds a 12-bit  
address value that can be used to access any location  
in the data memory map without banking.  
The unused SFR locations are unimplemented and  
read as ‘0’s. The addresses for the SFRs are listed in  
Table 4-2.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing, or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10  
“Access Bank” provides a detailed description of the  
Access RAM.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 47  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 4-6:  
DATA MEMORY MAP FOR PIC18FX520 DEVICES  
BSR<3:0>  
Data Memory Map  
000h  
00h  
Access RAM  
GPRs  
= 0000  
05Fh  
Bank 0  
060h  
FFh  
00h  
0FFh  
100h  
= 0001  
= 0010  
= 0011  
GPRs  
GPRs  
Bank 1  
Bank 2  
FFh  
00h  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
Bank 3  
to  
Bank 6  
GPRs  
GPRs  
= 0110  
= 0111  
Access Bank  
FFh  
00h  
6FFh  
700h  
00h  
Access RAM Low  
5Fh  
60h  
Bank 7  
Access RAM High  
(SFRs)  
FFh  
7FFh  
800h  
FFh  
= 1000  
Unused,  
Read as ‘0’  
Bank 8  
to  
Bank 14  
When a = 0,  
the BSR is ignored and the  
Access Bank is used.  
The first 96 bytes are General  
Purpose RAM (from Bank 0).  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
= 1110  
EFFh  
F00h  
00h  
FFh  
Unused  
SFRs  
= 1111  
F5Fh  
Bank 15  
F60h  
FFFh  
When a = 1,  
the BSR is used to specify the  
RAM location that the instruction  
uses.  
DS39609C-page 48  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 4-7:  
DATA MEMORY MAP FOR PIC18FX620 AND PIC18FX720 DEVICES  
BSR<3:0>  
Data Memory Map  
000h  
00h  
Access RAM  
GPRs  
= 0000  
05Fh  
Bank 0  
060h  
FFh  
00h  
0FFh  
100h  
= 0001  
= 0010  
GPRs  
GPRs  
Bank 1  
Bank 2  
Bank 3  
FFh  
00h  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
= 0011  
= 0100  
= 0101  
GPRs  
GPRs  
FFh  
3FFh  
400h  
Bank 4  
Access Bank  
4FFh  
500h  
00h  
Access RAM Low  
5Fh  
60h  
Access RAM High  
(SFRs)  
FFh  
Bank 5  
to  
Bank 13  
GPRs  
GPRs  
When a = 0,  
the BSR is ignored and the  
Access Bank is used.  
= 1101  
= 1110  
The first 96 bytes are General  
Purpose RAM (from Bank 0).  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
DFFh  
E00h  
00h  
Bank 14  
Bank 15  
FFh  
00h  
EFFh  
F00h  
Unused  
SFRs  
= 1111  
F5Fh  
F60h  
FFh  
FFFh  
When a = 1,  
the BSR is used to specify the  
RAM location that the instruction  
uses.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 49  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP  
Address  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
Name  
TOSU  
Address  
FDFh  
Name  
INDF2(3)  
Address  
FBFh  
FBEh  
Name  
Address  
F9Fh  
Name  
IPR1  
PIR1  
PIE1  
CCPR1H  
CCPR1L  
TOSH  
FDEh POSTINC2(3)  
FDDh POSTDEC2(3)  
FDCh PREINC2(3)  
FDBh PLUSW2(3)  
F9Eh  
TOSL  
FBDh CCP1CON  
F9Dh  
F9Ch MEMCON(2)  
STKPTR  
PCLATU  
PCLATH  
PCL  
FBCh  
FBBh  
CCPR2H  
CCPR2L  
(1)  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
FBAh CCP2CON  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ  
FB9h  
FB8h  
CCPR3H  
CCPR3L  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0(3)  
FB7h CCP3CON  
(1)  
FB6h  
FB5h CVRCON  
(1)  
FB4h  
FB3h  
FB2h  
FB1h  
CMCON  
TMR3H  
TMR3L  
T3CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
FB0h PSPCON  
LATH  
TMR1H  
TMR1L  
T1CON  
TMR2  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
LATG  
FEEh POSTINC0(3)  
FEDh POSTDEC0(3)  
FECh PREINC0(3)  
FEBh PLUSW0(3)  
LATF  
LATE  
LATD  
PR2  
LATC  
FEAh  
FE9h  
FE8h  
FE7h  
FE6h POSTINC1(3)  
FE5h POSTDEC1(3)  
FE4h PREINC1(3)  
FE3h PLUSW1(3)  
FSR0H  
FSR0L  
WREG  
INDF1(3)  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
LATB  
LATA  
PORTJ  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
FC6h SSPCON1  
FC5h SSPCON2  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
PIR3  
PIE3  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
IPR2  
PIR2  
PIE2  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is unused on PIC18F6X20 devices. Always maintain this register clear.  
3: This is not a physical register.  
DS39609C-page 50  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F76h  
F75h  
F74h  
Name  
Address  
F5Fh  
Name  
Address  
F3Fh  
Name  
Address  
F1Fh  
Name  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F5Eh  
F5Dh  
F5Ch  
F5Bh  
F5Ah  
F59h  
F58h  
F57h  
F56h  
F55h  
F54h  
F53h  
F52h  
F51h  
F50h  
F4Fh  
F4Eh  
F4Dh  
F4Ch  
F4Bh  
F4Ah  
F49h  
F48h  
F47h  
F46h  
F45h  
F44h  
F43h  
F42h  
F41h  
F40h  
F3Eh  
F3Dh  
F3Ch  
F3Bh  
F3Ah  
F39h  
F38h  
F37h  
F36h  
F35h  
F34h  
F33h  
F32h  
F31h  
F30h  
F2Fh  
F2Eh  
F2Dh  
F2Ch  
F2Bh  
F2Ah  
F29h  
F28h  
F27h  
F26h  
F25h  
F24h  
F23h  
F22h  
F21h  
F20h  
F1Eh  
F1Dh  
F1Ch  
F1Bh  
F1Ah  
F19h  
F18h  
F17h  
F16h  
F15h  
F14h  
F13h  
F12h  
F11h  
F10h  
F0Fh  
F0Eh  
F0Dh  
F0Ch  
F0Bh  
F0Ah  
F09h  
F08h  
F07h  
F06h  
F05h  
F04h  
F03h  
F02h  
F01h  
F00h  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
TMR4  
PR4  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
T4CON  
CCPR4H  
CCPR4L  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F73h CCP4CON  
(1)  
(1)  
(1)  
F72h  
F71h  
CCPR5H  
CCPR5L  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F70h CCP5CON  
(1)  
(1)  
(1)  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6X20 devices.  
3: This is not a physical register.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 51  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 4-3:  
File Name  
TOSU  
REGISTER FILE SUMMARY  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 32, 42  
0000 0000 32, 42  
0000 0000 32, 42  
00-0 0000 32, 43  
--10 0000 32, 44  
0000 0000 32, 44  
0000 0000 32, 44  
--00 0000 32, 64  
0000 0000 32, 64  
0000 0000 32, 64  
0000 0000 32, 64  
xxxx xxxx 32, 85  
xxxx xxxx 32, 85  
0000 0000 32, 89  
1111 1111 32, 90  
1100 0000 32, 91  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
Return Stack Pointer  
bit 21  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
(2)  
TBLPTRU  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
TBLPTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT3IE  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
INTEDG3  
INT1IE  
TMR0IF  
TMR0IP  
INT3IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
RBPU  
INTEDG0  
INT1IP  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
n/a  
n/a  
57  
57  
POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented  
(not a physical register)  
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented  
(not a physical register)  
n/a  
57  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
n/a  
n/a  
57  
57  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented  
(not a physical register) – value of FSR0 offset by value in WREG  
FSR0H  
FSR0L  
WREG  
INDF1  
Indirect Data Memory Address Pointer 0 High Byte  
---- 0000 32, 57  
xxxx xxxx 32, 57  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
xxxx xxxx  
32  
57  
57  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
n/a  
n/a  
POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented  
(not a physical register)  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented  
(not a physical register)  
n/a  
n/a  
n/a  
57  
57  
57  
PREINC1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented  
(not a physical register)  
PLUSW1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented  
(not a physical register) – value of FSR1 offset by value in WREG  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 High Byte  
---- 0000 33, 57  
xxxx xxxx 33, 57  
---- 0000 33, 56  
Indirect Data Memory Address Pointer 1 Low Byte  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
n/a  
n/a  
57  
57  
POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented  
(not a physical register)  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented  
(not a physical register)  
n/a  
57  
Legend: x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X20 devices; always maintain these clear.  
DS39609C-page 52  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented  
(not a physical register)  
n/a  
n/a  
57  
57  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented  
(not a physical register) – value of FSR2 offset by value in WREG  
FSR2H  
Indirect Data Memory Address Pointer 2 High Byte  
---- 0000 33, 57  
xxxx xxxx 33, 57  
---x xxxx 33, 59  
0000 0000 33, 133  
xxxx xxxx 33, 133  
1111 1111 33, 131  
---- ---0 25, 33  
--00 0101 33, 235  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
TMR0L  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0  
SCS  
IRVST  
LVDEN  
LVDL3  
LVDL2  
LVDL1  
LVDL0  
SWDTE ---- ---0 33, 250  
IPEN  
RI  
TO  
PD  
POR  
BOR  
0--1 11qq 33, 60,  
101  
TMR1H  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx 33, 135  
xxxx xxxx 33, 135  
TMR1L  
T1CON  
RD16  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON 0-00 0000 33, 135  
0000 0000 33, 141  
TMR2  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON  
1111 1111 33, 142  
T2CON  
T2CKPS1 T2CKPS0 -000 0000 33, 141  
xxxx xxxx 33, 157  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
SSP Receive Buffer/Transmit Register  
2
2
SSP Address Register in I C Slave mode. SSP Baud Rate Reload Register in I C Master mode.  
0000 0000 33, 166  
0000 0000 33, 158  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0 0000 0000 33, 168  
ACKEN  
SEN  
0000 0000 33, 169  
xxxx xxxx 34, 215  
xxxx xxxx 34, 215  
--00 0000 34, 213  
A/D Result Register High Byte  
A/D Result Register Low Byte  
CHS3  
VCFG1  
CHS2  
VCFG0  
CHS1  
PCFG3  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0 --00 0000 34, 214  
ADCS0 0--- -000 34, 215  
ADFM  
ADCS1  
Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx 34, 151,  
152  
CCPR1L  
Capture/Compare/PWM Register 1 Low Byte  
xxxx xxxx 34, 151,  
152  
CCP1CON  
CCPR2H  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0 --00 0000 34, 149  
Capture/Compare/PWM Register 2 High Byte  
xxxx xxxx 34, 151,  
152  
CCPR2L  
Capture/Compare/PWM Register 2 Low Byte  
xxxx xxxx 34, 151,  
152  
CCP2CON  
DC2B1  
DC2B0  
CCP2M3  
CCP2M2  
CCP2M1  
CCP2M0 --00 0000 34, 149  
Legend: x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X20 devices; always maintain these clear.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 53  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCPR3H  
CCPR3L  
Capture/Compare/PWM Register 3 High Byte  
Capture/Compare/PWM Register 3 Low Byte  
xxxx xxxx 34, 151,  
152  
xxxx xxxx 34, 151,  
152  
CCP3CON  
CVRCON  
CMCON  
TMR3H  
TMR3L  
T3CON  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
DC3B1  
CVRR  
C2INV  
DC3B0  
CVRSS  
C1INV  
CCP3M3  
CVR3  
CIS  
CCP3M2  
CVR2  
CCP3M1  
CVR1  
CCP3M0 --00 0000 34, 149  
CVREN  
C2OUT  
CVROE  
C1OUT  
CVR0  
CM0  
0000 0000 34, 229  
0000 0000 34, 223  
xxxx xxxx 34, 143  
xxxx xxxx 34, 143  
CM2  
CM1  
Timer3 Register High Byte  
Timer3 Register Low Byte  
RD16  
IBF  
T3CCP2  
OBF  
T3CKPS1  
IBOV  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 34, 143  
PSPMODE  
0000 ---- 34, 129  
0000 0000 34, 205  
0000 0000 34, 206  
0000 0000 34, 204  
0000 -010 34, 198  
0000 000x 34, 199  
USART1 Baud Rate Generator  
USART1 Receive Register  
USART1 Transmit Register  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
EE Adr Register High ---- --00 34, 79  
0000 0000 34, 79  
Data EEPROM Address Register  
Data EEPROM Data Register  
0000 0000 34, 79  
Data EEPROM Control Register 2 (not a physical register)  
---- ---- 34, 79  
EEPGD  
CFGS  
RC2IP  
RC2IF  
RC2IE  
FREE  
TX2IP  
TX2IF  
TX2IE  
EEIP  
WRERR  
TMR4IP  
TMR4IF  
TMR4IE  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
WREN  
CCP5IP  
CCP5IF  
CCP5IE  
LVDIP  
WR  
RD  
xx-0 x000 34, 80  
CCP4IP  
CCP4IF  
CCP4IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
WM1  
CCP3IP --11 1111 35, 100  
CCP3IF --00 0000 35, 94  
CCP3IE --00 0000 35, 97  
CCP2IP -1-1 1111 35, 99  
CCP2IF -0-0 0000 35, 93  
CCP2IE -0-0 0000 35, 96  
TMR1IP 0111 1111 35, 98  
TMR1IF 0000 0000 35, 92  
TMR1IE 0000 0000 35, 95  
PIR3  
PIE3  
IPR2  
CMIP  
CMIF  
CMIE  
ADIP  
ADIF  
ADIE  
PIR2  
EEIF  
LVDIF  
PIE2  
EEIE  
LVDIE  
IPR1  
PSPIP  
PSPIF  
PSPIE  
EBDIS  
RCIP  
RCIF  
RCIE  
WAIT1  
TXIP  
CCP1IP  
CCP1IF  
CCP1IE  
PIR1  
TXIF  
PIE1  
TXIE  
(3)  
MEMCON  
WAIT0  
WM0  
0-00 --00 35, 71  
1111 1111 35, 125  
1111 1111 35, 122  
---1 1111 35, 120  
1111 1111 35, 117  
1111 1111 35, 114  
1111 1111 35, 111  
1111 1111 35, 109  
1111 1111 35, 106  
-111 1111 35, 103  
(3)  
TRISJ  
Data Direction Control Register for PORTJ  
Data Direction Control Register for PORTH  
(3)  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
Data Direction Control Register for PORTG  
Data Direction Control Register for PORTF  
Data Direction Control Register for PORTE  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
(1)  
TRISA6  
Data Direction Control Register for PORTA  
Legend: x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X20 devices; always maintain these clear.  
DS39609C-page 54  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 4-3:  
File Name  
(3)  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LATJ  
LATH  
Read PORTJ Data Latch, Write PORTJ Data Latch  
Read PORTH Data Latch, Write PORTH Data Latch  
xxxx xxxx 35, 125  
xxxx xxxx 35, 122  
---x xxxx 35, 120  
xxxx xxxx 35, 117  
xxxx xxxx 35, 114  
xxxx xxxx 35, 111  
xxxx xxxx 35, 109  
xxxx xxxx 35, 106  
-xxx xxxx 35, 103  
xxxx xxxx 36, 125  
xxxx xxxx 36, 122  
---x xxxx 36, 120  
xxxx xxxx 36, 117  
xxxx xxxx 36, 114  
xxxx xxxx 36, 111  
xxxx xxxx 36, 109  
xxxx xxxx 36, 106  
-x0x 0000 36, 103  
0000 0000 36, 148  
1111 1111 36, 148  
(3)  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
PORTJ  
Read PORTG Data Latch, Write PORTG Data Latch  
Read PORTF Data Latch, Write PORTF Data Latch  
Read PORTE Data Latch, Write PORTE Data Latch  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
(1)  
(1)  
LATA6  
Read PORTA Data Latch, Write PORTA Data Latch  
(3)  
(3)  
Read PORTJ pins, Write PORTJ Data Latch  
Read PORTH pins, Write PORTH Data Latch  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
TMR4  
Read PORTG pins, Write PORTG Data Latch  
Read PORTF pins, Write PORTF Data Latch  
Read PORTE pins, Write PORTE Data Latch  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch  
(1)  
(1)  
RA6  
Read PORTA pins, Write PORTA Data Latch  
Timer4 Register  
PR4  
Timer4 Period Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON  
T4CON  
CCPR4H  
T4CKPS1 T4CKPS0 -000 0000 36, 147  
Capture/Compare/PWM Register 4 High Byte  
xxxx xxxx 36, 151,  
152  
CCPR4L  
Capture/Compare/PWM Register 4 Low Byte  
xxxx xxxx 36, 151,  
152  
CCP4CON  
CCPR5H  
DC4B1  
DC4B0  
CCP4M3  
CCP5M3  
CCP4M2  
CCP5M2  
CCP4M1  
CCP5M1  
CCP4M0 0000 0000 36, 149  
Capture/Compare/PWM Register 5 High Byte  
xxxx xxxx 36, 151,  
152  
CCPR5L  
Capture/Compare/PWM Register 5 Low Byte  
xxxx xxxx 36, 151,  
152  
CCP5CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
DC5B1  
DC5B0  
CCP5M0 0000 0000 36, 149  
0000 0000 36, 205  
USART2 Baud Rate Generator  
USART2 Receive Register  
USART2 Transmit Register  
0000 0000 36, 206  
0000 0000 36, 204  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 -010 36, 198  
0000 000x 36, 199  
RCSTA2  
ADDEN  
Legend: x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X20 devices; always maintain these clear.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 55  
PIC18F6520/8520/6620/8620/6720/8720  
4.10  
Access Bank  
4.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement,  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ‘0’s and  
writes will have no effect.  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
A
MOVLB instruction has been provided in the  
instruction set to assist in selecting banks.  
• Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all ‘0’s and all writes are ignored. The  
Status register bits will be set/cleared as appropriate for  
the instruction performed.  
The Access Bank is comprised of the upper 160 bytes  
in Bank 15 (SFRs) and the lower 96 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 4-7  
indicates the Access RAM areas.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted by the ‘a’ bit (for  
access bit).  
A MOVFFinstruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
Section 4.12 “Indirect Addressing, INDF and FSR  
Registers” provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function Registers, so that these registers  
can be accessed without any software overhead. This is  
useful for testing status flags and modifying control bits.  
FIGURE 4-8:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<3:0>  
7
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
000h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 4-2.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS39609C-page 56  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
the data from the address pointed to by  
FSR1H:FSR1L. INDFn can be used in code anywhere  
an operand can be used.  
4.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. An FSR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 4-9  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address,  
specified by the value of the FSR register.  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all ‘0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
Status bits are not affected.  
4.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated  
with it, plus four additional register addresses. Perform-  
ing an operation on one of these five registers  
determines how the FSR will be modified during  
indirect addressing.  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction using the INDF register  
actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself,  
indirectly (FSR = 0), will read 00h. Writing to the INDF  
register indirectly, results in a no operation. The FSR  
register contains a 12-bit address, which is shown in  
Figure 4-10.  
When data access is done to one of the five INDFn  
locations, the address selected will configure the FSRn  
register to:  
• Do nothing to FSRn after an indirect access  
(no change) – INDFn.  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer). This is indirect addressing.  
• Auto-decrement FSRn after an indirect access  
(post-decrement) – POSTDECn.  
• Auto-increment FSRn after an indirect access  
(post-increment) – POSTINCn.  
Example 4-4 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
• Auto-increment FSRn before an indirect access  
(pre-increment) – PREINCn.  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access  
(no change) – PLUSWn.  
EXAMPLE 4-4:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
LFSR FSR0 ,0x100  
CLRF POSTINC0  
;
When using the auto-increment or auto-decrement  
features, the effect on the FSR is not reflected in the  
Status register. For example, if the indirect address  
causes the FSR to equal ‘0’, the Z bit will not be set.  
NEXT  
; Clear INDF  
; register and  
; inc pointer  
; All done with  
; Bank 1?  
BTFSS FSR0H, 1  
GOTO NEXT  
Incrementing or decrementing an FSR affects all 12  
bits. That is, when FSRnL overflows from an increment,  
FSRnH will be incremented automatically.  
; NO, clear next  
; YES, continue  
CONTINUE  
Adding these features allows the FSRn to be used as a  
stack pointer, in addition to its uses for table operations  
in data memory.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12 bits wide. To store the 12 bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
Each FSR has an address associated with it that  
performs an indexed indirect access. When a data  
access to this INDFn location (PLUSWn) occurs, the  
FSRn is configured to add the signed value in the  
WREG register and the value in FSR to form the  
address before an indirect access. The FSR value is  
not changed.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data. If an instruction writes a  
value to INDF0, the value will be written to the address  
pointed to by FSR0H:FSR0L. A read from INDF1 reads  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(Status bits are not affected).  
If an indirect addressing operation is done where the tar-  
get address is an FSRnH or FSRnL register, the write  
operation will dominate over the pre- or post-increment/  
decrement functions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 57  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 4-9:  
INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
FFFh  
File Address = Access of an Indirect Addressing Register  
BSR<3:0>  
12  
12  
Instruction  
Fetched  
4
8
Opcode  
FSR  
File  
FIGURE 4-10:  
INDIRECT ADDRESSING  
Indirect Addressing  
11  
FSR Register  
0
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-2.  
DS39609C-page 58  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
For example, CLRFSTATUSwill clear the upper three  
bits and set the Z bit. This leaves the Status register as  
4.13 Status Register  
The Status register, shown in Register 4-3, contains the  
arithmetic status of the ALU. The Status register can be  
the destination for any instruction, as with any other reg-  
ister. If the Status register is the destination for an  
instruction that affects the Z, DC, C, OV or N bits, then  
the write to these five bits is disabled. These bits are set  
or cleared according to the device logic. Therefore, the  
result of an instruction with the Status register as  
destination may be different than intended.  
000u u1uu(where u= unchanged).  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFFand MOVWFinstructions are used to alter  
the Status register, because these instructions do not  
affect the Z, C, DC, OV or N bits from the Status regis-  
ter. For other instructions not affecting any status bits,  
see Table 24-1.  
Note:  
The C and DC bits operate as a borrow  
and digit borrow bit respectively, in  
subtraction.  
REGISTER 4-3:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
N
bit 7  
bit 0  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the  
7-bit magnitude, which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either the high or low-order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 59  
PIC18F6520/8520/6620/8620/6720/8720  
4.14 RCON Register  
Note 1: If the BOREN configuration bit is set  
(Brown-out Reset enabled), the BOR bit  
is ‘1’ on a Power-on Reset. After a Brown-  
out Reset has occurred, the BOR bit will  
be cleared and must be set by firmware to  
indicate the occurrence of the next  
Brown-out Reset.  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device Reset. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
2: It is recommended that the POR bit be set  
after  
a Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
REGISTER 4-4:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed  
0= The RESETinstruction was executed causing a device Reset  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 60  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
5.0  
FLASH PROGRAM MEMORY  
The Flash program memory is readable, writable and  
erasable, during normal operation over the entire VDD  
range.  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Table read operations retrieve data from program mem-  
ory and place it into the data RAM space. Figure 5-1  
shows the operation of a table read with program  
memory and data RAM.  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
may not be issued from user code.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 5.5  
“Writing to Flash Program Memory”. Figure 5-2  
shows the operation of a table write with program  
memory and data RAM.  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block  
can start and end at any byte address. If a table write is  
being used to write executable code into program  
memory, program instructions will need to be word  
aligned.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
5.1  
Table Reads and Table Writes  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data  
RAM:  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 5-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 61  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 5-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of eight holding registers, the address of which is determined by  
TBLPTRL<2:0>. The process for physically writing data to the Program Memory Array is discussed in  
Section 5.5 “Writing to Flash Program Memory”.  
The FREE bit, when set, will allow a program memory  
erase operation. When the FREE bit is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
5.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset during normal opera-  
tion. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR), due to Reset values of zero.  
5.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
The WR control bit, initiates write operations. The bit  
cannot be cleared, only set, in software; it is cleared in  
hardware at the completion of the write operation. The  
inability to clear the WR bit in software prevents the  
Control bit EEPGD determines if the access will be a  
program or data EEPROM memory access. When  
clear, any subsequent operations will operate on the  
data EEPROM memory. When set, any subsequent  
operations will operate on the program memory.  
accidental or premature termination of  
operation.  
a write  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when the write is complete. It must  
be cleared in software.  
Control bit CFGS determines if the access will be to the  
configuration/calibration registers, or to program  
memory/data EEPROM memory. When set, subse-  
quent operations will operate on configuration regis-  
ters, regardless of EEPGD (see Section 23.0 “Special  
Features of the CPU”). When clear, memory selection  
access is determined by EEPGD.  
DS39609C-page 62  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 5-1:  
EECON1 REGISTER (ADDRESS FA6h)  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write  
cycle. (The operation is self-timed and the bit is cleared by hardware once write is  
complete. The WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit  
can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 63  
PIC18F6520/8520/6620/8620/6720/8720  
5.2.2  
TABLAT – TABLE LATCH REGISTER  
5.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRD is executed, all 22 bits of the Table  
Pointer determine which byte is read from program  
memory into TABLAT.  
5.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the Table Pointer, TBLPTR  
(TBLPTR<21:3>), will determine which program mem-  
ory block of 8 bytes is written to. For more detail, see  
Section 5.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order 21  
bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the Device ID, the User ID and the configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer (TBLPTR<21:6>) point to  
the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The Table Pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways, based on the table oper-  
ation. These operations are shown in Table 5-1. These  
operations on the TBLPTR only affect the low-order  
21 bits.  
Figure 5-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 5-1:  
Example  
TBLRD*  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLPTR is not modified  
TBLWT*  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 5-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE TBLPTR<20:6>  
WRITE TBLPTR<21:3>  
READ TBLPTR<21:0>  
DS39609C-page 64  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
5.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
automatically for the next table read operation.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 5-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 5-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
TABLAT  
Read Register  
FETCH  
TBLRD  
(IR)  
EXAMPLE 5-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
TBLRD*+  
MOVFW  
MOVWF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
2003-2013 Microchip Technology Inc.  
DS39609C-page 65  
PIC18F6520/8520/6620/8620/6720/8720  
5.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
5.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer, or through  
ICSP control, can larger blocks of program memory be  
bulk erased. Word erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer with address of row being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase  
operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program  
memory;  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash pro-  
gram memory. The WREN bit must be set to enable  
write operations. The FREE bit is set to select an erase  
operation.  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
4. Write 55h to EECON2.  
5. Write AAh to EECON2.  
For protection, the write initiate sequence for EECON2  
must be used.  
6. Set the WR bit. This will begin the row erase  
cycle.  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
8. Execute a NOP.  
9. Re-enable interrupts.  
EXAMPLE 5-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BCF  
BSF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 55H  
Required  
Sequence  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
DS39609C-page 66  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
5.5  
Writing to Flash Program Memory  
The minimum programming block is 4 words or 8 bytes.  
Word or byte programming is not supported.  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
Table writes are used internally to load the holding reg-  
isters needed to program the Flash memory. There are  
8 holding registers used by the table writes for  
programming.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device for byte or word operations.  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the table write  
operations will essentially be short writes, because only  
FIGURE 5-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx1  
TBLPTR = xxxxx2  
TBLPTR = xxxxx7  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
9. Write 55h to EECON2.  
10. Write AAh to EECON2.  
5.5.1  
FLASH PROGRAM MEMORY  
WRITE SEQUENCE  
11. Set the WR bit. This will begin the write cycle.  
The sequence of events for programming an internal  
program memory location should be:  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
1. Read 64 bytes into RAM.  
13. Execute a NOP.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer with address being erased.  
4. Do the row erase procedure.  
14. Re-enable interrupts.  
15. Repeat steps 6-14 seven times, to write  
64 bytes.  
5. Load Table Pointer with address of first byte  
being written.  
16. Verify the memory (table read).  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 5-3.  
6. Write the first 8 bytes into the holding registers  
with auto-increment.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program memory  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the eight bytes  
in the holding register.  
• clear the CFGS bit to access program  
memory  
• set WREN to enable byte writes  
8. Disable interrupts.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 67  
PIC18F6520/8520/6620/8620/6720/8720  
EXAMPLE 5-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
D’64  
; number of bytes in erase block  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
DECFSZ COUNTER  
BRA  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
EECON2  
AAh  
EECON2  
EECON1, WR  
; write 55H  
Required  
Sequence  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
TBLRD*-  
INTCON, GIE  
; re-enable interrupts  
; dummy read decrement  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
PROGRAM_LOOP  
MOVLW  
MOVWF  
8
; number of bytes in holding register  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVFF  
POSTINC0, WREG  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
TBLWT+*  
DECFSZ COUNTER  
BRA WRITE_WORD_TO_HREGS  
DS39609C-page 68  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
EXAMPLE 5-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
PROGRAM_MEMORY  
BSF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; disable interrupts  
; write 55H  
Required  
Sequence  
; write AAH  
; start program (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
; loop until done  
DECFSZ COUNTER_HI  
BRA  
BCF  
PROGRAM_LOOP  
EECON1, WREN  
; disable write to memory  
5.5.2  
WRITE VERIFY  
5.5.4  
PROTECTION AGAINST  
SPURIOUS WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
To protect against spurious writes to Flash program  
memory, the write initiate sequence must also be  
followed. See Section 23.0 “Special Features of the  
CPU” for more detail.  
5.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
5.6  
Flash Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. The WRERR bit is set when a  
write operation is interrupted by a MCLR Reset, or a  
WDT Time-out Reset during normal operation. In these  
situations, users can check the WRERR bit and rewrite  
the location.  
See Section 23.0 “Special Features of the CPU” for  
details on code protection of Flash program memory.  
TABLE 5-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
--00 0000 --00 0000  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
TABLAT  
INTCON  
EECON2  
EECON1  
IPR2  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
RD  
EEPROM Control Register 2 (not a physical register)  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
xx-0 x000 uu-0 u000  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP ---1 1111 ---1 1111  
CCP2IF ---0 0000 ---0 0000  
PIR2  
PIE2  
CCP2IE ---0 0000 ---0 0000  
Legend:  
x= unknown, u= unchanged, r= reserved, - = unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 69  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 70  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
6.1  
Program Memory Modes and the  
External Memory Interface  
6.0  
EXTERNAL MEMORY  
INTERFACE  
As previously noted, PIC18F8X20 controllers are  
capable of operating in any one of four program  
memory modes, using combinations of on-chip and  
external program memory. The functions of the multi-  
plexed port pins depend on the program memory  
mode selected, as well as the setting of the EBDIS bit.  
Note: The External Memory Interface is not  
implemented on PIC18F6X20 (64-pin)  
devices.  
The External Memory Interface is a feature of the  
PIC18F8X20 devices that allows the controller to  
access external memory devices (such as Flash,  
EPROM, SRAM, etc.) as program or data memory.  
In Microprocessor Mode, the external bus is always  
active and the port pins have only the external bus  
function.  
The physical implementation of the interface uses 27  
pins. These pins are reserved for external address/data  
bus functions; they are multiplexed with I/O port pins on  
four ports. Three I/O ports are multiplexed with the  
address/data bus, while the fourth port is multiplexed  
with the bus control signals. The I/O port functions are  
enabled when the EBDIS bit in the MEMCON register  
is set (see Register 6-1). A list of the multiplexed pins  
and their functions is provided in Table 6-1.  
In Microcontroller Mode, the bus is not active and  
the pins have their port functions only. Writes to the  
MEMCOM register are not permitted.  
In Microprocessor with Boot Block or Extended  
Microcontroller Mode, the external program memory  
bus shares I/O port functions on the pins. When the  
device is fetching or doing table read/table write  
operations on the external program memory space, the  
pins will have the external bus function. If the device is  
fetching and accessing internal program memory loca-  
tions only, the EBDIS control bit will change the pins  
from external memory to I/O port functions. When  
EBDIS = 0, the pins function as the external bus.  
When EBDIS = 1, the pins function as I/O ports.  
As implemented in the PIC18F8X20 devices, the  
interface operates in a similar manner to the external  
memory interface introduced on PIC18C601/801  
microcontrollers. The most notable difference is that  
the interface on PIC18F8X20 devices only operates in  
16-bit modes. The 8-bit mode is not supported.  
For a more complete discussion of the operating modes  
that use the external memory interface, refer to  
Section 4.1.1 “PIC18F8X20 Program Memory  
Modes”.  
Note:  
Maximum FOSC for the PIC18FX520 is  
limited to 25 MHz when using the external  
memory interface.  
REGISTER 6-1:  
MEMCON REGISTER  
R/W-0  
EBDIS  
U-0  
R/W-0  
WAIT1  
R/W-0  
WAIT0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
bit7  
bit0  
bit 7  
EBDIS: External Bus Disable bit  
1= External system bus disabled, all external bus drivers are mapped as I/O ports  
0= External system bus enabled and I/O ports are disabled  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits  
11= Table reads and writes will wait 0 TCY  
10= Table reads and writes will wait 1 TCY  
01= Table reads and writes will wait 2 TCY  
00= Table reads and writes will wait 3 TCY  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
WM<1:0>: TBLWRTOperation with 16-bit Bus bits  
1x= Word Write mode: TABLAT<0> and TABLAT<1> word output, WRH active when  
TABLAT<1> written  
01= Byte Select mode: TABLAT data copied on both MSB and LSB, WRH and (UB or LB)  
will activate  
00= Byte Write mode: TABLAT data copied on both MSB and LSB, WRH or WRL will activate  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 71  
PIC18F6520/8520/6620/8620/6720/8720  
If the device fetches or accesses external memory  
while EBDIS = 1, the pins will switch to external bus. If  
the EBDIS bit is set by a program executing from  
external memory, the action of setting the bit will be  
delayed until the program branches into the internal  
memory. At that time, the pins will change from  
external bus to I/O ports.  
When the device is executing out of internal memory  
(EBDIS = 0) in Microprocessor with Boot Block mode,  
or Extended Microcontroller mode, the control signals  
will NOT be active. They will go to a state where the  
AD<15:0> and A<19:16> are tri-state; the CE, OE,  
WRH, WRL, UB and LB signals are ‘1’ and ALE and  
BA0 are ‘0’.  
TABLE 6-1:  
Name  
PIC18F8X20 EXTERNAL BUS – I/O PORT FUNCTIONS  
Port  
Bit  
Function  
RD0/AD0  
RD1/AD1  
RD2/AD2  
RD3/AD3  
RD4/AD4  
RD5/AD5  
RD6/AD6  
RD7/AD7  
RE0/AD8  
RE1/AD9  
RE2/AD10  
RE3/AD11  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE7/AD15  
RH0/A16  
RH1/A17  
RH2/A18  
RH3/A19  
RJ0/ALE  
RJ1/OE  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTH  
PORTH  
PORTH  
PORTH  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 0  
bit 1  
bit 2  
bit 3  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
Input/Output or System Bus Address bit 0 or Data bit 0.  
Input/Output or System Bus Address bit 1 or Data bit 1.  
Input/Output or System Bus Address bit 2 or Data bit 2.  
Input/Output or System Bus Address bit 3 or Data bit 3.  
Input/Output or System Bus Address bit 4 or Data bit 4.  
Input/Output or System Bus Address bit 5 or Data bit 5.  
Input/Output or System Bus Address bit 6 or Data bit 6.  
Input/Output or System Bus Address bit 7 or Data bit 7.  
Input/Output or System Bus Address bit 8 or Data bit 8.  
Input/Output or System Bus Address bit 9 or Data bit 9.  
Input/Output or System Bus Address bit 10 or Data bit 10.  
Input/Output or System Bus Address bit 11 or Data bit 11.  
Input/Output or System Bus Address bit 12 or Data bit 12.  
Input/Output or System Bus Address bit 13 or Data bit 13.  
Input/Output or System Bus Address bit 14 or Data bit 14.  
Input/Output or System Bus Address bit 15 or Data bit 15.  
Input/Output or System Bus Address bit 16.  
Input/Output or System Bus Address bit 17.  
Input/Output or System Bus Address bit 18.  
Input/Output or System Bus Address bit 19.  
Input/Output or System Bus Address Latch Enable (ALE) Control pin.  
Input/Output or System Bus Output Enable (OE) Control pin.  
Input/Output or System Bus Write Low (WRL) Control pin.  
Input/Output or System Bus Write High (WRH) Control pin.  
Input/Output or System Bus Byte Address bit 0.  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
Input/Output or System Bus Chip Enable (CE) Control pin.  
Input/Output or System Bus Lower Byte Enable (LB) Control pin.  
Input/Output or System Bus Upper Byte Enable (UB) Control pin.  
RJ6/LB  
RJ7/UB  
DS39609C-page 72  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
In Byte Select mode, JEDEC standard Flash memories  
6.2  
16-bit Mode  
will require BA0 for the byte address line and one I/O  
line to select between Byte and Word mode. The other  
16-bit modes do not need BA0. JEDEC standard static  
RAM memories will use the UB or LB signals for byte  
selection.  
The External Memory Interface implemented in  
PIC18F8X20 devices operates only in 16-bit mode.  
The mode selection is not software configurable, but is  
programmed via the configuration bits.  
The WM<1:0> bits in the MEMCON register determine  
three types of connections in 16-bit mode. They are  
referred to as:  
6.2.1  
16-BIT BYTE WRITE MODE  
Figure 6-1 shows an example of 16-bit Byte Write  
mode for PIC18F8X20 devices. This mode is used for  
two separate 8-bit memories connected for 16-bit oper-  
ation. This generally includes basic EPROM and Flash  
devices. It allows table writes to byte-wide external  
memories.  
• 16-bit Byte Write  
• 16-bit Word Write  
• 16-bit Byte Select  
These three different configurations allow the designer  
maximum flexibility in using 8-bit and 16-bit memory  
devices.  
During a TBLWTinstruction cycle, the TABLAT data is  
presented on the upper and lower bytes of the  
AD15:AD0 bus. The appropriate WRH or WRL control  
line is strobed on the LSb of the TBLPTR.  
For all 16-bit modes, the Address Latch Enable (ALE)  
pin indicates that the address bits A<15:0> are  
available on the External Memory Interface bus.  
Following the address latch, the Output Enable signal  
(OE) will enable both bytes of program memory at once  
to form a 16-bit instruction word. The Chip Enable  
signal (CE) is active at any time that the microcontroller  
accesses external memory, whether reading or writing;  
it is inactive (asserted high) whenever the device is in  
Sleep mode.  
FIGURE 6-1:  
16-BIT BYTE WRITE MODE EXAMPLE  
D<7:0>  
(MSB)  
A<x:0>  
(LSB)  
PIC18F8X20  
A<19:0>  
D<15:8>  
AD<7:0>  
373  
373  
A<x:0>  
D<7:0>  
D<7:0>  
CE  
D<7:0>  
CE  
AD<15:8>  
ALE  
(1)  
(1)  
OE WR  
OE WR  
A<19:16>  
CE  
OE  
WRH  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 73  
PIC18F6520/8520/6620/8620/6720/8720  
During  
a
TBLWT cycle to an odd address  
6.2.2  
16-BIT WORD WRITE MODE  
(TBLPTR<0> = 1), the TABLAT data is presented on  
the upper byte of the AD15:AD0 bus. The contents of  
the holding latch are presented on the lower byte of the  
AD15:AD0 bus.  
Figure 6-2 shows an example of 16-bit Word Write  
mode for PIC18F8X20 devices. This mode is used for  
word-wide memories, which includes some of the  
EPROM and Flash type memories. This mode allows  
opcode fetches and table reads from all forms of 16-bit  
memory and table writes to any type of word-wide  
external memories. This method makes a distinction  
between TBLWTcycles to even or odd addresses.  
The WRH signal is strobed for each write cycle; the  
WRL pin is unused. The signal on the BA0 pin indicates  
the LSb of TBLPTR, but it is left unconnected. Instead,  
the UB and LB signals are active to select both bytes.  
The obvious limitation to this method is that the table  
write must be done in pairs on a specific word boundary  
to correctly write a word location.  
During  
a
TBLWT cycle to an even address  
(TBLPTR<0> = 0), the TABLAT data is transferred to a  
holding latch and the external address data bus is  
tri-stated for the data portion of the bus cycle. No write  
signals are activated.  
FIGURE 6-2:  
16-BIT WORD WRITE MODE EXAMPLE  
PIC18F8X20  
AD<7:0>  
A<20:1>  
D<15:0>  
JEDEC Word  
EPROM Memory  
373  
373  
A<x:0>  
D<15:0>  
CE  
(1)  
OE  
WR  
AD<15:8>  
ALE  
A<19:16>  
CE  
OE  
WRH  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
DS39609C-page 74  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Flash and SRAM devices use different control signal  
combinations to implement Byte Select mode. JEDEC  
standard Flash memories require that a controller I/O  
port pin be connected to the memory’s BYTE/WORD  
pin to provide the select signal. They also use the BA0  
signal from the controller as a byte address. JEDEC  
standard static RAM memories, on the other hand, use  
the UB or LB signals to select the byte.  
6.2.3  
16-BIT BYTE SELECT MODE  
Figure 6-3 shows an example of 16-bit Byte Select  
mode for PIC18F8X20 devices. This mode allows table  
write operations to word-wide external memories with  
byte selection capability. This generally includes both  
word-wide Flash and SRAM devices.  
During a TBLWTcycle, the TABLAT data is presented  
on the upper and lower byte of the AD15:AD0 bus. The  
WRH signal is strobed for each write cycle; the WRL  
pin is not used. The BA0 or UB/LB signals are used to  
select the byte to be written, based on the Least  
Significant bit of the TBLPTR register.  
FIGURE 6-3:  
16-BIT BYTE SELECT MODE EXAMPLE  
PIC18F8X20  
A<20:1>  
AD<7:0>  
373  
373  
JEDEC Word  
Flash Memory  
A<x:1>  
D<15:0>  
D<15:0>  
138  
CE  
A0  
AD<15:8>  
(1)  
ALE  
A<19:16>  
OE  
BYTE/WORD OE WR  
WRH  
A<20:1>  
WRL  
JEDEC Word  
A<x:1>  
SRAM Memory  
BA0  
I/O  
D<15:0>  
D<15:0>  
CE  
LB  
LB  
(1)  
UB  
OE WR  
UB  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 75  
PIC18F6520/8520/6620/8620/6720/8720  
6.2.4  
16-BIT MODE TIMING  
The presentation of control signals on the external  
memory bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 6-4 through Figure 6-6.  
FIGURE 6-4:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD (MICROPROCESSOR MODE)  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q4  
Q1  
Q4  
Q2  
Q4  
Q3  
Q4  
Q4  
Apparent Q  
Actual Q  
00h  
0Ch  
A<19:16>  
3AABh  
0E55h  
9256h  
AD<15:0>  
CF33h  
BA0  
ALE  
OE  
WRH  
1’  
1’  
WRL  
CE  
1’  
0’  
1’  
0’  
1 TCY Wait  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Table Read  
of 92h  
from 007556h  
from 199E67h  
Instruction  
Execution  
TBLRDCycle 1  
TBLRDCycle 2  
FIGURE 6-5:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
0Ch  
A<19:16>  
CF33h  
9256h  
AD<15:0>  
CE  
ALE  
OE  
Opcode Fetch  
TBLRD *  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
TBLRD92h  
from 199E67h  
Opcode Fetch  
ADDLW55h  
from 000104h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC-2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
DS39609C-page 76  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 6-6:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (MICROPROCESSOR MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
00h  
00h  
A<19:16>  
AD<15:0>  
0E55h  
0003h  
3AAAh  
3AABh  
CE  
ALE  
OE  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Opcode Fetch  
SLEEP  
Sleep Mode, Bus Inactive  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC-2)  
SLEEP  
2003-2013 Microchip Technology Inc.  
DS39609C-page 77  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 78  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
7.1  
EEADR and EEADRH  
7.0  
DATA EEPROM MEMORY  
The address register pair can address up to a maxi-  
mum of 1024 bytes of data EEPROM. The two Most  
Significant bits of the address are stored in EEADRH,  
while the remaining eight Least Significant bits are  
stored in EEADR. The six Most Significant bits of  
EEADRH are unused and are read as ‘0’.  
The data EEPROM is readable and writable during  
normal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
There are five SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
7.2  
EECON1 and EECON2 Registers  
• EECON1  
• EECON2  
• EEDATA  
• EEADRH  
• EEADR  
EECON1 is the control register for EEPROM memory  
accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the EEPROM write sequence.  
Control bits, RD and WR, initiate read and write opera-  
tions, respectively. These bits cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
or premature termination of a write operation.  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write. EEADR and  
EEADRH hold the address of the EEPROM location  
being accessed. These devices have 1024 bytes of  
data EEPROM with an address range from 00h to  
3FFh.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal opera-  
tion. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR) due to the Reset condition forcing the  
contents of the registers to zero.  
The EEPROM data memory is rated for high erase/  
write cycles. A byte write automatically erases the loca-  
tion and writes the new data (erase-before-write). The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature, as well as  
from chip to chip. Please refer to parameter D122 (see  
Section 26.0 “Electrical Characteristics”) for exact  
limits.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 79  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 7-1:  
EECON1 REGISTER (ADDRESS FA6h)  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program/Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access configuration or calibration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR or any WDT Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle, or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read. (Read takes one cycle. RD is cleared in hardware. The RD bit  
can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 80  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
control bit (EECON1<6>) and then set the RD control  
bit (EECON1<0>). The data is available for the very  
next instruction cycle; therefore, the EEDATA register  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADRH:EEADR register pair, clear the  
EEPGD control bit (EECON1<7>), clear the CFGS  
can be read by the next instruction. EEDATA will hold  
this value until another read operation, or until it is  
written to by the user (during a write operation).  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
DATA_EE_ADDRH  
EEADRH  
DATA_EE_ADDR  
EEADR  
EECON1, EEPGD ; Point to DATA memory  
;
; Upper bits of Data Memory Address to read  
;
; Lower bits of Data Memory Address to read  
BCF  
BSF  
MOVF  
EECON1, CFGS  
EECON1, RD  
EEDATA, W  
; Access EEPROM  
; EEPROM Read  
; W = EEDATA  
should be kept clear at all times, except when updating  
the EEPROM. The WREN bit is not cleared  
by hardware  
7.4  
Writing to the Data EEPROM  
Memory  
To write an EEPROM data location, the address must  
first be written to the EEADRH:EEADR register pair  
and the data written to the EEDATA register. Then the  
sequence in Example 7-2 must be followed to initiate  
the write cycle.  
After a write sequence has been initiated, EECON1,  
EEADRH, EEADR and EEDATA cannot be modified.  
The WR bit will be inhibited from being set unless the  
WREN bit is set. Both WR and WREN cannot be set  
with the same instruction.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Write Complete  
Interrupt Flag bit (EEIF) is set. The user may either  
enable this interrupt, or poll this bit. EEIF must be  
cleared by software.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code  
execution (i.e., runaway programs). The WREN bit  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
DATA_EE_ADDRH  
EEADRH  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDATA  
EECON1,EEPGD  
EECON1,CFGS  
EECON1,WREN  
;
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
; Upper bits of Data Memory Address to write  
;
; Lower bits of Data Memory Address to write  
;
; Data Memory Value to write  
; Point to DATA memory  
; Access EEPROM  
BCF  
BSF  
; Enable writes  
BCF  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
; Disable Interrupts  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Enable Interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
EECON1,WR  
INTCON,GIE  
BSF  
; User code execution  
BCF  
EECON1,WREN  
; Disable writes on write complete (EEIF set)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 81  
PIC18F6520/8520/6620/8620/6720/8720  
7.5  
Write Verify  
7.8  
Using the Data EEPROM  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
The data EEPROM is a high endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program vari-  
ables or other data that are updated often). Frequently  
changing values will typically be updated more often  
than specification D124. If this is not the case, an array  
refresh must be performed. For this reason, variables  
that change infrequently (such as constants, IDs,  
calibration, etc.) should be stored in Flash program  
memory.  
7.6  
Protection Against Spurious Write  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
A simple data EEPROM refresh routine is shown in  
Example 7-3.  
Note:  
If data EEPROM is only used to store  
constants and/or data that changes rarely,  
an array refresh is likely not required. See  
specification D124.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
7.7  
Operation During Code-Protect  
Data EEPROM memory has its own code-protect  
mechanism. External read and write operations are  
disabled if either of these mechanisms are enabled.  
The microcontroller itself can both read and write to the  
internal data EEPROM, regardless of the state of the  
code-protect configuration bit. Refer to Section 23.0  
“Special Features of the CPU” for additional  
information.  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
CLRF  
BCF  
BCF  
BCF  
EEADR  
EEADRH  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
; Start at address 0  
;
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Wait for write to complete  
BSF  
Loop  
BSF  
EECON1, RD  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ EEADR, F  
; Increment address  
BRA  
Loop  
; Not zero, do it again  
; Increment the high address  
; Not zero, do it again  
INCFSZ EEADRH, F  
BRA  
Loop  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
DS39609C-page 82  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
EEADRH  
EEADR  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
EE Addr Register High ---- --00 ---- --00  
0000 0000 0000 0000  
EEPROM Address Register  
EEPROM Data Register  
EEDATA  
0000 0000 0000 0000  
EECON2 EEPROM Control Register 2 (not a physical register)  
---- ---- ---- ----  
EECON1  
IPR2  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
---1 1111 ---1 1111  
---0 0000 ---0 0000  
---0 0000 ---0 0000  
EEIP  
EEIF  
EEIE  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP  
CCP2IF  
CCP2IE  
PIR2  
PIE2  
Legend:  
x= unknown, u= unchanged, r= reserved, – = unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 83  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 84  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
8.2  
Operation  
8.0  
8.1  
8 X 8 HARDWARE MULTIPLIER  
Introduction  
Example 8-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18FXX20 devices. By making the multiply a  
hardware operation, it completes in a single instruction  
cycle. This is an unsigned multiply that gives a 16-bit  
result. The result is stored in the 16-bit product register  
pair (PRODH:PRODL). The multiplier does not affect  
any flags in the ALUSTA register.  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
• Higher computational throughput  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
• Reduces code size requirements for multiply  
algorithms  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
Table 8-1 shows a performance comparison between  
enhanced devices using the single-cycle hardware  
multiply and performing the same function without the  
hardware multiply.  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
;
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 s  
100 ns  
9.1 s  
600 ns  
24.2 s  
2.8 s  
25.4 s  
4.0 s  
27.6 s  
400 ns  
36.4 s  
2.4 s  
69 s  
1 s  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 s  
6 s  
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 s  
11.2 s  
102.6 s  
16.0 s  
242 s  
28 s  
254 s  
40 s  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
2003-2013 Microchip Technology Inc.  
DS39609C-page 85  
PIC18F6520/8520/6620/8620/6720/8720  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 8-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
(-1 ARG1H<7> ARG2H:ARG2L 2  
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
16  
(ARG1H ARG2H 2 ) +  
)
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L)  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
;
;
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
;
;
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
; ARG1L * ARG2H ->  
; PRODH:PRODL  
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL,  
RES1, F  
PRODH, W  
W
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
; Add cross  
; products  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
;
; PRODH:PRODL  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
; Add cross  
; products  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
ARG1H, W  
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs’ Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39609C-page 86  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
When the IPEN bit is cleared (default state), the  
9.0  
INTERRUPTS  
interrupt priority feature is disabled and interrupts are  
compatible with PIC® mid-range devices. In Compati-  
bility mode, the interrupt priority bits for each source  
have no effect. INTCON<6> is the PEIE bit, which  
enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit, which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
The PIC18FXX20 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high or a low  
priority level. The high priority interrupt vector is at  
000008h, while the low priority interrupt vector is at  
000018h. High priority interrupt events will override any  
low priority interrupts that may be in progress.  
There are thirteen registers which are used to control  
interrupt operation. They are:  
When an interrupt is responded to, the Global Interrupt  
Enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt.  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files,  
supplied with MPLAB® IDE, be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
Each interrupt source has three bits to control its  
operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set. Setting the GIEL  
bit (INTCON<6>) enables all interrupts that have the  
priority bit cleared. When the interrupt flag, enable bit  
and appropriate global interrupt enable bit are set, the  
interrupt will vector immediately to address 000008h or  
000018h, depending on the priority level. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 87  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 9-1:  
INTERRUPT LOGIC  
Wake-up if in Sleep mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIEH/GIE  
TMR1IF  
TMR1IE  
TMR1IP  
IPEN  
IPEN  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
RBIP  
GIE/GEIH  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39609C-page 88  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
9.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
The INTCON registers are readable and writable  
registers, which contain various enable, priority and  
flag bits.  
REGISTER 9-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
bit 0  
GIE/GIEH PEIE/GIEL  
bit 7  
TMR0IE  
INT0IE  
TMR0IF  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all high priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note:  
A mismatch condition will continue to set this bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 89  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
INT3IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
DS39609C-page 90  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred (must be cleared in software)  
0= The INT3 external interrupt did not occur  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 91  
PIC18F6520/8520/6620/8620/6720/8720  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Flag Registers (PIR1, PIR2 and PIR3).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt and after servicing  
that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
TMR1IF  
bit 0  
RC1IF  
TX1IF  
CCP1IF  
TMR2IF  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RC1IF: USART1 Receive Interrupt Flag bit  
1= The USART1 receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The USART1 receive buffer is empty  
TX1IF: USART Transmit Interrupt Flag bit  
1= The USART1 transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART1 transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 92  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
U-0  
R/W-0  
CMIF  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
R/W-0  
CCP2IF  
bit 0  
TMR3IF  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIF: Comparator Interrupt Flag bit  
1= The comparator input has changed (must be cleared in software)  
0= The comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete, or has not been started  
bit 3  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred while the SSP module (configured in I2C Master mode)  
was transmitting (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low-Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 or TMR3 register capture occurred (must be cleared in software)  
0= No TMR1 or TMR3 register capture occurred  
Compare mode:  
1= A TMR1 or TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1 or TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 93  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-6:  
PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
U-0  
U-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP3IF  
bit 0  
RC2IF  
TX2IF  
TMR4IF  
CCP5IF  
CCP4IF  
bit 7  
bit 7- 6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IF: USART2 Receive Interrupt Flag bit  
1= The USART2 receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The USART2 receive buffer is empty  
bit 4  
TX2IF: USART2 Transmit Interrupt Flag bit  
1= The USART2 transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART2 transmit buffer is full  
bit 3  
TMR4IF: TMR3 Overflow Interrupt Flag bit  
1= TMR4 register overflowed (must be cleared in software)  
0= TMR4 register did not overflow  
bit 2-0  
CCPxIF: CCPx Interrupt Flag bit (CCP Modules 3, 4 and 5)  
Capture mode:  
1= A TMR1 or TMR3 register capture occurred (must be cleared in software)  
0= No TMR1 or TMR3 register capture occurred  
Compare mode:  
1= A TMR1 or TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1 or TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 94  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Enable registers (PIE1, PIE2 and PIE3).  
When the IPEN bit (RCON<7>) is ‘0’, the PEIE bit must  
be set to enable any of these peripheral interrupts.  
REGISTER 9-7:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RC1IE  
R/W-0  
TX1IE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1)  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RC1IE: USART1 Receive Interrupt Enable bit  
1= Enables the USART1 receive interrupt  
0= Disables the USART1 receive interrupt  
TX1IE: USART1 Transmit Interrupt Enable bit  
1= Enables the USART1 transmit interrupt  
0= Disables the USART1 transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 95  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-8:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
U-0  
R/W-0  
CMIE  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
R/W-0  
TMR3IE  
CCP2IE  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit  
1= Enables the write operation interrupt  
0= Disables the write operation interrupt  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enables the bus collision interrupt  
0= Disables the bus collision interrupt  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enables the Low-Voltage Detect interrupt  
0= Disables the Low-Voltage Detect interrupt  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 96  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-9:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
U-0  
R/W-0  
RC2IE  
R/W-0  
TX2IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TMR4IE  
CCP5IE  
CCP4IE  
CCP3IE  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IE: USART2 Receive Interrupt Enable bit  
1= Enables the USART2 receive interrupt  
0= Disables the USART2 receive interrupt  
bit 4  
TX2IE: USART2 Transmit Interrupt Enable bit  
1= Enables the USART2 transmit interrupt  
0= Disables the USART2 transmit interrupt  
bit 3  
TMR4IE: TMR4 to PR4 Match Interrupt Enable bit  
1= Enables the TMR4 to PR4 match interrupt  
0= Disables the TMR4 to PR4 match interrupt  
bit 2-0  
CCPxIE: CCPx Interrupt Enable bit (CCP Modules 3, 4 and 5)  
1= Enables the CCPx interrupt  
0= Disables the CCPx interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 97  
PIC18F6520/8520/6620/8620/6720/8720  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Priority Registers (IPR1, IPR2 and IPR3). The  
operation of the priority bits requires that the Interrupt  
Priority Enable (IPEN) bit be set.  
REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP(1)  
bit 7  
R/W-1  
ADIP  
R/W-1  
RC1IP  
R/W-1  
TX1IP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RC1IP: USART1 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX1IP: USART1 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 98  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
U-0  
R/W-1  
CMIP  
U-0  
R/W-1  
EEIP  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
R/W-1  
TMR3IP  
CCP2IP  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 99  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 9-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
U-0  
U-0  
R/W-1  
RC2IP  
R/W-1  
TX2IP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TMR4IP  
CCP5IP  
CCP4IP  
CCP3IP  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IP: USART2 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 4  
TX2IP: USART2 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
TMR4IP: TMR4 to PR4 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2-0  
CCPxIP: CCPx Interrupt Priority bit (CCP Modules 3, 4 and 5)  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 100  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
9.5  
RCON Register  
The RCON register contains the IPEN bit, which is  
used to enable prioritized interrupts. The functions of  
the other bits in this register are discussed in more  
detail in Section 4.14 “RCON Register”.  
REGISTER 9-13: RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16 Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-4.  
TO: Watchdog Time-out Flag bit  
For details of bit operation, see Register 4-4.  
PD: Power-Down Detection Flag bit  
For details of bit operation, see Register 4-4.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-4.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-4.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
2003-2013 Microchip Technology Inc.  
DS39609C-page 101  
PIC18F6520/8520/6620/8620/6720/8720  
9.6  
INT0 Interrupt  
9.7  
TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1,  
RB2/INT2 and RB3/INT3 pins are edge-triggered:  
either rising, if the corresponding INTEDGx bit is set in  
the INTCON2 register, or falling, if the INTEDGx bit is  
clear. When a valid edge appears on the RBx/INTx pin,  
the corresponding flag bit, INTxF, is set. This interrupt  
can be disabled by clearing the corresponding enable  
bit, INTxE. Flag bit, INTxF, must be cleared in software  
in the Interrupt Service Routine before re-enabling the  
interrupt. All external interrupts (INT0, INT1, INT2 and  
INT3) can wake-up the processor from Sleep if bit  
INTxIE was set prior to going into Sleep. If the Global  
Interrupt Enable bit, GIE, is set, the processor will  
branch to the interrupt vector following wake-up.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L regis-  
ters (FFFFh 0000h) will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit, TMR0IE (INTCON<5>). Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit, TMR0IP (INTCON2<2>). See  
Section 11.0 “Timer0 Module” for further details on  
the Timer0 module.  
9.8  
PORTB Interrupt-on-Change  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
The interrupt priority for INT, INT2 and INT3 is deter-  
mined by the value contained in the interrupt priority  
bits: INT1IP (INTCON3<6>), INT2IP (INTCON3<7>)  
and INT3IP (INTCON2<1>). There is no priority bit  
associated with INT0; it is always a high priority  
interrupt source.  
9.9  
Context Saving During Interrupts  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, Status and BSR registers  
are saved on the fast return stack. If a fast return from  
interrupt is not used (see Section 4.3 “Fast Register  
Stack”), the user may need to save the WREG, Status  
and BSR registers in software. Depending on the user’s  
application, other registers may also need to be saved.  
Example 9-1 saves and restores the WREG, Status and  
BSR registers during an Interrupt Service Routine.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS39609C-page 102  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
10.1 PORTA, TRISA and LATA  
Registers  
10.0 I/O PORTS  
Depending on the device selected, there are either  
seven or nine I/O ports available on PIC18FXX20  
devices. Some of their pins are multiplexed with one or  
more alternate functions from the other peripheral fea-  
tures on the device. In general, when a peripheral is  
enabled, that pin may not be used as a general  
purpose I/O pin.  
PORTA is a 7-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Each port has three registers for its operation. These  
registers are:  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
• TRIS register (data direction register)  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register, read and write the latched output value for  
PORTA.  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The Data Latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The RA4/  
T0CKI pin is a Schmitt Trigger input and an open-drain  
output. All other RA port pins have TTL input levels and  
full CMOS output drivers.  
A simplified version of a generic I/O port and its  
operation is shown in Figure 10-1.  
The RA6 pin is only enabled as a general I/O pin in  
ECIO and RCIO Oscillator modes.  
FIGURE 10-1:  
SIMPLIFIED BLOCK  
DIAGRAM OF PORT/LAT/  
TRIS OPERATION  
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register 1).  
RD LAT  
TRIS  
Note:  
On a Power-on Reset, RA5 and RA3:RA0  
are configured as analog inputs and read  
as ‘0’. RA6 and RA4 are configured as  
digital inputs.  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Data Bus  
RD Port  
I/O pin  
EXAMPLE 10-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
LATA  
0x0F  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISA ; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
2003-2013 Microchip Technology Inc.  
DS39609C-page 103  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-2:  
BLOCK DIAGRAM OF  
RA3:RA0AND RA5PINS  
FIGURE 10-3:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
RD LATA  
RD LATA  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
Q
WR LATA  
or  
PORTA  
WR LATA  
or  
PORTA  
VDD  
I/O pin(1)  
Q
Data Latch  
CK  
CK  
P
N
Data Latch  
I/O pin(1)  
D
Q
N
D
Q
VSS  
WR TRISA  
RD TRISA  
Schmitt  
Trigger  
Input  
WR TRISA  
RD TRISA  
CK  
Q
VSS  
Analog  
Q
CK  
TRIS Latch  
TRIS Latch  
Input  
Buffer  
Mode  
TTL  
Input  
Buffer  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
TMR0 Clock Input  
To A/D Converter and LVD Modules  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 10-4:  
BLOCK DIAGRAM OF RA6 PIN (WHEN ENABLED AS I/O)  
ECRA6 or RCRA6 Enable  
Data Bus  
RD LATA  
D
Q
Q
VDD  
P
WR LATA or PORTA  
CK  
Data Latch  
I/O pin(1)  
N
D
Q
WR TRISA  
VSS  
CK  
Q
TRIS Latch  
TTL  
Input  
Buffer  
TRISA  
RD  
ECRA6 or RCRA6 Enable  
Q
D
EN  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39609C-page 104  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-1: PORTA FUNCTIONS  
Name  
RA0/AN0  
Bit#  
Buffer  
Function  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
Input/output or analog input.  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output or analog input or VREF-.  
Input/output or analog input or VREF+.  
Input/output or external clock input for Timer0.  
Output is open-drain type.  
RA5/AN4/LVDIN  
OSC2/CLKO/RA6  
bit 5  
TTL  
Input/output or slave select input for synchronous serial port or analog  
input, or Low-Voltage Detect input.  
bit 6  
TTL  
OSC2 or clock output, or I/O pin.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
-x0x 0000 -u0u 0000  
-xxx xxxx -uuu uuuu  
-111 1111 -111 1111  
LATA Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’.  
Shaded cells are not used by PORTA.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 105  
PIC18F6520/8520/6620/8620/6720/8720  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
10.2 PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
RB3 can be configured by the configuration bit  
CCP2MX, as the alternate peripheral pin for the CCP2  
module. This is only available when the device is  
configured in Microprocessor, Microprocessor with  
Boot Block, or Extended Microcontroller operating  
modes.  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register, read and write the latched output value for  
PORTB.  
The RB5 pin is used as the LVP programming pin.  
When the LVP configuration bit is programmed, this pin  
loses the I/O function and become a programming test  
function.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
Note:  
When LVP is enabled, the weak pull-up on  
RB5 is disabled.  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
FIGURE 10-5:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
TRISB  
VDD  
RBPU(2)  
Data Bus  
Weak  
Pull-up  
P
Data Latch  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
D
Q
WR LATB  
or PORTB  
I/O pin(1)  
CK  
TRIS Latch  
D
Q
WR TRISB  
TTL  
CK  
Input  
Buffer  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
ST  
Buffer  
RD TRISB  
RD LATB  
Four of the PORTB pins (RB3:RB0) are the external  
interrupt pins, INT3 through INT0. In order to use these  
pins as external interrupts, the corresponding TRISB  
bit must be set to ‘1’.  
Latch  
Q
D
The other four PORTB pins (RB7:RB4) have an inter-  
rupt-on-change feature. Only pins configured as inputs  
can cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RB Port Change  
Interrupt with Flag bit, RBIF (INTCON<0>).  
RD PORTB  
Set RBIF  
Q1  
EN  
Q
D
RD PORTB  
Q3  
From other  
RB7:RB4 pins  
EN  
RB7:RB5 in Serial Programming Mode  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (INTCON2<7>).  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
b) Clear flag bit RBIF.  
DS39609C-page 106  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-6:  
BLOCK DIAGRAM OF RB2:RB0 PINS  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
D
Q
I/O pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Q
D
EN  
INTx  
RD Port  
Schmitt Trigger  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).  
FIGURE 10-7:  
BLOCK DIAGRAM OF RB3 PIN  
VDD  
RBPU(2)  
Weak  
Pull-up  
P
CCP2MX  
CCP Output(3)  
1
0
VDD  
P
Enable(3)  
CCP Output  
Data Latch  
I/O pin(1)  
Data Bus  
D
Q
WR LATB or  
WR PORTB  
N
CK  
TRIS Latch  
D
VSS  
TTL  
Input  
Buffer  
WR TRISB  
CK  
Q
RD TRISB  
RD LATB  
D
Q
RD PORTB  
EN  
RD PORTB  
CCP2 or INT3  
Schmitt Trigger  
Buffer  
CCP2MX = 0  
Note 1: I/O pin has diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
3: The CCP2 input/output is multiplexed with RB3 if the CCP2MX bit is enabled (= 0) in the Configuration register and the device  
is operating in Microprocessor, Microprocessor with Boot Block or Extended Microcontroller mode.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 107  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-3: PORTB FUNCTIONS  
Name  
RB0/INT0  
Bit#  
Buffer  
Function  
bit 0  
TTL/ST(1) Input/output pin or external interrupt input 0.  
Internal software programmable weak pull-up.  
RB1/INT1  
bit 1  
bit 2  
bit 3  
TTL/ST(1) Input/output pin or external interrupt input 1.  
Internal software programmable weak pull-up.  
TTL/ST(1) Input/output pin or external interrupt input 2.  
Internal software programmable weak pull-up.  
TTL/ST(4) Input/output pin or external interrupt input 3. Capture2 input/Compare2  
output/PWM output (when CCP2MX configuration bit is enabled, all  
PIC18F8X20 operating modes except Microcontroller mode).  
Internal software programmable weak pull-up.  
RB2/INT2  
RB3/INT3/CCP2(3)  
RB4/KBI0  
bit 4  
bit 5  
TTL  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
RB5/KBI1/PGM  
TTL/ST(2) Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Low-voltage ICSP enable pin.  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
bit 6  
bit 7  
TTL/ST(2) Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Serial programming clock.  
TTL/ST(2) Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: RC1 is the alternate assignment for CCP2 when CCP2MX is not set (all operating modes except  
Microcontroller mode).  
4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
LATB Data Output Register  
TRISB  
INTCON  
PORTB Data Direction Register  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
INTCON2  
INTCON3  
Legend:  
RBPU  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP INT3IP  
INT1IP INT3IE INT2IE INT1IE INT3IF INT2IF  
RBIP  
1111 1111 1111 1111  
1100 0000 1100 0000  
INT2IP  
INT1IF  
x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS39609C-page 108  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The pin override value is not loaded into the TRIS  
register. This allows read-modify-write of the TRIS  
register, without concern due to peripheral overrides.  
10.3 PORTC, TRISC and LATC  
Registers  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
RC1 is normally configured by configuration bit,  
CCP2MX, as the default peripheral pin of the CCP2  
module (default/erased state, CCP2MX = 1).  
EXAMPLE 10-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register, read and write the latched output value for  
PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
PORTC is multiplexed with several peripheral functions  
(Table 10-5). PORTC pins have Schmitt Trigger input  
buffers.  
TRISC  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
FIGURE 10-8:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
PORTC/Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATC  
Data Bus  
D
Q
Q
(1)  
I/O pin  
or  
WR LATC  
CK  
WR PORTC  
Data Latch  
TRIS OVERRIDE  
N
D
Q
Q
Pin  
Override  
Peripheral  
VSS  
TRIS  
Override  
Logic  
WR TRISC  
CK  
RC0  
Yes  
Timer1 Osc for  
Timer1/Timer3  
TRIS Latch  
RC1  
Yes  
Timer1 Osc for  
Timer1/Timer3,  
CCP2 I/O  
RD TRISC  
Schmitt  
Trigger  
Peripheral Output  
RC2  
RC3  
Yes  
Yes  
CCP1 I/O  
(2)  
Enable  
2
Q
D
SPI/I C  
Master Clock  
EN  
2
RC4  
RC5  
RC6  
Yes  
Yes  
Yes  
I C Data Out  
RD PORTC  
SPI Data Out  
Peripheral Data In  
USART1 Async  
Xmit, Sync Clock  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Peripheral Output Enable is only active if Peripheral Select is active.  
RC7  
Yes  
USART1 Sync  
Data Out  
2003-2013 Microchip Technology Inc.  
DS39609C-page 109  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-5: PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T13CKI  
bit 0  
ST  
Input/output port pin, Timer1 oscillator output or Timer1/Timer3  
clock input.  
RC1/T1OSI/CCP2(1)  
bit 1  
ST  
Input/output port pin, Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM output (when CCP2MX configuration bit is  
disabled).  
RC2/CCP1  
bit 2  
bit 3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/  
PWM1 output.  
RC3 can also be the synchronous serial clock for both SPI and I2C  
RC3/SCK/SCL  
modes.  
RC4/SDI/SDA  
RC5/SDO  
bit 4  
bit 5  
bit 6  
ST  
ST  
ST  
RC4 can also be the SPI data in (SPI mode) or data I/O (I2C mode).  
Input/output port pin or synchronous serial port data output.  
RC6/TX1/CK1  
Input/output port pin, addressable USART1 asynchronous transmit or  
addressable USART1 synchronous clock.  
RC7/RX1/DT1  
bit 7  
ST  
Input/output port pin, addressable USART1 asynchronous receive or  
addressable USART1 synchronous data.  
Legend: ST = Schmitt Trigger input  
Note 1: RB3 is the alternate assignment for CCP2 when CCP2MX is set.  
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
DS39609C-page 110  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
PORTD can also be configured as an 8-bit wide micro-  
10.4 PORTD, TRISD and LATD  
processor port (Parallel Slave Port) by setting control  
bit PSPMODE (TRISE<4>). In this mode, the input  
buffers are TTL. See Section 10.10 “Parallel Slave  
Port” for additional information on the Parallel Slave  
Port (PSP).  
Registers  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISD bit (= 0)  
will make the corresponding PORTD pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
EXAMPLE 10-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
The Data Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register, read and write the latched output value for  
PORTD.  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
TRISD  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
PORTD is multiplexed with the system bus as the  
external memory interface; I/O port functions are only  
available when the system bus is disabled, by setting  
the EBDIS bit in the MEMCOM register  
(MEMCON<7>). When operating as the external mem-  
ory interface, PORTD is the low-order byte of the  
multiplexed address/data bus (AD7:AD0).  
FIGURE 10-9:  
PORTD BLOCK DIAGRAM IN I/O PORT MODE  
PORTD/CCP1 Select  
PSPMODE  
RD LATD  
VDD  
P
Data Bus  
WR LATD  
D
Q
Q
or  
PORTD  
CK  
Data Latch  
D
Q
I/O pin(1)  
WR TRISD  
PSP Write  
RD TRISD  
Q
CK  
0
1
N
TRIS Latch  
VSS  
TTL Buffer  
1
0
Q
D
EN  
Schmitt Trigger  
Input Buffer  
RD PORTD  
PSP Read  
0
1
Note 1: I/O pins have diode protection to VDD and VSS.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 111  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-10:  
PORTD BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTD  
RD LATD  
Data Bus  
(1)  
I/O pin  
Port  
D
Q
0
1
Data  
WR LATD  
or PORTD  
CK  
Data Latch  
D
Q
TTL  
Input  
Buffer  
WR TRISD  
CK  
TRIS Latch  
RD TRISD  
Bus Enable  
Data/TRIS Out  
Drive Bus  
System Bus  
Control  
Instruction Register  
Instruction Read  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39609C-page 112  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-7: PORTD FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RD0/PSP0/AD0  
RD1/PSP1/AD1  
RD2/PSP2/AD2  
RD3/PSP3/AD3  
RD4/PSP4/AD4  
RD5/PSP5/AD5  
RD6/PSP6/AD6  
RD7/PSP7/AD7  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, Parallel Slave Port bit 0 or address/data bus bit 0.  
Input/output port pin, Parallel Slave Port bit 1 or address/data bus bit 1.  
Input/output port pin, Parallel Slave Port bit 2 or address/data bus bit 2.  
Input/output port pin, Parallel Slave Port bit 3 or address/data bus bit 3.  
Input/output port pin, Parallel Slave Port bit 4 or address/data bus bit 4.  
Input/output port pin, Parallel Slave Port bit 5 or address/data bus bit 5.  
Input/output port pin, Parallel Slave Port bit 6 or address/data bus bit 6.  
Input/output port pin, Parallel Slave Port bit 7 or address/data bus bit 7.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel  
Slave Port mode.  
TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 ---- 0000 ----  
LATD Data Output Register  
PORTD Data Direction Register  
TRISD  
PSPCON  
IBF  
OBF  
IBOV PSPMODE  
WAIT1 WAIT0  
MEMCON EBDIS  
WM1  
WM0 0-00 --00 0-00 --00  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by PORTD.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 113  
PIC18F6520/8520/6620/8620/6720/8720  
When the Parallel Slave Port is active, three PORTE  
10.5 PORTE, TRISE and LATE  
Registers  
pins (RE0/RD/AD8, RE1/WR/AD9 and RE2/CS/AD10)  
function as its control inputs. This automatically occurs  
when the PSPMODE bit (PSPCON<4>) is set. Users  
must also make certain that bits TRISE<2:0> are set to  
configure the pins as digital inputs and the ADCON1  
register is configured for digital I/O. The PORTE PSP  
control functions are summarized in Table 10-9.  
PORTE is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISE bit (= 0)  
will make the corresponding PORTE pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
Pin RE7 can be configured as the alternate peripheral  
pin for CCP module 2 when the device is operating in  
Microcontroller mode. This is done by clearing the  
configuration bit, CCP2MX, in configuration register,  
CONFIG3H (CONFIG3H<0>).  
Read-modify-write operations on the LATE register,  
read and write the latched output value for PORTE.  
PORTE is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output. PORTE is multiplexed with the CCP module  
(Table 10-9).  
Note:  
For PIC18F8X20 (80-pin) devices operat-  
ing in Extended Microcontroller mode,  
PORTE defaults to the system bus on  
Power-on Reset.  
On PIC18F8X20 devices, PORTE is also multiplexed  
with the system bus as the external memory interface;  
the I/O bus is available only when the system bus is  
disabled, by setting the EBDIS bit in the MEMCON  
register (MEMCON<7>). If the device is configured in  
Microprocessor or Extended Microcontroller mode,  
then the PORTE<7:0> becomes the high byte of the  
address/data bus for the external program memory  
interface. In Microcontroller mode, the PORTE<2:0>  
pins become the control inputs for the Parallel Slave  
Port when bit PSPMODE (PSPCON<4>) is set. (Refer  
to Section 4.1.1 “PIC18F8X20 Program Memory  
Modes” for more information on program memory  
modes.)  
EXAMPLE 10-5:  
INITIALIZING PORTE  
CLRF  
PORTE  
; Initialize PORTE by  
; clearing output  
; data latches  
CLRF  
LATE  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0x03  
; Value used to  
; initialize data  
; direction  
; Set RE1:RE0 as inputs  
; RE7:RE2 as outputs  
TRISE  
DS39609C-page 114  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-11:  
PORTE BLOCK DIAGRAM IN I/O MODE  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
(1)  
I/O pin  
RD LATE  
Data Bus  
WR LATE  
or WR PORTE  
D
Q
Q
CK  
Data Latch  
N
D
Q
Q
TRIS OVERRIDE  
VSS  
TRIS  
Override  
WR TRISE  
CK  
Pin Override  
Peripheral  
TRIS Latch  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
RD TRISE  
Schmitt  
Trigger  
Peripheral Enable  
Q
D
EN  
RD PORTE  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-12:  
PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTE  
RD LATE  
Data Bus  
(1)  
I/O pin  
Port  
0
1
D
Q
Data  
WR LATE  
or PORTE  
CK  
Data Latch  
D
Q
TTL  
WR TRISE  
CK  
Input  
Buffer  
TRIS Latch  
RD TRISE  
Bus Enable  
Data/TRIS Out  
Drive Bus  
System Bus  
Control  
Instruction Register  
Instruction Read  
Note 1: I/O pins have protection diodes to VDD and VSS.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 115  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
RE0/RD/AD8  
RE1/WR/AD9  
RE2/CS/AD10  
bit 0  
ST/TTL(1)  
Input/output port pin, read control for Parallel Slave Port or  
address/data bit 8  
For RD (PSP Control mode):  
1= Not a read operation  
0= Read operation, reads PORTD register (if chip selected)  
bit 1  
bit 2  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, write control for Parallel Slave Port or  
address/data bit 9  
For WR (PSP Control mode):  
1= Not a write operation  
0= Write operation, writes PORTD register (if chip selected)  
Input/output port pin, chip select control for Parallel Slave Port or  
address/data bit 10  
For CS (PSP Control mode):  
1= Device is not selected  
0= Device is selected  
RE3/AD11  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or address/data bit 11.  
Input/output port pin or address/data bit 12.  
Input/output port pin or address/data bit 13.  
Input/output port pin or address/data bit 14.  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE7/CCP2/AD15  
Input/output port pin, Capture2 input/Compare2 output/PWM output  
(PIC18F8X20 devices in Microcontroller mode only) or  
address/data bit 15.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O or CCP mode and TTL buffers when in System Bus or PSP  
Control mode.  
TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
all other  
Resets  
TRISE  
PORTE Data Direction Control Register  
1111 1111  
xxxx xxxx  
1111 1111  
uuuu uuuu  
uuuu uuuu  
0000 --00  
0000 ----  
PORTE  
LATE  
Read PORTE pin/Write PORTE Data Latch  
Read PORTE Data Latch/Write PORTE Data Latch  
xxxx xxxx  
MEMCON  
PSPCON  
EBDIS  
IBF  
WAIT1  
IBOV  
WAIT0  
WM1 WM0 0-00 --00  
OBF  
PSPMODE  
0000 ----  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTE.  
DS39609C-page 116  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
EXAMPLE 10-6:  
INITIALIZING PORTF  
10.6 PORTF, LATF and TRISF Registers  
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
PORTF is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISF. Setting a  
TRISF bit (= 1) will make the corresponding PORTF pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISF bit (= 0) will  
make the corresponding PORTF pin an output (i.e., put  
the contents of the output latch on the selected pin).  
CLRF  
LATF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
0x07  
CMCON  
0x0F  
; Turn off comparators  
;
Read-modify-write operations on the LATF register,  
read and write the latched output value for PORTF.  
ADCON1 ; Set PORTF as digital I/O  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RF3:RF0 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
PORTF is multiplexed with several analog peripheral  
functions, including the A/D converter inputs and  
comparator inputs, outputs and voltage reference.  
MOVWF  
TRISF  
Note 1: On a Power-on Reset, the RF6:RF0 pins  
are configured as inputs and read as ‘0’.  
2: To configure PORTF as digital I/O, turn off  
comparators and set ADCON1 value.  
FIGURE 10-13:  
PORTF RF1/AN6/C2OUT, RF2/AN7/C1OUT PINS BLOCK DIAGRAM  
Port/Comparator Select  
Comparator Data Out  
VDD  
P
0
1
RD LATF  
Q
Data Bus  
D
I/O pin  
WR LATF  
or  
WR PORTF  
Q
CK  
Data Latch  
N
D
Q
Q
VSS  
WR TRISF  
CK  
Analog  
Input  
Mode  
TRIS Latch  
Schmitt  
Trigger  
RD TRISF  
Q
D
EN  
RD PORTF  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 117  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-14:  
RF6:RF3 AND RF0 PINS  
BLOCK DIAGRAM  
FIGURE 10-15:  
RF7 PIN BLOCK  
DIAGRAM  
RD LATF  
RD LATF  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
WR LATF or  
WR PORTF  
I/O pin  
WR LATF  
or  
WR PORTF  
VDD  
CK  
Data Latch  
CK  
Data Latch  
Q
P
D
Q
N
I/O pin  
Schmitt  
Trigger  
Input  
D
Q
WR TRISF  
CK  
TRIS Latch  
Buffer  
WR TRISF  
RD TRISF  
VSS  
Analog  
CK  
TRIS Latch  
Q
TTL  
Input  
Buffer  
Input  
Mode  
RD TRISF  
ST  
Input  
Q
D
Buffer  
Q
D
EN  
RD PORTF  
SS Input  
EN  
RD PORTF  
To A/D Converter or Comparator Input  
Note:  
I/O pins have diode protection to VDD and VSS.  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39609C-page 118  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-11: PORTF FUNCTIONS  
Name  
RF0/AN5  
Bit#  
Buffer Type  
Function  
Input/output port pin or analog input.  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
ST  
ST  
ST  
ST  
ST  
ST  
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
RF3/AN8  
Input/output port pin, analog input or comparator 2 output.  
Input/output port pin, analog input or comparator 1 output.  
Input/output port pin or analog input/comparator input.  
Input/output port pin or analog input/comparator input.  
RF4/AN9  
RF5/AN10/CVREF  
Input/output port pin, analog input/comparator input or  
comparator reference output.  
RF6/AN11  
RF7/SS  
bit 6  
bit 7  
ST  
Input/output port pin or analog input/comparator input.  
ST/TTL  
Input/output port pin or slave select pin for synchronous serial port.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
PORTF Data Direction Control Register  
Read PORTF pin/Write PORTF Data Latch  
Read PORTF Data Latch/Write PORTF Data Latch  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
PORTF  
LATF  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000  
CMCON C2OUT C1OUT C2INV C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000  
0000 0000  
CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTF.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 119  
PIC18F6520/8520/6620/8620/6720/8720  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings.  
10.7 PORTG, TRISG and LATG  
Registers  
PORTG is a 5-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISG. Setting a  
TRISG bit (= 1) will make the corresponding PORTG  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISG bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register,  
without concern due to peripheral overrides.  
EXAMPLE 10-7:  
INITIALIZING PORTG  
The Data Latch register (LATG) is also memory  
mapped. Read-modify-write operations on the LATG  
register, read and write the latched output value for  
PORTG.  
CLRF  
PORTG  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
LATG  
PORTG is multiplexed with both CCP and USART  
functions (Table 10-13). PORTG pins have Schmitt  
Trigger input buffers.  
MOVLW  
MOVWF  
0x04  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTG pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
; RG4:RG3 as inputs  
FIGURE 10-16:  
PORTG BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
PORTG/Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATG  
Data Bus  
D
Q
Q
(1)  
I/O pin  
or  
WR LATG  
CK  
WR PORTG  
Data Latch  
N
D
Q
Q
VSS  
TRIS  
Override  
Logic  
WR TRISG  
CK  
TRIS Latch  
RD TRISG  
Schmitt  
Trigger  
Peripheral Output  
TRIS OVERRIDE  
(2)  
Enable  
Pin  
Override  
Peripheral  
Q
D
RG0  
RG1  
Yes  
Yes  
CCP3 I/O  
EN  
USART1 Async  
Xmit, Sync Clock  
RD PORTG  
Peripheral Data In  
RG2  
Yes  
USART1 Async  
Rcv, Sync Data  
Out  
RG3  
RG4  
Yes  
Yes  
CCP4 I/O  
CCP5 I/O  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Peripheral Output Enable is only active if Peripheral Select is active.  
DS39609C-page 120  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-13: PORTG FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RG0/CCP3  
bit 0  
bit 1  
ST  
ST  
Input/output port pin or Capture3 input/Compare3 output/PWM3 output.  
RG1/TX2/CK2  
Input/output port pin, addressable USART2 asynchronous transmit or  
addressable USART2 synchronous clock.  
RG2/RX2/DT2  
bit 2  
ST  
Input/output port pin, addressable USART2 asynchronous receive or  
addressable USART2 synchronous data.  
RG3/CCP4  
RG4/CCP5  
bit 3  
bit 4  
ST  
ST  
Input/output port pin or Capture4 input/Compare4 output/PWM4 output.  
Input/output port pin or Capture5 input/Compare5 output/PWM5 output.  
Legend: ST = Schmitt Trigger input  
TABLE 10-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTG  
LATG  
Read PORTF pin/Write PORTF Data Latch  
LATG Data Output Register  
---x xxxx ---u uuuu  
---x xxxx ---u uuuu  
---1 1111 ---1 1111  
TRISG  
Data Direction Control Register for PORTG  
Legend: x= unknown, u= unchanged  
2003-2013 Microchip Technology Inc.  
DS39609C-page 121  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-17:  
RH3:RH0 PINS BLOCK  
DIAGRAM IN I/O MODE  
10.8 PORTH, LATH and TRISH  
Registers  
Note:  
PORTH is available only on PIC18F8X20  
devices.  
RD LATH  
Data  
Bus  
PORTH is an 8-bit wide, bidirectional I/O port. The cor-  
responding data direction register is TRISH. Setting a  
TRISH bit (= 1) will make the corresponding PORTH  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISH bit (= 0)  
will make the corresponding PORTH pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
D
Q
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
D
Q
Read-modify-write operations on the LATH register,  
read and write the latched output value for PORTH.  
Schmitt  
Trigger  
Input  
WR TRISH  
RD TRISH  
CK  
TRIS Latch  
Buffer  
Pins RH7:RH4 are multiplexed with analog inputs  
AN15:AN12. Pins RH3:RH0 are multiplexed with the  
system bus as the external memory interface; they are  
the high-order address bits, A19:A16. By default, pins  
RH7:RH4 are enabled as A/D inputs and pins  
RH3:RH0 are enabled as the system address bus.  
Register ADCON1 configures RH7:RH4 as I/O or A/D  
inputs. Register MEMCON configures RH3:RH0 as I/O  
or system bus pins.  
Q
D
EN  
RD PORTH  
Note 1: On Power-on Reset, PORTH pins  
RH7:RH4 default to A/D inputs and read  
as ‘0’.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: On Power-on Reset, PORTH pins  
FIGURE 10-18:  
RH7:RH4 PINS BLOCK  
DIAGRAM IN I/O MODE  
RH3:RH0 default to system bus signals.  
EXAMPLE 10-8:  
INITIALIZING PORTH  
RD LATH  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
Data  
Bus  
D
Q
CLRF  
LATH  
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
;
D
Q
; Value used to  
; initialize data  
; direction  
Schmitt  
Trigger  
Input  
WR TRISH  
CK  
TRIS Latch  
Buffer  
MOVWF  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
RD TRISH  
Q
D
EN  
RD PORTH  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39609C-page 122  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-19:  
RH3:RH0 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTH  
RD LATD  
Data Bus  
I/O pin(1)  
Port  
D
Q
0
1
Data  
WR LATH  
or  
PORTH  
CK  
Data Latch  
D
Q
WR TRISH  
RD TRISH  
TTL  
Input  
Buffer  
CK  
TRIS Latch  
External Enable  
Address Out  
System Bus  
Control  
Drive System  
To Instruction Register  
Instruction Read  
Note 1: I/O pins have diode protection to VDD and VSS.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 123  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-15: PORTH FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RH0/A16  
RH1/A17  
RH2/A18  
RH3/A19  
RH4/AN12  
RH5/AN13  
RH6/AN14  
RH7/AN15  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST  
Input/output port pin or address bit 16 for external memory interface.  
Input/output port pin or address bit 17 for external memory interface.  
Input/output port pin or address bit 18 for external memory interface.  
Input/output port pin or address bit 19 for external memory interface.  
Input/output port pin or analog input channel 12.  
ST  
Input/output port pin or analog input channel 13.  
ST  
Input/output port pin or analog input channel 14.  
ST  
Input/output port pin or analog input channel 15.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel  
Slave Port mode.  
TABLE 10-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISH  
PORTH Data Direction Control Register  
Read PORTH pin/Write PORTH Data Latch  
Read PORTH Data Latch/Write PORTH Data Latch  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PORTH  
LATH  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000 --00 0000  
WAIT1 WAIT0 WM1 WM0 0-00 --00 0-00 --00  
MEMCON EBDIS  
Legend: x= unknown, u= unchanged, – = unimplemented. Shaded cells are not used by PORTH.  
DS39609C-page 124  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-20:  
PORTJ BLOCK DIAGRAM  
IN I/O MODE  
10.9 PORTJ, TRISJ and LATJ  
Registers  
Note:  
PORTJ is available only on PIC18F8X20  
devices.  
RD LATJ  
Data  
Bus  
PORTJ is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISJ. Setting a  
TRISJ bit (= 1) will make the corresponding PORTJ pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISJ bit (= 0) will  
make the corresponding PORTJ pin an output (i.e., put  
the contents of the output latch on the selected pin).  
D
Q
I/O pin(1)  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
Schmitt  
Trigger  
Input  
The Data Latch register (LATJ) is also memory  
mapped. Read-modify-write operations on the LATJ  
register, read and write the latched output value for  
PORTJ.  
WR TRISJ  
CK  
TRIS Latch  
Buffer  
RD TRISJ  
PORTJ is multiplexed with the system bus as the exter-  
nal memory interface; I/O port functions are only avail-  
able when the system bus is disabled. When operating  
as the external memory interface, PORTJ provides the  
control signal to external memory devices. The RJ5 pin  
is not multiplexed with any system bus functions.  
Q
D
EN  
RD PORTJ  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTJ pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the corre-  
sponding peripheral section for the correct TRIS bit  
settings.  
Note 1: I/O pins have diode protection to VDD and VSS.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register,  
without concern due to peripheral overrides.  
EXAMPLE 10-9:  
INITIALIZING PORTJ  
CLRF  
PORTJ  
; Initialize PORTG by  
; clearing output  
; data latches  
CLRF  
LATJ  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as output  
; RJ7:RJ6 as inputs  
TRISJ  
2003-2013 Microchip Technology Inc.  
DS39609C-page 125  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-21:  
RJ4:RJ0 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTJ  
RD LATJ  
Data Bus  
I/O pin(1)  
Port  
D
Q
0
1
Data  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
WR TRISJ  
RD TRISJ  
CK  
TRIS Latch  
Control Out  
System Bus  
Control  
External Enable  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-22:  
RJ7:RJ6 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTJ  
RD LATJ  
Data Bus  
I/O pin(1)  
Port  
D
Q
0
1
Data  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
WR TRISJ  
CK  
TRIS Latch  
RD TRISJ  
UB/LB Out  
WM = 01  
System Bus  
Control  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39609C-page 126  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 10-17: PORTJ FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RJ0/ALE  
bit 0  
ST  
Input/output port pin or address latch enable control for external memory  
interface.  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or output enable control for external memory interface.  
Input/output port pin or write low byte control for external memory interface.  
Input/output port pin or write high byte control for external memory interface.  
Input/output port pin or byte address 0 control for external memory interface.  
Input/output port pin or chip enable control for external memory interface.  
RJ6/LB  
Input/output port pin or lower byte select control for external memory  
interface.  
RJ7/UB  
bit 7  
ST  
Input/output port pin or upper byte select control for external memory  
interface.  
Legend: ST = Schmitt Trigger input  
TABLE 10-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
LATJ  
Read PORTJ pin/Write PORTJ Data Latch  
LATJ Data Output Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
TRISJ  
Data Direction Control Register for PORTJ  
Legend: x= unknown, u= unchanged  
2003-2013 Microchip Technology Inc.  
DS39609C-page 127  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-23:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE PORT)  
10.10 Parallel Slave Port  
PORTD also operates as an 8-bit wide Parallel Slave  
Port, or microprocessor port, when control bit  
PSPMODE (PSPCON<4>) is set. It is asynchronously  
readable and writable by the external world through the  
RD control input pin, RE0/RD/AD8 and the WR control  
input pin, RE1/WR/AD9.  
Data Bus  
D
Q
RDx  
pin  
WR LATD  
or  
PORTD  
CK  
Note:  
For PIC18F8X20 devices, the Parallel  
Slave Port is available only in  
Microcontroller mode.  
TTL  
Data Latch  
Q
D
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
bit PSPMODE enables port pin RE0/RD/AD8 to be the  
RD input, RE1/WR/AD9 to be the WR input and RE2/  
CS/AD10 to be the CS (Chip Select) input. For this  
functionality, the corresponding data direction bits of  
the TRISE register (TRISE<2:0>) must be configured  
as inputs (set). The A/D port configuration bits,  
PCFG2:PCFG0 (ADCON1<2:0>), must be set which  
will configure pins RE2:RE0 as digital I/O.  
RD PORTD  
EN  
TRIS Latch  
RD LATD  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
The PORTE I/O pins become control inputs for the  
microprocessor  
port  
when  
bit  
PSPMODE  
(PSPCON<4>) is set. In this mode, the user must make  
sure that the TRISE<2:0> bits are set (pins are config-  
ured as digital inputs) and the ADCON1 is configured  
for digital I/O. In this mode, the input buffers are TTL.  
Read  
RD  
CS  
TTL  
Chip Select  
TTL  
Write  
WR  
TTL  
Note: I/O pin has protection diodes to VDD and VSS.  
DS39609C-page 128  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 10-1: PSPCON REGISTER  
R-0 R-0  
IBF OBF  
bit 7  
R/W-0  
IBOV  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PSPMODE  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
bit 3-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
FIGURE 10-24:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
2003-2013 Microchip Technology Inc.  
DS39609C-page 129  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 10-25:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 10-19: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
Port Data Latch when written; Port pins when read  
LATD Data Output bits  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
TRISD  
PORTE  
PORTD Data Direction bits  
Read PORTE pin/  
Write PORTE Data Latch  
LATE  
LATE Data Output bits  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 ---- 0000 ----  
0000 0000 0000 0000  
TRISE  
PORTE Data Direction bits  
PSPCON  
INTCON  
IBF  
OBF  
IBOV  
TMR0IF  
PSPMODE  
INT0IE  
GIE/  
GIEH  
PEIE/  
GIEL  
RBIE  
TMR0IF  
INT0IF  
RBIF  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF  
TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
IPR1  
Legend:  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.  
DS39609C-page 130  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Figure 11-1 shows a simplified block diagram of the  
11.0 TIMER0 MODULE  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or  
16-bit timer/counter  
The T0CON register (Register 11-1) is a readable and  
writable register that controls all the aspects of Timer0,  
including the prescale selection.  
• Readable and writable  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
bit 0  
T08BIT  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 131  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
TMR0  
FOSC/4  
0
1
8
0
Sync with  
Internal  
Clocks  
RA4/T0CKI pin  
Programmable  
Prescaler  
1
(2 TCY delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
FOSC/4  
0
0
Sync with  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
Internal  
Clocks  
1
TMR0L  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
1
8
(2 TCY delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
PSA  
T0PS2, T0PS1, T0PS0  
T0CS  
8
8
TMR0H  
8
Data Bus<7:0>  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39609C-page 132  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software  
control, (i.e., it can be changed “on-the-fly” during  
program execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
FFFFh to 0000h in 16-bit mode. This overflow sets the  
TMR0IF bit. The interrupt can be masked by clearing  
the TMR0IE bit. The TMR0IF bit must be cleared in  
software by the Timer0 module Interrupt Service  
Routine before re-enabling this interrupt. The TMR0  
interrupt cannot awaken the processor from Sleep,  
since the timer is shut-off during Sleep.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment, either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.4 16-Bit Mode Timer Reads  
and Writes  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16 bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid, due to a rollover between successive reads  
of the high and low byte.  
11.2 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not readable or writable.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
A write to the high byte of Timer0 must also take place  
through the TMR0H Buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16 bits of Timer0 to be  
updated at once.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x, ..., etc.) will clear the prescaler  
count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0, will clear the  
prescaler count, but will not change the  
prescaler assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 1  
Bit 0  
TMR0L Timer0 Module Low Byte Register  
TMR0H Timer0 Module High Byte Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 0000 0000 0000  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2 T0PS1 T0PS0 1111 1111 1111 1111  
PORTA Data Direction Register  
-111 1111 -111 1111  
Legend: x= unknown, u= unchanged, = unimplemented locations, read as ‘0’.  
Shaded cells are not used by Timer0.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 133  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 134  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Register 12-1 details the Timer1 Control register. This  
12.0 TIMER1 MODULE  
register controls the operating mode of the Timer1  
module and contains the Timer1 Oscillator Enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by  
setting or clearing control bit, TMR1ON (T1CON<0>).  
The Timer1 module timer/counter has the following  
features:  
• 16-bit timer/counter  
(two 8-bit registers: TMR1H and TMR1L)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications, with only a minimal  
addition of external components and code overhead.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module special event trigger  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
bit 6  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
Unimplemented: Read as ‘0’  
bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 135  
PIC18F6520/8520/6620/8620/6720/8720  
When TMR1CS = 0, Timer1 increments every instruc-  
12.1 Timer1 Operation  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input or the  
Timer1 oscillator, if enabled.  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored and the pins are read as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Timer1 also has an internal “Reset input”. This  
Reset can be generated by the CCP module  
(see Section 16.0 “Capture/Compare/PWM (CCP)  
Modules”).  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag Bit  
Synchronized  
TMR1  
CLR  
0
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
1
T1OSO/T13CKI  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
(1)  
0
2
Sleep Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
CCP Special Event Trigger  
0
TMR1IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
TMR1  
8
CLR  
Timer 1  
High Byte  
TMR1L  
Flag bit  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
T1OSO/T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Sleep Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39609C-page 136  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
12.2.1  
LOW-POWER TIMER1 OPTION  
(PIC18FX520 DEVICES ONLY)  
12.2 Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit, T1OSCEN (T1CON<3>). The oscil-  
lator is a low-power oscillator, rated up to 200 kHz. It  
will continue to run during Sleep. It is primarily intended  
for a 32 kHz crystal. The circuit for a typical LP oscilla-  
tor is shown in Figure 12-3. Table 12-1 shows the  
capacitor selection for the Timer1 oscillator.  
The Timer1 oscillator for PIC18LFX520 devices incor-  
porates a low-power feature, which allows the oscillator  
to automatically reduce its power consumption when  
the microcontroller is in Sleep mode.  
As high noise environments may cause excessive  
oscillator instability in Sleep mode, this option is best  
suited for low noise applications where power  
conservation is an important design consideration. Due  
to the low-power nature of the oscillator, it may also be  
sensitive to rapidly changing signals in close proximity.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator  
FIGURE 12-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
The oscillator circuit, shown in Figure 12-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
C1  
33 pF  
PIC18FXX20  
If a high-speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in output compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 12-4, may be helpful when used on a  
single-sided PCB or in addition to a ground plane.  
T1OSI  
XTAL  
32.768 kHz  
T1OSO  
C2  
33 pF  
FIGURE 12-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
Note:  
See the Notes with Table 12-1 for additional  
information about capacitor selection.  
VDD  
VSS  
TABLE 12-1: CAPACITOR SELECTION  
FOR THE ALTERNATE  
OSC1  
OSC2  
OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
TBD(1)  
TBD(1)  
Crystal to be Tested:  
RC0  
RC1  
32.768 kHz Epson C-001R32.768K-A 20 PPM  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
RC2  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
Note:  
Not drawn to scale.  
Note:  
PIC18FX620/X720 devices have the  
standard Timer1 oscillator permanently  
selected. PIC18LFX620/X720 devices  
have the low-power Timer1 oscillator  
permanently selected.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
4: Capacitor values are for design guidance  
only.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 137  
PIC18F6520/8520/6620/8620/6720/8720  
12.3 Timer1 Interrupt  
12.6 Using Timer1 as a  
Real-Time Clock  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing TMR1 Interrupt Enable bit, TMR1IE  
(PIE1<0>).  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.2 “Timer1 Oscillator”)  
gives users the option to include RTC functionality to  
their applications. This is accomplished with an inex-  
pensive watch crystal to provide an accurate time base  
and several lines of application code to calculate the  
time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
12.4 Resetting Timer1 Using a CCP  
Trigger Output  
If the CCP module is configured in Compare mode  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to incre-  
ment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow, triggers the interrupt and calls  
the routine, which increments the seconds counter by  
one; additional counters for minutes and hours are  
incremented as the previous counter overflow.  
to  
generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1 and start an A/D conversion (if the A/D module  
is enabled).  
Note:  
The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to  
preload it; the simplest method is to set the MSb of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1, the write will take  
precedence.  
In this mode of operation, the CCPR1H:CCPR1L  
register pair effectively becomes the period register for  
Timer1.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1), as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
12.5 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, is  
valid, due to a rollover between reads.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 High Byte Buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
DS39609C-page 138  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
0x80  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1OSC  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
MOVLW  
MOVWF  
RETURN  
.01  
hours  
; Reset hours to 1  
; Done  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Legend:  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 139  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 140  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits,  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)).  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
• SSP module optional use of TMR2 output to  
generate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 has a control register shown in Register 13-1.  
Timer2 can be shut-off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. Register 13-1 shows the Timer2 Control regis-  
ter. The prescaler and postscaler selection of Timer2  
are controlled by this register.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 141  
PIC18F6520/8520/6620/8620/6720/8720  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon Reset.  
The output of TMR2 (before the postscaler) is fed to the  
synchronous serial port module, which optionally uses  
it to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS1:T2CKPS0  
4
T2OUTPS3:T2OUTPS0  
Note 1: TMR2 register output can be software selected by the SSP module as a baud clock.  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
0000 0000 0000 0000  
PIE1  
TXIE  
TXIP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Legend:  
DS39609C-page 142  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 14-1 shows the Timer3 Control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP clock source.  
• 16-bit timer/counter  
(two 8-bit registers; TMR3H and TMR3L)  
Register 12-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 Oscillator  
Enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6, 3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
11= Timer3 and Timer4 are the clock sources for CCP1 through CCP5  
10= Timer3 and Timer4 are the clock sources for CCP3 through CCP5;  
Timer1 and Timer2 are the clock sources for CCP1 and CCP2  
01= Timer3 and Timer4 are the clock sources for CCP2 through CCP5;  
Timer1 and Timer2 are the clock sources for CCP1  
00= Timer1 and Timer2 are the clock sources for CCP1 through CCP5  
bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 2  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI (on the rising edge after the  
first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 143  
PIC18F6520/8520/6620/8620/6720/8720  
When TMR3CS = 0, Timer3 increments every instruc-  
14.1 Timer3 Operation  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored and the pins are read as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
Timer3 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (see Section 14.0  
“Timer3 Module”).  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Trigger  
T3CCPx  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
0
Flag bit  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
On/Off  
T3SYNC  
(3)  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
Oscillator  
2
Sleep Input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
0
Synchronized  
Clock Input  
8
TMR3  
Set TMR3IF Flag bit  
on Overflow  
CLR  
Timer3  
High Byte  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Sleep Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39609C-page 144  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low-  
power oscillator rated up to 200 kHz. See Section 12.0  
“Timer1 Module” for further details.  
If the CCP module is configured in Compare mode  
to  
generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer3.  
Note:  
The special event triggers from the CCP  
module will not set interrupt flag bit,  
TMR3IF (PIR1<0>).  
14.3 Timer3 Interrupt  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit, TMR3IF  
(PIR2<1>). This interrupt can be enabled/disabled by  
setting/clearing TMR3 Interrupt Enable bit, TMR3IE  
(PIE2<1>).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer3 is running in Asynchronous Counter mode,  
this Reset operation may not work. In the event that a  
write to Timer3 coincides with a special event trigger  
from CCP1, the write will take precedence. In this mode  
of operation, the CCPR1H:CCPR1L register pair  
effectively becomes the period register for Timer3.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF INT0IF  
RBIF  
0000 0000 0000 0000  
PIR2  
LVDIF TMR3IF CCP2IF ---0 0000 ---0 0000  
PIE2  
EEIE  
EEIP  
LVDIE TMR3IE CCP2IE ---0 0000 ---0 0000  
LVDIP TMR3IP CCP2IP ---1 1111 ---1 1111  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Legend:  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 145  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 146  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
15.1 Timer4 Operation  
15.0 TIMER4 MODULE  
Timer4 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR4 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T4CKPS1:T4CKPS0 (T4CON<1:0>). The match out-  
put of TMR4 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR4 interrupt, latched in flag bit, TMR4IF (PIR3<3>).  
The Timer4 module timer has the following features:  
• 8-bit timer (TMR4 register)  
• 8-bit period register (PR4)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR4 match of PR4  
Timer4 has a control register shown in Register 15-1.  
Timer4 can be shut-off by clearing control bit, TMR4ON  
(T4CON<2>), to minimize power consumption. The  
prescaler and postscaler selection of Timer4 are also  
controlled by this register. Figure 15-1 is a simplified  
block diagram of the Timer4 module.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR4 register  
• a write to the T4CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR4 is not cleared when T4CON is written.  
REGISTER 15-1: T4CON: TIMER4 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 T4OUTPS3:T4OUTPS0: Timer4 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR4ON: Timer4 On bit  
1= Timer4 is on  
0= Timer4 is off  
bit 1-0 T4CKPS1:T4CKPS0: Timer4 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 147  
PIC18F6520/8520/6620/8620/6720/8720  
15.2 Timer4 Interrupt  
15.3 Output of TMR4  
The Timer4 module has an 8-bit period register, PR4,  
which is both readable and writable. Timer4 increments  
from 00h until it matches PR4 and then resets to 00h on  
the next increment cycle. The PR4 register is initialized  
to FFh upon Reset.  
The output of TMR4 (before the postscaler) is used  
only as a PWM time base for the CCP modules. It is not  
used as a baud rate clock for the MSSP, as is the  
Timer2 output.  
FIGURE 15-1:  
TIMER4 BLOCK DIAGRAM  
Sets Flag  
TMR4  
bit TMR4IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
TMR4  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR4  
T4CKPS1:T4CKPS0  
4
T4OUTPS3:T4OUTPS0  
TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IP  
TX2IF  
TX2IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
IPR3  
RC2IP  
RC2IF  
RC2IE  
TMR4IP  
TMR4IF  
TMR4IE  
CCP5IP CCP4IP CCP3IP --11 1111 --00 0000  
CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
0000 0000 0000 0000  
PIR3  
PIE3  
TMR4  
T4CON  
PR4  
Timer4 Module Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0 -000 0000 -000 0000  
Timer4 Period Register 1111 1111 1111 1111  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer4 module.  
Legend:  
DS39609C-page 148  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
For the sake of clarity, CCP module operation in the  
16.0 CAPTURE/COMPARE/PWM  
following sections is described with respect to CCP1.  
The descriptions can be applied (with the exception of  
the special event triggers) to any of the modules.  
(CCP) MODULES  
The PIC18FXX20 devices all have five CCP (Capture/  
Compare/PWM) modules. Each module contains a  
16-bit register, which can operate as a 16-bit Capture  
register, a 16-bit Compare register or a Pulse Width  
Modulation (PWM) Master/Slave Duty Cycle register.  
Table 16-1 shows the timer resources of the CCP  
module modes.  
Note:  
Throughout this section, references to  
register and bit names that may be associ-  
ated with a specific CCP module are  
referred to generically by the use of ‘x’ or  
‘y’ in place of the specific module number.  
Thus, “CCPxCON” might refer to the  
control register for CCP1, CCP2, CCP3,  
CCP4 or CCP5.  
The operation of all CCP modules are identical, with  
the exception of the special event trigger present on  
CCP1 and CCP2.  
REGISTER 16-1: CCPxCON REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
DCxB0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0 for CCP Module x  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The  
eight Most Significant bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCP Module x Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, Initialize CCP pin Low; on compare match, force CCP pin High  
(CCPIF bit is set)  
1001= Compare mode, Initialize CCP pin High; on compare match, force CCP pin Low  
(CCPIF bit is set)  
1010= Compare mode, Generate software interrupt on compare match (CCPIF bit is set,  
(CCP pin is unaffected)  
1011= Compare mode, trigger special event (CCPIF bit is set):  
For CCP1 and CCP2:  
Timer1 or Timer3 is reset on event.  
For all other modules:  
CCPx pin is unaffected and is configured as an I/O port  
(same as CCPxM<3:0> = 1010, above).  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 149  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 16-1: CCP MODE – TIMER  
RESOURCE  
16.1 CCP Module Configuration  
Each Capture/Compare/PWM module is associated  
with a control register (generically, CCPxCON) and a  
data register (CCPRx). The data register, in turn, is  
comprised of two 8-bit registers: CCPRxL (low byte)  
and CCPRxH (high byte). All registers are both  
readable and writable.  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2 or Timer4  
The assignment of a particular timer to a module is  
determined by the Timer-to-CCP Enable bits in the  
T3CON register (Register 14-1). Depending on the  
configuration selected, up to four timers may be active  
at once, with modules in the same configuration  
(Capture/Compare or PWM) sharing timer resources.  
The possible configurations are shown in Figure 16-1.  
16.1.1  
CCP MODULES AND TIMER  
RESOURCES  
The CCP modules utilize Timers 1, 2, 3 or 4, depending  
on the mode selected. Timer1 and Timer3 are available  
to modules in Capture or Compare modes, while  
Timer2 and Timer4 are available for modules in PWM  
mode.  
FIGURE 16-1:  
CCP AND TIMER INTERCONNECT CONFIGURATIONS  
T3CCP<2:1> = 00  
T3CCP<2:1> = 01  
T3CCP<2:1> = 10  
T3CCP<2:1> = 11  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
CCP1  
CCP2  
CCP3  
CCP4  
CCP5  
CCP1  
CCP1  
CCP2  
CCP1  
CCP2  
CCP3  
CCP4  
CCP5  
CCP2  
CCP3  
CCP4  
CCP5  
CCP3  
CCP4  
CCP5  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
Timer1 is used for all Capture Timer1 and Timer2 are used Timer1 and Timer2 are used  
for Capture and Compare or  
all CCP modules. Timer2 is PWM operations for CCP1 PWM operations for CCP1  
used for PWM operations for only (depending on selected and CCP2 only (depending on  
Timer3 is used for all Capture  
and Compare operations for  
all CCP modules. Timer4 is  
used for PWM operations for  
all CCP modules. Modules  
may share either timer  
resource as a common time  
base.  
and Compare operations for for Capture and Compare or  
the mode selected for each  
module). Both modules may  
use a timer as a common time  
base if they are both in  
Capture/Compare or PWM  
modes.  
all CCP modules. Modules mode).  
may share either timer  
All other modules use either  
resource as a common time  
base.  
Timer3 or Timer4. Modules  
may share either timer  
Timer3 and Timer4 are not resource as a common time  
Timer1 and Timer2 are not  
available.  
available.  
base, if they are in Capture/  
Compare or PWM modes.  
The other modules use either  
Timer3 or Timer4. Modules  
may share either timer  
resource as a common time  
base if they are in Capture/  
Compare or PWM modes.  
DS39609C-page 150  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
16.2.3  
SOFTWARE INTERRUPT  
16.2 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit, CCP1IF, following any such  
change in operating mode.  
In Capture mode, CCPR1H:CCPR1L captures the 16-bit  
value of the TMR1 or TMR3 registers when an event  
occurs on pin RC2/CCP1. An event is defined as one of  
the following:  
• every falling edge  
• every rising edge  
16.2.4  
CCP PRESCALER  
• every 4th rising edge  
• every 16th rising edge  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
The event is selected by control bits, CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit, CCP1IF (PIR1<2>), is set; it must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value is overwritten by the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a
non-zero prescaler. Example 16-1 shows the  
16.2.1  
CCP PIN CONFIGURATION  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
In Capture mode, the RC2/CCP1 pin should be  
configured as an input by setting the TRISC<2> bit.  
Note:  
If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
EXAMPLE 16-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
CCP1CON, F ; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
16.2.2  
TIMER1/TIMER3 MODE SELECTION  
The timers that are to be used with the capture feature  
(Timer1 and/or Timer3) must be running in Timer mode,  
or Synchronized Counter mode. In Asynchronous  
Counter mode, the capture operation may not work. The  
timer to be used with each CCP module is selected in the  
T3CON register (see Section 16.1.1 “CCP Modules  
and Timer Resources”).  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVWF CCP1CON  
FIGURE 16-2:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
Set Flag bit CCP1IF  
T3CCP2  
TMR3  
Enable  
Prescaler  
1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
and  
Edge Detect  
Enable  
T3CCP2  
TMR1H  
CCP1CON<3:0>  
Q’s  
2003-2013 Microchip Technology Inc.  
DS39609C-page 151  
PIC18F6520/8520/6620/8620/6720/8720  
16.3.2  
TIMER1/TIMER3 MODE SELECTION  
16.3 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against either the TMR1 register  
pair value or the TMR3 register pair value. When a  
match occurs, the CCP1 pin:  
• is driven High  
16.3.3  
SOFTWARE INTERRUPT MODE  
• is driven Low  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
• toggles output (high-to-low or low-to-high)  
• remains unchanged  
The action on the pin is based on the value of control  
bits, CCP1M3:CCP1M0. At the same time, interrupt  
flag bit CCP1IF (CCP2IF) is set.  
16.3.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
16.3.1  
CCP PIN CONFIGURATION  
The special event trigger output of either CCP1 or  
CCP2, resets the TMR1 or TMR3 register pair, depend-  
ing on which timer resource is currently selected. This  
allows the CCPR1 register to effectively be a 16-bit  
programmable period register for Timer1 or Timer3.  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
Note:  
Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to  
the default low level. This is not the  
PORTC I/O data latch.  
The CCP2 Special Event Trigger will also start an A/D  
conversion if the A/D module is enabled.  
Note:  
The special event trigger from the CCP2  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 16-3:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
For CCP1 and CCP2 only, the Special Event Trigger will:  
Reset Timer1 or Timer3, but not set Timer1 or Timer3 interrupt flag bit  
and set bit GO/DONE (ADCON0<2>),  
which starts an A/D conversion (CCP2 only)  
Special Event Trigger  
Set Flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RC2/CCP1 pin  
TRISC<2>  
Output Enable  
1
0
CCP1CON<3:0>  
Mode Select  
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
DS39609C-page 152  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 16-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 0000 0000 0000  
0--1 11qq 0--q qquu  
IPEN  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
CMIE  
CMIF  
CMIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
EEIE  
EEIF  
EEIP  
TX2IF  
TX2IE  
TX2IP  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR4IF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
PIE1  
IPR1  
PIR2  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF -0-0 0000 ---0 0000  
TMR3IE CCP2IE -0-0 0000 ---0 0000  
TMR3IP CCP2IP -1-1 1111 ---1 1111  
PIE2  
IPR2  
PIR3  
RC2IF  
RC2IE  
RC2IP  
CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
PIE3  
TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
1111 1111 1111 1111  
IPR3  
TRISC  
TMR1L  
TMR1H  
T1CON  
TMR3H  
TMR3L  
T3CON  
PORTC Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Timer3 Register High Byte  
Timer3 Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
(1)  
CCPRxL  
CCPRxH  
Capture/Compare/PWM Register x (LSB)  
Capture/Compare/PWM Register x (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
(1)  
(1)  
CCPxCON  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0 --00 0000 --00 0000  
Legend:  
x= unknown, u= unchanged, = unimplemented, read as 0.  
Shaded cells are not used by Capture and Compare, Timer1 or Timer3.  
Note 1: Generic term for all of the identical registers of this name for all CCP modules, where ‘x’ identifies the individual module  
(CCP1 through CCP5). Bit assignments and Reset values for all registers of the same generic name are identical.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 153  
PIC18F6520/8520/6620/8620/6720/8720  
16.4.1  
PWM PERIOD  
16.4 PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
EQUATION 16-1:  
Note:  
Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM Period = (PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period].  
Figure 16-4 shows a simplified block diagram of the  
CCP module in PWM mode.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 16.4.3  
“Setup for PWM Operation”.  
• TMR2 is cleared  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 16-4:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
The Timer2 and Timer4 postscalers (see  
Section 13.0 “Timer2 Module”) are not  
used in the determination of the PWM  
frequency. The postscaler could be used  
to have a servo update rate at a different  
frequency than the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
CCPR1H (Slave)  
Comparator  
16.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
Q
R
S
RC2/CCP1  
(Note 1)  
TMR2  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
EQUATION 16-2:  
Note 1: 8-bit timer is concatenated with 2-bit internal Q  
clock or 2 bits of the prescaler to create 10-bit  
time base.  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
A PWM output (Figure 16-5) has a time base (period)  
and a time that the output stays high (duty cycle).  
The frequency of the PWM is the inverse of the period  
(1/period).  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
doublebuffering is essential for glitchless PWM  
operation.  
FIGURE 16-5:  
PWM OUTPUT  
Period  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS39609C-page 154  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
16.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
EQUATION 16-3:  
1. Set the PWM period by writing to the PR2  
register.  
FOSC   
log ---------------  
FPWM  
= ----------------------------- b i t s  
log2  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
PWM Resolution (max)  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 16-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
14 10  
12 10  
TABLE 16-4: REGISTERS ASSOCIATED WITH PWM, TIMER2 AND TIMER4  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 0000 0000 0000  
0--1 11qq 0--q qquu  
IPEN  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
CMIE  
CMIF  
CMIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
EEIE  
EEIF  
EEIP  
TX2IF  
TX2IE  
TX2IP  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR4IF  
TMR4IE  
TMR4IP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
PIE1  
IPR1  
PIR2  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF -0-0 0000 ---0 0000  
TMR3IE CCP2IE -0-0 0000 ---0 0000  
TMR3IP CCP2IP -1-1 1111 ---1 1111  
PIE2  
IPR2  
PIR3  
RC2IF  
RC2IE  
RC2IP  
CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
0000 0000 0000 0000  
PIE3  
IPR3  
TMR2  
PR2  
Timer2 Module Register  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
T3CON  
TMR4  
PR4  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
RD16  
Timer4 Register  
0000 0000 uuuu uuuu  
1111 1111 uuuu uuuu  
Timer4 Period Register  
T4CON  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0 -000 0000 uuuu uuuu  
(1)  
CCPRxL  
Capture/Compare/PWM Register x (LSB)  
Capture/Compare/PWM Register x (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
(1)  
CCPRxH  
CCPxCON(1)  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0 --00 0000 --00 0000  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as 0. Shaded cells are not used by PWM, Timer2, or Timer4.  
Note 1: Generic term for all of the identical registers of this name for all CCP modules, where ‘x’ identifies the individual module  
(CCP1 through CCP5). Bit assignments and Reset values for all registers of the same generic name are identical.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 155  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 156  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.3 SPI Mode  
17.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four modes  
of SPI are supported. To accomplish communication,  
typically three pins are used:  
17.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
• Serial Clock (SCK) – RC3/SCK/SCL  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RF7/SS  
Figure 17-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
FIGURE 17-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
Read  
Write  
• Master mode  
• Multi-Master mode  
• Slave mode  
SSPBUF reg  
SSPSR reg  
17.2 Control Registers  
RC4/SDI/SDA  
RC5/SDO  
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON1 and SSPCON2). The use  
of these registers and their individual configuration bits  
differ significantly, depending on whether the MSSP  
module is operated in SPI or I2C mode.  
Shift  
Clock  
bit0  
RF7/SS  
Control  
Enable  
SS  
Additional details are provided under the individual  
sections.  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
RC3/SCK/  
SCL  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TX/RX in SSPSR  
TRIS bit  
2003-2013 Microchip Technology Inc.  
DS39609C-page 157  
PIC18F6520/8520/6620/8620/6720/8720  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
17.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1 regis-  
ter is readable and writable. The lower 6 bits of the  
SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
CKE: SPI Clock Select bit  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
Note:  
Polarity of clock state is set by the CKP bit (SSPCON1<4>).  
bit 5  
bit 4  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled,  
SSPEN is cleared.  
bit 3  
bit 2  
bit 1  
bit 0  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write bit information  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 158  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow  
(must be cleared in software).  
0= No overflow  
Note:  
In Master mode, the overflow bit is not set, since each new reception (and  
transmission) is initiated by writing to the SSPBUF register.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO, SDI and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, these pins must be properly configured as input or output.  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note:  
Bit combinations not specifically listed here are either reserved, or implemented in  
I2C mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 159  
PIC18F6520/8520/6620/8620/6720/8720  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored and the Write Collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed  
successfully.  
17.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
Full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally, the MSSP interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 17-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data input sample phase (middle or end of data  
output time)  
• Clock edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a Transmit/Receive Shift Regis-  
ter (SSPSR) and a Buffer register (SSPBUF). The  
SSPSR shifts the data in and out of the device, MSb  
first. The SSPBUF holds the data that was written to the  
SSPSR until the received data is ready. Once the 8 bits  
of data have been received, that byte is moved to the  
SSPBUF register. Then, the Buffer Full detect bit, BF  
(SSPSTAT<0>) and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP Status register (SSPSTAT)  
indicates the various status conditions.  
EQUATION 17-1: LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
BRA LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF TXDATA, W  
MOVWF SSPBUF  
;W reg = contents of TXDATA  
;New data to transmit  
DS39609C-page 160  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.3.3  
ENABLING SPI I/O  
17.3.4  
TYPICAL CONNECTION  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, reinitialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed as follows:  
Figure 17-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• Master sends dataSlave sends dummy data  
• Master sends dataSlave sends data  
• Master sends dummy dataSlave sends data  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISF<7> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 17-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2003-2013 Microchip Technology Inc.  
DS39609C-page 161  
PIC18F6520/8520/6620/8620/6720/8720  
Figure 17-3, Figure 17-5 and Figure 17-6, where the  
MSB is transmitted first. In Master mode, the SPI clock  
rate (bit rate) is user-programmable to be one of the  
following:  
17.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 17-2) is to  
broadcast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 17-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1<4>). This then, would  
give waveforms for SPI communication, as shown in  
FIGURE 17-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2  
SSPSR to  
SSPBUF  
DS39609C-page 162  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
longer driven, even if in the middle of a transmitted  
byte and becomes a floating output. External pull-up/  
pull-down resistors may be desirable, depending on the  
application.  
17.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
17.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). The pin must not be driven  
low for the SS pin to function as an input. The Data  
Latch must be high. When the SS pin is low, transmis-  
sion and reception are enabled and the SDO pin is  
driven. When the SS pin goes high, the SDO pin is no  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function),  
since it cannot create a bus conflict.  
FIGURE 17-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
SSPSR to  
SSPBUF  
after Q2  
2003-2013 Microchip Technology Inc.  
DS39609C-page 163  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 17-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2  
SSPSR to  
SSPBUF  
FIGURE 17-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2  
SSPSR to  
SSPBUF  
DS39609C-page 164  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.3.8  
SLEEP OPERATION  
17.3.10 BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
Table 17-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 17-1: SPI BUS MODES  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI Transmit/Receive Shift register.  
When all 8 bits have been received, the MSSP interrupt  
flag bit will be set and if enabled, will wake the device  
from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
17.3.9  
EFFECTS OF A RESET  
There is also an SMP bit, which controls when the data  
is sampled.  
A Reset disables the MSSP module and terminates the  
current transfer.  
TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
1111 1111 1111 1111  
PIE1  
IPR1  
TRISC  
TRISF  
PORTC Data Direction Register  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3  
Synchronous Serial Port Receive Buffer/Transmit Register  
TRISF2  
TRISF1 TRISF0 1111 1111 uuuu uuuu  
xxxx xxxx uuuu uuuu  
SSPBUF  
SSPCON  
SSPSTAT  
Legend:  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1 SSPM0 0000 0000 0000 0000  
UA  
BF  
0000 0000 0000 0000  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 165  
PIC18F6520/8520/6620/8620/6720/8720  
2
17.4.1  
REGISTERS  
17.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on Start and Stop bits in  
hardware to determine a free bus (multi-master  
function). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
Two pins are used for data transfer:  
• Serial clock (SCL) – RC3/SCK/SCL  
• Serial data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
SSPCON, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON and SSPCON2 registers are readable and  
writable. The lower six bits of the SSPSTAT are  
read-only. The upper two bits of the SSPSTAT are  
read/write.  
The user must configure these pins as inputs or outputs  
through the TRISC<4:3> bits.  
FIGURE 17-7:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Internal  
Data Bus  
Read  
Write  
SSPADD register holds the slave device address  
when the SSP is configured in I2C Slave mode. When  
the SSP is configured in Master mode, the lower  
seven bits of SSPADD act as the Baud Rate  
Generator reload value.  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
In receive operations, SSPSR and SSPBUF together,  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPSR reg  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD reg  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit Detect  
DS39609C-page 166  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for high-speed mode (400 kHz)  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
S: Start bit  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
R/W: Read/Write bit Information (I2C mode only)  
In Slave mode:  
1= Read  
0= Write  
Note:  
This bit holds the R/W bit information following the last address match. This bit is only  
valid from the address match to the next Start bit, Stop bit, or not ACK bit.  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Note:  
ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is  
in active mode.  
bit 1  
bit 0  
UA: Update Address bit (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= SSPBUF is full  
0= SSPBUF is empty  
In Receive mode:  
1= SSPBUF is full (does not include the ACK and Stop bits)  
0= SSPBUF is empty (does not include the ACK and Stop bits)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 167  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must be  
cleared in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, the SDA and SCL pins must be properly configured as input or output.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
SPI mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 168  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)  
1= Not Acknowledge  
0= Acknowledge  
Note:  
Value that will be transmitted when the user initiates an Acknowledge sequence at  
the end of a receive.  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (Master mode only)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
RSEN: Repeated Start Condition Enabled bit (Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enabled/Stretch Enabled bit  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both Slave Transmit and Slave Receive (stretch enabled)  
0= Clock stretching is disabled  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 169  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.2  
OPERATION  
17.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPCON<5>).  
The SSPCON1 register allows control of the I2C oper-  
ation. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = (FOSC/4) x (SSPADD + 1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All incom-  
ing bits are sampled with the rising edge of the clock  
(SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Slave mode (7-bit address), with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address), with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode, slave is  
Idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits. To ensure proper operation  
of the module, pull-up resistors must be provided  
externally to the SCL and SDA pins.  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The Buffer Full bit BF is set.  
3. An ACK pulse is generated.  
4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is  
set (interrupt is generated, if enabled) on the  
falling edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two  
MSbs of the address. The sequence of events for  
10-bit address is as follows, with steps 7 through 9 for  
the slave-transmitter:  
17.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits  
1. Receive first (high) byte of address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value  
currently in the SSPSR register.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
• The Buffer Full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
7. Receive Repeated Start condition.  
• The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
DS39609C-page 170  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.3.2  
Reception  
17.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low, regardless of SEN (see Section 17.4.4 “Clock  
Stretching”, for more detail). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPBUF register,  
which also loads the SSPSR register. Then pin RC3/  
SCK/SCL should be enabled by setting bit CKP  
(SSPCON1<4>). The eight data bits are shifted out on  
the falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 17-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON1<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
If SEN is enabled (SSPCON1<0> = 1), RC3/SCK/SCL  
will be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit  
CKP (SSPCON<4>). See Section 17.4.4 “Clock  
Stretching” for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT regis-  
ter) and the slave monitors for another occurrence of  
the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3/SCK/SCL must be enabled by setting  
bit CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 171  
PIC18F6520/8520/6620/8620/6720/8720  
2
FIGURE 17-8:  
I C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS39609C-page 172  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
2
FIGURE 17-9:  
I C SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 173  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 17-10:  
I2C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS39609C-page 174  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
2
FIGURE 17-11:  
I C SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 175  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.4  
CLOCK STRETCHING  
17.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7- and 10-bit Slave modes implement automatic  
clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the  
ninth clock, if the BF bit is clear. This occurs,  
regardless of the state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 17-9).  
17.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence, if the BF  
bit is set, the CKP bit in the SSPCON1 register is  
automatically cleared, forcing the SCL output to be  
held low. The CKP being cleared to ‘0’ will assert the  
SCL line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCL line low, the user has time to service the ISR  
and read the contents of the SSPBUF before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring (see  
Figure 17-13).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software,  
regardless of the state of the BF bit.  
17.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is con-  
trolled during the first two address sequences by the  
state of the UA bit, just as it is in 10-bit Slave Receive  
mode. The first two addresses are followed by a third  
address sequence, which contains the high-order bits  
of the 10-bit address and the R/W bit set to ‘1’. After  
the third address sequence is performed, the UA bit is  
not set, the module is now configured in Transmit  
mode and clock stretching is controlled as in 7-bit  
Slave Transmit mode (see Figure 17-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software,  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence, in order to prevent an overflow  
condition.  
17.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence, as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
DS39609C-page 176  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
already asserted the SCL line. The SCL output will  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCL. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCL (see  
Figure 17-12).  
17.4.4.5  
Clock Synchronization and  
the CKP bit  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’. However, clearing the CKP bit will not assert the  
SCL output low until the SCL output is already sam-  
pled low. Therefore, the CKP bit will not assert the  
SCL line until an external I2C master device has  
FIGURE 17-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
2003-2013 Microchip Technology Inc.  
DS39609C-page 177  
PIC18F6520/8520/6620/8620/6720/8720  
2
FIGURE 17-13:  
I C SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
DS39609C-page 178  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 17-14:  
I2C SLAVE MODE TIMING SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 179  
PIC18F6520/8520/6620/8620/6720/8720  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
17.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-bit Address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 17-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
set). Following a Start bit detect, 8 bits are shifted into  
the SSPSR and the address is compared against the  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 17-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS39609C-page 180  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start condi-  
tion is complete. In this case, the SSPBUF  
will not be written to and the WCOL bit will  
be set, indicating that a write to the  
SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop  
conditions. The Stop (P) and Start (S) bits are cleared  
from a Reset, or when the MSSP module is disabled.  
Control of the I2C bus may be taken when the P bit is  
set or the bus is Idle, with both the S and P bits clear.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP interrupt if enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start Condition  
Once Master mode is enabled, the user has six  
options.  
• Stop Condition  
• Data Transfer Byte Transmitted/received  
• Acknowledge Transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 17-16:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 181  
PIC18F6520/8520/6620/8620/6720/8720  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
17.4.6.1  
1. The user generates a Start condition by setting  
the Start enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
Start and Stop conditions indicate the beginning and  
end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 17.4.7 “Baud Rate Generator”, for more  
information.  
11. The user generates a Stop condition by setting  
the Stop enable bit PEN (SSPCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS39609C-page 182  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
17.4.7  
BAUD RATE GENERATOR  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 17-17). When a write occurs  
to SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to ‘0’ and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
Table 15-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
FIGURE 17-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 17-3: I2C CLOCK RATE W/BRG  
FSCL  
FCY  
FCY*2  
BRG VALUE  
(2 rollovers of BRG)  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
19h  
20h  
3Fh  
0Ah  
0Dh  
28h  
03h  
0Ah  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
100 kHz  
1 MHz(1)  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 183  
PIC18F6520/8520/6620/8620/6720/8720  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count, in the  
event that the clock is held low by an external device  
(Figure 15-18).  
17.4.7.1  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 17-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS39609C-page 184  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
17.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
To initiate a Start condition, the user sets the Start Con-  
dition Enable bit, SEN (SSPCON2<0>). If the SDA and  
SCL pins are sampled high, the Baud Rate Generator  
is reloaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the Baud Rate Generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low, while SCL is high, is the Start condition and  
causes the S bit (SSPSTAT<3>) to be set. Following  
this, the Baud Rate Generator is reloaded with the con-  
tents of SSPADD<6:0> and resumes its count. When  
the Baud Rate Generator times out (TBRG), the SEN bit  
(SSPCON2<0>) will be automatically cleared by  
hardware, the Baud Rate Generator is suspended,  
leaving the SDA line held low and the Start condition is  
complete.  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
Note:  
If at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag, BCLIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
FIGURE 17-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st bit  
2nd bit  
SDA  
TBRG  
SCL  
TBRG  
S
2003-2013 Microchip Technology Inc.  
DS39609C-page 185  
PIC18F6520/8520/6620/8620/6720/8720  
Immediately following the setting of the SSPIF bit, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
17.4.9  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the Baud Rate Generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one Baud Rate  
Generator count (TBRG). When the Baud Rate Genera-  
tor times out, if SDA is sampled high, the SCL pin will  
be deasserted (brought high). When SCL is sampled  
high, the Baud Rate Generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. SDA  
and SCL must be sampled high for one TBRG. This  
action is then followed by assertion of the SDA pin  
17.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the  
contents of the buffer are unchanged (the write does  
not occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
(SDA = 0) for one TBRG while SCL is high. Following  
,
this, the RSEN bit (SSPCON2<1>) will be automatically  
cleared and the Baud Rate Generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
Start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
notbesetuntiltheBaudRateGeneratorhastimedout.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
FIGURE 17-20:  
REPEAT START CONDITION WAVEFORM  
S bit set by hardware (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SCL (no change).  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
RSEN bit set  
Sr = Repeated Start  
DS39609C-page 186  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.10 I2C MASTER MODE  
17.4.10.3 ACKSTAT Status Flag  
TRANSMISSION  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full flag bit, BF and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification parameter  
#106). SCL is held low for one Baud Rate Generator  
rollover count (TBRG). Data should be valid before SCL  
is released high (see data setup time specification  
parameter #107). When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time, after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received prop-  
erly. The status of ACK is written into the ACKDT bit on  
the falling edge of the ninth clock. If the master receives  
an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 17-21).  
17.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2<3>).  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set, or the RCEN  
bit will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes (high-to-low/  
low-to-high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag bit is  
set, the SSPIF flag bit is set and the Baud Rate Gener-  
ator is suspended from counting, holding SCL low. The  
MSSP is now in Idle state, awaiting the next command.  
When the buffer is read by the CPU, the BF flag bit is  
automatically cleared. The user can then send an  
Acknowledge bit at the end of reception by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>).  
17.4.11.1 BF Status Flag  
After the write to the SSPBUF, each address bit will be  
shifted out on the falling edge of SCL, until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will deassert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared and the Baud Rate Generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
17.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
17.4.11.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
17.4.10.1 BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
17.4.10.2 WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 187  
PIC18F6520/8520/6620/8620/6720/8720  
2
FIGURE 17-21:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS39609C-page 188  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
2
FIGURE 17-22:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 189  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
17.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is sam-  
pled low, the Baud Rate Generator is reloaded and  
counts down to ‘0’. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is sam-  
pled high while SCL is high, the P bit (SSPSTAT<4>) is  
set. A TBRG later, the PEN bit is cleared and the SSPIF  
bit is set (Figure 17-24).  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 17-23).  
17.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
17.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 17-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
SSPIF set at the end  
of Acknowledge sequence  
SSPIF set at the end  
of receive  
Cleared in  
software  
Note:  
TBRG = one Baud Rate Generator period.  
FIGURE 17-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS39609C-page 190  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
17.4.14 SLEEP OPERATION  
17.4.17 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA, by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
I2C port to its Idle state (Figure 17-25).  
17.4.15 EFFECT OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
17.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set, or the  
bus is idle with both the S and P bits clear. When the  
bus is busy, enabling the SSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDA line must be moni-  
tored for arbitration, to see if the signal level is the  
expected output level. This check is performed in  
hardware, with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop, or Acknowledge condi-  
tion was in progress when the bus collision occurred,  
the condition is aborted, the SDA and SCL lines are  
deasserted and the respective control bits in the  
SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine and if  
the I2C bus is free, the user can resume communication  
by asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the determi-  
nation of when the bus is free. Control of the I2C bus can  
be taken when the P bit is set in the SSPSTAT register, or  
the bus is Idle and the S and P bits are cleared.  
FIGURE 17-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
2003-2013 Microchip Technology Inc.  
DS39609C-page 191  
PIC18F6520/8520/6620/8620/6720/8720  
If the SDA pin is sampled low during this count, the  
17.4.17.1 Bus Collision During a Start  
Condition  
BRG is reset and the SDA line is asserted early  
(Figure 17-28). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to ‘0’ and during this time, if the SCL pin  
is sampled as ‘0’, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 17-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 17-27).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address fol-  
lowing the Start condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLIF flag is set and  
the MSSP module is reset to its Idle state  
(Figure 17-26).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to ‘0’. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 17-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS39609C-page 192  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 17-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 17-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1  
Set SSPIF  
2003-2013 Microchip Technology Inc.  
DS39609C-page 193  
PIC18F6520/8520/6620/8620/6720/8720  
If SDA is low, a bus collision has occurred (i.e., another  
17.4.17.2 Bus Collision During a Repeated  
Start Condition  
master is attempting to transmit a data ‘0’, Figure 17-29).  
If SDA is sampled high, the BRG is reloaded and begins  
counting. If SDA goes from high-to-low before the BRG  
times out, no bus collision occurs because no two  
masters can assert SDA at exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If SCL goes from high-to-low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition,  
Figure 17-30.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to ‘0’. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is complete.  
FIGURE 17-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 17-30:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
Set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS39609C-page 194  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to ‘0’. After the BRG times out, SDA  
is sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 17-31). If the SCL pin is  
sampled low before SDA is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 17-32).  
17.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 17-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
TBRG  
TBRG  
TBRG  
low after TBRG,  
set BCLIF  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 17-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
2003-2013 Microchip Technology Inc.  
DS39609C-page 195  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 196  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Register 18-1 shows the layout of the Transmit Status  
18.0 ADDRESSABLE UNIVERSAL  
and Control registers (TXSTAx) and Register 18-2  
shows the layout of the Receive Status and Control  
registers (RCSTAx). USART1 and USART2 each have  
their own independent and distinct pairs of transmit and  
receive control registers, which are identical to each  
other apart from their names. Similarly, each USART  
has its own distinct set of transmit, receive and baud  
rate registers.  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module (also known as a Serial  
Communications Interface or SCI) is one of the two  
types of serial I/O modules available on PIC18FXX20  
devices. Each device has two USARTs, which can be  
configured independently of each other. Each can be  
configured as a full-duplex asynchronous system that  
can communicate with peripheral devices, such as  
CRT terminals and personal computers, or as a half-  
duplex synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs, etc.  
Note:  
Throughout this section, references to  
register and bit names that may be associ-  
ated with a specific USART module are  
referred to generically by the use of ‘x’ in  
place of the specific module number.  
Thus, “RCSTAx” might refer to the receive  
status register for either USART1 or  
USART2.  
The USART can be configured in the following modes:  
• Asynchronous (full-duplex)  
• Synchronous – Master (half-duplex)  
• Synchronous – Slave (half-duplex)  
The pins of USART1 and USART2 are multiplexed with  
the functions of PORTC (RC6/TX1/CK1 and RC7/RX1/  
DT1) and PORTG (RG1/TX2/CK2 and RG2/RX2/DT2),  
respectively. In order to configure these pins as a  
USART:  
• For USART1:  
- bit SPEN (RCSTA1<7>) must be set (= 1)  
- bit TRISC<7> must be set (= 1)  
- bit TRISC<6> must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
- bit TRISC<6> must be set (= 1) for  
Synchronous Slave mode  
• For USART2:  
- bit SPEN (RCSTA2<7>) must be set (= 1)  
- bit TRISG<2> must be set (= 1)  
- bit TRISG<1> must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
- bit TRISC<6> must be set (= 1) for  
Synchronous Slave mode  
2003-2013 Microchip Technology Inc.  
DS39609C-page 197  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 18-1: TXSTAx: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 198  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 18-2: RCSTAx: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and load of the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 199  
PIC18F6520/8520/6620/8620/6720/8720  
Example 18-1 shows the calculation of the baud rate  
error for the following conditions:  
18.1 USART Baud Rate Generator  
(BRG)  
• FOSC = 16 MHz  
• Desired Baud Rate = 9600  
• BRGH = 0  
The BRG supports both the Asynchronous and  
Synchronous modes of the USARTs. It is a dedicated  
8-bit Baud Rate Generator. The SPBRG register  
controls the period of a free running 8-bit timer. In Asyn-  
chronous mode, bit BRGH (TXSTAx<2>) also controls  
the baud rate. In Synchronous mode, bit BRGH is  
ignored. Table 18-1 shows the formula for computation  
of the baud rate for different USART modes, which only  
apply in Master mode (internal clock).  
• SYNC = 0  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the equation in Example 18-1 can reduce the  
baud rate error in some cases.  
Writing a new value to the SPBRGx register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before  
outputting the new baud rate.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGx register can be calcu-  
lated using the formula in Table 18-1. From this, the  
error in baud rate can be determined.  
18.1.1  
SAMPLING  
The data on the RXx pin (either RC7/RX1/DT1 or RG2/  
RX2/DT2) is sampled three times by a majority detect  
circuit to determine if a high or a low level is present at  
the pin.  
EXAMPLE 18-1:  
CALCULATING BAUD RATE ERROR  
Desired Baud Rate  
=
FOSC/(64 (X + 1))  
Solving for X:  
X
X
X
=
=
=
((FOSC/Desired Baud Rate)/64 ) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
Calculated Baud Rate  
=
=
16000000/(64 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 – 9600)/9600  
0.16%  
TABLE 18-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X + 1))  
(Synchronous) Baud Rate = FOSC/(4(X + 1))  
Baud Rate = FOSC/(16(X + 1))  
N/A  
Legend: X = value in SPBRGx (0 to 255)  
TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTAx  
RCSTAx  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010  
0000 -010  
0000 000x  
0000 0000  
SREN CREN ADDEN FERR OERR RX9D 0000 000x  
0000 0000  
Legend: x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
SPBRGx Baud Rate Generator Register  
Note 1: Register names generically refer to both of the identically named registers for the two USART modules,  
where ‘x’ indicates the particular module. Bit names and Reset values are identical between modules.  
DS39609C-page 200  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 18-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
-
NA  
-
-
-
NA  
-
-
-
NA  
-
-
19.2  
76.8  
96  
NA  
-
-
NA  
-
NA  
-
NA  
-
-
76.92  
96.15  
303.03  
500  
+0.16  
129  
103  
32  
19  
0
77.10  
95.93  
294.64  
485.30  
8250  
32.23  
+0.39  
-0.07  
-1.79  
-2.94  
-
106  
85  
27  
16  
0
77.16  
96.15  
297.62  
480.77  
6250  
24.41  
+0.47  
+0.16  
-0.79  
-3.85  
-
80  
64  
20  
12  
0
76.92  
96.15  
294.12  
500  
+0.16  
64  
51  
16  
9
+0.16  
+0.16  
300  
500  
HIGH  
LOW  
+1.01  
-1.96  
0
-
0
-
10000  
39.06  
5000  
19.53  
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
SPBRG  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
%
%
%
%
value  
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
NA  
-
+0.16  
-1.36  
+0.16  
+4.17  
0
-
9.62  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-10.51  
-
185  
92  
22  
18  
5
9.60  
0
0
131  
65  
16  
12  
3
19.2  
76.8  
96  
19.23  
76.92  
95.24  
307.70  
500  
207  
51  
41  
12  
7
19.23  
75.76  
96.15  
312.50  
500  
129  
32  
25  
7
19.24  
77.82  
94.20  
298.35  
447.44  
1789.80  
6.99  
19.20  
74.54  
97.48  
316.80  
422.40  
1267.20  
4.95  
-2.94  
+1.54  
+5.60  
-15.52  
-
300  
500  
HIGH  
LOW  
4
3
2
4000  
15.63  
-
0
2500  
9.77  
-
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
-
-
207  
103  
25  
12  
2
0.30  
1.17  
2.73  
8.20  
NA  
+1.14  
26  
-
-
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
-2.48  
6
2.4  
NA  
-
NA  
-
-
+13.78  
2
9.6  
9.62  
19.23  
76.92  
1000  
333.33  
500  
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
103  
51  
12  
9
9.62  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-10.51  
-
92  
46  
11  
8
-14.67  
0
19.2  
76.8  
96  
19.04  
74.57  
99.43  
298.30  
447.44  
894.89  
3.50  
-
-
-
-
-
-
-
-
NA  
-
2
NA  
-
300  
500  
HIGH  
LOW  
2
2
0
NA  
-
-
1
1
NA  
-
NA  
1000  
3.91  
-
0
0
250  
-
0
8.20  
0.03  
0
-
255  
-
255  
0.98  
-
255  
255  
2003-2013 Microchip Technology Inc.  
DS39609C-page 201  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 18-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
value  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
2.4  
NA  
-
-
2.40  
-0.07  
-0.54  
-0.54  
-4.09  
+7.42  
-14.06  
-
214  
53  
26  
6
2.40  
9.53  
19.53  
78.13  
97.66  
NA  
-0.15  
162  
40  
19  
4
2.40  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
129  
32  
15  
3
9.6  
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.55  
-0.76  
9.47  
19.2  
76.8  
96  
19.10  
73.66  
103.13  
257.81  
NA  
+1.73  
19.53  
78.13  
104.17  
312.50  
NA  
+1.73  
6
4
+1.73  
3
2
300  
500  
HIGH  
LOW  
1
1
-
-
-
-
-
0
0
-
NA  
-
-
625  
0
515.63  
2.01  
-
0
390.63  
1.53  
0
312.50  
1.22  
-
0
2.44  
-
255  
-
255  
255  
-
255  
FOSC = 16 MHz  
SPBRG  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
%
%
%
%
value  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
-
-
207  
103  
25  
12  
2
NA  
1.20  
-
-
129  
64  
15  
7
NA  
1.20  
2.38  
9.32  
18.64  
111.86  
NA  
-
-
92  
46  
11  
5
NA  
1.20  
2.40  
9.90  
19.80  
79.20  
NA  
-
-
65  
32  
7
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
+0.16  
+0.16  
+1.73  
+1.73  
+1.73  
-18.62  
-47.92  
-
+0.23  
0
2.4  
2.40  
-0.83  
0
9.6  
9.77  
-2.90  
+3.13  
19.2  
76.8  
96  
19.53  
78.13  
78.13  
156.25  
NA  
-2.90  
+3.13  
3
1
+45.65  
0
+3.13  
0
2
1
-
-
-
-
-
-
-
-
-
-
-
-
300  
500  
HIGH  
LOW  
0
0
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
250  
-
0
156.25  
0.61  
-
0
111.86  
0.44  
0
79.20  
0.31  
0
0.98  
-
255  
-
255  
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
-0.16  
207  
51  
25  
6
0.30  
1.19  
2.43  
9.32  
18.64  
55.93  
NA  
+0.23  
185  
46  
22  
5
0.30  
1.20  
2.23  
7.81  
15.63  
NA  
+0.16  
51  
12  
6
0.26  
NA  
-14.67  
1
+1.67  
-0.83  
+0.16  
-
-
-
-
-
-
-
-
-
-
-
2.4  
+1.67  
+1.32  
-6.99  
NA  
-
9.6  
-6.99  
-2.90  
-18.62  
1
NA  
-
19.2  
76.8  
96  
+8.51  
2
-2.90  
2
-18.62  
0
NA  
-
-18.62  
0
-27.17  
0
-
-
-
-
-
-
-
NA  
-
-
-
-
-
-
-
-
-
-
-
-
-
NA  
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
NA  
-
NA  
62.50  
0.24  
0
55.93  
0.22  
0
15.63  
0.06  
0
0.51  
0.002  
0
255  
255  
255  
255  
DS39609C-page 202  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
value  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
+0.16  
-1.36  
+0.16  
+4.17  
0
-
9.60  
-0.07  
+0.39  
-0.54  
+2.31  
-1.79  
+3.13  
-
214  
106  
26  
20  
6
9.59  
-0.15  
+0.47  
+1.73  
+1.73  
+4.17  
+4.17  
-
162  
80  
19  
15  
4
9.62  
+0.16  
+0.16  
+1.73  
+0.16  
+4.17  
-16.67  
-
129  
64  
15  
12  
3
19.2  
76.8  
96  
19.23  
75.76  
96.15  
312.50  
500  
129  
32  
25  
7
19.28  
76.39  
98.21  
294.64  
515.63  
2062.50  
8,06  
19.30  
78.13  
97.66  
312.50  
520.83  
1562.50  
6.10  
19.23  
78.13  
96.15  
312.50  
416.67  
1250  
4.88  
300  
500  
HIGH  
LOW  
4
3
2
2
2500  
9.77  
-
0
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
SPBRG  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
value  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
-
2.4  
NA  
-
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
-
NA  
-
-
2.41  
+0.23  
-0.83  
+1.32  
-2.90  
-6.78  
+49.15  
-10.51  
-
185  
46  
22  
5
2.40  
0
131  
32  
16  
3
9.6  
9.62  
19.23  
76.92  
100  
103  
51  
12  
9
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.52  
9.60  
0
-2.94  
+3.13  
+10.00  
+5.60  
-
19.2  
76.8  
96  
19.45  
74.57  
89.49  
447.44  
447.44  
447.44  
1.75  
18.64  
79.20  
105.60  
316.80  
NA  
6
4
2
300  
500  
HIGH  
LOW  
333.33  
500  
2
1
0
0
1
0
0
-
1000  
3.91  
-
0
625  
0
0
316.80  
1.24  
-
0
-
255  
2.44  
-
255  
-
255  
-
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
NA  
-
-
207  
103  
25  
12  
-
NA  
1.20  
-
+0.23  
+0.23  
+1.32  
-2.90  
-2.90  
+16.52  
-25.43  
-
-
185  
92  
22  
11  
2
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
+0.16  
207  
51  
25  
6
0.29  
1.02  
2.05  
NA  
-2.48  
6
+0.16  
+0.16  
-14.67  
1
2.4  
+0.16  
2.41  
+0.16  
-14.67  
0
9.6  
+0.16  
9.73  
-6.99  
-
-
-
-
-
-
-
-
-
19.2  
76.8  
96  
+0.16  
18.64  
74.57  
111.86  
223.72  
NA  
+8.51  
2
NA  
-
-
-
-
-
-
-
-18.62  
0
NA  
-
NA  
-
1
-
-
-
-
-
-
NA  
-
-
300  
500  
HIGH  
LOW  
NA  
-
0
NA  
-
NA  
NA  
-
-
NA  
-
NA  
-
250  
0.98  
0
55.93  
0.22  
-
0
62.50  
0.24  
0
2.05  
0.008  
0
255  
-
255  
255  
255  
2003-2013 Microchip Technology Inc.  
DS39609C-page 203  
PIC18F6520/8520/6620/8620/6720/8720  
PIR3<4> for USART2), is set. This interrupt can be  
18.2 USART Asynchronous Mode  
enabled/disabled by setting/clearing enable bit, TXxIE  
(PIE1<4> for USART1, PIE<4> for USART2). Flag bit  
TXxIF will be set, regardless of the state of enable bit  
TXxIE and cannot be cleared in software. It will reset  
only when new data is loaded into the TXREGx register.  
While flag bit TXIF indicates the status of the TXREGx  
register, another bit, TRMT (TXSTAx<1>), shows the  
status of the TSR register. Status bit TRMT is a read-only  
bit, which is set when the TSR register is empty. No  
interrupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
In this mode, the USARTs use standard Non-Return-to-  
Zero (NRZ) format (one Start bit, eight or nine data bits  
and one Stop bit). The most common data format is  
8 bits. An on-chip dedicated 8-bit Baud Rate Generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent, but use the same data format  
and baud rate. The Baud Rate Generator produces a  
clock, either 16 or 64 times the bit shift rate, depending  
on bit BRGH (TXSTAx<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during Sleep.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTAx<4>).  
To set up an Asynchronous Transmission:  
The USART Asynchronous module consists of the  
following important elements:  
1. Initialize the SPBRGx register for the appropri-  
ate baud rate. If a high-speed baud rate is  
desired, set bit BRGH (Section 18.1 “USART  
Baud Rate Generator (BRG)”).  
• Baud Rate Generator  
• Sampling Circuit  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• Asynchronous Transmitter  
• Asynchronous Receiver  
3. If interrupts are desired, set enable bit TXxIE in  
the appropriate PIE register.  
18.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREGx. The TXREGx register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREGx register (if available).  
Once the TXREGx register transfers the data to the  
TSR register (occurs in one TCY), the TXREGx register  
is empty and flag bit, TXx1IF (PIR1<4> for USART1,  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXxIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREGx register (starts  
transmission).  
Note:  
TXIF is not cleared immediately upon  
loading data into the transmit buffer  
TXREG. The flag bit becomes valid in the  
second instruction cycle following the load  
instruction.  
FIGURE 18-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG Register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
Pin Buffer  
and Control  
0
  
TSR Register  
TX pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
DS39609C-page 204  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 18-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX1/CK1 (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX1/CK1 (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
TXIF bit  
(Interrupt Reg. Flag)  
Word 1  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 0111 1111  
--00 0000 --00 0000  
--00 0000 --00 0000  
--11 1111 --11 1111  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
SSPIF  
CCP1IF TMR2IF TMR1IF  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
IPR1  
PIR3  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP  
PIE3  
IPR3  
(1)  
(1)  
RCSTAx  
SPEN  
RX9  
CREN ADDEN  
FERR  
OERR  
RX9D  
TXREGx  
USART Transmit Register  
(1)  
TXSTAx  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
(1)  
SPBRGx Baud Rate Generator Register  
Legend: x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where ‘x’  
indicates the particular module. Bit names and Reset values are identical between modules.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 205  
PIC18F6520/8520/6620/8620/6720/8720  
18.2.2  
USART ASYNCHRONOUS  
RECEIVER  
18.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The USART receiver block diagram is shown in  
Figure 18-4. The data is received on the pin (RC7/RX1/  
DT1 or RG2/RX2/DT2) and drives the data recovery  
block. The data recovery block is actually a high-speed  
shifter operating at 16 times the baud rate, whereas the  
main receive serial shifter operates at the bit rate or at  
FOSC. This mode would typically be used in RS-232  
systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGx register for the appropri-  
ate baud rate. If a high-speed baud rate is  
required, set the BRGH bit.  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
To set up an Asynchronous Reception:  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (Section 18.1 “USART Baud  
Rate Generator (BRG)”).  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. The RCxIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCxIE and GIE bits are set.  
3. If interrupts are desired, set enable bit RCxIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
8. Read the RCSTAx register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
6. Flag bit RCxIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCxIE was set.  
9. Read RCREGx to determine if the device is  
being addressed.  
7. Read the RCSTAx register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
8. Read the 8-bit received data by reading the  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 18-4:  
USART RECEIVE BLOCK DIAGRAM  
FERR  
OERR  
CREN  
x64 Baud Rate CLK  
64  
or  
16  
RSR Register  
LSb  
Start  
MSb  
SPBRG  
0
1
7
Stop (8)  
  
Baud Rate Generator  
RX9  
RX pin  
Pin Buffer  
Data  
and Control  
Recovery  
RX9D  
RCREG Register  
FIFO  
SPEN  
8
Interrupt  
RCIF  
RCIE  
Data Bus  
DS39609C-page 206  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
bit 7/8 Stop  
bit  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 18-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 0000  
0000 0000  
PIR1  
PIE1  
IPR1  
PIR3  
PIE3  
IPR3  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
0000 0000  
0000 0000  
0111 1111  
--00 0000  
--00 0000  
--11 1111  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 0000  
0111 1111  
--00 0000  
--00 0000  
--11 1111  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP  
(1)  
RCSTAx  
RCREGx  
SPEN  
RX9  
CREN ADDEN  
FERR  
OERR  
RX9D  
(1)  
USART Receive Register  
CSRC TX9 TXEN  
Baud Rate Generator Register  
(1)  
TXSTAx  
SPBRGx  
Legend:  
SYNC  
BRGH  
TRMT  
TX9D  
(1)  
x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where ‘x’  
indicates the particular module. Bit names and Reset values are identical between modules.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 207  
PIC18F6520/8520/6620/8620/6720/8720  
set, regardless of the state of enable bit TXxIE and can-  
18.3 USART Synchronous Master  
Mode  
not be cleared in software. It will reset only when new  
data is loaded into the TXREGx register. While flag bit  
TXxIF indicates the status of the TXREGx register,  
another bit TRMT (TXSTAx<1>) shows the status of the  
TSR register. TRMT is a read-only bit, which is set  
when the TSR is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty. The TSR is not mapped in  
data memory, so it is not available to the user.  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTAx<4>). In  
addition, enable bit SPEN (RCSTAx<7>) is set in order  
to configure the appropriate I/O pins to CK (clock) and  
DT (data) lines, respectively. The Master mode indi-  
cates that the processor transmits the master clock on  
the CK line. The Master mode is entered by setting bit  
CSRC (TXSTAx<7>).  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 18.1 “USART Baud Rate  
Generator (BRG)”).  
18.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXxIE in  
the appropriate PIE register.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREGx register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREGx (if available). Once the  
TXREGx register transfers the data to the TSR register  
(occurs in one TCYCLE), the TXREGx is empty and  
interrupt bit TXxIF (PIR1<4> for USART1, PIR3<4> for  
USART2) is set. The interrupt can be enabled/disabled  
by setting/clearing enable bit TXxIE (PIE1<4> for  
USART1, PIE3<4> for USART2). Flag bit TXxIF will be  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREGx register.  
Note:  
TXIF is not cleared immediately upon  
loading data into the transmit buffer  
TXREG. The flag bit becomes valid in the  
second instruction cycle following the load  
instruction.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 0000  
0000 0000  
PIR1  
PIE1  
IPR1  
PIR3  
PIE3  
IPR3  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
TMR2IF  
TMR1IF  
0000 0000  
0000 0000  
0111 1111  
--00 0000  
--00 0000  
--11 1111  
0000 0000  
0000 0000  
0111 1111  
--00 0000  
--00 0000  
--11 1111  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
RCIP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX2IF TMR4IF CCP5IF  
TX2IE TMR4IE CCP5IE  
TX2IP TMR4IP CCP5IP  
CCP4IF  
CCP4IE  
CCP4IP  
OERR  
CCP3IF  
CCP3IE  
CCP3IP  
RX9D  
(1)  
RCSTAx  
TXREGx  
SPEN  
RX9  
CREN ADDEN  
FERR  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
(1)  
USART Transmit Register  
CSRC TX9 TXEN  
Baud Rate Generator Register  
(1)  
TXSTAx  
SYNC  
BRGH  
TRMT  
TX9D  
(1)  
SPBRGx  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where ‘x’  
indicates the particular module. Bit names and Reset values are identical between modules.  
DS39609C-page 208  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 18-6:  
SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RC7/RX1/DT1  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
RC6/TX1/CK1  
pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode; SPBRG = 0. Continuous transmission of two 8-bit words.  
FIGURE 18-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX1/DT1 pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX1/CK1 pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
2003-2013 Microchip Technology Inc.  
DS39609C-page 209  
PIC18F6520/8520/6620/8620/6720/8720  
4. If interrupts are desired, set enable bit RCxIE in  
the appropriate PIE register.  
18.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
5. If 9-bit reception is desired, set bit RX9.  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN  
(RCSTAx<5>) or enable bit CREN (RCSTAx<4>). Data  
is sampled on the RXx pin (RC7/RX1/DT1 or RG2/RX2/  
DT2) on the falling edge of the clock. If enable bit SREN  
is set, only a single word is received. If enable bit CREN  
is set, the reception is continuous until CREN is cleared.  
If both bits are set, then CREN takes precedence.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCxIF will be set when  
reception is complete and an interrupt will be  
generated if the enable bit RCxIE was set.  
8. Read the RCSTAx register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
To set up a Synchronous Master Reception:  
9. Read the 8-bit received data by reading the  
RCREGx register.  
1. Initialize the SPBRGx register for the appropri-  
ate baud rate (Section 18.1 “USART Baud  
Rate Generator (BRG)”).  
10. If any error occurred, clear the error by clearing  
bit CREN.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
3. Ensure bits CREN and SREN are clear.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF INT0IF  
RBIF  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
IPR1  
PIR3  
PIE3  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
IPR3  
(1)  
RCSTAx  
SPEN  
RX9  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
(1)  
RCREGx  
USART Receive Register  
CSRC TX9  
(1)  
TXSTAx  
SPBRGx  
Legend:  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
(1)  
Baud Rate Generator Register  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where ‘x’  
indicates the particular module. Bit names and Reset values are identical between modules.  
FIGURE 18-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1 pin  
RC6/TX1/CK1 pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
DS39609C-page 210  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
To set up a Synchronous Slave Transmission:  
18.4 USART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
Synchronous Slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the TXx pin (RC6/TX1/CK1 or RG1/TX2/CK2), instead  
of being supplied internally in Master mode. TRISC<6>  
must be set for this mode. This allows the device to  
transfer or receive data while in Sleep mode. Slave  
mode is entered by clearing bit CSRC (TXSTAx<7>).  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXxIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
18.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the Sleep  
mode.  
7. Start transmission by loading data to the  
TXREGx register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXxIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREGx register will transfer the second  
word to the TSR and flag bit TXxIF will now be  
set.  
e) If enable bit TXxIE is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 0000  
0000 0000  
PIR1  
PIE1  
IPR1  
PIR3  
PIE3  
IPR3  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
SSPIF  
SSPIE  
SSPIP  
TMR2IF  
TMR1IF 0000 0000  
0000 0000  
0000 0000  
0111 1111  
--00 0000  
--00 0000  
--11 1111  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111  
TX2IF TMR4IF CCP5IF  
CCP4IF  
CCP3IF  
--00 0000  
TX2IE TMR4IE CCP5IE CCP4IE  
TX2IP TMR4IP CCP5IP CCP4IP  
CCP3IE --00 0000  
CCP3IP --11 1111  
(1)  
RCSTAx  
TXREGx  
SPEN  
RX9  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
(1)  
USART Transmit Register  
CSRC TX9 TXEN  
Baud Rate Generator Register  
(1)  
TXSTAx  
SYNC  
BRGH  
TRMT  
TX9D  
(1)  
SPBRGx  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where ‘x’  
indicates the particular module. Bit names and Reset values are identical between modules.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 211  
PIC18F6520/8520/6620/8620/6720/8720  
To set up a Synchronous Slave Reception:  
18.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the Sleep  
mode and bit SREN, which is a “don’t care” in Slave  
mode.  
2. If interrupts are desired, set enable bit RCxIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
Sleep. On completely receiving the word, the RSR reg-  
ister will transfer the data to the RCREG register and if  
enable bit RCxIE bit is set, the interrupt generated will  
wake the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
5. Flag bit RCxIF will be set when reception is  
complete. An interrupt will be generated if  
enable bit RCxIE was set.  
6. Read the RCSTAx register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREGx register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 18-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000  
0000 0000  
PIR1  
PIE1  
IPR1  
PIR3  
PIE3  
IPR3  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
CREN  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF TMR1IF 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111  
0000 0000  
0000 0000  
0111 1111  
--00 0000  
--00 0000  
--11 1111  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
TMR4IF CCP5IF CCP4IF CCP3IF --00 0000  
TMR4IE CCP5IE CCP4IE CCP3IE --00 0000  
TMR4IP CCP5IP CCP4IP CCP3IP --11 1111  
(1)  
RCSTAx  
RCREGx  
SPEN  
RX9  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 -010  
0000 0000  
(1)  
USART Receive Register  
CSRC TX9 TXEN  
Baud Rate Generator Register  
(1)  
TXSTAx  
SPBRGx  
Legend:  
SYNC  
BRGH  
TRMT  
TX9D  
(1)  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where ‘x’  
indicates the particular module. Bit names and Reset values are identical between modules.  
DS39609C-page 212  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The module has five registers:  
19.0 10-BIT ANALOG-TO-DIGITAL  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has 12  
inputs for the PIC18F6X20 devices and 16 for the  
PIC18F8X20 devices. This module allows conversion  
of an analog input signal to a corresponding 10-bit  
digital number.  
The ADCON0 register, shown in Register 19-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 19-2, configures the func-  
tions of the port pins. The ADCON2 register, shown in  
Register 19-3, configures the A/D clock source and  
justification.  
REGISTER 19-1: ADCON0 REGISTER  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5-2 CHS3:CHS0: Analog Channel Select bits  
0000= Channel 0 (AN0)  
0001= Channel 1 (AN1)  
0010= Channel 2 (AN2)  
0011= Channel 3 (AN3)  
0100= Channel 4 (AN4)  
0101= Channel 5 (AN5)  
0110= Channel 6 (AN6)  
0111= Channel 7 (AN7)  
1000= Channel 8 (AN8)  
1001= Channel 9 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= Channel 12 (AN12)(1)  
1101= Channel 13 (AN13)(1)  
1110= Channel 14 (AN14)(1)  
1111= Channel 15 (AN15)(1)  
Note 1: These channels are not available on the PIC18F6X20 (64-pin) devices.  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion, which is automatically  
cleared by hardware when the A/D conversion is complete)  
0= A/D conversion not in progress  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 213  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 19-2: ADCON1 REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
VCFG1:VCFG0: Voltage Reference Configuration bits:  
VCFG1  
A/D VREF+  
VCFG0  
A/D VREF-  
00  
01  
10  
11  
AVDD  
AVSS  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 3-0  
PCFG3:PCFG0: A/D Port Configuration Control bits:  
PCFG3  
PCFG0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Note: Shaded cells indicate A/D channels available only on PIC18F8X20 devices.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39609C-page 214  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 19-3: ADCON2 REGISTER  
R/W-0 U-0  
ADFM  
bit 7  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADCS2  
ADCS1  
ADCS0  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from an RC oscillator = 1 MHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from an RC oscillator = 1 MHz max)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS), or the voltage level on the RA3/AN3/  
VREF+ pin and RA2/AN2/VREF- pin.  
Each port pin associated with the A/D converter can be  
configured as an analog input (RA3 can also be a  
voltage reference), or as a digital I/O. The ADRESH  
and ADRESL registers contain the result of the A/D  
conversion. When the A/D conversion is complete, the  
result is loaded into the ADRESH/ADRESL registers,  
the GO/DONE bit (ADCON0 register) is cleared and  
A/D interrupt flag bit, ADIF, is set. The block diagram of  
the A/D module is shown in Figure 19-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To oper-  
ate in Sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 215  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 19-1:  
A/D BLOCK DIAGRAM  
CHS3:CHS0  
1111  
AN15(1)  
AN14(1)  
1110  
1101  
1100  
1011  
1010  
1001  
AN13(1)  
AN12(1)  
AN11  
AN10  
AN9  
AN8  
AN7  
AN6  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
AN5  
AN4  
AN3  
AN2  
AN1  
AN0  
VAIN  
(Input Voltage)  
10-bit  
Converter  
A/D  
VCFG1:VCFG0  
VDD  
VREF+  
VREF-  
Reference  
Voltage  
VSS  
Note 1: Channels AN15 through AN12 are not available on PIC18F6X20 devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39609C-page 216  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The value in the ADRESH/ADRESL registers is not  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
modified for a Power-on Reset. The ADRESH/  
ADRESL registers will contain unknown data after a  
Power-on Reset.  
• Set ADIE bit  
• Set GIE bit  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 19.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started.  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF, if required.  
The following steps should be followed to do an A/D  
conversion:  
7. For the next conversion, go to step 1 or step 2,  
as required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before the next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
FIGURE 19-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
ILEAKAGE  
± 500 nA  
VAIN  
CHOLD = 120 pF  
VT = 0.6V  
5 pF  
VSS  
Legend: CPIN  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
VT  
ILEAKAGE = leakage current at the pin due to  
various junctions  
3V  
RIC  
= interconnect resistance  
= sampling switch  
2V  
SS  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch (k)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 217  
PIC18F6520/8520/6620/8620/6720/8720  
Example 19-1 shows the calculation of the minimum  
19.1 A/D Acquisition Requirements  
required acquisition time, TACQ. This calculation is  
based on the following application system  
assumptions:  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 19-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 k  
1/2 LSb  
5V Rss = 7 k  
50C (system max.)  
0V @ time = 0  
Note: When using external voltage references with  
the A/D converter, the source impedance of  
the external voltage references must be less  
than 20to obtain the A/D performance  
specified in parameters A01-A06. Higher  
reference source impedances will increase  
both offset and gain errors. Resistive voltage  
dividers will not provide a sufficiently low  
source impedance.  
Note:  
When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
To calculate the minimum acquisition time,  
Equation 19-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
To maintain the best possible performance in  
A/D conversions, external VREF inputs should  
be buffered with an operational amplifier or  
other low output impedance circuit.  
If deviating from the operating conditions  
specified for parameters A03-A06, the effect  
of parameter A50 (VREF input current) must  
be considered.  
EQUATION 19-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 19-2: A/D MINIMUM CHARGING TIME  
VHOLD =  
or  
(VREF – (VREF/2048)) • (1 – e(-Tc/CHOLD(RIC + RSS + RS))  
)
TC  
=
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
EXAMPLE 19-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
=
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25C.  
TACQ  
TC  
=
=
2 s + TC + [(Temp – 25C)(0.05 s/C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 s (-7.6241)  
9.61 s  
TACQ  
=
2 s + 9.61 s + [(50C – 25C)(0.05 s/C)]  
11.61 s + 1.25 s  
12.86 s  
DS39609C-page 218  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
19.2 Selecting the A/D  
19.3 Configuring Analog Port Pins  
Conversion Clock  
The ADCON1, TRISA, TRISF and TRISH registers  
control the operation of the A/D port pins. The port pins  
needed as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
• 2 TOSC  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
• 4 TOSC  
• 8 TOSC  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert as an  
analog input. Analog levels on a digitally  
configured input will not affect the  
conversion accuracy.  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 s.  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume current out of the device’s  
specification limits.  
Table 19-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 19-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS2:ADCS0  
PIC18FXX20  
PIC18LFXX20  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
40.0 MHz  
666 kHz  
1.33 MHz  
2.67 MHz  
5.33 MHz  
10.67 MHz  
21.33 MHz  
2003-2013 Microchip Technology Inc.  
DS39609C-page 219  
PIC18F6520/8520/6620/8620/6720/8720  
19.4 A/D Conversions  
19.5 Use of the CCP2 Trigger  
Figure 19-3 shows the operation of the A/D converter  
after the GO bit has been set. Clearing the GO/DONE  
bit during a conversion will abort the current conver-  
sion. The A/D Result register pair will NOT be updated  
with the partially completed A/D conversion sample.  
That is, the ADRESH:ADRESL registers will continue  
to contain the value of the last completed conversion  
(or the last value written to the ADRESH:ADRESL reg-  
isters). After the A/D conversion is aborted, a 2 TAD wait  
is required before the next acquisition is started. After  
this 2 TAD wait, acquisition on the selected channel is  
automatically started.  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the GO/  
DONE bit will be set, starting the A/D conversion and  
the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the “special  
event trigger” sets the GO/DONE bit (starts a  
conversion).  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D module,  
but will still reset the Timer1 (or Timer3) counter.  
FIGURE 19-3:  
A/D CONVERSION TAD CYCLES  
TCY - TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b0  
b5  
b4  
b3  
b2  
b1  
b0  
b7  
b6  
b8  
b9  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
DS39609C-page 220  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 19-2: SUMMARY OF A/D REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000  
0000 0000  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF  
SSPIE CCP1IE  
SSPIP CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TMR1IF 0000 0000  
TMR1IE 0000 0000  
TMR1IP 0111 1111  
CCP2IF -0-- 0000  
CCP2IE -0-- 0000  
CCP2IP -0-- 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0111 1111  
-0-- 0000  
-0-- 0000  
-0-- 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 0000  
0--- -000  
--0u 0000  
--11 1111  
u000 0000  
uuuu uuuu  
1111 1111  
0000 xxxx  
uuuu uuuu  
1111 1111  
PIE1  
IPR1  
PIR2  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
PIE2  
IPR2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
PORTF  
LATF  
A/D Result Register High Byte  
A/D Result Register Low Byte  
xxxx xxxx  
CHS3  
CHS3  
CHS1  
CHS0  
GO/DONE  
PCFG1  
ADCS1  
RA1  
ADON  
PCFG0  
ADCS0  
RA0  
--00 0000  
--00 0000  
0--- -000  
--0x 0000  
--11 1111  
x000 0000  
xxxx xxxx  
1111 1111  
0000 xxxx  
xxxx xxxx  
1111 1111  
VCFG1 VCFG0 PCFG3 PCFG2  
ADFM  
ADCS2  
RA2  
RA6  
RA5  
RA4  
RA3  
PORTA Data Direction Register  
RF7  
LATF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0  
TRISF  
PORTF Data Direction Control Register  
(1)  
PORTH  
RH7  
RH6  
RH5  
RH4  
RH3  
RH2  
RH1  
RH0  
(1)  
LATH  
LATH7  
LATH6  
LATH5  
LATH4 LATH3  
LATH2  
LATH1  
LATH0  
(1)  
TRISH  
PORTH Data Direction Control Register  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: Only available on PIC18F8X20 devices.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 221  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 222  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The CMCON register, shown as Register 20-1, con-  
20.0 COMPARATOR MODULE  
trols the comparator input and output multiplexers. A  
block diagram of the various comparator configurations  
is shown in Figure 20-1.  
The comparator module contains two analog compara-  
tors. The inputs to the comparators are multiplexed  
with the RF1 through RF6 pins. The on-chip voltage ref-  
erence (Section 21.0 “Comparator Voltage Reference  
Module”) can also be an input to the comparators.  
REGISTER 20-1: CMCON REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RF5/AN10  
C2 VIN- connects to RF3/AN8  
0= C1 VIN- connects to RF6/AN11  
C2 VIN- connects to RF4/AN9  
bit 2-0  
CM2:CM0: Comparator Mode bits  
Figure 20-1 shows the Comparator modes and the CM2:CM0 bit settings.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 223  
PIC18F6520/8520/6620/8620/6720/8720  
be valid for the specified mode change delay shown in  
the Electrical Specifications (Section 26.0 “Electrical  
Characteristics”).  
20.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors. The CMCON register is used to select these  
modes. Figure 20-1 shows the eight possible modes.  
The TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
mode is changed, the comparator output level may not  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change.  
Otherwise, a false interrupt may occur.  
a
FIGURE 20-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
Comparators Off  
CM2:CM0 = 000  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
Off (Read as 0)  
Off (Read as 0)  
Off (Read as 0)  
Off (Read as 0)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RF5/AN10  
A
A
D
VIN-  
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
D
RF3/AN8  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
Two Independent Comparators  
CM2:CM0 = 010  
A
VIN-  
A
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
RF5/AN10  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
RF2/AN7/C1OUT  
A
A
VIN-  
A
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
A
RF3/AN8  
RF1/AN6/C2OUT  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 100  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
RF5/AN10  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF2/AN7/C1OUT  
A
D
VIN-  
RF4/AN9  
RF3/AN8  
A
VIN-  
VIN+  
RF4/AN9  
C2OUT  
VIN+  
D
RF3/AN8  
RF1/AN6/C2OUT  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM2:CM0 = 110  
CM2:CM0 = 001  
A
A
A
VIN-  
RF6/AN11  
RF6/AN11  
RF5/AN10  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
VIN+  
RF5/AN10  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
RF2/AN7/C1OUT  
A
A
RF4/AN9  
RF3/AN8  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
VIN-  
RF4/AN9  
Off (Read as 0)  
C2  
VIN+  
D
RF3/AN8  
CVREF  
From VREF Module  
A = Analog Input, port reads zeros always  
DS39609C-page 224  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
20.3.2  
INTERNAL REFERENCE SIGNAL  
20.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference for the compara-  
tors. Section 21.0 “Comparator Voltage Reference  
Module” contains a detailed description of the compar-  
ator voltage reference module that provides this signal.  
The internal reference signal is used when comparators  
are in mode CM<2:0> = 110 (Figure 20-1). In this  
mode, the internal voltage reference is applied to the  
VIN+ pin of both comparators.  
A single comparator is shown in Figure 20-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 20-2 represent  
the uncertainty, due to input offsets and response time.  
20.4 Comparator Response Time  
20.3 Comparator Reference  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the com-  
parator output has a valid level. If the internal reference  
is changed, the maximum delay of the internal voltage  
reference must be considered when using the compar-  
ator outputs. Otherwise, the maximum delay of the  
comparators should be used (Section 26.0 “Electrical  
Characteristics”).  
An external or internal reference signal may be used,  
depending on the comparator operating mode. The  
analog signal present at VIN- is compared to the signal  
at VIN+ and the digital output of the comparator is  
adjusted accordingly (Figure 20-2).  
FIGURE 20-2:  
SINGLE COMPARATOR  
20.5 Comparator Outputs  
VIN+  
VIN-  
+
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response time  
given in the specifications. Figure 20-3 shows the  
comparator output block diagram.  
VIN-  
VIN+  
The TRISF bits will still function as an output enable/  
disable for the RF1 and RF2 pins while in this mode.  
Output  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
Note 1: When reading the port register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input, according to the  
Schmitt Trigger input specification.  
20.3.1  
EXTERNAL REFERENCE SIGNAL  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same, or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume more current than is specified.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 225  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 20-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port pins  
MULTIPLEX  
+
-
CxINV  
To RF1 or  
RF2 pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Set  
CMIF  
bit  
Q
D
From  
Other  
Comparator  
EN  
CL  
Read CMCON  
Reset  
20.6 Comparator Interrupts  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR  
registers) interrupt flag may not get set.  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR registers) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing ‘0’. Since it is also  
possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
The CMIE bit (PIE registers) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
DS39609C-page 226  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
20.7 Comparator Operation  
20.9 Analog Input Connection  
Considerations  
During Sleep  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional, if enabled. This interrupt will  
wake-up the device from Sleep mode, when enabled.  
While the comparator is powered up, higher Sleep  
currents than shown in the power-down current  
specification will occur. Each operational comparator  
will consume additional current, as shown in the com-  
parator specifications. To minimize power consumption  
while in Sleep mode, turn off the comparators  
(CM<2:0> = 111) before entering Sleep. If the device  
wakes up from Sleep, the contents of the CMCON  
register are not affected.  
A simplified circuit for an analog input is shown in  
Figure 20-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kis  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
20.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator module to be in the Com-  
parator Reset mode, CM<2:0> = 000. This ensures  
that all potential inputs are analog inputs. Device cur-  
rent is minimized when analog inputs are present at  
Reset time. The comparators will be powered down  
during the Reset interval.  
FIGURE 20-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
=
=
Input Capacitance  
Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
2003-2013 Microchip Technology Inc.  
DS39609C-page 227  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
all other  
Resets  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON C2OUT C1OUT C2INV C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000 0000 0000  
CVRCON CVREN CVROE CVRR CVRSS CVR3  
CVR2  
CVR1  
CVR0 0000 0000 0000 0000  
RBIF 0000 0000 0000 0000  
INTCON  
GIE/  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE TMR0IF INT0IF  
GIEH  
PIR2  
CMIF  
CMIE  
CMIP  
RF6  
BCLIF  
BCLIE  
BCLIP  
RF3  
LVDIF TMR3IF CCP2IF -0-- 0000 -0-- 0000  
LVDIE TMR3IE CCP2IE -0-- 0000 -0-- 0000  
LVDIP TMR3IP CCP2IP -1-- 1111 -1-- 1111  
PIE2  
IPR2  
PORTF  
LATF  
TRISF  
RF7  
RF5  
RF4  
RF2  
RF1  
LATF1 LATF0 xxxx xxxx uuuu uuuu  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 1111 1111  
RF0  
x000 0000 u000 0000  
LATF7 LATF6 LATF5 LATF4 LATF3 LATF2  
Legend: x= unknown, u= unchanged, – = unimplemented, read as ‘0’.  
Shaded cells are unused by the comparator module.  
DS39609C-page 228  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
21.1 Configuring the Comparator  
Voltage Reference  
21.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference can output 16 distinct  
voltage levels for each range. The equations used to  
calculate the output of the comparator voltage reference  
are as follows:  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable voltage refer-  
ence. The resistor ladder is segmented to provide two  
ranges of CVREF values and has a power-down function  
to conserve power when the reference is not being used.  
The CVRCON register controls the operation of the  
reference as shown in Register 21-1. The block diagram  
is given in Figure 21-1.  
If CVRR = 1:  
CVREF = (CVR<3:0>/24) x CVRSRC  
If CVRR = 0:  
CVREF = (CVRSRC x 1/4) + (CVR<3:0>/32) x CVRSRC  
The comparator reference supply voltage can come  
from either VDD or VSS, or the external VREF+ and  
VREF- that are multiplexed with RA3 and RA2. The  
comparator reference supply voltage is controlled by  
the CVRSS bit.  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF output  
(Section 26.0 “Electrical Characteristics”).  
Note: In order to select external VREF+ and VREF-  
supply voltages, the Voltage Reference Con-  
figuration bits (VCFG1:VCFG0) of the  
ADCON1 register must be set appropriately.  
REGISTER 21-1:  
CVRCON REGISTER  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the RF5/AN10/CVREF pin  
0= CVREF voltage is disconnected from the RF5/AN10/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0.00 CVRSRC to 0.667 CVRSRC, with CVRSRC/24 step size (low range)  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)  
CVRSS: Comparator VREF Source Selection bit(2)  
1= Comparator reference source CVRSRC = VREF+ – VREF-  
0= Comparator reference source CVRSRC = VDD – VSS  
CVR3:CVR0: Comparator VREF Value Selection bits (0 VR3:VR0 15)  
When CVRR = 1:  
CVREF = (CVR<3:0>/24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR3:CVR0/32) (CVRSRC)  
Note 1: If enabled for output, RF5 must also be configured as an input by setting TRISF<5>  
to ‘1’.  
2: In order to select external VREF+ and VREF- supply voltages, the Voltage  
Reference Configuration bits (VCFG1:VCFG0) of the ADCON1 register must be  
set appropriately.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2003-2013 Microchip Technology Inc.  
DS39609C-page 229  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 21-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
VREF+  
16 Stages  
CVRSS = 1  
CVRSS = 0  
CVREN  
R
R
R
8R  
R
CVRR  
CVRSS = 0  
8R  
CVRSS = 1  
VREF-  
CVR3  
CVREF  
(From CVRCON<3:0>)  
CVR0  
16-1 Analog Mux  
Note: R is defined in Section 26.0 “Electrical Characteristics”.  
21.2 Voltage Reference Accuracy/Error  
21.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 21-1) keep CVREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the CVREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be  
found in Section 26.0 “Electrical Characteristics”.  
A device Reset disables the voltage reference by  
clearing bit CVREN (CVRCON<7>). This Reset also  
disconnects the reference from the RA2 pin by clearing  
bit CVROE (CVRCON<6>) and selects the high-  
voltage range by clearing bit CVRR (CVRCON<5>).  
The VRSS value select bits, CVRCON<3:0>, are also  
cleared.  
21.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RF5 pin if the  
TRISF<5> bit is set and the CVROE bit is set. Enabling  
the voltage reference output onto the RF5 pin,  
configured as a digital input, will increase current  
consumption. Connecting RF5 as a digital output with  
VRSS enabled will also increase current consumption.  
21.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the voltage refer-  
ence output for external connections to VREF.  
Figure 21-2 shows an example buffering technique.  
DS39609C-page 230  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 21-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
RF5  
R
CVREF  
+
Module  
CVREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Comparator Voltage Reference Configuration bits CVRCON<3:0> and CVRCON<5>.  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value on  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
CVRCON CVREN CVROE CVRR CVRSS CVR3  
CVR2  
CM2  
CVR1  
CM1  
CVR0 0000 0000 0000 0000  
CM0 0000 0000 0000 0000  
CMCON  
TRISF  
C2OUT C1OUT C2INV C1INV  
CIS  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, – = unimplemented, read as ‘0’.  
Shaded cells are not used with the comparator voltage reference.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 231  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 232  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The Low-Voltage Detect circuitry is completely under  
22.0 LOW-VOLTAGE DETECT  
software control. This allows the circuitry to be “turned  
off” by the software, which minimizes the current  
consumption for the device.  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do “housekeeping tasks” before the device  
voltage exits the valid operating range. This can be  
done using the Low-Voltage Detect module.  
Figure 22-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shut down the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference TB TA is the total  
time for shutdown.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
FIGURE 22-1:  
TYPICAL LOW-VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
The block diagram for the LVD module is shown in  
Figure 22-2. A comparator uses an internally gener-  
ated reference voltage as the set point. When the  
selected tap output of the device voltage crosses the  
set point (is lower than), the LVDIF bit is set.  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the 1.2V  
internal reference voltage generated by the voltage ref-  
erence module. The comparator then generates an  
interrupt signal, setting the LVDIF bit. This voltage is  
software programmable to any one of 16 values (see  
Figure 22-2). The trip point is selected by programming  
the LVDL3:LVDL0 bits (LVDCON<3:0>).  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
2003-2013 Microchip Technology Inc.  
DS39609C-page 233  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 22-2:  
LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD3:LVD0  
LVDCON  
Register  
LVDIF  
Internally Generated  
LVDEN  
Reference Voltage  
(Parameter #D423)  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when bits  
LVDL3:LVDL0 are set to ‘1111’. In this state, the com-  
parator input is multiplexed from the external input pin,  
LVDIN (Figure 22-3). This gives users flexibility  
because it allows them to configure the Low-Voltage  
Detect interrupt to occur at any voltage in the valid  
operating range.  
FIGURE 22-3:  
LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVD3:LVD0  
LVDCON  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS39609C-page 234  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
22.1 Control Register  
The Low-Voltage Detect Control register controls the  
operation of the Low-Voltage Detect circuitry.  
REGISTER 22-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5  
bit 4  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0 LVDL3:LVDL0: Low-Voltage Detection Limit bits(2)  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.64V  
1101= 4.33V  
1100= 4.13V  
1011= 3.92V  
1010= 3.72V  
1001= 3.61V  
1000= 3.41V  
0111= 3.1V  
0110= 2.89V  
0101= 2.78V  
0100= 2.58V  
0011= 2.47V  
0010= 2.27V  
0001= 2.06V  
0000= Reserved  
Note 1: LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage  
of the device are not tested.  
2: Typical values shown, see parameter D420 in Table 26-3 for more information.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003-2013 Microchip Technology Inc.  
DS39609C-page 235  
PIC18F6520/8520/6620/8620/6720/8720  
The following steps are needed to set up the LVD  
module:  
22.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be con-  
stantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods, where the voltage is checked. After  
doing the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register), which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set, until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 22-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 22-4:  
LOW-VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIVRST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIVRST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS39609C-page 236  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
22.2.1  
REFERENCE VOLTAGE SET POINT  
22.3 Operation During Sleep  
The internal reference voltage of the LVD module,  
specified in electrical specification parameter #D423,  
may be used by other internal circuitry (the  
Programmable Brown-out Reset). If these circuits are  
disabled (lower current consumption), the reference  
voltage circuit requires a time to become stable before a  
low-voltage condition can be reliably detected. This time  
is invariant of system clock speed. This start-up time is  
specified in electrical specification parameter #36. The  
low-voltage interrupt flag will not be enabled until a stable  
reference voltage is reached. Refer to the waveform in  
Figure 22-4.  
When enabled, the LVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from Sleep. Device execution will continue from the  
interrupt vector address if interrupts have been globally  
enabled.  
22.4 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the LVD module to be turned off.  
22.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 237  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 238  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
23.1 Configuration Bits  
23.0 SPECIAL FEATURES OF THE  
CPU  
The configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select vari-  
ous device configurations. These bits are mapped,  
starting at program memory location 300000h.  
There are several features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power saving operating  
modes and offer code protection. These are:  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h through  
3FFFFFh), which can only be accessed using table  
reads and table writes.  
• Oscillator Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Programming the configuration registers is done in a  
manner similar to programming the Flash memory. The  
EECON1 register WR bit starts a self-timed write to the  
configuration register. In normal operation mode, a  
TBLWT instruction with the TBLPTR pointed to the  
configuration register sets up the address and the data  
for the configuration register write. Setting the WR bit  
starts a long write to the configuration register. The  
configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell.  
• Watchdog Timer (WDT)  
• Sleep  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming  
All PIC18FXX20 devices have a Watchdog Timer,  
which is permanently enabled via the configuration bits,  
or software controlled. It runs off its own RC oscillator  
for added reliability. There are two timers that offer  
necessary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
Reset until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT), which provides a fixed  
delay on power-up only, designed to keep the part in  
Reset while the power supply stabilizes. With these two  
timers on-chip, most applications need no external  
Reset circuitry.  
Sleep mode is designed to offer a very low current  
power-down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer Wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost, while the  
LP crystal option saves power. A set of configuration  
bits is used to select various options.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 239  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 23-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
OSCSEN  
FOSC2  
BORV0  
FOSC1  
BODEN  
WDTPS0  
PM1  
FOSC0  
PWRTEN  
WDTEN  
PM0  
--1- -111  
---- 1111  
---- 1111  
1--- --11  
---- --11  
1--- -1-1  
1111 1111  
11-- ----  
1111 1111  
111- ----  
1111 1111  
-1-- ----  
(4)  
BORV1  
WDTPS2 WDTPS1  
(1)  
300004h CONFIG3L  
WAIT  
(3)  
300005h CONFIG3H  
r
CCP2MX  
STVREN  
CP0  
300006h CONFIG4L DEBUG  
LVP  
CP2  
CP1  
(2)  
(2)  
(2)  
(2)  
300008h CONFIG5L CP7  
CP6  
CP5  
CP4  
CP3  
300009h CONFIG5H  
30000Ah CONFIG6L WRT7  
30000Bh CONFIG6H WRTD  
CPD  
CPB  
(2)  
(2)  
(2)  
(2)  
WRT6  
WRTB  
WRT5  
WRT4  
WRT3  
WRT2  
WRT1  
WRT0  
WRTC  
(2)  
(2)  
(2)  
(2)  
30000Ch CONFIG7L EBTR7 EBTR6  
EBTR5  
EBTR4  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
30000Dh CONFIG7H  
3FFFFEh DEVID1  
3FFFFFh DEVID2  
EBTRB  
DEV1  
DEV9  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
0000 0110  
Legend:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition, r= reserved.  
Shaded cells are unimplemented, read as ‘0’.  
Note 1: Unimplemented in PIC18F6X20 devices; maintain this bit set.  
2: Unimplemented in PIC18FX520 and PIC18FX620 devices; maintain this bit set.  
3: Unimplemented in PIC18FX620 and PIC18FX720 devices; maintain this bit set.  
4: See Register 23-13 for DEVID1 values.  
REGISTER 23-1: CONFIG1H:CONFIGURATIONREGISTER1HIGH(BYTE ADDRESS300001h)  
U-0  
U-0  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
OSCSEN  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5 OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (main oscillator is source)  
0= Timer1 Oscillator system clock switch option is enabled (oscillator switching is enabled)  
bit 4-3 Unimplemented: Read as ‘0’  
bit 2-0 FOSC2:FOSC0: Oscillator Selection bits  
111= RC oscillator w/ OSC2 configured as RA6  
110= HS oscillator with PLL enabled; clock frequency = (4 x FOSC)  
101= EC oscillator w/ OSC2 configured as RA6  
100= EC oscillator w/ OSC2 configured as divide-by-4 clock output  
011= RC oscillator w/ OSC2 configured as divide-by-4 clock output  
010= HS oscillator  
001= XT oscillator  
000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39609C-page 240  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-2: CONFIG2L:CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1  
BORV0 BOREN PWRTEN  
bit 0  
bit 7  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3-2 BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.5V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3-1 WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2003-2013 Microchip Technology Inc.  
DS39609C-page 241  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-4: CONFIG3L:CONFIGURATIONREGISTER3LOW(BYTEADDRESS300004h)(1)  
R/P-1  
WAIT  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PM1  
R/P-1  
PM0  
bit 7  
bit 0  
bit 7  
WAIT: External Bus Data Wait Enable bit  
1= Wait selections unavailable for table reads and table writes  
0= Wait selections for table reads and table writes are determined by the WAIT1:WAIT0 bits  
(MEMCOM<5:4>)  
bit 6-2 Unimplemented: Read as ‘0’  
bit 1-0 PM1:PM0: Processor Mode Select bits  
11= Microcontroller mode  
10= Microprocessor mode  
01= Microprocessor with Boot Block mode  
00= Extended Microcontroller mode  
Note 1: This register is unimplemented in PIC18F6X20 devices; maintain these bits set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 23-5: CONFIG3H:CONFIGURATIONREGISTER3HIGH(BYTE ADDRESS300005h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
r(1)  
R/P-1  
CCP2MX  
bit 0  
bit 7  
bit 7-2 Unimplemented: Read as ‘0’  
bit 1  
bit 0  
Reserved: Read as unknown(1)  
CCP2MX: CCP2 Mux bit  
In Microcontroller mode:  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RE7  
In Microprocessor, Microprocessor with Boot Block and Extended Microcontroller modes  
(PIC18F8X20 devices only):  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RB3  
Note 1: Unimplemented in PIC18FX620 and PIC18FX720 devices; read as ‘0’.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39609C-page 242  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-6: CONFIG4L:CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS300006h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVREN  
bit 0  
DEBUG  
bit 7  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled. RB6 and RB7 configured as general purpose I/O pins.  
0= Background debugger enabled. RB6 and RB7 are dedicated to In-Circuit Debug.  
bit 6-3 Unimplemented: Read as ‘0’  
bit 2  
LVP: Low-Voltage ICSP Enable bit  
1= Low-voltage ICSP enabled  
0= Low-voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2003-2013 Microchip Technology Inc.  
DS39609C-page 243  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)  
R/P-1  
CP7(1)  
R/P-1  
CP6(1)  
R/P-1  
CP5(1)  
R/P-1  
CP4(1)  
R/P-1  
CP3  
R/P-1  
CP2  
R/P-1  
CP1  
R/P-1  
CP0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
CP7: Code Protection bit(1)  
1= Block 7 (01C000-01FFFFh) not code-protected  
0= Block 7 (01C000-01FFFFh) code-protected  
CP6: Code Protection bit(1)  
1= Block 6 (018000-01BFFFh) not code-protected  
0= Block 6 (018000-01BFFFh) code-protected  
CP5: Code Protection bit(1)  
1= Block 5 (014000-017FFFh) not code-protected  
0= Block 5 (014000-017FFFh) code-protected  
CP4: Code Protection bit(1)  
1= Block 4 (010000-013FFFh) not code-protected  
0= Block 4 (010000-013FFFh) code-protected  
CP3: Code Protection bit  
For PIC18FX520 devices:  
1= Block 3 (006000-007FFFh) not code-protected  
0= Block 3 (006000-007FFFh) code-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 3 (00C000-00FFFFh) not code-protected  
0= Block 3 (00C000-00FFFFh) code-protected  
bit 2  
bit 1  
bit 0  
CP2: Code Protection bit  
For PIC18FX520 devices:  
1= Block 2 (004000-005FFFh) not code-protected  
0= Block 2 (004000-005FFFh) code-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 2 (008000-00BFFFh) not code-protected  
0= Block 2 (008000-00BFFFh) code-protected  
CP1: Code Protection bit  
For PIC18FX520 devices:  
1= Block 1 (002000-003FFFh) not code-protected  
0= Block 1 (002000-003FFFh) code-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 1 (004000-007FFFh) not code-protected  
0= Block 1 (004000-007FFFh) code-protected  
CP0: Code Protection bit  
For PIC18FX520 devices:  
1= Block 0 (000800-001FFFh) not code-protected  
0= Block 0 (000800-001FFFh) code-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 0 (000200-003FFFh) not code-protected  
0= Block 0 (000200-003FFFh) code-protected  
Note 1: Unimplemented in PIC18FX520 and PIC18FX620 devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39609C-page 244  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-8: CONFIG5H:CONFIGURATIONREGISTER5 HIGH(BYTEADDRESS300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
CPB: Boot Block Code Protection bit  
For PIC18FX520 devices:  
1= Boot Block (000000-0007FFh) not code-protected  
0= Boot Block (000000-0007FFh) code-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Boot Block (000000-0001FFh) not code-protected  
0= Boot Block (000000-0001FFh) code-protected  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
2003-2013 Microchip Technology Inc.  
DS39609C-page 245  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-9: CONFIG6L:CONFIGURATIONREGISTER6 LOW(BYTE ADDRESS30000Ah)  
R/P-1  
WRT7(1) WRT6(1)  
R/P-1  
R/P-1  
WRT5(1)  
R/P-1  
WRT4(1)  
R/P-1  
WRT3  
R/P-1  
WRT2  
R/P-1  
R/P-1  
WRT1  
WRT0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
WR7: Write Protection bit(1)  
1= Block 7 (01C000-01FFFFh) not write-protected  
0= Block 7 (01C000-01FFFFh) write-protected  
WR6: Write Protection bit(1)  
1= Block 6 (018000-01BFFFh) not write-protected  
0= Block 6 (018000-01BFFFh) write-protected  
WR5: Write Protection bit(1)  
1= Block 5 (014000-017FFFh) not write-protected  
0= Block 5 (014000-017FFFh) write-protected  
WR4: Write Protection bit(1)  
1= Block 4 (010000-013FFFh) not write-protected  
0= Block 4 (010000-013FFFh) write-protected  
WR3: Write Protection bit  
For PIC18FX520 devices:  
1= Block 3 (006000-007FFFh) not write-protected  
0= Block 3 (006000-007FFFh) write-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 3 (00C000-00FFFFh) not write-protected  
0= Block 3 (00C000-00FFFFh) write-protected  
bit 2  
bit 1  
bit 0  
WR2: Write Protection bit  
For PIC18FX520 devices:  
1= Block 2 (004000-005FFFh) not write-protected  
0= Block 2 (004000-005FFFh) write-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 2 (008000-00BFFFh) not write-protected  
0= Block 2 (008000-00BFFFh) write-protected  
WR1: Write Protection bit  
For PIC18FX520 devices:  
1= Block 1 (002000-003FFFh) not write-protected  
0= Block 1 (002000-003FFFh) write-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 1 (004000-007FFFh) not write-protected  
0= Block 1 (004000-007FFFh) write-protected  
WR0: Write Protection bit  
For PIC18FX520 devices:  
1= Block 0 (000800-001FFFh) not write-protected  
0= Block 0 (000800-001FFFh) write-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 0 (000200-003FFFh) not write-protected  
0= Block 0 (000200-003FFFh) write-protected  
Note 1: Unimplemented in PIC18FX520 and PIC18FX620 devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39609C-page 246  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-10: CONFIG6H:CONFIGURATION REGISTER 6 HIGH(BYTE ADDRESS30000Bh)  
R/P-1  
R/P-1  
R-1  
WRTC(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
bit 7  
bit 0  
bit 7  
bit 6  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
For PIC18FX520 devices:  
1= Boot Block (000000-0007FFh) not write-protected  
0= Boot Block (000000-0007FFh) write-protected  
For PIC18FX620 and PIC18FX720 devices:  
1= Boot Block (000000-0001FFh) not write-protected  
0= Boot Block (000000-0001FFh) write-protected  
bit 5  
WRTC: Configuration Register Write Protection bit(1)  
1= Configuration registers (300000-3000FFh) not write-protected  
0= Configuration registers (300000-3000FFh) write-protected  
Note 1: This bit is read-only and cannot be changed in user mode.  
bit 4-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2003-2013 Microchip Technology Inc.  
DS39609C-page 247  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-11: CONFIG7L:CONFIGURATIONREGISTER7 LOW(BYTE ADDRESS30000Ch)  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
EBTR7(1) EBTR6(1) EBTR5(1) EBTR4(1)  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
EBTR7: Table Read Protection bit(1)  
1= Block 3 (01C000-01FFFFh) not protected from table reads executed in other blocks  
0= Block 3 (01C000-01FFFFh) protected from table reads executed in other blocks  
EBTR6: Table Read Protection bit(1)  
1= Block 2 (018000-01BFFFh) not protected from table reads executed in other blocks  
0= Block 2 (018000-01BFFFh) protected from table reads executed in other blocks  
EBTR5: Table Read Protection bit(1)  
1= Block 1 (014000-017FFFh) not protected from table reads executed in other blocks  
0= Block 1 (014000-017FFFh) protected from table reads executed in other blocks  
EBTR4: Table Read Protection bit(1)  
1= Block 0 (010000-013FFFh) not protected from table reads executed in other blocks  
0= Block 0 (010000-013FFFh) protected from table reads executed in other blocks  
EBTR3: Table Read Protection bit  
For PIC18FX520 devices:  
1= Block 3 (006000-007FFFh) not protected from table reads executed in other blocks  
0= Block 3 (006000-007FFFh) protected from table reads executed in other blocks  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 3 (00C000-00FFFFh) not protected from table reads executed in other blocks  
0= Block 3 (00C000-00FFFFh) protected from table reads executed in other blocks  
bit 2  
bit 1  
bit 0  
EBTR2: Table Read Protection bit  
For PIC18FX520 devices:  
1= Block 2 (004000-005FFFh) not protected from table reads executed in other blocks  
0= Block 2 (004000-005FFFh) protected from table reads executed in other blocks  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 2 (008000-00BFFFh) not protected from table reads executed in other blocks  
0= Block 2 (008000-00BFFFh) protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit  
For PIC18FX520 devices:  
1= Block 1 (002000-003FFFh) not protected from table reads executed in other blocks  
0= Block 1 (002000-003FFFh) protected from table reads executed in other blocks  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 1 (004000-007FFFh) not protected from table reads executed in other blocks  
0= Block 1 (004000-007FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit  
For PIC18FX520 devices:  
1= Block 0 (000800-001FFFh) not protected from table reads executed in other blocks  
0= Block 0 (000800-001FFFh) protected from table reads executed in other blocks  
For PIC18FX620 and PIC18FX720 devices:  
1= Block 0 (000200-003FFFh) not protected from table reads executed in other blocks  
0= Block 0 (000200-003FFFh) protected from table reads executed in other blocks  
Note 1: Unimplemented in PIC18FX520 and PIC18FX620 devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39609C-page 248  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
REGISTER 23-12: CONFIG7H:CONFIGURATION REGISTER 7 HIGH(BYTE ADDRESS30000Dh)  
U-0  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
For PIC18FX520 devices:  
1= Boot Block (000000-0007FFh) not protected from table reads executed in other blocks  
0= Boot Block (000000-0007FFh) protected from table reads executed in other blocks  
For PIC18FX620 and PIC18FX720 devices:  
1= Boot Block (000000-0001FFh) not protected from table reads executed in other blocks  
0= Boot Block (000000-0001FFh) protected from table reads executed in other blocks  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 23-13: DEVICE ID REGISTER 1 FOR PIC18FXX20 DEVICES (ADDRESS 3FFFFEh)  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5 DEV2:DEV0: Device ID bits  
000= PIC18F8720  
001= PIC18F6720  
010= PIC18F8620  
011= PIC18F6620  
bit 4-0 REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 23-14: DEVICE ID REGISTER 2 FOR PIC18FXX20 DEVICES (ADDRESS 3FFFFFh)  
R
R
R
R
R
R
R
R
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
bit 0  
bit 7  
bit 7-0 DEV10:DEV3: Device ID bits  
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part  
number.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2003-2013 Microchip Technology Inc.  
DS39609C-page 249  
PIC18F6520/8520/6620/8620/6720/8720  
The WDT time-out period values may be found in the  
23.2 Watchdog Timer (WDT)  
Electrical Specifications section under parameter #31.  
Values for the WDT postscaler may be assigned using  
the configuration bits.  
The Watchdog Timer is a free running, on-chip RC  
oscillator, which does not require any external com-  
ponents. This RC oscillator is separate from the RC  
oscillator of the OSC1/CLKI pin. That means that the  
WDT will run, even if the clock on the OSC1/CLKI and  
OSC2/CLKO/RA6 pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler, if  
assigned to the WDT and prevent it from  
timing out and generating a device Reset  
condition.  
During normal operation, a WDT time-out generates a  
device Reset (Watchdog Timer Reset). If the device is  
in Sleep mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
2: When a CLRWDT instruction is executed  
and the postscaler is assigned to the  
WDT, the postscaler count will be cleared,  
but the postscaler assignment is not  
changed.  
The Watchdog Timer is enabled/disabled by a device  
configuration bit. If the WDT is enabled, software exe-  
cution may not disable this function. When the WDTEN  
configuration bit is cleared, the SWDTEN bit enables/  
disables the operation of the WDT.  
23.2.1  
CONTROL REGISTER  
Register 23-15 shows the WDTCON register. This is a  
readable and writable register, which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only when the configuration bit has  
disabled the WDT.  
REGISTER 23-15: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1 Unimplemented: Read as ‘0’  
bit 0  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39609C-page 250  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
23.2.2  
WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler is selected at the time of  
the device programming by the value written to the  
CONFIG2H Configuration register.  
FIGURE 23-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
8
WDTPS2:WDTPS0  
8-to-1 MUX  
WDTEN  
Configuration bit  
SWDTEN bit  
WDT  
Time-out  
Note:  
WDPS2:WDPS0 are bits in register CONFIG2H.  
TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
RI  
WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 251  
PIC18F6520/8520/6620/8620/6720/8720  
External MCLR Reset will cause a device Reset. All  
23.3 Power-down Mode (Sleep)  
other events are considered a continuation of program  
execution and will cause a “wake-up”. The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device Reset. The PD bit, which is set on  
power-up, is cleared when Sleep is invoked. The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared, but  
keeps running, the PD bit (RCON<3>) is cleared, the  
TO (RCON<4>) bit is set and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low or high-impedance).  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are high-impedance inputs, high or low externally,  
to avoid switching currents caused by floating inputs.  
The T0CKI input should also be at VDD or VSS for low-  
est current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
The MCLR pin must be at a logic high level (VIHMC).  
23.3.2  
WAKE-UP USING INTERRUPTS  
23.3.1  
WAKE-UP FROM SLEEP  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
• If an interrupt condition (interrupt flag bit and  
interrupt enable bits are set) occurs before the  
execution of a SLEEPinstruction, the SLEEP  
instruction will complete as a NOP. Therefore, the  
WDT and WDT postscaler will not be cleared, the  
TO bit will not be set and PD bits will not be  
cleared.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
peripheral interrupt.  
The following peripheral interrupts can wake the device  
from Sleep:  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
3. TMR3 interrupt. Timer3 must be operating as an  
asynchronous counter.  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
4. CCP Capture mode interrupt.  
5. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
6. MSSP (Start/Stop) bit detect interrupt.  
7. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
8. USART RX or TX (Synchronous Slave mode).  
9. A/D conversion (when A/D clock source is RC).  
10. EEPROM write operation complete.  
11. LVD interrupt.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
Other peripherals cannot generate interrupts, since  
during Sleep, no on-chip clocks are present.  
DS39609C-page 252  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 23-2:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKO(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIEH bit  
(INTCON<7>)  
Processor in  
Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC+2  
PC+4  
PC+4  
PC + 4  
0008h  
000Ah  
Instruction  
Fetched  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(PC + 2)  
Inst(000Ah)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst(0008h)  
Sleep  
Inst(PC - 1)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: GIE = 1assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.  
3: TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Oscillator modes.  
4: CLKO is not available in these oscillator modes, but shown here for timing reference.  
In the PIC18FXX20 family, the block size varies with  
the size of the user program memory. For PIC18FX520  
devices, program memory is divided into four blocks of  
23.4 Program Verification and  
Code Protection  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PIC® devices. The user program memory is divided on  
binary boundaries into individual blocks, each of which  
has three separate code protection bits associated with  
it:  
8 Kbytes each. The first block is further divided into a  
boot block of 2 Kbytes and a second block (Block 0) of  
6 Kbytes, for a total of five blocks. The organization of  
the blocks and their associated code protection bits are  
shown in Figure 23-3.  
For PIC18FX620 and PIC18FX720 devices, program  
memory is divided into blocks of 16 Kbytes. The first  
block is further divided into a boot block of 512 bytes  
and a second block (Block 0) of 15.5 Kbytes, for a total  
of nine blocks. This produces five blocks for 64-Kbyte  
devices and nine for 128-Kbyte devices. The organiza-  
tion of the blocks and their associated code protection  
bits are shown in Figure 23-4.  
• Code-Protect bit (CPn)  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
The code protection bits are located in Configuration  
Registers 5L through 7H. Their locations within the  
registers are summarized in Table 23-3.  
TABLE 23-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
CONFIG5L  
CONFIG5H  
CP7(1)  
CP6(1)  
CP5(1)  
CP4(1)  
CP3  
CP2  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
CPD  
CPB  
CONFIG6L WRT7(1) WRT6(1) WRT5(1) WRT4(1)  
WRT3  
WRT2  
WRT1  
WRT0  
CONFIG6H WRTD WRTB WRTC  
CONFIG7L EBTR7(1) EBTR6(1) EBTR5(1) EBTR4(1) EBTR3  
EBTR2  
EBTR1  
EBTR0  
CONFIG7H EBTRB  
Legend: Shaded cells are unimplemented.  
Note 1: Unimplemented in PIC18FX520 and PIC18FX620 devices.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 253  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 23-3:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18FX520 DEVICES  
Address  
Range  
Block Code Protection  
Controlled By:  
32 Kbytes  
000000h  
0007FFh  
Boot Block  
Block 0  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000800h  
001FFFh  
002000h  
Block 1  
Block 2  
Block 3  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
003FFFh  
004000h  
005FFFh  
006000h  
007FFFh  
008000h  
Unimplemented  
Read ‘0’s  
1FFFFFh  
FIGURE 23-4:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18FX620/X720 DEVICES  
MEMORY SIZE/DEVICE  
Block Code Protection  
Controlled By:  
64 Kbytes  
128 Kbytes  
Address  
Range  
(PIC18FX620)  
(PIC18FX720)  
000000h  
0001FFh  
Boot Block  
Boot Block  
Block 0  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000200h  
003FFFh  
Block 0  
Block 1  
004000h  
Block 1  
Block 2  
Block 3  
Block 4  
Block 5  
Block 6  
Block 7  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
CP4, WRT4, EBTR4  
CP5, WRT5, EBTR5  
CP6, WRT6, EBTR6  
CP7, WRT7, EBTR7  
007FFFh  
008000h  
Block 2  
Block 3  
00BFFFh  
00C000h  
00FFFFh  
010000h  
013FFFh  
014000h  
017FFFh  
018000h  
Unimplemented  
Read ‘0’s  
01BFFFh  
01C000h  
01FFFFh  
DS39609C-page 254  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
side of that block is not allowed to read and will result  
in reading ‘0’s. Figures 23-5 through 23-7 illustrate  
table write and table read protection using devices with  
a 16-Kbyte block size as the models. The principles  
illustrated are identical for devices with an 8-Kbyte  
block size.  
23.4.1  
PROGRAM MEMORY  
CODE PROTECTION  
The user memory may be read to, or written from, any  
location using the table read and table write instruc-  
tions. The device ID may be read with table reads. The  
configuration registers may be read and written with the  
table read and table write instructions.  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code pro-  
tection bits are only set to ‘1’ by a full chip  
erase or block erase function. The full chip  
erase and block erase functions can only  
be initiated via ICSP or an external  
programmer.  
In user mode, the CPn bits have no direct effect. CPn  
bits inhibit external reads and writes. A block of user  
memory may be protected from table writes if the  
WRTn configuration bit is ‘0’. The EBTRn bits control  
table reads. For a block of user memory with the  
EBTRn bit set to ‘0’, a table read instruction that  
executes from within that block is allowed to read. A  
table read instruction that executes from a location out-  
FIGURE 23-5:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0001FFh  
000200h  
WRTB, EBTRB = 11  
TBLPTR = 000FFFh  
PC = 003FFEh  
WRT0, EBTR0 = 01  
WRT1, EBTR1 = 11  
TBLWT *  
003FFFh  
004000h  
007FFFh  
008000h  
TBLWT *  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
PC = 008FFEh  
00BFFFh  
00C000h  
00FFFFh  
Results: All table writes disabled to Block n whenever WRTn = 0.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 255  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 23-6:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0001FFh  
000200h  
WRTB, EBTRB = 11  
TBLPTR = 000FFFh  
WRT0, EBTR0 = 10  
003FFFh  
004000h  
TBLRD *  
PC = 004FFEh  
WRT1, EBTR1 = 11  
007FFFh  
008000h  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
00BFFFh  
00C000h  
00FFFFh  
Results: All table reads from external blocks to Block n are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 23-7:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0001FFh  
000200h  
WRTB, EBTRB = 11  
TBLPTR = 000FFFh  
PC = 003FFEh  
WRT0, EBTR0 = 10  
TBLRD *  
003FFFh  
004000h  
WRT1, EBTR1 = 11  
007FFFh  
008000h  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
00BFFFh  
00C000h  
00FFFFh  
Results: Table reads permitted within Block n, even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
DS39609C-page 256  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
23.4.2  
DATA EEPROM  
CODE PROTECTION  
TABLE 23-4: DEBUGGER RESOURCES  
I/O pins  
RB6, RB7  
2 levels  
Stack  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read and write data EEPROM,  
regardless of the protection bit settings.  
Program Memory  
Data Memory  
Last 576 bytes  
Last 10 bytes  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip or one of  
the third party development tool companies.  
23.4.3  
CONFIGURATION REGISTER  
PROTECTION  
The configuration registers can be write-protected. The  
WRTC bit controls protection of the configuration regis-  
ters. In user mode, the WRTC bit is readable only.  
WRTC can only be written via ICSP or an external  
programmer.  
23.8 Low-Voltage ICSP Programming  
The LVP bit in the CONFIG4L Configuration register  
enables Low-Voltage ICSP Programming. This mode  
allows the microcontroller to be programmed via ICSP  
using a VDD source in the operating voltage range. This  
only means that VPP does not have to be brought to  
VIHH, but can instead be left at the normal operating  
voltage. In this mode, the RB5/PGM pin is dedicated to  
the programming function and ceases to be a general  
purpose I/O pin. During programming, VDD is applied to  
the MCLR/VPP pin. To enter Programming mode, VDD  
must be applied to the RB5/PGM pin, provided the LVP  
bit is set. The LVP bit defaults to a ‘1’ from the factory.  
23.5 ID Locations  
Eight memory locations (200000h-200007h) are  
designated as ID locations, where the user can store  
checksum or other code identification numbers. These  
locations are accessible during normal execution  
through the TBLRD and TBLWT instructions or during  
program/verify. The ID locations can be read when the  
device is code-protected.  
Note 1: The High-Voltage Programming mode is  
always available, regardless of the state  
of the LVP bit, by applying VIHH to the  
MCLR pin.  
23.6  
In-Circuit Serial Programming  
PIC18FX520/X620/X720 microcontrollers can be seri-  
ally programmed while in the end application circuit.  
This is simply done with two lines for clock and data  
and three other lines for power, ground and the  
programming voltage. This allows customers to manu-  
facture boards with unprogrammed devices and then  
program the microcontroller just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware to be programmed.  
2: While in Low-Voltage ICSP mode, the  
RB5 pin can no longer be used as a  
general purpose I/O pin and should be  
held low during normal operation.  
3: When using Low-Voltage ICSP Program-  
ming (LVP) and the pull-ups on PORTB are  
enabled, bit 5 in the TRISB register must be  
cleared to disable the pull-up on RB5 and  
ensure the proper operation of the device.  
Note:  
When  
performing  
In-Circuit  
Serial  
Programming, verify that power is con-  
nected to all VDD and AVDD pins of the  
microcontroller and that all VSS and AVSS  
pins are grounded.  
If Low-Voltage Programming mode is not used, the LVP  
bit can be programmed to a ‘0’ and RB5/PGM becomes  
a digital I/O pin. However, the LVP bit may only be  
programmed when programming is entered with VIHH  
on MCLR/VPP.  
23.7 In-Circuit Debugger  
It should be noted that once the LVP bit is programmed  
to ‘0’, only the High-Voltage Programming mode is  
available and only High-Voltage Programming mode  
can be used to program the device.  
When the DEBUG bit in the CONFIG4L Configuration  
register is programmed to a ‘0’, the In-Circuit Debugger  
functionality is enabled. This function allows simple  
debugging functions when used with MPLAB® IDE.  
When the microcontroller has this feature enabled,  
some of the resources are not available for general  
use. Table 23-4 shows which features are consumed  
by the background debugger.  
When using Low-Voltage ICSP Programming, the part  
must be supplied 4.5V to 5.5V if a bulk erase will be  
executed. This includes reprogramming of the code-  
protect bits from an on state to an off state. For all other  
cases of Low-Voltage ICSP, the part may be  
programmed at the normal operating voltage. This  
means unique user IDs or user code can be  
reprogrammed or added.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 257  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 258  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
The literal instructions may use some of the following  
operands:  
24.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PIC MCU instruction sets, while maintain-  
ing an easy migration from these PIC MCU instruction  
sets.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
Most instructions are a single program memory word  
(16 bits), but there are three instructions that require  
two program memory locations.  
• No operand required  
(specified by ‘—’)  
The control instructions may use some of the following  
operands:  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
• No operand required  
(specified by ‘—’)  
All instructions are a single word, except for three  
double-word instructions. These three instructions  
were made double-word instructions so that all the  
required information is available in these 32 bits. In the  
second word, the 4 MSbs are ‘1’s. If this second word  
is executed as an instruction (by itself), it will execute  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 24-1 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 24-1 shows the opcode field  
descriptions.  
Most byte-oriented instructions have three operands:  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.  
1. The file register (specified by ‘f’)  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator ‘f’ specifies which file  
register is to be used by the instruction.  
The double-word instructions execute in two instruction  
cycles.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If ‘d’ is zero, the  
result is placed in the WREG register. If ‘d’ is one, the  
result is placed in the file register specified in the  
instruction.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 s. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 s.  
Two-word branch instructions (if true) would take 3 s.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Figure 24-1 shows the general formats that the  
instructions can have.  
2. The bit in the file register  
(specified by ‘b’)  
All examples use the format ‘nnh’ to represent a hexa-  
decimal number, where ‘h’ signifies a hexadecimal  
digit.  
3. The accessed memory  
(specified by ‘a’)  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register desig-  
nator ‘f’ represents the number of the file in which the  
bit is located.  
The Instruction Set Summary, shown in Table 24-1,  
lists the instructions recognized by the Microchip  
Assembler (MPASMTM).  
Section 24.1 “Instruction Set” provides a description  
of each instruction.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 259  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 24-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination either the WREG register or the specified register file location.  
8-bit Register file address (0x00 to 0xFF).  
fs  
12-bit Register file address (0x000 to 0xFFF). This is the source address.  
12-bit Register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
fd  
k
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No Change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for Call/  
Branch and Return instructions.  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged.  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’).  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
TABLAT  
TOS  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Top-of-Stack.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Global Interrupt Enable bit.  
Watchdog Timer.  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit.  
PD  
Power-down bit.  
C, DC, Z, OV, N  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
Optional.  
[
]
)
(
Contents.  
< >  
Assigned to.  
Register bit field.  
In the set of.  
italics  
User defined term (font is courier).  
DS39609C-page 260  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 24-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
OPCODE f (FILE #)  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
d
a
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 261  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 24-1: PIC18FXXXX INSTRUCTION SET  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ADDWFC  
ANDWF  
CLRF  
f, d, a Add WREG and f  
f, d, a Add WREG and Carry bit to f  
f, d, a AND WREG with f  
1
1
1
1
1
0010 01da  
0010 00da  
0001 01da  
0110 101a  
0001 11da  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff C, DC, Z, OV, N 1, 2  
ffff C, DC, Z, OV, N 1, 2  
ffff Z, N  
ffff  
1,2  
2
f, a  
Clear f  
Z
COMF  
f, d, a Complement f  
ffff Z, N  
ffff None  
ffff None  
ffff None  
1, 2  
4
4
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
DECFSZ  
DCFSNZ  
INCF  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, a  
f, a  
f, a  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a  
1 (2 or 3) 0110 010a  
1 (2 or 3) 0110 000a  
1, 2  
f, d, a Decrement f  
1
0000 01da  
ffff C, DC, Z, OV, N 1, 2, 3, 4  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
1 (2 or 3) 0010 11da  
1 (2 or 3) 0100 11da  
1
1 (2 or 3) 0011 11da  
1 (2 or 3) 0100 10da  
1
1
2
ffff None  
ffff None  
1, 2, 3, 4  
1, 2  
0010 10da  
ffff C, DC, Z, OV, N 1, 2, 3, 4  
ffff None  
ffff None  
ffff Z, N  
ffff Z, N  
ffff None  
ffff  
4
1, 2  
1, 2  
1
0001 00da  
0101 00da  
1100 ffff  
1111 ffff  
0110 111a  
0000 001a  
0110 110a  
0011 01da  
0100 01da  
0011 00da  
0100 00da  
0110 100a  
0101 01da  
MOVFF  
f , f  
Move f (source) to 1st word  
s
d
s
f (destination) 2nd word  
d
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
SUBFWB  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
ffff None  
ffff None  
ffff C, DC, Z, OV, N 1, 2  
ffff C, Z, N  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
ffff Z, N  
ffff C, Z, N  
ffff Z, N  
ffff None  
1, 2  
f, a  
Set f  
f, d, a Subtract f from WREG with  
borrow  
ffff C, DC, Z, OV, N 1, 2  
SUBWF  
SUBWFB  
f, d, a Subtract WREG from f  
f, d, a Subtract WREG from f with  
borrow  
1
1
0101 11da  
0101 10da  
ffff  
ffff  
ffff C, DC, Z, OV, N  
ffff C, DC, Z, OV, N 1, 2  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap nibbles in f  
1
0011 10da  
ffff  
ffff  
ffff  
ffff None  
ffff None  
ffff Z, N  
4
1, 2  
f, a  
Test f, skip if 0  
1 (2 or 3) 0110 011a  
1
f, d, a Exclusive OR WREG with f  
0001 10da  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba  
1000 bbba  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff None  
ffff None  
ffff None  
ffff None  
ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba  
1 (2 or 3) 1010 bbba  
1
0111 bbba  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOPunless the  
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39609C-page 262  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 24-1: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1110 0010  
1110 0110  
1110 0011  
1110 0111  
1110 0101  
1110 0001  
1110 0100  
1101 0nnn  
1110 0000  
1110 110s  
1111 kkkk  
0000 0000  
0000 0000  
1110 1111  
1111 kkkk  
0000 0000  
1111 xxxx  
0000 0000  
0000 0000  
1101 1nnn  
0000 0000  
0000 0000  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
nnnn  
kkkk  
kkkk  
0000  
0000  
kkkk  
kkkk  
0000  
xxxx  
0000  
0000  
nnnn  
1111  
0001  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
kkkk None  
kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
Call subroutine 1st word  
2nd word  
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
CLRWDT  
DAW  
GOTO  
n
1
1
2
0100 TO, PD  
0111  
C
kkkk None  
kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
1
1
1
1
2
1
2
0000 None  
xxxx None  
0110 None  
0101 None  
nnnn None  
1111 All  
4
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device Reset  
Return from interrupt enable  
s
000s GIE/GIEH,  
PEIE/GIEL  
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100  
0000 0000  
0000 0000  
kkkk  
0001  
0000  
kkkk None  
001s None  
0011 TO, PD  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOPunless the  
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 263  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 24-1: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit) 2nd word  
1
1
1
2
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
to FSRx  
1st word  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
Exclusive OR literal with WREG  
1
1
1
2
1
1
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOPunless the  
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39609C-page 264  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
24.1 Instruction Set  
ADDLW  
ADD literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a] f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are added to the  
8-bit literal ‘k’ and the result is  
placed in W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected. If ‘a’ is ‘1’,  
the BSR is used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
ADDLW  
0x15  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
0x10  
After Instruction  
W
=
0x25  
ADDWF  
REG, 0, 0  
Example:  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
2003-2013 Microchip Technology Inc.  
DS39609C-page 265  
PIC18F6520/8520/6620/8620/6720/8720  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are AND’ed with  
the 8-bit literal ‘k’. The result is  
placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data  
memory location ‘f’. If ‘d’ is ‘0’, the  
result is placed in W. If ‘d’ is ‘1’, the  
result is placed in data memory  
location ‘f’. If ‘a’ is ‘0’, the Access  
Bank will be selected. If ‘a’ is ‘1’, the  
BSR will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
=
0xA3  
0x03  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
ADDWFC  
REG, 0, 1  
Example:  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
0x02  
0x50  
REG  
W
=
=
DS39609C-page 266  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
ANDWF  
AND W with f  
BC  
Branch if Carry  
[ label ] BC  
Syntax:  
[ label ] ANDWF  
f [,d [,a]  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the  
Description:  
The contents of W are AND’ed with  
register ‘f’. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected. If ‘a’ is ‘1’, the BSR will  
not be overridden (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
ANDWF  
REG, 0, 0  
Example:  
Before Instruction  
If No Jump:  
Q1  
W
REG  
=
=
0x17  
0xC2  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
After Instruction  
W
REG  
=
=
0x02  
0xC2  
HERE  
BC  
5
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
address (HERE+12)  
0;  
If Carry  
PC  
address (HERE+2)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 267  
PIC18F6520/8520/6620/8620/6720/8720  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in register ‘f’ is cleared. If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ‘f’  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BCF  
FLAG_REG, 7, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
FLAG_REG = 0xC7  
If No Jump:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FLAG_REG = 0x47  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
=
=
=
=
1;  
PC  
address (Jump)  
If Negative  
PC  
0;  
address (HERE+2)  
DS39609C-page 268  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if Carry bit is ‘0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Negative bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the  
program will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
=
=
=
=
0;  
If Negative  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Carry  
PC  
1;  
If Negative  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 269  
PIC18F6520/8520/6620/8620/6720/8720  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if Zero bit is ‘0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Overflow bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
=
=
=
=
0;  
If Zero  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Overflow  
PC  
1;  
If Zero  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
DS39609C-page 270  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Description:  
Add the 2’s complement number  
‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’,  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7, 1  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0x0A  
0x8A  
Before Instruction  
After Instruction  
FLAG_REG  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
2003-2013 Microchip Technology Inc.  
DS39609C-page 271  
PIC18F6520/8520/6620/8620/6720/8720  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the  
next instruction is skipped.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the  
next instruction is skipped.  
If bit ‘b’ is ‘0’, then the next  
If bit ‘b’ is ‘1’, then the next  
instruction fetched during the current  
instruction execution is discarded  
and a NOPis executed instead,  
making this a two-cycle instruction. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
instruction fetched during the current  
instruction execution is discarded  
and a NOPis executed instead,  
making this a two-cycle instruction. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Example:  
Example:  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
=
=
=
=
0;  
If FLAG<1>  
=
=
=
=
0;  
PC  
address (TRUE)  
1;  
PC  
address (FALSE)  
1;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
address (FALSE)  
address (TRUE)  
DS39609C-page 272  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if Overflow bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ‘f’  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BTG  
PORTC, 4, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction:  
PORTC  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Q3  
Q4  
PORTC  
=
0110 0101 [0x65]  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BOV Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
=
=
=
=
1;  
PC  
address (Jump)  
If Overflow  
PC  
0;  
address (HERE+2)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 273  
PIC18F6520/8520/6620/8620/6720/8720  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return  
address (PC+ 4) is pushed onto the  
return stack. If ‘s’ = 1, the W,  
Words:  
Cycles:  
1
1(2)  
Status and BSR registers are also  
pushed into their respective  
Q Cycle Activity:  
If Jump:  
shadow registers, WS, STATUSS  
and BSRS. If ‘s’ = 0, no update  
occurs (default). Then, the 20-bit  
value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
‘k’<7:0>  
stack  
‘k’<19:8>,  
Write to PC  
Before Instruction  
PC  
=
address (HERE)  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
After Instruction  
If Zero  
=
=
=
=
1;  
PC  
address (Jump)  
HERE  
CALL THERE,1  
Example:  
If Zero  
PC  
0;  
address (HERE+2)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
PC  
=
=
=
=
address (THERE)  
TOS  
WS  
address (HERE + 4)  
W
BSR  
BSRS  
STATUSS = STATUS  
DS39609C-page 274  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
CLRWDT  
Example:  
CLRF  
FLAG_REG,1  
Example:  
Before Instruction  
WDT Counter  
=
?
Before Instruction  
FLAG_REG  
=
=
0x5A  
0x00  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
=
=
=
0x00  
After Instruction  
FLAG_REG  
0
1
1
PD  
2003-2013 Microchip Technology Inc.  
DS39609C-page 275  
PIC18F6520/8520/6620/8620/6720/8720  
COMF  
Complement f  
CPFSEQ  
Compare f with W, skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are com-  
plemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
If ‘f’ = W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
1(2)  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
COMF  
REG, 0, 0  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
REG  
=
0x13  
W
=
0xEC  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG, 0  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
HERE  
W
REG  
=
=
?
?
After Instruction  
If REG  
PC  
=
=
W;  
Address (EQUAL)  
If REG  
PC  
=
W;  
Address (NEQUAL)  
DS39609C-page 276  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
CPFSGT  
Compare f with W, skip if f > W  
CPFSLT  
Compare f with W, skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) W),  
Operation:  
(f) –W),  
skip if (f) > (W)  
skip if (f) < (W)  
(unsigned comparison)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
If the contents of ‘f’ are greater than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
If the contents of ‘f’ are less than  
the contents of W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’  
is ‘1’, the BSR will not be  
overridden (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
Example:  
HERE  
CPFSGT REG, 0  
Example:  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
=
=
Address (HERE)  
?
W
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
After Instruction  
If REG  
=
=
W;  
Address (NLESS)  
PC  
Address (GREATER)  
W;  
If REG  
PC  
Address (NGREATER)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 277  
PIC18F6520/8520/6620/8620/6720/8720  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
Syntax:  
[ label ] DECF f [,d [,a]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> >9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) – 1 dest  
(W<3:0>) W<3:0>;  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> >9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
(W<7:4>) W<7:4>;  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in  
W, resulting from the earlier  
addition of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Data  
Write  
W
DECF  
CNT,  
1, 0  
Example:  
Before Instruction  
CNT  
Z
=
=
0x01  
0
DAW  
Example1:  
After Instruction  
Before Instruction  
CNT  
=
=
0x00  
1
W
=
=
=
0xA5  
0
0
Z
C
DC  
After Instruction  
W
=
=
=
0x05  
1
0
C
DC  
Example 2:  
Before Instruction  
W
=
=
=
0xCE  
0
0
C
DC  
After Instruction  
W
=
=
=
0x34  
1
0
C
DC  
DS39609C-page 278  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next  
If the result is not ‘0’, the next  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
CNT  
=
=
=
=
CNT - 1  
0;  
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP - 1,  
If CNT  
0;  
PC  
Address (CONTINUE)  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
If CNT  
PC  
Address (HERE+2)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 279  
PIC18F6520/8520/6620/8620/6720/8720  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
[ label ] INCF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
branch anywhere within the entire  
2-Mbyte memory range. The 20-bit  
value ‘k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>  
No  
operation  
Read literal  
’k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT, 1, 0  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
=
0xFF  
Z
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
=
=
=
=
0x00  
Z
1
1
1
C
DC  
DS39609C-page 280  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
INCFSZ  
Increment f, skip if 0  
INFSNZ  
Increment f, skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]  
Syntax:  
[ label ] INFSNZ f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next  
If the result is not ‘0’, the next  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 281  
PIC18F6520/8520/6620/8620/6720/8720  
IORLW  
Inclusive OR literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) .OR. k W  
N, Z  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of W are OR’ed with  
the eight-bit literal ‘k’. The result is  
placed in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If  
‘d’ is ‘0’, the result is placed in W. If  
‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
IORLW  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
W
=
0x9A  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
0xBF  
IORWF RESULT, 0, 1  
Example:  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS39609C-page 282  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into  
the File Select Register pointed  
to by ‘f’.  
Description:  
The contents of register ‘f’ are  
moved to a destination dependent  
upon the status of ‘d’. If ‘d’ is ‘0’, the  
result is placed in W. If ‘d’ is ‘1’, the  
result is placed back in register ‘f’  
(default). Location ‘f’ can be  
anywhere in the 256-byte bank. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write literal  
‘k’ MSB to  
FSRfH  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Words:  
Cycles:  
1
1
LFSR 2, 0x3AB  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
MOVF  
REG, 0, 0  
Example:  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
2003-2013 Microchip Technology Inc.  
DS39609C-page 283  
PIC18F6520/8520/6620/8620/6720/8720  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[ label ] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
0 fs 4095  
0 fd 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
(fs) fd  
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
Description:  
The 8-bit literal ‘k’ is loaded into  
the Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register ‘fs’  
are moved to destination register  
‘fd’. Location of source ‘fs’ can be  
anywhere in the 4096-byte data  
space (000h to FFFh) and location  
of destination ‘fd’ can also be  
anywhere from 000h to FFFh.  
Either source or destination can be  
W (a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write  
literal ‘k’ to  
BSR  
MOVLB  
5
Example:  
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation,  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS39609C-page 284  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
MOVLW  
Move literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k W  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight-bit literal ‘k’ is loaded into  
W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x5A  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
MOVWF  
REG, 0  
Example:  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
2003-2013 Microchip Technology Inc.  
DS39609C-page 285  
PIC18F6520/8520/6620/8620/6720/8720  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is  
carried out between the contents  
of W and the 8-bit literal ‘k’. The  
16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
W is unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this  
Description  
An unsigned multiplication is  
carried out between the contents  
of W and the register file location  
‘f’. The 16-bit result is stored in  
the PRODH:PRODL register  
pair. PRODH contains the high  
byte.  
Both W and ‘f’ are unchanged.  
None of the status flags are  
affected.  
operation. A zero result is  
possible but not detected.  
Note that neither overflow nor  
carry is possible in this  
operation. A zero result is  
possible but not detected. If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR  
value. If ‘a’= 1, then the bank will  
be selected as per the BSR  
value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
0xC4  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
0xE2  
registers  
PRODH:  
PRODL  
?
?
After Instruction  
W
=
0xE2  
0xAD  
0x08  
MULWF  
REG, 1  
Example:  
PRODH  
PRODL  
=
=
Before Instruction  
W
=
0xC4  
0xB5  
?
?
REG  
=
=
=
PRODH  
PRODL  
After Instruction  
W
=
=
=
=
0xC4  
0xB5  
0x8A  
0x94  
REG  
PRODH  
PRODL  
DS39609C-page 286  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in  
the data memory location ‘f’. If ‘a’ is  
0’, the Access Bank will be  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
2003-2013 Microchip Technology Inc.  
DS39609C-page 287  
PIC18F6520/8520/6620/8620/6720/8720  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
Description:  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the  
previous value that was pushed  
onto the return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Description:  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows  
implementing a software stack by  
modifying TOS and then pushing it  
onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
PUSH PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
PC  
=
=
00345Ah  
000124h  
Before Instruction  
TOS  
=
=
0031A2h  
014332h  
After Instruction  
Stack (1 level down)  
PC  
=
=
=
000126h  
000126h  
00345Ah  
TOS  
After Instruction  
Stack (1 level down)  
TOS  
PC  
=
=
014332h  
NEW  
DS39609C-page 288  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ‘2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n. This  
instruction is a two-cycle  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
instruction.  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Reset Value  
Reset Value  
Q Cycle Activity:  
Q1  
Flags*  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
=
Address (Jump)  
Address (HERE+2)  
TOS =  
2003-2013 Microchip Technology Inc.  
DS39609C-page 289  
PIC18F6520/8520/6620/8620/6720/8720  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
k W,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the eight-bit literal  
‘k’. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from Interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting either the high  
or low priority global interrupt  
enable bit. If ‘s’ = 1, the contents of  
the shadow registers, WS,  
STATUSS and BSRS, are loaded  
into their corresponding registers,  
W, Status and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Pop PC  
from stack,  
Write to W  
No  
operation  
No  
No  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; W contains table  
; offset value  
Q Cycle Activity:  
Q1  
; W now has  
; table value  
Q2  
Q3  
Q4  
:
Decode  
No  
operation  
No  
operation  
Pop PC  
from stack  
TABLE  
ADDWF PCL ; W = offset  
Set GIEH or  
GIEL  
RETLW k0  
RETLW k1  
:
; Begin table  
;
No  
operation  
No  
operation  
No  
operation  
No  
operation  
:
RETLW kn  
; End of table  
RETFIE  
1
Example:  
Before Instruction  
After Interrupt  
W
=
0x07  
PC  
=
=
=
=
=
TOS  
WS  
After Instruction  
W
BSR  
STATUS  
GIE/GIEH, PEIE/GIEL  
BSRS  
W
=
value of kn  
STATUSS  
1
DS39609C-page 290  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ] RLCF f [,d [,a]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Return from subroutine. The stack  
is popped and the top of the stack  
(TOS) is loaded into the program  
counter. If ‘s’ = 1, the contents of  
the shadow registers, WS,  
STATUSS and BSRS, are loaded  
into their corresponding registers,  
W, Status and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
Pop PC  
from stack  
operation  
Decode  
Read  
Process  
Write to  
No  
No  
No  
No  
register ‘f’  
Data  
destination  
operation  
operation  
operation  
operation  
RLCF  
REG, 0, 0  
Example:  
Before Instruction  
RETURN  
Example:  
REG  
C
=
=
1110 0110  
0
After Interrupt  
PC = TOS  
After Instruction  
REG  
=
=
=
1110 0110  
1100 1100  
1
W
C
2003-2013 Microchip Technology Inc.  
DS39609C-page 291  
PIC18F6520/8520/6620/8620/6720/8720  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]  
Syntax:  
[ label ] RRCF f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to  
register ‘f’  
Data  
destination  
RLNCF  
REG, 1, 0  
Example:  
Before Instruction  
RRCF  
REG, 0, 0  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
=
=
1110 0110  
0111 0011  
0
W
C
DS39609C-page 292  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified  
0100  
00da  
ffff  
ffff  
register are set to FFh. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is  
1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
SETF  
REG,1  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
REG  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
After Instruction  
REG  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
2003-2013 Microchip Technology Inc.  
DS39609C-page 293  
PIC18F6520/8520/6620/8620/6720/8720  
SLEEP  
Enter SLEEP mode  
SUBFWB  
Subtract f from W with borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored in register ‘f’ (default). If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
The Power-down status bit (PD) is  
cleared. The Time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
Before Instruction  
SUBFWB  
REG, 1, 0  
Example 1:  
TO  
=
?
PD  
=
?
Before Instruction  
After Instruction  
REG  
=
3
2
1
W
=
=
TO  
=
1 †  
C
PD  
=
0
After Instruction  
REG  
W
C
=
=
=
=
=
FF  
2
† If WDT causes wake-up, this bit is cleared.  
0
Z
0
1
N
; result is negative  
SUBFWB  
REG, 0, 0  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
=
=
=
=
=
2
3
1
0
0
Z
N
; result is positive  
SUBFWB  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
=
=
=
=
=
0
2
1
1
0
Z
; result is zero  
N
DS39609C-page 294  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
SUBLW  
Subtract W from literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ] SUBLW k  
0 k 255  
[ label ] SUBWF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in  
W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is  
1’, the result is stored back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
SUBLW 0x02  
Example 1:  
Words:  
Cycles:  
1
1
Before Instruction  
W
=
1
?
C
=
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
C
Z
=
=
=
=
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
1
0
0
; result is positive  
N
SUBWF  
REG, 1, 0  
Example 1:  
SUBLW 0x02  
Example 2:  
Before Instruction  
Before Instruction  
REG  
=
=
=
3
2
?
W
C
=
=
2
?
W
C
After Instruction  
After Instruction  
REG  
W
C
=
=
=
=
=
1
2
1
0
0
W
C
Z
=
=
=
=
0
1
1
0
; result is zero  
; result is positive  
Z
N
N
SUBLW 0x02  
Example 3:  
SUBWF  
REG, 0, 0  
Example 2:  
Before Instruction  
Before Instruction  
W
C
=
=
3
?
REG  
W
C
=
=
=
2
2
?
After Instruction  
W
C
Z
=
=
=
=
FF ; (2’s complement)  
After Instruction  
0
0
1
; result is negative  
REG  
W
C
Z
N
=
=
=
=
=
2
0
1
1
0
N
; result is zero  
SUBWF  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
=
=
1
2
?
W
C
After Instruction  
REG  
W
C
=
=
=
=
=
FFh ;(2’s complement)  
2
0
0
1
; result is negative  
Z
N
2003-2013 Microchip Technology Inc.  
DS39609C-page 295  
PIC18F6520/8520/6620/8620/6720/8720  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
[ label ] SWAPF f [,d [,a]  
[ label ] SUBWFB f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Operation:  
(f) – (W) – (C) dest  
Status Affected: N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0101  
10da  
ffff  
ffff  
Encoding:  
0011  
10da  
ffff  
ffff  
Description:  
Subtract W and the Carry flag  
(borrow) from register ‘f’ (2’s com-  
plement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ is ‘1’, then the bank  
will be selected as per the BSR  
value (default).  
Description:  
The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is  
1’, the result is placed in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SUBWFB REG, 1, 0  
Example 1:  
SWAPF  
REG, 1, 0  
Example:  
Before Instruction  
Before Instruction  
REG  
=
=
=
0x19  
0x0D  
1
(0001 1001)  
(0000 1101)  
REG  
=
0x53  
0x35  
W
C
After Instruction  
After Instruction  
REG  
=
REG  
=
=
=
=
=
0x0C  
(0000 1011)  
(0000 1101)  
W
0x0D  
C
1
0
0
Z
N
; result is positive  
SUBWFB REG, 0, 0  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
0x1B  
0x1A  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
=
=
=
=
=
0x1B  
(0001 1011)  
0x00  
1
1
0
Z
; result is zero  
N
SUBWFB REG, 1, 0  
Example 3:  
Before Instruction  
REG  
W
C
=
=
=
0x03  
0x0E  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
0xF5  
(1111 0100)  
; [2’s comp]  
W
=
=
=
=
0x0E  
(0000 1101)  
C
Z
N
0
0
1
; result is negative  
DS39609C-page 296  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1 TBLPTR;  
if TBLRD *-,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example 2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) + 1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
0x34  
After Instruction  
Status Affected:None  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the  
contents of Program Memory (P.M.). To  
address the Program Memory, a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2-Mbyte address  
range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
operation (Read Program operation (Write TABLAT)  
Memory)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 297  
PIC18F6520/8520/6620/8620/6720/8720  
TBLWT  
Table Write  
TBLWT Table Write (Continued)  
Syntax:  
[ label ] TBLWT ( *; *+; *-; +*)  
Words: 1  
Operands:  
Operation:  
None  
Cycles: 2  
if TBLWT*,  
Q Cycle Activity:  
(TABLAT) Holding Register;  
TBLPTR – No Change;  
if TBLWT*+,  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
(TABLAT) Holding Register;  
(TBLPTR) + 1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) – 1 TBLPTR;  
if TBLWT+*,  
No  
operation  
No  
operation  
(Read  
No  
operation  
No  
operation  
(Write to  
Holding  
Register )  
TABLAT)  
(TBLPTR) + 1 TBLPTR;  
(TABLAT) Holding Register;  
Example 1:  
TBLWT *+;  
Status Affected: None  
Before Instruction  
0000  
0000  
0000  
11nn  
Encoding:  
TABLAT  
TBLPTR  
=
=
0x55  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
0x00A356  
HOLDING REGISTER  
(0x00A356)  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
=
0x55  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is  
written to. The holding registers are  
used to program the contents of  
Program Memory (P.M.). (Refer  
to Section 5.0 “Flash Program  
Memory” for additional details on  
programming Flash memory.)  
The TBLPTR (a 21-bit pointer) points  
to each byte in the Program Memory.  
TBLPTR has a 2-Mbyte address  
range. The LSb of the TBLPTR  
selects which byte of the program  
memory location to access.  
TBLPTR  
=
0x00A357  
HOLDING REGISTER  
(0x00A356)  
=
0x55  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389A  
=
=
0xFF  
0xFF  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389B  
=
=
0xFF  
0x34  
TBLPTR[0] = 0: LeastSignificant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify  
the value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
DS39609C-page 298  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
None  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of W are XOR’ed  
with the 8-bit literal ‘k’. The result  
is placed in W.  
Description:  
If ‘f’ = 0, the next instruction,  
fetched during the current  
instruction execution is discarded  
and a NOPis executed, making this  
a two-cycle instruction. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1(2)  
Example:  
XORLW 0xAF  
= 0xB5  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Before Instruction  
W
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x1A  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
PC  
Address (ZERO)  
0x00,  
If CNT  
PC  
Address (NZERO)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 299  
PIC18F6520/8520/6620/8620/6720/8720  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W  
with register ‘f’. If ‘d’ is ‘0’, the result  
is stored in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
XORWF  
REG, 1, 0  
Example:  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS39609C-page 300  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
25.1 MPLAB Integrated Development  
Environment Software  
25.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 301  
PIC18F6520/8520/6620/8620/6720/8720  
25.2 MPLAB C Compilers for Various  
Device Families  
25.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
25.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
25.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
25.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS39609C-page 302  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
25.7 MPLAB SIM Software Simulator  
25.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
25.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
25.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 303  
PIC18F6520/8520/6620/8620/6720/8720  
25.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
25.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
25.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39609C-page 304  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
26.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4) .......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk byall ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 305  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 26-1:  
PIC18F6520/8520VOLTAGE-FREQUENCYGRAPH(INDUSTRIAL,EXTENDED)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18FX520  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX (Extended)  
FMAX  
Frequency  
FMAX = 40 MHz for PIC18F6520/8520 in Microcontroller mode.  
FMAX (Extended) = 25 MHz for PIC18F6520/8520 in modes other than Microcontroller mode.  
FIGURE 26-2:  
PIC18LF6520/8520 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
PIC18LFX520  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
4 MHz  
Frequency  
For PIC18F6520/8520 in Microcontroller mode:  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 40 MHz, if VDDAPPMIN > 4.2V.  
For PIC18F8X8X in modes other than Microcontroller mode:  
FMAX = (9.55 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 25 MHz, if VDDAPPMIN > 4.2V.  
Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
DS39609C-page 306  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 26-3:  
PIC18F6620/6720/8620/8720 VOLTAGE-FREQUENCY GRAPH  
(INDUSTRIAL, EXTENDED)  
6.0V  
5.5V  
5.0V  
PIC18FX620/X720  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX (Extended)  
FMAX  
Frequency  
FMAX = 25 MHz in Microcontroller mode.  
FMAX (Extended) = 16 MHz for PIC18F6520/8520 in modes other than Microcontroller mode.  
FIGURE 26-4:  
PIC18LF6620/6720/8620/8720 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LFX620/X720  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
4 MHz  
Frequency  
In Microcontroller mode:  
FMAX = (9.55 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 25 MHz, if VDDAPPMIN > 4.2V.  
In modes other than Microcontroller mode:  
FMAX = (5.45 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 16 MHz, if VDDAPPMIN > 4.2V.  
Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 307  
PIC18F6520/8520/6620/8620/6720/8720  
26.1 DC Characteristics: Supply Voltage  
PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)  
PIC18LF6520/8520/6620/8620/6720/8720 (Industrial)  
PIC18LF6520/8520/6620/8620/6720/8720  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6520/8520/6620/8620/6720/8720  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
D001 VDD  
Supply Voltage  
PIC18LFXX20  
2.0  
4.2  
5.5  
5.5  
V
V
V
V
HS, XT, RC and LP Oscillator mode  
PIC18FXX20  
Analog Supply Voltage  
RAM Data Retention  
D001A AVDD  
D002 VDR  
VDD – 0.3  
1.5  
VDD + 0.3  
(1)  
Voltage  
D003 VPOR  
D004 SVDD  
D005 VBOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
0.7  
V
See section on Power-on Reset for details  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset Voltage  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
N/A  
2.64  
4.11  
4.41  
N/A  
2.92  
4.55  
4.87  
V
V
V
V
Reserved  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
DS39609C-page 308  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)  
PIC18LF6520/8520/6620/8620/6720/8720 (Industrial)  
PIC18LF6520/8520/6620/8620/6720/8720 Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6520/8520/6620/8620/6720/8720  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(1)  
Power-down Current (IPD)  
PIC18LFXX20 0.2  
1
1
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
(Sleep mode)  
0.2  
1.2  
5
PIC18LFXX20 0.4  
1
VDD = 3.0V,  
(Sleep mode)  
0.4  
1
1.8  
8
All devices 0.7  
2
VDD = 5.0V,  
(Sleep mode)  
0.7  
3.0  
2
15  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 309  
PIC18F6520/8520/6620/8620/6720/8720  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)  
PIC18LF6520/8520/6620/8620/6720/8720 (Industrial) (Continued)  
PIC18LF6520/8520/6620/8620/6720/8720 Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6520/8520/6620/8620/6720/8720  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18LFXX20 165  
350  
350  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
mA  
mA  
-40°C  
165  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
170  
350  
PIC18LFXX20 360  
750  
FOSC = 1 MHZ,  
EC oscillator  
340  
750  
300  
750  
All devices 800  
1700  
1700  
1700  
1200  
1200  
1300  
730  
700  
PIC18LFXX20 600  
600  
640  
PIC18LFXX20 1000 2500  
1000 2500  
FOSC = 4 MHz,  
EC oscillator  
1000 2500  
All devices 2.2  
5.0  
5.0  
5.0  
2.1  
2.0  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
DS39609C-page 310  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)  
PIC18LF6520/8520/6620/8620/6720/8720 (Industrial) (Continued)  
PIC18LF6520/8520/6620/8620/6720/8720 Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6520/8520/6620/8620/6720/8720  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD)  
PIC18FX620, PIC18FX720 9.3  
15  
15  
15  
20  
20  
20  
20  
20  
20  
25  
25  
25  
55  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
-40°C  
9.5  
+25°C  
+85°C  
VDD = 4.2V  
VDD = 5.0V  
VDD = 4.2V  
10  
FOSC = 25 MHZ,  
EC oscillator  
PIC18FX620, PIC18FX720 11.8  
-40°C  
12  
12  
+25°C  
+85°C  
PIC18FX520  
PIC18FX520  
16  
16  
16  
19  
19  
19  
15  
-40°C  
+25°C  
+85°C  
FOSC = 40 MHZ,  
EC oscillator  
-40°C  
+25°C  
VDD = 5.0V  
VDD = 2.0V  
+85°C  
D014  
PIC18FX620/X720  
PIC18LF8520  
-40°C to +85°C  
FOSC = 32 kHz,  
Timer1 as clock  
13  
20  
50  
18  
35  
A  
A  
A  
A  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 4.2V  
FOSC = 32 kHz,  
Timer1 as clock  
85  
PIC18FXX20  
200  
250  
FOSC = 32 kHz,  
Timer1 as clock  
A -40°C to +125°C  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 311  
PIC18F6520/8520/6620/8620/6720/8720  
26.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)  
PIC18LF6520/8520/6620/8620/6720/8720 (Industrial) (Continued)  
PIC18LF6520/8520/6620/8620/6720/8720 Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6520/8520/6620/8620/6720/8720  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
Module Differential Currents (IWDT, IBOR, ILVD, IOSCB, IAD)  
D022  
(IWDT)  
Watchdog Timer  
<1  
<1  
<1  
3
2.0  
1.5  
3
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40C  
+25C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
+85C  
10  
6
-40C  
2.5  
3
+25C  
15  
25  
20  
40  
50  
65  
45  
50  
65  
30  
40  
50  
40  
50  
65  
2.2  
3.8  
7.0  
2
+85C  
15  
12  
12  
35  
45  
33  
35  
45  
-40C  
+25C  
+85C  
D022A  
(IBOR)  
Brown-out Reset  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
+25C  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
D022B  
(ILVD)  
Low-Voltage Detect  
D025  
(IOSCB)  
Timer1 Oscillator 5.2  
VDD = 2.0V  
VDD = 2.0V  
VDD = 4.2V  
PIC18LF8720/8620 5.2  
-40C to +85C  
32 kHz on Timer1  
6.5  
A -40C to +125C  
PIC18F8520/8620/8720 6.5  
A  
A  
+25C  
6.5  
-40C to +85C  
VDD = 4.2V  
32 kHz on Timer1  
32 kHz on Timer1  
6.5  
A -40C to +125C  
PIC18LF8520 1.8  
A  
A  
+25C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
2.9  
3.4  
-40C to +85C  
A -40C to +125C  
+25C  
+25C  
+25C  
D026  
(IAD)  
A/D Converter  
<1  
<1  
<1  
A  
A  
A  
A/D on, not converting.  
Device is in Sleep.  
2
2
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
DS39609C-page 312  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
26.3 DC Characteristics: PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)  
PIC18LF6520/8520/6620/8620/6720/8720 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15 VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
OSC1 (in RC and EC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2 VDD  
V
VIH  
D040  
D040A  
D041  
with TTL buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
MCLR, OSC1 (EC mode)  
OSC1 and T1OSI  
0.8 VDD  
1.6  
VDD  
VDD  
V
V
D042A  
LP, XT, HS, HSPLL  
modes(1)  
D043  
D060  
OSC1 (RC mode)(1)  
Input Leakage Current(2,3)  
I/O ports  
0.9 VDD  
VDD  
V
IIL  
1  
A VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
5  
5  
A VSS VPIN VDD  
A VSS VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
D070 IPURB PORTB weak pull-up current  
50  
400  
A VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 313  
PIC18F6520/8520/6620/8620/6720/8720  
26.3 DC Characteristics: PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)  
PIC18LF6520/8520/6620/8620/6720/8720 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
D080  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40C to +85C  
D080A  
D083  
IOL = 7.0 mA, VDD = 4.5V,  
-40C to +125C  
OSC2/CLKO  
(RC mode)  
IOL = 1.6 mA, VDD = 4.5V,  
-40C to +85C  
D083A  
IOL = 1.2 mA, VDD = 4.5V,  
-40C to +125C  
VOH  
Output High Voltage(3)  
D090  
I/O ports  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40C to +85C  
D090A  
D092  
IOH = -2.5 mA, VDD = 4.5V,  
-40C to +125C  
OSC2/CLKO  
(RC mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40C to +85C  
D092A  
IOH = -1.0 mA, VDD = 4.5V,  
-40C to +125C  
D150 VOD  
Open-Drain High Voltage  
8.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
D100(4)  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes  
when external clock is used  
to drive OSC1  
D101 CIO  
D102 CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS39609C-page 314  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
D301  
D302  
VIOFF  
0
± 5.0  
± 10  
VDD – 1.5  
mV  
V
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time(1)  
CMRR  
TRESP  
55  
dB  
300  
300A  
150  
400  
600  
ns  
ns  
PIC18FXX20  
PIC18LFXX20  
301  
TMC2OV Comparator Mode Change to  
Output Valid  
10  
s  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from  
VSS to VDD.  
TABLE 26-2: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).  
Param  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
VDD/32  
LSb  
D311  
VRAA  
Absolute Accuracy  
1/4  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
D312  
310  
VRUR  
TSET  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
10  
s  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 315  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 26-5:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 26-3: LOW-VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ† Max  
Units  
Conditions  
D420  
LVD Voltage on VDD  
Transition high-to-low  
LVV = 0001 1.96  
LVV = 0010 2.16  
LVV = 0011 2.35  
LVV = 0100 2.45  
LVV = 0101 2.64  
LVV = 0110 2.75  
LVV = 0111 2.95  
LVV = 1000 3.24  
LVV = 1001 3.43  
LVV = 1010 3.53  
LVV = 1011 3.72  
LVV = 1100 3.92  
LVV = 1101 4.11  
LVV = 1110 4.41  
2.06  
2.27  
2.47  
2.58  
2.78  
2.89  
3.1  
2.16  
2.38  
2.59  
2.71  
2.92  
3.03  
3.26  
3.58  
3.79  
3.91  
4.12  
4.34  
4.55  
4.87  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.41  
3.61  
3.72  
3.92  
4.13  
4.33  
4.64  
1.22  
D423  
VBG  
Band Gap Reference Voltage Value  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
DS39609C-page 316  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-4: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
DC Characteristics  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
Internal Program Memory  
Programming Specifications  
(Note 1)  
D110  
D112  
D113  
VPP  
IPP  
Voltage on MCLR/VPP pin  
Current into MCLR/VPP pin  
9.00  
13.25  
5
V
(Note 2)  
A  
mA  
IDDP  
Supply Current during  
Programming  
10  
Data EEPROM Memory  
Cell Endurance  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40C to +85C  
E/W +85C to +125C  
D120A ED  
Cell Endurance  
D121 VDRW VDD for Read/Write  
VMIN  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
D123A TRETD Characteristic Retention  
Program Flash Memory  
40  
4
ms  
Year -40C to +85C (Note 3)  
Year 25C (Note 3)  
100  
D130  
EP  
Cell Endurance  
Cell Endurance  
VDD for Read  
10K  
1000  
VMIN  
100K  
10K  
E/W -40C to +85C  
E/W +85C to +125C  
D130A EP  
D131  
D132  
VPR  
VIE  
5.5  
V
VMIN = Minimum operating  
voltage  
VDD for Block Erase  
4.5  
4.5  
5.5  
5.5  
V
V
Using ICSP port  
Using ICSP port  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
D132B VPEW VDD for Self-Timed Write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133  
TIE  
ICSP Block Erase Cycle Time  
1
5
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133A TIW  
Self-Timed Write Cycle Time  
40  
2.5  
ms  
D134 TRETD Characteristic Retention  
D134A TRETD Characteristic Retention  
Year -40C to +85C (Note 3)  
Year 25C (Note 3)  
100  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: These specifications are for programming the on-chip program memory through the use of table write  
instructions.  
2: The pin may be kept in this range at times other than programming, but it is not recommended.  
3: Retention time is valid, provided no other specifications are violated.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 317  
PIC18F6520/8520/6620/8620/6720/8720  
26.4 AC (Timing) Characteristics  
26.4.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
using one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-Impedance)  
Low  
Valid  
High-Impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
DS39609C-page 318  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
26.4.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 26-5  
apply to all timing specifications unless otherwise  
noted. Figure 26-6 specifies the load conditions for the  
timing specifications.  
TABLE 26-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 26.1 and  
Section 26.3.  
LC parts operate for industrial temperatures only.  
FIGURE 26-6:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
2003-2013 Microchip Technology Inc.  
DS39609C-page 319  
PIC18F6520/8520/6620/8620/6720/8720  
26.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 26-7:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
CLKO  
3
4
3
2
TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
(1)  
1A  
FOSC  
External CLKI Frequency  
DC  
25  
MHz  
MHz  
MHz  
EC, ECIO, PIC18FX620/X720  
(-40°C to +85°C)  
DC  
DC  
40  
25  
EC, ECIO, PIC18FX520  
(-40°C to +85°C)  
EC, ECIO, PIC18FX520 using external  
memory interface (-40°C to +85°C)  
(1)  
Oscillator Frequency  
DC  
0.1  
4
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
RC oscillator  
XT oscillator  
25  
10  
6.25  
HS oscillator  
4
HS + PLL oscillator, PIC18FX520  
6
HS + PLL oscillator, PIC18FX520 using  
external memory interface  
4
5
6.25  
200  
MHz  
kHz  
ns  
HS + PLL oscillator, PIC18FX620/X720  
LP Oscillator mode  
(1)  
1
TOSC  
External CLKI Period  
25  
EC, ECIO, PIC18FX620/X720  
(-40°C to +85°C)  
EC, ECIO, PIC18FX520  
(-40°C to +85°C)  
160  
ns  
(1)  
Oscillator Period  
250  
250  
25  
10,000  
250  
ns  
ns  
ns  
ns  
ns  
s  
RC oscillator  
XT oscillator  
HS oscillator  
100  
100  
25  
250  
HS + PLL oscillator, PIC18FX520  
HS + PLL oscillator, PIC18FX620/X720  
LP oscillator  
160  
(1)  
2
3
TCY  
Instruction Cycle Time  
100  
30  
2.5  
10  
ns  
ns  
s  
ns  
ns  
ns  
ns  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
4
TOSR,  
TOSF  
External Clock in (OSC1) Rise  
or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All  
specified values are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied  
to the OSC1/CLKI pin. When an external clock input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS39609C-page 320  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
FOSC  
Oscillator Frequency Range  
On-Chip VCO System Frequency  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)  
4
10  
40  
2
MHz HS mode  
FSYS  
trc  
16  
-2  
MHz HS mode  
ms  
%
CLK  
+2  
Data in “Typ” column is at 5V, 25C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 26-8:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
18  
19  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Refer to Figure 26-6 for load conditions.  
Note:  
2003-2013 Microchip Technology Inc.  
DS39609C-page 321  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-8: CLKO AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
10  
TOSH2CKL OSC1 to CLKO   
TOSH2CKH OSC1 to CLKO   
75  
75  
35  
35  
50  
10  
10  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
11  
200  
12  
TCKR  
CLKO Rise Time  
100  
13  
TCKF  
CLKO Fall Time  
100  
14  
TCKL2IOV  
CLKO to Port Out Valid  
0.5 TCY + 20  
15  
TIOV2CKH Port In Valid before CLKO   
0.25 TCY + 25  
16  
TCKH2IOI  
TOSH2IOV  
TOSH2IOI  
Port In Hold after CLKO   
0
17  
OSC1 (Q1 cycle) to Port Out Valid  
150  
18  
OSC1 (Q2 cycle) to Port  
PIC18FXX20  
100  
200  
0
Input Invalid (I/O in hold time)  
18A  
19  
PIC18LFXX20  
VDD = 2.0V  
TIOV2OSH Port Input Valid to OSC1 (I/O in setup time)  
20  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
INT pin High or Low Time  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
25  
60  
25  
60  
20A  
21  
VDD = 2.0V  
VDD = 2.0V  
TIOF  
21A  
22†  
23†  
24†  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 Change INT High or Low Time  
RC7:RC4 Change INT High or Low Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
FIGURE 26-9:  
PROGRAM MEMORY READ TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
(1)  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
Data from External  
Address  
AD<15:0>  
163  
162  
150  
151  
160  
155  
161  
166  
167  
168  
169  
ALE  
CE  
164  
171  
171A  
OE  
165  
Operating Conditions: 2.0V < VCC < 5.5V, -40°C < TA < +125°C unless otherwise stated.  
Note 1: Maximum speed of FOSC is 25 MHz for external program memory read.  
DS39609C-page 322  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-9: CLKO AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
150  
TADV2ALL Address Out Valid to ALE (address  
0.25 TCY – 10  
ns  
setup time)  
151  
155  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
171  
TALL2ADL ALE to Address Out Invalid (address hold time)  
TALL2OEL ALE to OE   
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
0.125 TCY  
TADZ2OEL AD high-Z to OE (bus release to OE)  
TOEH2ADD OE to AD Driven  
0
0.125 TCY – 5  
TADV2OEH LS Data Valid before OE (data setup time)  
TOEH2ADL OE to Data In Invalid (data hold time)  
TALH2ALL ALE Pulse Width  
20  
0
0.25 TCY  
0.5 TCY  
TCY  
TOEL2OEH OE Pulse Width  
0.5 TCY – 5  
TALH2ALH ALE to ALE (cycle time)  
TACC  
TOE  
Address Valid to Data Valid  
0.75 TCY – 25  
0.5 TCY – 25  
0.625 TCY + 10  
10  
OE to Data Valid  
TALL2OEH ALE to OE   
0.625 TCY – 10  
TALH2CSL Chip Enable Active to ALE   
171A TUBL2OEH AD Valid to Chip Enable Active  
0.25 TCY – 20  
FIGURE 26-10:  
PROGRAM MEMORY WRITE TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
(1)  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
166  
Data  
Address  
AD<15:0>  
153  
150  
151  
156  
ALE  
CE  
171  
171A  
154  
WRH or  
WRL  
157A  
157  
UB or  
LB  
Operating Conditions: 2.0V < VCC < 5.5V, -40°C < TA < +125°C unless otherwise stated.  
Note 1: Maximum speed of FOSC is 25 MHz for external program memory read.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 323  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-10: PROGRAM MEMORY WRITE TIMING REQUIREMENTS  
Param  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No.  
150  
TADV2ALL Address Out Valid to ALE (address setup time)  
TALL2ADL ALE to Address Out Invalid (address hold time)  
TWRH2ADL WRn to Data Out Invalid (data hold time)  
TWRL WRn Pulse Width  
0.25 TCY – 10  
5
ns  
ns  
ns  
ns  
ns  
ns  
151  
153  
154  
156  
157  
5
0.5 TCY – 5  
0.5 TCY – 10  
0.25 TCY  
0.5 TCY  
TADV2WRH Data Valid before WRn (data setup time)  
TBSV2WRL Byte Select Valid before WRn (byte select setup  
time)  
157A  
166  
TWRH2BSI WRn to Byte Select Invalid (byte select hold time) 0.125 TCY – 5  
TCY  
10  
ns  
ns  
ns  
ns  
TALH2ALH ALE to ALE (cycle time)  
TALH2CSL Chip Enable Active to ALE   
TUBL2OEH AD Valid to Chip Enable Active  
171  
171A  
0.25 TCY – 20  
FIGURE 26-11:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note:  
Refer to Figure 26-6 for load conditions.  
DS39609C-page 324  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 26-12:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 26-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TMCL  
TWDT  
MCLR Pulse Width (low)  
2
7
s  
31  
Watchdog Timer Time-out Period (no  
postscaler)  
18  
33  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
72  
2
1024 TOSC  
ms  
s  
TOSC = OSC1 period  
TPWRT  
28  
132  
TIOZ  
I/O High-Impedance from MCLR Low  
or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
s  
s  
VDD BVDD (see D005)  
VDD VLVD  
TIVRST  
Time for Internal Reference  
Voltage to become stable  
20  
50  
37  
TLVD  
Low-Voltage Detect Pulse Width  
200  
s  
FIGURE 26-13:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 26-6 for load conditions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 325  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
TT0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
47  
TT1H  
TT1L  
T13CKI  
High Time  
Synchronous, no prescaler  
Synchronous, PIC18FXX20  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
with prescaler  
PIC18LFXX20  
25  
Asynchronous PIC18FXX20  
PIC18LFXX20  
30  
50  
0.5 TCY + 5  
10  
T13CKI  
Low Time  
Synchronous, no prescaler  
Synchronous, PIC18FXX20  
with prescaler  
PIC18LFXX20  
25  
Asynchronous PIC18FXX20  
PIC18LFXX20  
30  
TBD  
TBD  
TT1P  
FT1  
T13CKI  
Input Period  
Synchronous  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value (1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T13CKI Oscillator Input Frequency Range  
48  
TCKE2TMRI Delay from External T13CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
FIGURE 26-14:  
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note:  
Refer to Figure 26-6 for load conditions.  
DS39609C-page 326  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-13: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TCCL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
With  
prescaler  
PIC18FXX20  
PIC18LFXX20  
10  
20  
51  
TCCH  
CCPx Input High No prescaler  
0.5 TCY + 20  
Time  
With  
prescaler  
PIC18FXX20  
PIC18LFXX20  
10  
20  
52  
53  
TCCP  
TCCR  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
CCPx Output Rise Time  
CCPx Output Fall Time  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
VDD = 2.0V  
VDD = 2.0V  
54  
TCCF  
FIGURE 26-15:  
PARALLEL SLAVE PORT TIMING (PIC18F8X20)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note:  
Refer to Figure 26-6 for load conditions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 327  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-14: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F8X20)  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TDTV2WRH Data In Valid before WR or CS   
20  
25  
ns  
ns  
(setup time)  
Extended Temp. range  
63  
64  
TWRH2DTI  
TRDL2DTV  
WR or CS to Data–In  
Invalid (hold time)  
PIC18FXX20  
20  
ns  
ns  
VDD = 2.0V  
PIC18LFXX20 35  
RD and CS to Data–Out Valid  
80  
90  
ns  
ns  
Extended Temp. range  
65  
66  
TRDH2DTI  
TIBFINH  
RD or CS to Data–Out Invalid  
10  
30  
ns  
Inhibit of the IBF flag bit being cleared from  
3 TCY  
WR or CS   
FIGURE 26-16:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
bit 6 - - - -1  
73  
Note: Refer to Figure 26-6 for load conditions.  
DS39609C-page 328  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TCY  
ns  
TSSL2SCL  
71  
TSCH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns VDD = 2.0V  
76  
78  
TDOF  
TSCR  
SDO Data Output Fall Time  
ns  
SCK Output Rise Time  
(Master mode)  
PIC18FXX20  
PIC18LFXX20  
ns  
ns VDD = 2.0V  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDO Data Output Valid after SCK PIC18FXX20  
TSCL2DOV Edge  
ns  
PIC18LFXX20  
ns VDD = 2.0V  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
FIGURE 26-17:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
bit 6 - - - - - -1  
LSb  
MSb  
SDO  
SDI  
75, 76  
LSb In  
MSb In  
74  
bit 6 - - - -1  
Note: Refer to Figure 26-6 for load conditions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 329  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-16: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param  
No.  
Symbol  
TSCH  
Characteristic  
Min  
Max Units Conditions  
71  
SCK Input High Time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns VDD = 2.0V  
76  
78  
TDOF  
TSCR  
SDO Data Output Fall Time  
ns  
SCK Output Rise Time  
(Master mode)  
PIC18FXX20  
PIC18LFXX20  
ns  
ns VDD = 2.0V  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDO Data Output Valid after SCK PIC18FXX20  
TSCL2DOV Edge  
ns  
PIC18LFXX20  
ns VDD = 2.0V  
ns  
81  
TDOV2SCH, SDO Data Output Setup to SCK Edge  
TDOV2SCL  
TCY  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
FIGURE 26-18:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
SDO  
SDI  
bit 6 - - - - - -1  
77  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note:  
Refer to Figure 26-6 for load conditions.  
DS39609C-page 330  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-17: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TCY  
ns  
TSSL2SCL  
71  
TSCH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns VDD = 2.0V  
76  
77  
78  
TDOF  
SDO Data Output Fall Time  
ns  
TSSH2DOZ SS to SDO Output High-Impedance  
10  
ns  
TSCR  
SCK Output Rise Time (Master mode) PIC18FXX20  
PIC18LFXX20  
ns  
ns VDD = 2.0V  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDO Data Output Valid after SCK Edge PIC18FXX20  
TSCL2DOV  
ns  
PIC18LFXX20  
ns VDD = 2.0V  
ns  
83  
TSCH2SSH, SS after SCK Edge  
1.5 TCY + 40  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
FIGURE 26-19:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 26-6 for load conditions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 331  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-18: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TCY  
ns  
TSSL2SCL  
71  
TSCH  
TSCL  
TB2B  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCK Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns VDD = 2.0V  
76  
77  
78  
TDOF  
SDO Data Output Fall Time  
ns  
TSSH2DOZ SS to SDO Output High-Impedance  
10  
ns  
TSCR  
SCK Output Rise Time  
(Master mode)  
PIC18FXX20  
PIC18LFXX20  
ns  
ns VDD = 2.0V  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDO Data Output Valid after SCK  
TSCL2DOV Edge  
PIC18FXX20  
PIC18LFXX20  
ns  
ns VDD = 2.0V  
82  
83  
TSSL2DOV SDO Data Output Valid after SS PIC18FXX20  
ns  
Edge  
PIC18LFXX20  
ns VDD = 2.0V  
ns  
TSCH2SSH, SS after SCK Edge  
1.5 TCY + 40  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
FIGURE 26-20:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 26-6 for load conditions.  
DS39609C-page 332  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-19: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
FIGURE 26-21:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 26-6 for load conditions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 333  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-20: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time  
100 kHz mode  
4.0  
0.6  
s  
s  
400 kHz mode  
SSP module  
1.5 TCY  
4.7  
101  
TLOW  
Clock Low Time  
100 kHz mode  
s  
s  
PIC18FXX20 must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18FXX20 must operate  
at a minimum of 10 MHz  
SSP module  
1.5 TCY  
102  
103  
TR  
TF  
SDA and SCL Rise 100 kHz mode  
1000  
ns  
ns  
Time  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
SDA and SCL Fall 100 kHz mode  
Time  
300  
ns  
ns  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
s  
s  
s  
s  
ns  
s  
ns  
ns  
s  
s  
ns  
ns  
s  
s  
Only relevant for Repeated  
Start condition  
91  
Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold  
Time  
0
0.9  
TSU:DAT  
TSU:STO  
TAA  
Data Input Setup  
Time  
250  
100  
4.7  
0.6  
(Note 2)  
Stop Condition  
Setup Time  
109  
110  
Output Valid from  
Clock  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system but the requirement,  
TSU:DAT 250 ns, must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the  
standard mode I2C bus specification), before the SCL line is released.  
DS39609C-page 334  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 26-22:  
MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 26-6 for load conditions.  
TABLE 26-21: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns After this period, the first  
clock pulse is generated  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
ns  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
FIGURE 26-23:  
MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 26-6 for load conditions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 335  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-22: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time 100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock Low Time 100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TF  
SDA and SCL  
Fall Time  
20 + 0.1 CB  
ns  
CB is specified to be from  
10 to 400 pF  
ns  
ns  
TSU:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start condition  
400 kHz mode 2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
91  
THD:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode 2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
0
0
0.9  
ms  
ns  
TBD  
250  
100  
TBD  
TSU:DAT Data Input  
Setup Time  
ns  
ns  
(Note 2)  
ns  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
ns  
ns  
Bus Free Time  
4.7  
1.3  
TBD  
ms  
ms  
ms  
pF  
Time the bus must be free  
before a new transmission  
can start  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter #107 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the  
SCL line is released.  
DS39609C-page 336  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 26-24:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX1/CK1  
pin  
121  
121  
RC7/RX1/DT1  
pin  
120  
Refer to Figure 26-6 for load conditions.  
122  
Note:  
TABLE 26-23: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
PIC18FXX20  
PIC18LFXX20  
40  
100  
20  
ns  
ns VDD = 2.0V  
ns  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time PIC18FXX20  
(Master mode)  
PIC18LFXX20  
50  
ns VDD = 2.0V  
ns  
Data Out Rise Time and Fall Time  
PIC18FXX20  
PIC18LFXX20  
20  
50  
ns VDD = 2.0V  
FIGURE 26-25:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX1/CK1  
pin  
125  
RC7/RX1/DT1  
pin  
126  
Note: Refer to Figure 26-6 for load conditions.  
TABLE 26-24: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER & SLAVE)  
Data Hold before CK (DT hold time)  
10  
15  
ns  
ns  
126  
TCKL2DTL Data Hold after CK (DT hold time)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 337  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-25: A/D CONVERTER CHARACTERISTICS: PIC18FXX20 (INDUSTRIAL, EXTENDED)  
PIC18LFXX20 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10  
<±1  
bit  
A03  
A04  
A05  
A06  
A10  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Gain Error  
LSb VREF = VDD = 5.0V  
LSb VREF = VDD = 5.0V  
LSb VREF = VDD = 5.0V  
LSb VREF = VDD = 5.0V  
EDL  
EG  
<±1  
<±1  
EOFF  
Offset Error  
<±1.5  
(2)  
Monotonicity  
guaranteed  
VSS VAIN VREF  
A20  
A20A  
VREF  
Reference Voltage  
(VREFH – VREFL)  
1.8V  
3V  
V
V
VDD < 3.0V  
VDD 3.0V  
A21  
A22  
A25  
A30  
VREFH  
VREFL  
VAIN  
Reference Voltage High  
Reference Voltage Low  
Analog Input Voltage  
AVSS  
AVSS – 0.3V  
AVSS – 0.3V  
AVDD + 0.3V  
VREFH  
V
V
V
(5)  
(5)  
(5)  
AVDD + 0.3V  
2.5  
VDD 2.5V (Note 3)  
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
k(Note 4)  
A50  
IREF  
VREF Input Current (Note 1)  
5
150  
A During VAIN acquisition.  
A During A/D conversion  
cycle.  
Note 1: Vss VAIN VREF  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: For VDD < 2.5V, VAIN should be limited to <.5 VDD.  
4: Maximum allowed impedance for analog voltage source is 10 k. This requires higher acquisition times.  
5: IVDD – AVDDI must be <3.0V and IAVSS – VSSI must be <0.3V.  
FIGURE 26-26:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
NEW_DATA  
TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction to be  
executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
DS39609C-page 338  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
TABLE 26-26: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
PIC18FXX20  
Min  
Max  
Units  
Conditions  
130  
TAD  
A/D Clock Period  
1.6  
3.0  
2.0  
3.0  
11  
20(5)  
20(5)  
6.0  
s TOSC based, VREF 3.0V  
s TOSC based, VREF full range  
s A/D RC mode  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
9.0  
s A/D RC mode  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including acquisition time) (Note 1)  
Acquisition Time (Note 3)  
12  
TAD  
15  
10  
s -40C Temp +125C  
s 0C Temp +125C  
135  
136  
TSWC  
TAMP  
Switching Time from Convert Sample  
Amplifier Settling Time (Note 2)  
1
(Note 4)  
s This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 19.0 “10-Bit Analog-to-Digital Converter (A/D) Module” for minimum conditions when  
input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels  
is 50.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 339  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 340  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25C. “Maximum” or “minimum” represents (mean + 3) or (mean –‘  
3) respectively, where is a standard deviation, over the whole temperature range.  
FIGURE 27-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
20  
18  
16  
14  
12  
10  
8
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
6
3.0V  
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
FIGURE 27-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE) INDUSTRIAL  
20  
18  
16  
14  
12  
10  
8
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +85°C)  
Minimum: mean – 3(-40°C to +85°C)  
4.5V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 341  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-3:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE) EXTENDED  
20  
18  
16  
14  
12  
10  
8
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
4.5V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
FIGURE 27-4:  
TYPICAL IDD vs. FOSC OVER VDD (HS/PLL MODE)  
20  
18  
16  
14  
12  
10  
8
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
6
3.0V  
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
DS39609C-page 342  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-5:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE) INDUSTRIAL  
20  
18  
16  
14  
12  
10  
8
5.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +85°C)  
Minimum: mean – 3(-40°C to +85°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
FIGURE 27-6:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE) EXTENDED  
20  
18  
16  
14  
12  
10  
8
5.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
6.0  
0
4.0  
8.0  
10.0  
12.0  
14.0  
16.0  
18.0  
20.0  
22.0  
24.0  
26.0  
FOSC (MHz)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 343  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-7:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
3.0  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 27-8:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE) INDUSTRIAL  
3.0  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +85°C)  
Minimum: mean – 3(-40°C to +85°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS39609C-page 344  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-9:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 27-10:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE) INDUSTRIAL  
120  
Typical:  
statistical mean @ 25°C  
100  
80  
60  
40  
20  
0
Maximum: mean + 3(-40°C to +85°C)  
Minimum: mean – 3(-40°C to +85°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 345  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-11:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE) EXTENDED  
300  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
5.5V  
5.0V  
250  
200  
150  
100  
50  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 27-12:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
18  
Typical:  
statistical mean @ 25°C  
16  
14  
12  
10  
8
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
6
3.0V  
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
DS39609C-page 346  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-13:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
18  
5.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
16  
14  
12  
10  
8
5.0V  
4.5V  
4.0V  
3.5V  
6
3.0V  
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
FIGURE 27-14:  
MAXIMUM IPD vs. VDD OVER TEMPERATURE  
100  
Max  
(-40°C:+125°C)  
10  
Max  
(-40°C:+85°C)  
Typical:  
statistical mean @ 25°C  
1
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
0.1  
Typ  
(25°C)  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 347  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-15:  
TYPICAL AND MAXIMUM IPD vs. VDD OVER TEMPERATURE  
(TIMER1 AS MAIN OSCILLATOR, 32.768 kHz, C1 AND C2 = 47 pF)  
1000  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
100  
Max  
(-40°C:+125°C)  
Max  
(-40°C:+85°C)  
10  
Typ  
(25°C)  
1
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 27-16:  
TYPICAL AND MAXIMUM IWDT vs. VDD OVER TEMPERATURE (WDT ENABLED)  
1000  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
Max  
(-40°C:+125°C)  
100  
10  
1
Max  
(-40°C:+85°C)  
Typ  
(25°C)  
0.1  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39609C-page 348  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-17:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
0.55  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
FIGURE 27-18:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
0.55  
Typical:  
statistical mean @ 25°C  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
5.5V  
5.0V  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 349  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-19:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE) (PIC18F8520 DEVICES ONLY)  
30  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
25  
20  
15  
10  
5
5.5V  
5.0V  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 27-20:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE) INDUSTRIAL  
(PIC18F8520 DEVICES ONLY)  
30  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +85°C)  
Minimum: mean – 3(-40°C to +85°C)  
5.5V  
5.0V  
25  
20  
15  
10  
5
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
DS39609C-page 350  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-21:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE) EXTENDED  
(PIC18F8520 DEVICES ONLY)  
20  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
18  
16  
14  
12  
10  
8
5.5V  
5.0V  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
(MHz)  
18  
20  
22  
24  
26  
F
OSC  
FIGURE 27-22:  
TYPICAL IDD vs. FOSC OVER VDD (HS/PLL MODE)  
(PIC18F8520 DEVICES ONLY)  
30  
27  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
24  
21  
18  
15  
12  
9
5.5V  
5.0V  
4.5V  
4.2V  
4.0V  
3.5V  
6
3.0V  
3
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 351  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-23:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE) INDUSTRIAL  
(PIC18F8520 DEVICES ONLY)  
30  
27  
24  
21  
18  
15  
12  
9
5.5V  
5.0V  
4.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3(-40°C to +85°C)  
Minimum: mean – 3(-40°C to +85°C)  
4.2V  
4.0V  
3.5V  
3.0V  
6
3
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 27-24:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE) EXTENDED  
(PIC18F8520 DEVICES ONLY)  
20  
18  
Typical:  
statistical mean @ 25°C  
16  
14  
12  
10  
8
Maximum: mean + 3(-40°C to +125°C)  
Minimum: mean – 3(-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
DS39609C-page 352  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
FIGURE 27-25:  
A/D NONLINEARITY vs. VREFH (VDD = VREFH, -40C TO +125C)  
4
3.5  
3
-40°C  
+25°C  
25C  
2.5  
2
+85°C  
85C  
1.5  
1
0.5  
0
+125°C  
125C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD and VREFH (V)  
FIGURE 27-26:  
A/D NONLINEARITY vs. VREFH (VDD = 5V, -40C TO +125C)  
3
2.5  
2
1.5  
1
Max (-40°C to +125°C)  
TTyypp((+2255C°)C)  
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VREFH (V)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 353  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 354  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
28.0 PACKAGING INFORMATION  
28.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F6620  
-I/PT  
e
3
0410017  
80-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18F8720  
-E/PT  
e
3
0410017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 355  
PIC18F6520/8520/6620/8620/6720/8720  
28.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
DS39609C-page 356  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2003-2013 Microchip Technology Inc.  
DS39609C-page 357  
PIC18F6520/8520/6620/8620/6720/8720  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
NOTE 1  
123  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
M
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
89ꢒ  
@ꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓꢛꢎ1  
DS39609C-page 358  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2003-2013 Microchip Technology Inc.  
DS39609C-page 359  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 360  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision A (January 2003)  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Original data sheet for the PIC18FXX20 family which  
includes PIC18F6520, PIC18F6620, PIC18F6720,  
PIC18F8520, PIC18F8620 and PIC18F8720 devices.  
This data sheet is based on the previous PIC18FXX20  
Data Sheet (DS39580).  
Revision B (January 2004)  
This revision includes the DC and AC Characteristics  
Graphs and Tables. The Electrical Specifications in  
Section 26.0 “Electrical Characteristics” have been  
updated and there have been minor corrections to the  
data sheet text.  
Revision C (November 2011)  
This revision updated Section 28.0 “Packaging Infor-  
mation”.  
TABLE B-1:  
Feature  
DEVICE DIFFERENCES  
PIC18F6520 PIC18F6620 PIC18F6720 PIC18F8520 PIC18F8620 PIC18F8720  
On-Chip Program Memory  
(Kbytes)  
32  
64  
128  
32  
64  
128  
Data Memory (bytes)  
Boot Block (bytes)  
Timer1 Low-Power Option  
I/O Ports  
2048  
2048  
Yes  
3840  
512  
No  
3840  
512  
No  
2048  
2048  
Yes  
3840  
512  
No  
3840  
512  
No  
Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C,  
D, E, F, G  
D, E, F, G  
D, E, F, G D, E, F, G, H, J D, E, F, G, H, J D, E, F, G, H, J  
A/D Channels  
12  
No  
40  
12  
No  
25  
12  
No  
25  
16  
Yes  
40  
16  
Yes  
25  
16  
Yes  
25  
External Memory Interface  
Maximum Operating  
Frequency (MHz)  
Package Types  
64-pin TQFP 64-pin TQFP 64-pin TQFP 80-pin TQFP 80-pin TQFP 80-pin TQFP  
2003-2013 Microchip Technology Inc.  
DS39609C-page 361  
PIC18F6520/8520/6620/8620/6720/8720  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
MID-RANGE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for  
converting from previous versions of a device to the  
ones listed in this data sheet. Typically, these changes  
are due to the differences in the process technology  
used. An example of this type of conversion is from a  
PIC17C756 to a PIC18F8720.  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442”. The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
Not Currently Available  
This Application Note is available as Literature Number  
DS00716.  
DS39609C-page 362  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
APPENDIX E: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
A detailed discussion of the migration pathway and dif-  
ferences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration”. This Application Note is  
available as Literature Number DS00726.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 363  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 364  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
INDEX  
Baud Rate Generator .............................................. 183  
Capture Mode Operation ......................................... 151  
A
A/D ................................................................................... 213  
A/D Converter Interrupt, Configuring ....................... 217  
Acquisition Requirements ........................................ 218  
Acquisition Time ....................................................... 218  
ADCON0 Register .................................................... 213  
ADCON1 Register .................................................... 213  
ADCON2 Register .................................................... 213  
ADRESH Register ............................................ 213, 215  
ADRESL Register ............................................ 213, 215  
Analog Port Pins ...................................................... 128  
Analog Port Pins, Configuring .................................. 219  
Associated Register Summary ................................. 221  
Calculating Minimum Required Acquisition Time (Exam-  
ple) ................................................................... 218  
CCP2 Trigger ........................................................... 220  
Configuring the Module ............................................ 217  
Conversion Clock (Tad) ........................................... 219  
Conversion Requirements ....................................... 339  
Conversion Status (GO/DONE Bit) .......................... 215  
Conversion Tad Cycles ............................................ 220  
Conversions ............................................................. 220  
Converter Characteristics ........................................ 338  
Equations ................................................................. 218  
Minimum Charging Time .......................................... 218  
Special Event Trigger (CCP) .................................... 152  
Special Event Trigger (CCP2) .................................. 220  
Tad vs. Device Operating Frequencies (Table) ....... 219  
Absolute Maximum Ratings ............................................. 305  
AC (Timing) Characteristics ............................................. 318  
Load Conditions for Device Timing Specifications ... 319  
Parameter Symbology ............................................. 318  
Temperature and Voltage Specifications ................. 319  
Timing Conditions .................................................... 319  
ACKSTAT Status Flag ..................................................... 187  
ADCON0 Register ............................................................ 213  
GO/DONE Bit ........................................................... 215  
ADCON1 Register ............................................................ 213  
ADCON2 Register ............................................................ 213  
ADDLW ............................................................................ 265  
Addressable Universal Synchronous Asynchronous Receiver  
Transmitter (USART) ............................................... 197  
ADDWF ............................................................................ 265  
ADDWFC ......................................................................... 266  
ADRESH Register .................................................... 213, 215  
ADRESL Register .................................................... 213, 215  
Analog-to-Digital Converter. See A/D.  
Comparator Analog Input Model .............................. 227  
Comparator I/O Operating Modes (Diagram) .......... 224  
Comparator Output .................................................. 226  
Comparator Voltage Reference ............................... 230  
Compare Mode Operation ....................................... 152  
Low-Voltage Detect (LVD) ....................................... 234  
Low-Voltage Detect (LVD) with External Input ........ 234  
2
MSSP (I C Master Mode) ........................................ 181  
2
MSSP (I C Mode) .................................................... 166  
MSSP (SPI Mode) ................................................... 157  
On-Chip Reset Circuit ................................................ 29  
PIC18F6X20 Architecture ............................................ 9  
PIC18F8X20 Architecture .......................................... 10  
PLL ............................................................................ 23  
PORT/LAT/TRIS Operation ..................................... 103  
PORTA  
RA3:RA0 and RA5 Pins ................................... 104  
RA4/T0CKI Pin ................................................ 104  
RA6 Pin (as I/O) .............................................. 104  
PORTB  
RB2:RB0 Pins .................................................. 107  
RB3 Pin ........................................................... 107  
RB7:RB4 Pins .................................................. 106  
PORTC (Peripheral Output Override) ...................... 109  
PORTD and PORTE  
Parallel Slave Port ........................................... 128  
PORTD in I/O Port Mode ......................................... 111  
PORTD in System Bus Mode .................................. 112  
PORTE in I/O Mode ................................................. 115  
PORTE in System Bus Mode .................................. 115  
PORTF  
RF1/AN6/C2OUT and RF2/AN5/C1OUT Pins . 117  
RF6/RF3 and RF0 Pins ................................... 118  
RF7 Pin ........................................................... 118  
PORTG (Peripheral Output Override) ..................... 120  
PORTH  
RH3:RH0 Pins in System Bus Mode ....... 123  
RH3:RH0 Pins in I/O Mode .............................. 122  
RH7:RH4 Pins in I/O Mode .............................. 122  
PORTJ  
RJ4:RJ0 Pins in System Bus Mode ................. 126  
RJ7:RJ6 Pins in System Bus Mode ................. 126  
PORTJ in I/O Mode ................................................. 125  
PWM Operation (Simplified) .................................... 154  
Reads from Flash Program Memory ......................... 65  
Single Comparator ................................................... 225  
Table Read Operation ............................................... 61  
Table Write Operation ............................................... 62  
Table Writes to Flash Program Memory .................... 67  
Timer0 in 16-bit Mode .............................................. 132  
Timer0 in 8-bit Mode ................................................ 132  
Timer1 ..................................................................... 136  
Timer1 (16-bit R/W Mode) ....................................... 136  
Timer2 ..................................................................... 142  
Timer3 ..................................................................... 144  
Timer3 in 16-bit R/W Mode ...................................... 144  
Timer4 ..................................................................... 148  
USART Receive ...................................................... 206  
USART Transmit ..................................................... 204  
Voltage Reference Output Buffer Example ............. 231  
ANDLW ............................................................................ 266  
ANDWF ............................................................................ 267  
Assembler  
MPASM Assembler .................................................. 302  
B
Baud Rate Generator ....................................................... 183  
BC .................................................................................... 267  
BCF .................................................................................. 268  
BF Status Flag ................................................................. 187  
Block Diagrams  
16-bit Byte Select Mode ............................................. 75  
16-bit Byte Write Mode .............................................. 73  
16-bit Word Write Mode ............................................. 74  
A/D ........................................................................... 216  
Analog Input Model .................................................. 217  
2003-2013 Microchip Technology Inc.  
DS39609C-page 365  
PIC18F6520/8520/6620/8620/6720/8720  
Watchdog Timer .......................................................251  
BN ....................................................................................268  
BNC ..................................................................................269  
BNN ..................................................................................269  
BNOV ...............................................................................270  
BNZ ..................................................................................270  
BOR. See Brown-out Reset.  
BOV ..................................................................................273  
BRA ..................................................................................271  
BRG. See Baud Rate Generator.  
Brown-out Reset (BOR) .....................................................30  
BSF ..................................................................................271  
BTFSC .............................................................................272  
BTFSS ..............................................................................272  
BTG ..................................................................................273  
BZ .....................................................................................274  
Loading the SSPBUF (SSPSR) Register ................. 160  
Reading a Flash Program Memory Word .................. 65  
Saving Status, WREG and BSR Registers in RAM . 102  
Writing to Flash Program Memory ....................... 68–69  
Code Protection ............................................................... 239  
COMF .............................................................................. 276  
Comparator ...................................................................... 223  
Analog Input Connection Considerations ................ 227  
Associated Registers ............................................... 228  
Configuration ........................................................... 224  
Effects of a Reset .................................................... 227  
Interrupts ................................................................. 226  
Operation ................................................................. 225  
Operation During Sleep ........................................... 227  
Outputs .................................................................... 225  
Reference ................................................................ 225  
External Signal ................................................ 225  
C
Internal Signal .................................................. 225  
C Compilers  
Response Time ........................................................ 225  
Comparator Specifications ............................................... 315  
Comparator Voltage Reference ....................................... 229  
Accuracy and Error .................................................. 230  
Associated Registers ............................................... 231  
Configuring .............................................................. 229  
Connection Considerations ...................................... 230  
Effects of a Reset .................................................... 230  
Operation During Sleep ........................................... 230  
Compare (CCP Module) .................................................. 152  
Associated Registers ............................................... 153  
CCP Pin Configuration ............................................. 152  
CCPR1 Register ...................................................... 152  
Software Interrupt .................................................... 152  
Special Event Trigger .............................. 138, 145, 152  
Timer1/Timer3 Mode Selection ................................ 152  
Compare (CCP2 Module)  
MPLAB C18 .............................................................302  
CALL ................................................................................274  
Capture (CCP Module) .....................................................151  
Associated Registers ...............................................153  
CCP Pin Configuration .............................................151  
CCPR1H:CCPR1L Registers ...................................151  
Software Interrupt ....................................................151  
Timer1/Timer3 Mode Selection ................................151  
Capture/Compare/PWM (CCP) ........................................149  
Capture Mode. See Capture.  
CCP Mode and Timer Resources ............................150  
CCPRxH Register ....................................................150  
CCPRxL Register .....................................................150  
Compare Mode. See Compare.  
Interconnect Configurations .....................................150  
Module Configuration ...............................................150  
PWM Mode. See PWM.  
Special Event Trigger .............................................. 220  
Configuration Bits ............................................................ 239  
Context Saving During Interrupts ..................................... 102  
Control Registers  
Capture/Compare/PWM Requirements (All CCP Modules) ...  
327  
CLKO and I/O Timing Requirements ....................... 322, 323  
Clocking Scheme/Instruction Cycle ....................................44  
CLRF ................................................................................275  
CLRWDT ..........................................................................275  
Code Examples  
EECON1 and EECON2 ............................................. 62  
TABLAT (Table Latch) Register ................................. 64  
TBLPTR (Table Pointer) Register .............................. 64  
Conversion Considerations .............................................. 362  
CPFSEQ .......................................................................... 276  
CPFSGT .......................................................................... 277  
CPFSLT ........................................................................... 277  
Customer Change Notification Service ............................ 375  
Customer Notification Service ......................................... 375  
Customer Support ............................................................ 375  
16 x 16 Signed Multiply Routine ................................86  
16 x 16 Unsigned Multiply Routine ............................86  
8 x 8 Signed Multiply Routine ....................................85  
8 x 8 Unsigned Multiply Routine ................................85  
Changing Between Capture Prescalers ...................151  
Data EEPROM Read .................................................81  
Data EEPROM Refresh Routine ................................82  
Data EEPROM Write .................................................81  
Erasing a Flash Program Memory Row .....................66  
Fast Register Stack ....................................................44  
How to Clear RAM (Bank 1) Using Indirect Addressing .  
57  
Implementing a Real-Time Clock using a Timer1 Inter-  
rupt Service ......................................................139  
Initializing PORTA ....................................................103  
Initializing PORTB ....................................................106  
Initializing PORTC ....................................................109  
Initializing PORTD ....................................................111  
Initializing PORTE ....................................................114  
Initializing PORTF ....................................................117  
Initializing PORTG ...................................................120  
Initializing PORTH ....................................................122  
Initializing PORTJ ....................................................125  
D
Data EEPROM Memory  
Associated Registers ................................................. 83  
EEADR Register ........................................................ 79  
EEADRH Register ..................................................... 79  
EECON1 Register ...................................................... 79  
EECON2 Register ...................................................... 79  
Operation During Code-Protect ................................. 82  
Protection Against Spurious Write ............................. 82  
Reading ..................................................................... 81  
Using ......................................................................... 82  
Write Verify ................................................................ 82  
Writing ....................................................................... 81  
Data Memory ..................................................................... 47  
General Purpose Registers ....................................... 47  
Map for PIC18FX520 Devices ................................... 48  
DS39609C-page 366  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Map for PIC18FX620/X720 Devices .......................... 49  
Operation ................................................................... 85  
Performance Comparison .......................................... 85  
HS/PLL .............................................................................. 23  
Special Function Registers ........................................ 47  
DAW ................................................................................. 278  
DC and AC Characteristics  
Graphs and Tables .................................................. 341  
DC Characteristics  
PIC18FXX20 (Industrial and Extended), PIC18LFXX20  
(Industrial) ........................................................ 313  
Power-Down and Supply Current ............................ 309  
Supply Voltage ......................................................... 308  
DCFSNZ .......................................................................... 279  
DECF ............................................................................... 278  
DECFSZ ........................................................................... 279  
Development Support ...................................................... 301  
Device Differences ........................................................... 361  
Direct Addressing ............................................................... 58  
Direct Addressing ....................................................... 56  
I
I/O Ports .......................................................................... 103  
2
I C Bus Data Requirements (Slave Mode) ...................... 334  
2
I C Bus Start/Stop Bits Requirements (Slave Mode) ....... 333  
2
I C Mode  
General Call Address Support ................................. 180  
Master Mode  
Operation ......................................................... 182  
Read/Write Bit Information (R/W Bit) ............... 170, 171  
Serial Clock (RC3/SCK/SCL) .................................. 171  
ID Locations ............................................................. 239, 257  
INCF ................................................................................ 280  
INCFSZ ............................................................................ 281  
In-Circuit Debugger .......................................................... 257  
Resources (Table) ................................................... 257  
In-Circuit Serial Programming (ICSP) ...................... 239, 257  
Indirect Addressing ............................................................ 58  
INDF and FSR Registers ........................................... 57  
Operation ................................................................... 57  
Indirect Addressing Operation ........................................... 58  
Indirect File Operand ......................................................... 47  
INFSNZ ............................................................................ 281  
Instruction Cycle ................................................................ 44  
Instruction Flow/Pipelining ................................................. 45  
Instruction Format ............................................................ 261  
Instruction Set .................................................................. 259  
ADDLW .................................................................... 265  
ADDWF ................................................................... 265  
ADDWFC ................................................................. 266  
ANDLW .................................................................... 266  
ANDWF ................................................................... 267  
BC ............................................................................ 267  
BCF ......................................................................... 268  
BN ............................................................................ 268  
BNC ......................................................................... 269  
BNN ......................................................................... 269  
BNOV ...................................................................... 270  
BNZ ......................................................................... 270  
BOV ......................................................................... 273  
BRA ......................................................................... 271  
BSF .......................................................................... 271  
BTFSC ..................................................................... 272  
BTFSS ..................................................................... 272  
BTG ......................................................................... 273  
BZ ............................................................................ 274  
CALL ........................................................................ 274  
CLRF ....................................................................... 275  
CLRWDT ................................................................. 275  
COMF ...................................................................... 276  
CPFSEQ .................................................................. 276  
CPFSGT .................................................................. 277  
CPFSLT ................................................................... 277  
DAW ........................................................................ 278  
DCFSNZ .................................................................. 279  
DECF ....................................................................... 278  
DECFSZ .................................................................. 279  
GOTO ...................................................................... 280  
INCF ........................................................................ 280  
INCFSZ .................................................................... 281  
INFSNZ .................................................................... 281  
IORLW ..................................................................... 282  
IORWF ..................................................................... 282  
E
Electrical Characteristics .................................................. 305  
Errata ................................................................................... 5  
Example SPI Mode Requirements (Master Mode, CKE = 0) .  
329  
Example SPI Mode Requirements (Master Mode, CKE = 1) .  
330  
Example SPI Mode Requirements (Slave Mode, CKE = 0) ...  
331  
Example SPI Slave Mode Requirements (CKE = 1) ........ 332  
Extended Microcontroller Mode ......................................... 71  
External Clock Timing Requirements ............................... 320  
External Memory Interface ................................................. 71  
16-bit Byte Select Mode ............................................. 75  
16-bit Byte Write Mode .............................................. 73  
16-bit Mode ................................................................ 73  
16-bit Mode Timing .................................................... 76  
16-bit Word Write Mode ............................................. 74  
PIC18F8X20 External Bus - I/O Port Functions ......... 72  
Program Memory Modes and External Memory Interface  
............................................................................ 71  
F
Firmware Instructions ....................................................... 259  
Flash Program Memory ..................................................... 61  
Associated Registers ................................................. 69  
Control Registers ....................................................... 62  
Erase Sequence ........................................................ 66  
Erasing ....................................................................... 66  
Operation During Code-Protect ................................. 69  
Reading ...................................................................... 65  
Table Pointer  
Boundaries Based on Operation ........................ 64  
Table Pointer Boundaries .......................................... 64  
Table Reads and Table Writes .................................. 61  
Write Sequence ......................................................... 67  
Writing To ................................................................... 67  
Protection Against Spurious Writes ................... 69  
Unexpected Termination .................................... 69  
Write Verify ........................................................ 69  
G
General Call Address Support ......................................... 180  
GOTO .............................................................................. 280  
H
Hardware Multiplier ............................................................ 85  
Introduction ................................................................ 85  
2003-2013 Microchip Technology Inc.  
DS39609C-page 367  
PIC18F6520/8520/6620/8620/6720/8720  
LFSR ........................................................................283  
MOVF .......................................................................283  
MOVFF ....................................................................284  
MOVLB ....................................................................284  
MOVLW ...................................................................285  
MOVWF ...................................................................285  
MULLW ....................................................................286  
MULWF ....................................................................286  
NEGF .......................................................................287  
NOP .........................................................................287  
POP .........................................................................288  
PUSH .......................................................................288  
RCALL .....................................................................289  
RESET .....................................................................289  
RETFIE ....................................................................290  
RETLW ....................................................................290  
RETURN ..................................................................291  
RLCF ........................................................................291  
RLNCF .....................................................................292  
RRCF .......................................................................292  
RRNCF ....................................................................293  
SETF ........................................................................293  
SLEEP .....................................................................294  
SUBFWB ..................................................................294  
SUBLW ....................................................................295  
SUBWF ....................................................................295  
SUBWFB ..................................................................296  
SWAPF ....................................................................296  
TBLRD .....................................................................297  
TBLWT .....................................................................298  
TSTFSZ ...................................................................299  
XORLW ....................................................................299  
XORWF ....................................................................300  
Summary Table ........................................................262  
INT Interrupt (RB0/INT). See Interrupt Sources  
Easy Migration ............................................................. 7  
Expanded Memory ....................................................... 7  
External Memory Interface ........................................... 7  
Other Special Features ................................................ 7  
L
LFSR ................................................................................ 283  
Low-Voltage Detect ......................................................... 233  
Characteristics ......................................................... 316  
Converter Characteristics ........................................ 316  
Effects of a Reset .................................................... 237  
Operation ................................................................. 236  
Current Consumption ...................................... 237  
During Sleep .................................................... 237  
Reference Voltage Set Point ........................... 237  
Typical Application ................................................... 233  
Low-Voltage ICSP Programming ..................................... 257  
LVD. See Low-Voltage Detect. ........................................ 233  
M
Master SSP (MSSP) Module  
Overview .................................................................. 157  
2
Master SSP I C Bus Data Requirements ........................ 336  
2
Master SSP I C Bus Start/Stop Bits Requirements ......... 335  
Master Synchronous Serial Port (MSSP). See MSSP.  
Master Synchronous Serial Port. See MSSP  
Memory Organization  
Data Memory ............................................................. 47  
Memory Programming Requirements .............................. 317  
Microchip Internet Web Site ............................................. 375  
Microcontroller Mode ......................................................... 71  
Microprocessor Mode ........................................................ 71  
Microprocessor with Boot Block Mode ............................... 71  
Migration from High-End to Enhanced Devices ............... 363  
Migration from Mid-Range to Enhanced Devices ............ 362  
MOVF .............................................................................. 283  
MOVFF ............................................................................ 284  
MOVLB ............................................................................ 284  
MOVLW ........................................................................... 285  
MOVWF ........................................................................... 285  
MPLAB ASM30 Assembler, Linker, Librarian .................. 302  
MPLAB Integrated Development Environment Software . 301  
MPLAB PM3 Device Programmer ................................... 304  
MPLAB REAL ICE In-Circuit Emulator System ............... 303  
MPLINK Object Linker/MPLIB Object Librarian ............... 302  
MSSP ............................................................................... 157  
ACK Pulse ....................................................... 170, 171  
Clock Stretching ....................................................... 176  
10-bit Slave Receive Mode (SEN = 1) ............. 176  
INTCON Registers .............................................................89  
2
Inter-Integrated Circuit. See I C  
Internet Address ...............................................................375  
Interrupt Sources ..............................................................239  
A/D Conversion Complete .......................................217  
Capture Complete (CCP) .........................................151  
Compare Complete (CCP) .......................................152  
INT0 .........................................................................102  
Interrupt-on-Change (RB7:RB4) ..............................106  
PORTB, Interrupt-on-Change ..................................102  
RB0/INT Pin, External ..............................................102  
TMR0 .......................................................................102  
TMR0 Overflow ........................................................133  
TMR1 Overflow ................................................ 135, 138  
TMR2 to PR2 Match ................................................142  
TMR2 to PR2 Match (PWM) ............................ 141, 154  
TMR3 Overflow ................................................ 143, 145  
TMR4 to PR4 Match ................................................148  
TMR4 to PR4 Match (PWM) ....................................147  
Interrupts ............................................................................87  
Control Registers .......................................................89  
Enable Registers ........................................................95  
Flag Registers ............................................................92  
Logic ..........................................................................88  
Priority Registers ........................................................98  
Reset Control Registers ...........................................101  
IORLW .............................................................................282  
IORWF .............................................................................282  
IPR Registers .....................................................................98  
10-bit Slave Transmit Mode ............................. 176  
7-bit Slave Receive Mode (SEN = 1) ............... 176  
7-bit Slave Transmit Mode ............................... 176  
Clock Synchronization and the CKP bit ................... 177  
Control Registers (general) ...................................... 157  
Enabling SPI I/O ...................................................... 161  
2
I C Mode ................................................................. 166  
Acknowledge Sequence Timing ...................... 190  
Baud Rate Generator ...................................... 183  
Bus Collision  
During a Repeated Start Condition .......... 194  
Bus Collision During a Start Condition ............ 192  
Bus Collision During a Stop Condition ............. 195  
Clock Arbitration .............................................. 184  
Effect of a Reset .............................................. 191  
2
I C Clock Rate w/BRG .................................... 183  
K
Master Mode .................................................... 181  
Reception ................................................ 187  
Key Features  
DS39609C-page 368  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Repeated Start Timing ............................. 186  
Master Mode Start Condition ........................... 185  
Master Mode Transmission ............................. 187  
Multi-Master Communication, Bus Collision and Ar-  
bitration .................................................... 191  
Multi-Master Mode ........................................... 191  
Registers .......................................................... 166  
Sleep Operation ............................................... 191  
RE1/WR/AN6 Pin .................................................... 128  
RE2/CS/AN7 Pin ..................................................... 128  
Read Waveforms ..................................................... 130  
Select (PSPMODE Bit) .................................... 111, 128  
Write Waveforms ..................................................... 129  
Parallel Slave Port Requirements (PIC18F8X20) ............ 328  
PIE Registers ..................................................................... 95  
Pin Functions  
Stop Condition Timing ..................................... 190  
I C Mode. See I C  
AVDD .......................................................................... 20  
AVSS .......................................................................... 20  
MCLR/VPP ................................................................. 11  
OSC1/CLKI ................................................................ 11  
OSC2/CLKO/RA6 ...................................................... 11  
RA0/AN0 .................................................................... 12  
RA1/AN1 .................................................................... 12  
RA2/AN2/VREF- ......................................................... 12  
RA3/AN3/VREF+ ........................................................ 12  
RA4/T0CKI ................................................................ 12  
RA5/AN4/LVDIN ........................................................ 12  
RA6 ............................................................................ 12  
RB0/INT0 ................................................................... 13  
RB1/INT1 ................................................................... 13  
RB2/INT2 ................................................................... 13  
RB3/INT3/CCP2 ........................................................ 13  
RB4/KBI0 ................................................................... 13  
RB5/KBI1/PGM .......................................................... 13  
RB6/KBI2/PGC .......................................................... 13  
RB7/KBI3/PGD .......................................................... 13  
RC0/T1OSO/T13CKI ................................................. 14  
RC1/T1OSI/CCP2 ..................................................... 14  
RC2/CCP1 ................................................................. 14  
RC3/SCK/SCL ........................................................... 14  
RC4/SDI/SDA ............................................................ 14  
RC5/SDO ................................................................... 14  
RC6/TX1/CK1 ............................................................ 14  
RC7/RX1/DT1 ............................................................ 14  
RD0/PSP0/AD0 ......................................................... 15  
RD1/PSP1/AD1 ......................................................... 15  
RD2/PSP2/AD2 ......................................................... 15  
RD3/PSP3/AD3 ......................................................... 15  
RD4/PSP4/AD4 ......................................................... 15  
RD5/PSP5/AD5 ......................................................... 15  
RD6/PSP6/AD6 ......................................................... 15  
RD7/PSP7/AD7 ......................................................... 15  
RE0/RD/AD8 ............................................................. 16  
RE1/WR/AD9 ............................................................. 16  
RE2/CS/AD10 ............................................................ 16  
RE3/AD11 .................................................................. 16  
RE4/AD12 .................................................................. 16  
RE5/AD13 .................................................................. 16  
RE6/AD14 .................................................................. 16  
RE7/CCP2/AD15 ....................................................... 16  
RF0/AN5 .................................................................... 17  
RF1/AN6/C2OUT ....................................................... 17  
RF2/AN7/C1OUT ....................................................... 17  
RF3/AN8 .................................................................... 17  
RF4/AN9 .................................................................... 17  
RF5/AN10/CVREF ...................................................... 17  
RF6/AN11 .................................................................. 17  
RF7/SS ...................................................................... 17  
RG0/CCP3 ................................................................. 18  
RG1/TX2/CK2 ............................................................ 18  
RG2/RX2/DT2 ........................................................... 18  
RG3/CCP4 ................................................................. 18  
RG4/CCP5 ................................................................. 18  
RH0/A16 .................................................................... 19  
2
2
Module Operation .................................................... 170  
Operation ................................................................. 160  
Slave Mode .............................................................. 170  
Addressing ....................................................... 170  
Reception ......................................................... 171  
Transmission ................................................... 171  
SPI  
Master Mode .................................................... 162  
SPI Clock ......................................................... 162  
SPI Master Mode ..................................................... 162  
SPI Mode ................................................................. 157  
SPI Mode. See SPI  
SPI Slave Mode ....................................................... 163  
Select Synchronization .................................... 163  
SSPBUF Register .................................................... 162  
SSPSR Register ...................................................... 162  
Typical Connection .................................................. 161  
MSSP Module  
SPI Master./Slave Connection ................................. 161  
MULLW ............................................................................ 286  
MULWF ............................................................................ 286  
N
NEGF ............................................................................... 287  
NOP ................................................................................. 287  
O
Opcode Field Descriptions ............................................... 260  
OPTION_REG Register  
PSA Bit ..................................................................... 133  
T0CS Bit ................................................................... 133  
T0PS2:T0PS0 Bits ................................................... 133  
T0SE Bit ................................................................... 133  
Oscillator Configuration ...................................................... 21  
EC .............................................................................. 21  
ECIO .......................................................................... 21  
HS .............................................................................. 21  
HS + PLL ................................................................... 21  
LP ............................................................................... 21  
RC .............................................................................. 21  
RCIO .......................................................................... 21  
XT .............................................................................. 21  
Oscillator Selection .......................................................... 239  
Oscillator Switching Feature .............................................. 24  
Oscillator Transitions ................................................. 26  
System Clock Switch Bit ............................................ 25  
Oscillator, Timer1 ............................................. 135, 137, 145  
Oscillator, Timer3 ............................................................. 143  
Oscillator, WDT ................................................................ 250  
P
Packaging Information ..................................................... 355  
Details ...................................................................... 356  
Marking .................................................................... 355  
Parallel Slave Port (PSP) ......................................... 111, 128  
Associated Registers ............................................... 130  
RE0/RD/AN5 Pin ...................................................... 128  
2003-2013 Microchip Technology Inc.  
DS39609C-page 369  
PIC18F6520/8520/6620/8620/6720/8720  
RH1/A17 ....................................................................19  
RH2/A18 ....................................................................19  
RH3/A19 ....................................................................19  
RH4/AN12 ..................................................................19  
RH5/AN13 ..................................................................19  
RH6/AN14 ..................................................................19  
RH7/AN15 ..................................................................19  
RJ0/ALE .....................................................................20  
RJ1/OE ......................................................................20  
RJ2/WRL ....................................................................20  
RJ3/WRH ...................................................................20  
RJ4/BA0 .....................................................................20  
RJ5/CE .......................................................................20  
RJ6/LB .......................................................................20  
RJ7/UB .......................................................................20  
VDD .............................................................................20  
VSS .............................................................................20  
PIR Registers .....................................................................92  
PLL Clock Timing Specifications ......................................321  
PLL Lock Time-out .............................................................30  
Pointer, FSR .......................................................................57  
POP ..................................................................................288  
POR. See Power-on Reset.  
PORTF Register ...................................................... 117  
TRISF Register ........................................................ 117  
PORTG  
Associated Registers ............................................... 121  
Functions ................................................................. 121  
LATG Register ......................................................... 120  
PORTG Register ...................................................... 120  
TRISG Register ............................................... 120, 197  
PORTH  
Associated Registers ............................................... 124  
Functions ................................................................. 124  
LATH Register ......................................................... 122  
PORTH Register ...................................................... 122  
TRISH Register ........................................................ 122  
PORTJ  
Associated Registers ............................................... 127  
Functions ................................................................. 127  
LATJ Register .......................................................... 125  
PORTJ Register ....................................................... 125  
TRISJ Register ........................................................ 125  
Postscaler, WDT  
Assignment (PSA Bit) .............................................. 133  
Rate Select (T0PS2:T0PS0 Bits) ............................. 133  
Switching Between Timer0 and WDT ...................... 133  
Power-down Mode. See Sleep.  
PORTA  
Associated Registers ...............................................105  
Functions .................................................................105  
LATA Register ..........................................................103  
PORTA Register ......................................................103  
TRISA Register ........................................................103  
PORTB  
Associated Registers ...............................................108  
Functions .................................................................108  
LATB Register ..........................................................106  
PORTB Register ......................................................106  
RB0/INT Pin, External ..............................................102  
TRISB Register ........................................................106  
PORTC  
Power-on Reset (POR) ...................................................... 30  
Oscillator Start-up Timer (OST) ................................. 30  
Power-up Timer (PWRT) ........................................... 30  
Time-out Sequence ................................................... 30  
Prescaler, Capture ........................................................... 151  
Prescaler, Timer0 ............................................................ 133  
Assignment (PSA Bit) .............................................. 133  
Rate Select (T0PS2:T0PS0 Bits) ............................. 133  
Switching Between Timer0 and WDT ...................... 133  
Prescaler, Timer2 ............................................................ 154  
Product Identification System .......................................... 377  
Program Counter  
Associated Registers ...............................................110  
Functions .................................................................110  
LATC Register .........................................................109  
PORTC Register ......................................................109  
RC3/SCK/SCL Pin ...................................................171  
TRISC Register ................................................ 109, 197  
PORTD .............................................................................128  
Associated Registers ...............................................113  
Functions .................................................................113  
LATD Register .........................................................111  
Parallel Slave Port (PSP) Function ..........................111  
PORTD Register ......................................................111  
TRISD Register ........................................................111  
PORTE  
Analog Port Pins ......................................................128  
Associated Registers ...............................................116  
Functions .................................................................116  
LATE Register ..........................................................114  
PORTE Register ......................................................114  
PSP Mode Select (PSPMODE Bit) ..................111, 128  
RE0/RD/AN5 Pin ......................................................128  
RE1/WR/AN6 Pin .....................................................128  
RE2/CS/AN7 Pin ......................................................128  
TRISE Register ........................................................114  
PORTF  
PCL, PCLATH and PCLATU Registers ..................... 44  
Program Memory ............................................................... 39  
Access for PIC18F8X20 Program Memory Modes .... 40  
Instructions ................................................................ 45  
Interrupt Vector .......................................................... 39  
Map and Stack for PIC18FXX20 ................................ 40  
Maps for PIC18F8X20 Program Memory Modes ....... 41  
PIC18F8X20 Modes .................................................. 39  
Reset Vector .............................................................. 39  
Program Memory Write Timing Requirements ................ 324  
Program Verification and Code Protection ...................... 253  
Associated Registers ............................................... 253  
Configuration Register Protection ............................ 257  
Data EEPROM Code Protection .............................. 257  
Memory Code Protection ......................................... 255  
Programming, Device Instructions ................................... 259  
PSP.See Parallel Slave Port.  
Pulse Width Modulation. See PWM (CCP Module).  
PUSH ............................................................................... 288  
PWM (CCP Module) ........................................................ 154  
Associated Registers ............................................... 155  
CCPR1H:CCPR1L Registers ................................... 154  
Duty Cycle ............................................................... 154  
Example Frequencies/Resolutions .......................... 155  
Period ...................................................................... 154  
Setup for PWM Operation ........................................ 155  
TMR2 to PR2 Match ........................................ 141, 154  
TMR4 to PR4 Match ................................................ 147  
Associated Registers ...............................................119  
Functions .................................................................119  
LATF Register ..........................................................117  
DS39609C-page 370  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
Brown-out Reset (BOR) ........................................... 239  
MCLR Reset .............................................................. 29  
Q
Q Clock ............................................................................ 154  
MCLR Reset during Sleep ......................................... 29  
Oscillator Start-up Timer (OST) ............................... 239  
Power-on Reset (POR) ...................................... 29, 239  
Power-up Timer (PWRT) ......................................... 239  
Programmable Brown-out Reset (PBOR) .................. 29  
Reset Instruction ........................................................ 29  
Stack Full Reset ........................................................ 29  
Stack Underflow Reset .............................................. 29  
Watchdog Timer (WDT) Reset .................................. 29  
Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up  
Timer and Brown-out Reset Requirements ............. 325  
RETFIE ............................................................................ 290  
RETLW ............................................................................ 290  
RETURN .......................................................................... 291  
Return Address Stack  
R
RAM. See Data Memory  
RC Oscillator ...................................................................... 22  
RCALL ............................................................................. 289  
RCON Registers .............................................................. 101  
RCSTA Register  
SPEN Bit .................................................................. 197  
Reader Response ............................................................ 376  
Register File ....................................................................... 47  
Registers  
ADCON0 (A/D Control 0) ......................................... 213  
ADCON1 (A/D Control 1) ......................................... 214  
ADCON2 (A/D Control 2) ......................................... 215  
CCPxCON (Capture/Compare/PWM Control) ......... 149  
CMCON (Comparator Control) ................................ 223  
CONFIG1H (Configuration 1 High) .......................... 240  
CONFIG2H (Configuration 2 High) .......................... 241  
CONFIG2L (Configuration 2 Low) ............................ 241  
CONFIG3H (Configuration 3 High) .......................... 242  
CONFIG3L (Configuration 3 Low) ............................ 242  
CONFIG3L (Configuration Byte) ................................ 41  
CONFIG4L (Configuration 4 Low) ............................ 243  
CONFIG5H (Configuration 5 High) .......................... 245  
CONFIG5L (Configuration 5 Low) ............................ 244  
CONFIG6H (Configuration 6 High) .......................... 247  
CONFIG6L (Configuration 6 Low) ............................ 246  
CONFIG7H (Configuration 7 High) .......................... 249  
CONFIG7L (Configuration 7 Low) ............................ 248  
CVRCON (Comparator Voltage Reference Control) 229  
Device ID 1 .............................................................. 249  
Device ID 2 .............................................................. 249  
EECON1 (Data EEPROM Control 1) ................... 63, 80  
INTCON (Interrupt Control) ........................................ 89  
INTCON2 (Interrupt Control 2) ................................... 90  
INTCON3 (Interrupt Control 3) ................................... 91  
IPR1 (Peripheral Interrupt Priority 1) .......................... 98  
IPR2 (Peripheral Interrupt Priority 2) .......................... 99  
IPR3 (Peripheral Interrupt Priority 3) ........................ 100  
LVDCON (Low-Voltage Detect Control) ................... 235  
MEMCON (Memory Control) ...................................... 71  
OSCCON ................................................................... 25  
PIE1 (Peripheral Interrupt Enable 1) .......................... 95  
PIE2 (Peripheral Interrupt Enable 2) .......................... 96  
PIE3 (Peripheral Interrupt Enable 3) .......................... 97  
PIR1 (Peripheral Interrupt Request 1) ....................... 92  
PIR2 (Peripheral Interrupt Request 2) ....................... 93  
PIR3 (Peripheral Interrupt Request 3) ....................... 94  
PSPCON (Parallel Slave Port Control) Register ...... 129  
RCON ........................................................................ 31  
RCON (Reset Control) ....................................... 60, 101  
RCSTAx (Receive Status and Control) .................... 199  
and Associated Registers .......................................... 43  
Revision History ............................................................... 361  
RLCF ............................................................................... 291  
RLNCF ............................................................................. 292  
RRCF ............................................................................... 292  
RRNCF ............................................................................ 293  
S
SCI. See USART  
SCK ................................................................................. 157  
SDI ................................................................................... 157  
SDO ................................................................................. 157  
Serial Clock, SCK ............................................................ 157  
Serial Communication Interface. See USART.  
Serial Data In, SDI ........................................................... 157  
Serial Data Out, SDO ...................................................... 157  
Serial Peripheral Interface. See SPI  
SETF ............................................................................... 293  
Slave Select, SS .............................................................. 157  
SLEEP ............................................................................. 294  
Sleep ....................................................................... 239, 252  
Software Simulator (MPLAB SIM) ................................... 303  
Special Event Trigger. See Compare  
Special Features of the CPU ........................................... 239  
Configuration Registers ................................... 240–249  
Special Function Registers ................................................ 47  
Map ............................................................................ 50  
SPI  
Serial Clock ............................................................. 157  
Serial Data In ........................................................... 157  
Serial Data Out ........................................................ 157  
Slave Select ............................................................. 157  
SPI Mode ................................................................. 157  
SPI Master/Slave Connection .......................................... 161  
SPI Module  
Associated Registers ............................................... 165  
Bus Mode Compatibility ........................................... 165  
Effects of a Reset .................................................... 165  
Master/Slave Connection ........................................ 161  
Slave Mode .............................................................. 163  
Sleep Operation ....................................................... 165  
SS .................................................................................... 157  
SSP  
2
SSPCON2 (MSSP Control 2, I C Mode) ................. 169  
2
SSPSTAT (MSSP Status, I C Mode) ....................... 167  
SSPSTAT (MSSP Status, SPI Mode) ...................... 158  
Statis .......................................................................... 59  
STKPTR (Stack Pointer) ............................................ 43  
Summary .............................................................. 52–55  
T1CON (Timer 1 Control) ......................................... 135  
T3CON (Timer3 Control) .......................................... 143  
TXSTAx (Transmit Status and Control) ................... 198  
WDTCON (Watchdog Timer Control) ...................... 250  
RESET ............................................................................. 289  
Reset .......................................................................... 29, 239  
TMR2 Output for Clock Shift ............................ 141, 142  
TMR4 Output for Clock Shift .................................... 148  
SSPOV Status Flag ......................................................... 187  
SSPSTAT Register  
R/W Bit ............................................................ 170, 171  
Status Bits  
Significance and Initialization Condition for RCON Reg-  
2003-2013 Microchip Technology Inc.  
DS39609C-page 371  
PIC18F6520/8520/6620/8620/6720/8720  
ister ....................................................................31  
SUBFWB ..........................................................................294  
SUBLW ............................................................................295  
SUBWF ............................................................................295  
SUBWFB ..........................................................................296  
SWAPF ............................................................................296  
Bus Collision During a Repeated Start Condition (Case  
2) ..................................................................... 194  
Bus Collision During a Stop Condition (Case 1) ...... 195  
Bus Collision During a Stop Condition (Case 2) ...... 195  
Bus Collision During Start Condition (SCL = 0) ....... 193  
Bus Collision During Start Condition (SDA only) ..... 192  
Bus Collision for Transmit and Acknowledge .......... 191  
Capture/Compare/PWM (All CCP Modules) ............ 326  
CLKO and I/O .......................................................... 321  
Clock Synchronization ............................................. 177  
Clock/Instruction Cycle .............................................. 44  
Example SPI Master Mode (CKE = 0) ..................... 328  
Example SPI Master Mode (CKE = 1) ..................... 329  
Example SPI Slave Mode (CKE = 0) ....................... 330  
Example SPI Slave Mode (CKE = 1) ....................... 331  
External Clock (All Modes except PLL) ................... 320  
External Memory Bus for Sleep (Microprocessor Mode)  
77  
T
Table Pointer Operations (table) ........................................64  
TBLRD .............................................................................297  
TBLWT .............................................................................298  
Time-out in Various Situations ...........................................31  
Timer0 ..............................................................................131  
16-bit Mode Timer Reads and Writes ......................133  
Associated Registers ...............................................133  
Clock Source Edge Select (T0SE Bit) ......................133  
Clock Source Select (T0CS Bit) ...............................133  
Operation .................................................................133  
Overflow Interrupt ....................................................133  
Prescaler. See Prescaler, Timer0  
Timer0 and Timer1 External Clock Requirements ...........326  
Timer1 ..............................................................................135  
16-bit Read/Write Mode ...........................................138  
Associated Registers ...............................................139  
Operation .................................................................136  
Oscillator .......................................................... 135, 137  
Overflow Interrupt ............................................ 135, 138  
Special Event Trigger (CCP) ............................ 138, 152  
TMR1H Register ......................................................135  
TMR1L Register .......................................................135  
Use as a Real-Time Clock .......................................138  
Timer2 ..............................................................................141  
Associated Registers ...............................................142  
Operation .................................................................141  
Postscaler. See Postscaler, Timer2  
External Memory Bus for TBLRD (Extended Microcon-  
troller Mode) ...................................................... 76  
External Memory Bus for TBLRD (Microprocessor Mode)  
............................................................................ 76  
2
I C Bus Data ............................................................ 333  
2
I C Bus Start/Stop Bits ............................................ 332  
2
I C Master Mode (7 or 10-bit Transmission) ............ 188  
2
I C Master Mode (7-bit Reception) .......................... 189  
2
I C Master Mode First Start Bit Timing .................... 185  
2
I C Slave Mode (10-bit Reception, SEN = 0) .......... 174  
2
I C Slave Mode (10-bit Reception, SEN = 1) .......... 179  
2
I C Slave Mode (10-bit Transmission) ..................... 175  
2
I C Slave Mode (7-bit Reception, SEN = 0) ............ 172  
2
I C Slave Mode (7-bit Reception, SEN = 1) ............ 178  
2
I C Slave Mode (7-bit Transmission) ....................... 173  
Low-Voltage Detect ................................................. 236  
2
Master SSP I C Bus Data ........................................ 335  
2
PR2 Register .................................................... 141, 154  
Prescaler. See Prescaler, Timer2  
Master SSP I C Bus Start/Stop Bits ........................ 335  
Parallel Slave Port (PIC18F8X20) ........................... 327  
Program Memory Read ........................................... 322  
Program Memory Write ............................................ 323  
PWM Output ............................................................ 154  
Repeat Start Condition ............................................ 186  
Reset, Watchdog Timer (WDT), Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) ............... 324  
Slave Mode General Call Address Sequence (7 or 10-bit  
Address Mode) ................................................ 180  
Slave Synchronization ............................................. 163  
Slow Rise Time (MCLR Tied to VDD via 1 kOhm Resistor)  
............................................................................ 38  
SPI Mode (Master Mode) ......................................... 162  
SPI Mode (Slave Mode with CKE = 0) ..................... 164  
SPI Mode (Slave Mode with CKE = 1) ..................... 164  
Stop Condition Receive or Transmit Mode .............. 190  
Synchronous Reception (Master Mode, SREN) ...... 210  
Synchronous Transmission ..................................... 209  
Synchronous Transmission (Through TXEN) .......... 209  
Time-out Sequence on POR w/PLL Enabled (MCLR Tied  
to VDD via 1 kOhm Resistor) ............................. 38  
Time-out Sequence on Power-up (MCLR Not Tied to  
VDD)  
SSP Clock Shift ................................................ 141, 142  
TMR2 Register .........................................................141  
TMR2 to PR2 Match Interrupt ..................141, 142, 154  
Timer3 ..............................................................................143  
Associated Registers ...............................................145  
Operation .................................................................144  
Oscillator .......................................................... 143, 145  
Overflow Interrupt ............................................ 143, 145  
Special Event Trigger (CCP) ....................................145  
TMR3H Register ......................................................143  
TMR3L Register .......................................................143  
Timer4 ..............................................................................147  
Associated Registers ...............................................148  
Operation .................................................................147  
Postscaler. See Postscaler, Timer4  
PR4 Register ............................................................147  
Prescaler. See Prescaler, Timer4  
SSP Clock Shift ........................................................148  
TMR4 Register .........................................................147  
TMR4 to PR4 Match Interrupt .......................... 147, 148  
Timing Diagrams  
A/D Conversion ........................................................338  
Acknowledge Sequence ..........................................190  
Baud Rate Generator with Clock Arbitration ............184  
BRG Reset Due to SDA Arbitration During Start Condi-  
tion ...................................................................193  
Brown-out Reset (BOR) ...........................................325  
Bus Collision During a Repeated Start Condition (Case  
1) ......................................................................194  
Case 1 ............................................................... 37  
Case 2 ............................................................... 37  
Time-out Sequence on Power-up (MCLR Tied to VDD via  
1 kOhm Resistor) ............................................... 37  
Timer0 and Timer1 External Clock .......................... 325  
Timing for Transition Between Timer1 and OSC1 (HS  
DS39609C-page 372  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
with PLL) ............................................................ 27  
Transition Between Timer1 and OSC1 (HS, XT, LP) . 26  
Transition Between Timer1 and OSC1 (RC, EC) ....... 27  
Transition from OSC1 to Timer1 Oscillator ................ 26  
USART Asynchronous Reception ............................ 207  
USART Asynchronous Transmission ....................... 205  
USART Asynchronous Transmission (Back to Back) ....  
205  
Time-out Period ....................................................... 250  
WCOL .............................................................................. 185  
WCOL Status Flag ................................... 185, 186, 187, 190  
WDT Postscaler ............................................................... 250  
WWW Address ................................................................ 375  
WWW, On-Line Support ...................................................... 5  
X
XORLW ........................................................................... 299  
XORWF ........................................................................... 300  
USART Synchronous Receive ( Master/Slave) ....... 337  
USART SynchronousTransmission (Master/Slave) . 337  
Wake-up from Sleep via Interrupt ............................ 253  
TRISE Register  
PSPMODE Bit .................................................. 111, 128  
TSTFSZ ........................................................................... 299  
Two-Word Instructions  
Example Cases .......................................................... 46  
TXSTA Register  
BRGH Bit ................................................................. 200  
U
Universal Synchronous Asynchronous Receiver Transmitter.  
See USART  
USART  
Asynchronous Mode ................................................ 204  
Associated Registers, Receive ........................ 207  
Associated Registers, Transmit ....................... 205  
Receiver ........................................................... 206  
Setting up 9-bit Mode with Address Detect ...... 206  
Transmitter ....................................................... 204  
Baud Rate Generator (BRG) .................................... 200  
Associated Registers ....................................... 200  
Baud Rate Error, Calculating ........................... 200  
Baud Rate Formula .......................................... 200  
Baud Rates for Asynchronous Mode (BRGH = 0) .  
202  
Baud Rates for Asynchronous Mode (BRGH = 1) .  
203  
Baud Rates for Synchronous Mode ................. 201  
High Baud Rate Select (BRGH Bit) ................. 200  
Sampling .......................................................... 200  
Serial Port Enable (SPEN Bit) .................................. 197  
Synchronous Master Mode ...................................... 208  
Associated Registers, Reception ..................... 210  
Associated Registers, Transmit ....................... 208  
Reception ......................................................... 210  
Transmission ................................................... 208  
Synchronous Slave Mode ........................................ 211  
Associated Registers, Receive ........................ 212  
Associated Registers, Transmit ....................... 211  
Reception ......................................................... 212  
Transmission ................................................... 211  
USART Synchronous Receive Requirements ................. 337  
USART Synchronous Transmission Requirements ......... 337  
V
Voltage Reference Specifications .................................... 315  
W
Wake-up from Sleep ................................................ 239, 252  
Using Interrupts ........................................................ 252  
Watchdog Timer (WDT) ........................................... 239, 250  
Associated Registers ............................................... 251  
Control Register ....................................................... 250  
Postscaler ................................................................ 251  
Programming Considerations .................................. 250  
RC Oscillator ............................................................ 250  
2003-2013 Microchip Technology Inc.  
DS39609C-page 373  
PIC18F6520/8520/6620/8620/6720/8720  
DS39609C-page 374  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2003-2013 Microchip Technology Inc.  
DS39609C-page 375  
PIC18F6520/8520/6620/8620/6720/8720  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS39609C  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC18F6520/8520/6620/8620/6720/8720  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39609C-page 376  
2003-2013 Microchip Technology Inc.  
PIC18F6520/8520/6620/8620/6720/8720  
PIC18F6520/8520/6620/8620/6720/8720 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC18LF6620-I/PT 301 = Industrial temp.,  
TQFP package, Extended VDD limits,  
QTP pattern #301.  
b) PIC18F8720-I/PT = Industrial temp.,  
TQFP package, normal VDD limits.  
c) PIC18F8620-E/PT = Extended temp.,  
TQFP package, standard VDD limits.  
(1)  
Device  
PIC18F6520/8520/6620/8620/6720/8720  
PIC18F6520/8520/6620/8620/6720/8720T  
VDD range 4.2V to 5.5V  
,
(2)  
;
(1)  
PIC18LF6520/8520/6620/8620/6720/8720  
PIC18LF6520/8520/6620/8620/6720/8720T  
VDD range 2.0V to 5.5V  
,
(2)  
;
Temperature  
Range  
I
E
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
Note 1: F  
LF = Extended Voltage Range  
2: T in tape and reel  
= Standard Voltage Range  
Package  
Pattern  
PT  
=
TQFP (Thin Quad Flatpack)  
=
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2003-2013 Microchip Technology Inc.  
DS39609C-page 377  
PIC18F6520/8520/6620/8620/6720/8720  
NOTES:  
DS39609C-page 378  
2003-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620769423  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2003-2013 Microchip Technology Inc.  
DS39609C-page 379  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS39609C-page 380  
2003-2013 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY