PIC18F6627-E/PT [MICROCHIP]

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology; 八十〇分之六十四引脚, 1 - Mbit的,增强型闪存微控制器与10位A / D和纳瓦技术
PIC18F6627-E/PT
型号: PIC18F6627-E/PT
厂家: MICROCHIP    MICROCHIP
描述:

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
八十〇分之六十四引脚, 1 - Mbit的,增强型闪存微控制器与10位A / D和纳瓦技术

闪存 微控制器和处理器 外围集成电路 时钟
文件: 总446页 (文件大小:7372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F8722 Family  
Data Sheet  
64/80-Pin, 1-Mbit,  
Enhanced Flash Microcontrollers  
with 10-Bit A/D and nanoWatt Technology  
© 2008 Microchip Technology Inc.  
DS39646C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
32  
PICDEM.net, PICtail, PIC logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39646C-page ii  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with  
10-Bit A/D and nanoWatt Technology  
Power Management Features:  
Peripheral Highlights (Continued):  
• Run: CPU On, Peripherals On  
• Idle: CPU Off, Peripherals On  
• Sleep: CPU Off, Peripherals Off  
• Ultra Low 50 nA Input Leakage  
• Run mode Currents Down to 25 μA Typical  
• Idle mode Currents Down to 6.8 μA Typical  
• Sleep mode Current Down to 120 nA Typical  
• Timer1 Oscillator: 900 nA, 32 kHz, 2V  
• Watchdog Timer: 1.6 μA, 2V Typical  
• Two-Speed Oscillator Start-up  
• Up to 2 Capture/Compare/PWM (CCP) modules,  
one with Auto-Shutdown (28-pin devices)  
• Master Synchronous Serial Port (MSSP) module  
Supporting 3-Wire SPI (all 4 modes) and I2C™  
Master and Slave modes  
• Enhanced Addressable USART module:  
- Supports RS-485, RS-232 and LIN/J2602  
- RS-232 operation using internal oscillator  
block (no external crystal required)  
• 10-Bit, up to 13-Channel Analog-to-Digital (A/D)  
Converter module:  
Flexible Oscillator Structure:  
- Conversion available during Sleep  
• Dual Analog Comparators with Input Multiplexing  
• Programmable 16-Level High/Low-Voltage  
Detection (HLVD) module  
• Four Crystal modes, up to 40 MHz  
• 4x Phase Lock Loop (PLL) – Available for Crystal  
and Internal Oscillators  
• Internal Oscillator Block:  
Special Microcontroller Features:  
- Fast wake from Sleep and Idle, 1 μs typical  
- Provides a complete range of clock speeds  
from 31 kHz to 32 MHz when used with PLL  
- User-tunable to compensate for frequency drift  
• Secondary oscillator using Timer1 @ 32 kHz  
• Fail-Safe Clock Monitor:  
• C Compiler Optimized Architecture  
• 100,000 Erase/Write Cycle Enhanced Flash  
Program Memory Typical  
• 1,000,000 Erase/Write Cycle Data EEPROM  
Memory Typical  
• Flash/Data EEPROM Retention: 100 Years Typical  
• Self-Programmable under Software Control  
• Priority Levels for Interrupts  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Allows for safe shutdown if peripheral clock stops  
Peripheral Highlights:  
• High-Current Sink/Source 25 mA/25 mA  
• Three Programmable External Interrupts  
• Four Input Change Interrupts  
- Programmable period from 4 ms to 131s  
• Single-Supply 5V In-Circuit Serial Programming™  
(ICSP™) via Two Pins  
• Enhanced Capture/Compare/PWM (ECCP)  
module (40/44-pin devices only):  
• In-Circuit Debug (ICD) via Two Pins  
• Wide Operating Voltage Range: 2.0V to 5.5V  
• Programmable Brown-out Reset (BOR) with  
Software Enable Option  
- One, two or four PWM outputs  
- Programmable dead time  
- Auto-shutdown and auto-restart  
Program Memory  
Data Memory  
MSSP  
10-Bit CCP/  
Device  
I/O  
A/D ECCP  
(ch) (PWM)  
Flash # Single-Word SRAM EEPROM  
(bytes) Instructions (bytes) (bytes)  
Master  
I C™  
SPI  
2
PIC18F6527 48K  
PIC18F6622 64K  
PIC18F6627 96K  
PIC18F6722 128K  
PIC18F8527 48K  
PIC18F8622 64K  
PIC18F8627 96K  
PIC18F8722 128K  
24576  
32768  
49152  
65536  
24576  
32768  
49152  
65536  
3936  
3936  
3936  
3936  
3936  
3936  
3936  
3936  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
54  
54  
54  
54  
70  
70  
70  
70  
12  
12  
12  
12  
16  
16  
16  
16  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2
2
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
N
N
N
N
Y
Y
Y
Y
© 2008 Microchip Technology Inc.  
DS39646C-page 1  
PIC18F8722 FAMILY  
Pin Diagrams  
64-Pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
RB0/INT0  
RE1/WR/P2C  
RE0/RD/P2D  
RG0/ECCP3/P3A  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
RG5/MCLR/VPP  
RG4/CCP5/P1D  
VSS  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RB1/INT1  
2
RB2/INT2  
3
RB3/INT3  
4
RB4/KBI0  
5
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
6
7
PIC18F6527  
PIC18F6622  
PIC18F6627  
PIC18F6722  
8
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
VDD  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
RF7/SS1  
RF6/AN11  
RB7/KBI3/PGD  
RC5/SDO1  
RF5/AN10/CVREF  
RF4/AN9  
RC4/SDI1/SDA1  
RC3/SCK1/SCL1  
RC2/ECCP1/P1A  
RF3/AN8  
RF2/AN7/C1OUT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note 1: The ECCP2/P2A pin placement is determined by the CCP2MX Configuration bit.  
DS39646C-page 2  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Pin Diagrams (Continued)  
80-Pin TQFP  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
RH2/A18  
RH3/A19  
RJ2/WRL  
60  
1
2
RJ3/WRH  
59  
RB0/INT0  
58  
RE1/AD9/WR/P2C  
RE0/AD8/RD/P2D  
RG0/ECCP3/P3A  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
RG5/MCLR/VPP  
RG4/CCP5/P1D  
VSS  
3
RB1/INT1  
57  
4
RB2/INT2  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
5
RB3/INT3/ECCP2(1)/P2A(1)  
6
RB4/KBI0  
7
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
8
9
PIC18F8527  
PIC18F8622  
PIC18F8627  
PIC18F8722  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
VDD  
VDD  
RF7/SS1  
RB7/KBI3/PGD  
RC5/SDO1  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RC4/SDI1/SDA1  
RC3/SCK1/SCL1  
RC2/ECCP1/P1A  
RJ7/UB  
RF3/AN8  
RF2/AN7/C1OUT  
RH7/AN15/P1B(2)  
RH6/AN14/P1C(2)  
RJ6/LB  
40  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
Note 1: The ECCP2/P2A pin placement is determined by the CCP2MX Configuration bit and Processor mode settings.  
2: P1B, P1C, P3B and P3C pin placement is determined by the ECCPMX Configuration bit.  
© 2008 Microchip Technology Inc.  
DS39646C-page 3  
PIC18F8722 FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 31  
3.0 Power-Managed Modes ............................................................................................................................................................. 41  
4.0 Reset.......................................................................................................................................................................................... 49  
5.0 Memory Organization................................................................................................................................................................. 63  
6.0 Flash Program Memory.............................................................................................................................................................. 87  
7.0 External Memory Bus................................................................................................................................................................. 97  
8.0 Data EEPROM Memory ........................................................................................................................................................... 111  
9.0 8 x 8 Hardware Multiplier.......................................................................................................................................................... 117  
10.0 Interrupts .................................................................................................................................................................................. 119  
11.0 I/O Ports ................................................................................................................................................................................... 135  
12.0 Timer0 Module ......................................................................................................................................................................... 161  
13.0 Timer1 Module ......................................................................................................................................................................... 165  
14.0 Timer2 Module ......................................................................................................................................................................... 171  
15.0 Timer3 Module ......................................................................................................................................................................... 173  
16.0 Timer4 Module ......................................................................................................................................................................... 177  
17.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 179  
18.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 187  
19.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 205  
20.0 Enhanced Universal Synchronous Receiver Transmitter (EUSART)....................................................................................... 247  
21.0 10-Bit Analog-to-Digital Converter (A/D) Module ..................................................................................................................... 271  
22.0 Comparator Module.................................................................................................................................................................. 281  
23.0 Comparator Voltage Reference Module................................................................................................................................... 287  
24.0 High/Low-Voltage Detect (HLVD)............................................................................................................................................. 291  
25.0 Special Features of the CPU.................................................................................................................................................... 297  
26.0 Instruction Set Summary.......................................................................................................................................................... 321  
27.0 Development Support............................................................................................................................................................... 371  
28.0 Electrical Characteristics .......................................................................................................................................................... 375  
29.0 Packaging Information.............................................................................................................................................................. 419  
Appendix A: Revision History............................................................................................................................................................. 425  
Appendix B: Device Differences......................................................................................................................................................... 425  
Appendix C: Conversion Considerations ........................................................................................................................................... 426  
Appendix D: Migration From Baseline to Enhanced Devices............................................................................................................. 426  
Appendix E: Migration From Mid-Range to Enhanced Devices......................................................................................................... 427  
Appendix F: Migration From High-End to Enhanced Devices............................................................................................................ 427  
Index .................................................................................................................................................................................................. 429  
The Microchip Web Site..................................................................................................................................................................... 441  
Customer Change Notification Service .............................................................................................................................................. 441  
Customer Support.............................................................................................................................................................................. 441  
Reader Response .............................................................................................................................................................................. 442  
PIC18F8722 Family Product Identification System............................................................................................................................ 443  
DS39646C-page 4  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2008 Microchip Technology Inc.  
DS39646C-page 5  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 6  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
1.1.2  
EXPANDED MEMORY  
1.0  
DEVICE OVERVIEW  
The PIC18F8722 family provides ample room for  
application code and includes members with 48, 64,  
96 or 128 Kbytes of code space.  
This document contains device specific information for  
the following devices:  
• PIC18F6527  
• PIC18F6622  
• PIC18F6627  
• PIC18F6722  
• PIC18F8527  
• PIC18F8622  
• PIC18F8627  
• PIC18F8722  
• PIC18LF6527  
• PIC18LF6622  
• PIC18LF6627  
• PIC18LF6722  
• PIC18LF8527  
• PIC18LF8622  
• PIC18LF8627  
• PIC18LF8722  
Data RAM and Data EEPROM: The PIC18F8722  
family also provides plenty of room for application  
data. The devices have 3936 bytes of data RAM,  
as well as 1024 bytes of data EEPROM, for long  
term retention of nonvolatile data.  
Memory Endurance: The Enhanced Flash cells  
for both program memory and data EEPROM are  
rated to last for many thousands of erase/write  
cycles, up to 100,000 for program memory and  
1,000,000 for EEPROM. Data retention without  
refresh is conservatively estimated to be greater  
than 40 years.  
This family offers the advantages of all PIC18 micro-  
controllers – namely, high computational performance at  
an economical price – with the addition of high-  
endurance, Enhanced Flash program memory. On top of  
these features, the PIC18F8722 family introduces  
design enhancements that make these microcontrollers  
a logical choice for many high-performance, power  
sensitive applications.  
1.1.3  
MULTIPLE OSCILLATOR OPTIONS  
AND FEATURES  
All of the devices in the PIC18F8722 family offer ten  
different oscillator options, allowing users a wide range  
of choices in developing application hardware. These  
include:  
1.1  
New Core Features  
• Four Crystal modes, using crystals or ceramic  
resonators  
• Two External Clock modes, offering the option of  
using two pins (oscillator input and a divide-by-4  
clock output) or one pin (oscillator input, with the  
second pin reassigned as general I/O)  
1.1.1  
nanoWatt TECHNOLOGY  
All of the devices in the PIC18F8722 family incorporate  
a range of features that can significantly reduce power  
consumption during operation. Key items include:  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal oscillator  
block, power consumption during code execution  
can be significantly reduced.  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled but the peripherals still  
active. In these states, power consumption can be  
reduced even further.  
On-the-fly Mode Switching: The power-  
managed modes are invoked by user code during  
operation, allowing the user to incorporate power-  
saving ideas into their application’s software  
design.  
Low Consumption in Key Modules: The  
power requirements for both Timer1 and the  
Watchdog Timer are minimized. See  
Section 28.0 “Electrical Characteristics”  
for values.  
• Two External RC Oscillator modes with the same  
pin options as the External Clock modes  
• An internal oscillator block which provides an  
8 MHz clock and an INTRC source (approxi-  
mately 31 kHz), as well as a range of 6 user  
selectable clock frequencies, between 125 kHz to  
4 MHz, for a total of 8 clock frequencies. This  
option frees the two oscillator pins for use as  
additional general purpose I/O.  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to both the high-speed crystal and inter-  
nal oscillator modes, which allows clock speeds of  
up to 40 MHz. Used with the internal oscillator, the  
PLL gives users a complete selection of clock  
speeds, from 31 kHz to 32 MHz – all without using  
an external crystal or clock circuit.  
© 2008 Microchip Technology Inc.  
DS39646C-page 7  
PIC18F8722 FAMILY  
Besides its availability as a clock source, the internal  
oscillator block provides a stable reference source that  
gives the family additional features for robust operation:  
1.2  
Other Special Features  
Communications: The PIC18F8722 family  
incorporates a range of serial communication  
peripherals, including 2 independent Enhanced  
USARTs and 2 Master SSP modules capable of  
both SPI and I2C (Master and Slave) modes of  
operation. Also, one of the general purpose I/O  
ports can be reconfigured as an 8-bit Parallel  
Slave Port for direct processor-to-processor  
communications.  
CCP Modules: All devices in the family  
incorporate two Capture/Compare/PWM (CCP)  
modules and three Enhanced CCP (ECCP)  
modules to maximize flexibility in control  
applications. Up to four different time bases may  
be used to perform several different operations at  
once. Each of the three ECCP modules offer up to  
four PWM outputs, allowing for a total of  
12 PWMs. The ECCPs also offer many beneficial  
features, including polarity selection,  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a reference  
signal provided by the internal oscillator. If a clock  
failure occurs, the controller is switched to the  
internal oscillator block, allowing for continued  
low-speed operation or a safe application shutdown.  
Two-Speed Start-up: This option allows the  
internal oscillator to serve as the clock source  
from Power-on Reset, or wake-up from Sleep  
mode, until the primary clock source is available.  
1.1.4  
EXTERNAL MEMORY INTERFACE  
In the unlikely event that 128 Kbytes of program  
memory is inadequate for an application, the  
PIC18F8527/8622/8627/8722 members of the family  
also implement an external memory interface. This  
allows the controller’s internal program counter to  
address  
a memory space of up to 2 Mbytes,  
Programmable Dead-Time, Auto-Shutdown and  
Restart and Half-Bridge and Full-Bridge  
Output modes.  
permitting a level of data access that few 8-bit devices  
can claim.  
Self-Programmability: These devices can write  
to their own program memory spaces under  
internal software control. By using a bootloader  
routine located in the protected boot block at the  
top of program memory, it becomes possible to  
create an application that can update itself in the  
field.  
Extended Instruction Set: The PIC18F8722  
family introduces an optional extension to the  
PIC18 instruction set, which adds 8 new instruc-  
tions and an Indexed Addressing mode. This  
extension, enabled as a device configuration  
option, has been specifically designed to optimize  
re-entrant application code originally developed in  
high-level languages, such as C.  
10-bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period and  
thus, reduce code overhead.  
Extended Watchdog Timer (WDT): This  
enhanced version incorporates a 16-bit prescaler,  
allowing an extended time-out range that is stable  
across operating voltage and temperature. See  
Section 28.0 “Electrical Characteristics” for  
time-out periods.  
With the addition of new operating modes, the external  
memory interface offers many new options, including:  
• Operating the microcontroller entirely from  
external memory  
• Using combinations of on-chip and external  
memory, up to the 2-Mbyte limit  
• Using external Flash memory for reprogrammable  
application code or large data tables  
• Using external RAM devices for storing large  
amounts of variable data  
1.1.5  
EASY MIGRATION  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between the 64-pin  
members, between the 80-pin members, or even  
jumping from 64-pin to 80-pin devices.  
DS39646C-page 8  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
All other features for devices in this family are identical.  
These are summarized in Table 1-2 and Table 1-2.  
1.3  
Details on Individual Family  
Members  
The pinouts for all devices are listed in Table 1-3 and  
Table 1-4.  
Devices in the PIC18F8722 family are available in  
64-pin and 80-pin packages. Block diagrams for the  
two groups are shown in Figure 1-1 and Figure 1-2.  
Like all Microchip PIC18 devices, members of the  
PIC18F8722 family are available as both standard and  
low-voltage devices. Standard devices with Enhanced  
Flash memory, designated with an “F” in the part  
number (such as PIC18F6627), accommodate an  
operating VDD range of 4.2V to 5.5V. Low-voltage  
parts, designated by “LF” (such as PIC18LF6627),  
function over an extended VDD range of 2.0V to 5.5V.  
The devices are differentiated from each other in five  
ways:  
1. Flash program memory (48 Kbytes for  
PIC18F6527/8527 devices, 64 Kbytes for  
PIC18F6622/8622 devices, 96 Kbytes for  
PIC18F6627/8627 devices and 128 Kbytes for  
PIC18F6722/8722).  
2. A/D channels (12 for 64-pin devices, 16 for  
80-pin devices).  
3. I/O ports (7 bidirectional ports on 64-pin devices,  
9 bidirectional ports on 80-pin devices).  
4. External Memory Bus, configurable for 8 and  
16-bit operation, is available on PIC18F8527/  
8622/8627/8722 devices.  
TABLE 1-1:  
DEVICE FEATURES (PIC18F6527/6622/6627/6722)  
Features  
PIC18F6527  
PIC18F6622  
PIC18F6627  
PIC18F6722  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz  
48K  
DC – 40 MHz  
64K  
DC – 40 MHz  
96K  
DC – 40 MHz  
128K  
24576  
3936  
32768  
3936  
49152  
3936  
65536  
3936  
1024  
1024  
1024  
1024  
28  
28  
28  
28  
I/O Ports  
Ports A, B, C, D, E, F, G Ports A, B, C, D, E, F, G Ports A, B, C, D, E, F, G Ports A, B, C, D, E, F, G  
Timers  
5
2
5
2
5
2
5
2
Capture/Compare/PWM  
Modules  
Enhanced Capture/Compare/  
PWM Modules  
3
3
3
3
Enhanced USART  
2
2
2
2
Serial Communications  
MSSP,  
MSSP,  
MSSP,  
MSSP,  
Enhanced USART  
Enhanced USART  
Enhanced USART  
Enhanced USART  
Parallel Communications (PSP)  
10-bit Analog-to-Digital Module  
Resets (and Delays)  
Yes  
Yes  
Yes  
Yes  
12 Input Channels  
12 Input Channels  
12 Input Channels  
12 Input Channels  
POR, BOR,  
POR, BOR,  
POR, BOR,  
POR, BOR,  
RESETInstruction,  
Stack Full, Stack  
RESETInstruction,  
Stack Full, Stack  
RESETInstruction,  
Stack Full, Stack  
RESETInstruction,  
Stack Full, Stack  
Underflow (PWRT, OST), Underflow (PWRT, OST), Underflow (PWRT, OST), Underflow (PWRT, OST),  
MCLR (optional), WDT MCLR (optional), WDT MCLR (optional), WDT MCLR (optional), WDT  
Programmable  
Yes  
Yes  
Yes  
Yes  
High/Low-Voltage Detect  
Programmable Brown-out  
Reset  
Yes  
Yes  
Yes  
Yes  
Instruction Set  
75 Instructions;  
75 Instructions;  
75 Instructions;  
75 Instructions;  
83 with Extended  
83 with Extended  
83 with Extended  
83 with Extended  
Instruction Set enabled Instruction Set enabled Instruction Set enabled Instruction Set enabled  
Packages  
64-pin TQFP  
64-pin TQFP  
64-pin TQFP  
64-pin TQFP  
© 2008 Microchip Technology Inc.  
DS39646C-page 9  
PIC18F8722 FAMILY  
TABLE 1-2:  
DEVICE FEATURES (PIC18F8527/8622/8627/8722)  
Features  
PIC18F8527  
PIC18F8622  
PIC18F8627  
PIC18F8722  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz  
48K  
DC – 40 MHz  
64K  
DC – 40 MHz  
96K  
DC – 40 MHz  
128K  
24576  
3936  
32768  
3936  
49152  
3936  
65536  
3936  
1024  
1024  
1024  
1024  
29  
29  
29  
29  
I/O Ports  
Ports A, B, C, D, E,  
F, G, H, J  
Ports A, B, C, D, E,  
F, G, H, J  
Ports A, B, C, D, E,  
F, G, H, J  
Ports A, B, C, D, E,  
F, G, H, J  
Timers  
5
2
5
2
5
2
5
2
Capture/Compare/PWM  
Modules  
Enhanced Capture/Compare/  
PWM Modules  
3
2
3
2
3
2
3
2
Enhanced USART  
Serial Communications  
MSSP,  
MSSP,  
MSSP,  
MSSP,  
Enhanced USART  
Enhanced USART  
Enhanced USART  
Enhanced USART  
Parallel Communications  
(PSP)  
Yes  
Yes  
Yes  
Yes  
10-bit Analog-to-Digital Module  
Resets (and Delays)  
16 Input Channels  
16 Input Channels  
16 Input Channels  
16 Input Channels  
POR, BOR,  
RESETInstruction,  
Stack Full, Stack  
POR, BOR,  
RESETInstruction,  
Stack Full, Stack  
POR, BOR,  
RESETInstruction,  
Stack Full, Stack  
POR, BOR,  
RESETInstruction,  
Stack Full, Stack  
Underflow (PWRT, OST), Underflow (PWRT, OST), Underflow (PWRT, OST), Underflow (PWRT, OST),  
MCLR (optional), WDT MCLR (optional), WDT MCLR (optional), WDT MCLR (optional), WDT  
Programmable  
Yes  
Yes  
Yes  
Yes  
High/Low-Voltage Detect  
Programmable Brown-out  
Reset  
Yes  
Yes  
Yes  
Yes  
Instruction Set  
75 Instructions;  
75 Instructions;  
75 Instructions;  
75 Instructions;  
83 with Extended  
83 with Extended  
83 with Extended  
83 with Extended  
Instruction Set enabled Instruction Set enabled Instruction Set enabled Instruction Set enabled  
Packages  
80-pin TQFP 80-pin TQFP 80-pin TQFP 80-pin TQFP  
DS39646C-page 10  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 1-1:  
PIC18F6527/6622/6627/6722 (64-PIN) BLOCK DIAGRAM  
Data Bus<8>  
Table Pointer<21>  
inc/dec logic  
21  
PORTA  
Data Latch  
8
RA0:RA7(1)  
8
Data Memory  
(3.9 Kbytes)  
PCLATU PCLATH  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
PORTB  
Data Address<12>  
RB0:RB7(1)  
31-Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
Access  
Bank  
Program Memory  
(48/64/96/128  
Kbytes)  
12  
PORTC  
Data Latch  
RC0:RC7(1)  
inc/dec  
logic  
8
Table Latch  
Address  
Decode  
ROM Latch  
IR  
Instruction Bus <16>  
PORTD  
RD0:RD7(1)  
8
State Machine  
Control Signals  
Instruction  
Decode and  
Control  
PRODH PRODL  
8 x 8 Multiply  
PORTE  
RE0:RE7(1)  
3
8
OSC1(3)  
Internal  
Oscillator  
Block  
Power-up  
Timer  
BITOP  
8
W
8
8
OSC2(3)  
T1OSI  
Oscillator  
Start-up Timer  
INTRC  
Oscillator  
PORTF  
8
8
Power-on  
Reset  
RF0:RF7(1)  
8 MHz  
Oscillator  
ALU<8>  
8
Watchdog  
Timer  
T1OSO  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
MCLR(2)  
VDD, VSS  
Single-Supply  
Programming  
Fail-Safe  
Clock Monitor  
PORTG  
In-Circuit  
Debugger  
RG0:RG5(1)  
ADC  
10-bit  
BOR  
Timer0  
ECCP3  
Timer1  
Timer2  
CCP5  
Timer3  
Comparators  
Timer4  
HLVD  
ECCP1  
ECCP2  
CCP4  
MSSP1  
MSSP2  
EUSART1  
EUSART2  
Note 1: See Table 1-3 for I/O port pin descriptions.  
2: RG5 is only available when MCLR functionality is disabled.  
3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as  
digital I/O. Refer to Section 2.0 “Oscillator Configurations” for additional information.  
© 2008 Microchip Technology Inc.  
DS39646C-page 11  
PIC18F8722 FAMILY  
FIGURE 1-2:  
PIC18F8527/8622/8627/8722 (80-PIN) BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Data Latch  
Table Pointer<21>  
inc/dec logic  
8
RA0:RA7(1)  
8
Data Memory  
(3.9 Kbytes)  
PCLATH  
PCLATU  
Address Latch  
21  
20  
PORTB  
PCU PCH PCL  
Program Counter  
RB0:RB7(1)  
12  
Data Address<12>  
31-Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
PORTC  
Access  
Bank  
Program Memory  
(48/64/96/128  
Kbytes)  
RC0:RC7(1)  
12  
Data Latch  
inc/dec  
logic  
8
PORTD  
Table Latch  
ROM Latch  
RD0:RD7(1)  
Address  
Decode  
Instruction Bus <16>  
PORTE  
IR  
RE0:RE7(1)  
AD15:AD0, A19:A16  
(Multiplexed with PORTD,  
PORTE and PORTH)  
8
PORTF  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
State Machine  
Control Signals  
RF0:RF7(1)  
3
8
W
BITOP  
8
PORTG  
8
8
RG0:RG5(1)  
OSC1(3)  
OSC2(3)  
Internal  
Oscillator  
Block  
Power-up  
Timer  
8
8
Oscillator  
Start-up Timer  
ALU<8>  
8
INTRC  
Oscillator  
PORTH  
Power-on  
Reset  
T1OSI  
RH0:RH7(1)  
8 MHz  
Oscillator  
Watchdog  
Timer  
T1OSO  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
Fail-Safe  
MCLR(2)  
VDD, VSS  
Single-Supply  
Programming  
PORTJ  
RJ0:RJ7(1)  
In-Circuit  
Debugger  
Clock Monitor  
ADC  
10-bit  
BOR  
Timer0  
ECCP3  
Timer1  
Timer2  
CCP5  
Timer3  
Comparators  
Timer4  
HLVD  
CCP4  
MSSP1  
MSSP2  
ECCP1  
ECCP2  
EUSART1  
EUSART2  
Note 1: See Table 1-4 for I/O port pin descriptions.  
2: RG5 is only available when MCLR functionality is disabled.  
3: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as  
digital I/O. Refer to Section 2.0 “Oscillator Configurations” for additional information.  
DS39646C-page 12  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-3:  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
TQFP  
RG5/MCLR/VPP  
RG5  
7
Master Clear (input) or programming voltage (input).  
Digital input.  
I
I
ST  
ST  
MCLR  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
VPP  
P
I
Programming voltage input.  
OSC1/CLKI/RA7  
OSC1  
39  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode, CMOS  
otherwise.  
ST  
CMOS  
TTL  
CLKI  
I
External clock source input. Always associated  
with pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
RA7  
I/O  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
40  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO, which has  
1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General purpose I/O pin.  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
© 2008 Microchip Technology Inc.  
DS39646C-page 13  
PIC18F8722 FAMILY  
TABLE 1-3:  
Pin Name  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
24  
23  
22  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
21  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D reference voltage (high) input.  
RA4/T0CKI  
RA4  
28  
27  
I/O  
I
ST  
ST  
Digital I/O.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/HLVDIN  
RA5  
I/O  
TTL  
Digital I/O.  
AN4  
HLVDIN  
I
I
Analog  
Analog  
Analog input 4.  
High/Low-Voltage Detect input.  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
DS39646C-page 14  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-3:  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0/FLT0  
RB0  
48  
I/O  
I
I
TTL  
ST  
ST  
Digital I/O.  
External interrupt 0.  
PWM Fault input for ECCPx.  
INT0  
FLT0  
RB1/INT1  
RB1  
47  
46  
45  
44  
43  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3  
RB3  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 3.  
INT3  
RB4/KBI0  
RB4  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
Low-Voltage ICSP™ Programming enable pin.  
KBI1  
PGM  
RB6/KBI2/PGC  
RB6  
42  
37  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
© 2008 Microchip Technology Inc.  
DS39646C-page 15  
PIC18F8722 FAMILY  
TABLE 1-3:  
Pin Name  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
29  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/ECCP2/P2A  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
T1OSI  
Timer1 oscillator input.  
Enhanced Capture 2 input/Compare 2 output/  
PWM 2 output.  
ECCP2(1)  
P2A(1)  
O
ECCP2 PWM output A.  
RC2/ECCP1/P1A  
RC2  
33  
I/O  
I/O  
ST  
ST  
Digital I/O.  
ECCP1  
Enhanced Capture 1 input/Compare 1 output/  
PWM 1 output.  
P1A  
O
ECCP1 PWM output A.  
RC3/SCK1/SCL1  
RC3  
34  
35  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK1  
SCL1  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C™ mode.  
RC4/SDI1/SDA1  
RC4  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI1  
SDA1  
SPI data in.  
I2C data I/O.  
RC5/SDO1  
RC5  
36  
31  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO1  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
EUSART1 asynchronous transmit.  
EUSART1 synchronous clock (see related RX1/DT1).  
RC7/RX1/DT1  
RC7  
32  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
EUSART1 asynchronous receive.  
EUSART1 synchronous data (see related TX1/CK1).  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
DS39646C-page 16  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-3:  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bidirectional I/O port.  
RD0/PSP0  
RD0  
58  
55  
54  
53  
52  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP0  
RD1/PSP1  
RD1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP1  
RD2/PSP2  
RD2  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP3  
RD4/PSP4/SDO2  
RD4  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
SPI data out.  
PSP4  
SDO2  
RD5/PSP5/SDI2/SDA2  
51  
50  
49  
RD5  
I/O  
I/O  
I
ST  
TTL  
ST  
Digital I/O.  
PSP5  
SDI2  
SDA2  
Parallel Slave Port data.  
SPI data in.  
I/O I2C/SMB  
I2C™ data I/O.  
RD6/PSP6/SCK2/SCL2  
RD6  
I/O  
I/O  
I/O  
ST  
TTL  
ST  
Digital I/O.  
Parallel Slave Port data.  
PSP6  
SCK2  
SCL2  
Synchronous serial clock input/output for SPI mode.  
I/O I2C/SMB  
Synchronous serial clock input/output for I2C mode.  
RD7/PSP7/SS2  
RD7  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
SPI slave select input.  
PSP7  
SS2  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
© 2008 Microchip Technology Inc.  
DS39646C-page 17  
PIC18F8722 FAMILY  
TABLE 1-3:  
Pin Name  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTE is a bidirectional I/O port.  
RE0/RD/P2D  
RE0  
2
1
I/O  
I
O
ST  
TTL  
Digital I/O.  
Read control for Parallel Slave Port.  
ECCP2 PWM output D.  
RD  
P2D  
RE1/WR/P2C  
RE1  
I/O  
I
O
ST  
TTL  
Digital I/O.  
Write control for Parallel Slave Port.  
ECCP2 PWM output C.  
WR  
P2C  
RE2/CS/P2B  
RE2  
64  
I/O  
I
O
ST  
TTL  
Digital I/O.  
Chip select control for Parallel Slave Port.  
ECCP2 PWM output B.  
CS  
P2B  
RE3/P3C  
RE3  
63  
62  
61  
60  
59  
I/O  
O
ST  
Digital I/O.  
ECCP3 PWM output C.  
P3C  
RE4/P3B  
RE4  
I/O  
O
ST  
Digital I/O.  
ECCP3 PWM output B.  
P3B  
RE5/P1C  
RE5  
I/O  
O
ST  
Digital I/O.  
ECCP1 PWM output C.  
P1C  
RE6/P1B  
RE6  
I/O  
O
ST  
Digital I/O.  
ECCP1 PWM output B.  
P1B  
RE7/ECCP2/P2A  
RE7  
I/O  
I/O  
ST  
ST  
Digital I/O.  
ECCP2(2)  
Enhanced Capture 2 input/Compare 2 output/  
PWM 2 output.  
ECCP2 PWM output A.  
P2A(2)  
O
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
DS39646C-page 18  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-3:  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTF is a bidirectional I/O port.  
RF0/AN5  
RF0  
18  
17  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 5.  
AN5  
RF1/AN6/C2OUT  
RF1  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
16  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF3  
15  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF4  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF5  
I/O  
I
O
ST  
Analog  
Analog  
Digital I/O.  
Analog input 10.  
Comparator reference voltage output.  
AN10  
CVREF  
RF6/AN11  
RF6  
12  
11  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/SS1  
RF7  
I/O  
I
ST  
TTL  
Digital I/O.  
SPI slave select input.  
SS1  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
© 2008 Microchip Technology Inc.  
DS39646C-page 19  
PIC18F8722 FAMILY  
TABLE 1-3:  
Pin Name  
PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTG is a bidirectional I/O port.  
RG0/ECCP3/P3A  
RG0  
3
I/O  
I/O  
ST  
ST  
Digital I/O.  
ECCP3  
Enhanced Capture 3 input/Compare 3 output/  
PWM 3 output.  
P3A  
O
ECCP3 PWM output A.  
RG1/TX2/CK2  
RG1  
4
5
6
8
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
EUSART2 asynchronous transmit.  
EUSART2 synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2  
RG2  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
EUSART2 asynchronous receive.  
EUSART2 synchronous data (see related TX2/CK2).  
RG3/CCP4/P3D  
RG3  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP4  
P3D  
Capture 4 input/Compare 4 output/PWM 4 output.  
ECCP3 PWM output D.  
RG4/CCP5/P1D  
RG4  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP5  
P1D  
Capture 5 input/Compare 5 output/PWM 5 output.  
ECCP1 PWM output D.  
RG5  
VSS  
See RG5/MCLR/VPP pin.  
9, 25, 41, 56  
P
P
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
= CMOS compatible input or output  
VDD  
10, 26, 38, 57  
AVSS  
AVDD  
20  
19  
Legend: TTL = TTL compatible input CMOS  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™  
= I2C/SMBus input buffer  
Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.  
DS39646C-page 20  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
TQFP  
RG5/MCLR/VPP  
RG5  
9
Master Clear (input) or programming voltage (input).  
Digital input.  
I
I
ST  
ST  
MCLR  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
VPP  
P
I
Programming voltage input.  
OSC1/CLKI/RA7  
OSC1  
49  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode, CMOS  
otherwise.  
ST  
CMOS  
TTL  
CLKI  
I
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
RA7  
I/O  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
50  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO, which has 1/4 the  
frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General purpose I/O pin.  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
© 2008 Microchip Technology Inc.  
DS39646C-page 21  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
30  
29  
28  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
27  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D reference voltage (high) input.  
RA4/T0CKI  
RA4  
34  
33  
I/O  
I
ST/OD  
ST  
Digital I/O. Open-drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/HLVDIN  
RA5  
I/O  
TTL  
Digital I/O.  
AN4  
HLVDIN  
I
I
Analog  
Analog  
Analog input 4.  
High/Low-Voltage Detect input.  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
DS39646C-page 22  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0/FLT0  
RB0  
58  
I/O  
I
I
TTL  
ST  
ST  
Digital I/O.  
External interrupt 0.  
PWM Fault input for ECCPx.  
INT0  
FLT0  
RB1/INT1  
RB1  
57  
56  
55  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3/ECCP2/P2A  
RB3  
I/O  
I
O
TTL  
ST  
Digital I/O.  
External interrupt 3.  
Enhanced Capture 2 input/Compare 2 output/  
PWM 2 output.  
ECCP2 PWM output A.  
INT3  
ECCP2(1)  
P2A(1)  
O
RB4/KBI0  
RB4  
54  
53  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
Low-Voltage ICSP™ Programming enable pin.  
KBI1  
PGM  
RB6/KBI2/PGC  
RB6  
52  
47  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
© 2008 Microchip Technology Inc.  
DS39646C-page 23  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
36  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/ECCP2/P2A  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
T1OSI  
Timer1 oscillator input.  
Enhanced Capture 2 input/Compare 2 output/  
PWM 2 output.  
ECCP2(2)  
P2A(2)  
O
ECCP2 PWM output A.  
RC2/ECCP1/P1A  
RC2  
43  
I/O  
I/O  
ST  
ST  
Digital I/O.  
ECCP1  
Enhanced Capture 1 input/Compare 1 output/  
PWM 1 output.  
P1A  
O
ECCP1 PWM output A.  
RC3/SCK1/SCL1  
RC3  
44  
45  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK1  
SCL1  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C™ mode.  
RC4/SDI1/SDA1  
RC4  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI1  
SDA1  
SPI data in.  
I2C data I/O.  
RC5/SDO1  
RC5  
46  
37  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO1  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
EUSART1 asynchronous transmit.  
EUSART1 synchronous clock (see related RX1/DT1).  
RC7/RX1/DT1  
RC7  
38  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
EUSART1 asynchronous receive.  
EUSART1 synchronous data (see related TX1/CK1).  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
DS39646C-page 24  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
TQFP  
PORTD is a bidirectional I/O port.  
RD0/AD0/PSP0  
RD0  
72  
69  
68  
67  
66  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 0.  
Parallel Slave Port data.  
AD0  
PSP0  
RD1/AD1/PSP1  
RD1  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 1.  
Parallel Slave Port data.  
AD1  
PSP1  
RD2/AD2/PSP2  
RD2  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 2.  
Parallel Slave Port data.  
AD2  
PSP2  
RD3/AD3/PSP3  
RD3  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 3.  
Parallel Slave Port data.  
AD3  
PSP3  
RD4/AD4/PSP4/SDO2  
RD4  
AD4  
PSP4  
SDO2  
I/O  
I/O  
I/O  
O
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 4.  
Parallel Slave Port data.  
SPI data out.  
RD5/AD5/PSP5/  
SDI2/SDA2  
RD5  
65  
64  
63  
I/O  
I/O  
I/O  
I
ST  
TTL  
TTL  
ST  
Digital I/O.  
AD5  
PSP5  
SDI2  
SDA2  
External memory address/data 5.  
Parallel Slave Port data.  
SPI data in.  
I/O I2C/SMB  
I2C™ data I/O.  
RD6/AD6/PSP6/  
SCK2/SCL2  
RD6  
I/O  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
ST  
Digital I/O.  
External memory address/data 6.  
Parallel Slave Port data.  
AD6  
PSP6  
SCK2  
SCL2  
Synchronous serial clock input/output for SPI mode.  
I/O I2C/SMB  
Synchronous serial clock input/output for I2C mode.  
RD7/AD7/PSP7/SS2  
RD7  
AD7  
PSP7  
SS2  
I/O  
I/O  
I/O  
I
ST  
Digital I/O.  
TTL  
TTL  
TTL  
External memory address/data 7.  
Parallel Slave Port data.  
SPI slave select input.  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
© 2008 Microchip Technology Inc.  
DS39646C-page 25  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTE is a bidirectional I/O port.  
RE0/AD8/RD/P2D  
4
3
RE0  
AD8  
RD  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 8.  
Read control for Parallel Slave Port.  
ECCP2 PWM output D.  
P2D  
O
RE1/AD9/WR/P2C  
RE1  
AD9  
WR  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 9.  
Write control for Parallel Slave Port.  
ECCP2 PWM output C.  
P2C  
O
RE2/AD10/CS/P2B  
78  
RE2  
AD10  
CS  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 10.  
Chip select control for Parallel Slave Port.  
ECCP2 PWM output B.  
P2B  
O
RE3/AD11/P3C  
RE3  
77  
76  
75  
74  
73  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 11.  
ECCP3 PWM output C.  
AD11  
P3C(4)  
RE4/AD12/P3B  
RE4  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 12.  
ECCP3 PWM output B.  
AD12  
P3B(4)  
RE5/AD13/P1C  
RE5  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 13.  
ECCP1 PWM output C.  
AD13  
P1C(4)  
RE6/AD14/P1B  
RE6  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 14.  
ECCP1 PWM output B.  
AD14  
P1B(4)  
RE7/AD15/ECCP2/P2A  
RE7  
I/O  
I/O  
I/O  
ST  
TTL  
ST  
Digital I/O.  
AD15  
External memory address/data 15.  
Enhanced Capture 2 input/Compare 2 output/  
PWM 2 output.  
ECCP2(3)  
P2A(3)  
O
ECCP2 PWM output A.  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
DS39646C-page 26  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTF is a bidirectional I/O port.  
RF0/AN5  
RF0  
24  
23  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 5.  
AN5  
RF1/AN6/C2OUT  
RF1  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
18  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF3  
17  
16  
15  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF4  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF5  
I/O  
I
O
ST  
Analog  
Analog  
Digital I/O.  
Analog input 10.  
Comparator reference voltage output.  
AN10  
CVREF  
RF6/AN11  
RF6  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/SS1  
RF7  
I/O  
I
ST  
TTL  
Digital I/O.  
SPI slave select input.  
SS1  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
© 2008 Microchip Technology Inc.  
DS39646C-page 27  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTG is a bidirectional I/O port.  
RG0/ECCP3/P3A  
RG0  
5
I/O  
I/O  
ST  
ST  
Digital I/O.  
ECCP3  
Enhanced Capture 3 input/Compare 3 output/  
PWM 3 output.  
P3A  
O
ECCP3 PWM output A.  
RG1/TX2/CK2  
RG1  
6
7
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
EUSART2 asynchronous transmit.  
EUSART2 synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2  
RG2  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
EUSART2 asynchronous receive.  
EUSART2 synchronous data (see related TX2/CK2).  
RG3/CCP4/P3D  
RG3  
8
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP4  
P3D  
Capture 4 input/Compare 4 output/PWM 4 output.  
ECCP3 PWM output D.  
RG4/CCP5/P1D  
RG4  
10  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP5  
P1D  
Capture 5 input/Compare 5 output/PWM 5 output.  
ECCP1 PWM output D.  
RG5  
See RG5/MCLR/VPP pin.  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
DS39646C-page 28  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTH is a bidirectional I/O port.  
RH0/A16  
RH0  
79  
80  
1
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 16.  
A16  
RH1/A17  
RH1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 17.  
A17  
RH2/A18  
RH2  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 18.  
A18  
RH3/A19  
RH3  
2
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 19.  
A19  
RH4/AN12/P3C  
RH4  
22  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 12.  
ECCP3 PWM output C.  
AN12  
P3C(5)  
RH5/AN13/P3B  
RH5  
21  
20  
19  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 13.  
ECCP3 PWM output B.  
AN13  
P3B(5)  
RH6/AN14/P1C  
RH6  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 14.  
ECCP1 PWM output C.  
AN14  
P1C(5)  
RH7/AN15/P1B  
RH7  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 15.  
ECCP1 PWM output B.  
AN15  
P1B(5)  
Legend: TTL = TTL compatible input CMOS  
= CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
© 2008 Microchip Technology Inc.  
DS39646C-page 29  
PIC18F8722 FAMILY  
TABLE 1-4:  
Pin Name  
PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Description  
PORTJ is a bidirectional I/O port.  
RJ0/ALE  
RJ0  
62  
61  
60  
59  
39  
40  
41  
42  
I/O  
O
ST  
Digital I/O.  
External memory address latch enable.  
ALE  
RJ1/OE  
RJ1  
I/O  
O
ST  
Digital I/O.  
External memory output enable.  
OE  
RJ2/WRL  
RJ2  
I/O  
O
ST  
Digital I/O.  
External memory write low control.  
WRL  
RJ3/WRH  
RJ3  
I/O  
O
ST  
Digital I/O.  
External memory write high control.  
WRH  
RJ4/BA0  
RJ4  
I/O  
O
ST  
Digital I/O.  
External memory byte address 0 control.  
BA0  
RJ5/CE  
RJ4  
I/O  
O
ST  
Digital I/O  
External memory chip enable control.  
CE  
RJ6/LB  
RJ6  
I/O  
O
ST  
Digital I/O.  
External memory low byte control.  
LB  
RJ7/UB  
RJ7  
I/O  
O
ST  
Digital I/O.  
External memory high byte control.  
UB  
VSS  
11, 31, 51, 70  
P
P
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
= CMOS compatible input or output  
VDD  
12, 32, 48, 71  
AVSS  
AVDD  
26  
25  
Legend: TTL = TTL compatible input CMOS  
ST = Schmitt Trigger input with CMOS levels Analog= Analog input  
I
P
= Input  
= Power  
O
= Output  
I2C™/SMB  
= I2C/SMBus input buffer  
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except  
Microcontroller mode).  
2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).  
3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).  
4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).  
5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
DS39646C-page 30  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(XT, LP, HS OR HSPLL  
CONFIGURATION)  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
(1)  
C1  
The PIC18F8722 family of devices can be operated in  
ten different oscillator modes. The user can program the  
Configuration bits, FOSC<3:0>, in Configuration  
Register 1H to select one of these ten modes:  
OSC1  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
1. LP  
2. XT  
3. HS  
Low-Power Crystal  
Sleep  
(2)  
RS  
Crystal/Resonator  
(1)  
PIC18FXXXX  
C2  
OSC2  
High-Speed Crystal/Resonator  
4. HSPLL High-Speed Crystal/Resonator  
with PLL enabled  
Note 1: See Table 2-1 and Table 2-2 for initial values of  
C1 and C2.  
5. RC  
External Resistor/Capacitor with  
FOSC/4 output on RA6  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
6. RCIO  
External Resistor/Capacitor with I/O  
on RA6  
3: RF varies with the oscillator mode chosen.  
7. INTIO1 Internal Oscillator with FOSC/4 output  
on RA6 and I/O on RA7  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
8. INTIO2 Internal Oscillator with I/O on RA6  
and RA7  
Typical Capacitor Values Used:  
9. EC  
External Clock with FOSC/4 output  
External Clock with I/O on RA6  
10. ECIO  
Mode  
Freq  
OSC1  
OSC2  
XT  
3.58 MHz  
22 pF  
22 pF  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
Capacitor values are for design guidance only.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application. Refer  
to the following application notes for oscillator specific  
information:  
• AN588 – PIC® Microcontroller Oscillator Design  
Guide  
• AN826 – Crystal Oscillator Basics and Crystal  
Selection for rfPIC® and PIC® Devices  
• AN849 – Basic PIC® Oscillator Design  
• AN943 – Practical PIC® Oscillator Analysis and  
Design  
In XT, LP, HS or HSPLL Oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections.  
The oscillator design requires the use of a parallel cut  
crystal.  
Note:  
Use of a series cut crystal may give a  
frequency out of the crystal manufacturer’s  
specifications.  
• AN949 – Making Your Oscillator Work  
See the notes following Table 2-2 for additional  
information.  
Note:  
When using resonators with frequencies  
above 3.5 MHz, the use of HS mode,  
rather than XT mode, is recommended.  
HS mode may be used at any VDD for  
which the controller is rated. If HS is  
selected, it is possible that the gain of the  
oscillator will overdrive the resonator.  
Therefore, a series resistor may be placed  
between the OSC2 pin and the resonator.  
As  
a
good starting point, the  
recommended value of RS is 330Ω.  
© 2008 Microchip Technology Inc.  
DS39646C-page 31  
PIC18F8722 FAMILY  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 2-2.  
When operated in this mode, parameters D033 and  
D043 apply.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
QUARTZ CRYSTALS  
Typical Capacitor Values  
Crystal  
Freq  
Tested:  
Osc Type  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
C1  
C2  
LP  
XT  
32 kHz  
22 pF  
22 pF  
1 MHz  
4 MHz  
22 pF  
22 pF  
22 pF  
22 pF  
OSC1  
Clock from  
Ext. System  
HS  
4 MHz  
10 MHz  
20 MHz  
25 MHz  
22 pF  
22 pF  
22 pF  
22 pF  
22 pF  
22 pF  
22 pF  
22 pF  
PIC18FXXXX  
(HS Mode)  
OSC2  
Open  
Capacitor values are for design guidance only.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application. Refer  
to the following application notes for oscillator specific  
information:  
2.3  
External Clock Input  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. There is  
no oscillator start-up time required after a Power-on  
Reset or after an exit from Sleep mode.  
• AN588 – PIC® Microcontroller Oscillator Design  
Guide  
• AN826 – Crystal Oscillator Basics and Crystal  
Selection for rfPIC® and PIC® Devices  
• AN849 – Basic PIC® Oscillator Design  
• AN943 – Practical PIC® Oscillator Analysis and  
Design  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-3 shows the pin connections for the EC  
Oscillator mode.  
FIGURE 2-3:  
EXTERNAL CLOCK  
INPUT OPERATION  
(EC CONFIGURATION)  
• AN949 – Making Your Oscillator Work  
See the notes following this table for additional  
information.  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18FXXXX  
OSC2/CLKO  
Note 1: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
FOSC/4  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional  
general purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-4 shows the pin connections  
for the ECIO Oscillator mode. When operated in this  
mode, parameters D033A and D043A apply.  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use the  
HS mode or switch to a crystal oscillator.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
FIGURE 2-4:  
EXTERNAL CLOCK  
INPUT OPERATION  
(ECIO CONFIGURATION)  
appropriate  
values  
of  
external  
components.  
4: Rs may be required to avoid overdriving  
crystals with low drive level specification.  
OSC1/CLKI  
PIC18FXXXX  
I/O (OSC2)  
Clock from  
Ext. System  
5: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
RA6  
DS39646C-page 32  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
2.4  
RC Oscillator  
2.5  
PLL Frequency Multiplier  
For timing insensitive applications, the RC and RCIO  
Oscillator modes offer additional cost savings. The  
actual oscillator frequency is a function of several  
factors:  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who wish to use a lower frequency  
oscillator circuit or to clock the device up to its highest  
rated frequency from a crystal oscillator. This may be  
useful for customers who are concerned with EMI due  
to high-frequency crystals or users who require higher  
clock speeds from an internal oscillator.  
• supply voltage  
• values of the external resistor (REXT) and  
capacitor (CEXT)  
• operating temperature  
2.5.1  
HSPLL OSCILLATOR MODE  
Given the same device, operating voltage and tempera-  
ture and component values, there will also be unit-to-unit  
frequency variations. These are due to factors such as:  
The HSPLL mode makes use of the HS mode oscillator  
for frequencies up to 10 MHz. A PLL then multiplies the  
oscillator output frequency by 4 to produce an internal  
clock frequency up to 40 MHz. The PLLEN bit is not  
available when this mode is configured as the primary  
clock source.  
• normal manufacturing variation  
• difference in lead frame capacitance between  
package types (especially for low CEXT values)  
• variations within the tolerance of limits of REXT  
and CEXT  
The PLL is only available to the crystal oscillator when  
the FOSC<3:0> Configuration bits are programmed for  
HSPLL mode (= 0110).  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-5 shows how the R/C combination is  
connected.  
FIGURE 2-7:  
HSPLLBLOCKDIAGRAM  
HS Oscillator Enable  
PLL Enable  
(from Configuration Register 1H)  
FIGURE 2-5:  
RC OSCILLATOR MODE  
VDD  
OSC2  
Phase  
Comparator  
HS Mode  
Crystal  
Osc  
FIN  
REXT  
Internal  
OSC1  
OSC1  
FOUT  
Clock  
CEXT  
VSS  
Loop  
Filter  
PIC18FXXXX  
OSC2/CLKO  
FOSC/4  
÷4  
VCO  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
20 pF CEXT 300 pF  
SYSCLK  
The RCIO Oscillator mode (Figure 2-6) functions like  
the RC mode, except that the OSC2 pin becomes an  
additional general purpose I/O pin. The I/O pin  
becomes bit 6 of PORTA (RA6).  
2.5.2  
PLL AND INTOSC  
The PLL is also available to the internal oscillator block  
when the internal oscillator block is configured as the  
primary clock source. In this configuration, the PLL is  
enabled in software and generates a clock output of up  
to 32 MHz. The operation of INTOSC with the PLL is  
described in Section 2.6.4 “PLL in INTOSC Modes”.  
FIGURE 2-6:  
RCIO OSCILLATOR MODE  
VDD  
REXT  
Internal  
OSC1  
Clock  
CEXT  
PIC18FXXXX  
VSS  
I/O (OSC2)  
RA6  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
20 pF CEXT 300 pF  
© 2008 Microchip Technology Inc.  
DS39646C-page 33  
PIC18F8722 FAMILY  
2.6.2  
INTOSC OUTPUT FREQUENCY  
2.6  
Internal Oscillator Block  
The internal oscillator block is calibrated at the factory  
to produce an INTOSC output frequency of 8 MHz.  
The PIC18F8722 family of devices includes an internal  
oscillator block which generates two different clock  
signals; either can be used as the microcontroller’s  
clock source. This may eliminate the need for external  
oscillator circuits on the OSC1 and/or OSC2 pins.  
The INTRC oscillator operates independently of the  
INTOSC source. Any changes in INTOSC across  
voltage and temperature are not necessarily reflected  
by changes in INTRC or vice versa.  
The main output (INTOSC) is an 8 MHz clock source,  
which can be used to directly drive the device clock. It  
also drives a postscaler, which can provide a range of  
clock frequencies from 31 kHz to 4 MHz. The INTOSC  
output is enabled when a clock frequency from 125 kHz  
to 8 MHz is selected. The INTOSC output can also be  
enabled when 31 kHz is selected, depending on the  
INTSRC bit (OSCTUNE<7>).  
2.6.3  
OSCTUNE REGISTER  
The INTOSC output has been calibrated at the  
factory but can be adjusted in the user’s application.  
This  
is  
done  
by  
writing  
to  
TUN<4:0>  
(OSCTUNE<4:0>) in the OSCTUNE register  
(Register ).  
The other clock source is the internal RC oscillator  
(INTRC), which provides a nominal 31 kHz output.  
INTRC is enabled if it is selected as the device clock  
source; it is also enabled automatically when any of the  
following are enabled:  
When the OSCTUNE register is modified, the INTOSC  
frequency will begin shifting to the new frequency. The  
INTOSC clock will stabilize within 1 ms. Code execu-  
tion continues during this shift. There is no indication  
that the shift has occurred. The INTRC is not affected  
by OSCTUNE.  
• Power-up Timer  
The OSCTUNE register also implements the INTSRC  
(OSCTUNE<7>) and PLLEN (OSCTUNE<6>) bits,  
which control certain features of the internal oscillator  
block. The INTSRC bit allows users to select which  
internal oscillator provides the clock source when the  
31 kHz frequency option is selected. This is covered in  
greater detail in Section 2.7.1 “Oscillator Control  
Register”.  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
• Two-Speed Start-up  
These features are discussed in greater detail in  
Section 25.0 “Special Features of the CPU”.  
The clock source frequency (INTOSC direct, INTRC  
direct or INTOSC postscaler) is selected by configuring  
the IRCF bits of the OSCCON register (page 39).  
The PLLEN bit controls the operation of the Phase  
Locked Loop (PLL) in internal oscillator modes (see  
Figure 2-10).  
2.6.1  
INTIO MODES  
Using the internal oscillator as the clock source elimi-  
nates the need for up to two external oscillator pins,  
which can then be used for digital I/O. Two distinct  
configurations are available:  
FIGURE 2-10:  
INTOSC AND PLL BLOCK  
DIAGRAM  
8 or 4 MHz  
PLLEN  
(OSCTUNE<6>)  
• In INTIO1 mode, the OSC2 pin outputs FOSC/4,  
while OSC1 functions as RA7 (see Figure 2-8) for  
digital input and output.  
• In INTIO2 mode, OSC1 functions as RA7 and  
OSC2 functions as RA6 (see Figure 2-9), both for  
digital input and output.  
Phase  
Comparator  
FIN  
INTOSC  
FOUT  
FIGURE 2-8: INTIO1 OSCILLATOR MODE  
Loop  
Filter  
I/O (OSC1)  
OSC2  
RA7  
PIC18FXXXX  
FOSC/4  
÷4  
VCO  
SYSCLK  
CLKO  
OSC2  
FIGURE 2-9: INTIO2 OSCILLATOR MODE  
I/O (OSC1)  
I/O (OSC2)  
RA7  
RA6  
PIC18FXXXX  
RA6  
DS39646C-page 34  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
2.6.4  
PLL IN INTOSC MODES  
2.6.5  
INTOSC FREQUENCY DRIFT  
The 4x Phase Locked Loop (PLL) can be used with the  
internal oscillator block to produce faster device clock  
speeds than are normally possible with the internal  
oscillator sources. When enabled, the PLL produces a  
clock speed of 16 MHz or 32 MHz.  
The factory calibrates the internal oscillator block  
output (INTOSC) for 8 MHz. However, this frequency  
may drift as VDD or temperature changes and can  
affect the controller operation in a variety of ways. It is  
possible to adjust the INTOSC frequency by modifying  
the value in the OSCTUNE register. Depending on the  
device, this may have no effect on the INTRC clock  
source frequency.  
Unlike HSPLL mode, the PLL is controlled through  
software. The control bit, PLLEN (OSCTUNE<6>), is  
used to enable or disable its operation.  
Tuning the INTOSC source requires knowing when to  
make the adjustment, in which direction it should be  
made and in some cases, how large a change is  
needed. Three compensation techniques are discussed  
in Section 2.6.5.1 “Compensating with the  
EUSART”, Section 2.6.5.2 “Compensating with the  
Timers” and Section 2.6.5.3 “Compensating with the  
CCP Module in Capture Mode” but other techniques  
may be used.  
The PLL is available when the device is configured to  
use the internal oscillator block as its primary clock  
source (FOSC<3:0> = 1001or 1000). Additionally, the  
PLL will only function when the selected output fre-  
quency is either 4 MHz or 8 MHz (OSCCON<6:4> = 111  
or 110). If both of these conditions are not met, the PLL  
is disabled and the PLLEN bit remains clear (writes are  
ignored).  
REGISTER 2-1:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
R/W-0  
INTSRC  
bit 7  
R/W-0  
PLLEN(1)  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
INTSRC: Internal Oscillator Low-Frequency Source Select bit  
1= 31.25 kHz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled)  
0= 31 kHz device clock derived directly from INTRC internal oscillator  
PLLEN: Frequency Multiplier PLL for INTOSC Enable bit(1)  
1= PLL enabled for INTOSC (4 MHz and 8 MHz only)  
0= PLL disabled  
bit 5  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
bit 4-0  
00001  
00000= Center frequency. Oscillator module is running at the calibrated frequency.  
11111  
10000= Minimum frequency  
Note 1: Available only in certain oscillator configurations; otherwise, this bit is unavailable and reads as ‘0’. See  
Section 2.6.4 “PLL in INTOSC Modes” for details.  
© 2008 Microchip Technology Inc.  
DS39646C-page 35  
PIC18F8722 FAMILY  
2.6.5.1  
Compensating with the EUSART  
2.6.5.3  
Compensating with the CCP Module  
in Capture Mode  
An adjustment may be required when the EUSART  
begins to generate framing errors or receives data with  
errors while in Asynchronous mode. Framing errors  
indicate that the device clock frequency is too high. To  
adjust for this, decrement the value in OSCTUNE to  
reduce the clock frequency. On the other hand, errors  
in data may suggest that the clock speed is too low. To  
compensate, increment OSCTUNE to increase the  
clock frequency.  
A CCP module can use free running Timer1 (or  
Timer3), clocked by the internal oscillator block and an  
external event with a known period (i.e., AC power  
frequency). The time of the first event is captured in the  
CCPRxH:CCPRxL registers and is recorded for use  
later. When the second event causes a capture, the  
time of the first event is subtracted from the time of the  
second event. Since the period of the external event is  
known, the time difference between events can be  
calculated.  
2.6.5.2  
Compensating with the Timers  
This technique compares device clock speed to some  
reference clock. Two timers may be used; one timer is  
clocked by the peripheral clock, while the other is  
clocked by a fixed reference source, such as the  
Timer1 oscillator.  
If the measured time is much greater than the  
calculated time, the internal oscillator block is running  
too fast. To compensate, decrement the OSCTUNE  
register. If the measured time is much less than the  
calculated time, the internal oscillator block is running  
too slow. To compensate, increment the OSCTUNE  
register.  
Both timers are cleared, but the timer clocked by the  
reference generates interrupts. When an interrupt  
occurs, the internally clocked timer is read and both  
timers are cleared. If the internally clocked timer value  
is much greater than expected, then the internal  
oscillator block is running too fast. To adjust for this,  
decrement the OSCTUNE register.  
DS39646C-page 36  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The secondary oscillators are those external sources  
not connected to the OSC1 or OSC2 pins. These  
sources may continue to operate even after the  
controller is placed in a power-managed mode.  
2.7  
Clock Sources and Oscillator  
Switching  
The PIC18F8722 family of devices includes a feature  
that allows the device clock source to be switched from  
the main oscillator to an alternate clock source. These  
devices also offer two alternate clock sources. When  
an alternate clock source is enabled, the various  
power-managed operating modes are available.  
The PIC18F8722 family of devices offers the Timer1  
oscillator as a secondary oscillator. This oscillator, in all  
power-managed modes, is often the time base for  
functions such as a real-time clock.  
Most often, a 32.768 kHz watch crystal is connected  
between the RC0/T1OSO/T13CKI and RC1/T1OSI  
pins. Like the LP mode oscillator circuit, loading  
capacitors are also connected from each pin to ground.  
Essentially, there are three clock sources for these  
devices:  
• Primary oscillators  
• Secondary oscillators  
• Internal oscillator block  
The Timer1 oscillator is discussed in greater detail in  
Section 13.3 “Timer1 Oscillator”.  
The primary oscillators include the External Crystal  
and Resonator modes, the External RC modes, the  
External Clock modes and the internal oscillator block.  
The particular mode is defined by the FOSC<3:0>  
Configuration bits. The details of these modes are  
covered earlier in this chapter.  
In addition to being a primary clock source, the internal  
oscillator block is available as a power-managed  
mode clock source. The INTRC source is also used as  
the clock source for several special features, such as  
the WDT and Fail-Safe Clock Monitor.  
The clock sources for the PIC18F8722 family of devices  
are shown in Figure 2-11. See Section 25.0 “Special  
Features of the CPU” for Configuration register details.  
FIGURE 2-11:  
PIC18F8722 FAMILY CLOCK DIAGRAM  
PIC18F6527/6622/6627/6722/8527/8622/8627/8722  
Primary Oscillator  
LP, XT, HS, RC, EC  
HSPLL, INTOSC/PLL  
T1OSC  
OSC2  
Sleep  
4 x PLL  
OSC1  
OSCTUNE<6>  
Peripherals  
Secondary Oscillator  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
OSCCON<6:4>  
Internal Oscillator  
CPU  
8 MHz  
OSCCON<6:4>  
111  
110  
101  
4 MHz  
2 MHz  
Internal  
Oscillator  
Block  
IDLEN  
Clock  
1 MHz  
Control  
100  
011  
010  
001  
000  
8 MHz  
Source  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
8 MHz  
(INTOSC)  
INTRC  
Source  
FOSC<3:0>  
OSCCON<1:0>  
Clock Source Option  
for other Modules  
1
0
31 kHz (INTRC)  
OSCTUNE<7>  
WDT, PWRT, FSCM  
and Two-Speed Start-up  
© 2008 Microchip Technology Inc.  
DS39646C-page 37  
PIC18F8722 FAMILY  
the primary clock is providing the device clock in  
primary clock modes. The IOFS bit indicates when the  
internal oscillator block has stabilized and is providing  
the device clock in RC Clock modes. The T1RUN bit  
(T1CON<6>) indicates when the Timer1 oscillator is  
providing the device clock in secondary clock modes.  
In power-managed modes, only one of these three bits  
will be set at any time. If none of these bits are set, the  
INTRC is providing the clock or the internal oscillator  
block has just started and is not yet stable.  
2.7.1  
OSCILLATOR CONTROL REGISTER  
The OSCCON register (Register 2-2) controls several  
aspects of the device clock’s operation, both in full  
power operation and in power-managed modes.  
The System Clock Select bits, SCS<1:0>, select the  
clock source. The available clock sources are the  
primary clock (defined by the FOSC<3:0> Configura-  
tion bits), the secondary clock (Timer1 oscillator) and  
the internal oscillator block. The clock source changes  
immediately after either of the SCS<1:0> bits are  
changed, following a brief clock transition interval. The  
SCS bits are reset on all forms of Reset.  
The IDLEN bit controls whether the device goes into  
Sleep mode or one of the Idle modes when the SLEEP  
instruction is executed.  
The Internal Oscillator Frequency Select bits  
(IRCF<2:0>) select the frequency output of the internal  
oscillator block to drive the device clock. The choices  
are the INTRC source (31 kHz), the INTOSC source  
(8 MHz) or one of the frequencies derived from the  
INTOSC postscaler (31.25 kHz to 4 MHz). If the  
internal oscillator block is supplying the device clock,  
changing the states of these bits will have an immedi-  
ate change on the internal oscillator’s output. On  
device Resets, the default output frequency of the  
internal oscillator block is set at 1 MHz.  
The use of the flag and control bits in the OSCCON  
register is discussed in more detail in Section 3.0  
“Power-Managed Modes”.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator  
is not enabled, then any attempt to select  
a secondary clock source will be ignored.  
When a nominal output frequency of 31 kHz is selected  
(IRCF<2:0> = 000), users may choose which internal  
oscillator acts as the source. This is done with the  
INTSRC bit in the OSCTUNE register (OSCTUNE<7>).  
Setting this bit selects INTOSC as a 31.25 kHz clock  
source derived from the INTOSC postscaler. Clearing  
INTSRC selects INTRC (nominally 31 kHz) as the  
clock source and disables the INTOSC to reduce  
current consumption.  
2: It is recommended that the Timer1  
oscillator be operating and stable before  
selecting the secondary clock source or a  
very long delay may occur while the  
Timer1 oscillator starts.  
2.7.2  
OSCILLATOR TRANSITIONS  
The PIC18F8722 family of devices contains circuitry to  
prevent clock “glitches” when switching between clock  
sources. A short pause in the device clock occurs dur-  
ing the clock switch. The length of this pause is the sum  
of two cycles of the old clock source and three to four  
cycles of the new clock source. This formula assumes  
that the new clock source is stable.  
This option allows users to select the tunable and more  
precise INTOSC as a clock source, while maintaining  
power savings with a very low clock speed. Addition-  
ally, the INTOSC source will already be stable should a  
switch to a higher frequency be needed quickly.  
Regardless of the setting of INTSRC, INTRC always  
remains the clock source for features such as the  
Watchdog Timer and the Fail-Safe Clock Monitor.  
Clock transitions are discussed in greater detail in  
Section 3.1.2 “Entering Power-Managed Modes”.  
The OSTS, IOFS and T1RUN bits indicate which clock  
source is currently providing the device clock. The  
OSTS bit indicates that the Oscillator Start-up Timer  
and PLL Start-up Timer (if enabled) have timed out and  
DS39646C-page 38  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 2-2:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0  
IDLEN  
bit 7  
R/W-1  
IRCF2  
R/W-0  
IRCF1  
R/W-0  
IRCF0  
R(1)  
R-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
OSTS  
IOFS  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IDLEN: Idle Enable bit  
1= Device enters an Idle mode when a SLEEPinstruction is executed  
0= Device enters Sleep mode when a SLEEPinstruction is executed  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits(5)  
111= 8 MHz (INTOSC drives clock directly)  
110= 4 MHz  
101= 2 MHz  
100= 1 MHz(3)  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (from either INTOSC/256 or INTRC directly)(2)  
bit 3  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Oscillator Start-up Timer (OST) time-out has expired; primary oscillator is running  
0= Oscillator Start-up Timer (OST) time-out is running; primary oscillator is not ready  
bit 2  
IOFS: INTOSC Frequency Stable bit  
1= INTOSC frequency is stable  
0= INTOSC frequency is not stable  
bit 1-0  
SCS<1:0>: System Clock Select bits(4)  
1x= Internal oscillator block  
01= Secondary (Timer1) oscillator  
00= Primary oscillator  
Note 1: Reset state depends on state of the IESO Configuration bit.  
2: Source selected by the INTSRC bit (OSCTUNE<7>), see text.  
3: Default output frequency of INTOSC on Reset.  
4: Modifying the SCS<1:0> bits will cause an immediate clock source switch.  
5: Modifying the IRCF<3:0> bits will cause an immediate clock frequency switch if the internal oscillator is  
providing the device clocks.  
© 2008 Microchip Technology Inc.  
DS39646C-page 39  
PIC18F8722 FAMILY  
2.8  
Effects of Power-Managed Modes  
on the Various Clock Sources  
2.9  
Power-up Delays  
Power-up delays are controlled by two or three timers,  
so that no external Reset circuitry is required for most  
applications. The delays ensure that the device is kept  
in Reset until the device power supply is stable under  
normal circumstances and the primary clock is operat-  
ing and stable. For additional information on power-up  
delays, see Section 4.5 “Device Reset Timers”.  
When PRI_IDLE mode is selected, the configured  
oscillator continues to run without interruption. For all  
other power-managed modes, the oscillator using the  
OSC1 pin is disabled. The OSC1 pin (and OSC2 pin in  
crystal oscillator modes) will stop oscillating.  
In secondary clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the device clock. The Timer1 oscillator may  
also run in all power-managed modes if required to  
clock Timer1 or Timer3.  
The first timer is the Power-up Timer (PWRT) which  
provides a fixed delay on power-up (parameter 33,  
Table 28-12). It is enabled by clearing (= 0) the  
PWRTEN Configuration bit (CONFIG2L<0>).  
In internal oscillator modes (RC_RUN and RC_IDLE),  
the internal oscillator block provides the device clock  
source. The 31 kHz INTRC output can be used directly  
to provide the clock and may be enabled to support  
various special features, regardless of the power-  
managed mode (see Section 25.2 “Watchdog Timer  
(WDT)” and Section 25.4 “Fail-Safe Clock Monitor”  
for more information). The INTOSC output at 8 MHz  
may be used directly to clock the device or may be  
divided down by the postscaler. The INTOSC output is  
disabled if the clock is provided directly from the INTRC  
output. The INTOSC output is also enabled for Two-  
Speed Start-up at 1 MHz after Resets and when  
configured for wake from Sleep mode.  
2.9.1  
DELAYS FOR POWER-UP AND  
RETURN TO PRIMARY CLOCK  
The second timer is the Oscillator Start-up Timer  
(OST), intended to delay execution until the crystal  
oscillator is stable (LP, XT and HS modes). The OST  
does this by counting 1024 oscillator cycles before  
allowing the oscillator to clock the device.  
When the HSPLL Oscillator mode is selected, a third  
timer delays execution for an additional 2 ms following  
the HS mode OST delay, so the PLL can lock to the  
incoming clock frequency. At the end of these delays,  
the OSTS bit (OSCCON<3>) is set.  
There is a delay of interval TCSD (parameter 38,  
Table 28-12), once execution is allowed to start, when  
the controller becomes ready to execute instructions.  
This delay runs concurrently with any other delays.  
This may be the only delay that occurs when any of the  
EC, RC or INTIO modes are used as the primary clock  
source.  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
Timer1 oscillator may be operating to support a real-  
time clock. Other features may be operating that do not  
require a device clock source (i.e., SSP slave, PSP,  
INTx pins and others). Peripherals that may add  
significant current consumption are listed in  
Section 28.2 “DC Characteristics”.  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC Mode  
OSC1 Pin  
OSC2 Pin  
RC, INTIO1  
RCIO  
Floating, external resistor pulls high  
Floating, external resistor pulls high  
Configured as PORTA, bit 7  
At logic low (clock/4 output)  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
At logic low (clock/4 output)  
INTIO2  
ECIO  
Floating, driven by external clock  
Floating, driven by external clock  
EC  
LP, XT and HS  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
Note:  
See Table 4-2 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
DS39646C-page 40  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
3.1.1  
CLOCK SOURCES  
3.0  
POWER-MANAGED MODES  
The SCS1:SCS0 bits allow the selection of one of three  
clock sources for power-managed modes. They are:  
The PIC18F8722 family of devices offers a total of  
seven operating modes for more efficient power man-  
agement. These modes provide a variety of options for  
selective power conservation in applications where  
resources may be limited (i.e., battery-powered  
devices).  
• the primary clock, as defined by the FOSC<3:0>  
Configuration bits  
• the secondary clock (the Timer1 oscillator)  
• the internal oscillator block (for INTOSC modes)  
There are three categories of power-managed modes:  
3.1.2  
ENTERING POWER-MANAGED  
MODES  
• Run modes  
• Idle modes  
• Sleep mode  
Switching from one power-managed mode to another  
begins by loading the OSCCON register. The  
SCS<1:0> bits select the clock source and determine  
which Run or Idle mode is to be used. Changing these  
bits causes an immediate switch to the new clock  
source, assuming that it is running. The switch may  
also be subject to clock transition delays. These are  
discussed in Section 3.1.3 “Clock Transitions and  
Status Indicators” and subsequent sections.  
These categories define which portions of the device  
are clocked and sometimes, what speed. The Run and  
Idle modes may use any of the three available clock  
sources (primary, secondary or internal oscillator  
block); the Sleep mode does not use a clock source.  
The power-managed modes include several power-  
saving features offered on previous PIC® devices. One  
is the clock switching feature, offered in other PIC18  
devices, allowing the controller to use the Timer1 oscil-  
lator in place of the primary oscillator. Also included is  
the Sleep mode, offered by all PIC devices, where all  
device clocks are stopped.  
Entry to the power-managed Idle or Sleep modes is  
triggered by the execution of a SLEEPinstruction. The  
actual mode that results depends on the status of the  
IDLEN bit.  
Depending on the current mode and the mode being  
switched to, a change to a power-managed mode does  
not always require setting all of these bits. Many  
transitions may be done by changing the oscillator select  
bits, or changing the IDLEN bit, prior to issuing a SLEEP  
instruction. If the IDLEN bit is already configured  
correctly, it may only be necessary to perform a SLEEP  
instruction to switch to the desired mode.  
3.1  
Selecting Power-Managed Modes  
Selecting  
a power-managed mode requires two  
decisions: if the CPU is to be clocked or not and the  
selection of clock source. The IDLEN bit  
(OSCCON<7>) controls CPU clocking, while the  
SCS<1:0> bits (OSCCON<1:0>) select the clock  
source. The individual modes, bit settings, clock sources  
and affected modules are summarized in Table 3-1.  
a
TABLE 3-1:  
Mode  
POWER-MANAGED MODES  
OSCCON Bits  
Module Clocking  
Available Clock and Oscillator Source  
IDLEN<7>(1) SCS<1:0>  
CPU  
Peripherals  
Sleep  
0
N/A  
Off  
Off  
None – All clocks are disabled  
PRI_RUN  
N/A  
00  
Clocked  
Clocked  
Primary – LP, XT, HS, HSPLL, RC, EC and  
Internal Oscillator Block(2)  
.
This is the normal full power execution mode.  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(2)  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
N/A  
N/A  
1
01  
1x  
00  
01  
1x  
Clocked  
Clocked  
Off  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Primary – LP, XT, HS, HSPLL, RC, EC  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(2)  
1
Off  
1
Off  
Note 1: IDLEN reflects its value when the SLEEPinstruction is executed.  
2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.  
© 2008 Microchip Technology Inc.  
DS39646C-page 41  
PIC18F8722 FAMILY  
3.1.3  
CLOCK TRANSITIONS AND STATUS  
INDICATORS  
3.2  
Run Modes  
In the Run modes, clocks to both the core and  
peripherals are active. The difference between these  
modes is the clock source.  
The length of the transition between clock sources is  
the sum of two cycles of the old clock source and three  
to four cycles of the new clock source. This formula  
assumes that the new clock source is stable.  
3.2.1  
PRI_RUN MODE  
Three bits indicate the current clock source and its  
status. They are:  
The PRI_RUN mode is the normal, full power execution  
mode of the microcontroller. This is also the default  
mode upon a device Reset, unless Two-Speed Start-up  
is enabled (see Section 25.3 “Two-Speed Start-up”  
for details). In this mode, the OSTS bit is set. The IOFS  
bit may be set if the internal oscillator block is the  
primary clock source (see Section 2.7.1 “Oscillator  
Control Register”).  
• OSTS (OSCCON<3>)  
• IOFS (OSCCON<2>)  
• T1RUN (T1CON<6>)  
In general, only one of these bits will be set while in a  
given power-managed mode. When the OSTS bit is  
set, the primary clock is providing the device clock.  
When the IOFS bit is set, the INTOSC output is  
providing a stable 8 MHz clock source to a divider that  
actually drives the device clock. When the T1RUN bit is  
set, the Timer1 oscillator is providing the clock. If none  
of these bits are set, then either the INTRC clock  
source is clocking the device, or the INTOSC source is  
not yet stable.  
3.2.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high accuracy clock source.  
If the internal oscillator block is configured as the pri-  
mary clock source by the FOSC<3:0> Configuration  
bits, then both the OSTS and IOFS bits may be set  
when in PRI_RUN or PRI_IDLE modes. This indicates  
that the primary clock (INTOSC output) is generating a  
stable 8 MHz output. Entering another INTOSC power-  
managed mode at the same frequency would clear the  
OSTS bit.  
SEC_RUN mode is entered by setting the SCS<1:0>  
bits to ‘01’. The device clock source is switched to the  
Timer1 oscillator (see Figure 3-1), the primary oscilla-  
tor is shut down, the T1RUN bit (T1CON<6>) is set and  
the OSTS bit is cleared.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SCS<1:0> bits are set to ‘01’, entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, device clocks will be delayed until  
the oscillator has started; in such situa-  
tions, initial oscillator operation is far from  
stable and unpredictable operation may  
result.  
Note 1: Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
2: Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode. It acts as the trigger to place the  
controller into either the Sleep mode or  
one of the Idle modes, depending on the  
setting of the IDLEN bit.  
On transitions from SEC_RUN mode to PRI_RUN, the  
peripherals and CPU continue to be clocked from the  
Timer1 oscillator while the primary clock is started.  
When the primary clock becomes ready, a clock switch  
back to the primary clock occurs (see Figure 3-2).  
When the clock switch is complete, the T1RUN bit is  
cleared, the OSTS bit is set and the primary clock is  
providing the clock. The IDLEN and SCS bits are not  
affected by the wake-up; the Timer1 oscillator  
continues to run.  
3.1.4  
MULTIPLE SLEEP COMMANDS  
The power-managed mode that is invoked with the  
SLEEP instruction is determined by the setting of the  
IDLEN bit at the time the instruction is executed. If  
another SLEEPinstruction is executed, the device will  
enter the power-managed mode specified by IDLEN at  
that time. If IDLEN has changed, the device will enter  
the new power-managed mode specified by the new  
setting.  
DS39646C-page 42  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 3-1:  
TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
T1OSI  
Clock Transition(1)  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Clock transition typically occurs within 2-4 TOSC.  
FIGURE 3-2:  
TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
T1OSI  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition(2)  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
OSTS bit Set  
SCS1:SCS0 bits Changed  
Note1:TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2: Clock transition typically occurs within 2-4 TOSC.  
This mode is entered by setting the SCS1 bit to ‘1’.  
Although it is ignored, it is recommended that the SCS0  
bit also be cleared; this is to maintain software compat-  
ibility with future devices. When the clock source is  
switched to the INTOSC multiplexer (see Figure 3-3),  
the primary oscillator is shut down and the OSTS bit is  
cleared. The IRCF bits may be modified at any time to  
immediately change the clock speed.  
3.2.3  
RC_RUN MODE  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator block using the  
INTOSC multiplexer. In this mode, the primary clock is  
shut down. When using the INTRC source, this mode  
provides the best power conservation of all the Run  
modes, while still executing code. It works well for user  
applications which are not highly timing-sensitive or do  
not require high-speed clocks at all times.  
Note:  
Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
If the primary clock source is the internal oscillator  
block (either INTRC or INTOSC), there are no distin-  
guishable differences between PRI_RUN and  
RC_RUN modes during execution. However, a clock  
switch delay will occur during entry to and exit from  
RC_RUN mode. Therefore, if the primary clock source  
is the internal oscillator block, the use of RC_RUN  
mode is not recommended.  
© 2008 Microchip Technology Inc.  
DS39646C-page 43  
PIC18F8722 FAMILY  
If the IRCF bits and the INTSRC bit are all clear, the  
INTOSC output is not enabled and the IOFS bit will  
remain clear; there will be no indication of the current  
clock source. The INTRC source is providing the  
device clocks.  
On transitions from RC_RUN mode to PRI_RUN mode,  
the device continues to be clocked from the INTOSC  
multiplexer while the primary clock is started. When the  
primary clock becomes ready, a clock switch to the  
primary clock occurs (see Figure 3-4). When the clock  
switch is complete, the IOFS bit is cleared, the OSTS  
bit is set and the primary clock is providing the device  
clock. The IDLEN and SCS bits are not affected by the  
switch. The INTRC source will continue to run if either  
the WDT or the Fail-Safe Clock Monitor is enabled.  
If the IRCF bits are changed from all clear (thus,  
enabling the INTOSC output) or if INTSRC is set, the  
IOFS bit becomes set after the INTOSC output  
becomes stable. Clocks to the device continue while  
the INTOSC source stabilizes after an interval of  
TIOBST (parameter 39, Table 28-12).  
If the IRCF bits were previously at a non-zero value, or  
if INTSRC was set before setting SCS1 and the  
INTOSC source was already stable, the IOFS bit will  
remain set.  
FIGURE 3-3:  
TRANSITION TIMING TO RC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
INTRC  
OSC1  
Clock Transition(1)  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Clock transition typically occurs within 2-4 TOSC.  
FIGURE 3-4:  
TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition(2)  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
SCS1:SCS0 bits Changed  
OSTS bit Set  
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2: Clock transition typically occurs within 2-4 TOSC.  
DS39646C-page 44  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
3.3  
Sleep Mode  
3.4  
Idle Modes  
The power-managed Sleep mode in the PIC18F8722  
family of devices is identical to the legacy Sleep mode  
offered in all other PIC devices. It is entered by clearing  
the IDLEN bit (the default state on device Reset) and  
executing the SLEEP instruction. This shuts down the  
selected oscillator (Figure 3-5). All clock source status  
bits are cleared.  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
If the IDLEN bit is set to a ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected using the SCS<1:0> bits; however, the  
CPU will not be clocked. The clock source status bits are  
not affected. Setting IDLEN and executing a SLEEP  
instruction provides a quick method of switching from a  
given Run mode to its corresponding Idle mode.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the INTRC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the WDT is selected, the INTRC source will continue  
to operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source selected by the SCS<1:0> bits  
becomes ready (see Figure 3-6), or it will be clocked  
from the internal oscillator block if either the Two-Speed  
Start-up or the Fail-Safe Clock Monitor are enabled  
(see Section 25.0 “Special Features of the CPU”). In  
either case, the OSTS bit is set when the primary clock  
is providing the device clocks. The IDLEN and SCS bits  
are not affected by the wake-up.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(parameter 38, Table 28-12) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator block will clock the CPU  
and peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or the Sleep mode, a WDT  
time-out will result in a WDT wake-up to the Run mode  
currently specified by the SCS<1:0> bits.  
FIGURE 3-5:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-6:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
Note1:TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
OSTS bit Set  
© 2008 Microchip Technology Inc.  
DS39646C-page 45  
PIC18F8722 FAMILY  
3.4.1  
PRI_IDLE MODE  
3.4.2  
SEC_IDLE MODE  
This mode is unique among the three low-power Idle  
modes, in that it does not disable the primary device  
clock. For timing sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm-up” or transition from another  
oscillator.  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered from SEC_RUN by set-  
ting the IDLEN bit and executing a SLEEPinstruction. If  
the device is in another Run mode, set the IDLEN bit  
first, then set the SCS<1:0> bits to ‘01’ and execute  
SLEEP. When the clock source is switched to the  
Timer1 oscillator, the primary oscillator is shut down,  
the OSTS bit is cleared and the T1RUN bit is set.  
PRI_IDLE mode is entered from PRI_RUN mode by  
setting the IDLEN bit and executing a SLEEP instruc-  
tion. If the device is in another Run mode, set IDLEN  
first, then clear the SCS bits and execute SLEEP.  
Although the CPU is disabled, the peripherals continue  
to be clocked from the primary clock source specified  
by the FOSC<3:0> Configuration bits. The OSTS bit  
remains set (see Figure 3-7).  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After an interval  
of TCSD following the wake event, the CPU begins exe-  
cuting code being clocked by the Timer1 oscillator. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run (see Figure 3-8).  
When a wake event occurs, the CPU is clocked from the  
primary clock source. A delay of interval TCSD  
(parameter 39, Table 28-12) is required between the  
wake event and when code execution starts. This is  
required to allow the CPU to become ready to execute  
instructions. After the wake-up, the OSTS bit remains  
set. The IDLEN and SCS bits are not affected by the  
wake-up (see Figure 3-8).  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_IDLE mode will not occur. If the  
Timer1 oscillator is enabled but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started. In such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
FIGURE 3-7:  
TRANSITION TIMING FOR ENTRY TO IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-8:  
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
TCSD  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
Wake Event  
DS39646C-page 46  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
On all exits from Idle or Sleep modes by interrupt, code  
execution branches to the interrupt vector if the GIE/  
GIEH bit (INTCON<7>) is set. Otherwise, code execu-  
tion continues or resumes without branching (see  
Section 10.0 “Interrupts”).  
3.4.3  
RC_IDLE MODE  
In RC_IDLE mode, the CPU is disabled but the periph-  
erals continue to be clocked from the internal oscillator  
block using the INTOSC multiplexer. This mode allows  
for controllable power conservation during Idle periods.  
A fixed delay of interval TCSD following the wake event  
is required when leaving Sleep and Idle modes. This  
delay is required for the CPU to prepare for execution.  
Instruction execution resumes on the first clock cycle  
following this delay.  
From RC_RUN, this mode is entered by setting the  
IDLEN bit and executing a SLEEP instruction. If the  
device is in another Run mode, first set IDLEN, then set  
the SCS1 bit and execute SLEEP. Although its value is  
ignored, it is recommended that SCS0 also be cleared;  
this is to maintain software compatibility with future  
devices. The INTOSC multiplexer may be used to  
select a higher clock frequency by modifying the IRCF  
bits before executing the SLEEPinstruction. When the  
clock source is switched to the INTOSC multiplexer, the  
primary oscillator is shut down and the OSTS bit is  
cleared.  
3.5.2  
EXIT BY WDT TIME-OUT  
A WDT time-out will cause different actions depending  
on which power-managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in an exit from the  
power-managed mode (see Section 3.2 “Run  
Modes” and Section 3.3 “Sleep Mode”). If the device  
is executing code (all Run modes), the time-out will  
result in a WDT Reset (see Section 25.2 “Watchdog  
Timer (WDT)”).  
If the IRCF bits are set to any non-zero value, or the  
INTSRC bit is set, the INTOSC output is enabled. The  
IOFS bit becomes set, after the INTOSC output  
becomes stable, after an interval of TIOBST  
(parameter 39, Table 28-12). Clocks to the peripherals  
continue while the INTOSC source stabilizes. If the  
IRCF bits were previously at a non-zero value, or  
INTSRC was set before the SLEEPinstruction was exe-  
cuted and the INTOSC source was already stable, the  
IOFS bit will remain set. If the IRCF bits and INTSRC  
are all clear, the INTOSC output will not be enabled, the  
IOFS bit will remain clear and there will be no indication  
of the current clock source.  
The WDT timer and postscaler are cleared by  
executing a SLEEPor CLRWDTinstruction, the loss of a  
currently selected clock source (if the Fail-Safe Clock  
Monitor is enabled) and modifying the IRCF bits in the  
OSCCON register if the internal oscillator block is the  
device clock source.  
3.5.3  
EXIT BY RESET  
When a wake event occurs, the peripherals continue to  
be clocked from the INTOSC multiplexer. After a delay  
of TCSD (parameter 38, Table 28-12) following the wake  
event, the CPU begins executing code being clocked  
by the INTOSC multiplexer. The IDLEN and SCS bits  
are not affected by the wake-up. The INTRC source will  
continue to run if either the WDT or the Fail-Safe Clock  
Monitor is enabled.  
Normally, the device is held in Reset by the Oscillator  
Start-up Timer (OST) until the primary clock becomes  
ready. At that time, the OSTS bit is set and the device  
begins executing code. If the internal oscillator block is  
the new clock source, the IOFS bit is set instead.  
The exit delay time from Reset to the start of code  
execution depends on both the clock sources before  
and after the wake-up and the type of oscillator if the  
new clock source is the primary clock. Exit delays are  
summarized in Table 3-2.  
3.5  
Exiting Idle and Sleep Modes  
An exit from Sleep mode or any of the Idle modes is  
triggered by an interrupt, a Reset or a WDT time-out.  
This section discusses the triggers that cause exits  
from power-managed modes. The clocking subsystem  
actions are discussed in each of the power-managed  
modes (see Section 3.2 “Run Modes”, Section 3.3  
“Sleep Mode” and Section 3.4 “Idle Modes”).  
Code execution can begin before the primary clock  
becomes ready. If either the Two-Speed Start-up (see  
Section 25.3 “Two-Speed Start-up”) or Fail-Safe  
Clock Monitor (see Section 25.4 “Fail-Safe Clock  
Monitor”) is enabled, the device may begin execution  
as soon as the Reset source has cleared. Execution is  
clocked by the INTOSC multiplexer driven by the inter-  
nal oscillator block. Execution is clocked by the internal  
oscillator block until either the primary clock becomes  
ready or a power-managed mode is entered before the  
primary clock becomes ready; the primary clock is then  
shut down.  
3.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit from an Idle mode or the Sleep mode to  
a Run mode. To enable this functionality, an interrupt  
source must be enabled by setting its enable bit in one  
of the INTCON or PIE registers. The exit sequence is  
initiated when the corresponding interrupt flag bit is set.  
© 2008 Microchip Technology Inc.  
DS39646C-page 47  
PIC18F8722 FAMILY  
In these instances, the primary clock source either  
does not require an oscillator start-up delay since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (RC, EC and INTIO  
Oscillator modes). However, a fixed delay of interval  
TCSD following the wake event is still required when  
leaving Sleep and Idle modes to allow the CPU to  
prepare for execution. Instruction execution resumes  
on the first clock cycle following this delay.  
3.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Certain exits from power-managed modes do not  
invoke the OST at all. There are two cases:  
• PRI_IDLE mode, where the primary clock source  
is not stopped and  
• the primary clock source is not any of the LP, XT,  
HS or HSPLL modes.  
TABLE 3-2:  
EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE  
(BY CLOCK SOURCES)  
Clock Source  
before Wake-up  
Clock Source  
after Wake-up  
Clock Ready Status  
Bit (OSCCON)  
Exit Delay  
LP, XT, HS  
HSPLL  
OSTS  
IOFS  
OSTS  
IOFS  
OSTS  
IOFS  
OSTS  
IOFS  
Primary Device Clock  
(PRI_IDLE mode)  
(1)  
TCSD  
EC, RC  
INTOSC(2)  
LP, XT, HS  
HSPLL  
(3)  
TOST  
(3)  
TOST + trc  
T1OSC or INTRC  
INTOSC(2)  
(1)  
EC, RC  
TCSD  
INTOSC(2)  
LP, XT, HS  
HSPLL  
TIOBST  
(4)  
(4)  
TOST  
(3)  
TOST + trc  
(1)  
EC, RC  
TCSD  
INTOSC(2)  
LP, XT, HS  
HSPLL  
None  
(3)  
TOST  
(3)  
TOST + trc  
None  
(Sleep mode)  
(1)  
EC, RC  
INTOSC(2)  
TCSD  
(4)  
TIOBST  
Note 1: TCSD (parameter 38, Table 28-12) is a required delay when waking from Sleep and all Idle modes and runs  
concurrently with any other required delays (see Section 3.4 “Idle Modes”).  
2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies. On Reset, INTOSC defaults  
to 1 MHz.  
3: TOST is the Oscillator Start-up Timer (parameter 32, Table 28-12). trc is the PLL Lock-out Timer  
(parameter F12, Table 28-7); it is also designated as TPLL.  
4: Execution continues during TIOBST (parameter 39, Table 28-12), the INTOSC stabilization period.  
DS39646C-page 48  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 4-1.  
4.0  
RESET  
The PIC18F8722 family of devices differentiates  
between various kinds of Reset:  
4.1  
RCON Register  
a) Power-on Reset (POR)  
Device Reset events are tracked through the RCON  
register (Register 4-1). The lower five bits of the regis-  
ter indicate that a specific Reset event has occurred. In  
most cases, these bits can only be cleared by the event  
and must be set by the application after the event. The  
state of these flag bits, taken together, can be read to  
indicate the type of Reset that just occurred. This is  
described in more detail in Section 4.6 “Reset State  
of Registers”.  
b) MCLR Reset during normal operation  
c) MCLR Reset during power-managed modes  
d) Watchdog Timer (WDT) Reset (during  
execution)  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
g) Stack Full Reset  
h) Stack Underflow Reset  
The RCON register also has control bits for setting  
interrupt priority (IPEN) and software control of the  
BOR (SBOREN). Interrupt priority is discussed in  
Section 10.0 “Interrupts”. BOR is covered in  
Section 4.4 “Brown-out Reset (BOR)”.  
This section discusses Resets generated by MCLR,  
POR and BOR and covers the operation of the various  
start-up timers. Stack Reset events are covered in  
Section 5.1.3.4 “Stack Full and Underflow Resets”.  
WDT Resets are covered in Section 25.2 “Watchdog  
Timer (WDT)”.  
FIGURE 4-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLRE  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
BOREN  
VDD  
Brown-out  
Reset  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
1024 Cycles  
Chip_Reset  
R
Q
OSC1  
31 μs  
64 ms  
PWRT  
11-Bit Ripple Counter  
INTRC(1)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is the INTRC source from the internal oscillator block and is separate from the RC oscillator of the CLKI pin.  
2: See Table 4-2 for time-out situations.  
© 2008 Microchip Technology Inc.  
DS39646C-page 49  
PIC18F8722 FAMILY  
REGISTER 4-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
R/W-1(1)  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0(2)  
POR  
R/W-0  
BOR  
SBOREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
SBOREN: BOR Software Enable bit(1)  
If BOREN<1:0> = 01:  
1= BOR is enabled  
0= BOR is disabled  
If BOREN<1:0> = 00, 10 or 11:  
Bit is disabled and read as ‘0’  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESET instruction was executed causing a device Reset (must be set in software after a  
Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Set by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit(2)  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’.  
2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this  
register and Section 4.6 “Reset State of Registers” for additional information.  
Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent  
Power-on Resets may be detected.  
2: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to  
1’ by software immediately after POR).  
DS39646C-page 50  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 4-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOWVDDPOWER-UP)(1)  
4.2  
Master Clear (MCLR)  
The MCLR pin provides a method for triggering an  
external Reset of the device. A Reset is generated by  
holding the pin low. These devices have a noise filter in  
the MCLR Reset path which detects and ignores small  
pulses.  
VDD  
VDD  
D
(2)  
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
R
(3)  
R1  
MCLR  
In the PIC18F8722 family of devices, the MCLR input  
can be disabled with the MCLRE Configuration bit.  
When MCLR is disabled, the pin becomes a digital  
input. See Section 11.5 “PORTE, TRISE and LATE  
Registers” for more information.  
PIC18FXXXX  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
4.3  
Power-on Reset (POR)  
A
Power-on Reset pulse is generated on-chip  
2: R < 40 kΩ is recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
whenever VDD rises above a certain threshold. This  
allows the device to start in the initialized state when  
VDD is adequate for operation.  
3: R1 1 kΩ will limit any current flowing into  
MCLR from external capacitor C, in the event  
of MCLR/VPP pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
To take advantage of the POR circuitry, tie the MCLR pin  
through a resistor (1 kΩ to 10 kΩ) to VDD. This will  
eliminate external RC components usually needed to  
create a Power-on Reset delay. A minimum rise rate for  
VDD is specified (parameter D004, “Section 28.2 “DC  
Characteristics: Power-Down and Supply Current”).  
For a slow rise time, see Figure 4-2.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
POR events are captured by the POR bit (RCON<1>).  
The state of the bit is set to ‘0’ whenever a POR occurs;  
it does not change for any other Reset event. POR is  
not reset to ‘1’ by any hardware event. To capture  
multiple events, the user manually resets the bit to ‘1’  
in software following any POR.  
© 2008 Microchip Technology Inc.  
DS39646C-page 51  
PIC18F8722 FAMILY  
Placing the BOR under software control gives the user  
the additional flexibility of tailoring the application to its  
environment without having to reprogram the device to  
change the BOR configuration. It also allows the user  
to tailor device power consumption in software by  
eliminating the incremental current that the BOR con-  
sumes. While the BOR current is typically very small, it  
may have some impact in low-power applications.  
4.4  
Brown-out Reset (BOR)  
The PIC18F8722 family of devices implements a BOR  
circuit that provides the user with a number of con-  
figuration and power-saving options. The BOR is  
controlled by the BORV<1:0> and BOREN<1:0>  
Configuration bits. There are a total of four BOR  
configurations which are summarized in Table 4-1.  
The BOR threshold is set by the BORV<1:0> bits. If  
BOR is enabled (any values of BOREN<1:0>, except  
00’), any drop of VDD below VBOR (parameter D005,  
Section 28.1 “DC Characteristics”) for greater than  
TBOR (parameter 35, Table 28-12) will reset the device.  
A Reset may or may not occur if VDD falls below VBOR  
for less than TBOR. The chip will remain in Brown-out  
Reset until VDD rises above VBOR.  
Note:  
Even when BOR is under software control,  
the BOR Reset voltage level is still set by  
the BORV<1:0> Configuration bits. It  
cannot be changed in software.  
4.4.2  
DETECTING BOR  
When BOR is enabled, the BOR bit always resets to ‘0’  
on any BOR or POR event. This makes it difficult to  
determine if a BOR event has occurred just by reading  
the state of BOR alone. A more reliable method is to  
simultaneously check the state of both POR and BOR.  
This assumes that the POR bit is reset to ‘1’ in software  
immediately after any POR event. If BOR is ‘0’ while  
POR is ‘1’, it can be reliably assumed that a BOR event  
has occurred.  
If the Power-up Timer is enabled, it will be invoked after  
VDD rises above VBOR; it then will keep the chip in  
Reset for an additional time delay, TPWRT  
(parameter 33, Table 28-12). If VDD drops below VBOR  
while the Power-up Timer is running, the chip will go  
back into a Brown-out Reset and the Power-up Timer  
will be initialized. Once VDD rises above VBOR, the  
Power-up Timer will execute the additional time delay.  
4.4.3  
DISABLING BOR IN SLEEP MODE  
BOR and the Power-on Timer (PWRT) are  
independently configured. Enabling BOR Reset does  
not automatically enable the PWRT.  
When BOREN<1:0> = 10, the BOR remains under  
hardware control and operates as previously  
described. Whenever the device enters Sleep mode,  
however, the BOR is automatically disabled. When the  
device returns to any other operating mode, BOR is  
automatically re-enabled.  
4.4.1  
SOFTWARE ENABLED BOR  
When BOREN<1:0> = 01, the BOR can be enabled or  
disabled by the user in software. This is done with the  
control bit, SBOREN (RCON<6>). Setting SBOREN  
enables the BOR to function as previously described.  
Clearing SBOREN disables the BOR entirely. The  
SBOREN bit operates only in this mode; otherwise it is  
read as ‘0’.  
This mode allows for applications to recover from  
brown-out situations, while actively executing code,  
when the device requires BOR protection the most. At  
the same time, it saves additional power in Sleep mode  
by eliminating the small incremental BOR current.  
TABLE 4-1:  
BOREN1  
BOR CONFIGURATIONS  
BOR Configuration  
Status of  
SBOREN  
BOR Operation  
BOREN0  
(RCON<6>)  
0
0
1
0
1
0
Unavailable BOR disabled; must be enabled by reprogramming the Configuration bits.  
Available BOR enabled in software; operation controlled by SBOREN.  
Unavailable BOR enabled in hardware in Run and Idle modes, disabled during  
Sleep mode.  
1
1
Unavailable BOR enabled in hardware; must be disabled by reprogramming the  
Configuration bits.  
DS39646C-page 52  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
4.5.3  
PLL LOCK TIME-OUT  
4.5  
Device Reset Timers  
With the PLL enabled in its PLL mode, the time-out  
sequence following a Power-on Reset is slightly differ-  
ent from other oscillator modes. A separate timer is  
used to provide a fixed time-out that is sufficient for the  
PLL to lock to the main oscillator frequency. This PLL  
lock time-out (TPLL) is typically 2 ms and follows the  
oscillator start-up time-out.  
The PIC18F8722 family of devices incorporates three  
separate on-chip timers that help regulate the Power-on  
Reset process. Their main function is to ensure that the  
device clock is stable before code is executed. These  
timers are:  
• Power-up Timer (PWRT)  
• Oscillator Start-up Timer (OST)  
• PLL Lock Time-out  
4.5.4  
TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows:  
4.5.1  
POWER-UP TIMER (PWRT)  
1. After the POR pulse has cleared, PWRT time-out  
is invoked (if enabled).  
The Power-up Timer (PWRT) of the PIC18F8722  
family of devices is an 11-bit counter which uses the  
INTRC source as the clock input. While the PWRT is  
counting, the device is held in Reset.  
2. Then, the OST is activated.  
The total time-out will vary based on oscillator configu-  
ration and the status of the PWRT. Figure 4-3,  
Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all  
depict time-out sequences on power-up, with the  
Power-up Timer enabled and the device operating in  
HS Oscillator mode. Figures 4-3 through 4-6 also apply  
to devices operating in XT or LP modes. For devices in  
RC mode and with the PWRT disabled, on the other  
hand, there will be no time-out at all.  
The power-up time delay depends on the INTRC clock  
and will vary from chip-to-chip due to temperature and  
process variation. See DC parameter 33 in Table 28-12  
for details.  
The PWRT is enabled by clearing the PWRTEN  
Configuration bit.  
4.5.2  
OSCILLATOR START-UP TIMER  
(OST)  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, all time-outs will expire. Bring-  
ing MCLR high will begin execution immediately  
(Figure 4-5). This is useful for testing purposes or to  
synchronize more than one PIC18F8722 family device  
operating in parallel.  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter 33, Table 28-12). This  
ensures that the crystal oscillator or resonator has  
started and stabilized.  
The OST time-out is invoked only for XT, LP, HS and  
HSPLL modes and only on Power-on Reset, or on exit  
from most power-managed modes.  
TABLE 4-2:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2) and Brown-out  
Exit from  
Configuration  
Power-Managed Mode  
PWRTEN = 0  
PWRTEN = 1  
(2)  
(2)  
(2)  
HSPLL  
TPWRT(1) + 1024 TOSC + TPLL  
1024 TOSC + TPLL  
1024 TOSC + TPLL  
HS, XT, LP  
EC, ECIO  
TPWRT(1) + 1024 TOSC  
1024 TOSC  
1024 TOSC  
(1)  
TPWRT  
(1)  
RC, RCIO  
TPWRT  
(1)  
INTIO1, INTIO2  
TPWRT  
Note 1: See parameter 33, Table 28-12.  
2: 2 ms is the nominal time required for the PLL to lock.  
© 2008 Microchip Technology Inc.  
DS39646C-page 53  
PIC18F8722 FAMILY  
FIGURE 4-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS39646C-page 54  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 4-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 4-7:  
TIME-OUT SEQUENCE ON POR w/PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms is the nominal time required for the PLL to lock.  
© 2008 Microchip Technology Inc.  
DS39646C-page 55  
PIC18F8722 FAMILY  
Table 4-4 describes the Reset states for all of the  
Special Function Registers. These are categorized by  
Power-on and Brown-out Resets, Master Clear and  
WDT Resets and WDT wake-ups.  
4.6  
Reset State of Registers  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. All other registers are forced to a “Reset state”  
depending on the type of Reset that occurred.  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR, are set or cleared differently in different  
Reset situations, as indicated in Table 4-3. These bits  
are used in software to determine the nature of the  
Reset.  
TABLE 4-3:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION  
FOR RCON REGISTER  
RCON Register  
STKPTR Register  
Program  
Counter  
Condition  
SBOREN  
RI  
TO  
PD POR BOR STKFUL STKUNF  
Power-on Reset  
RESETInstruction  
Brown-out Reset  
0000h  
0000h  
0000h  
0000h  
1
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
u(2)  
u(2)  
u(2)  
MCLR during Power-Managed  
Run Modes  
MCLR during Power-Managed  
Idle Modes and Sleep Mode  
0000h  
0000h  
0000h  
u(2)  
u(2)  
u(2)  
u
u
u
1
0
u
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
WDT Time-out during Full Power  
or Power-Managed Run Mode  
MCLR during Full Power  
Execution  
Stack Full Reset (STVREN = 1)  
0000h  
0000h  
u(2)  
u(2)  
u
u
u
u
u
u
u
u
u
u
1
u
u
1
Stack Underflow Reset  
(STVREN = 1)  
Stack Underflow Error (not an  
actual Reset, STVREN = 0)  
0000h  
u(2)  
u(2)  
u
u
u
0
u
0
u
u
u
u
u
u
1
u
WDT Time-out during  
Power-Managed Idle or  
Sleep Modes  
PC + 2  
Interrupt Exit from  
PC + 2(1)  
u(2)  
u
u
0
u
u
u
u
Power-Managed Modes  
Legend: u= unchanged  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (008h or 0018h).  
2: Reset state is ‘1’ for POR and unchanged for all other Resets when software BOR is enabled  
(BOREN<1:0> Configuration bits = 01and SBOREN = 1). Otherwise, the Reset state is ‘0’.  
DS39646C-page 56  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
(3)  
TOSU  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
---0 0000  
0000 0000  
0000 0000  
uu-u uuuu  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 1111  
1100 0000  
N/A  
---0 uuuu  
(3)  
TOSH  
uuuu uuuu  
(3)  
TOSL  
uuuu uuuu  
(3)  
STKPTR  
PCLATU  
PCLATH  
PCL  
uu-u uuuu  
---u uuuu  
uuuu uuuu  
(2)  
PC + 2  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
(1)  
INTCON  
INTCON2  
INTCON3  
INDF0  
uuuu uuuu  
(1)  
uuuu uuuu  
(1)  
uuuu uuuu  
N/A  
N/A  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled  
as PORTA pins, they are disabled and read ‘0’.  
© 2008 Microchip Technology Inc.  
DS39646C-page 57  
PIC18F8722 FAMILY  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
FSR1H  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- 0000  
uuuu uuuu  
---- 0000  
N/A  
FSR1L  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuqu  
u-uu uuuu  
---- ---u  
uq-u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0100 q000  
0-00 0101  
---- ---0  
0q-1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0100 q000  
0-00 0101  
---- ---0  
0q-q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
uuuu uuuu  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
HLVDCON  
WDTCON  
(4)  
RCON  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSP1BUF  
SSP1ADD  
SSP1STAT  
SSP1CON1  
SSP1CON2  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled  
as PORTA pins, they are disabled and read ‘0’.  
DS39646C-page 58  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CCPR3H  
CCPR3L  
CCP3CON  
ECCP1AS  
CVRCON  
CMCON  
TMR3H  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
xxxx xxxx  
xxxx xxxx  
--00 0000  
--00 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
0000 0000  
xx-0 x000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 0000  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
0000 0000  
uu-0 u000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uu-u uuuu  
TMR3L  
T3CON  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled  
as PORTA pins, they are disabled and read ‘0’.  
© 2008 Microchip Technology Inc.  
DS39646C-page 59  
PIC18F8722 FAMILY  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
IPR3  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
1111 1111  
0000 0000  
0000 0000  
11-1 1111  
00-0 0000  
00-0 0000  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
00-0 0000  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
11-1 1111  
00-0 0000  
00-0 0000  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
00-0 0000  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
uuuu uuuu  
(1)  
PIR3  
uuuu uuuu  
PIE3  
uuuu uuuu  
uu-u uuuu  
IPR2  
(1)  
PIR2  
uu-u uuuu  
PIE2  
uu-u uuuu  
uuuu uuuu  
IPR1  
(1)  
PIR1  
uuuu uuuu  
PIE1  
uuuu uuuu  
u-uu --uu  
uu-u uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
MEMCON  
OSCTUNE  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
(5)  
(5)  
(5)  
(5)  
TRISA  
1111 1111  
1111 1111  
uuuu uuuu  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
(5)  
(5)  
(5)  
(5)  
LATA  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
PORTJ  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
xxxx xxxx  
0000 xxxx  
--xx xxxx  
x000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
u000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled  
as PORTA pins, they are disabled and read ‘0’.  
DS39646C-page 60  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
(5)  
(5)  
(5)  
(5)  
PORTA  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X27  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
6X22  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X27  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
8X22  
xx0x 0000  
uu0u 0000  
uuuu uuuu  
SPBRGH1  
BAUDCON1  
SPBRGH2  
BAUDCON2  
ECCP1DEL  
TMR4  
0000 0000  
01-0 0-00  
0000 0000  
01-0 0-00  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
01-0 0-00  
0000 0000  
01-0 0-00  
0000 0000  
0000 0000  
uuuu uuuu  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uu-u u-uu  
uuuu uuuu  
uu-u u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PR4  
T4CON  
CCPR4H  
CCPR4L  
CCP4CON  
CCPR5H  
CCPR5L  
CCP5CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
ECCP3AS  
ECCP3DEL  
ECCP2AS  
ECCP2DEL  
SSP2BUF  
SSP2ADD  
SSP2STAT  
SSP2CON1  
SSP2CON2  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector  
(0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with  
the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.  
4: See Table 4-3 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled  
as PORTA pins, they are disabled and read ‘0’.  
© 2008 Microchip Technology Inc.  
DS39646C-page 61  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 62  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
5.1.1  
PIC18F8527/8622/8627/8722  
PROGRAM MEMORY MODES  
5.0  
MEMORY ORGANIZATION  
There are three types of memory in PIC18 Enhanced  
microcontroller devices:  
PIC18F8527/8622/8627/8722 devices differ signifi-  
cantly from their PIC18 predecessors in their utilization  
of program memory. In addition to available on-chip  
Flash program memory, these controllers can also  
address up to 2 Mbytes of external program memory  
through the external memory interface. There are four  
distinct operating modes available to the controllers:  
• Program Memory  
• Data RAM  
• Data EEPROM  
As Harvard architecture devices, the data and program  
memories use separate busses; this allows for concur-  
rent access of the two memory spaces. The data  
EEPROM, for practical purposes, can be regarded as  
a peripheral device, since it is addressed and accessed  
through a set of control registers.  
• Microprocessor (MP)  
• Microprocessor with Boot Block (MPBB)  
• Extended Microcontroller (EMC)  
• Microcontroller (MC)  
Additional detailed information on the operation of the  
Flash program memory is provided in Section 6.0  
“Flash Program Memory”. Data EEPROM is  
discussed separately in Section 8.0 “Data EEPROM  
Memory”.  
The program memory mode is determined by setting  
the two Least Significant bits of the Configuration  
Register 3L (CONFIG3L) as shown in Register 25-4  
(see Section 25.1 “Configuration Bits” for additional  
details on the device Configuration bits).  
The program memory modes operate as follows:  
5.1  
Program Memory Organization  
• The Microprocessor Mode permits access only  
to external program memory; the contents of the  
on-chip Flash memory are ignored. The 21-bit  
program counter permits access to a 2-Mbyte  
linear program memory space.  
PIC18 microcontrollers implement a 21-bit program  
counter, which is capable of addressing a 2-Mbyte  
program memory space. Accessing a location between  
the upper boundary of the physically implemented  
memory and the 2-Mbyte address will return all ‘0’s (a  
NOPinstruction).  
• The Microprocessor with Boot Block Mode  
accesses on-chip Flash memory from the boot  
block. Above this, external program memory is  
accessed all the way up to the 2-Mbyte limit.  
Program execution automatically switches  
between the two memories as required. The boot  
block is configurable to 1, 2 or 4 Kbytes.  
• The Microcontroller Mode accesses only  
on-chip Flash memory. Attempts to read above the  
physical limit of the on-chip Flash (0BFFFh for the  
PIC18F8527, 0FFFFh for the PIC18F8622,  
17FFFh for the PIC18F8627, 1FFFFh for the  
PIC18F8722) causes a read of all ‘0’s (a NOP  
instruction).  
The PIC18F6527 and PIC18F8527 each have 48 Kbytes  
of Flash memory and can store up to 24,576 single-word  
instructions.  
The PIC18F6622 and PIC18F8622 each have 64 Kbytes  
of Flash memory and can store up to 32,768 single-word  
instructions.  
The PIC18F6627 and PIC18F8627 each have 96 Kbytes  
of Flash memory and can store up to 49,152 single-word  
instructions.  
The PIC18F6722 and PIC18F8722 each have  
128 Kbytes of Flash memory and can store up to  
65,536 single-word instructions.  
The Microcontroller mode is also the only operating  
mode available to PIC18F6527/6622/6627/6722  
devices.  
PIC18 devices have two interrupt vectors. The Reset  
vector address is at 0000h and the interrupt vector  
addresses are at 0008h and 0018h.  
• The Extended Microcontroller Mode allows  
access to both internal and external program  
memories as a single block. The device can  
access its entire on-chip Flash memory; above  
this, the device accesses external program  
memory up to the 2-Mbyte program space limit.  
As with Boot Block mode, execution automatically  
switches between the two memories as required.  
The program memory map for the PIC18F8722 family  
of devices is shown in Figure 5-1.  
In all modes, the microcontroller has complete access  
to data RAM and EEPROM.  
Figure 5-2 compares the memory maps of the different  
program memory modes. The differences between  
on-chip and external memory access limitations are  
more fully explained in Table 5-1.  
© 2008 Microchip Technology Inc.  
DS39646C-page 63  
PIC18F8722 FAMILY  
FIGURE 5-1:  
PROGRAM MEMORY MAP AND STACK FOR PIC18F8722 FAMILY DEVICES  
PC<20:0>  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 31  
0000h  
Reset Vector  
High-Priority Interrupt Vector  
Low-Priority Interrupt Vector  
0008h  
0018h  
On-Chip  
Program Memory  
On-Chip  
Program Memory  
On-Chip  
Program Memory  
On-Chip  
Program Memory  
PIC18FX527  
PIC18FX627  
PIC18FX622  
PIC18FX722  
0BFFFh  
0C000h  
0FFFFh  
10000h  
017FFFh  
018000h  
Read ‘0’  
Read ‘0’  
Read ‘0’  
01FFFFh  
1FFFFFh  
TABLE 5-1:  
Operating Mode  
Microprocessor  
MEMORY ACCESS FOR PIC18F8527/8622/8627/8722 PROGRAM MEMORY MODES  
Internal Program Memory  
External Program Memory  
Execution  
From  
Table Read  
Execution  
From  
Table Read  
From  
Table Write To  
Table Write To  
From  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Microprocessor  
w/ Boot Block  
Microcontroller  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Extended  
Microcontroller  
DS39646C-page 64  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 5-2:  
MEMORY MAPS FOR PIC18F8722 FAMILY PROGRAM MEMORY MODES  
Microprocessor  
with Boot Block  
Mode  
Extended  
Microcontroller  
Mode  
Microprocessor  
Microcontroller  
Mode(5)  
Mode  
000000h  
000000h  
000000h  
000000h  
On-Chip  
Program  
On-Chip  
On-Chip  
On-Chip  
Program  
Memory  
Program  
Memory  
Program  
Memory  
Memory  
(No  
access)  
0007FFh(6) or  
000FFFh(6) or  
001FFFh(6)  
0BFFFh(1)  
0FFFFh(2)  
017FFFh(3)  
01FFFFh(4)  
0C000h(1)  
010000h(2)  
018000h(3)  
020000h(4)  
0BFFFh(1)  
0FFFFh(2)  
017FFFh(3)  
01FFFFh(4)  
0C000h(1)  
010000h(2)  
018000h(3)  
020000h(4)  
000800h(6) or  
001000h(6) or  
002000h(6)  
External  
Program  
Memory  
Reads  
0’s  
External  
Program  
Memory  
External  
Program  
Memory  
1FFFFFh  
1FFFFFh  
1FFFFFh  
1FFFFFh  
External  
Memory  
External On-Chip  
Memory Flash  
External  
Memory  
On-Chip  
Flash  
On-Chip  
Flash  
On-Chip  
Flash  
Note 1:  
PIC18F6527 and PIC18F8527.  
PIC18F6622 and PIC18F8622.  
PIC18F6627 and PIC18F8627.  
PIC18F6722 and PIC18F8722.  
This is the only mode available on PIC18F6527/6622/6627/6722 devices.  
Boot block size is determined by the BBSIZ<1:0> bits in CONFIG4L.  
2:  
3:  
4:  
5:  
6:  
© 2008 Microchip Technology Inc.  
DS39646C-page 65  
PIC18F8722 FAMILY  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, STKPTR. The stack space is not  
part of either program or data space. The Stack Pointer  
is readable and writable and the address on the top of  
the stack is readable and writable through the top-of-  
stack Special File Registers. Data can also be pushed  
to, or popped from the stack, using these registers.  
5.1.2  
PROGRAM COUNTER  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits wide  
and is contained in three separate 8-bit registers. The  
low byte, known as the PCL register, is both readable  
and writable. The high byte, or PCH register, contains  
the PC<15:8> bits; it is not directly readable or writable.  
Updates to the PCH register are performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits; it is also not  
directly readable or writable. Updates to the PCU  
register are performed through the PCLATU register.  
A CALLtype instruction causes a push onto the stack;  
the Stack Pointer is first incremented and the location  
pointed to by the Stack Pointer is written with the  
contents of the PC (already pointing to the instruction  
following the CALL). A RETURNtype instruction causes  
a POP from the stack; the contents of the location  
pointed to by the STKPTR are transferred to the PC  
and then the Stack Pointer is decremented.  
The contents of PCLATH and PCLATU are transferred  
to the program counter by any operation that writes  
PCL. Similarly, the upper two bytes of the program  
counter are transferred to PCLATH and PCLATU by an  
operation that reads PCL. This is useful for computed  
offsets to the PC (see Section 5.1.5.1 “Computed  
GOTO”).  
The Stack Pointer is initialized to ‘00000’ after all  
Resets. There is no RAM associated with the location  
corresponding to a Stack Pointer value of ‘00000’; this  
is only a Reset value. Status bits indicate if the stack is  
full or has overflowed or has underflowed.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the Least Significant bit of PCL is fixed to  
a value of ‘0’. The PC increments by 2 to address  
sequential instructions in the program memory.  
5.1.3.1  
Top-of-Stack Access  
Only the top of the return address stack (TOS) is  
readable and writable. A set of three registers,  
TOSU:TOSH:TOSL, hold the contents of the stack loca-  
tion pointed to by the STKPTR register (Figure 5-3). This  
allows users to implement a software stack if necessary.  
After a CALL, RCALLor interrupt, the software can read  
the pushed value by reading the TOSU:TOSH:TOSL  
registers. These values can be placed on a user defined  
software stack. At return time, the software can return  
these values to TOSU:TOSH:TOSL and do a return.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
5.1.3  
RETURN ADDRESS STACK  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC is  
pushed onto the stack when a CALLor RCALLinstruc-  
tion is executed or an interrupt is Acknowledged. The  
PC value is pulled off the stack on a RETURN, RETLW  
or a RETFIEinstruction. PCLATU and PCLATH are not  
affected by any of the RETURNor CALLinstructions.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 5-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack <20:0>  
11111  
11110  
11101  
Top-of-Stack Registers  
Stack Pointer  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
00010  
00001  
00000  
001A34h  
000D58h  
Top-of-Stack  
DS39646C-page 66  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
When the stack has been popped enough times to  
unload the stack, the next POP will return a value of  
zero to the PC and set the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or until a POR occurs.  
5.1.3.2  
Return Stack Pointer (STKPTR)  
The STKPTR register (Register 5-1) contains the Stack  
Pointer value, the STKFUL (Stack Full) status bit and  
the STKUNF (Stack Underflow) status bits. The value  
of the Stack Pointer can be 0 through 31. The Stack  
Pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. On Reset, the Stack Pointer value will be zero.  
The user may read and write the Stack Pointer value.  
This feature can be used by a Real-Time Operating  
System (RTOS) for return stack maintenance.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset, as the contents  
of the SFRs are not affected.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
5.1.3.3  
PUSHand POPInstructions  
Since the Top-of-Stack is readable and writable, the  
ability to push values onto the stack and pull values off  
the stack without disturbing normal program execution  
is a desirable feature. The PIC18 instruction set  
includes two instructions, PUSH and POP, that permit  
the TOS to be manipulated under software control.  
TOSU, TOSH and TOSL can be modified to place data  
or a return address on the stack.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) Configuration bit. (Refer to  
Section 25.1 “Configuration Bits” for a description of  
the device Configuration bits.) If STVREN is set  
(default), the 31st PUSH will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to zero.  
The PUSHinstruction places the current PC value onto  
the stack. This increments the Stack Pointer and loads  
the current PC value onto the stack.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st PUSHand the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st PUSH  
and STKPTR will remain at 31.  
The POPinstruction discards the current TOS by decre-  
menting the Stack Pointer. The previous value pushed  
onto the stack then becomes the TOS value.  
REGISTER 5-1:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL(1)  
bit 7  
R/C-0  
STKUNF(1)  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP<4:0>: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
© 2008 Microchip Technology Inc.  
DS39646C-page 67  
PIC18F8722 FAMILY  
5.1.3.4  
Stack Full and Underflow Resets  
EXAMPLE 5-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
Device Resets on stack overflow and stack underflow  
conditions are enabled by setting the STVREN bit in  
Configuration Register 4L. When STVREN is set, a full  
or underflow will set the appropriate STKFUL or  
STKUNF bit and then cause a device Reset. When  
STVREN is cleared, a full or underflow condition will set  
the appropriate STKFUL or STKUNF bit, but not cause  
a device Reset. The STKFUL or STKUNF bits are  
cleared by the user software or a Power-on Reset.  
CALL SUB1, FAST  
SUB1  
RETURN, FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
5.1.4  
FAST REGISTER STACK  
5.1.5  
LOOK-UP TABLES IN PROGRAM  
MEMORY  
A fast register stack is provided for the STATUS,  
WREG and BSR registers, to provide a “fast return”  
option for interrupts. The stack for each register is only  
one level deep and is neither readable nor writable. It is  
loaded with the current value of the corresponding reg-  
ister when the processor vectors for an interrupt. All  
interrupt sources will push values into the Stack regis-  
ters. The values in the registers are then loaded back  
into their associated registers if the RETFIE, FAST  
instruction is used to return from the interrupt.  
There may be programming situations that require the  
creation of data structures, or look-up tables, in  
program memory. For PIC18 devices, look-up tables  
can be implemented in two ways:  
• Computed GOTO  
Table Reads  
5.1.5.1  
Computed GOTO  
If both low and high-priority interrupts are enabled, the  
stack registers cannot be used reliably to return from  
low-priority interrupts. If a high-priority interrupt occurs  
while servicing a low-priority interrupt, the Stack regis-  
ter values stored by the low-priority interrupt will be  
overwritten. In these cases, users must save the key  
registers in software during a low-priority interrupt.  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 5-2.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW nninstructions. The W  
register is loaded with an offset into the table before exe-  
cuting a call to that table. The first instruction of the called  
routine is the ADDWFPCLinstruction. The next instruction  
executed will be one of the RETLW nn instructions that  
returns the value ‘nn’ to the calling function.  
If interrupt priority is not used, all interrupts may use the  
fast register stack for returns from interrupt. If no inter-  
rupts are used, the fast register stack can be used to  
restore the STATUS, WREG and BSR registers at the  
end of a subroutine call. To use the fast register stack  
for a subroutine call, a CALLlabel, FASTinstruction  
must be executed to save the STATUS, WREG and  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSb = 0).  
BSR registers to the fast register stack.  
RETURN, FASTinstruction is then executed to restore  
these registers from the fast register stack.  
A
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
Example 5-1 shows a source code example that uses  
the fast register stack during a subroutine call and return.  
Note:  
The “ADDWF PCL” instruction does not  
update the PCLATH and PCLATU registers.  
A read operation on PCL must be performed  
to update PCLATH and PCLATU.  
EXAMPLE 5-2:  
COMPUTED GOTO USING AN OFFSET VALUE  
MAIN: ORG  
MOVLW  
CALL  
0x0000  
0x00  
TABLE  
ORG  
0x8000  
PCL, F  
W, W  
PCL  
‘A’  
‘B’  
‘C’  
‘D’  
‘E’  
TABLE MOVF  
RLNCF  
ADDWF  
RETLW  
RETLW  
RETLW  
RETLW  
RETLW  
END  
; A simple read of PCL will update PCLATH, PCLATU  
; Multiply by 2 to get correct offset in table  
; Add the modified offset to force jump into table  
DS39646C-page 68  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
memory and latched into the instruction register during  
Q4. The instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow are shown in Figure 5-4.  
5.1.5.2  
Table Reads and Table Writes  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
Look-up table data may be stored two bytes per pro-  
gram word by using table reads and writes. The Table  
Pointer (TBLPTR) register specifies the byte address  
and the Table Latch (TABLAT) register contains the  
data that is read from or written to program memory.  
Data is transferred to or from program memory one  
byte at a time.  
5.2.2  
INSTRUCTION FLOW/PIPELINING  
An “Instruction Cycle” consists of four Q cycles: Q1  
through Q4. The instruction fetch and execute are  
pipelined in such a manner that a fetch takes one  
instruction cycle, while the decode and execute take  
another instruction cycle. However, due to the pipe-  
lining, each instruction effectively executes in one  
cycle. If an instruction causes the program counter to  
change (e.g., GOTO), then two cycles are required to  
complete the instruction (Example 5-3).  
Table read and table write operations are discussed  
further in Section 6.1 “Table Reads and Table  
Writes”.  
A fetch cycle begins with the program counter  
incrementing in Q1.  
5.2  
PIC18 Instruction Cycle  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
5.2.1  
CLOCKING SCHEME  
The microcontroller clock input, whether from an internal  
or external source, is internally divided by four to gener-  
ate four non-overlapping quadrature clocks (Q1, Q2, Q3  
and Q4). Internally, the program counter is incremented  
on every Q1; the instruction is fetched from the program  
FIGURE 5-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
Internal  
Phase  
Clock  
PC  
PC  
PC + 2  
PC + 4  
OSC2/CLKO  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
EXAMPLE 5-3:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
© 2008 Microchip Technology Inc.  
DS39646C-page 69  
PIC18F8722 FAMILY  
The CALLand GOTOinstructions have the absolute pro-  
gram memory address embedded into the instruction.  
Since instructions are always stored on word boundar-  
ies, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 5-5 shows how the  
instruction GOTO 0006h is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single-word instructions that the PC will be  
offset by. Section 26.0 “Instruction Set Summary”  
provides further details of the instruction set.  
5.2.3  
INSTRUCTIONS IN PROGRAM  
MEMORY  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSb = 0). To maintain alignment  
with instruction boundaries, the PC increments in steps  
of 2 and the LSb will always read ‘0’ (see Section 5.1.2  
“Program Counter”).  
Figure 5-5 shows an example of how instruction words  
are stored in the program memory.  
FIGURE 5-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
0006h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 3:  
MOVFF  
123h, 456h  
DS39646C-page 70  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
the instruction sequence. If the first word is skipped for  
some reason and the second word is executed by itself,  
a NOPis executed instead. This is necessary for cases  
when the two-word instruction is preceded by a condi-  
tional instruction that changes the PC. Example 5-4  
shows how this works.  
5.2.4  
TWO-WORD INSTRUCTIONS  
The standard PIC18 instruction set has 8 two-word  
instructions: CALL, MOVFF, GOTO, LSFR, ADDULNK,  
CALLW, MOVSS and SUBULNK. In all cases, the  
second word of the instructions always has ‘1111’ as  
its four Most Significant bits; the other 12 bits are literal  
data, usually a data memory address.  
Note:  
See Section 5.6 “PIC18 Instruction  
Execution and the Extended Instruc-  
tion Set” for information on two-word  
instructions in the extended instruction set.  
The use of ‘1111’ in the 4 MSbs of an instruction spec-  
ifies a special form of NOP. If the instruction is executed  
in proper sequence – immediately after the first word –  
the data in the second word is accessed and used by  
EXAMPLE 5-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Source Code  
Object Code  
0110 0110 0000 0000 TSTFSZ  
REG1  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
; is RAM location 0?  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
MOVFF  
ADDWF  
REG3  
Object Code  
Source Code  
TSTFSZ  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
REG1  
; is RAM location 0?  
MOVFF  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
ADDWF  
REG3  
; continue code  
© 2008 Microchip Technology Inc.  
DS39646C-page 71  
PIC18F8722 FAMILY  
5.3.1  
BANK SELECT REGISTER (BSR)  
5.3  
Data Memory Organization  
Large areas of data memory require an efficient  
addressing scheme to make rapid access to any  
address possible. Ideally, this means that an entire  
address does not need to be provided for each read or  
write operation. For PIC18 devices, this is accom-  
plished with a RAM banking scheme. This divides the  
memory space into 16 contiguous banks of 256 bytes.  
Depending on the instruction, each location can be  
addressed directly by its full 12-bit address, or an 8-bit  
low-order address and a 4-bit Bank Pointer.  
Note:  
The operation of some aspects of data  
memory are changed when the PIC18  
extended instruction set is enabled. See  
Section 5.5 “Data Memory and the  
Extended Instruction Set” for more  
information.  
The data memory in PIC18 devices is implemented as  
static RAM. Each register in the data memory has a  
12-bit address, allowing up to 4096 bytes of data  
memory. The memory space is divided into as many as  
16 banks that contain 256 bytes each; the PIC18F8722  
family of devices implements all 16 banks. Figure 5-6  
shows the data memory organization for the  
PIC18F8722 family of devices.  
Most instructions in the PIC18 instruction set make use  
of the Bank Pointer, known as the Bank Select Register  
(BSR). This SFR holds the 4 Most Significant bits of a  
location’s address; the instruction itself includes the  
8 Least Significant bits. Only the four lower bits of the  
BSR are implemented (BSR<3:0>). The upper four bits  
are unused; they will always read ‘0’ and cannot be  
written to. The BSR can be loaded directly by using the  
MOVLBinstruction.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratchpad operations in the user’s  
application. Any read of an unimplemented location will  
read as ‘0’s.  
The value of the BSR indicates the bank in data  
memory; the 8 bits in the instruction show the location  
in the bank and can be thought of as an offset from the  
bank’s lower boundary. The relationship between the  
BSR’s value and the bank division in data memory is  
shown in Figure 5-7.  
The instruction set and architecture allow operations  
across all banks. The entire data memory may be  
accessed by Direct, Indirect or Indexed Addressing  
modes. Addressing modes are discussed later in this  
subsection.  
Since up to 16 registers may share the same low-order  
address, the user must always be careful to ensure that  
the proper bank is selected before performing a data  
read or write. For example, writing what should be  
program data to an 8-bit address of F9h while the BSR  
is 0Fh will end up resetting the program counter.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle, PIC18  
devices implement an Access Bank. This is a 256-byte  
memory space that provides fast access to SFRs and  
the lower portion of GPR Bank 0 without using the  
BSR. Section 5.3.2 “Access Bank” provides a  
detailed description of the Access RAM.  
While any bank can be selected, only those banks that  
are actually implemented can be read or written to.  
Writes to unimplemented banks are ignored, while  
reads from unimplemented banks will return ‘0’s. Even  
so, the STATUS register will still be affected as if the  
operation was successful. The data memory map in  
Figure 5-6 indicates which banks are implemented.  
In the core PIC18 instruction set, only the MOVFF  
instruction fully specifies the 12-bit address of the  
source and target registers. This instruction ignores the  
BSR completely when it executes. All other instructions  
include only the low-order address as an operand and  
must use either the BSR or the Access Bank to locate  
their target registers.  
DS39646C-page 72  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 5-6:  
DATA MEMORY MAP FOR THE PIC18F8722 FAMILY OF DEVICES  
When ‘a’ = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
000h  
05Fh  
060h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000  
= 0001  
= 0010  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
Bank 0  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
GPR  
GPR  
GPR  
Bank 1  
Bank 2  
1FFh  
200h  
FFh  
00h  
FFh  
00h  
2FFh  
300h  
When ‘a’ = 1:  
= 0011  
The BSR specifies the Bank  
used by the instruction.  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 8  
Bank 9  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
3FFh  
400h  
FFh  
00h  
= 0100  
= 0101  
GPR  
GPR  
GPR  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
FFh  
00h  
= 0110  
= 0111  
Access Bank  
FFh  
00h  
6FFh  
700h  
00h  
Access RAM Low  
5Fh  
Access RAM High  
GPR  
GPR  
60h  
FFh  
00h  
7FFh  
800h  
(SFRs)  
= 1000  
= 1001  
FFh  
8FFh  
900h  
FFh  
00h  
GPR  
GPR  
9FFh  
A00h  
FFh  
00h  
= 1010  
= 1011  
= 1100  
= 1101  
AFFh  
B00h  
FFh  
00h  
GPR  
GPR  
BFFh  
C00h  
FFh  
00h  
CFFh  
D00h  
FFh  
00h  
GPR  
GPR  
DFFh  
E00h  
FFh  
00h  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
GPR  
SFR  
FFh  
© 2008 Microchip Technology Inc.  
DS39646C-page 73  
PIC18F8722 FAMILY  
FIGURE 5-7:  
USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)  
Memory  
Data  
(2)  
(1)  
From Opcode  
BSR  
000h  
100h  
7
0
7
0
00h  
Bank 0  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
FFh  
00h  
Bank 1  
Bank 2  
(2)  
Bank Select  
FFh  
00h  
200h  
300h  
FFh  
00h  
Bank 3  
through  
Bank 13  
FFh  
00h  
E00h  
Bank 14  
Bank 15  
FFh  
00h  
F00h  
FFFh  
FFh  
Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to  
the registers of the Access Bank.  
2: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
however, the instruction is forced to use the Access  
Bank address map; the current value of the BSR is  
ignored entirely.  
5.3.2  
ACCESS BANK  
While the use of the BSR with an embedded 8-bit  
address allows users to address the entire range of  
data memory, it also means that the user must always  
ensure that the correct bank is selected. Otherwise,  
data may be read from or written to the wrong location.  
This can be disastrous if a GPR is the intended target  
of an operation, but an SFR is written to instead.  
Verifying and/or changing the BSR for each read or  
write to data memory can become very inefficient.  
Using this “forced” addressing allows the instruction to  
operate on a data address in a single cycle, without  
updating the BSR first. For 8-bit addresses of 60h and  
above, this means that users can evaluate and operate  
on SFRs more efficiently. The Access RAM below 60h  
is a good place for data values that the user might need  
to access rapidly, such as immediate computational  
results or common program variables. Access RAM  
also allows for faster and more code efficient context  
saving and switching of variables.  
To streamline access for the most commonly used data  
memory locations, the data memory is configured with  
an Access Bank, which allows users to access a  
mapped block of memory without specifying a BSR.  
The Access Bank consists of the first 96 bytes of  
memory (00h-5Fh) in Bank 0 and the last 160 bytes of  
memory (60h-FFh) in Block 15. The lower half is known  
as the “Access RAM” and is composed of GPRs. This  
upper half is also where the device’s SFRs are  
mapped. These two areas are mapped contiguously in  
the Access Bank and can be addressed in a linear  
fashion by an 8-bit address (Figure 5-6).  
The mapping of the Access Bank is slightly different  
when the extended instruction set is enabled (XINST  
Configuration bit = 1). This is discussed in more detail  
in Section 5.5.3 “Mapping the Access Bank in  
Indexed Literal Offset Mode”.  
5.3.3  
GENERAL PURPOSE REGISTER  
FILE  
PIC18 devices may have banked memory in the GPR  
area. This is data RAM, which is available for use by all  
instructions. GPRs start at the bottom of Bank 0  
(address 000h) and grow upwards towards the bottom of  
the SFR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
The Access Bank is used by core PIC18 instructions  
that include the Access RAM bit (the ‘a’ parameter in  
the instruction). When ‘a’ is equal to ‘1’, the instruction  
uses the BSR and the 8-bit address included in the  
opcode for the data memory address. When ‘a’ is ‘0’,  
DS39646C-page 74  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The SFRs can be classified into two sets: those  
associated with the “core” device functionality (ALU,  
Resets and interrupts) and those related to the  
peripheral functions. The Reset and interrupt registers  
are described in their respective chapters, while the  
ALU’s STATUS register is described later in this sec-  
tion. Registers related to the operation of a peripheral  
feature are described in the chapter for that peripheral.  
5.3.4  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. SFRs start at the top of  
data memory (FFFh) and extend downward to occupy  
the top half of Bank 15 (F60h to FFFh). A list of these  
registers is given in Table 5-2 and Table 5-3.  
The SFRs are typically distributed among the  
peripherals whose functions they control. Unused SFR  
locations are unimplemented and read as ‘0’s.  
TABLE 5-2:  
SPECIAL FUNCTION REGISTER MAP FOR THE PIC18F8722 FAMILY OF DEVICES  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
(1)  
FFFh  
FFEh  
FFDh  
TOSU  
TOSH  
TOSL  
FDFh  
INDF2  
FBFh  
FBEh  
CCPR1H  
CCPR1L  
F9Fh  
F9Eh  
F9Dh  
IPR1  
PIR1  
PIE1  
F7Fh  
SPBRGH1  
(1)  
(1)  
FDEh POSTINC2  
F7Eh BAUDCON1  
F7Dh SPBRGH2  
FDDh POSTDEC2  
FBDh CCP1CON  
(1)  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
STKPTR  
PCLATU  
PCLATH  
PCL  
FDCh PREINC2  
FBCh  
FBBh  
CCPR2H  
CCPR2L  
F9Ch MEMCON  
F7Ch BAUDCON2  
(1)  
(2)  
FDBh PLUSW2  
F9Bh OSCTUNE  
F7Bh  
F7Ah  
(3)  
(2)  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
FBAh CCP2CON  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
TRISJ  
TRISH  
(3)  
FB9h  
FB8h  
CCPR3H  
CCPR3L  
F79h ECCP1DEL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
F78h  
F77h  
F76h  
F75h  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
TMR4  
PR4  
FB7h CCP3CON  
FB6h ECCP1AS  
T4CON  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
CVRCON  
CMCON  
TMR3H  
CCPR4H  
CCPR4L  
CCP4CON  
CCPR5H  
CCPR5L  
CCP5CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
ECCP3AS  
(2)  
OSCCON  
HLVDCON  
WDTCON  
RCON  
INTCON  
INTCON2  
INTCON3  
TMR3L  
(3)  
T3CON  
LATJ  
(3)  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EEADR  
LATH  
(1)  
INDF0  
TMR1H  
TMR1L  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
(1)  
(1)  
FEEh POSTINC0  
FEDh POSTDEC0  
T1CON  
TMR2  
(1)  
FECh PREINC0  
(1)  
FEBh PLUSW0  
PR2  
FEAh  
FE9h  
FE8h  
FE7h  
FSR0H  
FSR0L  
WREG  
T2CON  
SSP1BUF  
SSP1ADD  
F69h ECCP3DEL  
F68h ECCP2AS  
F67h ECCP2DEL  
(3)  
EEDATA  
PORTJ  
PORTH  
(1)  
(1)  
(3)  
INDF1  
FC7h SSP1STAT  
FC6h SSP1CON1  
FC5h SSP1CON2  
FA7h EECON2  
(1)  
(1)  
FE6h POSTINC1  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
EECON1  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
F66h  
F65h  
SSP2BUF  
SSP2ADD  
FE5h POSTDEC1  
IPR3  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
(1)  
FE4h PREINC1  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
F64h SSP2STAT  
F63h SSP2CON1  
(1)  
FE3h PLUSW1  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
F62h SSP2CON2  
(2)  
F61h  
F60h  
(2)  
Note 1: This is not a physical register.  
2: Unimplemented registers are read as ‘0’.  
3: This register is not available on 64-pin devices.  
© 2008 Microchip Technology Inc.  
DS39646C-page 75  
PIC18F8722 FAMILY  
TABLE 5-3:  
File Name  
TOSU  
REGISTER FILE SUMMARY  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 57, 66  
0000 0000 57, 66  
0000 0000 57, 66  
00-0 0000 57, 67  
---0 0000 57, 66  
0000 0000 57, 66  
0000 0000 57, 66  
--00 0000 57, 90  
0000 0000 57, 90  
0000 0000 57, 90  
0000 0000 57, 90  
xxxx xxxx 57, 117  
xxxx xxxx 57, 117  
0000 000x 57, 121  
1111 1111 57, 122  
1100 0000 57, 123  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
TOSL  
Top-of-Stack Low Byte (TOS<7:0>)  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL(6) STKUNF(6)  
SP4  
SP3  
SP2  
SP1  
SP0  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit 21(7)  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT3IE  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
INTEDG3  
INT1IE  
TMR0IF  
TMR0IP  
INT3IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
57, 82  
57, 82  
57, 82  
57, 82  
57, 82  
POSTINC0  
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) –  
value of FSR0 offset by W  
FSR0H  
FSR0L  
Indirect Data Memory Address Pointer 0 High  
---- 0000 57, 82  
xxxx xxxx 57, 82  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
xxxx xxxx  
N/A  
57  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
57, 82  
57, 82  
57, 82  
57, 82  
57, 82  
POSTINC1  
N/A  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
N/A  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –  
value of FSR1 offset by W  
N/A  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 High  
---- 0000 58, 82  
xxxx xxxx 58, 82  
---- 0000 58, 72  
Indirect Data Memory Address Pointer 1 Low Byte  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
58, 82  
58, 82  
58, 82  
58, 82  
58, 82  
POSTINC2  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –  
value of FSR2 offset by W  
FSR2H  
FSR2L  
Indirect Data Memory Address Pointer 2 High  
---- 0000 58, 82  
xxxx xxxx 58, 82  
Indirect Data Memory Address Pointer 2 Low Byte  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, this bit reads as ‘0’.  
These registers and/or bits are not implemented on 64-pin devices and are read as 0. Reset values are shown for 80-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
3:  
4:  
The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as 0. See Section 2.6.4 “PLL in  
INTOSC Modes”.  
RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.  
When disabled, these bits read as ‘0’.  
5:  
6:  
7:  
RG5 and LATG5 are only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 and LATG5 read as 0.  
Bit 7 and Bit 6 are cleared by user software or by a POR.  
Bit 21 of TBLPTRU allows access to the device Configuration bits.  
DS39646C-page 76  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 5-3:  
File Name  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
STATUS  
N
OV  
Z
DC  
C
---x xxxx 58, 80  
0000 0000 58, 163  
xxxx xxxx 58, 163  
1111 1111 58, 161  
0100 q000 39, 58  
0-00 0101 58, 291  
--- ---0 58, 313  
TMR0H  
Timer0 Register High Byte  
Timer0 Register Low Byte  
TMR0L  
T0CON  
TMR0ON  
IDLEN  
VDIRMAG  
T08BIT  
IRCF2  
T0CS  
IRCF1  
IRVST  
T0SE  
IRCF0  
HLVDEN  
PSA  
OSTS  
HLVDL3  
T0PS2  
IOFS  
HLVDL2  
T0PS1  
SCS1  
HLVDL1  
T0PS0  
SCS0  
OSCCON  
HLVDCON  
WDTCON  
RCON  
HLVDL0  
SWDTEN  
BOR  
IPEN  
SBOREN(1)  
RI  
TO  
PD  
POR  
0q-1 11q0 50, 56,  
58, 133  
TMR1H  
TMR1L  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx 58, 169  
xxxx xxxx 58, 169  
T1CON  
TMR2  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON 0000 0000 58, 165  
0000 0000 58, 172  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
MSSP1 Receive Buffer/Transmit Register  
1111 1111 58, 172  
T2CON  
SSP1BUF  
T2CKPS0 -000 0000 58, 171  
xxxx xxxx 58, 169,  
170  
SSP1ADD  
SSP1STAT  
MSSP1 Address Register in I2C™ Slave mode. MSSP1 Baud Rate Reload Register in I2C Master mode.  
0000 0000 58, 170  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000 58, 162,  
171  
SSP1CON1  
SSPOV  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
SEN  
0000 0000 58, 163,  
172  
SSP1CON2  
ADRESH  
ADRESL  
ACKSTAT  
ACKEN  
0000 0000 58, 173  
xxxx xxxx 59, 280  
xxxx xxxx 59, 280  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CCPR3H  
CCPR3L  
CCP3CON  
ECCP1AS  
CVRCON  
CMCON  
TMR3H  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
--00 0000 59, 271  
--00 0000 59, 272  
0-00 0000 59, 273  
xxxx xxxx 59, 180  
xxxx xxxx 59, 180  
ADFM  
ADCS1  
Enhanced Capture/Compare/PWM Register 1 High Byte  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
CCP3M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0 0000 0000 59, 187  
xxxx xxxx 59, 180  
Enhanced Capture/Compare/PWM Register 2 High Byte  
Enhanced Capture/Compare/PWM Register 2 Low Byte  
xxxx xxxx 59, 180  
P2M1  
P2M0  
DC2B1  
DC2B0  
CCP2M0 0000 0000 59, 179  
xxxx xxxx 59, 180  
Enhanced Capture/Compare/PWM Register 3 High Byte  
Enhanced Capture/Compare/PWM Register 3 Low Byte  
xxxx xxxx 59, 180  
P3M1  
P3M0  
DC3B1  
DC3B0  
CCP3M2  
PSS1AC0  
CVR2  
CCP3M1  
PSS1BD1  
CVR1  
CCP3M0 0000 0000 59, 179  
PSS1BD0 0000 0000 59, 201  
ECCP1ASE ECCP1AS2 ECCP1AS1 ECCP1AS0 PSS1AC1  
CVREN  
C2OUT  
CVROE  
C1OUT  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR3  
CIS  
CVR0  
CM0  
0000 0000 59, 287  
0000 0111 59, 289  
xxxx xxxx 59, 175  
xxxx xxxx 59, 175  
CM2  
CM1  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
RD16  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 59, 173  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, this bit reads as ‘0’.  
These registers and/or bits are not implemented on 64-pin devices and are read as 0. Reset values are shown for 80-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
3:  
4:  
The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as 0. See Section 2.6.4 “PLL in  
INTOSC Modes”.  
RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.  
When disabled, these bits read as ‘0’.  
5:  
6:  
7:  
RG5 and LATG5 are only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 and LATG5 read as 0.  
Bit 7 and Bit 6 are cleared by user software or by a POR.  
Bit 21 of TBLPTRU allows access to the device Configuration bits.  
© 2008 Microchip Technology Inc.  
DS39646C-page 77  
PIC18F8722 FAMILY  
TABLE 5-3:  
File Name  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PSPCON  
IBF  
OBF  
IBOV  
PSPMODE  
0000 ---- 59, 252  
0000 0000 59, 252  
0000 0000 59, 260  
0000 0000 59, 257  
0000 0010 59, 248  
0000 000x 59, 249  
---- --00 59, 111  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EUSART1 Baud Rate Generator Register Low Byte  
EUSART1 Receive Register  
EUSART1 Transmit Register  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
EEPROM Address  
Register High Byte  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
EEPROM Address Register Low Byte  
EEPROM Data Register  
0000 0000 59, 111  
0000 0000 59, 111  
0000 0000 59, 88  
xx-0 x000 59, 89  
1111 1111 60, 131  
0000 0000 60, 125  
0000 0000 60, 129  
11-1 1111 60, 131  
00-0 0000 60, 125  
00-0 0000 60, 128  
1111 1111 60, 130  
0000 0000 60, 124  
0000 0000 60, 127  
0-00 --00 60, 96  
00-0 0000 35, 60  
1111 1111 60, 157  
1111 1111 60, 155  
---1 1111 60, 153  
1111 1111 60, 150  
1111 1111 60, 148  
1111 1111 60, 143  
1111 1111 60, 140  
1111 1111 60, 137  
1111 1111 60, 135  
xxxx xxxx 60, 156  
xxxx xxxx 60, 154  
--xx xxxx 60, 151  
xxxx xxxx 60, 149  
xxxx xxxx 60, 146  
xxxx xxxx 60, 143  
xxxx xxxx 60, 140  
xxxx xxxx 60, 137  
xxxx xxxx 60, 135  
EEPROM Control Register 2 (not a physical register)  
EEPGD  
SSP2IP  
SSP2IF  
SSP2IE  
OSCFIP  
OSCFIF  
OSCFIE  
PSPIP  
PSPIF  
CFGS  
BCL2IP  
BCL2IF  
BCL2IE  
CMIP  
RC2IP  
RC2IF  
RC2IE  
FREE  
TX2IP  
TX2IF  
WRERR  
TMR4IP  
TMR4IF  
TMR4IE  
BCL1IP  
BCL1IF  
BCL1IE  
SSP1IP  
SSP1IF  
SSP1IE  
WREN  
CCP5IP  
CCP5IF  
CCP5IE  
HLVDIP  
HLVDIF  
HLVDIE  
CCP1IP  
CCP1IF  
CCP1IE  
WR  
RD  
CCP4IP  
CCP4IF  
CCP4IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
WM1  
CCP3IP  
CCP3IF  
CCP3IE  
CCP2IP  
CCP2IF  
CCP2IE  
TMR1IP  
TMR1IF  
TMR1IE  
WM0  
PIR3  
PIE3  
TX2IE  
EEIP  
IPR2  
PIR2  
CMIF  
EEIF  
PIE2  
CMIE  
EEIE  
IPR1  
ADIP  
RC1IP  
RC1IF  
RC1IE  
WAIT1  
TX1IP  
TX1IF  
PIR1  
ADIF  
PIE1  
PSPIE  
EBDIS  
INTSRC  
TRISJ7  
TRISH7  
ADIE  
TX1IE  
WAIT0  
TUN4  
MEMCON(2)  
OSCTUNE  
TRISJ(2)  
TRISH(2)  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ(2)  
LATH(2)  
LATG  
PLLEN(3)  
TRISJ6  
TRISH6  
TUN3  
TUN2  
TUN1  
TUN0  
TRISJ5  
TRISH5  
TRISJ4  
TRISH4  
TRISG4  
TRISF4  
TRISE4  
TRISD4  
TRISC4  
TRISB4  
TRISA4  
LATJ4  
LATH4  
LATG4  
LATF4  
LATE4  
LATD4  
LATC4  
LATB4  
LATA4  
TRISJ3  
TRISH3  
TRISG3  
TRISF3  
TRISE3  
TRISD3  
TRISC3  
TRISB3  
TRISA3  
LATJ3  
TRISJ2  
TRISH2  
TRISG2  
TRISF2  
TRISE2  
TRISD2  
TRISC2  
TRISB2  
TRISA2  
LATJ2  
TRISJ1  
TRISH1  
TRISG1  
TRISF1  
TRISE1  
TRISD1  
TRISC1  
TRISB1  
TRISA1  
LATJ1  
TRISJ0  
TRISH0  
TRISG0  
TRISF0  
TRISE0  
TRISD0  
TRISC0  
TRISB0  
TRISA0  
LATJ0  
TRISF7  
TRISE7  
TRISD7  
TRISC7  
TRISB7  
TRISA7(4)  
LATJ7  
TRISF6  
TRISE6  
TRISD6  
TRISC6  
TRISB6  
TRISA6(4)  
LATJ6  
LATH6  
TRISF5  
TRISE5  
TRISD5  
TRISC5  
TRISB5  
TRISA5  
LATJ5  
LATH5  
LATG5(5)  
LATF5  
LATE5  
LATD5  
LATC5  
LATB5  
LATA5  
LATH7  
LATH3  
LATG3  
LATF3  
LATH2  
LATG2  
LATF2  
LATH1  
LATG1  
LATF1  
LATH0  
LATG0  
LATF0  
LATF  
LATF7  
LATF6  
LATE6  
LATD6  
LATC6  
LATB6  
LATA6(4)  
LATE  
LATE7  
LATD7  
LATC7  
LATB7  
LATA7(4)  
LATE3  
LATD3  
LATC3  
LATB3  
LATA3  
LATE2  
LATD2  
LATC2  
LATB2  
LATA2  
LATE1  
LATE0  
LATD  
LATD1  
LATC1  
LATB1  
LATD0  
LATC0  
LATB0  
LATC  
LATB  
LATA  
LATA1  
LATA0  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, this bit reads as ‘0’.  
These registers and/or bits are not implemented on 64-pin devices and are read as 0. Reset values are shown for 80-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
3:  
4:  
The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as 0. See Section 2.6.4 “PLL in  
INTOSC Modes”.  
RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.  
When disabled, these bits read as ‘0’.  
5:  
6:  
7:  
RG5 and LATG5 are only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 and LATG5 read as 0.  
Bit 7 and Bit 6 are cleared by user software or by a POR.  
Bit 21 of TBLPTRU allows access to the device Configuration bits.  
DS39646C-page 78  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 5-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ(2)  
PORTH(2)  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
RJ7  
RH7  
RJ6  
RH6  
RJ5  
RH5  
RG5(5)  
RF5  
RJ4  
RH4  
RG4  
RF4  
RE4  
RD4  
RC4  
RB4  
RA4  
RJ3  
RH3  
RG3  
RF3  
RE3  
RD3  
RC3  
RB3  
RA3  
RJ2  
RH2  
RG2  
RF2  
RE2  
RD2  
RC2  
RB2  
RA2  
RJ1  
RH1  
RG1  
RF1  
RE1  
RD1  
RC1  
RB1  
RA1  
RJ0  
RH0  
RG0  
RF0  
RE0  
RD0  
RC0  
RB0  
RA0  
xxxx xxxx 60, 156  
0000 xxxx 60, 154  
--xx xxxx 60, 151  
x000 0000 60, 149  
xxxx xxxx 60, 146  
xxxx xxxx 60, 143  
xxxx xxxx 60, 140  
xxxx xxxx 60, 137  
xx0x 0000 61, 135  
0000 0000 61, 252  
01-0 0-00 61, 250  
0000 0000 61, 252  
01-0 0-00 61, 250  
0000 0000 61, 200  
0000 0000 61, 178  
1111 1111 61, 178  
RF7  
RE7  
RD7  
RC7  
RB7  
RA7(4)  
RF6  
RE6  
RD6  
RC6  
RB6  
RA6(4)  
RE5  
RD5  
RC5  
RB5  
RA5  
SPBRGH1  
BAUDCON1  
SPBRGH2  
BAUDCON2  
ECCP1DEL  
TMR4  
EUSART1 Baud Rate Generator Register High Byte  
ABDOVF RCIDL SCKP  
EUSART2 Baud Rate Generator Register High Byte  
BRG16  
WUE  
ABDEN  
ABDOVF  
P1RSEN  
RCIDL  
P1DC6  
SCKP  
BRG16  
P1DC3  
WUE  
ABDEN  
P1DC0  
P1DC5  
P1DC4  
P1DC2  
P1DC1  
Timer4 Register  
PR4  
Timer4 Period Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0  
T4CON  
TMR4ON  
CCP4M2  
CCP5M2  
T4CKPS1  
CCP4M1  
CCP5M1  
T4CKPS0 -000 0000 61, 178  
xxxx xxxx 61, 180  
CCPR4H  
CCPR4L  
Capture/Compare/PWM Register 4 High Byte  
Capture/Compare/PWM Register 4 Low Byte  
xxxx xxxx 61, 180  
CCP4CON  
CCPR5H  
CCPR5L  
DC4B1  
DC4B0  
CCP4M3  
CCP5M3  
CCP4M0 --00 0000 61, 179  
xxxx xxxx 61, 180  
Capture/Compare/PWM Register 5 High Byte  
Capture/Compare/PWM Register 5 Low Byte  
xxxx xxxx 61, 180  
CCP5CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
DC5B1  
DC5B0  
CCP5M0 --00 0000 61, 179  
0000 0000 61, 252  
EUSART2 Baud Rate Generator Register Low Byte  
EUSART2 Receive Register  
0000 0000 61, 260  
EUSART2 Transmit Register  
0000 0000 61, 257  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 0010 61, 248  
0000 000x 61, 249  
RCSTA2  
ECCP3AS  
ECCP3DEL  
ECCP2AS  
ECCP2DEL  
SSP2BUF  
SSP2ADD  
ECCP3ASE ECCP3AS2 ECCP3AS1 ECCP3AS0 PSS3AC1  
P3RSEN P3DC6 P3DC5 P3DC4 P3DC3  
ECCP2ASE ECCP2AS2 ECCP2AS1 ECCP2AS0 PSS2AC1  
P2RSEN P2DC6 P2DC5 P2DC4 P2DC3  
MSSP2 Receive Buffer/Transmit Register  
MSSP2 Address Register in I2C™ Slave mode. MSSP2 Baud Rate Reload Register in I2C Master mode.  
PSS3AC0  
PSS3BD1  
PSS3BD0 0000 0000 61, 201  
P3DC0 0000 0000 61, 200  
PSS2BD0 0000 0000 61, 201  
P3DC2  
P3DC1  
PSS2AC0  
P2DC2  
PSS2BD1  
P2DC1  
P2DC0  
0000 0000 61, 200  
xxxx xxxx 61, 170  
0000 0000 61, 170  
SSP2STAT  
SSP2CON1  
SSP2CON2  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000 61, 216  
0000 0000 61, 217  
0000 0000 61, 218  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
SEN  
ACKEN  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, this bit reads as ‘0’.  
These registers and/or bits are not implemented on 64-pin devices and are read as 0. Reset values are shown for 80-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
3:  
4:  
The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as 0. See Section 2.6.4 “PLL in  
INTOSC Modes”.  
RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes.  
When disabled, these bits read as ‘0’.  
5:  
6:  
7:  
RG5 and LATG5 are only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 and LATG5 read as 0.  
Bit 7 and Bit 6 are cleared by user software or by a POR.  
Bit 21 of TBLPTRU allows access to the device Configuration bits.  
© 2008 Microchip Technology Inc.  
DS39646C-page 79  
PIC18F8722 FAMILY  
It is recommended that only BCF, BSF, SWAPF, MOVFF  
and MOVWFinstructions are used to alter the STATUS  
register, because these instructions do not affect the Z,  
C, DC, OV or N bits in the STATUS register.  
5.3.5  
STATUS REGISTER  
The STATUS register, shown in Register 5-2, contains  
the arithmetic status of the ALU. As with any other SFR,  
it can be the operand for any instruction.  
For other instructions that do not affect Status bits, see  
the instruction set summaries in Table 26-2 and  
Table 26-3.  
If the STATUS register is the destination for an instruction  
that affects the Z, DC, C, OV or N bits, the results of the  
instruction are not written; instead, the STATUS register  
is updated according to the instruction performed. There-  
fore, the result of an instruction with the STATUS register  
as its destination may be different than intended. As an  
example, CLRF STATUSwill set the Z bit and leave the  
remaining Status bits unchanged (‘000u u1uu’).  
Note:  
The C and DC bits operate as the borrow  
and digit borrow bits, respectively, in  
subtraction.  
REGISTER 5-2:  
STATUS: ARITHMETIC STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit  
magnitude which causes the sign bit (bit 7 of the result) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/borrow bit(1)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/borrow bit(2)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.  
2: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the  
source register.  
DS39646C-page 80  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The Access RAM bit ‘a’ determines how the address is  
interpreted. When ‘a’ is ‘1’, the contents of the BSR  
(Section 5.3.1 “Bank Select Register (BSR)”) are  
used with the address to determine the complete 12-bit  
address of the register. When ‘a’ is ‘0’, the address is  
interpreted as being a register in the Access Bank.  
Addressing that uses the Access RAM is sometimes  
also known as Direct Forced Addressing mode.  
5.4  
Data Addressing Modes  
Note:  
The execution of some instructions in the  
core PIC18 instruction set are changed  
when the PIC18 extended instruction set is  
enabled. See Section 5.5 “Data Memory  
and the Extended Instruction Set” for  
more information.  
A few instructions, such as MOVFF, include the entire  
12-bit address (either source or destination) in their  
opcodes. In these cases, the BSR is ignored entirely.  
The data memory space can be addressed in several  
ways. For most instructions, the addressing mode is  
fixed. Other instructions may use up to three modes,  
depending on which operands are used and whether or  
not the extended instruction set is enabled.  
The destination of the operation’s results is determined  
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are  
stored back in the source register, overwriting its origi-  
nal contents. When ‘d’ is ‘0’, the results are stored in  
the W register. Instructions without the ‘d’ argument  
have a destination that is implicit in the instruction; their  
destination is either the target register being operated  
on or the W register.  
The addressing modes are:  
• Inherent  
• Literal  
• Direct  
• Indirect  
An additional addressing mode, Indexed Literal Offset,  
is available when the extended instruction set is  
enabled (XINST Configuration bit = 1). Its operation is  
discussed in greater detail in Section 5.5.1 “Indexed  
Addressing with Literal Offset”.  
5.4.3  
INDIRECT ADDRESSING  
Indirect Addressing allows the user to access a location  
in data memory without giving a fixed address in the  
instruction. This is done by using File Select Registers  
(FSRs) as pointers to the locations to be read or written  
to. Since the FSRs are themselves located in RAM as  
Special File Registers, they can also be directly manip-  
ulated under program control. This makes FSRs very  
useful in implementing data structures, such as tables  
and arrays in data memory.  
5.4.1  
INHERENT AND LITERAL  
ADDRESSING  
Many PIC18 control instructions do not need any argu-  
ment at all; they either perform an operation that globally  
affects the device or they operate implicitly on one  
register. This addressing mode is known as Inherent  
Addressing. Examples include SLEEP, RESETand DAW.  
The registers for Indirect Addressing are also  
implemented with Indirect File Operands (INDFs) that  
permit automatic manipulation of the pointer value with  
auto-incrementing, auto-decrementing or offsetting  
with another value. This allows for efficient code, using  
loops, such as the example of clearing an entire RAM  
bank in Example 5-5.  
Other instructions work in a similar way but require an  
additional explicit argument in the opcode. This is  
known as Literal Addressing mode because they  
require some literal value as an argument. Examples  
include ADDLWand MOVLW, which respectively, add or  
move a literal value to the W register. Other examples  
include CALL and GOTO, which include a 20-bit  
program memory address.  
EXAMPLE 5-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
5.4.2  
DIRECT ADDRESSING  
LFSR  
FSR0, 100h ;  
NEXT  
CLRF  
POSTINC0  
; Clear INDF  
Direct Addressing specifies all or part of the source  
and/or destination address of the operation within the  
opcode itself. The options are specified by the  
arguments accompanying the instruction.  
; register then  
; inc pointer  
; All done with  
; Bank1?  
; NO, clear next  
; YES, continue  
BTFSS  
BRA  
FSR0H, 1  
NEXT  
In the core PIC18 instruction set, bit-oriented and byte-  
oriented instructions use some version of Direct  
Addressing by default. All of these instructions include  
some 8-bit literal address as their Least Significant  
Byte. This address specifies either a register address in  
one of the banks of data RAM (Section 5.3.3 “General  
Purpose Register File”) or a location in the Access  
Bank (Section 5.3.2 “Access Bank”) as the data  
source for the instruction.  
CONTINUE  
© 2008 Microchip Technology Inc.  
DS39646C-page 81  
PIC18F8722 FAMILY  
5.4.3.1  
FSR Registers and the  
INDF Operand  
5.4.3.2  
FSR Registers and POSTINC,  
POSTDEC, PREINC and PLUSW  
At the core of Indirect Addressing are three sets of  
registers: FSR0, FSR1 and FSR2. Each represents a  
pair of 8-bit registers, FSRnH and FSRnL. The four  
upper bits of the FSRnH register are not used so each  
FSR pair holds a 12-bit value. This represents a value  
that can address the entire range of the data memory  
in a linear fashion. The FSR register pairs, then, serve  
as pointers to data memory locations.  
In addition to the INDF operand, each FSR register pair  
also has four additional indirect operands. Like INDF,  
these are “virtual” registers that cannot be indirectly  
read or written to. Accessing these registers actually  
accesses the associated FSR register pair, but also  
performs a specific action on its stored value. They are:  
• POSTDEC: accesses the FSR value, then  
automatically decrements it by 1 afterwards  
• POSTINC: accesses the FSR value, then  
automatically increments it by 1 afterwards  
• PREINC: increments the FSR value by 1, then  
uses it in the operation  
• PLUSW: adds the signed value of the W register  
(range of -127 to 128) to that of the FSR and uses  
the new value in the operation.  
Indirect Addressing is accomplished with a set of  
Indirect File Operands, INDF0 through INDF2. These  
can be thought of as “virtual” registers: they are  
mapped in the SFR space but are not physically imple-  
mented. Reading or writing to a particular INDF register  
actually accesses its corresponding FSR register pair.  
A read from INDF1, for example, reads the data at the  
address indicated by FSR1H:FSR1L. Instructions that  
use the INDF registers as operands actually use the  
contents of their corresponding FSR as a pointer to the  
instruction’s target. The INDF operand is just a  
convenient way of using the pointer.  
In this context, accessing an INDF register uses the  
value in the FSR registers without changing them.  
Similarly, accessing a PLUSW register gives the FSR  
value offset by the value in the W register; neither value  
is actually changed in the operation. Accessing the  
other virtual registers changes the value of the FSR  
registers.  
Because Indirect Addressing uses a full 12-bit address,  
data RAM banking is not necessary. Thus, the current  
contents of the BSR and the Access RAM bit have no  
effect on determining the target address.  
Operations on the FSRs with POSTDEC, POSTINC  
and PREINC affect the entire register pair; that is, roll-  
overs of the FSRnL register from FFh to 00h carry over  
to the FSRnH register. On the other hand, results of  
these operations do not change the value of any flags  
in the STATUS register (e.g., Z, N, OV, etc.).  
FIGURE 5-8:  
INDIRECT ADDRESSING  
000h  
Using an instruction with one of the  
Indirect Addressing registers as the  
operand....  
Bank 0  
Bank 1  
ADDWF, INDF1, 1  
100h  
200h  
300h  
Bank 2  
FSR1H:FSR1L  
...uses the 12-bit address stored in  
the FSR pair associated with that  
register....  
7
0
7
0
Bank 3  
through  
Bank 13  
x x x x 1 1 1 0  
1 1 0 0 1 1 0 0  
...to determine the data memory  
location to be used in that operation.  
E00h  
In this case, the FSR1 pair contains  
ECCh. This means the contents of  
location ECCh will be added to that  
of the W register and stored back in  
ECCh.  
Bank 14  
Bank 15  
F00h  
FFFh  
Data Memory  
DS39646C-page 82  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The PLUSW register can be used to implement a form  
of Indexed Addressing in the data memory space. By  
manipulating the value in the W register, users can  
reach addresses that are fixed offsets from pointer  
addresses. In some applications, this can be used to  
implement some powerful program control structure,  
such as software stacks, inside of data memory.  
5.5.1  
INDEXED ADDRESSING WITH  
LITERAL OFFSET  
Enabling the PIC18 extended instruction set changes  
the behavior of Indirect Addressing using the FSR2  
register pair within Access RAM. Under the proper  
conditions, instructions that use the Access Bank – that  
is, most bit-oriented and byte-oriented instructions –  
can invoke a form of Indexed Addressing using an  
offset specified in the instruction. This special address-  
ing mode is known as Indexed Addressing with Literal  
Offset, or Indexed Literal Offset mode.  
5.4.3.3  
Operations by FSRs on FSRs  
Indirect Addressing operations that target other FSRs  
or virtual registers represent special cases. For exam-  
ple, using an FSR to point to one of the virtual registers  
will not result in successful operations. As a specific  
case, assume that FSR0H:FSR0L contains FE7h, the  
address of INDF1. Attempts to read the value of the  
INDF1 using INDF0 as an operand will return 00h.  
Attempts to write to INDF1 using INDF0 as the operand  
will result in a NOP.  
When using the extended instruction set, this  
addressing mode requires the following:  
• The use of the Access Bank is forced (‘a’ = 0) and  
• The file address argument is less than or equal to  
5Fh.  
Under these conditions, the file address of the instruc-  
tion is not interpreted as the lower byte of an address  
(used with the BSR in Direct Addressing), or as an 8-bit  
address in the Access Bank. Instead, the value is  
interpreted as an offset value to an address pointer,  
specified by FSR2. The offset and the contents of  
FSR2 are added to obtain the target address of the  
operation.  
On the other hand, using the virtual registers to write to  
an FSR pair may not occur as planned. In these cases,  
the value will be written to the FSR pair but without any  
incrementing or decrementing. Thus, writing to INDF2  
or POSTDEC2 will write the same value to the  
FSR2H:FSR2L.  
Since the FSRs are physical registers mapped in the  
SFR space, they can be manipulated through all direct  
operations. Users should proceed cautiously when  
working on these registers, particularly if their code  
uses Indirect Addressing.  
5.5.2  
INSTRUCTIONS AFFECTED BY  
INDEXED LITERAL OFFSET MODE  
Any of the core PIC18 instructions that can use Direct  
Addressing are potentially affected by the Indexed  
Literal Offset Addressing mode. This includes all  
byte-oriented and bit-oriented instructions, or almost  
one-half of the standard PIC18 instruction set.  
Instructions that only use Inherent or Literal Addressing  
modes are unaffected.  
Similarly, operations by Indirect Addressing are gener-  
ally permitted on all other SFRs. Users should exercise  
the appropriate caution that they do not inadvertently  
change settings that might affect the operation of the  
device.  
Additionally, byte-oriented and bit-oriented instructions  
are not affected if they do not use the Access Bank  
(Access RAM bit is ‘1’), or include a file address of 60h  
or above. Instructions meeting these criteria will  
continue to execute as before. A comparison of the dif-  
ferent possible addressing modes when the extended  
instruction set is enabled in shown in Figure 5-9.  
5.5  
Data Memory and the Extended  
Instruction Set  
Enabling the PIC18 extended instruction set (XINST  
Configuration bit = 1) significantly changes certain  
aspects of data memory and its addressing. Specifi-  
cally, the use of the Access Bank for many of the core  
PIC18 instructions is different; this is due to the  
introduction of a new addressing mode for the data  
memory space.  
Those who desire to use byte-oriented or bit-oriented  
instructions in the Indexed Literal Offset mode should  
note the changes to assembler syntax for this mode.  
This is described in more detail in Section 26.2.1  
“Extended Instruction Syntax”.  
What does not change is just as important. The size of  
the data memory space is unchanged, as well as its  
linear addressing. The SFR map remains the same.  
Core PIC18 instructions can still operate in both Direct  
and Indirect Addressing mode; inherent and literal  
instructions do not change at all. Indirect Addressing  
with FSR0 and FSR1 also remain unchanged.  
© 2008 Microchip Technology Inc.  
DS39646C-page 83  
PIC18F8722 FAMILY  
FIGURE 5-9:  
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND  
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)  
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)  
000h  
When ‘a’ = 0 and f 60h:  
060h  
080h  
The instruction executes in  
Direct Forced mode. ‘f’ is inter-  
Bank 0  
preted as a location in the  
Access RAM between 060h  
and 0FFh. This is the same as  
locations 060h to 07Fh  
(Bank 0) and F80h to FFFh  
(Bank 15) of data memory.  
100h  
00h  
Bank 1  
through  
Bank 14  
60h  
80h  
Valid range  
for ‘f’  
FFh  
F00h  
Access RAM  
Locations below 60h are not  
available in this addressing  
mode.  
Bank 15  
SFRs  
F80h  
FFFh  
Data Memory  
When ‘a’ = 0 and f 5Fh:  
000h  
080h  
100h  
Bank 0  
The instruction executes in  
Indexed Literal Offset mode. ‘f’  
is interpreted as an offset to the  
address value in FSR2. The  
two are added together to  
obtain the address of the target  
register for the instruction. The  
address can be anywhere in  
the data memory space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
FSR2H  
FSR2L  
F00h  
F80h  
Note that in this mode, the  
correct syntax is now:  
Bank 15  
SFRs  
ADDWF [k], d  
where ‘k’ is the same as ‘f’.  
FFFh  
Data Memory  
BSR  
000h  
080h  
100h  
00000000  
When ‘a’ = 1 (all values of f):  
Bank 0  
The instruction executes in  
Direct mode (also known as  
Direct Long mode). ‘f’ is inter-  
preted as a location in one of  
the 16 banks of the data  
memory space. The bank is  
designated by the Bank Select  
Register (BSR). The address  
can be in any implemented  
bank in the data memory  
space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
F00h  
F80h  
Bank 15  
SFRs  
FFFh  
Data Memory  
DS39646C-page 84  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Remapping of the Access Bank applies only to opera-  
tions using the Indexed Literal Offset mode. Operations  
that use the BSR (Access RAM bit is ‘1’) will continue  
to use Direct Addressing as before.  
5.5.3  
MAPPING THE ACCESS BANK IN  
INDEXED LITERAL OFFSET MODE  
The use of Indexed Literal Offset Addressing mode  
effectively changes how the first 96 locations of Access  
RAM (00h to 5Fh) are mapped. Rather than containing  
just the contents of the bottom half of Bank 0, this mode  
maps the contents from Bank 0 and a user defined  
“window” that can be located anywhere in the data  
memory space. The value of FSR2 establishes the  
lower boundary of the addresses mapped into the  
window, while the upper boundary is defined by FSR2  
plus 95 (5Fh). Addresses in the Access RAM above  
5Fh are mapped as previously described (see  
Section 5.3.2 “Access Bank”). An example of Access  
Bank remapping in this addressing mode is shown in  
Figure 5-10.  
5.6  
PIC18 Instruction Execution and  
the Extended Instruction Set  
Enabling the extended instruction set adds eight  
additional commands to the existing PIC18 instruction  
set. These instructions are executed as described in  
Section 26.2 “Extended Instruction Set”.  
FIGURE 5-10:  
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL  
OFFSET ADDRESSING  
Example Situation:  
000h  
ADDWF f, d, a  
FSR2H:FSR2L = 120h  
Bank 0  
05Fh  
07Fh  
Locations in the region  
from the FSR2 Pointer  
(120h) to the pointer plus  
05Fh (17Fh) are mapped  
to the bottom of the  
Access RAM (000h-05Fh).  
Bank 0  
100h  
120h  
17Fh  
Bank 1  
Window  
00h  
Bank 1  
Bank 1 “Window”  
200h  
5Fh  
Locations in Bank 0 from  
060h to 07Fh are mapped,  
as usual, to the middle half  
of the Access Bank.  
Bank 0  
7Fh  
80h  
Bank 2  
through  
Bank 14  
SFRs  
Special File Registers at  
F80h through FFFh are  
mapped to 80h through  
FFh, as usual.  
FFh  
Access Bank  
F00h  
Bank 15  
SFRs  
Bank 0 addresses below  
5Fh can still be addressed  
by using the BSR.  
F80h  
FFFh  
Data Memory  
© 2008 Microchip Technology Inc.  
DS39646C-page 85  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 86  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
6.1  
Table Reads and Table Writes  
6.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table Read (TBLRD)  
Table Write (TBLWT)  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 64 bytes at a time. Program memory is  
erased in blocks of 64 bytes at a time. A bulk erase  
operation may not be issued from user code.  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and place it into the data RAM space.  
Figure 6-1 shows the operation of a table read with  
program memory and data RAM.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 6.5 “Writing  
to Flash Program Memory”. Figure 6-2 shows the  
operation of a table write with program memory and data  
RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word aligned.  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1:Table Pointer register points to a byte in program memory.  
© 2008 Microchip Technology Inc.  
DS39646C-page 87  
PIC18F8722 FAMILY  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note1:  
Table Pointer actually points to one of 64 holding registers, the address of which is determined by  
TBLPTRL<5:0>. The process for physically writing data to the program memory array is discussed in  
Section 6.5 “Writing to Flash Program Memory”.  
registers regardless of EEPGD (see Section 25.0  
“Special Features of the CPU”). When clear, memory  
selection access is determined by EEPGD.  
6.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
The FREE bit, when set, will allow a program memory  
erase operation. When FREE is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set in hardware when the WR bit is set and cleared  
when the internal programming timer expires and the  
write operation is complete.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
The EECON1 register (Register 6-1) is the control  
register for memory accesses. The EECON2 register is  
not a physical register; it is used exclusively in the  
memory write and erase sequences. Reading  
EECON2 will read all ‘0’s.  
Note:  
During normal operation, the WRERR is  
read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
The EEPGD control bit determines if the access will be  
a program or data EEPROM memory access. When  
clear, any subsequent operations will operate on the  
data EEPROM memory. When set, any subsequent  
operations will operate on the program memory.  
a
Reset, or  
a write operation was  
attempted improperly.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software; it is cleared in  
hardware at the completion of the write operation.  
The CFGS control bit determines if the access will be  
to the Configuration/Calibration registers or to program  
memory/data EEPROM memory. When set,  
subsequent operations will operate on Configuration  
Note:  
The EEIF interrupt flag bit (PIR2<4>) is set  
when the write is complete. It must be  
cleared in software.  
DS39646C-page 88  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 6-1:  
EECON1: EEPROM CONTROL REGISTER 1  
R/W-x  
EEPGD  
bit 7  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
WRERR(1)  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete.  
The WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only  
be set (not cleared) in software. RD bit cannot be set when EEPGD = 1or CFGS = 1.)  
0= Does not initiate an EEPROM read  
Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared.  
This allows tracing of the error condition.  
© 2008 Microchip Technology Inc.  
DS39646C-page 89  
PIC18F8722 FAMILY  
6.2.2  
TABLAT – TABLE LATCH REGISTER  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRDis executed, all 22 bits of the TBLPTR  
determine which byte is read from program memory  
into TABLAT.  
6.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
When a TBLWTis executed, the six LSbs of the Table  
Pointer register (TBLPTR<5:0>) determine which of  
the 64 program memory holding registers is written to.  
When the timed write to program memory begins (via  
the WR bit), the 16 MSbs of the TBLPTR  
(TBLPTR<21:6>) determine which program memory  
block of 64 bytes is written to. For more detail, see  
Section 6.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) register addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the device ID, the user ID and the Configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer register (TBLPTR<21:6>)  
point to the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The Table Pointer register, TBLPTR, is used by the  
TBLRDand TBLWTinstructions. These instructions can  
update the TBLPTR in one of four ways based on the  
table operation. These operations are shown in  
Table 6-1. These operations on the TBLPTR only affect  
the low-order 21 bits.  
Figure 6-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
TABLE ERASE/WRITE  
TBLPTR<21:6>  
TABLE WRITE  
TBLPTR<5:0>  
TABLE READ – TBLPTR<21:0>  
DS39646C-page 90  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
6.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
(IR)  
TABLAT  
Read Register  
FETCH  
TBLRD  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
MOVF  
© 2008 Microchip Technology Inc.  
DS39646C-page 91  
PIC18F8722 FAMILY  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer, or through  
ICSP control, can larger blocks of program memory be  
bulk erased. Word erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer register with address of row  
being erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash  
program memory. The WREN bit must be set to enable  
write operations. The FREE bit is set to select an erase  
operation.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
For protection, the write initiate sequence for EECON2  
must be used.  
7. The CPU will stall for duration of the erase for  
TIW (see parameter D133A).  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
8. Re-enable interrupts.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BCF  
BSF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
BCF  
Required  
Sequence  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
BSF  
DS39646C-page 92  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
6.5  
Writing to Flash Program Memory  
The minimum programming block is 32 words or  
64 bytes. Word or byte programming is not supported.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 64 holding registers used by the table writes for  
programming.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device.  
Since the Table Latch (TABLAT) is only a single byte, the  
TBLWTinstruction may need to be executed 64 times for  
each programming operation. All of the table write oper-  
ations will essentially be short writes because only the  
holding registers are written. At the end of updating the  
64 holding registers, the EECON1 register must be  
written to in order to start the programming operation  
with a long write.  
Note:  
The default value of the holding registers on  
device Resets and after write operations is  
FFh. A write of FFh to a holding register  
does not modify that byte. This means that  
individual bytes of program memory may be  
modified, provided that the change does not  
attempt to change any bit from a ‘0’ to a ‘1’.  
When modifying individual bytes, it is not  
necessary to load all 64 holding registers  
before executing a write operation.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx1  
TBLPTR = xxxxx2  
TBLPTR = xxxx3F  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write 0AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write for TIW  
(see parameter D133A).  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
13. Re-enable interrupts.  
3. Load Table Pointer register with address being  
erased.  
14. Verify the memory (table read).  
An example of the required code is shown in  
Example 6-3 on the following page.  
4. Execute the row erase procedure.  
5. Load Table Pointer register with address of first  
byte being written.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the 64 bytes in  
the holding register.  
6. Write the 64 bytes into the holding registers with  
auto-increment.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN to enable byte writes.  
© 2008 Microchip Technology Inc.  
DS39646C-page 93  
PIC18F8722 FAMILY  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D'64'  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; number of bytes in erase block  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
DECFSZ COUNTER  
BRA  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLWD ATA_ADDR_HIGH  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; load TBLPTR with the base  
; address of the memory block  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
; dummy read decrement  
; point to buffer  
BSF  
TBLRD*-  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
WRITE_BUFFER_BACK  
MOVLW  
D'64'  
; number of bytes in holding register  
MOVWF  
WRITE_BYTE_TO_HREGS  
MOVFF  
COUNTER  
POSTINC0, WREG  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
MOVWF  
TBLWT+*  
DECFSZ COUNTER  
BRA WRITE_WORD_TO_HREGS  
DS39646C-page 94  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
PROGRAM_MEMORY  
BSF  
EECON1, EEPGD ; point to Flash program memory  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
; access Flash program memory  
; enable write to memory  
; disable interrupts  
Required  
Sequence  
; write 55h  
EECON2  
; write 0AAh  
EECON1, WR  
INTCON, GIE  
EECON1, WREN  
; start program (CPU stall)  
; re-enable interrupts  
; disable write to memory  
BSF  
BCF  
6.5.2  
WRITE VERIFY  
6.5.4  
PROTECTION AGAINST  
SPURIOUS WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
To protect against spurious writes to Flash program  
memory, the write initiate sequence must also be  
followed. See Section 25.0 “Special Features of the  
CPU” for more detail.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
6.6  
Flash Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. If the write operation is interrupted  
by a MCLR Reset or a WDT Time-out Reset during  
normal operation, the user can check the WRERR bit  
and rewrite the location(s) as needed.  
See Section 25.5 “Program Verification and Code  
Protection” for details on code protection of Flash  
program memory.  
TABLE 6-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Reset  
Valueson  
page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TBLPTRU  
bit 21(1) Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
57  
57  
57  
57  
57  
59  
59  
60  
60  
60  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
TABLAT  
INTCON  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
BCL1IP  
BCL1IF  
BCL1IE  
WREN  
HLVDIP  
HLVDIF  
HLVDIE  
WR  
RD  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP  
CCP2IF  
CCP2IE  
PIR2  
PIE2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
Note 1: Bit 21 of TBLPTRU allows access to the device Configuration bits.  
© 2008 Microchip Technology Inc.  
DS39646C-page 95  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 96  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The bus is implemented with 28 pins, multiplexed  
across four I/O ports. Three ports (PORTD, PORTE  
and PORTH) are multiplexed with the address/data bus  
for a total of 20 available lines, while PORTJ is  
multiplexed with the bus control signals.  
7.0  
EXTERNAL MEMORY BUS  
Note:  
The External Memory Bus is not imple-  
mented on PIC18F6527/6622/6627/6722  
(64-pin) devices.  
A list of the pins and their functions is provided in  
Table 7-1.  
The External Memory Bus (EMB) allows the device to  
access external memory devices (such as Flash,  
EPROM, SRAM, etc.) as program or data memory. It  
supports both 8-bit and 16-bit Data Width modes and  
four address widths from 8 to 20 bits.  
TABLE 7-1:  
Name  
PIC18F8527/8622/8627/8722 EXTERNAL BUS – I/O PORT FUNCTIONS  
Port  
Bit  
External Memory Bus Function  
RD0/AD0  
RD1/AD1  
RD2/AD2  
RD3/AD3  
RD4/AD4  
RD5/AD5  
RD6/AD6  
RD7/AD7  
RE0/AD8  
RE1/AD9  
RE2/AD10  
RE3/AD11  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE7/AD15  
RH0/A16  
RH1/A17  
RH2/A18  
RH3/A19  
RJ0/ALE  
RJ1/OE  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTH  
PORTH  
PORTH  
PORTH  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0
1
2
3
4
5
6
7
Address bit 0 or Data bit 0  
Address bit 1 or Data bit 1  
Address bit 2 or Data bit 2  
Address bit 3 or Data bit 3  
Address bit 4 or Data bit 4  
Address bit 5 or Data bit 5  
Address bit 6 or Data bit 6  
Address bit 7 or Data bit 7  
Address bit 8 or Data bit 8  
Address bit 9 or Data bit 9  
Address bit 10 or Data bit 10  
Address bit 11 or Data bit 11  
Address bit 12 or Data bit 12  
Address bit 13 or Data bit 13  
Address bit 14 or Data bit 14  
Address bit 15 or Data bit 15  
Address bit 16  
Address bit 17  
Address bit 18  
Address bit 19  
Address Latch Enable (ALE) Control pin  
Output Enable (OE) Control pin  
Write Low (WRL) Control pin  
Write High (WRH) Control pin  
Byte Address bit 0 (BA0)  
Chip Enable (CE) Control pin  
Lower Byte Enable (LB) Control pin  
Upper Byte Enable (UB) Control pin  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
RJ7/UB  
Note:  
For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional  
multiplexed features may be available on some pins.  
© 2008 Microchip Technology Inc.  
DS39646C-page 97  
PIC18F8722 FAMILY  
The operation of the EBDIS bit is also influenced by the  
program memory mode being used. This is discussed  
in more detail in Section 7.4 “Program Memory  
Modes and the External Memory Bus”.  
7.1  
External Memory Bus Control  
The operation of the interface is controlled by the  
MEMCON register (Register 7-1). This register is  
available in all program memory operating modes  
except Microcontroller mode. In this mode, the register  
is disabled and cannot be written to.  
The WAIT bits allow for the addition of wait states to  
external memory operations. The use of these bits is  
discussed in Section 7.3 “Wait States”.  
The EBDIS bit (MEMCON<7>) controls the operation  
of the bus and related port functions. Clearing EBDIS  
enables the interface and disables the I/O functions of  
the ports, as well as any other functions multiplexed to  
those pins. Setting the bit enables the I/O ports and  
other functions but allows the interface to override  
everything else on the pins when an external memory  
operation is required. By default, the external bus is  
always enabled and disables all other I/O.  
The WM bits select the particular operating mode used  
when the bus is operating in 16-bit Data Width mode.  
These are discussed in more detail in Section 7.5  
“16-Bit Data Width Modes”. These bits have no effect  
when an 8-bit Data Width mode is selected.  
WM<1:0>: TBLWTOperation with 16-Bit Data Bus  
Width Select bits  
1x= Word Write mode: TABLAT0 and TABLAT1 word  
output, WRH active when TABLAT1 written  
01= Byte Select mode: TABLAT data copied on both  
MSB and LSB; WRH and (UB or LB) will activate  
REGISTER 7-1:  
MEMCON: EXTERNAL MEMORY BUS CONTROL REGISTER  
R/W-0  
EBDIS  
bit 7  
U-0  
R/W-0  
WAIT1  
R/W-0  
WAIT0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
EBDIS: External Bus Disable bit  
1= External bus enabled when microcontroller accesses external memory;  
otherwise, all external bus drivers are mapped as I/O ports  
0= External bus always enabled, I/O ports are disabled  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits  
11= Table reads and writes will wait 0 TCY  
10= Table reads and writes will wait 1 TCY  
01= Table reads and writes will wait 2 TCY  
00= Table reads and writes will wait 3 TCY  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
WM<1:0>: TBLWTOperation with 16-Bit Data Bus Width Select bits  
1= Result was negative  
0= Result was positive  
DS39646C-page 98  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
7.2.1  
21-BIT ADDRESSING  
7.2  
Address and Data Width  
As an extension of 20-bit address width operation, the  
External Memory Bus can also fully address a 2 Mbyte  
memory space. This is done by using the Bus Address  
bit 0 (BA0) control line as the Least Significant bit of the  
address. The UB and LB control signals may also be  
used with certain memory devices to select the upper  
and lower bytes within a 16-bit wide data word.  
PIC18F8527/8622/8627/8722 devices can be indepen-  
dently configured for different address and data widths  
on the same memory bus. Both address and data width  
are set by Configuration bits in the CONFIG3L register.  
As Configuration bits, this means that these options  
can only be configured by programming the device and  
are not controllable in software.  
This addressing mode is available in both 8-bit and  
certain 16-bit Data Width modes. Additional details are  
provided in Section 7.5.3 “16-bit Byte Select Mode”  
and Section 7.6 “8-Bit Data Width Modes”.  
The BW bit selects an 8-bit or 16-bit data bus width.  
Setting this bit (default) selects a data width of 16 bits.  
The ADW<1:0> bits determine the address bus width.  
The available options are 20-bit (default), 16-bit, 12-bit  
and 8-bit. Selecting any of the options other than 20-bit  
width makes a corresponding number of high-order  
lines available for I/O functions; these pins are no  
longer affected by the setting of the EBDIS bit. For  
7.3  
Wait States  
While it may be assumed that external memory devices  
will operate at the microcontroller clock rate, this is  
often not the case. In fact, many devices require longer  
times to write or retrieve data than the time allowed by  
the execution of table read or table write operations.  
example, selecting  
a
16-bit Address mode  
(ADW<1:0> = 10) disables A<19:16> and allows  
PORTH<3:0> to function without interruptions from the  
bus. Using smaller address widths allows users to tailor  
the memory bus to the size of the external memory  
space for a particular design while freeing up pins for  
dedicated I/O operation.  
To compensate for this, the External Memory Bus can  
be configured to add a fixed delay to each table opera-  
tion using the bus. Wait states are enabled by setting  
the WAITx bit. When enabled, the amount of delay is  
set by the WAIT<1:0> bits (MEMCON<5:4>). The delay  
is based on multiples of microcontroller instruction  
cycle time and are added following the instruction cycle  
when the table operation is executed. The range is  
from no delay to 3 TCY (default value).  
Because the ADW bits have the effect of disabling pins  
for memory bus operations, it is important to always  
select an address width at least equal to the data width.  
If 8-bit or 12-bit address widths are used with a 16-bit  
data width, the upper bits of data will not be available  
on the bus.  
All combinations of address and data widths require  
multiplexing of address and data information on the  
same lines. The address and data multiplexing, as well  
as I/O ports made available by the use of smaller  
address widths, are summarized in Table 7-2.  
TABLE 7-2:  
Data Width  
ADDRESS AND DATA LINES FOR DIFFERENT ADDRESS AND DATA WIDTHS  
Multiplexed Data and  
Address Lines (and  
Address-Only  
Lines (and  
Ports Available  
for I/O  
Address Width  
Corresponding Ports) Corresponding Ports)  
All of PORTE and  
PORTH  
8-bit  
12-bit  
16-bit  
AD<11:8>  
(PORTE<3:0>)  
PORTE<7:4>,  
All of PORTH  
AD<7:0>  
(PORTD<7:0>)  
8-bit  
AD<15:8>  
(PORTE<7:0>)  
All of PORTH  
A<19:16>, AD<15:8>  
(PORTH<3:0>,  
20-bit  
PORTE<7:0>)  
16-bit  
20-bit  
All of PORTH  
AD<15:0>  
(PORTD<7:0>,  
PORTE<7:0>)  
16-bit  
A<19:16>  
(PORTH<3:0>)  
© 2008 Microchip Technology Inc.  
DS39646C-page 99  
PIC18F8722 FAMILY  
7.4  
Program Memory Modes and the  
External Memory Bus  
7.5  
16-Bit Data Width Modes  
In 16-Bit Data Width mode, the External Memory Bus  
can be connected to external memories in three  
different configurations:  
PIC18F8527/8622/8627/8722 devices are capable of  
operating in any one of four program memory modes,  
using combinations of on-chip and external program  
memory. The functions of the multiplexed port pins  
depends on the program memory mode selected, as  
well as the setting of the EBDIS bit.  
• 16-bit Byte Write  
• 16-bit Word Write  
• 16-bit Byte Select  
The configuration to be used is determined by the  
WM1:WM0 bits in the MEMCON register  
(MEMCON<1:0>). These three different configurations  
allow the designer maximum flexibility in using both  
8-bit and 16-bit devices with 16-bit data.  
In Microcontroller Mode, the bus is not active and the  
pins have their port functions only. Writes to the  
MEMCOM register are not permitted. The Reset value  
of EBDIS (‘0’) is ignored and EMB pins behave as I/O  
ports.  
For all 16-bit modes, the Address Latch Enable (ALE)  
pin indicates that the address bits AD<15:0> are  
available on the external memory interface bus.  
Following the address latch, the Output Enable signal  
(OE) will enable both bytes of program memory at once  
to form a 16-bit instruction word. The Chip Enable  
signal (CE) is active at any time that the microcontroller  
accesses external memory, whether reading or writing;  
it is inactive (asserted high) whenever the device is in  
Sleep mode.  
In Microprocessor Mode, the external bus is always  
active and the port pins have only the external bus  
function. The value of EBDIS is ignored.  
In Microprocessor with Boot Block or Extended  
Microcontroller Mode, the external program memory  
bus shares I/O port functions on the pins. When the  
device is fetching or doing table read/table write opera-  
tions on the external program memory space, the pins  
will have the external bus function. If the device is  
fetching and accessing internal program memory loca-  
tions only, the EBDIS control bit will change the pins  
from external memory to I/O port functions. When  
EBDIS = 0, the pins function as the external bus. When  
EBDIS = 1, the pins function as I/O ports.  
In Byte Select mode, JEDEC standard Flash memories  
will require BA0 for the byte address line and one I/O  
line to select between Byte and Word mode. The other  
16-bit modes do not need BA0. JEDEC standard static  
RAM memories will use the UB or LB signals for byte  
selection.  
If the device fetches or accesses external memory  
while EBDIS = 1, the pins will switch from I/O to exter-  
nal bus. If the EBDIS bit is set by a program executing  
from external memory, the action of setting the bit will  
be delayed until the program branches into the internal  
memory. At that time, the pins will change from external  
bus to I/O ports.  
If the device is executing out of internal memory when  
EBDIS = 0, the memory bus address/data and control  
pins will not be active. They will go to a state where the  
active address/data pins are tri-state; the CE, OE,  
WRH, WRL, UB and LB signals are ‘1’; and ALE and  
BA0 are ‘0’. Note that only those pins associated with  
the current address width are forced to tri-state; the  
other pins continue to function as I/O. In the case of  
16-bit address width, for example, only AD<15:0>  
(PORTD and PORTE) are affected; A<19:16>  
(PORTH<3:0>) continue to function as I/O.  
In all external memory modes, the bus takes priority  
over any other peripherals that may share pins with it.  
This includes the Parallel Slave Port and serial commu-  
nications modules which would otherwise take priority  
over the I/O port.  
DS39646C-page 100  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
During a TBLWTinstruction cycle, the TABLAT data is  
presented on the upper and lower bytes of the  
AD<15:0> bus. The appropriate WRH or WRL control  
line is strobed on the LSb of the TBLPTR.  
7.5.1  
16-BIT BYTE WRITE MODE  
Figure 7-1 shows an example of 16-bit Byte Write  
mode for PIC18F8527/8622/8627/8722 devices. This  
mode is used for two separate 8-bit memories con-  
nected for 16-bit operation. This generally includes  
basic EPROM and Flash devices. It allows table writes  
to byte-wide external memories.  
FIGURE 7-1:  
16-BIT BYTE WRITE MODE EXAMPLE  
D<7:0>  
(MSB)  
A<x:0>  
(LSB)  
PIC18F8X27/8X22  
A<19:0>  
D<15:8>  
AD<7:0>  
373  
373  
A<x:0>  
D<7:0>  
D<7:0>  
CE  
D<7:0>  
CE  
AD<15:8>  
ALE  
(2)  
(2)  
OE WR  
OE WR  
(1)  
A<19:16>  
CE  
OE  
WRH  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper-order address lines are used only for 20-bit address widths.  
2: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
© 2008 Microchip Technology Inc.  
DS39646C-page 101  
PIC18F8722 FAMILY  
During  
a
TBLWT cycle to an odd address  
7.5.2  
16-BIT WORD WRITE MODE  
(TBLPTR<0> = 1), the TABLAT data is presented on  
the upper byte of the AD15:AD0 bus. The contents of  
the holding latch are presented on the lower byte of the  
AD<15:0> bus.  
Figure 7-2 shows an example of 16-bit Word Write  
mode for PIC18F8527/8622/8627/8722 devices. This  
mode is used for word-wide memories which includes  
some of the EPROM and Flash-type memories. This  
mode allows opcode fetches and table reads from all  
forms of 16-bit memory and table writes to any type of  
word-wide external memories. This method makes a  
distinction between TBLWT cycles to even or odd  
addresses.  
The WRH signal is strobed for each write cycle; the  
WRL pin is unused. The signal on the BA0 pin indicates  
the Least Significant bit of TBLPTR but it is left  
unconnected. Instead, the UB and LB signals are  
active to select both bytes. The obvious limitation to  
this method is that the table write must be done in pairs  
on a specific word boundary to correctly write a word  
location.  
During  
a
TBLWT cycle to an even address  
(TBLPTR<0> = 0), the TABLAT data is transferred to a  
holding latch and the external address data bus is  
tri-stated for the data portion of the bus cycle. No write  
signals are activated.  
FIGURE 7-2:  
16-BIT WORD WRITE MODE EXAMPLE  
PIC18F8X27/8X22  
A<20:1>  
D<15:0>  
JEDEC Word  
EPROM Memory  
AD<7:0>  
373  
A<x:0>  
D<15:0>  
CE  
(2)  
OE  
WR  
AD<15:8>  
ALE  
373  
(1)  
A<19:16>  
CE  
OE  
WRH  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper-order address lines are used only for 20-bit address widths.  
2: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
DS39646C-page 102  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Flash and SRAM devices use different control signal  
combinations to implement Byte Select mode. JEDEC  
standard Flash memories require that a controller I/O  
port pin be connected to the memory’s BYTE/WORD  
pin to provide the select signal. They also use the BA0  
signal from the controller as a byte address. JEDEC  
standard static RAM memories, on the other hand, use  
the UB or LB signals to select the byte.  
7.5.3  
16-BIT BYTE SELECT MODE  
Figure 7-3 shows an example of 16-bit Byte Select  
mode. This mode allows table write operations to  
word-wide external memories with byte selection  
capability. This generally includes both word-wide  
Flash and SRAM devices.  
During a TBLWTcycle, the TABLAT data is presented  
on the upper and lower byte of the AD<15:0> bus. The  
WRH signal is strobed for each write cycle; the WRL  
pin is not used. The BA0 or UB/LB signals are used to  
select the byte to be written, based on the Least  
Significant bit of the TBLPTR register.  
FIGURE 7-3:  
16-BIT BYTE SELECT MODE EXAMPLE  
PIC18F8X27/8X22  
A<20:1>  
AD<7:0>  
373  
373  
JEDEC Word  
Flash Memory  
A<x:1>  
D<15:0>  
D<15:0>  
(3)  
138  
CE  
A0  
AD<15:8>  
ALE  
(1)  
BYTE/WORD OE WR  
(2)  
A<19:16>  
OE  
WRH  
WRL  
A<20:1>  
JEDEC Word  
A<x:1>  
SRAM Memory  
BA0  
I/O  
D<15:0>  
D<15:0>  
CE  
LB  
LB  
(1)  
UB  
OE WR  
UB  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
2: Upper-order address lines are used only for 20-bit address width.  
3: Demultiplexing is only required when multiple memory devices are accessed.  
© 2008 Microchip Technology Inc.  
DS39646C-page 103  
PIC18F8722 FAMILY  
7.5.4  
16-BIT MODE TIMING  
The presentation of control signals on the External  
Memory Bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 7-4 through Figure 7-6. All examples assume  
either 20-bit or 21-bit address widths.  
FIGURE 7-4:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD WITH A 1 TCY WAIT STATE  
(MICROPROCESSOR MODE)  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q4  
Q1  
Q4  
Q2  
Q4  
Q3  
Q4  
Q4  
Apparent Q  
Actual Q  
00h  
0Ch  
A<19:16>  
3AABh  
0E55h  
9256h  
AD<15:0>  
CF33h  
BA0  
ALE  
OE  
WRH  
1’  
1’  
WRL ‘1’  
CE ‘0’  
1’  
0’  
1 TCY Wait  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Table Read  
of 92h  
from 007556h  
from 199E67h  
Instruction  
Execution  
TBLRDCycle 1  
TBLRDCycle 2  
FIGURE 7-5:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD  
(EXTENDED MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
0Ch  
A<19:16>  
CF33h  
9256h  
AD<15:0>  
CE  
ALE  
OE  
Opcode Fetch  
TBLRD *  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
TBLRD92h  
from 199E67h  
Opcode Fetch  
ADDLW55h  
from 000104h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
DS39646C-page 104  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 7-6:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (MICROPROCESSOR MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
00h  
00h  
A<19:16>  
AD<15:0>  
0E55h  
0003h  
3AABh  
3AAAh  
CE  
ALE  
OE  
Memory  
Cycle  
(1)  
Opcode Fetch  
MOVLW55h  
Sleep Mode, Bus Inactive  
Opcode Fetch  
SLEEP  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC – 2)  
SLEEP  
Note 1: Bus becomes inactive regardless of power-managed mode entered when SLEEPis executed.  
© 2008 Microchip Technology Inc.  
DS39646C-page 105  
PIC18F8722 FAMILY  
The Address Latch Enable (ALE) pin indicates that the  
address bits A<15:0> are available on the External  
Memory Interface bus. The Output Enable signal (OE)  
will enable one byte of program memory for a portion of  
the instruction cycle, then BA0 will change and the sec-  
ond byte will be enabled to form the 16-bit instruction  
word. The least significant bit of the address, BA0,  
must be connected to the memory devices in this  
mode. The Chip Enable signal (CE) is active at any  
time that the microcontroller accesses external  
memory, whether reading or writing; it is inactive  
(asserted high) whenever the device is in Sleep mode.  
7.6  
8-Bit Data Width Modes  
In 8-Bit Data Width mode, the External Memory Bus  
operates only in Multiplexed mode; that is, data shares  
the 8 least significant bits of the address bus.  
Figure 7-7 shows an example of 8-bit Multiplexed  
mode for PIC18F8527/8622/8627/8722 devices. This  
mode is used for a single 8-bit memory connected for  
16-bit operation. The instructions will be fetched as two  
8-bit bytes on a shared data/address bus. The two  
bytes are sequentially fetched within one instruction  
cycle (TCY). Therefore, the designer must choose  
external memory devices according to timing calcula-  
tions based on 1/2 TCY (2 times the instruction rate).  
For proper memory speed selection, glue logic  
propagation delay times must be considered along with  
setup and hold times.  
This generally includes basic EPROM and Flash  
devices. It allows table writes to byte-wide external  
memories.  
The appropriate level of BA0 control line is strobed on  
the LSb of the TBLPTR.  
FIGURE 7-7:  
8-BIT MULTIPLEXED MODE EXAMPLE  
D<7:0>  
PIC18F8X27/8X22  
A<19:0>  
A<x:1>  
AD<7:0>  
373  
ALE  
A0  
D<15:8>  
D<7:0>  
CE  
(1)  
AD<15:8>  
(1)  
A<19:16>  
(2)  
OE WR  
BA0  
CE  
OE  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper-order address bits are used only for 20-bit address width. The upper AD byte is used  
for all address widths except 8-bit.  
2: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
DS39646C-page 106  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
7.6.1  
8-BIT MODE TIMING  
The presentation of control signals on the External  
Memory Bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 7-8 through Figure 7-11.  
FIGURE 7-8:  
EXTERNAL BUS TIMING FOR TBLRD (MICROPROCESSOR MODE)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
AD<15:8>,  
A<19:16>  
03Ah  
03Ah  
CCFh  
03Ah  
(1)  
AAh  
08h 00h  
ABh  
55h 0Eh  
33h  
92h  
ACh  
55h 0Fh  
AD<7:0>  
BA0  
ALE  
OE  
1’  
1’  
WRH  
1’  
1’  
WRL  
Opcode Fetch  
Opcode Fetch  
Table Read 92h  
from 199E67h  
Opcode Fetch  
Memory  
Cycle  
TBLRD *  
MOVLW55h  
ADDLW55h  
from 007554h  
from 007556h  
from 007558h  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
Note 1: The address lines actually used depends on the address width selected. This example assumes 20-bit addressing.  
FIGURE 7-9:  
EXTERNAL BUS TIMING FOR TBLRD (EXTENDED MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
(1)  
0Ch  
CFh  
A<19:16>  
(1)  
AD<15:8>  
33h  
92h  
AD<7:0>  
CE  
ALE  
OE  
Opcode Fetch  
TBLRD *  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
TBLRD92h  
from 199E67h  
Opcode Fetch  
ADDLW55h  
from 000104h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
Note 1: The address lines actually used depends on the address width selected. This example assumes 20-bit addressing.  
© 2008 Microchip Technology Inc.  
DS39646C-page 107  
PIC18F8722 FAMILY  
FIGURE 7-10:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (MICROPROCESSOR MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
(1)  
00h  
00h  
A<19:16>  
(1)  
AD<15:8>  
3Ah  
3Ah  
00h 03h  
AD<7:0>  
AAh  
ABh  
0Eh 55h  
BA0  
CE  
ALE  
OE  
(2)  
Sleep Mode, Bus Inactive  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Opcode Fetch  
SLEEP  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC – 2)  
SLEEP  
Note 1: The address lines actually used depends on the address width selected. This example assumes 20-bit addressing.  
2: Bus becomes inactive regardless of power-managed mode entered when SLEEPis executed.  
FIGURE 7-11:  
TYPICAL OPCODE FETCH, 8-BIT MODE  
Q1  
Q2  
Q3  
Q4  
(1)  
AD<15:8>  
03Ah  
AD<7:0>  
BA0  
0Eh  
55h  
55h  
ALE  
OE  
1’  
1’  
WRL  
Opcode Fetch MOVLW55h from 007556h  
Memory  
Cycle  
Note 1: The address lines actually used depends on the address width selected. This example assumes 16-bit addressing.  
DS39646C-page 108  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
In Sleep and Idle modes, the microcontroller core does  
not need to access data; bus operations are sus-  
pended. The state of the external bus is frozen with the  
address/data pins and most of the control pins holding  
at the same state they were in when the mode was  
invoked. The only potential changes are the CE, LB  
and UB pins which are held at logic high.  
7.7  
Operation in Power-Managed  
Modes  
In alternate power-managed Run modes, the external  
bus continues to operate normally. If a clock source  
with a lower speed is selected, bus operations will run  
at that speed. In these cases, excessive access times  
for the external memory may result if wait states have  
been enabled and added to external memory opera-  
tions. If operations in a lower power Run mode are  
anticipated, users should provide in their applications  
for adjusting memory access times at the lower clock  
speeds.  
TABLE 7-3:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH POWER-MANAGED MODES  
Reset  
Values  
on page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MEMCON(1)  
CONFIG3L(2)  
CONFIG3H  
EBDIS  
WAIT  
BW  
WAIT1  
ABW1  
WAIT0  
ABW0  
WM1  
PM1  
WM0  
PM0  
60  
302  
303  
MCLRE  
LPT1OSC ECCPMX(2) CCP2MX  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the External Memory Bus.  
Note 1: This register is not implemented on 64-pin devices.  
2: Unimplemented in PIC18F6527/6622/6627/6722 devices.  
© 2008 Microchip Technology Inc.  
DS39646C-page 109  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 110  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
8.2  
EECON1 and EECON2 Registers  
8.0  
DATA EEPROM MEMORY  
Access to the data EEPROM is controlled by two  
registers: EECON1 and EECON2. These are the same  
registers which control access to the program memory  
and are used in a similar manner for the data  
EEPROM.  
The data EEPROM is a nonvolatile memory array,  
separate from the data RAM and program memory, that  
is used for long-term storage of program data. It is not  
directly mapped in either the register file or program  
memory space, but is indirectly addressed through the  
Special Function Registers (SFRs). The EEPROM is  
readable and writable during normal operation over the  
entire VDD range.  
The EECON1 register (Register ) is the control register  
for data and program memory access. Control bit  
EEPGD determines if the access will be to program or  
data EEPROM memory. When clear, operations will  
access the data EEPROM memory. When set, program  
memory is accessed.  
Five SFRs are used to read and write to the data  
EEPROM, as well as the program memory. They are:  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
Control bit CFGS determines if the access will be to the  
Configuration registers or to program memory/data  
EEPROM memory. When set, subsequent operations  
access Configuration registers. When CFGS is clear,  
the EEPGD bit selects either program Flash or data  
EEPROM memory.  
• EEADRH  
The data EEPROM allows byte read and write. When  
interfacing to the data memory block, EEDATA holds  
the 8-bit data for read/write and the EEADRH:EEADR  
register pair holds the address of the EEPROM location  
being accessed.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set in hardware when the WREN bit is set and cleared  
when the internal programming timer expires and the  
write operation is complete.  
The EEPROM data memory is rated for high erase/write  
cycle endurance. A byte write automatically erases the  
location and writes the new data (erase-before-write).  
The write time is controlled by an on-chip timer; it will  
vary with voltage and temperature, as well as from chip-  
to-chip. Please refer to parameter D122 (Table 28-1 in  
Section 28.0 “Electrical Characteristics”) for exact  
limits.  
Note:  
During normal operation, the WRERR is  
read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
a
Reset, or  
a write operation was  
attempted improperly.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software; it is cleared in  
hardware at the completion of the write operation.  
8.1  
EEADR and EEADRH Registers  
Note:  
The EEIF interrupt flag bit (PIR2<4>) is set  
when the write is complete. It must be  
cleared in software.  
The EEADRH:EEADR register pair is used to address  
the data EEPROM for read and write operations.  
EEADRH holds the two MSbs of the address; the upper  
6 bits are ignored. The 10-bit range of the pair can  
address a memory range of 1024 bytes (00h to 3FFh).  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firmware  
and cleared by hardware at the completion of the  
operation.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
table read instructions. See Section 6.1 “Table Reads  
and Table Writes” regarding table reads.  
The EECON2 register is not a physical register. It is  
used exclusively in the memory write and erase  
sequences. Reading EECON2 will read all ‘0’s.  
© 2008 Microchip Technology Inc.  
DS39646C-page 111  
PIC18F8722 FAMILY  
REGISTER 8-1:  
EECON1: DATA EEPROM CONTROL REGISTER 1  
R/W-x  
EEPGD  
bit 7  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
WRERR(1)  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command (cleared by  
completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete.  
The WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in  
software. RD bit cannot be set when EEPGD = 1or CFGS = 1.)  
0= Does not initiate an EEPROM read  
Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error  
condition.  
DS39646C-page 112  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times, except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
8.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADRH:EEADR register pair, clear the  
EEPGD control bit (EECON1<7>) and then set control  
bit, RD (EECON1<0>). The data is available on the  
very next instruction cycle; therefore, the EEDATA  
register can be read by the next instruction. EEDATA  
will hold this value until another read operation, or until  
it is written to by the user (during a write operation).  
After a write sequence has been initiated, EECON1,  
EEADRH:EEADR and EEDATA cannot be modified.  
The WR bit will be inhibited from being set unless the  
WREN bit is set. The WREN bit must be set on a  
previous instruction. Both WR and WREN cannot be  
set with the same instruction.  
The basic process is shown in Example 8-1.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Interrupt Flag bit  
(EEIF) is set. The user may either enable this interrupt,  
or poll this bit. EEIF must be cleared by software.  
8.4  
Writing to the Data EEPROM  
Memory  
To write an EEPROM data location, the address must  
first be written to the EEADRH:EEADR register pair  
and the data written to the EEDATA register. The  
sequence in Example 8-2 must be followed to initiate  
the write cycle.  
8.5  
Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
The write will not begin if this sequence is not exactly  
followed (write 55h to EECON2, write 0AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
EXAMPLE 8-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BCF  
BSF  
MOVF  
DATA_EE_ADDRH  
EEADRH  
DATA_EE_ADDR  
EEADR  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, RD  
EEDATA, W  
;
; Upper bits of Data Memory Address to read  
;
; Lower bits of Data Memory Address to read  
; Point to DATA memory  
; Access EEPROM  
; EEPROM Read  
; W = EEDATA  
EXAMPLE 8-2:  
DATA EEPROM WRITE  
MOVLW  
DATA_EE_ADDRH  
EEADRH  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDATA  
EECON1, EPGD  
EECON1, CFGS  
EECON1, WREN  
;
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
; Upper bits of Data Memory Address to write  
;
; Lower bits of Data Memory Address to write  
;
; Data Memory Value to write  
; Point to DATA memory  
; Access EEPROM  
BCF  
BSF  
; Enable writes  
BCF  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
; Disable Interrupts  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Enable Interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
EECON1, WR  
INTCON, GIE  
BSF  
; User code execution  
BCF  
EECON1, WREN  
; Disable writes on write complete (EEIF set)  
© 2008 Microchip Technology Inc.  
DS39646C-page 113  
PIC18F8722 FAMILY  
8.6  
Operation During Code-Protect  
8.8  
Using the Data EEPROM  
Data EEPROM memory has its own code-protect bits in  
Configuration Words. External read and write  
operations are disabled if code protection is enabled.  
The data EEPROM is a high-endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program  
variables or other data that are updated often).  
Frequently changing values will typically be updated  
more often than specification D124. If this is not the  
case, an array refresh must be performed. For this  
reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
The microcontroller itself can both read and write to the  
internal data EEPROM regardless of the state of the  
code-protect Configuration bit. Refer to Section 25.0  
“Special Features of the CPU” for additional  
information.  
8.7  
Protection Against Spurious Write  
A simple data EEPROM refresh routine is shown in  
Example 8-3.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been implemented. On power-up, the WREN bit is  
cleared. In addition, writes to the EEPROM are blocked  
during the Power-up Timer period (TPWRT,  
parameter 33).  
Note:  
If data EEPROM is only used to store  
constants and/or data that changes often,  
an array refresh is likely not required. See  
specification D124.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch or software malfunction.  
EXAMPLE 8-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
CLRF  
BCF  
BCF  
BCF  
EEADR  
EEADRH  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
; Start at address 0  
;
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Wait for write to complete  
BSF  
Loop  
BSF  
EECON1, RD  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ EEADR, F  
; Increment address  
BRA  
LOOP  
; Not zero, do it again  
; Increment the high address  
; Not zero, do it again  
INCFSZ EEADRH, F  
BRA  
LOOP  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
DS39646C-page 114  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 8-1:  
Name  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Reset  
Values  
on page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
EEADRH  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
57  
59  
EEPROM Address  
Register High Byte  
EEADR  
EEPROM Address Register Low Byte  
59  
59  
59  
59  
60  
60  
60  
EEDATA EEPROM Data Register  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
BCL1IP  
BCL1IF  
BCL1IE  
WREN  
HLVDIP  
HLVDIF  
HLVDIE  
WR  
RD  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP  
CCP2IF  
CCP2IE  
PIR2  
PIE2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
© 2008 Microchip Technology Inc.  
DS39646C-page 115  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 116  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
EXAMPLE 9-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
9.0  
9.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
All PIC18 devices include an 8 x 8 hardware multiplier  
as part of the ALU. The multiplier performs an unsigned  
operation and yields a 16-bit result that is stored in the  
product register pair, PRODH:PRODL. The multiplier’s  
operation does not affect any flags in the STATUS  
register.  
EXAMPLE 9-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
Making multiplication a hardware operation allows it to  
be completed in a single instruction cycle. This has the  
advantages of higher computational throughput and  
reduced code size for multiplication algorithms and  
allows the PIC18 devices to be used in many applica-  
tions previously reserved for digital signal processors.  
A comparison of various hardware and software  
multiply operations, along with the savings in memory  
and execution time, is shown in Table 9-1.  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
9.2  
Operation  
Example 9-1 shows the instruction sequence for an 8 x 8  
unsigned multiplication. Only one instruction is required  
when one of the arguments is already loaded in the  
WREG register.  
Example 9-2 shows the sequence to do an 8 x 8 signed  
multiplication. To account for the sign bits of the argu-  
ments, each argument’s Most Significant bit (MSb) is  
tested and the appropriate subtractions are done.  
TABLE 9-1:  
Routine  
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS  
Program  
Memory  
(Words)  
Time  
Cycles  
(Max)  
Multiply Method  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 μs  
100 ns  
9.1 μs  
600 ns  
24.2 μs  
2.8 μs  
25.4 μs  
4.0 μs  
27.6 μs  
400 ns  
36.4 μs  
2.4 μs  
69 μs  
1 μs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 μs  
6 μs  
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 μs  
11.2 μs  
102.6 μs  
16.0 μs  
242 μs  
28 μs  
254 μs  
40 μs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
© 2008 Microchip Technology Inc.  
DS39646C-page 117  
PIC18F8722 FAMILY  
Example 9-3 shows the sequence to do a 16 x 16  
unsigned multiplication. Equation 9-1 shows the  
algorithm that is used. The 32-bit result is stored in four  
registers (RES3:RES0).  
EQUATION 9-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0=ARG1H:ARG1L ARG2H:ARG2L  
16  
= (ARG1H ARG2H 2 ) +  
(ARG1H ARG2L 2 ) +  
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
(-1 ARG1H<7> ARG2H:ARG2L 2  
8
EQUATION 9-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
8
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
)
16  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
EXAMPLE 9-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
(ARG1L ARG2L)  
MOVF  
ARG1L, W  
MULWF  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 9-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
Example 9-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 9-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
(RES<3:0>). To account for the sign bits of the argu-  
ments, the MSb for each argument pair is tested and  
the appropriate subtractions are done.  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39646C-page 118  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
compatible with PIC® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit,  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit, which enables/disables all  
interrupt sources. All interrupts branch to address  
0008h in Compatibility mode.  
10.0 INTERRUPTS  
The PIC18F8722 family of devices have multiple  
interrupt sources and an interrupt priority feature that  
allows most interrupt sources to be assigned a high-  
priority level or a low-priority level. The high-priority  
interrupt vector is at 0008h and the low-priority interrupt  
vector is at 0018h. High-priority interrupt events will  
interrupt any low-priority interrupts that may be in  
progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High-priority interrupt sources can interrupt a low-  
priority interrupt. Low-priority interrupts are not  
processed while high-priority interrupts are in progress.  
There are ten registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address (0008h  
or 0018h). Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bits must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
In general, interrupt sources have three bits to control  
their operation. They are:  
For external interrupt events, such as the INTx pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit or the GIE bit.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Priority bit to select high priority or low priority  
Note:  
Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all  
interrupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will  
vector immediately to address 0008h or 0018h,  
depending on the priority bit setting. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
© 2008 Microchip Technology Inc.  
DS39646C-page 119  
PIC18F8722 FAMILY  
FIGURE 10-1:  
PIC18F8722 FAMILY INTERRUPT LOGIC  
Wake-up if in  
Idle or Sleep modes  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
Interrupt to CPU  
Vector to Location  
0008h  
PIR1<7:0>  
PIE1<7:0>  
IPR1<7:0>  
GIEH/GIE  
PIR2<7:6, 4:0>  
PIE2<7:6, 4:0>  
IPR2<7:6, 4:0>  
IPEN  
PIR3<7:0>  
PIE3<7:0>  
IPR3<7:0>  
IPEN  
GIEL/PEIE  
IPEN  
High-Priority Interrupt Generation  
Low-Priority Interrupt Generation  
PIR1<7:0>  
PIE1<7:0>  
IPR1<7:0>  
PIR2<7:6, 4:0>  
PIE2<7:6, 4:0>  
IPR2<7:6, 4:0>  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
IPEN  
PIR3<7:0>  
PIE3<7:0>  
IPR3<7:0>  
RBIF  
RBIE  
RBIP  
GIEH/GIE  
GIEL/PEIE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
DS39646C-page 120  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
10.1 INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF(1)  
GIE/GIEH  
PEIE/GIEL  
TMR0IE  
INT0IE  
TMR0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high-priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low-priority peripheral interrupts  
0= Disables all low-priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit(1)  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and  
allow the bit to be cleared.  
© 2008 Microchip Technology Inc.  
DS39646C-page 121  
PIC18F8722 FAMILY  
REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
INTEDG0  
INTEDG1  
INTEDG2  
INTEDG3  
TMR0IP  
INT3IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
DS39646C-page 122  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred (must be cleared in software)  
0= The INT3 external interrupt did not occur  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
© 2008 Microchip Technology Inc.  
DS39646C-page 123  
PIC18F8722 FAMILY  
10.2 PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Request (Flag) registers (PIR1, PIR2, PIR3).  
2: User software should ensure the  
appropriate interrupt flag bits are cleared  
prior to enabling an interrupt and after  
servicing that interrupt.  
REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RC1IF  
TX1IF  
SSP1IF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RC1IF: EUSART1 Receive Interrupt Flag bit  
1= The EUSART1 receive buffer, RCREG1, is full (cleared when RCREG1 is read)  
0= The EUSART1 receive buffer is empty  
TX1IF: EUSART1 Transmit Interrupt Flag bit  
1= The EUSART1 transmit buffer, TXREG1, is empty (cleared when TXREG1 is written)  
0= The EUSART1 transmit buffer is full  
SSP1IF: MSSP1 Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: ECCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
DS39646C-page 124  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
R/W-0  
CMIF  
U-0  
R/W-0  
EEIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OSCFIF  
BCL1IF  
HLVDIF  
TMR3IF  
CCP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= Device oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= Device clock operating  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed (must be cleared in software)  
0= Comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: EEPROM or Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete or has not been started  
bit 3  
BCL1IF: MSSP1 Bus Collision Interrupt Flag bit  
1= A bus collision occurred while the MSSP1 module configured in I2C™ Master mode was  
transmitting (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
HLVDIF: High/Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low-Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: ECCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
© 2008 Microchip Technology Inc.  
DS39646C-page 125  
PIC18F8722 FAMILY  
REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
R/W-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSP2IF  
BCL2IF  
RC2IF  
TX2IF  
TMR4IF  
CCP5IF  
CCP4IF  
CCP3IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
SSP2IF: MSSP2 Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
BCL2IF: MSSP2 Bus Collision Interrupt Flag bit  
1= A bus collision has occurred while the MSSP2 module configured in I2C™ master was  
transmitting (must be cleared in software)  
0= No bus collision occurred  
bit 5  
bit 4  
bit 3  
bit 2  
RC2IF: EUSART2 Receive Interrupt Flag bit  
1= The EUSART2 receive buffer, RCREG2, is full (cleared when RCREG2 is read)  
0= The EUSART2 receive buffer is empty  
TX2IF: EUSART2 Transmit Interrupt Flag bit  
1= The EUSART2 transmit buffer, TXREG2, is empty (cleared when TXREG2 is written)  
0= The EUSART2 transmit buffer is full  
TMR4IF: TMR4 to PR4 Match Interrupt Flag bit  
1= TMR4 to PR4 match occurred (must be cleared in software)  
0= No TMR4 to PR4 match occurred  
CCP5IF: CCP5 Interrupt Flag bit  
Capture mode:  
1= A TMR register capture occurred (must be cleared in software)  
0= No TMR register capture occurred  
Compare mode:  
1= A TMR register compare match occurred (must be cleared in software)  
0= No TMR register compare match occurred  
PWM Mode:  
bit 1  
CCP4IF: CCP4 Interrupt Flag bit  
Capture mode:  
1= A TMR register capture occurred (must be cleared in software)  
0= No TMR register capture occurred  
Compare mode:  
1= A TMR register compare match occurred (must be cleared in software)  
0= No TMR register compare match occurred  
PWM mode:  
Not used in PWM mode.  
bit 0  
CCP3IF: ECCP3 Interrupt Flag bit  
Capture mode:  
1= A TMR register capture occurred (must be cleared in software)  
0= No TMR register capture occurred  
Compare mode:  
1= A TMR register compare match occurred (must be cleared in software)  
0= No TMR register compare match occurred  
PWM mode:  
Not used in PWM mode.  
DS39646C-page 126  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
10.3 PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Enable registers (PIE1, PIE2, PIE3). When  
IPEN = 0, the PEIE bit must be set to enable any of  
these peripheral interrupts.  
REGISTER 10-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE  
R/W-0  
ADIE  
R/W-0  
RC1IE  
R/W-0  
TX1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSP1IE  
CCP1IE  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RC1IE: EUSART1 Receive Interrupt Enable bit  
1= Enables the EUSART1 receive interrupt  
0= Disables the EUSART1 receive interrupt  
TX1IE: EUSART1 Transmit Interrupt Enable bit  
1= Enables the EUSART1 transmit interrupt  
0= Disables the EUSART1 transmit interrupt  
SSP1IE: MSSP1 Interrupt Enable bit  
1= Enables the MSSP1 interrupt  
0= Disables the MSSP1 interrupt  
CCP1IE: ECCP1 Interrupt Enable bit  
1= Enables the ECCP1 interrupt  
0= Disables the ECCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
© 2008 Microchip Technology Inc.  
DS39646C-page 127  
PIC18F8722 FAMILY  
REGISTER 10-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
R/W-0  
CMIE  
U-0  
R/W-0  
EEIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OSCFIE  
BCL1IE  
HLVDIE  
TMR3IE  
CCP2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
CMIE: Comparator Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
bit 1  
bit 0  
BCL1IE: MSSP1 Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
HLVDIE: High/Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP2IE: ECCP2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
DS39646C-page 128  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
R/W-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSP2IE  
BCL2IE  
RC2IE  
TX2IE  
TMR4IE  
CCP5IE  
CCP4IE  
CCP3IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SSP2IE: MSSP2 Interrupt Enable bit  
1= Enables the MSSP2 interrupt  
0= Disables the MSSP2 interrupt  
BCL2IE: MSSP2 Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
RC2IE: EUSART2 Receive Interrupt Enable bit  
1= Enabled  
0= Disabled  
TX2IE: EUSART2 Transmit Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR4IE: TMR4 to PR4 Match Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP5IE: CCP5 Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP4IE: CCP4 Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP3IE: ECCP3 Interrupt Enable bit  
1= Enabled  
0= Disabled  
© 2008 Microchip Technology Inc.  
DS39646C-page 129  
PIC18F8722 FAMILY  
10.4 IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Priority registers (IPR1, IPR2, IPR3). Using  
the priority bits requires that the Interrupt Priority  
Enable (IPEN) bit be set.  
REGISTER 10-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP  
R/W-1  
ADIP  
R/W-1  
RC1IP  
R/W-1  
TX1IP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SSP1IP  
CCP1IP  
TMR2IP  
TMR1IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RC1IP: EUSART1 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX1IP: EUSART1 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
SSP1IP: MSSP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: ECCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39646C-page 130  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
R/W-1  
CMIP  
U-0  
R/W-1  
EEIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OSCFIP  
BCL1IP  
HLVDIP  
TMR3IP  
CCP2IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
BCL1IP: MSSP1 Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
HLVDIP: High/Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: ECCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
© 2008 Microchip Technology Inc.  
DS39646C-page 131  
PIC18F8722 FAMILY  
REGISTER 10-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
R/W-0  
R/W-0  
R/W-1  
RC2IP  
R/W-1  
TX2IP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SSP2IP  
BCL2IP  
TMR4IP  
CCP5IP  
CCP4IP  
CCP3IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SSP2IP: MSSP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
BCL2IP: MSSP2 Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
RC2IP: EUSART2 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX2IP: EUSART2 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR4IP: TMR4 to PR4 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP5IP: CCP5 Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP4IP: CCP4 Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP3IP: ECCP3 Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39646C-page 132  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
10.5 RCON Register  
The RCON register contains bits used to determine the  
cause of the last Reset or wake-up from Idle or Sleep  
modes. RCON also contains the bit that enables  
interrupt priorities (IPEN).  
REGISTER 10-13: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
R/W-1  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
SBOREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
SBOREN: Software BOR Enable bit  
For details of bit operation and Reset state, see Register 4-1.  
Unimplemented: Read as ‘0’  
bit 5  
bit 4  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-1.  
TO: Watchdog Timer Time-out Flag bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 4-1.  
PD: Power-Down Detection Flag bit  
For details of bit operation, see Register 4-1.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-1.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-1.  
© 2008 Microchip Technology Inc.  
DS39646C-page 133  
PIC18F8722 FAMILY  
10.6 INTx Pin Interrupts  
10.7 TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1, RB2/  
INT2 and RB3/INT3 pins are edge-triggered. If the  
corresponding INTEDGx bit in the INTCON2 register is  
set (= 1), the interrupt is triggered by a rising edge; if  
the bit is clear, the trigger is on the falling edge. When  
a valid edge appears on the RBx/INTx pin, the  
corresponding flag bit, INTxIF, is set. This interrupt can  
be disabled by clearing the corresponding enable bit,  
INTxIE. Flag bit, INTxIF, must be cleared in software in  
the Interrupt Service Routine before re-enabling the  
interrupt.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit, TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L register  
pair (FFFFh 0000h) will set TMR0IF. The interrupt can  
be enabled/disabled by setting/clearing enable bit,  
TMR0IE (INTCON<5>). Interrupt priority for Timer0 is  
determined by the value contained in the interrupt  
priority bit, TMR0IP (INTCON2<2>). See Section 12.0  
“Timer0 Module” for further details on the Timer0  
module.  
10.8 PORTB Interrupt-on-Change  
All external interrupts (INT0, INT1, INT2 and INT3) can  
wake-up the processor from the power-managed  
modes if bit INTxIE was set prior to going into power-  
managed modes. If the Global Interrupt Enable bit,  
GIE, is set, the processor will branch to the interrupt  
vector following wake-up.  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1, INT2 and INT3 is determined  
by the value contained in the interrupt priority bits,  
INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and  
INT3IP (INTCON2<1>). There is no priority bit  
associated with INT0. It is always a high-priority  
interrupt source.  
10.9 Context Saving During Interrupts  
During interrupts, the return PC address is saved on  
the stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the fast return stack. If a fast  
return from interrupt is not used (see Section 5.3  
“Data Memory Organization”), the user may need to  
save the WREG, STATUS and BSR registers on entry  
to the Interrupt Service Routine. Depending on the  
user’s application, other registers may also need to be  
saved. Example 10-1 saves and restores the WREG,  
STATUS and BSR registers during an Interrupt Service  
Routine.  
EXAMPLE 10-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS39646C-page 134  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
11.1 PORTA, TRISA and  
LATA Registers  
11.0 I/O PORTS  
Depending on the device selected and features  
enabled, there are up to nine ports available. Some  
pins of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
PORTA is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Each port has three registers for its operation. These  
registers are:  
Reading the PORTA register reads the status of the  
pins, whereas writing to it, will write to the port latch.  
• TRIS register (Data Direction register)  
• Port register (reads the levels on the pins of the  
device)  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register read and write the latched output value for  
PORTA.  
• LAT register (output latch)  
The Data Latch (LAT register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. Pins RA6  
and RA7 are multiplexed with the main oscillator pins;  
they are enabled as oscillator or I/O pins by the selec-  
tion of the main oscillator in the Configuration register  
(see Section 25.1 “Configuration Bits” for details).  
When they are not used as port pins, RA6 and RA7 and  
their associated TRIS and LAT bits are read as ‘0’.  
A simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 11-1.  
FIGURE 11-1:  
GENERIC I/O PORT  
OPERATION  
RD LAT  
The other PORTA pins are multiplexed with the analog  
VREF+ and VREF- inputs. The operation of pins  
RA5:RA0 as A/D converter inputs is selected by  
clearing or setting the PCFG<3:0> control bits in the  
ADCON1 register.  
Data  
Bus  
D
Q
WR LAT  
or Port  
I/O pin(1)  
CKx  
Data Latch  
Note:  
On a Power-on Reset, RA5 and RA<3:0>  
are configured as analog inputs and read  
as ‘0’. RA4 is configured as a digital input.  
D
Q
WR TRIS  
RD TRIS  
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open-drain output. All other PORTA pins have TTL  
input levels and full CMOS output drivers.  
CKx  
TRIS Latch  
Input  
Buffer  
The TRISA register controls the direction of the PORTA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Q
D
EN  
EXAMPLE 11-1:  
INITIALIZING PORTA  
RD Port  
CLRF  
PORTA  
LATA  
0Fh  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
Note 1: I/O pins have diode protection to VDD and VSS.  
CLRF  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
0CFh  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
© 2008 Microchip Technology Inc.  
DS39646C-page 135  
PIC18F8722 FAMILY  
TABLE 11-1: PORTA FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RA0/AN0  
Function  
I/O  
Description  
RA0  
0
1
1
O
I
DIG LATA<0> data output; not affected by analog input.  
TTL PORTA<0> data input; disabled when analog input enabled.  
AN0  
RA1  
I
ANA A/D input channel 0. Default input configuration on POR; does not affect  
digital output.  
RA1/AN1  
0
1
1
O
I
DIG LATA<1> data output; not affected by analog input.  
TTL PORTA<1> data input; disabled when analog input enabled.  
AN1  
RA2  
I
ANA A/D input channel 1. Default input configuration on POR; does not affect  
digital output.  
RA2/AN2/VREF-  
0
1
1
1
0
1
1
1
O
I
DIG LATA<2> data output; not affected by analog input.  
TTL PORTA<2> data input. Disabled when analog functions enabled.  
ANA A/D input channel 2. Default input configuration on POR.  
ANA Comparator voltage reference low input and A/D voltage reference low input.  
DIG LATA<3> data output; not affected by analog input.  
AN2  
VREF-  
RA3  
I
I
RA3/AN3/VREF+  
O
I
TTL PORTA<3> data input; disabled when analog input enabled.  
ANA A/D input channel 3. Default input configuration on POR.  
AN3  
I
VREF+  
I
ANA Comparator voltage reference high input and A/D voltage reference  
high input.  
RA4/T0CKI  
RA4  
0
1
x
0
1
1
1
x
x
O
I
DIG LATA<4> data output.  
ST  
ST  
PORTA<4> data input; default configuration on POR.  
Timer0 clock input.  
T0CKI  
RA5  
I
RA5/AN4/HLVDIN  
O
I
DIG LATA<5> data output; not affected by analog input.  
TTL PORTA<5> data input; disabled when analog input enabled.  
ANA A/D input channel 4. Default configuration on POR.  
AN4  
I
HLVDIN  
I
ANA High/Low-Voltage Detect external trip point input.  
OSC2/CLKO/RA6 OSC2  
CLKO  
O
O
ANA Main oscillator feedback output connection (XT, HS, HSPLL and LP modes).  
DIG System cycle clock output (FOSC/4) in all oscillator modes except RC,  
INTIO7 and EC.  
RA6  
0
1
x
x
0
1
O
I
DIG LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.  
TTL PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.  
ANA Main oscillator input connection.  
OSC1/CLKI/RA7  
OSC1  
CLKI  
RA7  
I
I
ANA Main clock input connection.  
O
I
DIG LATA<7> data output. Disabled in external oscillator modes.  
TTL PORTA<7> data input. Disabled in external oscillator modes.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST= Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
RA7(1)  
LATA7(1) LATA6(1)  
TRISA7(1) TRISA6(1) TRISA5  
RA6(1)  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
61  
60  
60  
59  
LATA  
LATA5  
LATA4  
TRISA4  
VCFG0  
LATA3  
TRISA3  
PCFG3  
LATA2  
TRISA2  
PCFG2  
LATA1  
TRISA1  
PCFG1  
LATA0  
TRISA0  
PCFG0  
TRISA  
ADCON1  
VCFG1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator  
configuration; otherwise, they are read as ‘0’.  
DS39646C-page 136  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Four of the PORTB pins (RB<7:4>) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The “mismatch” outputs of  
RB7:RB4 are ORed together to generate the RB Port  
Change Interrupt with Flag bit, RBIF (INTCON<0>).  
11.2 PORTB, TRISB and  
LATB Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output  
(i.e., put the contents of the output latch on the  
selected pin).  
This interrupt can wake the device from  
power-managed modes. The user, in the Interrupt  
Service Routine, can clear the interrupt in the following  
manner:  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register read and write the latched output value for  
PORTB.  
a) Any read or write of PORTB (except with the  
MOVSF, MOVSS, MOVFF (ANY), PORTB  
instruction). This will end the mismatch  
condition.  
EXAMPLE 11-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
b) Clear flag bit, RBIF.  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit, RBIF, to be cleared.  
CLRF  
LATB  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
MOVLW  
MOVWF  
0CFh  
TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
For 80-pin devices, RB3 can be configured as the  
alternate peripheral pin for the ECCP2 module by  
clearing the CCP2MX Configuration bit. This applies  
only when the device is in one of the operating modes  
other than the default Microcontroller mode. If the  
device is in Microcontroller mode, the alternate  
assignment for ECCP2 is RE7. As with other ECCP2  
configurations, the user must ensure that the  
TRISB<3> bit is set appropriately for the intended  
operation.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
© 2008 Microchip Technology Inc.  
DS39646C-page 137  
PIC18F8722 FAMILY  
TABLE 11-3: PORTB FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RB0/INT0/FLT0  
RB0  
0
1
1
1
0
1
1
0
1
1
0
1
O
I
DIG  
TTL  
ST  
LATB<0> data output.  
PORTB<0> data input; weak pull-up when RBPU bit is cleared.  
External interrupt 0 input.  
INT0  
FLT0  
RB1  
I
I
ST  
ECCPx PWM Fault input, enabled in software.  
LATB<1> data output.  
RB1/INT1  
RB2/INT2  
O
I
DIG  
TTL  
ST  
PORTB<1> data input; weak pull-up when RBPU bit is cleared.  
External interrupt 1 input.  
INT1  
RB2  
I
O
I
DIG  
TTL  
ST  
LATB<2> data output.  
PORTB<2> data input; weak pull-up when RBPU bit is cleared.  
External interrupt 2 input.  
INT2  
RB3  
I
RB3/INT3/  
ECCP2/P2A  
O
I
DIG  
TTL  
LATB<3> data output.  
PORTB<3> data input; weak pull-up when RBPU bit is cleared and  
capture input is disabled.  
INT3  
1
0
I
ST  
External interrupt 3 input.  
(1)  
ECCP2  
O
DIG  
ECCP2 compare output and ECCP2 PWM output. Takes priority over  
port data.  
1
0
I
ST  
ECCP2 capture input.  
(1)  
O
DIG  
ECCP2 Enhanced PWM output, channel A. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
P2A  
RB4/KBI0  
RB4  
0
1
1
0
1
1
x
O
I
DIG  
TTL  
TTL  
DIG  
TTL  
TTL  
ST  
LATB<4> data output.  
PORTB<4> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI0  
RB5  
I
RB5/KBI1/PGM  
O
I
LATB<5> data output  
PORTB<5> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI1  
PGM  
I
I
Single-Supply Programming mode entry (ICSP). Enabled by LVP  
Configuration bit; all other pin functions disabled.  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
RB6  
0
1
1
x
0
1
1
x
x
O
I
DIG  
TTL  
TTL  
ST  
LATB<6> data output.  
PORTB<6> data input; weak pull-up when RBPU bit is cleared.  
KBI2  
PGC  
RB7  
I
Interrupt-on-pin change.  
(2)  
I
Serial execution (ICSP™) clock input for ICSP and ICD operation  
LATB<7> data output.  
.
O
I
DIG  
TTL  
TTL  
DIG  
ST  
PORTB<7> data input; weak pull-up when RBPU bit is cleared.  
KBI3  
PGD  
I
Interrupt-on-pin change.  
(2)  
O
I
Serial execution data output for ICSP and ICD operation .  
(2)  
Serial execution data input for ICSP and ICD operation  
.
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared (Microprocessor, Extended  
Microcontroller and Microcontroller with Boot Block modes, 80-pin devices only). Default assignment is RC1.  
2: All other pin functions are disabled when ICSP or ICD operations are enabled.  
DS39646C-page 138  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
60  
60  
60  
57  
57  
57  
LATB  
LATB7  
TRISB7  
LATB6  
TRISB6  
LATB5  
LATB4  
LATB3  
LATB2  
LATB1  
LATB0  
TRISB  
TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
INTCON  
INTCON2  
INTCON3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
INT1IP INT3IE INT2IE INT1IE INT3IF  
RBIE  
TMR0IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
RBPU  
INT2IP  
INT1IF  
Legend: Shaded cells are not used by PORTB.  
© 2008 Microchip Technology Inc.  
DS39646C-page 139  
PIC18F8722 FAMILY  
11.3 PORTC, TRISC and  
LATC Registers  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output  
(i.e., put the contents of the output latch on the  
selected pin).  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
EXAMPLE 11-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register read and write the latched output value for  
PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
PORTC is multiplexed with several peripheral  
functions. All port pins have Schmitt Trigger input  
buffers. RC1 is normally configured by Configuration  
bit, CCP2MX, as the default peripheral pin of the  
ECCP2 module (default/erased state, CCP2MX = 1).  
TRISC  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
DS39646C-page 140  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 11-5: PORTC FUNCTIONS  
TRIS  
Setting  
Pin Name  
Function  
I/O I/O Type  
Description  
RC0/T1OSO/T13CKI  
RC0  
0
1
x
O
I
DIG  
ST  
LATC<0> data output.  
PORTC<0> data input.  
T1OSO  
O
ANA Timer1 oscillator output; enabled when Timer1 oscillator enabled.  
Disables digital I/O.  
T13CKI  
RC1  
1
0
1
x
I
O
I
ST  
DIG  
ST  
Timer1/Timer3 counter input.  
LATC<1> data output.  
RC1/T1OSI/  
ECCP2/P2A  
PORTC<1> data input.  
T1OSI  
I
ANA Timer1 oscillator input; enabled when Timer1 oscillator enabled.  
Disables digital I/O.  
(1)  
ECCP2  
0
O
DIG  
ECCP2 compare output and ECCP2 PWM output. Takes priority over  
port data.  
1
0
I
ST  
ECCP2 capture input.  
(1)  
P2A  
O
DIG  
ECCP2 Enhanced PWM output, channel A. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RC2/ECCP1/P1A  
RC2  
0
1
0
O
I
DIG  
ST  
LATC<2> data output.  
PORTC<2> data input.  
ECCP1  
O
DIG  
ECCP1 compare output and ECCP1 PWM output. Takes priority over  
port data.  
1
0
I
ST  
ECCP1 capture input.  
P1A  
O
DIG  
ECCP1 Enhanced PWM output, channel A. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RC3/SCK1/SCL1  
RC3  
SCK1  
SCL1  
0
1
0
1
0
1
O
I
DIG  
ST  
LATC<3> data output.  
PORTC<3> data input.  
O
I
DIG  
ST  
SPI clock output (MSSP1 module). Takes priority over port data.  
SPI clock input (MSSP1 module).  
2
O
I
DIG  
I C™ clock output (MSSP1 module). Takes priority over port data.  
2
2
I C/SMB I C clock input (MSSP1 module); input type depends on module  
setting.  
RC4/SDI1/SDA1  
RC4  
0
1
1
1
1
0
1
0
O
I
DIG  
ST  
LATC<4> data output.  
PORTC<4> data input.  
SDI1  
I
ST  
SPI data input (MSSP1 module).  
2
SDA1  
O
I
DIG  
I C data output (MSSP1 module). Takes priority over port data.  
2
2
I C/SMB I C data input (MSSP1 module); input type depends on module setting.  
RC5/SDO1  
RC5  
O
I
DIG  
ST  
LATC<5> data output.  
PORTC<5> data input.  
SDO1  
O
DIG  
SPI data output (MSSP1 module). Takes priority over port data.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
2
2
I C/SMB = I C/SMBus input buffer; x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Default assignment for ECCP2 when CCP2MX Configuration bit is set.  
© 2008 Microchip Technology Inc.  
DS39646C-page 141  
PIC18F8722 FAMILY  
TABLE 11-5: PORTC FUNCTIONS (CONTINUED)  
TRIS  
Setting  
Pin Name  
Function  
I/O I/O Type  
Description  
RC6/TX1/CK1  
RC6  
0
1
0
O
I
DIG  
ST  
LATC<6> data output.  
PORTC<6> data input.  
TX1  
CK1  
O
DIG  
Asynchronous serial transmit data output (EUSART1 module). Takes  
priority over port data.  
0
O
DIG  
Synchronous serial clock output (EUSART1 module). Takes priority  
over port data.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (EUSART1 module).  
LATC<7> data output.  
RC7/RX1/DT1  
RC7  
PORTC<7> data input.  
RX1  
DT1  
I
ST  
Asynchronous serial receive data input (EUSART1 module)  
O
DIG  
Synchronous serial data output (EUSART1 module). Takes priority  
over port data. User must configure as input.  
1
I
ST  
Synchronous serial data input (EUSART1 module). User must  
configure as an input.  
Legend:  
DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;  
I C/SMB = I C/SMBus input buffer; x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
2
2
Note 1: Default assignment for ECCP2 when CCP2MX Configuration bit is set.  
TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
60  
60  
60  
LATC  
LATC7  
LATC6  
LATC5  
LATC4  
LATC3  
LATC2  
LATC1  
LATC0  
TRISC  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
DS39646C-page 142  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
PORTD can also be configured to function as an 8-bit  
wide parallel microprocessor port by setting the  
PSPMODE control bit (PSPCON<4>). In this mode,  
parallel port data takes priority over other digital I/O (but  
not the external memory interface). When the parallel  
port is active, the input buffers are TTL. For more  
information, refer to Section 11.10 “Parallel Slave  
Port”.  
11.4 PORTD, TRISD and  
LATD Registers  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISD bit (= 0)  
will make the corresponding PORTD pin an output  
(i.e., put the contents of the output latch on the  
selected pin).  
EXAMPLE 11-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
The Data Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register read and write the latched output value for  
PORTD.  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
All pins on PORTD are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
TRISD  
Note: On a Power-on Reset, these pins are  
configured as digital inputs.  
In 80-pin devices, PORTD is multiplexed with the  
system bus as part of the external memory interface.  
I/O port and other functions are only available when the  
interface is disabled by setting the EBDIS bit  
(MEMCON<7>). When the interface is enabled,  
PORTD is the low-order byte of the multiplexed  
address/data bus (AD<7:0>). The TRISD bits are also  
overridden.  
© 2008 Microchip Technology Inc.  
DS39646C-page 143  
PIC18F8722 FAMILY  
TABLE 11-7: PORTD FUNCTIONS  
TRIS  
Setting  
Pin Name  
Function  
I/O  
I/O Type  
Description  
RD0/AD0/PSP0  
RD0  
0
1
x
O
I
DIG  
ST  
LATD<0> data output.  
PORTD<0> data input.  
(1)  
AD0  
O
DIG  
External memory interface, address/data bit 0 output. Takes priority  
over PSP and port data.  
x
x
x
0
1
x
I
O
I
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, data bit 0 input.  
PSP read data output (LATD<0>). Takes priority over port data.  
PSP write data input.  
PSP0  
RD1  
RD1/AD1/PSP1  
RD2/AD2/PSP2  
RD3/AD3/PSP3  
O
I
LATD<1> data output.  
PORTD<1> data input.  
(1)  
AD1  
O
DIG  
External memory interface, address/data bit 1 output. Takes priority  
over PSP and port data.  
x
x
x
0
1
x
I
O
I
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, data bit 1 input.  
PSP read data output (LATD<1>). Takes priority over port data.  
PSP write data input.  
PSP1  
RD2  
O
I
LATD<2> data output.  
PORTD<2> data input.  
(1)  
AD2  
O
DIG  
External memory interface, address/data bit 2 output. Takes priority  
over PSP and port data.  
x
x
x
0
1
x
I
O
I
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, data bit 2 input.  
PSP read data output (LATD<2>). Takes priority over port data.  
PSP write data input.  
PSP2  
RD3  
O
I
LATD<3> data output.  
PORTD<3> data input.  
(1)  
AD3  
O
DIG  
External memory interface, address/data bit 3 output. Takes priority  
over PSP and port data.  
x
x
x
0
1
x
I
O
I
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, data bit 3 input.  
PSP read data output (LATD<3>). Takes priority over port data.  
PSP write data input.  
PSP3  
RD4  
RD4/AD4/  
PSP4/SDO2  
O
I
LATD<4> data output.  
PORTD<4> data input.  
(1)  
AD4  
O
DIG  
External memory interface, address/data bit 4 output. Takes priority  
over PSP, MSSP and port data.  
x
x
I
TTL  
DIG  
External memory interface, data bit 4 input.  
PSP4  
SDO2  
O
PSP read data output (LATD<4>). Takes priority over port and PSP  
data.  
x
0
I
TTL  
DIG  
PSP write data input.  
O
SPI data output (MSSP2 module). Takes priority over PSP and port  
data.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Implemented on 80-pin devices only.  
DS39646C-page 144  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 11-7: PORTD FUNCTIONS (CONTINUED)  
TRIS  
Setting  
Pin Name  
Function  
I/O  
I/O Type  
Description  
RD5/AD5/  
PSP5/SDI2  
/SDA2  
RD5  
0
1
x
O
I
DIG  
ST  
LATD<5> data output.  
PORTD<5> data input.  
(1)  
AD5  
O
DIG  
External memory interface, address/data bit 5 output. Takes priority  
over PSP, MSSP and port data.  
x
x
x
1
1
I
O
I
TTL  
DIG  
TTL  
ST  
External memory interface, data bit 5 input.  
PSP read data output (LATD<5>). Takes priority over port data.  
PSP write data input.  
PSP5  
SDI2  
I
SPI data input (MSSP2 module).  
2
SDA2  
O
DIG  
I C™ data output (MSSP2 module). Takes priority over PSP and port  
data.  
2
2
1
I
I C/SMB I C data input (MSSP2 module); input type depends on module  
setting.  
RD6/AD6/  
PSP6/SCK2/  
SCL2  
RD6  
0
1
x
O
I
DIG  
ST  
LATD<6> data output.  
PORTD<6> data input.  
(1)  
AD6  
O
DIG-3 External memory interface, address/data bit 6 output. Takes priority  
over PSP, MSSP and port data.  
x
x
x
0
I
TTL  
DIG  
TTL  
DIG  
External memory interface, data bit 6 input.  
PSP read data output (LATD<6>). Takes priority over port data.  
PSP write data input.  
PSP6  
SCK2  
O
I
O
SPI clock output (MSSP2 module). Takes priority over PSP and port  
data.  
1
0
I
ST  
SPI clock input (MSSP2 module).  
2
SCL2  
O
DIG  
I C clock output (MSSP2 module). Takes priority over PSP and port  
data.  
2
2
1
I
I C/SMB I C clock input (MSSP2 module); input type depends on module  
setting.  
RD7/AD7/  
PSP7/SS2  
RD7  
0
1
x
O
I
DIG  
ST  
LATD<7> data output.  
PORTD<7> data input.  
(1)  
AD7  
O
DIG  
External memory interface, address/data bit 7 output. Takes priority  
over PSP and port data.  
x
x
x
1
I
O
I
TTL  
DIG  
TTL  
TTL  
External memory interface, data bit 7 input.  
PSP read data output (LATD<7>). Takes priority over port data.  
PSP write data input.  
PSP7  
SS2  
I
Slave select input for SSP (MSSP2 module).  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Implemented on 80-pin devices only.  
TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
60  
60  
60  
LATD7  
TRISD7  
LATD6  
TRISD6  
LATD5  
TRISD5  
LATD4  
TRISD4  
LATD3  
TRISD3  
LATD2  
TRISD2  
LATD1  
TRISD1  
LATD0  
TRISD0  
TRISD  
© 2008 Microchip Technology Inc.  
DS39646C-page 145  
PIC18F8722 FAMILY  
When the Parallel Slave Port is active on PORTD,  
three of the PORTE pins (RE0/AD8/RD/P2D,  
RE1/AD9/WR/P2C and RE2/AD10/CS/P2B) are config-  
ured as digital control inputs for the port. The control  
functions are summarized in Table 11-9. The reconfigu-  
ration occurs automatically when the PSPMODE control  
bit (PSPCON<4>) is set. Users must still make certain  
the corresponding TRISE bits are set to configure these  
pins as digital inputs.  
11.5 PORTE, TRISE and  
LATE Registers  
PORTE is an 8-bit wide, bidirectional port. The  
corresponding Data Direction register is TRISE. Setting  
a TRISE bit (= 1) will make the corresponding PORTE  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISE bit (= 0)  
will make the corresponding PORTE pin an output  
(i.e., put the contents of the output latch on the  
selected pin).  
EXAMPLE 11-5:  
INITIALIZING PORTE  
The Data Latch register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register read and write the latched output value for  
PORTE.  
CLRF  
PORTE  
LATE  
03h  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
All pins on PORTE are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
MOVLW  
MOVWF  
TRISE  
; Set RE<1:0> as inputs  
; RE<7:2> as outputs  
Note: On a Power-on Reset, these pins are  
configured as digital inputs.  
When the device is operating in Microcontroller mode,  
pin RE7 can be configured as the alternate peripheral  
pin for the ECCP2 module. This is done by clearing the  
CCP2MX Configuration bit.  
In 80-pin devices, PORTE is multiplexed with the  
system bus as part of the external memory interface.  
I/O port and other functions are only available when the  
interface is disabled by setting the EBDIS bit  
(MEMCON<7>). When the interface is enabled (80-pin  
devices only), PORTE is the high-order byte of the  
multiplexed address/data bus (AD<15:8>). The TRISE  
bits are also overridden.  
DS39646C-page 146  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 11-9: PORTE FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RE0/AD8/  
RD/P2D  
RE0  
0
1
x
O
I
DIG  
ST  
LATE<0> data output.  
PORTE<0> data input.  
(2)  
AD8  
O
DIG  
External memory interface, address/data bit 8 output. Takes priority  
over ECCP and port data.  
x
1
0
I
I
TTL  
TTL  
DIG  
External memory interface, data bit 8 input.  
Parallel Slave Port read enable control input.  
RD  
P2D  
O
ECCP2 Enhanced PWM output, channel D. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RE1/AD9/  
WR/P2C  
RE1  
0
1
x
O
I
DIG  
ST  
LATE<1> data output.  
PORTE<1> data input.  
(2)  
AD9  
O
DIG  
External memory interface, address/data bit 9 output. Takes priority  
over ECCP and port data.  
x
1
0
I
I
TTL  
TTL  
DIG  
External memory interface, data bit 9 input.  
Parallel Slave Port write enable control input.  
WR  
P2C  
O
ECCP2 Enhanced PWM output, channel C. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RE2/AD10/  
CS/P2B  
RE2  
0
1
x
O
I
DIG  
ST  
LATE<2> data output.  
PORTE<2> data input.  
(2)  
AD10  
O
DIG  
External memory interface, address/data bit 10 output. Takes priority  
over ECCP and port data.  
x
1
0
I
I
TTL  
TTL  
DIG  
External memory interface, data bit 10 input.  
Parallel Slave Port chip select control input.  
CS  
P2B  
O
ECCP2 Enhanced PWM output, channel B. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RE3/AD11/P3C  
RE3  
0
1
x
O
I
DIG  
ST  
LATE<3> data output.  
PORTE<3> data input.  
(2)  
AD11  
O
DIG  
External memory interface, address/data bit 11 output. Takes priority  
over ECCP and port data.  
x
0
I
TTL  
DIG  
External memory interface, data bit 11 input.  
P3C  
RE4  
O
ECCP3 Enhanced PWM output, channel C. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RE4/AD12/P3B  
0
1
x
O
I
DIG  
ST  
LATE<4> data output.  
PORTE<4> data input.  
(2)  
AD12  
O
DIG  
External memory interface, address/data bit 12 output. Takes priority  
over ECCP and port data.  
x
0
I
TTL  
DIG  
External memory interface, data bit 12 input.  
P3B  
O
ECCP3 Enhanced PWM output, channel B. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Alternate assignment for ECCP2 when CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).  
2: Implemented on 80-pin devices only.  
© 2008 Microchip Technology Inc.  
DS39646C-page 147  
PIC18F8722 FAMILY  
TABLE 11-9: PORTE FUNCTIONS (CONTINUED)  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RE5/AD13/P1C  
RE5  
0
1
x
O
I
DIG  
ST  
LATE<5> data output.  
PORTE<5> data input.  
(2)  
AD13  
O
DIG  
External memory interface, address/data bit 13 output. Takes priority  
over ECCP and port data.  
x
0
I
TTL  
DIG  
External memory interface, data bit 13 input.  
P1C  
RE6  
O
ECCP1 Enhanced PWM output, channel C. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RE6/AD14/P1B  
0
1
x
O
I
DIG  
ST  
LATE<6> data output.  
PORTE<6> data input.  
(2)  
AD14  
O
DIG  
External memory interface, address/data bit 14 output. Takes priority  
over ECCP and port data.  
x
0
I
TTL  
DIG  
External memory interface, data bit 14 input.  
P1B  
RE7  
O
ECCP1 Enhanced PWM output, channel B. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RE7/AD15/  
ECCP2/P2A  
0
1
x
O
I
DIG  
ST  
LATE<7> data output.  
PORTE<7> data input.  
(2)  
AD15  
O
DIG  
External memory interface, address/data bit 15 output. Takes priority  
over ECCP and port data.  
x
0
I
TTL  
DIG  
External memory interface, data bit 15 input.  
(1)  
ECCP2  
O
ECCP2 compare output and ECCP2 PWM output. Takes priority over  
port data.  
1
0
I
ST  
ECCP2 capture input.  
(1)  
P2A  
O
DIG  
ECCP2 Enhanced PWM output, channel A. Takes priority over port and  
data. May be configured for tri-state during Enhanced PWM shutdown  
events.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Alternate assignment for ECCP2 when CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).  
2: Implemented on 80-pin devices only.  
TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
PORTE  
LATE  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
60  
60  
60  
LATE7  
TRISE7  
LATE6  
TRISE6  
LATE5  
TRISE5  
LATE4  
TRISE4  
LATE3  
TRISE3  
LATE2  
TRISE2  
LATE1  
TRISE1  
LATE0  
TRISE0  
TRISE  
DS39646C-page 148  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
11.6 PORTF, LATF and TRISF Registers  
Note 1: On a Power-on Reset, the RF<6:0> pins  
are configured as analog inputs and read  
as ‘0’.  
PORTF is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISF. Setting a  
TRISF bit (= 1) will make the corresponding PORTF pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISF bit (= 0) will  
make the corresponding PORTF pin an output (i.e., put  
the contents of the output latch on the selected pin).  
2: To configure PORTF as digital I/O, set the  
ADCON1 register.  
EXAMPLE 11-6:  
INITIALIZING PORTF  
CLRF  
PORTF  
LATF  
0x0F  
; Initialize PORTF by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
The Data Latch register (LATF) is also memory  
mapped. Read-modify-write operations on the LATF  
register read and write the latched output value for  
PORTF.  
CLRF  
All pins on PORTF are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
MOVLW  
MOVWF  
MOVLW  
ADCON1 ; Set PORTF as digital I/O  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RF3:RF0 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
PORTF is multiplexed with several analog peripheral  
functions, including the A/D converter and comparator  
inputs, as well as the comparator outputs. Pins RF1  
through RF2 may be used as comparator inputs or  
outputs by setting the appropriate bits in the CMCON  
register. To use RF<6:0:> as digital inputs, it is  
necessary to turn off the A/D inputs.  
MOVWF  
TRISF  
© 2008 Microchip Technology Inc.  
DS39646C-page 149  
PIC18F8722 FAMILY  
TABLE 11-11: PORTF FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RF0/AN5  
Function  
I/O  
Description  
RF0  
0
1
1
0
1
1
0
0
1
1
0
0
1
1
O
I
DIG  
ST  
LATF<0> data output; not affected by analog input.  
PORTF<0> data input; disabled when analog input enabled.  
AN5  
RF1  
I
ANA A/D input channel 5. Default configuration on POR.  
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
O
I
DIG  
ST  
LATF<1> data output; not affected by analog input.  
PORTF<1> data input; disabled when analog input enabled.  
AN6  
C2OUT  
RF2  
I
ANA A/D input channel 6. Default configuration on POR.  
O
O
I
DIG  
DIG  
ST  
Comparator 2 output; takes priority over port data.  
LATF<2> data output; not affected by analog input.  
PORTF<2> data input; disabled when analog input enabled.  
AN7  
C1OUT  
RF3  
I
ANA A/D input channel 7. Default configuration on POR.  
O
O
I
TTL  
DIG  
ST  
Comparator 1 output; takes priority over port data.  
LATF<3> data output; not affected by analog input.  
PORTF<3> data input; disabled when analog input enabled.  
RF3/AN8  
AN8  
RF4  
I
ANA A/D input channel 8 and Comparator C2+ input. Default input  
configuration on POR; not affected by analog output.  
RF4/AN9  
0
1
1
O
I
DIG  
ST  
LATF<4> data output; not affected by analog input.  
PORTF<4> data input; disabled when analog input enabled.  
AN9  
RF5  
I
ANA A/D input channel 9 and Comparator C2- input. Default input  
configuration on POR; does not affect digital output.  
RF5/AN10/CVREF  
0
1
1
x
O
I
DIG  
LATF<5> data output; not affected by analog input. Disabled when  
CVREF output enabled.  
ST  
PORTF<5> data input; disabled when analog input enabled. Disabled  
when CVREF output enabled.  
AN10  
CVREF  
RF6  
I
ANA A/D input channel 10 and Comparator C1+ input. Default input  
configuration on POR; not affected by analog output.  
O
ANA Comparator voltage reference output. Enabling this feature disables  
digital I/O.  
RF6/AN11  
RF7/SS1  
0
1
1
O
I
DIG  
ST  
LATF<6> data output; not affected by analog input.  
PORTF<6> data input; disabled when analog input enabled.  
AN11  
RF7  
I
ANA A/D input channel 11 and Comparator C1- input. Default input  
configuration on POR; does not affect digital output.  
0
1
1
O
I
DIG  
ST  
LATF<7> data output.  
PORTF<7> data input.  
SS1  
I
TTL  
Slave select input for SSP (MSSP1 module).  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 11-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
TRISF7  
RF7  
TRISF6  
RF6  
TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0  
60  
60  
60  
59  
59  
PORTF  
LATF  
RF5  
RF4  
RF3  
LATF3  
PCFG3  
CIS  
RF2  
LATF2  
PCFG2  
CM2  
RF1  
LATF1  
PCFG1  
CM1  
RF0  
LATF0  
PCFG0  
CM0  
LATF7  
LATF6  
LATF5  
VCFG1  
C2INV  
LATF4  
VCFG0  
C1INV  
ADCON1  
CMCON  
C2OUT  
C1OUT  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTF.  
DS39646C-page 150  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The sixth pin of PORTG (RG5/MCLR/VPP) is an input  
only pin. Its operation is controlled by the MCLRE  
Configuration bit. When selected as a port pin  
(MCLRE = 0), it functions as a digital input only pin; as  
such, it does not have TRIS or LAT bits associated with  
its operation. Otherwise, it functions as the device’s  
Master Clear input. In either configuration, RG5 also  
functions as the programming voltage input during  
programming.  
11.7 PORTG, TRISG and  
LATG Registers  
PORTG is a 6-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISG. Setting a  
TRISG bit (= 1) will make the corresponding PORTG  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISG bit (= 0)  
will make the corresponding PORTG pin an output  
(i.e., put the contents of the output latch on the  
selected pin).  
Note:  
On a Power-on Reset, RG5 is enabled as  
digital input only if Master Clear  
a
functionality is disabled. All other 5 pins  
are configured as digital inputs.  
The Data Latch register (LATG) is also memory  
mapped. Read-modify-write operations on the LATG  
register, read and write the latched output value for  
PORTG.  
EXAMPLE 11-7:  
INITIALIZING PORTG  
CLRF  
PORTG  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
PORTG is multiplexed with EUSART and CCP  
functions (Table 11-13). PORTG pins have Schmitt  
Trigger input buffers.  
CLRF  
LATG  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTG pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings. The pin override value is not loaded into  
the TRIS register. This allows read-modify-write of the  
TRIS register without concern due to peripheral  
overrides.  
MOVLW  
MOVWF  
0x04  
TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
; RG4:RG3 as inputs  
© 2008 Microchip Technology Inc.  
DS39646C-page 151  
PIC18F8722 FAMILY  
TABLE 11-13: PORTG FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RG0/ECCP3/P3A  
RG0  
0
1
0
O
I
DIG  
ST  
LATG<0> data output.  
PORTG<0> data input.  
ECCP3  
O
DIG  
ECCP3 compare and ECCP3 PWM output. Takes priority over  
port data.  
1
0
I
ST  
ECCP3 capture input.  
P3A  
RG1  
O
DIG  
ECCP3 Enhanced PWM output, channel B. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
0
1
0
O
I
DIG  
ST  
LATG<1> data output.  
PORTG<1> data input.  
TX2  
CK2  
O
DIG  
Asynchronous serial transmit data output (EUSART2 module). Takes  
priority over port data.  
0
O
DIG  
Synchronous serial clock output (EUSART2 module). Takes priority  
over port data.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (EUSART2 module).  
LATG<2> data output.  
RG2  
PORTG<2> data input.  
RX2  
DT2  
I
ST  
Asynchronous serial receive data input (EUSART2 module).  
O
DIG  
Synchronous serial data output (EUSART2 module). Takes priority  
over port data. User must configure as an input.  
1
I
ST  
Synchronous serial data input (EUSART2 module). User must  
configure as an input.  
RG3  
0
1
0
O
I
DIG  
ST  
LATG<3> data output.  
PORTG<3> data input.  
CCP4  
O
DIG  
CCP4 compare and PWM output; takes priority over port data and  
P3D function.  
1
0
I
ST  
CCP4 capture input.  
P3D  
O
DIG  
ECCP3 Enhanced PWM output, channel D. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
RG4/CCP5/P1D  
RG4  
0
1
0
O
I
DIG  
ST  
LATG<4> data output.  
PORTG<4> data input.  
CCP5  
O
DIG  
CCP5 compare and PWM output. Takes priority over port data and  
P1D function.  
1
0
I
ST  
CCP5 capture input.  
P1D  
O
DIG  
ECCP1 Enhanced PWM output, channel B. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over  
port data.  
(1)  
RG5/MCLR/VPP  
RG5  
MCLR  
VPP  
I
I
I
ST  
ST  
PORTG<5> data input; enabled when MCLRE Configuration bit  
is clear.  
External Master Clear input; enabled when MCLRE Configuration  
bit is set.  
ANA  
High-voltage detection; used for ICSP™ mode entry detection.  
Always available regardless of pin mode.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: RG5 does not have a corresponding TRISG bit.  
DS39646C-page 152  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 11-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Reset  
Values on  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTG  
LATG  
RG5(1)  
LATG5(1)  
RG4  
RG3  
RG2  
RG1  
RG0  
60  
60  
60  
LATG4  
TRISG4  
LATG3  
LATG2  
LATG1  
LATG0  
TRISG  
TRISG3 TRISG2 TRISG1 TRISG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTG.  
Note 1: RG5 and LATG5 are only available when MCLR is disabled (MCLRE Configuration bit = 0; otherwise, RG5  
and LATG5 read as ‘0’.  
© 2008 Microchip Technology Inc.  
DS39646C-page 153  
PIC18F8722 FAMILY  
When the external memory interface is enabled, four of  
the PORTH pins function as the high-order address  
lines for the interface. The address output from the  
interface takes priority over other digital I/O. The  
corresponding TRISH bits are also overridden.  
11.8 PORTH, LATH and  
TRISH Registers  
Note: PORTH  
is  
available  
only  
on  
PIC18F8527/8622/8627/8722 devices.  
PORTH is an 8-bit wide, bidirectional I/O port. The  
corresponding Data Direction register is TRISH. Set-  
ting a TRISH bit (= 1) will make the corresponding  
PORTH pin an input (i.e., put the corresponding output  
driver in a high-impedance mode). Clearing a TRISH  
bit (= 0) will make the corresponding PORTH pin an  
output (i.e., put the contents of the output latch on the  
selected pin).  
EXAMPLE 11-8:  
INITIALIZING PORTH  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
LATH  
MOVLW  
MOVWF  
0CFh  
The Data Latch register (LATH) is also memory  
mapped. Read-modify-write operations on the LATH  
register, read and write the latched output value for  
PORTH.  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
All pins on PORTH are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
Note: On a Power-on Reset, these pins are  
configured as digital inputs.  
DS39646C-page 154  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 11-15: PORTH FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RH0/A16  
RH0  
0
1
x
0
1
x
0
1
x
0
1
x
0
1
1
0
O
I
DIG  
ST  
LATH<0> data output.  
PORTH<0> data input.  
A16  
O
O
I
DIG  
DIG  
ST  
External memory interface, address line 16. Takes priority over port data.  
LATH<1> data output.  
RH1/A17  
RH2/A18  
RH3/A19  
RH1  
PORTH<1> data input.  
A17  
O
O
I
DIG  
DIG  
ST  
External memory interface, address line 17. Takes priority over port data.  
LATH<2> data output.  
RH2  
PORTH<2> data input.  
A18  
O
O
I
DIG  
DIG  
ST  
External memory interface, address line 18. Takes priority over port data.  
LATH<3> data output.  
RH3  
PORTH<3> data input.  
A19  
O
O
I
DIG  
DIG  
ST  
External memory interface, address line 19. Takes priority over port data.  
LATH<4> data output.  
RH4/AN12/  
P3C  
RH4  
PORTH<4> data input.  
AN12  
I
ANA A/D input channel 12. Default configuration on POR.  
(1)  
P3C  
O
DIG  
ECCP3 Enhanced PWM output, channel C. May be configured for tri-state  
during Enhanced PWM shutdown events. Takes priority over port data.  
RH5/AN13/  
P3B  
RH5  
0
1
1
0
O
I
DIG  
ST  
LATH<5> data output.  
PORTH<5> data input.  
AN13  
I
ANA A/D input channel 13. Default configuration on POR.  
(1)  
P3B  
O
DIG  
ECCP3 Enhanced PWM output, channel B. May be configured for tri-state  
during Enhanced PWM shutdown events. Takes priority over port data.  
RH6/AN14/  
P1C  
RH6  
0
1
1
0
O
I
DIG  
ST  
LATH<6> data output.  
PORTH<6> data input.  
AN14  
I
ANA A/D input channel 14. Default configuration on POR.  
(1)  
P1C  
O
DIG  
ECCP1 Enhanced PWM output, channel C. May be configured for tri-state  
during Enhanced PWM shutdown events. Takes priority over port data.  
RH7/AN15/  
P1B  
RH7  
0
1
1
0
O
I
DIG  
ST  
LATH<7> data output.  
PORTH<7> data input.  
AN15  
I
ANA A/D input channel 15. Default configuration on POR.  
(1)  
P1B  
O
DIG  
ECCP1 Enhanced PWM output, channel B. May be configured for tri-state  
during Enhanced PWM shutdown events. Takes priority over port data.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).  
TABLE 11-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISH  
TRISH7  
RH7  
TRISH6  
RH6  
TRISH5  
RH5  
TRISH4  
RH4  
TRISH3  
RH3  
TRISH2 TRISH1 TRISH0  
60  
60  
60  
59  
PORTH  
LATH  
RH2  
RH1  
RH0  
LATH7  
LATH6  
LATH5  
VCFG1  
LATH4  
VCFG0  
LATH3  
PCFG3  
LATH2  
PCFG2  
LATH1  
LATH0  
ADCON1  
PCFG1 PCFG0  
© 2008 Microchip Technology Inc.  
DS39646C-page 155  
PIC18F8722 FAMILY  
When the external memory interface is enabled, all of  
the PORTJ pins function as control outputs for the  
interface. This occurs automatically when the interface  
is enabled by clearing the EBDIS control bit  
(MEMCON<7>). The TRISJ bits are also overridden.  
11.9 PORTJ, TRISJ and  
LATJ Registers  
Note: PORTJ  
is  
available  
only  
on  
PIC18F8527/8622/8627/8722 devices.  
PORTJ is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISJ. Setting a  
TRISJ bit (= 1) will make the corresponding PORTJ pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISJ bit (= 0) will  
make the corresponding PORTJ pin an output (i.e., put  
the contents of the output latch on the selected pin).  
EXAMPLE 11-9:  
INITIALIZING PORTJ  
CLRF  
PORTJ  
; Initialize PORTJ by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
LATJ  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as output  
; RJ7:RJ6 as inputs  
The Data Latch register (LATJ) is also memory  
mapped. Read-modify-write operations on the LATJ  
register, read and write the latched output value for  
PORTJ.  
MOVWF TRISJ  
All pins on PORTJ are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
Note: On a Power-on Reset, these pins are  
configured as digital inputs.  
DS39646C-page 156  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 11-17: PORTJ FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RJ0/ALE  
Function  
I/O  
Description  
RJ0  
O
I
DIG  
ST  
LATJ<0> data output.  
0
1
x
PORTJ<0> data input.  
ALE  
RJ1  
O
DIG  
External memory interface address latch enable control output. Takes  
priority over digital I/O.  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
0
1
x
O
I
DIG  
ST  
LATJ<1> data output.  
PORTJ<1> data input.  
OE  
O
DIG  
External memory interface output enable control output. Takes priority  
over digital I/O.  
RJ2  
0
1
x
O
I
DIG  
ST  
LATJ<2> data output.  
PORTJ<2> data input.  
WRL  
RJ3  
O
DIG  
External Memory Bus write low byte control. Takes priority over  
digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<3> data output.  
PORTJ<3> data input.  
WRH  
RJ4  
O
DIG  
External memory interface write high byte control output. Takes priority  
over digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<4> data output.  
PORTJ<4> data input.  
BA0  
RJ5  
O
DIG  
External memory interface byte address 0 control output. Takes  
priority over digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<5> data output.  
PORTJ<5> data input.  
CE  
O
DIG  
External memory interface chip enable control output. Takes priority  
over digital I/O.  
RJ6  
0
1
x
O
I
DIG  
ST  
LATJ<6> data output.  
PORTJ<6> data input.  
LB  
O
DIG  
External memory interface lower byte enable control output. Takes  
priority over digital I/O.  
RJ7/UB  
Legend:  
RJ7  
0
1
x
O
I
DIG  
ST  
LATJ<7> data output.  
PORTJ<7> data input.  
UB  
O
DIG  
External memory interface upper byte enable control output. Takes  
priority over digital I/O.  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 11-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
RJ7  
RJ6  
RJ5  
RJ4  
RJ3  
RJ2  
RJ1  
RJ0  
60  
60  
60  
LATJ  
LATJ7  
TRISJ7  
LATJ6  
TRISJ6  
LATJ5  
TRISJ5  
LATJ4  
TRISJ4  
LATJ3  
TRISJ3  
LATJ2  
TRISJ2  
LATJ1  
TRISJ1  
LATJ0  
TRISJ0  
TRISJ  
© 2008 Microchip Technology Inc.  
DS39646C-page 157  
PIC18F8722 FAMILY  
FIGURE 11-2:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE PORT)  
11.10 Parallel Slave Port  
PORTD can also function as an 8-bit wide Parallel  
Slave Port, or microprocessor port, when control bit  
PSPMODE (PSPCON<4>) is set. It is asynchronously  
readable and writable by the external world through the  
RD and WR control input pins.  
Data Bus  
D
Q
RDx  
pin  
WR LATD  
or  
PORTD  
CKx  
Data Latch  
Note: For PIC18F8527/8622/8627/8722 devices,  
the Parallel Slave Port is available only in  
Microcontroller mode.  
TTL  
Q
D
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
bit PSPMODE enables port pin RE0/RD to be the RD  
input, RE1/WR to be the WR input and RE2/CS to be  
the CS (Chip Select) input. For this functionality, the  
corresponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set).  
RD PORTD  
EN  
TRIS Latch  
RD LATD  
A write to the PSP occurs when both the CS and WR  
lines are first detected low and ends when either are  
detected high. The PSPIF and IBF flag bits are both set  
when the write ends.  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The data in PORTD is read  
out and the OBF bit is set. If the user writes new data  
to PORTD to set OBF, the data is immediately read out;  
however, the OBF bit is not set.  
Read  
When either the CS or RD lines are detected high, the  
PORTD pins return to the input state and the PSPIF bit  
is set. User applications should wait for PSPIF to be set  
before servicing the PSP; when this happens, the IBF  
and OBF bits can be polled and the appropriate action  
taken.  
RD  
CS  
TTL  
Chip Select  
TTL  
Write  
WR  
TTL  
The timing for the control signals in Write and Read  
modes is shown in Figure 11-3 and Figure 11-4,  
respectively.  
Note: I/O pin has protection diodes to VDD and VSS.  
DS39646C-page 158  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 11-1: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OBF  
PSPMODE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit  
1= A write occurred when a previously input word has not been read (must be cleared in software)  
0= No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
DS39646C-page 159  
PIC18F8722 FAMILY  
FIGURE 11-3:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 11-4:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 11-19: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
LATD7  
TRISD7  
RE7  
RD6  
LATD6  
TRISD6  
RE6  
RD5  
LATD5  
TRISD5  
RE5  
RD4  
LATD4  
TRISD4  
RE4  
RD3  
RD2  
RD1  
RD0  
60  
60  
60  
60  
60  
60  
59  
57  
60  
60  
60  
LATD3  
LATD2  
LATD1  
LATD0  
TRISD  
PORTE  
LATE  
TRISD3 TRISD2  
TRISD1 TRISD0  
RE3  
LATE3  
TRISE3  
RE2  
LATE2  
TRISE2  
RE1  
LATE1  
TRISE1  
RE0  
LATE0  
TRISE0  
LATE7  
TRISE7  
IBF  
LATE6  
TRISE6  
OBF  
LATE5  
TRISE5  
IBOV  
LATE4  
TRISE4  
PSPMODE  
INT0IE  
TX1IF  
TRISE  
PSPCON  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TX1IE  
IPR1  
TX1IP  
Legend: = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
DS39646C-page 160  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The T0CON register (Register 12-1) controls all  
aspects of the module’s operation, including the  
prescale selection. It is both readable and writable.  
12.0 TIMER0 MODULE  
The Timer0 module incorporates the following features:  
• Software selectable operation as a timer or  
counter in both 8-bit or 16-bit modes  
• Readable and writable registers  
• Dedicated 8-bit, software programmable  
prescaler  
A simplified block diagram of the Timer0 module in 8-bit  
mode is shown in Figure 12-1. Figure 12-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
• Selectable clock source (internal or external)  
• Edge select for external clock  
• Interrupt-on-overflow  
REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
TMR0ON  
T08BIT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS<2:0>: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
© 2008 Microchip Technology Inc.  
DS39646C-page 161  
PIC18F8722 FAMILY  
internal phase clock (TOSC). There is a delay between  
synchronization and the onset of incrementing the  
timer/counter.  
12.1 Timer0 Operation  
Timer0 can operate as either a timer or a counter; the  
mode is selected with the T0CS bit (T0CON<5>). In  
Timer mode (T0CS = 0), the module increments on  
every clock by default unless a different prescaler value  
is selected (see Section 12.3 “Prescaler”). If the  
TMR0 register is written to, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
12.2 Timer0 Reads and Writes in  
16-bit Mode  
TMR0H is not the actual high byte of Timer0 in 16-bit  
mode; it is actually a buffered version of the real high  
byte of Timer0 which is not directly readable nor writ-  
able (refer to Figure 12-2). TMR0H is updated with the  
contents of the high byte of Timer0 during a read of  
TMR0L. This provides the ability to read all 16 bits of  
Timer0 without having to verify that the read of the high  
and low byte were valid, due to a rollover between  
successive reads of the high and low byte.  
The Counter mode is selected by setting the T0CS bit  
(= 1). In this mode, Timer0 increments either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit, T0SE (T0CON<4>); clearing this bit selects  
the rising edge. Restrictions on the external clock input  
are discussed below.  
Similarly, a write to the high byte of Timer0 must also  
take place through the TMR0H Buffer register. The high  
byte is updated with the contents of TMR0H when a  
write occurs to TMR0L. This allows all 16 bits of Timer0  
to be updated at once.  
An external clock source can be used to drive Timer0;  
however, it must meet certain requirements to ensure  
that the external clock can be synchronized with the  
FIGURE 12-1:  
TIMER0 BLOCK DIAGRAM (8-BIT MODE)  
FOSC/4  
0
1
1
0
Set  
TMR0IF  
on Overflow  
Sync with  
Internal  
Clocks  
TMR0L  
8
Programmable  
Prescaler  
T0CKI pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
T0PS<2:0>  
PSA  
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 12-2:  
TIMER0 BLOCK DIAGRAM (16-BIT MODE)  
FOSC/4  
0
1
Sync with  
Internal  
Clocks  
Set  
TMR0  
High Byte  
1
TMR0L  
TMR0IF  
Programmable  
Prescaler  
on Overflow  
T0CKI pin  
0
8
(2 TCY Delay)  
T0SE  
T0CS  
3
Read TMR0L  
Write TMR0L  
T0PS<2:0>  
PSA  
8
8
TMR0H  
8
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39646C-page 162  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
12.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
12.3 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not directly readable or writable;  
its value is set by the PSA and T0PS<2:0> bits  
(T0CON<3:0>) which determine the prescaler  
assignment and prescale ratio.  
The prescaler assignment is fully under software  
control and can be changed “on-the-fly” during program  
execution.  
12.4 Timer0 Interrupt  
Clearing the PSA bit assigns the prescaler to the  
Timer0 module. When it is assigned, prescale values  
from 1:2 through 1:256 in power-of-2 increments are  
selectable.  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
from FFFFh to 0000h in 16-bit mode. This overflow sets  
the TMR0IF flag bit. The interrupt can be masked by  
clearing the TMR0IE bit (INTCON<5>). Before re-  
enabling the interrupt, the TMR0IF bit must be cleared  
in software by the Interrupt Service Routine.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, etc.) clear the prescaler count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
Since Timer0 is shut down in Sleep mode, the TMR0  
interrupt cannot awaken the processor from Sleep.  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER0  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
Timer0 Register Low Byte  
Timer0 Register High Byte  
58  
58  
57  
58  
60  
TMR0H  
INTCON  
T0CON  
TRISA  
GIE/GIEH PEIE/GIEL TMR0IE  
TMR0ON T08BIT T0CS  
TRISA7(1) TRISA6(1) TRISA5  
INT0IE  
T0SE  
RBIE  
PSA  
TMR0IF  
T0PS2  
INT0IF  
T0PS1  
TRISA1  
RBIF  
T0PS0  
TRISA0  
TRISA4  
TRISA3  
TRISA2  
Legend: Shaded cells are not used by Timer0.  
Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary  
oscillator modes. When disabled, these bits read as ‘0’.  
© 2008 Microchip Technology Inc.  
DS39646C-page 163  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 164  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
A simplified block diagram of the Timer1 module is  
shown in Figure 13-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 13-2.  
13.0 TIMER1 MODULE  
The Timer1 timer/counter module incorporates these  
features:  
The module incorporates its own low-power oscillator  
to provide an additional clocking option. The Timer1  
oscillator can also be used as a low-power clock source  
for the microcontroller in power-managed operation.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR1H  
and TMR1L)  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt-on-overflow  
• Reset on CCP Special Event Trigger  
• Device clock status flag (T1RUN)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
Timer1 is controlled through the T1CON Control  
register (Register 13-1). It also contains the Timer1  
Oscillator Enable bit (T1OSCEN). Timer1 can be  
enabled or disabled by setting or clearing control bit,  
TMR1ON (T1CON<0>).  
REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= Device clock is derived from Timer1 oscillator  
0= Device clock is derived from another source  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
© 2008 Microchip Technology Inc.  
DS39646C-page 165  
PIC18F8722 FAMILY  
cycle (FOSC/4). When the bit is set, Timer1 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
13.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• Timer  
• Synchronous Counter  
• Asynchronous Counter  
When Timer1 is enabled, the RC1/T1OSI and RC0/  
T1OSO/T13CKI pins become inputs. This means the  
values of TRISC<1:0> are ignored and the pins are  
read as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>). When TMR1CS is cleared  
(= 0), Timer1 increments on every internal instruction  
FIGURE 13-1:  
TIMER1 BLOCK DIAGRAM  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
On/Off  
T1OSO/T13CKI  
T1OSI  
1
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 13-2:  
TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T1OSO/T13CKI  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T1CKPS1:T1CKPS0  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
8
Read TMR1L  
Write TMR1L  
8
8
TMR1H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39646C-page 166  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 13-1: CAPACITOR SELECTION FOR  
THETIMEROSCILLATOR(2,3,4)  
13.2 Timer1 16-bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 13-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, has  
become invalid due to a rollover between reads.  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
27 pF(1)  
27 pF(1)  
Note 1: Microchip suggests these values as a  
starting point in validating the oscillator  
circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. The Timer1 high  
byte is updated with the contents of TMR1H when a  
write occurs to TMR1L. This allows a user to write all  
16 bits to both the high and low bytes of Timer1 at once.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
4: Capacitor values are for design guidance  
only.  
13.3.1  
USING TIMER1 AS A  
CLOCK SOURCE  
The Timer1 oscillator is also available as a clock source  
in power-managed modes. By setting the clock select  
bits, SCS<1:0> (OSCCON<1:0>), to ‘01’, the device  
switches to SEC_RUN mode; both the CPU and  
peripherals are clocked from the Timer1 oscillator. If the  
IDLEN bit (OSCCON<7>) is cleared and a SLEEP  
instruction is executed, the device enters SEC_IDLE  
mode. Additional details are available in Section 3.0  
“Power-Managed Modes”.  
13.3 Timer1 Oscillator  
An on-chip crystal oscillator circuit is incorporated  
between pins T1OSI (input) and T1OSO (amplifier out-  
put). It is enabled by setting the Timer1 Oscillator Enable  
bit, T1OSCEN (T1CON<3>). The oscillator is a low-  
power circuit rated for 32 kHz crystals. It will continue to  
run during all power-managed modes. The circuit for a  
typical LP oscillator is shown in Figure 13-3. Table 13-1  
shows the capacitor selection for the Timer1 oscillator.  
Whenever the Timer1 oscillator is providing the clock  
source, the Timer1 system clock status flag, T1RUN  
(T1CON<6>), is set. This can be used to determine the  
controller’s current clocking mode. It can also indicate  
the clock source being currently used by the Fail-Safe  
Clock Monitor. If the Clock Monitor is enabled and the  
Timer1 oscillator fails while providing the clock, polling  
the T1RUN bit will indicate whether the clock is being  
provided by the Timer1 oscillator or another source.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 13-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
C1  
27 pF  
PIC18FXXXX  
T1OSI  
13.3.2  
LOW-POWER TIMER1 OPTION  
The Timer1 oscillator can operate at two distinct levels  
of power consumption based on device configuration.  
When the LPT1OSC Configuration bit is set, the Timer1  
oscillator operates in a low-power mode. When  
LPT1OSC is not set, Timer1 operates at a higher power  
level. Power consumption for a particular mode is rela-  
tively constant, regardless of the device’s operating  
mode. The default Timer1 configuration is the higher  
power mode.  
XTAL  
32.768 kHz  
T1OSO  
C2  
27 pF  
Note:  
See the Notes with Table 13-1 for additional  
information about capacitor selection.  
As the low-power Timer1 mode tends to be more  
sensitive to interference, high noise environments may  
cause some oscillator instability. The low-power option  
is, therefore, best suited for low noise applications  
where power conservation is an important design  
consideration.  
© 2008 Microchip Technology Inc.  
DS39646C-page 167  
PIC18F8722 FAMILY  
In the event that a write to Timer1 coincides with a  
Special Event Trigger, the write operation will take  
precedence.  
13.3.3  
TIMER1 OSCILLATOR LAYOUT  
CONSIDERATIONS  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low-power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
Note:  
The Special Event Triggers from the CCPx  
module will not set the TMR1IF interrupt  
flag bit (PIR1<0>).  
The oscillator circuit, shown in Figure 13-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
13.6 Using Timer1 as a Real-Time Clock  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 13.3 “Timer1 Oscillator”  
above) gives users the option to include RTC function-  
ality to their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
If a high-speed circuit must be located near the Timer1  
oscillator, a grounded guard ring around the oscillator  
circuit may be helpful when used on a single-sided  
PCB or in addition to a ground plane.  
13.4 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled or disabled  
by setting or clearing the Timer1 Interrupt Enable bit,  
TMR1IE (PIE1<0>).  
The application code routine, RTCisr, shown in  
Example 13-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow triggers the interrupt and calls  
the routine, which increments the seconds counter by  
one; additional counters for minutes and hours are  
incremented as the previous counter overflow.  
13.5 Resetting Timer1 Using the CCP  
Special Event Trigger  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it; the simplest method is to set the MSb of TMR1H  
with a BSFinstruction. Note that the TMR1L register is  
never preloaded or altered; doing so may introduce  
cumulative error over many cycles.  
If any of the CCP modules are configured to use Timer1  
and generate a Special Event Trigger in Compare mode  
(CCPxM<3:0>, this signal will reset Timer1. The trigger  
from the ECCP2 module will also start an A/D conver-  
sion if the A/D module is enabled (see Section 17.3.4  
“Special Event Trigger” for more information).  
The module must be configured as either a timer or a  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRH:CCPRL register pair  
effectively becomes a period register for Timer1.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1), as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
DS39646C-page 168  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
EXAMPLE 13-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
80h  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
; Reset hours  
; Done  
CLRF  
hours  
RETURN  
TABLE 13-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
57  
60  
60  
60  
58  
58  
58  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR1L  
TMR1H  
T1CON  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: Shaded cells are not used by the Timer1 module.  
© 2008 Microchip Technology Inc.  
DS39646C-page 169  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 170  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
14.1 Timer2 Operation  
14.0 TIMER2 MODULE  
In normal operation, TMR2 is incremented from 00h on  
each clock (FOSC/4). A 4-bit counter/prescaler on the  
clock input gives direct input, divide-by-4 and divide-by-  
16 prescale options; these are selected by the prescaler  
control bits, T2CKPS<1:0> (T2CON<1:0>). The value of  
TMR2 is compared to that of the period register, PR2, on  
each clock cycle. When the two values match, the com-  
parator generates a match signal as the timer output.  
This signal also resets the value of TMR2 to 00h on the  
next cycle and drives the output counter/postscaler (see  
Section 14.2 “Timer2 Interrupt”).  
The Timer2 timer module incorporates the following  
features:  
• 8-bit Timer and Period registers (TMR2 and PR2,  
respectively)  
• Readable and writable (both registers)  
• Software programmable prescaler  
(1:1, 1:4 and 1:16)  
• Software programmable postscaler  
(1:1 through 1:16)  
• Interrupt on TMR2 to PR2 match  
• Optional use as the shift clock for the  
MSSPx module  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset, while the PR2 register initializes at FFh.  
Both the prescaler and postscaler counters are cleared  
on the following events:  
The module is controlled through the T2CON register  
(Register 14-1), which enables or disables the timer  
and configures the prescaler and postscaler. Timer2  
can be shut off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
A simplified block diagram of the module is shown in  
Figure 14-1.  
TMR2 is not cleared when T2CON is written.  
REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T2OUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
© 2008 Microchip Technology Inc.  
DS39646C-page 171  
PIC18F8722 FAMILY  
14.2 Timer2 Interrupt  
14.3 Timer2 Output  
Timer2 also can generate an optional device interrupt.  
The Timer2 output signal (TMR2 to PR2 match) pro-  
vides the input for the 4-bit output counter/postscaler.  
This counter generates the TMR2 match interrupt flag  
which is latched in TMR2IF (PIR1<1>). The interrupt is  
enabled by setting the TMR2 Match Interrupt Enable  
bit, TMR2IE (PIE1<1>).  
The unscaled output of TMR2 is available primarily to  
the CCP modules, where it is used as a time base for  
operations in PWM mode.  
Timer2 can be optionally used as the shift clock source  
for the MSSP module operating in SPI mode. Addi-  
tional information is provided in Section 19.0 “Master  
Synchronous Serial Port (MSSP) Module”.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, T2OUTPS<3:0> (T2CON<6:3>).  
FIGURE 14-1:  
TIMER2 BLOCK DIAGRAM  
4
1:1 to 1:16  
Set TMR2IF  
Postscaler  
T2OUTPS<3:0>  
T2CKPS<1:0>  
2
TMR2 Output  
(to PWM or MSSP)  
TMR2/PR2  
Match  
Reset  
1:1, 1:4, 1:16  
Prescaler  
PR2  
FOSC/4  
Comparator  
TMR2  
8
8
8
Internal Data Bus  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
57  
60  
60  
60  
58  
58  
58  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
DS39646C-page 172  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
A simplified block diagram of the Timer3 module is  
shown in Figure 15-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 15-2.  
15.0 TIMER3 MODULE  
The Timer3 timer/counter module incorporates these  
features:  
The Timer3 module is controlled through the T3CON  
register (Register 15-1). It also selects the clock source  
options for the CCP modules (see Section 17.1.1  
“CCP Modules and Timer Resources” for more  
information).  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers  
(TMR3H and TMR3L)  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt-on-overflow  
• Module Reset on CCP Special Event Trigger  
REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6, 3  
T3CCP<2:1>: Timer3 and Timer1 to CCPx Enable bits  
11= Timer3 and Timer4 are the clock sources for ECCP1, ECCP2, ECCP3, CCP4 and CCP5  
10= Timer3 and Timer4 are the clock sources for ECCP3, CCP4 and CCP5;  
Timer1 and Timer2 are the clock sources for ECCP1 and ECCP2  
01= Timer3 and Timer4 are the clock sources for ECCP2, ECCP3, CCP4 and CCP5;  
Timer1 and Timer2 are the clock sources for ECCP1  
00= Timer1 and Timer2 are the clock sources for ECCP1, ECCP2, ECCP3, CCP4 and CCP5  
bit 5-4  
bit 2  
T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the device clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
© 2008 Microchip Technology Inc.  
DS39646C-page 173  
PIC18F8722 FAMILY  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>). When TMR3CS is cleared  
(= 0), Timer3 increments on every internal instruction  
cycle (FOSC/4). When the bit is set, Timer3 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
15.1 Timer3 Operation  
Timer3 can operate in one of three modes:  
• Timer  
• Synchronous Counter  
• Asynchronous Counter  
As with Timer1, the RC1/T1OSI and RC0/T1OSO/  
T13CKI pins become inputs when the Timer1 oscillator  
is enabled. This means the values of TRISC<1:0> are  
ignored and the pins are read as ‘0’.  
FIGURE 15-1:  
TIMER3 BLOCK DIAGRAM  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T1OSO/T13CKI  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
TMR3CS  
Timer3  
On/Off  
T3CKPS<1:0>  
T3SYNC  
TMR3ON  
CCPx Special Event Trigger  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
CCPx Select from T3CON<6,3>  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 15-2:  
TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T13CKI/T1OSO  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T3CKPS<1:0>  
T3SYNC  
Timer3  
On/Off  
TMR3CS  
TMR3ON  
CCPx Special Event Trigger  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
CCPx Select from T3CON<6,3>  
on Overflow  
8
Read TMR1L  
Write TMR1L  
8
8
TMR3H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39646C-page 174  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
15.2 Timer3 16-bit Read/Write Mode  
15.4 Timer3 Interrupt  
Timer3 can be configured for 16-bit reads and writes  
(see Figure 15-2). When the RD16 control bit  
(T3CON<7>) is set, the address for TMR3H is mapped  
to a buffer register for the high byte of Timer3. A read  
from TMR3L will load the contents of the high byte of  
Timer3 into the Timer3 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer3 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, has become invalid due to a rollover between  
reads.  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and overflows to 0000h. The  
Timer3 interrupt, if enabled, is generated on overflow  
and is latched in interrupt flag bit, TMR3IF (PIR2<1>).  
This interrupt can be enabled or disabled by setting or  
clearing the Timer3 Interrupt Enable bit, TMR3IE  
(PIE2<1>).  
15.5 Resetting Timer3 Using the CCP  
Special Event Trigger  
If any of the CCP modules are configured to use Timer3  
and to generate a Special Event Trigger in Compare  
mode (CCPxM<3:0> = 1011), this signal will reset  
Timer3. ECCP2 can also start an A/D conversion if the  
A/D module is enabled (see Section 17.3.4 “Special  
Event Trigger” for more information).  
A write to the high byte of Timer3 must also take place  
through the TMR3H Buffer register. The Timer3 high  
byte is updated with the contents of TMR3H when a  
write occurs to TMR3L. This allows a user to write all  
16 bits to both the high and low bytes of Timer3 at once.  
The high byte of Timer3 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer3 High Byte Buffer register.  
The module must be configured as either a timer or  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRxH:CCPRxL register  
pair effectively becomes a period register for Timer3.  
Writes to TMR3H do not clear the Timer3 prescaler.  
The prescaler is only cleared on writes to TMR3L.  
If Timer3 is running in Asynchronous Counter mode,  
the Reset operation may not work.  
15.3 Using the Timer1 Oscillator as the  
Timer3 Clock Source  
In the event that a write to Timer3 coincides with a  
Special Event Trigger from a CCP module, the write will  
take precedence.  
The Timer1 internal oscillator may be used as the clock  
source for Timer3. The Timer1 oscillator is enabled by  
setting the T1OSCEN (T1CON<3>) bit. To use it as the  
Timer3 clock source, the TMR3CS bit must also be set.  
As previously noted, this also configures Timer3 to  
increment on every rising edge of the oscillator source.  
Note:  
The Special Event Triggers from the CCPx  
module will not set the TMR3IF interrupt  
flag bit (PIR2<1>).  
The Timer1 oscillator is described in Section 13.0  
“Timer1 Module”.  
TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
TMR0IF  
HLVDIF  
HLVDIE  
HLVDIP  
INT0IF  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
57  
60  
60  
60  
59  
59  
58  
59  
OSCFIF  
OSCFIE  
OSCFIP  
CMIF  
CMIE  
CMIP  
BCL1IF  
BCL1IE  
BCL1IP  
CCP2IF  
CCP2IE  
CCP2IP  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Timer3 Register Low Byte  
Timer3 Register High Byte  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
© 2008 Microchip Technology Inc.  
DS39646C-page 175  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 176  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
16.1 Timer4 Operation  
16.0 TIMER4 MODULE  
Timer4 can be used as the PWM time base for the  
PWM mode of the CCP modules. The TMR4 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T4CKPS<1:0> (T4CON<1:0>). The match output of  
TMR4 goes through a 4-bit postscaler (which gives a  
1:1 to 1:16 scaling inclusive) to generate a TMR4  
interrupt, latched in flag bit, TMR4IF (PIR3<3>).  
The Timer4 timer module has the following features:  
• 8-bit Timer register (TMR4)  
• 8-bit Period register (PR4)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR4 match of PR4  
Timer4 has a control register shown in Register 16-1.  
Timer4 can be shut off by clearing control bit, TMR4ON  
(T4CON<2>), to minimize power consumption. The  
prescaler and postscaler selection of Timer4 are also  
controlled by this register. Figure 16-1 is a simplified  
block diagram of the Timer4 module.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR4 register  
• a write to the T4CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR4 is not cleared when T4CON is written.  
REGISTER 16-1: T4CON: TIMER4 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0  
TMR4ON  
T4CKPS1  
T4CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T4OUTPS<3:0>: Timer4 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR4ON: Timer4 On bit  
1= Timer4 is on  
0= Timer4 is off  
bit 1-0  
T4CKPS<1:0>: Timer4 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
© 2008 Microchip Technology Inc.  
DS39646C-page 177  
PIC18F8722 FAMILY  
16.2 Timer4 Interrupt  
16.3 Output of TMR4  
The Timer4 module has an 8-bit Period register, PR4,  
which is both readable and writable. Timer4 increments  
from 00h until it matches PR4 and then resets to 00h on  
the next increment cycle. The PR4 register is initialized  
to FFh upon Reset.  
The output of TMR4 (before the postscaler) is used  
only as a PWM time base for the CCP modules. It is not  
used as a baud rate clock for the MSSP, as is the  
Timer2 output.  
FIGURE 16-1:  
TIMER4 BLOCK DIAGRAM  
Sets Flag  
TMR4  
bit TMR4IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
TMR4  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR4  
T4CKPS<1:0>  
4
T4OUTPS<3:0>  
TABLE 16-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL  
TMR0IE  
RC2IP  
RC2IF  
RC2IE  
INT0IE  
TX2IP  
TX2IF  
TX2IE  
RBIE  
TMR0IF  
CCP5IP  
CCP5IF  
CCP5IE  
INT0IF  
CCP4IP  
CCP4IF  
CCP4IE  
RBIF  
57  
60  
60  
60  
61  
61  
61  
IPR3  
PIR3  
PIE3  
SSP2IP  
SSP2IF  
SSP2IE  
BCL2IP  
BCL2IF  
BCL2IE  
TMR4IP  
TMR4IF  
TMR4IE  
CCP3IP  
CCP3IF  
CCP3IE  
TMR4  
T4CON  
PR4  
Timer4 Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
Timer4 Period Register  
Legend: x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer4 module.  
DS39646C-page 178  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Capture and Compare operations described in this chap-  
ter apply to all standard and Enhanced CCP modules.  
The operations of PWM mode described in Section 17.4  
“PWM Mode” apply to CCP4 and CCP5 only.  
17.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
The PIC18F8722 family of devices all have a total of  
five CCP (Capture/Compare/PWM) modules. Two of  
these (CCP4 and CCP5) implement standard Capture,  
Compare and Pulse-Width Modulation (PWM) modes  
and are discussed in this section. The other three  
modules (ECCP1, ECCP2, ECCP3) implement  
standard Capture and Compare modes, as well as  
Enhanced PWM modes. These are discussed in  
Section 18.0 “Enhanced Capture/Compare/PWM  
(ECCP) Module”.  
Note:  
Throughout this section and Section 18.0  
“Enhanced Capture/Compare/PWM  
(ECCP) Module”, references to register  
and bit names that may be associated with  
a specific CCP module are referred to  
generically by the use of ‘x’ or ‘y’ in place of  
the specific module number. Thus,  
“CCPxCON” might refer to the control  
register for CCP4 or CCP5, or ECCP1,  
ECCP2 or ECCP3. “CCPxCON” is used  
throughout these sections to refer to the  
module control register, regardless of  
whether the CCP module is a standard or  
enhanced implementation.  
Each CCP/ECCP module contains a 16-bit register  
which can operate as a 16-bit Capture register, a 16-bit  
Compare register or a PWM Master/Slave Duty Cycle  
register. For the sake of clarity, all CCP module opera-  
tions in the following sections are described with  
respect to CCP4, but are equally applicable to CCP5.  
REGISTER 17-1: CCPxCON: CCPx CONTROL REGISTER (CCP4 AND CCP5 MODULES)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCP Module x  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight  
Most Significant bits (DCx<9:2>) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: CCP Module x Mode Select bits  
0000= Capture/Compare/PWM disabled; resets CCPx module  
0001= Reserved  
0010= Compare mode, toggle output on match; CCPxIF bit is set  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize CCPx pin low; on compare match, force CCPx pin high; CCPxIF bit is set  
1001= Compare mode, initialize CCPx pin high; on compare match, force CCPx pin low; CCPxIF bit is set  
1010= Compare mode, generate software interrupt on compare match; CCPxIF bit is set; CCPx pin  
reflects I/O state  
1011= Compare mode, trigger special event; CCPxIF bit is set, CCPx pin is unaffected (For the effects  
of the trigger, see Section 17.3.4 “Special Event Trigger”.)  
11xx= PWM mode  
© 2008 Microchip Technology Inc.  
DS39646C-page 179  
PIC18F8722 FAMILY  
The assignment of a particular timer to a module is  
determined by the Timer to CCP enable bits in the  
T3CON register (Register 15-1). Depending on the  
configuration selected, up to four timers may be active  
at once, with modules in the same configuration  
(Capture/Compare or PWM) sharing timer resources.  
The possible configurations are shown in Figure 17-1.  
17.1 CCP Module Configuration  
Each Capture/Compare/PWM module is associated  
with a control register (generically, CCPxCON) and a  
data register (CCPRx). The data register, in turn, is  
comprised of two 8-bit registers: CCPRxL (low byte)  
and CCPRxH (high byte). All registers are both  
readable and writable.  
17.1.2  
ECCP2 PIN ASSIGNMENT  
17.1.1  
CCP MODULES AND TIMER  
RESOURCES  
The pin assignment for ECCP2 (Capture input,  
Compare and PWM output) can change, based on  
device configuration. The CCP2MX Configuration bit  
determines which pin ECCP2 is multiplexed to. By  
default, it is assigned to RC1 (CCP2MX = 1). If the  
Configuration bit is cleared, ECCP2 is multiplexed with  
RE7 in Microcontroller mode, or RE3 in all other  
modes.  
The CCP/ECCP modules utilize Timers 1, 2, 3 or 4,  
depending on the mode selected. Timer1 and Timer3  
are available to modules in Capture or Compare  
modes, while Timer2 and Timer4 are available for  
modules in PWM mode.  
TABLE 17-1: CCP MODE – TIMER  
RESOURCE  
Changing the pin assignment of ECCP2 does not auto-  
matically change any requirements for configuring the  
port pin. Users must always verify that the appropriate  
TRIS register is configured correctly for ECCP2  
operation regardless of where it is located.  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2 or Timer4  
FIGURE 17-1:  
CCP AND TIMER INTERCONNECT CONFIGURATIONS  
T3CCP<2:1> = 00  
T3CCP<2:1> = 01  
T3CCP<2:1> = 10  
T3CCP<2:1> = 11  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
ECCP1  
ECCP2  
ECCP3  
CCP4  
ECCP1  
ECCP1  
ECCP2  
ECCP1  
ECCP2  
ECCP3  
CCP4  
ECCP2  
ECCP3  
CCP4  
ECCP3  
CCP4  
CCP5  
CCP5  
CCP5  
CCP5  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
Timer1 is used for all Capture Timer1 and Timer2 are used Timer1 and Timer2 are used  
and Compare operations for for Capture and Compare or for Capture and Compare or  
Timer3 is used for all Capture  
and Compare operations for  
all CCP modules. Timer4 is  
used for PWM operations for  
all CCP modules. Modules  
may share either timer  
resource as a common time  
base.  
PWM operations for ECCP1  
used for PWM operations for only (depending on selected and ECCP2 only (depending  
all CCP modules. Timer2 is PWM operations for ECCP1  
all CCP modules. Modules mode).  
may share either timer  
on the mode selected for each  
module). Both modules may  
use a timer as a common time  
base if they are both in  
Capture/Compare or PWM  
modes.  
All other modules use either  
resource as a common time  
base.  
Timer3 or Timer4. Modules  
may share either timer  
Timer3 and Timer4 are not resource as a common time  
Timer1 and Timer2 are not  
available.  
available.  
base if they are in Capture/  
Compare or PWM modes.  
The other modules use either  
Timer3 or Timer4. Modules  
may share either timer  
resource as a common time  
base if they are in Capture/  
Compare or PWM modes.  
DS39646C-page 180  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
17.2.3  
SOFTWARE INTERRUPT  
17.2 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit clear to avoid false inter-  
rupts. The interrupt flag bit, CCPxIF, should also be  
cleared following any such change in operating mode.  
In Capture mode, the CCPRxH:CCPRxL register pair  
captures the 16-bit value of the TMR1 or TMR3  
registers when an event occurs on the corresponding  
CCPx pin. An event is defined as one of the following:  
• every falling edge  
• every rising edge  
17.2.4  
CCP PRESCALER  
• every 4th rising edge  
• every 16th rising edge  
There are four prescaler settings in Capture mode; they  
are specified as part of the operating mode selected by  
the mode select bits (CCPxM<3:0>). Whenever the  
CCP module is turned off, or Capture mode is disabled,  
the prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
The event is selected by the mode select bits,  
CCPxM<3:0> (CCPxCON<3:0>). When a capture is  
made, the interrupt request flag bit, CCPxIF, is set; it  
must be cleared in software. If another capture occurs  
before the value in the CCPRx registers is read, the old  
captured value is overwritten by the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
17.2.1  
CCPx PIN CONFIGURATION  
a
non-zero prescaler. Example 17-1 shows the  
In Capture mode, the appropriate CCPx pin should be  
configured as an input by setting the corresponding  
TRIS direction bit.  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
Note:  
If a CCPx pin is configured as an output, a  
write to the port can cause a capture  
condition.  
EXAMPLE 17-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
(CCP5 SHOWN)  
17.2.2  
TIMER1/TIMER3 MODE SELECTION  
CLRF  
CCP5CON  
; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
The timers that are to be used with the capture feature  
(Timer1 and/or Timer3) must be running in Timer mode or  
Synchronized Counter mode. In Asynchronous Counter  
mode, the capture operation will not work. The timer to be  
used with each CCP module is selected in the T3CON  
register (see Section 17.1.1 “CCP Modules and Timer  
Resources”).  
; value and CCP ON  
MOVWF CCP5CON  
; Load CCP5CON with  
; this value  
FIGURE 17-2:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR4L  
TMR1L  
Set Flag bit CCP4IF  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
RG3/CCP4 pin  
CCPR4H  
TMR1  
and  
Enable  
T3CCP2  
Edge Detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
© 2008 Microchip Technology Inc.  
DS39646C-page 181  
PIC18F8722 FAMILY  
17.3.3  
SOFTWARE INTERRUPT MODE  
17.3 Compare Mode  
When the Generate Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the corresponding CCPx pin is  
not affected. Only a CCP interrupt is generated, if  
enabled and the CCPxIE bit is set.  
In Compare mode, the 16-bit value of the CCPRx  
registers is constantly compared against either the  
TMR1 or TMR3 register pair value. When a match  
occurs, the CCPx pin can be:  
• driven high  
• driven low  
17.3.4  
SPECIAL EVENT TRIGGER  
All CCP modules are equipped with a Special Event  
Trigger. This is an internal hardware signal generated  
in Compare mode to trigger actions by other modules.  
The Special Event Trigger is enabled by selecting  
the Compare Special Event Trigger mode  
(CCPxM<3:0> = 1011).  
• toggled (high-to-low or low-to-high)  
• remain unchanged (that is, reflects the state of the  
I/O latch)  
The action on the pin is based on the value of the mode  
select bits (CCPxM<3:0>). At the same time, the  
interrupt flag bit, CCPxIF, is set.  
For all CCP modules, the Special Event Trigger resets  
the timer register pair for whichever timer resource is  
currently assigned as the module’s time base. This  
allows the CCPRx registers to serve as a programmable  
period register for either timer.  
17.3.1  
CCPx PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
The ECCP2 Special Event Trigger can also start an A/D  
conversion. In order to do this, the A/D converter must  
already be enabled.  
Note:  
Clearing the CCPxCON register will force  
the compare output latch (depending on  
device configuration) to the default low  
level. This is not the port I/O data latch.  
17.3.2  
TIMER1/TIMER3 MODE SELECTION  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
FIGURE 17-3:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger  
Set Flag bit CCP4IF  
CCPR4H CCPR4L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RG3/CCP4 pin  
TRISG<3>  
Output Enable  
1
0
T3CCP2  
CCP4CON<3:0>  
Mode Select  
TMR1H TMR1L  
TMR3H TMR3L  
DS39646C-page 182  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 17-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
RCON  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
57  
56  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
58  
58  
58  
59  
59  
59  
59  
59  
59  
59  
59  
59  
59  
61  
61  
IPEN  
PSPIF  
SBOREN  
ADIF  
TO  
PIR1  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
EEIF  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISB3  
TRISC3  
TRISE3  
TRISG3  
TRISH3  
CCP1IF  
TMR2IF TMR1IF  
PIE1  
PSPIE  
PSPIP  
OSCFIF  
OSCFIE  
OSCFIP  
SSP2IF  
SSP2IE  
SSP2IP  
TRISB7  
TRISC7  
TRISE7  
ADIE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
ADIP  
PIR2  
CMIF  
HLVDIF  
TMR3IF  
CCP2IF  
PIE2  
CMIE  
EEIE  
HLVDIE TMR3IE CCP2IE  
HLVDIP TMR3IP CCP2IP  
IPR2  
CMIP  
EEIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
TRISB6  
TRISC6  
TRISE6  
RC2IF  
RC2IE  
RC2IP  
TRISB5  
TRISC5  
TRISE5  
TX2IF  
TX2IE  
TX2IP  
TRISB4  
TRISC4  
TRISE4  
TRISG4  
TRISH4  
CCP5IF  
CCP4IF  
CCP3IF  
PIE3  
CCP5IE CCP4IE CCP3IE  
CCP5IP CCP4IP CCP3IP  
IPR3  
TRISB  
TRISB2  
TRISC2  
TRISE2  
TRISB1  
TRISC1  
TRISE1  
TRISB0  
TRISC0  
TRISE0  
TRISC  
TRISE  
TRISG  
TRISH(1)  
TMR1L  
TMR1H  
T1CON  
TMR3H  
TMR3L  
T3CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
CCP3CON  
CCP4CON  
CCP5CON  
TRISG2 TRISG1 TRISG0  
TRISH2 TRISH1 TRISH0  
TRISH7  
TRISH6  
TRISH5  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Timer3 Register High Byte  
Timer3 Register Low Byte  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
Enhanced Capture/Compare/PWM Register 1 High Byte  
P1M1  
P1M0  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Enhanced Capture/Compare/PWM Register 2 Low Byte  
Enhanced Capture/Compare/PWM Register 2 High Byte  
P2M1  
P3M1  
P2M0  
P3M0  
DC2B1  
DC3B1  
DC4B1  
DC5B1  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
DC3B0 CCP3M3 CCP3M2 CCP3M1 CCP3M0  
DC4B0 CCP4M3 CCP4M2 CCP4M1 CCP4M0  
DC5B0 CCP5M3 CCP5M2 CCP5M1 CCP5M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.  
Note 1: Implemented on 80-pin devices only.  
© 2008 Microchip Technology Inc.  
DS39646C-page 183  
PIC18F8722 FAMILY  
17.4.1  
PWM PERIOD  
17.4 PWM Mode  
The PWM period is specified by writing to the PR2  
(PR4) register. The PWM period can be calculated  
using the following formula:  
In Pulse-Width Modulation (PWM) mode, the CCPx pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP4 and CCP5 pins are multiplexed with a  
PORTG data latch, the appropriate TRISG bit must be  
cleared to make the CCP4 or CCP5 pin an output.  
EQUATION 17-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Note:  
Clearing the CCP4CON or CCP5CON  
register will force the RG3 or RG4 output  
latch (depending on device configuration)  
to the default low level. This is not the  
PORTG I/O data latch.  
PWM frequency is defined as 1/[PWM period].  
When TMR2 (TMR4) is equal to PR2 (PR4), the  
following three events occur on the next increment  
cycle:  
Figure 17-4 shows a simplified block diagram of the  
CCP module in PWM mode.  
For a step-by-step procedure on how to set up a CCP  
module for PWM operation, see Section 17.4.3  
“Setup for PWM Operation”.  
• TMR2 (TMR4) is cleared  
• The CCPx pin is set (exception: if PWM duty  
cycle = 0%, the CCPx pin will not be set)  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH  
FIGURE 17-4:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
The Timer2 and Timer 4 postscalers (see  
Section 14.0 “Timer2 Module” and  
Section 16.0 “Timer4 Module”) are not  
used in the determination of the PWM  
frequency. The postscaler could be used  
to have a servo update rate at a different  
frequency than the PWM output.  
CCPxCON<5:4>  
Duty Cycle Registers  
CCPRxL  
CCPRxH (Slave)  
Comparator  
CCPx Output  
17.4.2  
PWM DUTY CYCLE  
Q
R
S
The PWM duty cycle is specified by writing to the  
CCPRxL register and to the CCPxCON<5:4> bits. Up  
to 10-bit resolution is available. The CCPRxL contains  
the eight MSbs and the CCPxCON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPRxL:CCPxCON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
(Note 1)  
TMR2 (TMR4)  
Corresponding  
TRIS bit  
Comparator  
PR2 (PR4)  
Clear Timer,  
CCPx pin and  
latch D.C.  
EQUATION 17-2:  
Note 1:The 8-bit TMR2 or TMR4 value is concatenated with the  
2-bit internal Q clock, or 2 bits of the prescaler, to cre-  
ate the 10-bit time base.  
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
A PWM output (Figure 17-5) has a time base (period)  
and a time that the output stays high (duty cycle).  
The frequency of the PWM is the inverse of the  
period (1/period).  
CCPRxL and CCPxCON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPRxH until after a match between PR2 (PR4) and  
TMR2 (TMR4) occurs (i.e., the period is complete). In  
PWM mode, CCPRxH is a read-only register.  
FIGURE 17-5:  
PWM OUTPUT  
Period  
Duty Cycle  
TMR2 (TMR4) = PR2 (PR4)  
TMR2 (TMR4) = Duty Cycle  
TMR2 (TMR4) = PR2 (TMR4)  
DS39646C-page 184  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The CCPRxH register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
17.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 (PR4)  
register.  
When the CCPRxH and 2-bit latch match TMR2  
(TMR4), concatenated with an internal 2-bit Q clock or  
2 bits of the TMR2 (TMR4) prescaler, the CCPx pin is  
cleared.  
2. Set the PWM duty cycle by writing to the  
CCPRxL register and CCPxCON<5:4> bits.  
3. Make the CCPx pin an output by clearing the  
appropriate TRIS bit.  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
4. Set the TMR2 (TMR4) prescale value, then  
enable Timer2 (Timer4) by writing to T2CON  
(T4CON).  
EQUATION 17-3:  
FOSC  
5. Configure the CCPx module for PWM operation.  
log ---------------  
FPWM  
PWM Resolution (max)  
= ----------------------------- b i t s  
log(2)  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCPx pin will not be  
cleared.  
TABLE 17-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
© 2008 Microchip Technology Inc.  
DS39646C-page 185  
PIC18F8722 FAMILY  
TABLE 17-4: REGISTERS ASSOCIATED WITH PWM, TIMER2 AND TIMER4  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
57  
56  
60  
60  
60  
60  
60  
60  
58  
58  
58  
61  
61  
61  
59  
59  
59  
59  
61  
61  
IPEN  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
SBOREN  
ADIF  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
SSP1IF  
SSP1IE  
SSP1IP  
TMR4IF  
TMR4IE  
TMR4IP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
CCP5IF CCP4IF CCP3IF  
CCP5IE CCP4IE CCP3IE  
CCP5IP CCP4IP CCP3IP  
PIE1  
ADIE  
IPR1  
ADIP  
PIR3  
BCL2IF  
BCL2IF  
BCL2IP  
PIE3  
IPR3  
TMR2  
Timer2 Register  
PR2  
Timer2 Period Register  
T2CON  
TMR4  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer4 Register  
PR4  
Timer4 Period Register  
T4CON  
CCPR1L  
CCPR1H  
CCPR2L  
CCPR2H  
CCP4CON  
CCP5CON  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
Enhanced Capture/Compare/PWM Register 1 High Byte  
Enhanced Capture/Compare/PWM Register 2 Low Byte  
Enhanced Capture/Compare/PWM Register 2 High Byte  
DC4B1  
DC5B1  
DC4B0  
DC5B0  
CCP4M3 CCP4M2 CCP4M1 CCP4M0  
CCP5M3 CCP5M2 CCP5M1 CCP5M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PWM, Timer2 or Timer4.  
DS39646C-page 186  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The control register for the Enhanced CCP modules is  
shown in Register 18-1. It differs from the CCPxCON  
registers discussed in Section 17.0 “Capture/  
Compare/PWM (CCP) Modules” in that the two Most  
Significant bits are implemented to control PWM  
functionality. In addition to the expanded range of  
modes available through the Enhanced CCPxCON  
register, the ECCP modules each have two additional  
features associated with Enhanced PWM operation  
and auto-shutdown features. They are:  
18.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
In the PIC18F8722 family of devices, ECCP1, ECCP2  
and ECCP3 are implemented as a standard CCP  
module with Enhanced PWM capabilities. These  
include the provision for 2 or 4 output channels, user  
selectable polarity, dead-band control and automatic  
shutdown and restart. The enhanced features are  
discussed in detail in Section 18.4 “Enhanced PWM  
Mode”. Capture, Compare and single-output PWM  
functions of the ECCP module are the same as  
described for the standard CCP module.  
• ECCPxDEL (Dead-Band Delay)  
• ECCPxAS (Auto-Shutdown Configuration)  
REGISTER 18-1: CCPxCON: ENHANCED CCPx CONTROL REGISTER (ECCP1, ECCP2, ECCP3)  
R/W-0  
PxM1  
R/W-0  
PxM0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
bit 3-0  
PxM1:PxM0: Enhanced PWM Output Configuration bits  
If CCPxM<3:2> = 00, 01, 10:  
xx= PxA assigned as Capture/Compare input/output; PxB, PxC, PxD assigned as port pins  
If CCPxM<3:2> = 11:  
00= Single output: PxA modulated; PxB, PxC, PxD assigned as port pins  
01= Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins  
11= Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive  
DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found  
in CCPRxL.  
CCPxM3:CCPxM0: Enhanced CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCPx module)  
0001= Reserved  
0010= Compare mode: toggle output on match  
0011= Capture mode  
0100= Capture mode: every falling edge  
0101= Capture mode: every rising edge  
0110= Capture mode: every 4th rising edge  
0111= Capture mode: every 16th rising edge  
1000= Compare mode: initialize ECCPx pin low; set output on compare match (set CCPxIF)  
1001= Compare mode: initialize ECCPx pin high; clear output on compare match (set CCPxIF)  
1010= Compare mode: generate software interrupt only; ECCPx pin reverts to I/O state  
1011= Compare mode: trigger special event (ECCP resets TMR1 or TMR3, sets CCPxIF bit; ECCP2  
trigger starts A/D conversion if A/D module is enabled)  
1100= PWM mode: PxA, PxC active-high; PxB, PxD active-high  
1101= PWM mode: PxA, PxC active-high; PxB, PxD active-low  
1110= PWM mode: PxA, PxC active-low; PxB, PxD active-high  
1111= PWM mode: PxA, PxC active-low; PxB, PxD active-low  
© 2008 Microchip Technology Inc.  
DS39646C-page 187  
PIC18F8722 FAMILY  
18.1.2  
ECCP MODULE OUTPUTS,  
18.1 ECCP Outputs and Configuration  
PROGRAM MEMORY MODES AND  
EMB ADDRESS BUS WIDTH  
Each of the Enhanced CCP modules may have up to  
four PWM outputs, depending on the selected  
operating mode. These outputs, designated PxA  
through PxD, are multiplexed with various I/O pins.  
Some ECCPx pin assignments are constant, while  
others change based on device configuration. For  
those pins that do change, the controlling bits are:  
For PIC18F8527/8622/8627/8722 devices, the  
program memory mode of the device (Section 7.2  
“Address and Data Width” and Section 7.4 “Pro-  
gram Memory Modes and the External Memory  
Bus”) impacts both pin multiplexing and the operation  
of the module.  
• CCP2MX Configuration bit (CONFIG3H<0>)  
• ECCPMX Configuration bit (CONFIG3H<1>)  
• Program Memory mode (set by Configuration bits,  
CONFIG3L<1:0>)  
The ECCP2 input/output (ECCP2/P2A) can be multi-  
plexed to one of three pins. By default, this is RC1 for  
all devices; in this case, the default is in effect when  
CCP2MX is set and the device is operating in Micro-  
controller mode. With PIC18F8527/8622/8627/8722  
devices, three other options exist. When CCP2MX is  
not set (= 0) and the device is in Microcontroller mode,  
ECCP2/P2A is multiplexed to RE7; in all other program  
memory modes, it is multiplexed to RB3.  
The pin assignments for the Enhanced CCP modules  
are summarized in Table 18-1, Table 18-2 and  
Table 18-3. To configure the I/O pins as PWM outputs,  
the proper PWM mode must be selected by setting the  
PxMx and CCPxMx bits (CCPxCON<7:6> and <3:0>,  
respectively). The appropriate TRIS direction bits for  
the corresponding port pins must also be set as  
outputs.  
Another option is for ECCPMX to be set while the  
device is operating in one of the three other program  
memory modes. In this case, ECCP1 and ECCP3 oper-  
ate as compatible (i.e., single output) CCP modules.  
The pins used by their other outputs (PxB through PxD)  
are available for other multiplexed functions. ECCP2  
continues to operate as an Enhanced CCP module  
regardless of the program memory mode.  
18.1.1  
USE OF CCP4 AND CCP5 WITH  
ECCP1 AND ECCP3  
Only the ECCP2 module has four dedicated output pins  
available for use. Assuming that the I/O ports or other  
multiplexed functions on those pins are not needed,  
they may be used whenever needed without interfering  
with any other CCP module.  
The final option is that the ABW<1:0> Configuration  
bits can be used to select 8, 12, 16 or 20-bit EMB  
addressing. Pins not assigned to EMB address pins are  
available for peripheral or port functions.  
ECCP1 and ECCP3, on the other hand, only have  
three dedicated output pins: ECCPx/P3A, PxB and  
PxC. Whenever these modules are configured for  
Quad PWM mode, the pin used for CCP4 or CCP5  
takes priority over the D output pins for ECCP3 and  
ECCP1, respectively.  
DS39646C-page 188  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 18-1: PIN CONFIGURATIONS FOR ECCP1  
CCP1CON  
Configuration  
ECCP Mode  
RC2  
RE6  
RE5  
RG4  
RH7  
RH6  
PIC18F6527/6622/6627/6722 Devices:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP1  
P1A  
RE6  
P1B  
P1B  
RE5  
RE5  
P1C  
RG4/CCP5  
RG4/CCP5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1)  
Quad PWM  
P1A  
CCP5/P1D  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 1, Microcontroller mode:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP1  
P1A  
RE6  
P1B  
P1B  
RE5  
RE5  
P1C  
RG4/CCP5  
RG4/CCP5  
RH7/AN15  
RH7/AN15  
RH7/AN15  
RH6/AN14  
RH6/AN14  
RH6/AN14  
(1)  
Quad PWM  
P1A  
CCP5/P1D  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 0, Microcontroller mode:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP1  
P1A  
RE6  
RE6  
RE6  
RE5  
RE5  
RE5  
RG4/CCP5  
RG4/CCP5  
RH7/AN15  
P1B  
RH6/AN14  
RH6/AN14  
P1C  
(1)  
Quad PWM  
P1A  
CCP5/P1D  
P1B  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 1, all other Program Memory modes:  
(2)  
(2)  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP1  
P1A  
AD14  
AD13  
AD13  
RG4/CCP5  
RH7/AN15  
RH7/AN15  
RH7/AN15  
RH6/AN14  
RH6/AN14  
RH6/AN14  
(2)  
(2)  
(2)  
P1B/AD14  
P1B/AD14  
RG4/CCP5  
(2)  
(1)  
Quad PWM  
P1A  
P1C/AD13  
CCP5/P1D  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 0, all other Program Memory modes:  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
Compatible CCP  
Dual PWM  
ECCP1  
P1A  
AD14  
AD14  
AD14  
AD13  
AD13  
AD13  
RG4/CCP5  
RH7/AN15  
P1B  
RH6/AN14  
RH6/AN14  
P1C  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
RG4/CCP5  
(1)  
Quad PWM  
P1A  
CCP5/P1D  
P1B  
Legend: x= Don’t care, N/A = Not available. Shaded cells indicate pin assignments not used by ECCP1 in a given mode.  
Note 1: With ECCP1 in Quad PWM mode, the CCP5 module’s output overrides P1D.  
2: The EMB address bus width will determine whether the pin will perform an EMB or port/peripheral function.  
© 2008 Microchip Technology Inc.  
DS39646C-page 189  
PIC18F8722 FAMILY  
TABLE 18-2: PIN CONFIGURATIONS FOR ECCP2  
CCP2CON  
Configuration  
ECCP Mode  
RB3  
RC1  
RE7  
RE2  
RE1  
RE0  
PIC18F6527/6622/6627/6722 Devices, CCP2MX = 1:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
RB3/INT3  
RB3/INT3  
RB3/INT3  
ECCP2  
P2A  
RE7  
RE7  
RE7  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
Quad PWM  
P2A  
PIC18F6527/6622/6627/6722 Devices CCP2MX = 0:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
RB3/INT3  
RB3/INT3  
RB3/INT3  
RC1/T1OSI  
RC1/T1OSI  
RC1/T1OSI  
ECCP2  
P2A  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
Quad PWM  
P2A  
PIC18F8527/8622/8627/8722 Devices, CCP2MX = 1, Microcontroller mode:  
RB3/INT3  
RB3/INT3  
RB3/INT3  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP2  
P2A  
RE7  
RE7  
RE7  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
Quad PWM  
P2A  
PIC18F8527/8622/8627/8722 Devices, CCP2MX = 0, Microcontroller mode:  
RB3/INT3  
RB3/INT3  
RB3/INT3  
RC1/T1OSI  
RC1/T1OSI  
RC1/T1OSI  
ECCP2  
P2A  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
Compatible CCP  
Dual PWM  
Quad PWM  
P2A  
PIC18F8527/8622/8627/8722 Devices, CCP2MX = 1, all other Program Memory modes:  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
RB3/INT3  
RB3/INT3  
RB3/INT3  
ECCP2  
P2A  
AD15  
AD15  
AD15  
AD10  
AD9  
AD9  
AD8  
AD8  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
Compatible CCP  
Dual PWM  
(1)  
(1)  
(1)  
(1)  
AD10/P2B  
AD10/P2B  
(1)  
(1)  
(1)  
Quad PWM  
P2A  
AD9/P2C  
P2D/AD8  
PIC18F8527/8622/8627/8722 Devices, CCP2MX = 0, all other Program Memory modes:  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
ECCP2  
P2A  
RC1/T1OSI  
RC1/T1OSI  
RC1/T1OSI  
AD15  
AD15  
AD15  
AD10  
AD9  
AD9  
AD8  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
Compatible CCP  
Dual PWM  
(1)  
(1)  
(1)  
(1)  
AD10/P2B  
AD10/P2B  
AD8  
(1)  
Quad PWM  
P2A  
AD9/P2C  
P2D/AD8  
Legend: x= Don’t care. Shaded cells indicate pin assignments not used by ECCP2 in a given mode.  
Note 1: The EMB address bus width will determine whether the pin will perform an EMB or port/peripheral function.  
DS39646C-page 190  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 18-3: PIN CONFIGURATIONS FOR ECCP3  
CCP3CON  
Configuration  
ECCP Mode  
RG0  
RE4  
RE3  
RG3  
RH5  
RH4  
PIC18F6527/6622/6627/6722 Devices:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP3  
P3A  
RE4  
P3B  
P3B  
RE3  
RE3  
P3C  
RG3/CCP4  
RG3/CCP4  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(1)  
Quad PWM  
P3A  
CCP4/P3D  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 1, Microcontroller mode:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP3  
P3A  
RE4  
P3B  
P3B  
RE3  
RE3  
P3C  
RG3/CCP4  
RG3/CCP4  
RH5/AN13  
RH5/AN13  
RH5/AN13  
RH4/AN12  
RH4/AN12  
RH4/AN12  
(1)  
Quad PWM  
P3A  
CCP4/P3D  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 0, Microcontroller mode:  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP3  
P3A  
RE4  
RE4  
RE4  
RE3  
RE3  
RE3  
RG3/CCP4  
RG3/CCP4  
RH5/AN13  
P3B  
RH4/AN12  
RH4/AN12  
P3C  
(1)  
Quad PWM  
P3A  
CCP4/P3D  
P3B  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 1, all other Program Memory modes:  
(2)  
(2)  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP3  
P3A  
AD12  
AD10  
AD10  
RG3/CCP4  
RG3/CCP4  
RH5/AN13  
RH5/AN13  
RH5/AN13  
RH4/AN12  
RH4/AN12  
RH4/AN12  
(2)  
(2)  
(2)  
AD12/P3B  
AD12/P3B  
(1)  
(1)  
Quad PWM  
P3A  
P3C/AD10  
CCP4/P3D  
PIC18F8527/8622/8627/8722 Devices, ECCPMX = 0, all other Program Memory modes:  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
ECCP3  
P3A  
AD12  
AD12  
AD12  
AD10  
AD10  
AD10  
RG3/CCP4  
RG3/CCP4  
RH5/AN13  
P3B  
RH4/AN12  
RH4/AN12  
P3C  
(1)  
Quad PWM  
P3A  
CCP4/P3D  
P3B  
Legend: x= Don’t care, N/A = Not available. Shaded cells indicate pin assignments not used by ECCP3 in a given mode.  
Note 1: With ECCP3 in Quad PWM mode, the CCP4 module’s output overrides P3D.  
2: The EMB address bus width will determine whether the pin will perform an EMB or port/peripheral function.  
© 2008 Microchip Technology Inc.  
DS39646C-page 191  
PIC18F8722 FAMILY  
For the sake of clarity, Enhanced PWM mode operation  
is described generically throughout this section with  
respect to ECCP1 and TMR2 modules. Control register  
names are presented in terms of ECCP1. All three  
Enhanced modules, as well as the two timer resources,  
can be used interchangeably and function identically.  
TMR2 or TMR4 can be selected for PWM operation by  
selecting the proper bits in T3CON.  
18.1.3  
ECCP MODULES AND TIMER  
RESOURCES  
Like the standard CCP modules, the ECCP modules  
can utilize Timers 1, 2, 3 or 4, depending on the mode  
selected. Timer1 and Timer3 are available for modules  
in Capture or Compare modes, while Timer2 and  
Timer4 are available for modules in PWM mode.  
Additional details on timer resources are provided in  
Figure 18-1 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when Timer2 resets) in order to  
prevent glitches on any of the outputs. The exception is  
the PWM Dead-Band Delay register, ECCP1DEL,  
which is loaded at either the duty cycle boundary or the  
boundary period (whichever comes first). Because of  
the buffering, the module waits until the assigned timer  
resets instead of starting immediately. This means that  
Enhanced PWM waveforms do not exactly match the  
standard PWM waveforms, but are instead offset by  
one full instruction cycle (4 TOSC).  
Section 17.1.1  
Resources”.  
“CCP  
Modules  
and  
Timer  
18.2 Capture and Compare Modes  
With the exception of the Special Event Trigger  
discussed below, the Capture and Compare modes of  
the ECCP modules are identical in operation to that of  
CCP4. These are discussed in detail in Section 17.2  
“Capture Mode” and Section 17.3 “Compare  
Mode”.  
18.2.1  
SPECIAL EVENT TRIGGER  
The Special Event Trigger output of ECCPx resets the  
TMR1 or TMR3 register pair, depending on which timer  
resource is currently selected. This allows the CCPRx  
registers to effectively be 16-bit programmable period  
registers for Timer1 or Timer3.  
As before, the user must manually configure the  
appropriate TRIS bits for output.  
18.4.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following equation:  
18.3 Standard PWM Mode  
When configured in Single Output mode, the ECCP  
module functions identically to the standard CCP  
module in PWM mode as described in Section 17.4  
“PWM Mode”. This is also sometimes referred to as  
“Compatible CCP” mode as in Tables 18-1  
through 18-3.  
EQUATION 18-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
Note:  
When setting up single output PWM  
operations, users are free to use either of  
the processes described in Section 17.4.3  
“Setup for PWM Operation” or  
Section 18.4.9 “Setup for PWM Opera-  
tion”. The latter is more generic, but will  
work for either single or multi-output PWM.  
• TMR2 is cleared  
• The ECCP1 pin is set (if PWM duty cycle = 0%,  
the ECCP1 pin will not be set)  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
Note:  
The Timer2 postscaler (see Section 14.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
18.4 Enhanced PWM Mode  
The Enhanced PWM mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is a backward compatible version of  
the standard CCP module and offers up to four outputs,  
designated PxA through PxD. Users are also able to  
select the polarity of the signal (either active-high or  
active-low). The module’s output mode and polarity  
are configured by setting the PxM<1:0> and  
CCPxM<3:0> bits of the CCPxCON register  
(CCPxCON<7:6> and CCPxCON<3:0>, respectively).  
DS39646C-page 192  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 18-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
CCP1CON<5:4>  
P1M1<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
ECCP1/P1A  
P1B  
ECCP1/P1A  
P1B  
TRISx<x>  
TRISx<x>  
TRISx<x>  
TRISx<x>  
CCPR1H (Slave)  
Comparator  
Output  
Controller  
R
Q
P1C  
P1C  
P1D  
(Note 1)  
TMR2  
S
P1D  
Comparator  
PR2  
Clear Timer,  
set ECCP1 pin and  
latch D.C.  
ECCP1DEL  
Note: The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit time base.  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM opera-  
tion. When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or two bits  
of the TMR2 prescaler, the ECCP1 pin is cleared. The  
maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
18.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is  
calculated by the equation:  
EQUATION 18-3:  
EQUATION 18-2:  
FOSC  
log  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
(
)
FPWM  
bits  
PWM Resolution (max) =  
log(2)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read-only register.  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the ECCP1 pin will not  
be cleared.  
TABLE 18-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
© 2008 Microchip Technology Inc.  
DS39646C-page 193  
PIC18F8722 FAMILY  
The Single Output mode is the standard PWM mode  
discussed in Section 18.4 “Enhanced PWM Mode”.  
The Half-Bridge and Full-Bridge Output modes are  
covered in detail in the sections that follow.  
18.4.3  
PWM OUTPUT CONFIGURATIONS  
The P1M1:P1M0 bits in the CCP1CON register allow  
one of four configurations:  
• Single Output  
• Half-Bridge Output  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
The general relationship of the outputs in all  
configurations is summarized in Figure 18-2.  
FIGURE 18-2:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)  
0
PR2 + 1  
Duty  
Cycle  
SIGNAL  
CCP1CON<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
(Half-Bridge)  
00  
10  
(1)  
(1)  
Delay  
Delay  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
11  
(Full-Bridge,  
Reverse)  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (ECCP1DEL<6:0>)  
Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 18.4.6 “Programmable  
Dead-Band Delay”).  
DS39646C-page 194  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 18-3:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
0
PR2 + 1  
Duty  
Cycle  
SIGNAL  
CCP1CON<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
(Half-Bridge)  
00  
10  
(1)  
(1)  
Delay  
Delay  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
11  
(Full-Bridge,  
Reverse)  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (ECCP1DEL<6:0>)  
Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 18.4.6 “Programmable  
Dead-Band Delay”).  
© 2008 Microchip Technology Inc.  
DS39646C-page 195  
PIC18F8722 FAMILY  
The P1A and P1B outputs are multiplexed with the  
PORTC<2> and PORTE<6> data latches. Alternatively,  
P1B can be assigned to PORTH<7> by programming  
the ECCPMX Configuration bit to ‘0’. See Table 18-1,  
Table 18-2 and Table 18-3 for more information. The  
associated TRIS bit must be cleared to configure P1A  
and P1B as outputs.  
18.4.4  
HALF-BRIDGE MODE  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The PWM output sig-  
nal is output on the P1A pin, while the complementary  
PWM output signal is output on the P1B pin  
(Figure 18-4). This mode can be used for half-bridge  
applications, as shown in Figure 18-5, or for full-bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
FIGURE 18-4:  
HALF-BRIDGE PWM  
OUTPUT  
In Half-Bridge Output mode, the programmable  
dead-band delay can be used to prevent shoot-through  
current in half-bridge power devices. The value of bits,  
P1DC<6:0> sets the number of instruction cycles  
before the output is driven active. If the value is greater  
than the duty cycle, the corresponding output remains  
inactive during the entire cycle. See Section 18.4.6  
“Programmable Dead-Band Delay” for more details  
on dead-band delay operations.  
Period  
Period  
Duty Cycle  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
FIGURE 18-5:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
V+  
PIC18F6X27/6X22/8X27/8X22  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F6X27/6X22/8X27/8X22  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
V-  
DS39646C-page 196  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORTC<2>, PORTE<6:5> and PORTG<4> data  
latches. Alternatively, P1B and P1C can be assigned to  
PORTH<7> and PORTH<6>, respectively, by program-  
ming the ECCPMX Configuration bit to ‘0’. See  
Table 18-1, Table 18-2 and Table 18-3 for more infor-  
mation. The associated bits must be cleared to make  
the P1A, P1B, P1C and P1D pins outputs.  
18.4.5  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as  
outputs; however, only two outputs are active at a time.  
In the Forward mode, pin P1A is continuously active  
and pin P1D is modulated. In the Reverse mode, pin  
P1C is continuously active and pin P1B is modulated.  
These are illustrated in Figure 18-6.  
FIGURE 18-6:  
FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Duty Cycle  
(2)  
(2)  
P1B  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: Output signal is shown as active-high.  
© 2008 Microchip Technology Inc.  
DS39646C-page 197  
PIC18F8722 FAMILY  
FIGURE 18-7:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F6X27/6X22/8X27/8X22  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
Load  
P1B  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
Figure 18-9 shows an example where the PWM direc-  
tion changes from forward to reverse at a near 100%  
duty cycle. At time, t1, the outputs P1A and P1D  
become inactive, while output P1C becomes active. In  
this example, since the turn-off time of the power  
devices is longer than the turn-on time, a shoot-through  
current may flow through power devices QC and QD  
(see Figure 18-7) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
18.4.5.1  
Direction Change in Full-Bridge Mode  
In the Full-Bridge Output mode, the P1M1 bit in the  
CCP1CON register allows users to control the forward/  
reverse direction. When the application firmware  
changes this direction control bit, the module will  
assume the new direction on the next PWM cycle.  
Just before the end of the current PWM period, the  
modulated outputs (P1B and P1D) are placed in their  
inactive state, while the unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite direction.  
This occurs in a time interval of (4 TOSC * (Timer2  
Prescale Value)) before the next PWM period begins.  
The Timer2 prescaler will be either 1, 4 or 16, depend-  
ing on the value of the T2CKPSx bit (T2CON<1:0>).  
During the interval from the switch of the unmodulated  
outputs to the beginning of the next period, the  
modulated outputs (P1B and P1D) remain inactive.  
This relationship is shown in Figure 18-8.  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Reduce PWM for  
changing directions.  
a PWM period before  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
Note that in the Full-Bridge Output mode, the ECCP1  
module does not provide any dead-band delay. In gen-  
eral, since only one output is modulated at all times,  
dead-band delay is not required. However, there is a  
situation where a dead-band delay might be required.  
This situation occurs when both of the following  
conditions are true:  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn-off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn-on time.  
DS39646C-page 198  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 18-8:  
PWM DIRECTION CHANGE  
(1)  
Period  
Period  
SIGNAL  
P1A (Active-High)  
P1B (Active-High)  
DC  
P1C (Active-High)  
P1D (Active-High)  
(Note 2)  
DC  
Note 1: The direction bit in the ECCP1 Control register (CCP1CON<7>) is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle at intervals  
of 4 TOSC, 16 TOSC or 64 TOSC, depending on the Timer2 prescaler value. The modulated P1B and P1D signals  
are inactive at this time.  
FIGURE 18-9:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE(1)  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
DC  
P1C  
P1D  
DC  
(2)  
t
ON  
External Switch C  
External Switch D  
(3)  
t
OFF  
Potential  
Shoot-Through  
Current  
t = t  
– t  
ON  
OFF  
Note 1: All signals are shown as active-high.  
2:  
3:  
t
t
is the turn-on delay of power switch QC and its driver.  
ON  
is the turn-off delay of power switch QD and its driver.  
OFF  
© 2008 Microchip Technology Inc.  
DS39646C-page 199  
PIC18F8722 FAMILY  
A shutdown event can be caused by either of the two  
comparator modules or the FLT0 pin (or any combina-  
tion of these three sources). The comparators may be  
used to monitor a voltage input proportional to a current  
being monitored in the bridge circuit. If the voltage  
exceeds a threshold, the comparator switches state and  
triggers a shutdown. Alternatively, a digital signal on the  
18.4.6  
PROGRAMMABLE DEAD-BAND  
DELAY  
In half-bridge applications where all power switches are  
modulated at the PWM frequency at all times, the  
power switches normally require more time to turn off  
than to turn on. If both the upper and lower power  
switches are switched at the same time (one turned on  
and the other turned off), both switches may be on for  
a short period of time until one switch completely turns  
off. During this brief interval, a very high current  
(shoot-through current) may flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
FLT0 pin can also trigger  
a
shutdown. The  
auto-shutdown feature can be disabled by not selecting  
any auto-shutdown sources. The auto-shutdown  
sources to be used are selected using the  
ECCP1AS<2:0> bits (ECCP1AS<6:4>).  
When a shutdown occurs, the output pins are  
asynchronously placed in their shutdown states,  
specified by the PSS1AC<1:0> and PSS1BD<1:0> bits  
(ECCP1AS<3:0>). Each pin pair (P1A/P1C and P1B/  
P1D) may be set to drive high, drive low or be tri-stated  
(not driving). The ECCP1ASE bit (ECCP1AS<7>) is  
also set to hold the Enhanced PWM outputs in their  
shutdown states.  
In the Half-Bridge Output mode, a digitally program-  
mable dead-band delay is available to avoid  
shoot-through current from destroying the bridge  
power switches. The delay occurs at the signal transi-  
tion from the non-active state to the active state. See  
Figure 18-4 for illustration. The lower seven bits of the  
ECCP1DEL register (Register 18-2) set the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
The ECCP1ASE bit is set by hardware when a shut-  
down event occurs. If automatic restarts are not  
enabled, the ECCP1ASE bit is cleared by firmware  
when the cause of the shutdown clears. If automatic  
restarts are enabled, the ECCP1ASE bit is auto-  
matically cleared when the cause of the auto-shutdown  
has cleared.  
18.4.7  
ENHANCED PWM  
AUTO-SHUTDOWN  
If the ECCP1ASE bit is set when a PWM period begins,  
the PWM outputs remain in their shutdown state for that  
entire PWM period. When the ECCP1ASE bit is cleared,  
the PWM outputs will return to normal operation at the  
beginning of the next PWM period.  
When the ECCP is programmed for any of the  
Enhanced PWM modes, the active output pins may be  
configured for auto-shutdown. Auto-shutdown immedi-  
ately places the Enhanced PWM output pins into a  
defined shutdown state when a shutdown event  
occurs.  
Note:  
Writing to the ECCP1ASE bit is disabled  
while a shutdown condition is active.  
REGISTER 18-2: ECCPxDEL: ENHANCED PWM DEAD-BAND DELAY REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PxRSEN  
PxDC6  
PxDC5  
PxDC4  
PxDC3  
PxDC2  
PxDC1  
PxDC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PxRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPxASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto-shutdown, the ECCPxASE bit must be cleared in software to restart the PWM  
bit 6-0  
PxDC<6:0>: PWM Delay Count bits  
Delay time, in number of FOSC/4 (4 * TOSC) cycles, between the scheduled and actual time for a PWM  
signal to transition to active.  
DS39646C-page 200  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 18-3: ECCPxAS: ENHANCED CCP AUTO-SHUTDOWN CONFIGURATION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPxASE  
ECCPxAS2 ECCPxAS1 ECCPxAS0 PSSxAC1  
PSSxAC0  
PSSxBD1  
PSSxBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ECCPxASE: ECCP Auto-Shutdown Event Status bit  
0= ECCP outputs are operating  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
bit 6-4  
ECCPxAS<2:0>: ECCP Auto-Shutdown Source Select bits  
000= Auto-shutdown is disabled  
001= Comparator 1 output  
010= Comparator 2 output  
011= Either Comparator 1 or 2  
100= FLT0  
101= FLT0 or Comparator 1  
110= FLT0 or Comparator 2  
111= FLT0 or Comparator 1 or Comparator 2  
bit 3-2  
bit 1-0  
PSSxAC<1:0>: Pins A and C Shutdown State Control bits  
00= Drive pins A and C to ‘0’  
01= Drive pins A and C to ‘1’  
1x= Pins A and C tri-state  
PSSxBD<1:0>: Pins B and D Shutdown State Control bits  
00= Drive pins B and D to ‘0’  
01= Drive pins B and D to ‘1’  
1x= Pins B and D tri-state  
© 2008 Microchip Technology Inc.  
DS39646C-page 201  
PIC18F8722 FAMILY  
18.4.7.1  
Auto-Shutdown and Automatic  
Restart  
18.4.8  
START-UP CONSIDERATIONS  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external  
pull-up and/or pull-down resistors on the PWM output  
pins. When the microcontroller is released from Reset,  
all of the I/O pins are in the high-impedance state. The  
external circuits must keep the power switch devices in  
the OFF state until the microcontroller drives the I/O  
pins with the proper signal levels or activates the PWM  
output(s).  
The Auto-Shutdown feature can be configured to allow  
automatic restarts of the module following a shutdown  
event. This is enabled by setting the P1RSEN bit of the  
ECCP1DEL register (ECCP1DEL<7>).  
In Shutdown mode with P1RSEN = 1 (Figure 18-10),  
the ECCP1ASE bit will remain set for as long as the  
cause of the shutdown continues. When the shutdown  
condition clears, the ECCP1ASE bit is cleared. If  
P1RSEN = 0 (Figure 18-11), once a shutdown condi-  
tion occurs, the ECCP1ASE bit will remain set until it is  
cleared by firmware. Once ECCP1ASE is cleared, the  
Enhanced PWM will resume at the beginning of the  
next PWM period.  
The CCP1M<1:0> bits (CCP1CON<1:0>) allow the  
user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output  
pins (P1A/P1C and P1B/P1D). The PWM output  
polarities must be selected before the PWM pins are  
configured as outputs. Changing the polarity configura-  
tion while the PWM pins are configured as outputs is  
not recommended since it may result in damage to the  
application circuits.  
Note:  
Writing to the ECCP1ASE bit is disabled  
while a shutdown condition is active.  
Independent of the P1RSEN bit setting, if the  
auto-shutdown source is one of the comparators, the  
shutdown condition is a level. The ECCP1ASE bit can-  
not be cleared as long as the cause of the shutdown  
persists.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is initialized.  
Enabling the PWM pins for output at the same time as  
the ECCP1 module may cause damage to the applica-  
tion circuit. The ECCP1 module must be enabled in the  
proper output mode and complete a full PWM cycle  
before configuring the PWM pins as outputs. The com-  
pletion of a full PWM cycle is indicated by the TMR2IF  
bit being set as the second PWM period begins.  
The Auto-Shutdown mode can be forced by writing a ‘1’  
to the ECCP1ASE bit.  
FIGURE 18-10:  
PWM AUTO-SHUTDOWN (P1RSEN = 1, AUTO-RESTART ENABLED)  
PWM Period  
Shutdown Event  
ECCP1ASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
FIGURE 18-11:  
PWM AUTO-SHUTDOWN (P1RSEN = 0, AUTO-RESTART DISABLED)  
PWM Period  
Shutdown Event  
ECCP1ASE bit  
PWM Activity  
Normal PWM  
ECCP1ASE  
Cleared by  
Firmware  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
DS39646C-page 202  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
18.4.9  
SETUP FOR PWM OPERATION  
18.4.10 OPERATION IN POWER-MANAGED  
MODES  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation using Timer2:  
In Sleep mode, all clock sources are disabled. Timer2 or  
Timer4 will not increment and the state of the module will  
not change. If the ECCP1 pin is driving a value, it will  
continue to drive that value. When the device wakes up,  
it will continue from this state. If Two-Speed Start-ups are  
enabled, the initial start-up frequency from INTOSC and  
the postscaler may not be stable immediately.  
1. Configure the PWM pins, P1A and P1B (and  
P1C and P1D, if used), as inputs by setting the  
corresponding TRIS bits.  
2. Set the PWM period by loading the PR2 register.  
3. If auto-shutdown is required do the following:  
• Disable auto-shutdown (ECCP1AS = 0)  
In PRI_IDLE mode, the primary clock will continue to  
clock the ECCP1 module without change. In all other  
power-managed modes, the selected power-managed  
mode clock will clock Timer2 or Timer4. Other  
power-managed mode clocks will most likely be  
different than the primary clock frequency.  
• Configure source (FLT0, Comparator 1 or  
Comparator 2)  
• Wait for non-shutdown condition  
4. Configure the ECCP1 module for the desired  
PWM mode and configuration by loading the  
CCP1CON register with the appropriate values:  
18.4.10.1 Operation with Fail-Safe  
Clock Monitor  
• Select one of the available output  
configurations and direction with the  
P1M<1:0> bits.  
If the Fail-Safe Clock Monitor is enabled, a clock failure  
will force the device into the power-managed RC_RUN  
mode and the OSCFIF bit (PIR2<7>) will be set. The  
ECCP1 will then be clocked from the internal oscillator  
clock source, which may have a different clock  
frequency than the primary clock.  
• Select the polarities of the PWM output  
signals with the CCP1M<3:0> bits.  
5. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1CON<5:4> bits.  
6. For Half-Bridge Output mode, set the  
dead-band delay by loading ECCP1DEL<6:0>  
with the appropriate value.  
See the previous section for additional details.  
18.4.11 EFFECTS OF A RESET  
7. If auto-shutdown operation is required, load the  
ECCP1AS register:  
Both Power-on Reset and subsequent Resets will force  
all ports to Input mode and the CCP registers to their  
Reset states.  
• Select the auto-shutdown sources using the  
ECCP1AS<2:0> bits.  
• Select the shutdown states of the PWM  
output pins using the PSS1AC<1:0> and  
PSS1BD<1:0> bits.  
This forces the Enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
• Set the ECCP1ASE bit (ECCP1AS<7>).  
• Configure the comparators using the CMCON  
register.  
• Configure the comparator inputs as analog  
inputs.  
8. If auto-restart operation is required, set the  
P1RSEN bit (ECCP1DEL<7>).  
9. Configure and start TMR2:  
• Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit (PIR1<1>).  
• Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
• Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>).  
10. Enable PWM outputs after a new PWM cycle  
has started:  
• Wait until TMRx overflows (TMRxIF bit is set).  
• Enable the ECCP1/P1A, P1B, P1C and/or  
P1D pin outputs by clearing the respective  
TRIS bits.  
• Clear the ECCP1ASE bit (ECCP1AS<7>).  
© 2008 Microchip Technology Inc.  
DS39646C-page 203  
PIC18F8722 FAMILY  
TABLE 18-5: REGISTERS ASSOCIATED WITH ECCP MODULES AND TIMER1 TO TIMER4  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
57  
58  
IPEN  
PSPIF  
SBOREN  
ADIF  
TO  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
EEIF  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISB3  
TRISC3  
TRISE3  
TRISG3  
TRISH3  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
HLVDIF TMR3IF CCP2IF  
HLVDIE TMR3IE CCP2IE  
HLVDIP TMR3IP CCP2IP  
CCP5IF CCP4IF CCP3IF  
CCP5IE CCP4IE CCP3IE  
CCP5IP CCP4IP CCP3IP  
TRISB2 TRISB1 TRISB0  
TRISC2 TRISC1 TRISC0  
TRISE2 TRISE1 TRISE0  
TRISG2 TRISG1 TRISG0  
TRISH2 TRISH1 TRISH0  
60  
PIE1  
PSPIE  
PSPIP  
OSCFIF  
OSCFIE  
OSCFIP  
SSP2IF  
SSP2IE  
SSP2IP  
TRISB7  
TRISC7  
TRISE7  
ADIE  
60  
IPR1  
ADIP  
60  
PIR2  
CMIF  
60  
PIE2  
CMIE  
EEIE  
60  
IPR2  
CMIP  
EEIP  
60  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
TRISB6  
TRISC6  
TRISE6  
RC2IF  
RC2IE  
RC2IP  
TRISB5  
TRISC5  
TRISE5  
TX2IF  
TX2IE  
TX2IP  
TRISB4  
TRISC4  
TRISE4  
TRISG4  
TRISH4  
60  
PIE3  
60  
IPR3  
60  
TRISB  
TRISC  
TRISE  
TRISG  
60  
60  
60  
60  
(2)  
TRISH  
TRISH7  
TRISH6  
TRISH5  
60  
TMR1L  
TMR1H  
T1CON  
TMR2  
Timer1 Register Low Byte  
Timer1 Register High Byte  
58  
58  
RD16  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
T1RUN  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
58  
58  
T2CON  
PR2  
58  
Timer2 Period Register  
Timer3 Register Low Byte  
Timer3 Register High Byte  
58  
TMR3L  
TMR3H  
T3CON  
TMR4  
59  
59  
RD16  
Timer4 Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
T3CCP2  
T3CKPS1 T3CKPS0  
T3CCP1 T3SYNC TMR3CS TMR3ON  
59  
61  
T4CON  
PR4  
61  
Timer4 Period Register  
61  
(1)  
CCPRxL  
CCPRxH  
Enhanced Capture/Compare/PWM Register x Low Byte  
Enhanced Capture/Compare/PWM Register x High Byte  
59, 61  
59, 61  
59  
(1)  
(1)  
CCPxCON  
PxM1  
PxM0  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
(1)  
ECCPxAS  
ECCPxASE ECCPxAS2 ECCPxAS1 ECCPxAS0 PSSxAC1 PSSxAC0 PSSxBD1 PSSxBD0  
59, 61  
61  
(1)  
ECCPxDEL  
PxRSEN  
PxDC6  
PxDC5  
PxDC4  
PxDC3  
PxDC2  
PxDC1  
PxDC0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during ECCP operation.  
Note 1: Generic term for all of the identical registers of this name for all Enhanced CCP modules, where ‘x’ identifies the  
individual module (ECCP1, ECCP2 or ECCP3). Bit assignments and Reset values for all registers of the same  
generic name are identical.  
2: This register is not implemented on PIC18F6527/6622/6627/6722 devices.  
DS39646C-page 204  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
19.3 SPI Mode  
19.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
19.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDOx) – RC5/SDO1 or  
RD4/SDO2  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Data In (SDIx) – RC4/SDI1/SDA1 or  
RD5/SDI2/SDA2  
• Serial Clock (SCKx) – RC3/SCK1/SCL1 or  
RD6/SCK2/SCL2  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
- Full Master mode  
• Slave Select (SSx) – RF7/SS1 or RD7/SS2  
Figure 19-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
FIGURE 19-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
• Master mode  
• Multi-Master mode  
• Slave mode  
Internal  
Data Bus  
Read  
Write  
All members of the PIC18F8722 family have two MSSP  
modules, designated as MSSP1 and MSSP2. Each  
module operates independently of the other.  
SSPxBUF reg  
SSPxSR reg  
Note:  
Throughout this section, generic refer-  
ences to an MSSP module in any of its  
operating modes may be interpreted as  
being equally applicable to MSSP1 or  
MSSP2. Register names and module I/O  
signals use the generic designator ‘x’ to  
indicate the use of a numeral to distinguish  
a particular module when required. Control  
bit names are not individuated.  
RC4 or RD5  
RC5 or RD4  
Shift  
Clock  
bit 0  
RF7 or RD7  
Control  
Enable  
SSx  
19.2 Control Registers  
Edge  
Select  
Each MSSP module has three associated control regis-  
ters. These include a status register (SSPxSTAT) and  
two control registers (SSPxCON1 and SSPxCON2). The  
use of these registers and their individual Configuration  
bits differ significantly depending on whether the MSSP  
module is operated in SPI or I2C mode.  
2
Clock Select  
SSPM<3:0>  
SMP:CKE  
2
4
TMR2 Output  
(
)
Additional details are provided under the individual  
sections.  
2
RC3 or RD6  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Note:  
In devices with more than one MSSP  
module, it is very important to pay close  
attention to SSPCON register names.  
SSP1CON1 and SSP1CON2 control  
different operational aspects of the same  
Data to TXx/RXx in SSPxSR  
TRIS bit  
Note: Only port I/O names are used in this diagram for  
the sake of brevity. Refer to the text for a full list of  
multiplexed functions.  
module,  
while  
SSP1CON1  
and  
SSP2CON1 control the same features for  
two different modules.  
© 2008 Microchip Technology Inc.  
DS39646C-page 205  
PIC18F8722 FAMILY  
SSPxSR is the shift register used for shifting data in or  
out. SSPxBUF is the buffer register to which data  
bytes are written to or read from.  
19.3.1  
REGISTERS  
Each MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPxSR and SSPxBUF  
together create a double-buffered receiver. When  
SSPxSR receives a complete byte, it is transferred to  
SSPxBUF and the SSPxIF interrupt is set.  
• MSSP Control Register 1 (SSPxCON1)  
• MSSP Status Register (SSPxSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPxBUF)  
• MSSP Shift Register (SSPxSR) – Not directly  
accessible  
During transmission, the SSPxBUF is not  
double-buffered. A write to SSPxBUF will write to both  
SSPxBUF and SSPxSR.  
SSPxCON1 and SSPxSTAT are the control and status  
registers in SPI mode operation. The SSPxCON1  
register is readable and writable. The lower 6 bits of  
the SSPxSTAT are read-only. The upper two bits of the  
SSPxSTAT are read/write.  
REGISTER 19-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
CKE: SPI Clock Select bit  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
Note:  
Polarity of clock state is set by the CKP bit (SSPxCON1<4>).  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPxBUF is full  
0= Receive not complete, SSPxBUF is empty  
DS39646C-page 206  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 19-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
SSPOV(1)  
R/W-0  
SSPEN(2)  
R/W-0  
CKP  
R/W-0  
SSPM3(3)  
R/W-0  
SSPM2(3)  
R/W-0  
SSPM1(3)  
R/W-0  
SSPM0(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
WCOL: Write Collision Detect bit  
1= The SSPxBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit(1)  
SPI Slave mode:  
1= A new byte is received while the SSPxBUF register is still holding the previous data. In case of  
overflow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. The user must read  
the SSPxBUF, even if only transmitting data, to avoid setting overflow (must be cleared in soft-  
ware).  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit(2)  
1= Enables serial port and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits(3)  
0101= SPI Slave mode, clock = SCKx pin, SSx pin control disabled, SSx can be used as I/O pin  
0100= SPI Slave mode, clock = SCKx pin, SSx pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by  
writing to the SSPxBUF register.  
2: When enabled, these pins must be properly configured as input or output.  
3: Bit combinations not specifically listed here are either reserved or implemented in I2C™ mode only.  
© 2008 Microchip Technology Inc.  
DS39646C-page 207  
PIC18F8722 FAMILY  
before reading the data that was just received. Any  
write to the SSPxBUF register during transmis-  
sion/reception of data will be ignored and the Write  
Collision Detect bit, WCOL (SSPxCON1<7>), will be  
set. User software must clear the WCOL bit so that it  
can be determined if the following write(s) to the  
SSPxBUF register completed successfully.  
19.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCKx is the clock output)  
• Slave mode (SCKx is the clock input)  
• Clock Polarity (Idle state of SCKx)  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCKx)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
When the application software is expecting to receive  
valid data, the SSPxBUF should be read before the  
next byte of data to transfer is written to the SSPxBUF.  
The Buffer Full bit, BF (SSPxSTAT<0>), indicates when  
SSPxBUF has been loaded with the received data  
(transmission is complete). When the SSPxBUF is  
read, the BF bit is cleared. This data may be irrelevant  
if the SPI is only a transmitter. Generally, the MSSP  
interrupt is used to determine when the transmis-  
sion/reception has completed. If the interrupt method is  
not going to be used, then software polling can be done  
to ensure that a write collision does not occur.  
Example 19-1 shows the loading of the SSPxBUF  
(SSPxSR) for data transmission.  
Each MSSP module consists of a transmit/receive shift  
register (SSPxSR) and a buffer register (SSPxBUF).  
The SSPxSR shifts the data in and out of the device,  
MSb first. The SSPxBUF holds the data that was  
written to the SSPxSR until the received data is ready.  
Once the 8 bits of data have been received, that byte is  
moved to the SSPxBUF register. Then, the Buffer Full  
detect bit, BF (SSPxSTAT<0>) and the interrupt flag bit,  
SSPxIF, are set. This double-buffering of the received  
data (SSPxBUF) allows the next byte to start reception  
The SSPxSR is not directly readable or writable and  
can only be accessed by addressing the SSPxBUF  
register. Additionally, the SSPxSTAT register indicates  
the various status conditions.  
EXAMPLE 19-1:  
LOADING THE SSP1BUF (SSP1SR) REGISTER  
LOOP  
BTFSS  
BRA  
SSP1STAT, BF  
LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF  
SSP1BUF, W  
;WREG reg = contents of SSP1BUF  
MOVWF  
RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF  
TXDATA, W  
SSP1BUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS39646C-page 208  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
19.3.3  
ENABLING SPI I/O  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPxCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, reinitialize the  
SSPxCON registers and then set the SSPEN bit. This  
configures the SDIx, SDOx, SCKx and SSx pins as  
serial port pins. For the pins to behave as the serial port  
function, some must have their data direction bits (in  
the TRIS register) appropriately programmed as  
follows:  
19.3.4  
TYPICAL CONNECTION  
Figure 19-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCKx signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDIx is automatically controlled by the  
SPI module  
• SDOx must have the TRISC<5> or TRISD<4> bit  
cleared  
• SCKx (Master mode) must have the TRISC<3> or  
TRISD<6>bit cleared  
• SCKx (Slave mode) must have the TRISC<3> or  
TRISD<6> bit set  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• Master sends dummy data – Slave sends data  
• SSx must have the TRISF<7> or TRISD<7> bit  
set  
FIGURE 19-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xxb  
SPI Slave SSPM<3:0> = 010xb  
SDOx  
SDIx  
Serial Input Buffer  
(SSPxBUF)  
Serial Input Buffer  
(SSPxBUF)  
SDIx  
SDOx  
Shift Register  
(SSPxSR)  
Shift Register  
(SSPxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCKx  
SCKx  
PROCESSOR 1  
PROCESSOR 2  
© 2008 Microchip Technology Inc.  
DS39646C-page 209  
PIC18F8722 FAMILY  
shown in Figure 19-3, Figure 19-5 and Figure 19-6,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
19.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCKx. The master determines  
when the slave (Processor 1, Figure 19-2) is to  
broadcast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPxBUF register is written to. If the SPI  
is only going to receive, the SDOx output could be dis-  
abled (programmed as an input). The SSPxSR register  
will continue to shift in the signal present on the SDIx  
pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPxBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 19-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDOx data is valid before  
there is a clock edge on SCKx. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPxBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately  
programming the CKP bit (SSPxCON1<4>). This then,  
would give waveforms for SPI communication as  
FIGURE 19-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPxBUF  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCKx  
(CKP = 0  
CKE = 1)  
SCKx  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDOx  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDOx  
(CKE = 1)  
SDIx  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDIx  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPxIF  
Next Q4 Cycle  
after Q2↓  
SSPxSR to  
SSPxBUF  
DS39646C-page 210  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
transmitted byte and becomes a floating output. Exter-  
nal pull-up/pull-down resistors may be desirable  
depending on the application.  
19.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCKx. When the  
last bit is latched, the SSPxIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode  
with  
SSx pin  
control  
enabled  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCKx pin. This exter-  
nal clock must meet the minimum high and low times  
as specified in the electrical specifications.  
(SSPxCON1<3:0> = 0100), the SPI  
module will reset if the SSx pin is set to VDD.  
2: If the SPI is used in Slave mode with CKE  
set, then the SSx pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device can be  
configured to wake-up from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SSx pin to  
a high level or clearing the SSPEN bit.  
19.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDOx pin can  
be connected to the SDIx pin. When the SPI needs to  
operate as a receiver, the SDOx pin can be configured  
as an input. This disables transmissions from the  
SDOx. The SDIx can always be left as an input (SDI  
function) since it cannot create a bus conflict.  
The SSx pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with the SSx pin control  
enabled (SSPxCON1<3:0> = 04h). When the SSx pin  
is low, transmission and reception are enabled and the  
SDOx pin is driven. When the SSx pin goes high, the  
SDOx pin is no longer driven, even if in the middle of a  
FIGURE 19-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SSx  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
Write to  
SSPxBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDOx  
bit 7  
SDIx  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPxIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2  
SSPxSR to  
SSPxBUF  
© 2008 Microchip Technology Inc.  
DS39646C-page 211  
PIC18F8722 FAMILY  
FIGURE 19-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SSx  
Optional  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
Write to  
SSPxBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDOx  
bit 7  
SDIx  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPxIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPxSR to  
SSPxBUF  
FIGURE 19-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SSx  
Not Optional  
SCKx  
(CKP = 0  
CKE = 1)  
SCKx  
(CKP = 1  
CKE = 1)  
Write to  
SSPxBUF  
bit 6  
bit 3  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDOx  
bit 7  
bit 7  
SDIx  
(SMP = 0)  
bit 0  
Input  
Sample  
(SMP = 0)  
SSPxIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPxSR to  
SSPxBUF  
DS39646C-page 212  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
19.3.8  
OPERATION IN POWER-MANAGED  
MODES  
19.3.10 BUS MODE COMPATIBILITY  
Table 19-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
In SPI Master mode, module clocks may be operating  
at a different speed than when in full power mode; in  
the case of the Sleep mode, all clocks are halted.  
TABLE 19-1: SPI BUS MODES  
In Idle modes, a clock is provided to the peripherals.  
That clock can be from the primary clock source, the  
secondary clock (Timer1 oscillator) or the INTOSC  
source. See Section 2.7 “Clock Sources and  
Oscillator Switching” for additional information.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
In most cases, the speed that the master clocks SPI  
data is not important; however, this should be  
evaluated for each system.  
If MSSP interrupts are enabled, they can wake the con-  
troller from Sleep mode, or one of the Idle modes, when  
the master completes sending data. If an exit from  
Sleep or Idle mode is not desired, MSSP interrupts  
should be disabled.  
There is also an SMP bit which controls when the data  
is sampled.  
19.3.11 SPI CLOCK SPEED AND MODULE  
INTERACTIONS  
If the Sleep mode is selected, all module clocks are  
halted and the transmission/reception will remain in  
that state until the devices wakes. After the device  
returns to Run mode, the module will resume  
transmitting and receiving data.  
Because MSSP1 and MSSP2 are independent  
modules, they can operate simultaneously at different  
data rates. Setting the SSPM3:SSPM0 bits of the  
SSPxCON register determines the rate for the  
corresponding module.  
In SPI Slave mode, the SPI Transmit/Receive Shift  
register operates asynchronously to the device. This  
allows the device to be placed in any power-managed  
mode and data to be shifted into the SPI Trans-  
mit/Receive Shift register. When all 8 bits have been  
received, the MSSP interrupt flag bit will be set and if  
enabled, will wake the device.  
An exception is when both modules use Timer2 as a  
time base in Master mode. In this instance, any  
changes to the Timer2 module’s operation will affect  
both MSSP modules equally. If different bit rates are  
required for each module, the user should select one of  
the other three time base options for one of the  
modules.  
19.3.9  
EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
© 2008 Microchip Technology Inc.  
DS39646C-page 213  
PIC18F8722 FAMILY  
TABLE 19-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
CCP5IF  
CCP5IE  
CCP5IP  
TRISC2  
TRISD2  
TRISF2  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
60  
60  
60  
60  
58  
58  
58  
58  
58  
61  
61  
61  
PSPIF  
PSPIE  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
TRISC5  
TRISD5  
TRISF5  
SSP1IF  
SSP1IE  
SSP1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISC3  
TRISD3  
TRISF3  
TMR2IF  
TMR1IF  
PIE1  
TX1IE  
TX1IP  
TX2IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
PSPIP  
ADIP  
PIR3  
SSP2IF  
SSP2IE  
SSP2IP  
TRISC7  
TRISD7  
TRISF7  
BCL2IF  
BCL2IE  
BCL2IP  
TRISC6  
TRISD6  
TRISF6  
CCP4IF  
CCP4IE  
CCP4IP  
TRISC1  
TRISD1  
TRISF1  
CCP3IF  
CCP3IE  
CCP3IP  
TRISC0  
TRISD0  
TRISF0  
PIE3  
TX2IE  
TX2IP  
TRISC4  
TRISD4  
TRISF4  
IPR3  
TRISC  
TRISD  
TRISF  
TMR2  
PR2  
Timer2 Register  
Timer2 Period Register  
SSP1BUF MSSP1 Receive Buffer/Transmit Register  
SSP1CON1 WCOL  
SSP1STAT SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
SSP2BUF MSSP2 Receive Buffer/Transmit Register  
SSP2CON1 WCOL  
SSP2STAT SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
Legend: Shaded cells are not used by the MSSP module in SPI mode.  
DS39646C-page 214  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
2
FIGURE 19-7:  
MSSP BLOCK DIAGRAM  
(I2C™ MODE)  
19.4 I C Mode  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call  
support) and provides interrupts on Start and Stop bits  
in hardware to determine a free bus (multi-master  
function). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
Internal  
Data Bus  
Read  
Write  
RC3 or  
RD6  
SSPxBUF reg  
Two pins are used for data transfer:  
Shift  
Clock  
• Serial clock (SCLx) – RC3/SCK1/SCL1 or  
RD6/SCK2/SCL2  
SSPxSR reg  
LSb  
RC4 or  
RD5  
• Serial data (SDAx) – RC4/SDI1/SDA1 or  
RD5/SDI2/SDA2  
MSb  
Match Detect  
SSPxADD reg  
The user must configure these pins as inputs by setting  
the associated TRIS bits.  
Addr Match  
Set, Reset  
Start and  
Stop bit Detect  
S, P bits  
(SSPxSTAT reg)  
Note: Only port I/O names are used in this diagram for  
the sake of brevity. Refer to the text for a full list of  
multiplexed functions.  
© 2008 Microchip Technology Inc.  
DS39646C-page 215  
PIC18F8722 FAMILY  
REGISTER 19-3: SSPxSTAT: MSSPx STATUS REGISTER (I2C™ MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P(1)  
R-0  
S(1)  
R-0  
R/W(2,3)  
R-0  
UA  
R-0  
BF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for High-Speed mode (400 kHz)  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit(1)  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
S: Start bit(1)  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
R/W: Read/Write Information bit(2,3)  
In Slave mode:  
1= Read  
0= Write  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
bit 1  
bit 0  
UA: Update Address bit (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPxADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= SSPxBUF is full  
0= SSPxBUF is empty  
In Receive mode:  
1= SSPxBUF is full (does not include the ACK and Stop bits)  
0= SSPxBUF is empty (does not include the ACK and Stop bits)  
Note 1: This bit is cleared on Reset and when SSPEN is cleared.  
2: This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or not ACK bit.  
3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.  
DS39646C-page 216  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 19-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I2C™ MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
SSPEN(1)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPxBUF register was attempted while the I2C™ conditions were not valid for a  
transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared  
in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit(1)  
1= Enables the serial port and configures the SDAx and SCLx pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
CKP: SCKx Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPxADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.  
Note 1: When enabled, the SDAx and SCLx pins must be configured as input.  
© 2008 Microchip Technology Inc.  
DS39646C-page 217  
PIC18F8722 FAMILY  
REGISTER 19-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I2C™ MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
ACKDT(1)  
R/W-0  
ACKEN(2)  
R/W-0  
RCEN(2)  
R/W-0  
PEN(2)  
R/W-0  
RSEN(2)  
R/W-0  
SEN(2)  
ACKSTAT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPxSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)(1)  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)(2)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (Master mode only)(2)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)(2)  
1= Initiate Stop condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Stop condition Idle  
RSEN: Repeated Start Condition Enable bit (Master mode only)(2)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enable/Stretch Enable bit(2)  
In Master mode:  
1= Initiate Start condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note 1: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
2: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C™ module is active, these bits may not be set (no  
spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).  
DS39646C-page 218  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
19.4.2  
OPERATION  
19.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPxCON1<5>).  
The SSPxCON1 register allows control of the I2C  
operation. Four mode selection bits (SSPxCON1<3:0>)  
allow one of the following I2C modes to be selected:  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPxSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCLx) line. The value of register SSPxSR<7:1>  
is compared to the value of the SSPxADD register. The  
address is compared on the falling edge of the eighth  
clock (SCLx) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Master mode, clock  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address) with Start and  
Stop bit interrupts enabled  
1. The SSPxSR register value is loaded into the  
SSPxBUF register.  
• I2C Slave mode (10-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode, slave is  
Idle  
Selection of any I2C mode with the SSPEN bit set  
forces the SCLx and SDAx pins to be open-drain,  
provided these pins are programmed as inputs by  
setting the appropriate TRISC or TRISD bits. To ensure  
proper operation of the module, pull-up resistors must  
be provided externally to the SCLx and SDAx pins.  
2. The Buffer Full bit, BF, is set.  
3. An ACK pulse is generated.  
4. The MSSP Interrupt Flag bit, SSPxIF, is set (and  
interrupt is generated, if enabled) on the falling  
edge of the ninth SCLx pulse.  
In 10-Bit Addressing mode, two address bytes need to  
be received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPxSTAT<2>) must specify a write  
so the slave device will receive the second address byte.  
For a 10-bit address, the first byte would equal ‘11110  
A9 A8 0’, where ‘A9’ and ‘A8’ are the two MSbs of the  
address. The sequence of events for 10-bit address is as  
follows, with steps 7 through 9 for the slave-transmitter:  
19.4.3  
SLAVE MODE  
In Slave mode, the SCLx and SDAx pins must be  
configured as inputs (TRISC<4:3> set). The MSSP  
module will override the input state with the output data  
when required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits  
1. Receive first (high) byte of address (bits SSPxIF,  
BF and UA (SSPxSTAT<1>) are set on address  
match).  
2. Update the SSPxADD register with second (low)  
byte of address (clears bit UA and releases the  
SCLx line).  
When an address is matched, or the data transfer after  
an address match is received, the hardware auto-  
matically will generate the Acknowledge (ACK) pulse  
and load the SSPxBUF register with the received value  
currently in the SSPxSR register.  
3. Read the SSPxBUF register (clears bit BF) and  
clear flag bit SSPxIF.  
4. Receive second (low) byte of address (bits  
SSPxIF, BF and UA are set).  
5. Update the SSPxADD register with the first  
(high) byte of address. If match releases SCLx  
line, this will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
• The Buffer Full bit, BF (SSPxSTAT<0>), was set  
before the transfer was received.  
• The overflow bit, SSPOV (SSPxCON1<6>), was  
set before the transfer was received.  
6. Read the SSPxBUF register (clears bit BF) and  
clear flag bit SSPxIF.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of address (bits SSPxIF  
and BF are set).  
In this case, the SSPxSR register value is not loaded  
into the SSPxBUF, but bit SSPxIF is set. The BF bit is  
cleared by reading the SSPxBUF register, while bit  
SSPOV is cleared through software.  
9. Read the SSPxBUF register (clears bit BF) and  
clear flag bit SSPxIF.  
The SCLx clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter 100 and  
parameter 101.  
© 2008 Microchip Technology Inc.  
DS39646C-page 219  
PIC18F8722 FAMILY  
19.4.3.2  
Reception  
19.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPxSTAT  
register is cleared. The received address is loaded into  
the SSPxBUF register and the SDAx line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPxSTAT register is set. The received address is  
loaded into the SSPxBUF register. The ACK pulse will  
be sent on the ninth bit and pin SCLx is held low regard-  
less of SEN (see Section 19.4.4 “Clock Stretching”  
for more detail). By stretching the clock, the master will  
be unable to assert another clock pulse until the slave  
is done preparing the transmit data. The transmit data  
must be loaded into the SSPxBUF register which also  
loads the SSPxSR register. Then pin SCLx should be  
enabled by setting bit, CKP (SSPxCON1<4>). The  
eight data bits are shifted out on the falling edge of the  
SCLx input. This ensures that the SDAx signal is valid  
during the SCLx high time (Figure 19-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPxSTAT<0>) is  
set, or bit SSPOV (SSPxCON1<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. The interrupt flag bit, SSPxIF, must be cleared in  
software. The SSPxSTAT register is used to determine  
the status of the byte.  
If SEN is enabled (SSPxCON2<0> = 1), SCLx will be  
held low (clock stretch) following each data transfer. The  
clock must be released by setting bit, CKP  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCLx input pulse. If the  
SDAx line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPxSTAT  
register) and the slave monitors for another occurrence  
of the Start bit. If the SDAx line was low (ACK), the next  
transmit data must be loaded into the SSPxBUF  
register. Again, pin SCLx must be enabled by setting bit  
CKP.  
(SSPxCON1<4>).  
See  
Section 19.4.4  
“Clock  
Stretching” for more detail.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPxIF bit must be cleared in software and  
the SSPxSTAT register is used to determine the status  
of the byte. The SSPxIF bit is set on the falling edge of  
the ninth clock pulse.  
DS39646C-page 220  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
2
FIGURE 19-8:  
I C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
© 2008 Microchip Technology Inc.  
DS39646C-page 221  
PIC18F8722 FAMILY  
2
FIGURE 19-9:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
DS39646C-page 222  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 19-10:  
I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
© 2008 Microchip Technology Inc.  
DS39646C-page 223  
PIC18F8722 FAMILY  
2
FIGURE 19-11:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
DS39646C-page 224  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
19.4.4  
CLOCK STRETCHING  
19.4.4.3  
Clock Stretching for 7-Bit Slave  
Transmit Mode  
Both 7-Bit and 10-Bit Slave modes implement  
automatic clock stretching during a transmit sequence.  
The 7-Bit Slave Transmit mode implements clock  
stretching by clearing the CKP bit after the falling edge  
of the ninth clock if the BF bit is clear. This occurs  
regardless of the state of the SEN bit.  
The SEN bit (SSPxCON2<0>) allows clock stretching  
to be enabled during receives. Setting SEN will cause  
the SCLx pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCLx line  
low, the user has time to service the ISR and load the  
contents of the SSPxBUF before the master device  
can initiate another transmit sequence (see  
Figure 19-9).  
19.4.4.1  
Clock Stretching for 7-Bit Slave  
Receive Mode (SEN = 1)  
In 7-Bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence, if the BF  
bit is set, the CKP bit in the SSPxCON1 register is  
automatically cleared, forcing the SCLx output to be  
held low. The CKP being cleared to ‘0’ will assert the  
SCLx line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCLx line low, the user has time to service the ISR  
and read the contents of the SSPxBUF before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring (see  
Figure 19-13).  
Note 1: If the user loads the contents of  
SSPxBUF, setting the BF bit before the  
falling edge of the ninth clock, the CKP bit  
will not be cleared and clock stretching  
will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
19.4.4.4  
Clock Stretching for 10-Bit Slave  
Transmit Mode  
Note 1: If the user reads the contents of the  
SSPxBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
In 10-Bit Slave Transmit mode, clock stretching is  
controlled during the first two address sequences by  
the state of the UA bit, just as it is in 10-Bit Slave  
Receive mode. The first two addresses are followed  
by a third address sequence which contains the  
high-order bits of the 10-bit address and the R/W bit  
set to ‘1’. After the third address sequence is  
performed, the UA bit is not set, the module is now  
configured in Transmit mode and clock stretching is  
controlled by the BF flag as in 7-Bit Slave Transmit  
mode (see Figure 19-11).  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
19.4.4.2  
Clock Stretching for 10-Bit Slave  
Receive Mode (SEN = 1)  
In 10-Bit Slave Receive mode during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPxADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPxADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPxBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
© 2008 Microchip Technology Inc.  
DS39646C-page 225  
PIC18F8722 FAMILY  
already asserted the SCLx line. The SCLx output will  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCLx. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCLx (see  
Figure 19-12).  
19.4.4.5  
Clock Synchronization and  
the CKP bit  
When the CKP bit is cleared, the SCLx output is forced  
to ‘0’. However, clearing the CKP bit will not assert the  
SCLx output low until the SCLx output is already  
sampled low. Therefore, the CKP bit will not assert the  
SCLx line until an external I2C master device has  
FIGURE 19-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDAx  
SCLx  
DX – 1  
DX  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPxCON1  
DS39646C-page 226  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
2
FIGURE 19-13:  
I C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
© 2008 Microchip Technology Inc.  
DS39646C-page 227  
PIC18F8722 FAMILY  
FIGURE 19-14:  
I2C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
DS39646C-page 228  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
If the general call address matches, the SSPxSR is  
transferred to the SSPxBUF, the BF flag bit is set  
(eighth bit) and on the falling edge of the ninth bit (ACK  
bit), the SSPxIF interrupt flag bit is set.  
19.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually  
determines which device will be the slave addressed by  
the master. The exception is the general call address  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
SSPxBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPxADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPxSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-Bit Addressing mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 19-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the  
General Call Enable bit, GCEN, is enabled  
(SSPxCON2<7> set). Following a Start bit detect, 8 bits  
are shifted into the SSPxSR and the address is  
compared against the SSPxADD. It is also compared to  
the general call address and fixed in hardware.  
FIGURE 19-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
ACK  
R/W = 0  
ACK D7 D6  
General Call Address  
SDAx  
SCLx  
D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
SSPxIF  
BF (SSPxSTAT<0>)  
Cleared in software  
SSPxBUF is read  
SSPOV (SSPxCON1<6>)  
GCEN (SSPxCON2<7>)  
0’  
1’  
© 2008 Microchip Technology Inc.  
DS39646C-page 229  
PIC18F8722 FAMILY  
19.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPxBUF register to  
initiate transmission before the Start condi-  
tion is complete. In this case, the  
SSPxBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPxBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPxCON1 and by setting  
the SSPEN bit. In Master mode, the SCLx and SDAx  
lines are manipulated by the MSSP hardware if the  
TRIS bits are set.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set, or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause the SSP Interrupt Flag  
bit, SSPxIF, to be set (and SSP interrupt, if enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
Once Master mode is enabled, the user has six  
options.  
1. Assert a Start condition on SDAx and SCLx.  
2. Assert a Repeated Start condition on SDAx and  
SCLx.  
3. Write to the SSPxBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDAx and SCLx.  
2
FIGURE 19-16:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM<3:0>  
SSPxADD<6:0>  
Read  
Write  
SSPxBUF  
SSPxSR  
Baud  
Rate  
Generator  
SDAx  
Shift  
Clock  
SDAx In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCLx  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCLx In  
Bus Collision  
Set/Reset S, P (SSPxSTAT), WCOL (SSPxCON1)  
Set SSPxIF, BCLxIF  
Reset ACKSTAT, PEN (SSPxCON2)  
DS39646C-page 230  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
19.4.6.1  
1. The user generates a Start condition by setting  
the Start Enable bit, SEN (SSPxCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPxIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPxBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDAx, while SCLx outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDAx pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPxCON2 register (SSPxCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the  
SSPxIF bit.  
In Master Receive mode, the first byte transmitted  
contains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address, followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDAx, while SCLx outputs  
the serial clock. Serial data is received 8 bits at a time.  
After each byte is received, an Acknowledge bit is  
transmitted. Start and Stop conditions indicate the  
beginning and end of transmission.  
7. The user loads the SSPxBUF with eight bits of  
data.  
8. Data is shifted out the SDAx pin until all 8 bits  
are transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPxCON2 register (SSPxCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the  
SSPxIF bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCLx clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 19.4.7 “Baud Rate” for more detail.  
11. The user generates a Stop condition by setting  
the Stop Enable bit, PEN (SSPxCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
© 2008 Microchip Technology Inc.  
DS39646C-page 231  
PIC18F8722 FAMILY  
19.4.7  
BAUD RATE  
19.4.7.1  
Baud Rate and Module  
Interdependence  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPxADD register (Figure 19-17). When a write  
occurs to SSPxBUF, the Baud Rate Generator will  
automatically begin counting. The BRG counts down to  
0’ and stops until another reload has taken place. The  
BRG count is decremented twice per instruction cycle  
(TCY) on the Q2 and Q4 clocks. In I2C Master mode, the  
BRG is reloaded automatically.  
Because MSSP1 and MSSP2 are independent, they  
can operate simultaneously in I2C Master mode at  
different baud rates. This is done by using different  
BRG reload values for each module.  
Because this mode derives its basic clock source from  
the system clock, any changes to the clock will affect  
both modules in the same proportion. It may be  
possible to change one or both baud rates back to a  
previous value by changing the BRG reload value.  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCLx pin  
will remain in its last state.  
Table 19-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPxADD.  
FIGURE 19-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM<3:0>  
SSPxADD<6:0>  
SSPM<3:0>  
SCLx  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 19-3: I2C™ CLOCK RATE w/BRG  
FSCL  
FOSC  
FCY  
FCY*2  
BRG Value  
(2 Rollovers of BRG)  
40 MHz  
40 MHz  
40 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
18h  
1Fh  
63h  
09h  
0Ch  
27h  
02h  
09h  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
4 MHz  
100 kHz  
1 MHz(1)  
4 MHz  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
DS39646C-page 232  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
SCLx pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPxADD<6:0> and  
begins counting. This ensures that the SCLx high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 19-18).  
19.4.7.2  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCLx pin (SCLx allowed to float high).  
When the SCLx pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCLx pin is actually sampled high. When the  
FIGURE 19-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDAx  
DX  
DX – 1  
SCLx allowed to transition high  
SCLx deasserted but slave holds  
SCLx low (clock arbitration)  
SCLx  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCLx is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
© 2008 Microchip Technology Inc.  
DS39646C-page 233  
PIC18F8722 FAMILY  
19.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
Note:  
If at the beginning of the Start condition,  
the SDAx and SCLx pins are already sam-  
pled low, or if during the Start condition, the  
SCLx line is sampled low before the SDAx  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag, BCLxIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
To initiate a Start condition, the user sets the Start  
Enable bit, SEN (SSPxCON2<0>). If the SDAx and  
SCLx pins are sampled high, the Baud Rate Generator  
is reloaded with the contents of SSPxADD<6:0> and  
starts its count. If SCLx and SDAx are both sampled  
high when the Baud Rate Generator times out (TBRG),  
the SDAx pin is driven low. The action of the SDAx  
being driven low while SCLx is high is the Start condi-  
tion and causes the S bit (SSPxSTAT<3>) to be set.  
Following this, the Baud Rate Generator is reloaded  
with the contents of SSPxADD<6:0> and resumes its  
count. When the Baud Rate Generator times out  
(TBRG), the SEN bit (SSPxCON2<0>) will be auto-  
matically cleared by hardware; the Baud Rate Generator  
is suspended, leaving the SDAx line held low and the  
Start condition is complete.  
19.4.8.1  
WCOL Status Flag  
If the user writes the SSPxBUF when a Start sequence  
is in progress, the WCOL bit is set and the contents of  
the buffer are unchanged (the write doesn’t occur).  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPxCON2 is disabled until the Start  
condition is complete.  
FIGURE 19-19:  
FIRST START BIT TIMING  
Set S bit (SSPxSTAT<3>)  
Write to SEN bit occurs here  
SDAx = 1,  
At completion of Start bit,  
hardware clears SEN bit  
and sets SSPxIF bit  
SCLx = 1  
TBRG  
TBRG  
Write to SSPxBUF occurs here  
2nd bit  
1st bit  
SDAx  
TBRG  
SCLx  
TBRG  
S
DS39646C-page 234  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
19.4.9  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
A Repeated Start condition occurs when the RSEN bit  
(SSPxCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCLx pin is asserted low. When the SCLx pin is  
sampled low, the Baud Rate Generator is loaded with  
the contents of SSPxADD<5:0> and begins counting.  
The SDAx pin is released (brought high) for one Baud  
Rate Generator count (TBRG). When the Baud Rate  
Generator times out, if SDAx is sampled high, the SCLx  
pin will be deasserted (brought high). When SCLx is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of SSPxADD<6:0> and begins count-  
ing. SDAx and SCLx must be sampled high for one  
TBRG. This action is then followed by assertion of the  
SDAx pin (SDAx = 0) for one TBRG while SCLx is high.  
Following this, the RSEN bit (SSPxCON2<1>) will be  
automatically cleared and the Baud Rate Generator will  
not be reloaded, leaving the SDAx pin held low. As  
soon as a Start condition is detected on the SDAx and  
SCLx pins, the S bit (SSPxSTAT<3>) will be set. The  
SSPxIF bit will not be set until the Baud Rate Generator  
has timed out.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDAx is sampled low when SCLx  
goes from low-to-high.  
• SCLx goes low before SDAx is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
Immediately following the SSPxIF bit getting set, the  
user may write the SSPxBUF with the 7-bit address in  
7-bit mode or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
19.4.9.1  
WCOL Status Flag  
If the user writes the SSPxBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPxCON2 is disabled until the Repeated  
Start condition is complete.  
FIGURE 19-20:  
REPEATED START CONDITION WAVEFORM  
S bit set by hardware  
SDAx = 1,  
SCLx = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPxIF  
Write to SSPxCON2 occurs here:  
SDAx = 1,  
SCLx (no change).  
TBRG TBRG  
TBRG  
1st bit  
SDAx  
RSEN bit set by hardware  
on falling edge of ninth clock,  
end of Xmit  
Write to SSPxBUF occurs here  
TBRG  
SCLx  
TBRG  
Sr = Repeated Start  
© 2008 Microchip Technology Inc.  
DS39646C-page 235  
PIC18F8722 FAMILY  
19.4.10 I2C MASTER MODE TRANSMISSION  
The user should verify that the WCOL bit is clear after  
each write to SSPxBUF to ensure the transfer is correct.  
In all cases, WCOL must be cleared in software.  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address, is accomplished by sim-  
ply writing a value to the SSPxBUF register. This action  
will set the Buffer Full flag bit, BF and allow the Baud  
Rate Generator to begin counting and start the next  
transmission. Each bit of address/data will be shifted  
out onto the SDAx pin after the falling edge of SCLx is  
asserted (see data hold time specification  
parameter 106). SCLx is held low for one Baud Rate  
Generator rollover count (TBRG). Data should be valid  
before SCLx is released high (see data setup time  
specification parameter 107). When the SCLx pin is  
released high, it is held that way for TBRG. The data on  
the SDAx pin must remain stable for that duration and  
some hold time after the next falling edge of SCLx.  
After the eighth bit is shifted out (the falling edge of the  
eighth clock), the BF flag is cleared and the master  
releases SDAx. This allows the slave device being  
addressed to respond with an ACK bit during the ninth  
bit time if an address match occurred, or if data was  
received properly. The status of ACK is written into the  
ACKDT bit on the falling edge of the ninth clock. If the  
master receives an Acknowledge, the Acknowledge  
Status bit, ACKSTAT, is cleared. If not, the bit is set.  
After the ninth clock, the SSPxIF bit is set and the  
master clock (Baud Rate Generator) is suspended until  
the next data byte is loaded into the SSPxBUF, leaving  
SCLx low and SDAx unchanged (Figure 19-21).  
19.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPxCON2<6>)  
is cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
19.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPxCON2<3>).  
Note:  
The MSSP module must be in an inactive  
state before the RCEN bit is set or the  
RCEN bit will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCLx pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPxSR. After the falling edge of the eighth clock, the  
receive enable flag is automatically cleared, the con-  
tents of the SSPxSR are loaded into the SSPxBUF, the  
BF flag bit is set, the SSPxIF flag bit is set and the Baud  
Rate Generator is suspended from counting, holding  
SCLx low. The MSSP is now in Idle state awaiting the  
next command. When the buffer is read by the CPU,  
the BF flag bit is automatically cleared. The user can  
then send an Acknowledge bit at the end of reception  
by setting the Acknowledge Sequence Enable bit,  
ACKEN (SSPxCON2<4>).  
After the write to the SSPxBUF, each bit of the address  
will be shifted out on the falling edge of SCLx until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
deassert the SDAx pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDAx pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT status bit  
(SSPxCON2<6>). Following the falling edge of the  
ninth clock transmission of the address, the SSPxIF is  
set, the BF flag is cleared and the Baud Rate Generator  
is turned off until another write to the SSPxBUF takes  
place, holding SCLx low and allowing SDAx to float.  
19.4.11.1 BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPxBUF from SSPxSR. It  
is cleared when the SSPxBUF register is read.  
19.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPxSR and the BF flag bit is  
already set from a previous reception.  
19.4.10.1 BF Status Flag  
19.4.11.3 WCOL Status Flag  
In Transmit mode, the BF bit (SSPxSTAT<0>) is set  
when the CPU writes to SSPxBUF and is cleared when  
all 8 bits are shifted out.  
If the user writes the SSPxBUF when a receive is  
already in progress (i.e., SSPxSR is still shifting in a  
data byte), the WCOL bit is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
19.4.10.2 WCOL Status Flag  
If the user writes the SSPxBUF when a transmit is  
already in progress (i.e., SSPxSR is still shifting out a  
data byte), the WCOL bit is set and the contents of the  
buffer are unchanged (the write doesn’t occur) after  
2 TCY after the SSPxBUF write. If SSPxBUF is rewritten  
within 2 TCY, the WCOL bit is set and SSPxBUF is  
updated. This may result in a corrupted transfer.  
DS39646C-page 236  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
2
FIGURE 19-21:  
I C™ MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
© 2008 Microchip Technology Inc.  
DS39646C-page 237  
PIC18F8722 FAMILY  
2
FIGURE 19-22:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
DS39646C-page 238  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
19.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
19.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDAx pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPxCON2<2>). At the end of  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPxCON2<4>). When this bit is set, the SCLx pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDAx pin. If the user wishes to  
generate an Acknowledge, then the ACKDT bit should  
be cleared. If not, the user should set the ACKDT bit  
before starting an Acknowledge sequence. The Baud  
Rate Generator then counts for one rollover period  
(TBRG) and the SCLx pin is deasserted (pulled high).  
When the SCLx pin is sampled high (clock arbitration),  
the Baud Rate Generator counts for TBRG. The SCLx pin  
is then pulled low. Following this, the ACKEN bit is auto-  
matically cleared, the Baud Rate Generator is turned off  
and the MSSP module then goes into an inactive state  
(Figure 19-23).  
a
receive/transmit, the SCLx line is held low after the  
falling edge of the ninth clock. When the PEN bit is set,  
the master will assert the SDAx line low. When the  
SDAx line is sampled low, the Baud Rate Generator is  
reloaded and counts down to ‘0’. When the Baud Rate  
Generator times out, the SCLx pin will be brought high  
and one TBRG (Baud Rate Generator rollover count)  
later, the SDAx pin will be deasserted. When the SDAx  
pin is sampled high while SCLx is high, the P bit  
(SSPxSTAT<4>) is set. A TBRG later, the PEN bit is  
cleared and the SSPxIF bit is set (Figure 19-24).  
19.4.13.1 WCOL Status Flag  
If the user writes the SSPxBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
19.4.12.1 WCOL Status Flag  
If the user writes the SSPxBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 19-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPxCON2,  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDAx  
SCLx  
D0  
8
9
SSPxIF  
Cleared in  
software  
SSPxIF set at the end  
of Acknowledge sequence  
SSPxIF set at  
the end of receive  
Cleared in  
software  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 19-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCLx = 1for TBRG, followed by SDAx = 1for TBRG  
after SDAx sampled high. P bit (SSPxSTAT<4>) is set.  
Write to SSPxCON2,  
set PEN  
PEN bit (SSPxCON2<2>) is cleared by  
hardware and the SSPxIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCLx  
SDAx  
ACK  
P
TBRG  
TBRG  
TBRG  
SCLx brought high after TBRG  
SDAx asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
© 2008 Microchip Technology Inc.  
DS39646C-page 239  
PIC18F8722 FAMILY  
19.4.14 SLEEP OPERATION  
19.4.17 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDAx pin, arbitration takes place when the master  
outputs a ‘1’ on SDAx, by letting SDAx float high and  
another master asserts a ‘0’. When the SCLx pin floats  
high, data should be stable. If the expected data on  
SDAx is a ‘1’ and the data sampled on the SDAx  
pin = 0, then a bus collision has taken place. The  
master will set the Bus Collision Interrupt Flag, BCLxIF  
and reset the I2C port to its Idle state (Figure 19-25).  
19.4.15 EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
19.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPxSTAT<4>) is set, or the  
bus is Idle, with both the S and P bits clear. When the  
bus is busy, enabling the MSSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDAx and SCLx lines are deasserted and  
the SSPxBUF can be written to. When the user services  
the bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDAx line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLxIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condition  
was in progress when the bus collision occurred, the con-  
dition is aborted, the SDAx and SCLx lines are  
deasserted and the respective control bits in the  
SSPxCON2 register are cleared. When the user services  
the bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
• A Repeated Start Condition  
• An Acknowledge Condition  
The master will continue to monitor the SDAx and SCLx  
pins. If a Stop condition occurs, the SSPxIF bit will be set.  
A write to the SSPxBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPxSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FIGURE 19-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDAx. While SCLx is high,  
data doesn’t match what is driven  
by the master.  
Data changes  
while SCLx = 0  
SDAx line pulled low  
by another source  
Bus collision has occurred.  
SDAx released  
by master  
SDAx  
SCLx  
Set bus collision  
interrupt (BCLxIF)  
BCLxIF  
DS39646C-page 240  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
If the SDAx pin is sampled low during this count, the  
BRG is reset and the SDAx line is asserted early  
(Figure 19-28). If, however, a ‘1’ is sampled on the  
SDAx pin, the SDAx pin is asserted low at the end of  
the BRG count. The Baud Rate Generator is then  
reloaded and counts down to ‘0’. If the SCLx pin is  
sampled as ‘0’ during this time, a bus collision does not  
occur. At the end of the BRG count, the SCLx pin is  
asserted low.  
19.4.17.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDAx or SCLx are sampled low at the beginning  
of the Start condition (Figure 19-26).  
b) SCLx is sampled low before SDAx is asserted  
low (Figure 19-27).  
During a Start condition, both the SDAx and the SCLx  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDAx before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address  
following the Start condition. If the address  
is the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDAx pin is already low, or the SCLx pin is  
already low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLxIF flag is set and  
• the MSSP module is reset to its inactive state  
(Figure 19-26).  
The Start condition begins with the SDAx and SCLx  
pins deasserted. When the SDAx pin is sampled high,  
the Baud Rate Generator is loaded from  
SSPxADD<6:0> and counts down to ‘0’. If the SCLx pin  
is sampled low while SDAx is high, a bus collision  
occurs because it is assumed that another master is  
attempting to drive a data ‘1’ during the Start condition.  
FIGURE 19-26:  
BUS COLLISION DURING START CONDITION (SDAx ONLY)  
SDAx goes low before the SEN bit is set.  
Set BCLxIF,  
S bit and SSPxIF set because  
SDAx = 0, SCLx = 1.  
SDAx  
SCLx  
SEN  
Set SEN, enable Start  
condition if SDAx = 1, SCLx = 1  
SEN cleared automatically because of bus collision.  
MSSP module reset into Idle state.  
SDAx sampled low before  
Start condition. Set BCLxIF.  
S bit and SSPxIF set because  
SDAx = 0, SCLx = 1.  
BCLxIF  
SSPxIF and BCLxIF are  
cleared in software  
S
SSPxIF  
SSPxIF and BCLxIF are  
cleared in software  
© 2008 Microchip Technology Inc.  
DS39646C-page 241  
PIC18F8722 FAMILY  
FIGURE 19-27:  
BUS COLLISION DURING START CONDITION (SCLx = 0)  
SDAx = 0, SCLx = 1  
TBRG  
TBRG  
SDAx  
Set SEN, enable Start  
sequence if SDAx = 1, SCLx = 1  
SCLx  
SEN  
SCLx = 0before SDAx = 0,  
bus collision occurs. Set BCLxIF.  
SCLx = 0before BRG time-out,  
bus collision occurs. Set BCLxIF.  
BCLxIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPxIF  
FIGURE 19-28:  
BRG RESET DUE TO SDAx ARBITRATION DURING START CONDITION  
SDAx = 0, SCLx = 1  
Set S  
Set SSPxIF  
Less than TBRG  
TBRG  
SDAx pulled low by other master.  
Reset BRG and assert SDAx.  
SDAx  
SCLx  
S
SCLx pulled low after BRG  
time-out  
SEN  
Set SEN, enable START  
sequence if SDAx = 1, SCLx = 1  
0’  
BCLxIF  
S
SSPxIF  
Interrupts cleared  
in software  
SDAx = 0, SCLx = 1,  
set SSPxIF  
DS39646C-page 242  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
If SDAx is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, Figure 19-29).  
If SDAx is sampled high, the BRG is reloaded and  
begins counting. If SDAx goes from high-to-low before  
the BRG times out, no bus collision occurs because no  
two masters can assert SDAx at exactly the same time.  
19.4.17.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDAx when SCLx  
goes from low level to high level.  
If SCLx goes from high-to-low before the BRG times  
out and SDAx has not already been asserted, a bus  
collision occurs. In this case, another master is  
attempting to transmit a data ‘1’ during the Repeated  
Start condition (see Figure 19-30).  
b) SCLx goes low before SDAx is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
When the user deasserts SDAx and the pin is allowed  
to float high, the BRG is loaded with SSPxADD<6:0>  
and counts down to ‘0’. The SCLx pin is then  
deasserted and when sampled high, the SDAx pin is  
sampled.  
If, at the end of the BRG time-out, both SCLx and SDAx  
are still high, the SDAx pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCLx pin, the SCLx pin is  
driven low and the Repeated Start condition is complete.  
FIGURE 19-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDAx  
SCLx  
Sample SDAx when SCLx goes high.  
If SDAx = 0, set BCLxIF and release SDAx and SCLx.  
RSEN  
BCLxIF  
Cleared in software  
0’  
S
0’  
SSPxIF  
FIGURE 19-30:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDAx  
SCLx  
SCLx goes low before SDAx,  
set BCLxIF. Release SDAx and SCLx.  
BCLxIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPxIF  
© 2008 Microchip Technology Inc.  
DS39646C-page 243  
PIC18F8722 FAMILY  
The Stop condition begins with SDAx asserted low.  
When SDAx is sampled low, the SCLx pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with  
SSPxADD<6:0> and counts down to ‘0’. After the BRG  
times out, SDAx is sampled. If SDAx is sampled low, a  
bus collision has occurred. This is due to another  
master attempting to drive a data ‘0’ (Figure 19-31). If  
the SCLx pin is sampled low before SDAx is allowed to  
float high, a bus collision occurs. This is another case  
of another master attempting to drive a data ‘0’  
(Figure 19-32).  
19.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDAx pin has been deasserted and  
allowed to float high, SDAx is sampled low after  
the BRG has timed out.  
b) After the SCLx pin is deasserted, SCLx is  
sampled low before SDAx goes high.  
FIGURE 19-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDAx sampled  
low after TBRG,  
set BCLxIF  
TBRG  
TBRG  
TBRG  
SDAx  
SDAx asserted low  
SCLx  
PEN  
BCLxIF  
P
0’  
0’  
SSPxIF  
FIGURE 19-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDAx  
SCLx goes low before SDAx goes high,  
set BCLxIF  
Assert SDAx  
SCLx  
PEN  
BCLxIF  
P
0’  
0’  
SSPxIF  
DS39646C-page 244  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 19-4: REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
EEIF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
HLVDIF  
HLVDIE  
HLVDIP  
CCP5IF  
CCP5IE  
CCP5IP  
TRISC2  
TRISD2  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
58  
61  
58  
PSPIF  
PSPIE  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISC3  
TRISD3  
TMR2IF  
TMR1IF  
PIE1  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
PSPIP  
ADIP  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
SSP2IF  
SSP2IE  
SSP2IP  
TRISC7  
TRISD7  
CMIF  
TMR3IF  
TMR3IE  
TMR3IP  
CCP4IF  
CCP4IE  
CCP4IP  
TRISC1  
TRISD1  
CCP2IF  
CCP2IE  
CCP2IP  
CCP3IF  
CCP3IE  
CCP3IP  
TRISC0  
TRISD0  
PIE2  
CMIE  
EEIE  
IPR2  
CMIP  
EEIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
TRISC6  
TRISD6  
RC2IF  
RC2IE  
RC2IP  
TRISC5  
TRISD5  
TX2IF  
TX2IE  
TX2IP  
TRISC4  
TRISD4  
PIE3  
IPR3  
TRISC  
TRISD  
SSP1BUF MSSP1 Receive Buffer/Transmit Register  
SSP2BUF MSSP2 Receive Buffer/Transmit Register  
SSP1ADD MSSP1 Address Register in I2C™ Slave mode. MSSP1 Baud Rate Reload Register in I2C  
Master mode.  
SSP2ADD MSSP2 Address Register in I2C Slave mode. MSSP2 Baud Rate Reload Register in I2C  
61  
Master mode.  
TMR2  
PR2  
Timer2 Register  
58  
58  
58  
58  
58  
61  
61  
61  
Timer2 Period Register  
SSP1CON1 WCOL  
SSP1CON2 GCEN  
SSPOV  
SSPEN  
CKP  
ACKEN  
P
SSPM3  
RCEN  
S
SSPM2  
PEN  
SSPM1  
RSEN  
UA  
SSPM0  
SEN  
BF  
ACKSTAT ACKDT  
SSP1STAT  
SMP  
CKE  
D/A  
R/W  
SSP2CON1 WCOL  
SSP2CON2 GCEN  
SSPOV  
SSPEN  
CKP  
ACKEN  
P
SSPM3  
RCEN  
S
SSPM2  
PEN  
SSPM1  
RSEN  
UA  
SSPM0  
SEN  
BF  
ACKSTAT ACKDT  
SSP2STAT  
SMP  
CKE D/A  
R/W  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP module in I2C mode.  
© 2008 Microchip Technology Inc.  
DS39646C-page 245  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 246  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The pins of EUSART1 and EUSART2 are multiplexed  
with the functions of PORTC (RC6/TX1/CK1 and RC7/  
RX1/DT1) and PORTG (RG1/TX2/CK2 and RG2/RX2/  
DT2), respectively. In order to configure these pins as  
an EUSART:  
20.0 ENHANCED UNIVERSAL  
SYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is one of two  
serial I/O modules. (Generically, the USART is also  
known as a Serial Communications Interface or SCI.)  
The EUSART can be configured as a full-duplex  
asynchronous system that can communicate with  
peripheral devices, such as CRT terminals and  
personal computers. It can also be configured as a half-  
duplex synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs, etc.  
• For EUSART1:  
- bit SPEN (RCSTA1<7>) must be set (= 1)  
- bit TRISC<7> must be set (= 1)  
- bit TRISC<6> must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
- bit TRISC<6> must be set (= 1) for  
Synchronous Slave mode  
• For EUSART2:  
- bit SPEN (RCSTA2<7>) must be set (= 1)  
- bit TRISG<2> must be set (= 1)  
- bit TRISG<1> must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
The Enhanced USART module implements additional  
features, including automatic baud rate detection and  
calibration, automatic wake-up on Sync Break recep-  
tion and 12-bit Break Character transmit. These make  
it ideally suited for use in Local Interconnect Network  
bus (LIN bus) systems.  
- bit TRISC<6> must be set (= 1) for  
Synchronous Slave mode  
The EUSART can be configured in the following  
modes:  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
• Asynchronous (full duplex) with:  
- Auto-Wake-up on Character Reception  
- Auto-Baud Calibration  
The operation of each Enhanced USART module is  
controlled through three registers:  
- 12-bit Break Character Transmission  
• Synchronous – Master (half duplex) with  
Selectable Clock Polarity  
• Synchronous – Slave (half duplex) with  
Selectable Clock Polarity  
• Transmit Status and Control (TXSTAx)  
• Receive Status and Control (RCSTAx)  
• Baud Rate Control (BAUDCONx)  
These are detailed on the following pages in  
Register 20-1, Register 20-2 and Register 20-3,  
respectively.  
Note:  
Throughout this section, references to  
register and bit names that may be associ-  
ated with a specific EUSART module are  
referred to generically by the use of ‘x’ in  
place of the specific module number.  
Thus, “RCSTAx” might refer to the  
Receive Status register for either  
EUSART1 or EUSART2  
© 2008 Microchip Technology Inc.  
DS39646C-page 247  
PIC18F8722 FAMILY  
REGISTER 20-1: TXSTAx: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
bit 3  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSRx empty  
0= TSRx full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
DS39646C-page 248  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 20-2: RCSTAx: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSRx<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 9-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREGx register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2008 Microchip Technology Inc.  
DS39646C-page 249  
PIC18F8722 FAMILY  
REGISTER 20-3: BAUDCONx: BAUD RATE CONTROL REGISTER  
R/W-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ABDOVF: Auto-Baud Acquisition Rollover Status bit  
1= A BRG rollover has occurred during Auto-Baud Rate Detect mode (must be cleared in software)  
0= No BRG rollover has occurred  
RCIDL: Receive Operation Idle Status bit  
1= Receive operation is inactive  
0= Receive operation is active  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous mode:  
1= Idle state for clock (CKx) is a high level  
0= Idle state for clock (CKx) is a low level  
bit 3  
BRG16: 16-bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGHx and SPBRGx  
0= 8-bit Baud Rate Generator – SPBRGx only (Compatible mode), SPBRGHx value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RXx pin – interrupt generated on falling edge; bit cleared in  
hardware on following rising edge  
0= RXx pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character. Requires reception of a Sync field (55h);  
cleared in hardware upon completion.  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
DS39646C-page 250  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
advantageous to use the high baud rate (BRGH = 1) or  
the 16-bit BRG to reduce the baud rate error, or  
achieve a slow baud rate for a fast oscillator frequency.  
20.1  
Baud Rate Generator (BRG)  
The BRG is a dedicated 8-bit or 16-bit generator that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode; setting the BRG16 bit (BAUDCONx<3>)  
selects 16-bit mode.  
Writing a new value to the SPBRGHx:SPBRGx regis-  
ters causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
The SPBRGHx:SPBRGx register pair controls the  
period of a free running timer. In Asynchronous mode,  
bits  
(BAUDCONx<3>) also control the baud rate. In  
Synchronous mode, BRGH is ignored. Table 20-1  
shows the formula for computation of the baud rate for  
different EUSART modes which only apply in Master  
mode (internally generated clock).  
20.1.1  
OPERATION IN POWER-MANAGED  
MODES  
BRGH  
(TXSTAx<2>)  
and  
BRG16  
The device clock is used to generate the desired baud  
rate. When one of the power-managed modes is  
entered, the new clock source may be operating at a  
different frequency. This may require an adjustment to  
the value in the SPBRGx register pair.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGHx:SPBRGx registers can  
be calculated using the formulas in Table 20-1. From  
this, the error in baud rate can be determined. An  
example calculation is shown in Example 20-1. Typical  
baud rates and error values for the various Asynchro-  
nous modes are shown in Table 20-2. It may be  
20.1.2  
SAMPLING  
The data on the RXx pin (either RC7/RX1/DT1 or RG2/  
RX2/DT2) is sampled three times by a majority detect  
circuit to determine if a high or a low level is present at  
the RXx pin.  
TABLE 20-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = value of SPBRGHx:SPBRGx register pair  
© 2008 Microchip Technology Inc.  
DS39646C-page 251  
PIC18F8722 FAMILY  
EXAMPLE 20-1:  
CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate = FOSC/(64 ([SPBRGHx:SPBRGx] + 1))  
Solving for SPBRGHx:SPBRGx:  
X
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
Calculated Baud Rate= 16000000/(64 (25 + 1))  
=
=
=
9615  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
TABLE 20-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTAx  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
59  
59  
61  
59  
59  
RCSTAx  
BAUDCONx  
SPBRGHx  
SPBRGx  
ABDOVF RCIDL  
ABDEN  
EUSARTx Baud Rate Generator Register High Byte  
EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
DS39646C-page 252  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
© 2008 Microchip Technology Inc.  
DS39646C-page 253  
PIC18F8722 FAMILY  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
0.300  
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
%
%
Error  
value  
(decimal)  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2.400  
9.6  
9.606  
9.596  
9.615  
9.615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19.230  
57.142  
11.7647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
DS39646C-page 254  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
20.1.3  
AUTO-BAUD RATE DETECT  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Rate Detection will occur on  
the byte following the Break character.  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system  
timing and communication baud rates  
must be taken into consideration when  
using the Auto-Baud Rate Detection  
feature.  
The automatic baud rate measurement sequence  
(Figure 20-1) begins whenever a Start bit is received  
and the ABDEN bit is set. The calculation is  
self-averaging.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RXx signal, the RXx signal is timing the BRG.  
In ABD mode, the internal Baud Rate Generator is  
used as a counter to time the bit period of the incoming  
serial byte stream.  
TABLE 20-4: BRG COUNTER  
CLOCK RATES  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Rate  
Detect must receive a byte with the value 55h (ASCII  
“U”, which is also the LIN bus Sync character) in order to  
calculate the proper bit rate. The measurement is taken  
over both a low and a high bit time in order to minimize  
any effects caused by asymmetry of the incoming signal.  
After a Start bit, the SPBRGx begins counting up, using  
the preselected clock source on the first rising edge of  
RXx. After eight bits on the RXx pin or the fifth rising  
edge, an accumulated value totalling the proper BRG  
period is left in the SPBRGHx:SPBRGx register pair.  
Once the 5th edge is seen (this should correspond to the  
Stop bit), the ABDEN bit is automatically cleared.  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
1
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
Note: During the ABD sequence, SPBRGx and  
SPBRGHx are both used as a 16-bit counter,  
independent of BRG16 setting.  
20.1.3.1  
ABD and EUSART Transmission  
Since the BRG clock is reversed during ABD acquisi-  
tion, the EUSART transmitter cannot be used during  
ABD. This means that whenever the ABDEN bit is set,  
TXREGx cannot be written to. Users should also  
ensure that ABDEN does not become set during a  
transmit sequence. Failing to do this may result in  
unpredictable EUSART operation.  
If a rollover of the BRG occurs (an overflow from FFFFh  
to 0000h), the event is trapped by the ABDOVF status  
bit (BAUDCONx<7>). It is set in hardware by BRG roll-  
overs and can be set or cleared by the user in software.  
ABD mode remains active after rollover events and the  
ABDEN bit remains set (Figure 20-2).  
While calibrating the baud rate period, the BRG regis-  
ters are clocked at 1/8th the preconfigured clock rate.  
Note that the BRG clock will be configured by the  
BRG16 and BRGH bits. Independent of the BRG16 bit  
setting, both the SPBRGx and SPBRGHx will be used  
as a 16-bit counter. This allows the user to verify that  
no carry occurred for 8-bit modes by checking for 00h  
in the SPBRGHx register. Refer to Table 20-4 for  
counter clock rates to the BRG.  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RCxIF interrupt is set  
once the fifth rising edge on RXx is detected. The value  
in the RCREGx needs to be read to clear the RCxIF  
interrupt. The contents of RCREGx should be  
discarded.  
© 2008 Microchip Technology Inc.  
DS39646C-page 255  
PIC18F8722 FAMILY  
FIGURE 20-1:  
AUTOMATIC BAUD RATE CALCULATION  
BRG Value  
RXx pin  
XXXXh  
0000h  
001Ch  
Edge #5  
Stop Bit  
Edge #2  
Bit 3  
Edge #3  
Bit 5  
Edge #4  
Bit 7  
Bit 6  
Edge #1  
Bit 1  
Start  
Bit 0  
Bit 2  
Bit 4  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RCxIF bit  
(Interrupt)  
Read  
RCREGx  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRGx  
SPBRGHx  
Note: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
FIGURE 20-2:  
BRG OVERFLOW SEQUENCE  
BRG Clock  
ABDEN bit  
RXx pin  
Start  
Bit 0  
ABDOVF bit  
BRG Value  
FFFFh  
XXXXh  
0000h  
0000h  
DS39646C-page 256  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Once the TXREGx register transfers the data to the  
TSRx register (occurs in one TCY), the TXREGx register  
is empty and the TXxIF flag bit (PIR1<4>) is set. This  
interrupt can be enabled or disabled by setting or clearing  
the interrupt enable bit, TXxIE (PIE1<4>). TXxIF will be  
set regardless of the state of TXxIE; it cannot be cleared  
in software. TXxIF is also not cleared immediately upon  
loading TXREGx, but becomes valid in the second  
instruction cycle following the load instruction. Polling  
TXxIF immediately following a load of TXREGx will return  
invalid results.  
20.2 EUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTAx<4>). In this mode, the  
EUSART uses standard Non-Return-to-Zero (NRZ)  
format (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit Baud Rate Generator can be used  
to derive standard baud rate frequencies from the  
oscillator.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but use the same data format and baud  
rate. The Baud Rate Generator produces a clock, either  
x16 or x64 of the bit shift rate depending on the BRGH  
and BRG16 bits (TXSTAx<2> and BAUDCONx<3>).  
Parity is not supported by the hardware, but can be  
implemented in software and stored as the 9th data bit.  
While TXxIF indicates the status of the TXREGx regis-  
ter, another bit, TRMT (TXSTAx<1>), shows the status  
of the TSRx register. TRMT is a read-only bit which is  
set when the TSRx register is empty. No interrupt logic  
is tied to this bit so the user has to poll this bit in order  
to determine if the TSRx register is empty.  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
Note 1: The TSRx register is not mapped in data  
memory so it is not available to the user.  
• Baud Rate Generator  
• Sampling Circuit  
2: Flag bit, TXxIF, is set when enable bit  
TXEN is set.  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Auto-Wake-up on Sync Break Character  
• 12-bit Break Character Transmit  
• Auto-Baud Rate Detection  
To set up an Asynchronous Transmission:  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
20.2.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
3. If interrupts are desired, set enable bit, TXxIE.  
The EUSART transmitter block diagram is shown in  
Figure 20-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSRx). The Shift register  
obtains its data from the Read/Write Transmit Buffer  
register, TXREGx. The TXREGx register is loaded with  
data in software. The TSRx register is not loaded until  
the Stop bit has been transmitted from the previous  
load. As soon as the Stop bit is transmitted, the TSRx  
is loaded with new data from the TXREGx register (if  
available).  
4. If 9-bit transmission is desired, set transmit bit,  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TXxIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREGx register (starts  
transmission).  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
© 2008 Microchip Technology Inc.  
DS39646C-page 257  
PIC18F8722 FAMILY  
FIGURE 20-3:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXxIF  
TXREGx Register  
8
TXxIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSRx Register  
TXx pin  
Interrupt  
Baud Rate CLK  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGHx SPBRGx  
Baud Rate Generator  
TX9  
TX9D  
FIGURE 20-4:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREGx  
Word 1  
BRG Output  
(Shift Clock)  
TXx (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXxIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 20-5:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREGx  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TXx (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXxIF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
DS39646C-page 258  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 20-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
59  
59  
59  
61  
61  
59  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
ADIF  
ADIE  
ADIP  
TRISC6  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
SSP1IF  
SSP1IE  
SSP1IP  
TRISC3  
TRISG3  
ADDEN  
TMR2IF  
TMR1IF  
PIE1  
TX1IE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TX1IP  
TRISC  
TRISG  
RCSTAx  
TXREGx  
TXSTAx  
TRISC4  
TRISG4  
CREN  
TRISC2  
TRISG2  
FERR  
TRISC1  
TRISG1  
OERR  
TRISC0  
TRISG0  
RX9D  
SPEN  
RX9  
SREN  
EUSARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx  
SPBRGx  
EUSARTx Baud Rate Generator Register High Byte  
EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
© 2008 Microchip Technology Inc.  
DS39646C-page 259  
PIC18F8722 FAMILY  
20.2.2  
EUSART ASYNCHRONOUS  
RECEIVER  
20.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 20-6.  
The data is received on the RXx pin and drives the data  
recovery block. The data recovery block is actually a  
high-speed shifter operating at x16 times the baud rate,  
whereas the main receive serial shifter operates at the  
bit rate or at FOSC. This mode would typically be used  
in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCxIP  
bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set enable bit, RCxIE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RCxIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCxIE and GIE bits are set.  
6. Flag bit, RCxIF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit, RCxIE, was set.  
8. Read the RCSTAx register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREGx to determine if the device is  
being addressed.  
8. Read the 8-bit received data by reading the  
RCREGx register.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-6:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
÷ 64  
RSRx Register  
• • •  
0
MSb  
Stop  
LSb  
Start  
BRG16  
SPBRGHx SPBRGx  
or  
÷ 16  
(8)  
7
1
or  
Baud Rate Generator  
÷ 4  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RXx  
RX9D  
RCREGx Register  
FIFO  
SPEN  
8
Interrupt  
RCxIF  
RCxIE  
Data Bus  
DS39646C-page 260  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 20-7:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RXx (pin)  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0 bit 1  
bit 7/8  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREGx  
Word 1  
RCREGx  
Read Rcv  
Buffer Reg  
RCREGx  
RCxIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RXx input. The RCREGx (receive buffer) is read after the third word  
causing the OERR (Overrun) bit to be set.  
TABLE 20-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
TMR0IF  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
59  
59  
59  
61  
61  
59  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
ADIF  
ADIE  
ADIP  
TRISC6  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
SSP1IF  
SSP1IE  
SSP1IP  
TRISC3  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TX1IE  
TX1IP  
TRISC4  
IPR1  
TRISC  
TRISG  
RCSTAx  
RCREGx  
TXSTAx  
TRISC2  
TRISC1 TRISC0  
TRISG4 TRISG3 TRISG2 TRISG1 TRISG0  
SPEN  
RX9  
SREN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx  
SPBRGx  
EUSARTx Baud Rate Generator Register High Byte  
EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
© 2008 Microchip Technology Inc.  
DS39646C-page 261  
PIC18F8722 FAMILY  
character and cause data or framing errors. To work  
properly, therefore, the initial character in the transmis-  
sion must be all ‘0’s. This can be 00h (8 bytes) for  
standard RS-232 devices or 000h (12 bits) for LIN bus.  
20.2.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator is  
inactive and a proper byte reception cannot be  
performed. The auto-wake-up feature allows the  
controller to wake-up due to activity on the RXx/DTx line,  
while the EUSART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., XT or HS mode). The Sync  
Break (or Wake-up Signal) character must be of  
sufficient length and be followed by a sufficient interval  
to allow enough time for the selected oscillator to start  
and provide proper initialization of the EUSART.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCONx<1>). Once set, the typical receive  
sequence on RXx/DTx is disabled and the EUSART  
remains in an Idle state, monitoring for a wake-up event  
independent of the CPU mode. A wake-up event  
consists of a high-to-low transition on the RXx/DTx line.  
(This coincides with the start of a Sync Break or a  
Wake-up Signal character for the LIN protocol.)  
20.2.4.2  
Special Considerations Using  
the WUE Bit  
The timing of WUE and RCxIF events may cause  
some confusion when it comes to determining the  
validity of received data. As noted, setting the WUE bit  
places the EUSART in an inactive state. The wake-up  
event causes a receive interrupt by setting the RCxIF  
bit. The WUE bit is cleared after this when a rising  
edge is seen on RXx/DTx. The interrupt condition is  
then cleared by reading the RCREGx register.  
Ordinarily, the data in RCREGx will be dummy data  
and should be discarded.  
Following a wake-up event, the module generates an  
RCxIF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 20-8) and asynchronously, if the device is in  
Sleep mode (Figure 20-9). The interrupt condition is  
cleared by reading the RCREGx register.  
The WUE bit is automatically cleared once a low-to-  
high transition is observed on the RXx line following the  
wake-up event. At this point, the EUSART module is  
inactive and returns to normal operation. This signals to  
the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set) and the RCxIF flag is set should not be used as an  
indicator of the integrity of the data in RCREGx. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
20.2.4.1  
Special Considerations Using  
Auto-Wake-up  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
Since auto-wake-up functions by sensing rising edge  
transitions on RXx/DTx, information with any state  
changes before the Stop bit may signal a false end-of-  
FIGURE 20-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit(1)  
RXx/DTx Line  
RCxIF  
Bit set by user  
Auto-Cleared  
Cleared due to user read of RCREGx  
Note 1:The EUSART remains inactive while the WUE bit is set.  
FIGURE 20-9:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit(2)  
RXx/DTx Line  
RCxIF  
Bit set by user  
Auto-Cleared  
Note 1  
Cleared due to user read of RCREGx  
Sleep Ends  
Sleep Command Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur before the oscillator is ready. This  
sequence should not depend on the presence of Q clocks.  
2: The EUSART remains inactive while the WUE bit is set.  
DS39646C-page 262  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
1. Configure the EUSART for the desired mode.  
20.2.5  
BREAK CHARACTER SEQUENCE  
2. Set the TXEN and SENDB bits to set up the  
Break character.  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. The Break character transmit  
consists of a Start bit, followed by twelve ‘0’ bits and a  
Stop bit. The frame Break character is sent whenever  
the SENDB and TXEN bits (TXSTAx<3> and  
TXSTAx<5>) are set while the Transmit Shift register is  
loaded with data. Note that the value of data written to  
TXREGx will be ignored and all ‘0’s will be transmitted.  
3. Load the TXREGx with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREGx to load the Sync  
character into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
When the TXREGx becomes empty, as indicated by  
the TXxIF, the next data byte can be written to  
TXREGx.  
20.2.6  
RECEIVING A BREAK CHARACTER  
Note that the data value written to the TXREGx for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The Enhanced USART module can receive a Break  
character in two ways.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 the typical speed. This allows for  
the Stop bit transition to be at the correct sampling loca-  
tion (13 bits for Break versus Start bit and 8 data bits for  
typical data).  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 20-10 for the timing of the Break  
character sequence.  
The second method uses the auto-wake-up feature  
described in Section 20.2.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on RXx/  
DTx, cause an RCxIF interrupt and receive the next  
data byte followed by another interrupt.  
20.2.5.1  
Break and Sync Transmit Sequence  
The following sequence will send a message frame  
header made up of a Break, followed by an Auto-Baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABD bit  
once the TXxIF interrupt is observed.  
FIGURE 20-10:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREGx  
Dummy Write  
BRG Output  
(Shift Clock)  
TXx (pin)  
Start Bit  
Bit 0  
Bit 1  
Break  
Bit 11  
Stop Bit  
TXxIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB sampled here  
Auto-Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
© 2008 Microchip Technology Inc.  
DS39646C-page 263  
PIC18F8722 FAMILY  
Once the TXREGx register transfers the data to the  
TSRx register (occurs in one TCY), the TXREGx is  
empty and the TXxIF flag bit is set. The interrupt can be  
enabled or disabled by setting or clearing the interrupt  
enable bit, TXxIE. TXxIF is set regardless of the state  
of enable bit TXxIE; it cannot be cleared in software. It  
will reset only when new data is loaded into the  
TXREGx register.  
20.3 EUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTAx<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit  
SYNC (TXSTAx<4>). In addition, enable bit SPEN  
(RCSTAx<7>) is set in order to configure the TXx and  
RXx pins to CKx (clock) and DTx (data) lines,  
respectively.  
While flag bit TXxIF indicates the status of the TXREGx  
register, another bit, TRMT (TXSTAx<1>), shows the  
status of the TSRx register. TRMT is a read-only bit  
which is set when the TSRx is empty. No interrupt logic  
is tied to this bit, so the user must poll this bit in order to  
determine if the TSRx register is empty. The TSRx is not  
mapped in data memory so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CKx line. Clock polarity is  
selected with the SCKP bit (BAUDCONx<4>); setting  
SCKP sets the Idle state on CKx as high, while clearing  
the bit sets the Idle state as low. This option is provided  
to support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGHx:SPBRGx registers for the  
appropriate baud rate. Set or clear the BRG16  
bit, as required, to achieve the desired baud rate.  
20.3.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXxIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
The EUSART transmitter block diagram is shown in  
Figure 20-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSRx). The Shift register  
obtains its data from the Read/Write Transmit Buffer  
register, TXREGx. The TXREGx register is loaded with  
data in software. The TSRx register is not loaded until  
the last bit has been transmitted from the previous load.  
As soon as the last bit is transmitted, the TSRx is  
loaded with new data from the TXREGx (if available).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREGx register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-11:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
DTx  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
CKx pin  
(SCKP = 0)  
CKx pin  
(SCKP = 1)  
Write to  
TXREGx Reg  
Write Word 1  
Write Word 2  
TXxIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode, SPBRGx = 0, continuous transmission of two 8-bit words.  
DS39646C-page 264  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 20-12:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
DTx pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
CKx pin  
Write to  
TXREGx reg  
TXxIF bit  
TRMT bit  
TXEN bit  
TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
TMR0IF  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
59  
59  
59  
61  
61  
59  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
ADIF  
ADIE  
ADIP  
TRISC6  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
SSP1IF  
SSP1IE  
SSP1IP  
TRISC3  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TX1IE  
TX1IP  
TRISC4  
IPR1  
TRISC  
TRISG  
RCSTAx  
TXREGx  
TXSTAx  
TRISC2  
TRISC1  
TRISC0  
TRISG4 TRISG3 TRISG2 TRISG1 TRISG0  
SPEN  
RX9  
SREN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
© 2008 Microchip Technology Inc.  
DS39646C-page 265  
PIC18F8722 FAMILY  
3. Ensure bits, CREN and SREN, are clear.  
4. If interrupts are desired, set enable bit, RCxIE.  
5. If 9-bit reception is desired, set bit, RX9.  
20.3.2  
EUSART SYNCHRONOUS  
MASTER RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTAx<5>), or the Continuous Receive  
Enable bit, CREN (RCSTAx<4>). Data is sampled on  
the RXx pin on the falling edge of the clock.  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
7. Interrupt flag bit, RCxIF, will be set when recep-  
tion is complete and an interrupt will be generated  
if the enable bit, RCxIE, was set.  
If enable bit SREN is set, only a single word is received.  
If enable bit CREN is set, the reception is continuous  
until CREN is cleared. If both bits are set, then CREN  
takes precedence.  
8. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREGx register.  
To set up a Synchronous Master Reception:  
1. Initialize the SPBRGHx:SPBRGx registers for the  
appropriate baud rate. Set or clear the BRG16  
bit, as required, to achieve the desired baud rate.  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
11. If using interrupts, ensure that the GIE and PEIE bits  
in the INTCON register (INTCON<7:6>) are set.  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
FIGURE 20-13:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
DTx pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
CKx pin  
(SCKP = 0)  
CKx pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCxIF bit  
(Interrupt)  
Read  
RCREGx  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
DS39646C-page 266  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 20-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
TRISC2  
TRISG2  
FERR  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
TRISC1  
TRISG1  
OERR  
RBIF  
57  
60  
60  
60  
60  
60  
59  
59  
59  
61  
61  
59  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
ADIF  
ADIE  
ADIP  
TRISC6  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
SSP1IF  
SSP1IE  
SSP1IP  
TRISC3  
TRISG3  
ADDEN  
TMR1IF  
TMR1IE  
TMR1IP  
TRISC0  
TRISG0  
RX9D  
PIE1  
TX1IE  
IPR1  
TX1IP  
TRISC  
TRISG  
RCSTAx  
RCREGx  
TXSTAx  
TRISC4  
TRISG4  
CREN  
SPEN  
RX9  
SREN  
EUSARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
© 2008 Microchip Technology Inc.  
DS39646C-page 267  
PIC18F8722 FAMILY  
To set up a Synchronous Slave Transmission:  
20.4 EUSART Synchronous  
Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTAx<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is  
supplied externally at the CKx pin (instead of being  
supplied internally in Master mode). This allows the  
device to transfer or receive data while in any low-power  
mode.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TXxIE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
20.4.1  
EUSART SYNCHRONOUS  
SLAVE TRANSMISSION  
7. Start transmission by loading data to the  
TXREGx register.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep mode.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREGx and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSRx register and transmit.  
b) The second word will remain in the TXREGx  
register.  
c) Flag bit, TXxIF, will not be set.  
d) When the first word has been shifted out of  
TSRx, the TXREGx register will transfer the  
second word to the TSRx and flag bit, TXxIF, will  
now be set.  
e) If enable bit, TXxIE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
59  
59  
59  
61  
61  
59  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
ADIF  
ADIE  
ADIP  
TRISC6  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
TRISC3  
TMR2IF TMR1IF  
PIE1  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TRISC  
TRISG  
RCSTAx  
TXREGx  
TXSTAx  
TRISC5 TRISC4  
TRISC2  
TRISC1  
TRISC0  
TRISG4  
CREN  
TRISG3 TRISG2 TRISG1 TRISG0  
SPEN  
RX9  
SREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
DS39646C-page 268  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
To set up a Synchronous Slave Reception:  
20.4.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep, or any  
Idle mode and bit SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RCxIE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this low-power mode. Once the word  
is received, the RSRx register will transfer the data to  
the RCREGx register; if the RCxIE enable bit is set, the  
interrupt generated will wake the chip from the low-  
power mode. If the global interrupt is enabled, the  
program will branch to the interrupt vector.  
5. Flag bit, RCxIF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RCxIE, was set.  
6. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREGx register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 20-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
57  
60  
60  
60  
60  
60  
59  
59  
59  
61  
61  
59  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
ADIF  
ADIE  
ADIP  
TRISC6  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
SSP1IF  
SSP1IE  
SSP1IP  
TRISC3  
TMR2IF TMR1IF  
PIE1  
TX1IE  
TX1IP  
TRISC4  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TRISC  
TRISG  
RCSTAx  
RCREGx  
TXSTAx  
TRISC2  
TRISC1  
TRISC0  
TRISG4 TRISG3  
TRISG2 TRISG1 TRISG0  
SPEN  
RX9  
SREN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
© 2008 Microchip Technology Inc.  
DS39646C-page 269  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 270  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The ADCON0 register, shown in Register 21-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 21-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 21-3, configures the A/D clock  
source, programmed acquisition time and justification.  
21.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) converter module has  
12 inputs for the 64-pin devices and 16 for the 80-pin  
devices. This module allows conversion of an analog  
input signal to a corresponding 10-bit digital number.  
The module has five registers:  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
REGISTER 21-1: ADCON0: A/D CONTROL REGISTER  
U-0  
U-0  
R/W-0  
CHS3(1)  
R/W-0  
CHS2(1)  
R/W-0  
CHS1(1)  
R/W-0  
CHS0(1)  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHS<3:0> Analog Channel Select bits(1)  
0000= Channel 0 (AN0)  
0001= Channel 1 (AN1)  
0010= Channel 2 (AN2)  
0011= Channel 3 (AN3)  
0100= Channel 4 (AN4)  
0101= Channel 5 (AN5)  
0110= Channel 6 (AN6)  
0111= Channel 7 (AN7)  
1000= Channel 8 (AN8)  
1001= Channel 9 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= Channel 12 (AN12)(1)  
1101= Channel 13 (AN13)(1)  
1110= Channel 14 (AN14)(1)  
1111= Channel 15 (AN15)(1)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D Idle  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
Note 1: These channels are not implemented on 64-pin devices.  
© 2008 Microchip Technology Inc.  
DS39646C-page 271  
PIC18F8722 FAMILY  
REGISTER 21-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
VCFG<1:0>: Voltage Reference Configuration bits  
A/D VREF+  
A/D VREF-  
00  
01  
10  
11  
AVDD  
AVSS  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 3-0  
PCFG<3:0>: A/D Port Configuration Control bits:  
PCFG<3:0>  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Note 1: AN15 through AN12 are available only on 80-pin devices.  
DS39646C-page 272  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT<2:0>: A/D Acquisition Time Select bits  
111= 20 TAD  
110= 16 TAD  
101= 12 TAD  
100= 8 TAD  
011= 6 TAD  
010= 4 TAD  
001= 2 TAD  
(1)  
000= 0 TAD  
bit 2-0  
ADCS<2:0>: A/D Conversion Clock Select bits  
111= FRC (clock derived from A/D RC oscillator)(1)  
110= FOSC/64  
101= FOSC/16  
100= FOSC/4  
011= FRC (clock derived from A/D RC oscillator)(1)  
010= FOSC/32  
001= FOSC/8  
000= FOSC/2  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D  
clock starts. This allows the SLEEPinstruction to be executed before starting a conversion.  
© 2008 Microchip Technology Inc.  
DS39646C-page 273  
PIC18F8722 FAMILY  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS), or the voltage level on the RA3/AN3/  
VREF+ and RA2/AN2/VREF- pins.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input, or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH:ADRESL  
register pair, the GO/DONE bit (ADCON0 register) is  
cleared and A/D Interrupt Flag bit, ADIF (PIR1<6>), is  
set. The block diagram of the A/D module is shown in  
Figure 21-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To oper-  
ate in Sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
FIGURE 21-1:  
A/D BLOCK DIAGRAM  
CHS<3:0>  
1111  
AN15(1)  
1110  
AN14(1)  
1101  
AN13(1)  
1100  
AN12(1)  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7  
0110  
AN6  
0101  
AN5  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-Bit  
A/D  
Converter  
AN3  
0010  
AN2  
0001  
VCFG<1:0>  
AN1  
0000  
AVDD  
X0  
AN0  
VREF+  
VREF-  
X1  
1X  
0X  
Reference  
Voltage  
AVSS  
Note 1: Channels AN12 through AN15 are not available on 64-pin devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39646C-page 274  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The value in the ADRESH:ADRESL registers is not  
modified for a Power-on Reset. The ADRESH:ADRESL  
registers will contain unknown data after a Power-on  
Reset.  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the  
conversion is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 21.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started. An acquisition time can be programmed to  
occur between setting the GO/DONE bit and the actual  
start of the conversion.  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF, if required.  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before the next acquisition starts.  
FIGURE 21-2:  
A/D TRANSFER FUNCTION  
The following steps should be followed to perform an A/D  
conversion:  
3FFh  
3FEh  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
003h  
002h  
001h  
000h  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
Analog Input Voltage  
• Set GO/DONE bit (ADCON0 register)  
FIGURE 21-3:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
VAIN  
ILEAKAGE  
± 100 nA  
CHOLD = 25 pF  
VT = 0.6V  
5 pF  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
6V  
5V  
4V  
3V  
2V  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
VDD  
RIC  
= Interconnect Resistance  
SS  
= Sampling Switch  
CHOLD  
RSS  
= Sample/Hold Capacitance (from DAC)  
= Sampling Switch Resistance  
1
2
3
4
(kΩ)  
Sampling Switch  
© 2008 Microchip Technology Inc.  
DS39646C-page 275  
PIC18F8722 FAMILY  
To calculate the minimum acquisition time,  
Equation 21-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
21.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 21-3. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 kΩ. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
Example 21-3 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system  
assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
=
=
=
=
25 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 2 kΩ  
85°C (system max.)  
Note:  
When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
EQUATION 21-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 21-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
=
(VREF – (VREF/2048)) • (1 – e(-TC/CHOLD(RIC + RSS + RS))  
)
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EQUATION 21-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
0.2 μs  
(Temp – 25°C)(0.02 μs/°C)  
(85°C – 25°C)(0.02 μs/°C)  
1.2 μs  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 ms.  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2047) μs  
-(25 pF) (1 kΩ + 2 kΩ + 2.5 kΩ) ln(0.0004883) μs  
1.05 μs  
TACQ  
=
0.2 μs + 1 μs + 1.2 μs  
2.4 μs  
DS39646C-page 276  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
21.2 Selecting and Configuring  
Acquisition Time  
21.3 Selecting the A/D Conversion  
Clock  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set. It also gives users the option to use an  
automatically determined acquisition time.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
Acquisition time may be set with the ACQT<2:0> bits  
(ADCON2<5:3>) which provides a range of 2 to 20 TAD.  
When the GO/DONE bit is set, the A/D module  
continues to sample the input for the selected acquisi-  
tion time, then automatically begins a conversion.  
Since the acquisition time is programmed, there may  
be no need to wait for an acquisition time between  
selecting a channel and setting the GO/DONE bit.  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC Oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible, but greater than the  
minimum TAD (see parameter 130, Table 28-27 for  
more information).  
Manual  
acquisition  
is  
selected  
when  
ACQT<2:0> = 000. When the GO/DONE bit is set,  
sampling is stopped and a conversion begins. The user  
is responsible for ensuring the required acquisition time  
has passed between selecting the desired input  
channel and setting the GO/DONE bit. This option is  
also the default Reset state of the ACQT<2:0> bits and  
is compatible with devices that do not offer  
programmable acquisition times.  
Table 21-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
TABLE 21-1: TAD vs. DEVICE OPERATING FREQUENCIES  
Maximum Device Frequency  
AD Clock Source (TAD)  
Operation ADCS<2:0>  
PIC18FXXXX  
PIC18LFXXXX(4)  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(3)  
000  
100  
001  
101  
010  
110  
x11  
2.86 MHz  
5.71 MHz  
11.43 MHz  
22.86 MHz  
40.0 MHz  
40.0 MHz  
1.00 MHz(1)  
1.43 kHz  
2.86 MHz  
5.72 MHz  
11.43 MHz  
22.86 MHz  
22.86 MHz  
1.00 MHz(2)  
Note 1: The RC source has a typical TAD time of 1.2 μs.  
2: The RC source has a typical TAD time of 2.5 μs.  
3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D  
accuracy may be out of specification.  
4: Low-power (PIC18LFXXXX) devices only.  
© 2008 Microchip Technology Inc.  
DS39646C-page 277  
PIC18F8722 FAMILY  
21.4 Operation in Power-Managed  
Modes  
21.5 Configuring Analog Port Pins  
The ADCON1, TRISA, TRISF and TRISH registers all  
configure the A/D port pins. The port pins needed as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The selection of the automatic acquisition time and A/D  
conversion clock is determined in part by the clock  
source and frequency while in a power-managed mode.  
If the A/D is expected to operate while the device is in  
The A/D operation is independent of the state of the  
CHS<3:0> bits and the TRIS bits.  
a
power-managed mode, the ACQT<2:0> and  
ADCS<2:0> bits in ADCON2 should be updated in  
accordance with the clock source to be used in that  
mode. After entering the mode, an A/D acquisition or  
conversion may be started. Once started, the device  
should continue to be clocked by the same clock  
source until the conversion has been completed.  
Note 1: When reading the Port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins con-  
figured as digital inputs will convert as  
analog inputs. Analog levels on a digitally  
configured input will be accurately  
converted.  
If desired, the device may be placed into the  
corresponding Idle mode during the conversion. If the  
device clock frequency is less than 1 MHz, the A/D RC  
clock source should be selected.  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
Operation in the Sleep mode requires the A/D FRC  
clock to be selected. If bits ACQT<2:0> are set to ‘000’  
and a conversion is started, the conversion will be  
delayed one instruction cycle to allow execution of the  
SLEEPinstruction and entry to Sleep mode. The IDLEN  
bit (OSCCON<7>) must have already been cleared  
prior to starting the conversion.  
DS39646C-page 278  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can  
be started. After this wait, acquisition on the selected  
channel is automatically started.  
21.6 A/D Conversions  
Figure 21-4 shows the operation of the A/D converter  
after the GO/DONE bit has been set and the  
ACQT<2:0> bits are cleared. A conversion is started  
after the following instruction to allow entry into Sleep  
mode before the conversion begins.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
Figure 21-5 shows the operation of the A/D converter  
after the GO/DONE bit has been set, the ACQT<2:0>  
bits are set to ‘010’ and a 4 TAD acquisition time is  
selected before the conversion starts.  
21.7 Discharge  
The discharge phase is used to initialize the value of  
the capacitor array. The array is discharged before  
every sample. This feature helps to optimize the unity-  
gain amplifier, as the circuit always needs to charge the  
capacitor array, rather than charge/discharge based on  
previous measure values.  
Clearing the GO/DONE bit during a conversion will abort  
the current conversion. The A/D Result register pair will  
NOT be updated with the partially completed A/D  
conversion sample. This means the ADRESH:ADRESL  
registers will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADRESH:ADRESL registers).  
FIGURE 21-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY - TAD  
TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 TAD1  
TAD1 TAD2 TAD3 TAD4 TAD5  
b7  
b6  
b4  
b1  
b0  
b9  
b8  
b5  
b3  
b2  
Conversion starts  
Discharge  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
On the following cycle:  
ADRESH:ADRESL are loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 21-5:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
8
9
10  
b1  
11 TAD1  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Discharge  
Conversion starts  
(Holding capacitor is disconnected)  
Set GO/DONE bit  
(Holding capacitor continues  
acquiring input)  
On the following cycle:  
ADRESH:ADRESL are loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
© 2008 Microchip Technology Inc.  
DS39646C-page 279  
PIC18F8722 FAMILY  
(moving ADRESH:ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition period is either timed by  
the user, or an appropriate TACQ time selected before  
the Special Event Trigger sets the GO/DONE bit (starts  
a conversion).  
21.8 Use of the ECCP2 Trigger  
An A/D conversion can be started by the Special Event  
Trigger of the ECCP2 module. This requires that the  
CCP2M<3:0> bits (CCP2CON<3:0>) be programmed  
as ‘1011’ and that the A/D module is enabled (ADON  
bit is set). When the trigger occurs, the GO/DONE bit  
will be set, starting the A/D acquisition and conversion  
and the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
If the A/D module is not enabled (ADON is cleared), the  
Special Event Trigger will be ignored by the A/D module  
but will still reset the Timer1 (or Timer3) counter.  
TABLE 21-2: REGISTERS ASSOCIATED WITH A/D OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
EEIF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
HLVDIF  
HLVDIE  
HLVDIP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
57  
60  
60  
60  
60  
60  
60  
59  
59  
59  
59  
59  
60  
60  
60  
PSPIF  
PSPIE  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR1IF  
TMR1IE  
TMR1IP  
CCP2IF  
CCP2IE  
CCP2IP  
IPR1  
PIR2  
PIE2  
PSPIP  
OSCFIF  
OSCFIE  
OSCFIP  
EEIE  
IPR2  
EEIP  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
ADCON0  
ADCON1  
ADCON2  
TRISA  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
TRISA4  
TRISF4  
TRISH4  
CHS1  
PCFG3  
ACQT0  
TRISA3  
TRISF3  
TRISH3  
CHS0 GO/DONE ADON  
PCFG2  
ADCS2  
TRISA2  
TRISF2  
TRISH2  
PCFG1  
ADCS1  
TRISA1  
TRISF1  
TRISH1  
PCFG0  
ADCS0  
TRISA0  
TRISF0  
TRISH0  
ADFM  
TRISA7(1) TRISA6(1) TRISA5  
TRISF  
TRISH(2)  
TRISF7  
TRISH7  
TRISF6  
TRISH6  
TRISF5  
TRISH5  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary  
oscillator modes. When disabled, these bits read as ‘0’.  
2: These registers are not implemented on 64-pin devices.  
DS39646C-page 280  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The CMCON register (Register 22-1) selects the  
comparator input and output configuration. Block  
diagrams of the various comparator configurations are  
shown in Figure 22-1.  
22.0 COMPARATOR MODULE  
The analog comparator module contains two  
comparators that can be configured in a variety of  
ways. The inputs can be selected from the analog  
inputs multiplexed with pins RF3 through RF6, as well  
as the on-chip voltage reference (see Section 23.0  
“Comparator Voltage Reference Module”). The  
digital outputs (normal or inverted) are available on  
RF1 and RF2 and can also be read through the control  
register.  
REGISTER 22-1: CMCON: COMPARATOR MODULE CONTROL REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-1  
CM2  
R/W-1  
CM1  
R/W-1  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RF5/AN10/CVREF  
C2 VIN- connects to RF3/AN8  
0= C1 VIN- connects to RF6/AN11  
C2 VIN- connects to RF4/AN9  
bit 2-0  
CM<2:0>: Comparator mode bits  
Figure 22-1 shows the Comparator modes and the CM2:CM0 bit settings.  
© 2008 Microchip Technology Inc.  
DS39646C-page 281  
PIC18F8722 FAMILY  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
Section 28.0 “Electrical Characteristics”.  
22.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors, shown in Figure 22-1. Bits CM<2:0> of the  
CMCON register are used to select these modes. The  
TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change;  
otherwise, a false interrupt may occur.  
a
FIGURE 22-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset  
CM<2:0> = 000  
Comparators Off (POR Default Value)  
CM<2:0> = 111  
RF6/AN11  
A
D
VIN-  
VIN-  
RF6/AN11  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
VIN+  
VIN+  
A
D
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
RF4/AN9  
RF3/AN8  
A
D
D
VIN-  
VIN-  
RF4/AN9  
C2  
VIN+  
VIN+  
A
RF3/AN8  
Two Independent Comparators  
Two Independent Comparators with Outputs  
CM<2:0> = 010  
CM<2:0> = 011  
A
A
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
RF5/AN10  
C1OUT  
C2OUT  
C1OUT  
C2OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF5/AN10/  
CVREF  
RF2/AN7/C1OUT*  
A
A
RF4/AN9  
RF3/AN8  
VIN-  
A
VIN-  
RF4/AN9  
VIN+  
VIN+  
A
RF3/AN8  
RF1/AN6/C2OUT*  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM<2:0> = 100  
CM<2:0> = 101  
RF6/AN11  
A
A
RF6/AN11  
VIN-  
VIN-  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
RF2/AN7/  
C1OUT*  
RF4/AN9  
RF3/AN8  
A
D
VIN-  
A
D
VIN-  
RF4/AN9  
RF3/AN8  
VIN+  
C2OUT  
VIN+  
RF1/AN6/C2OUT*  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM<2:0> = 110  
CM<2:0> = 001  
RF6/AN11  
A
RF6/AN11  
A
A
VIN-  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
VIN+  
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
A
RF4/AN9  
RF3/AN8  
RF2/AN7/  
C1OUT*  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
D
VIN-  
RF4/AN9  
RF3/AN8  
Off (Read as ‘0’)  
C2  
VIN+  
CVREF  
From VREF Module  
A = Analog Input, port reads zeros always  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
* Setting the TRISF<2:1> bits will disable the comparator outputs by configuring the pins as inputs.  
DS39646C-page 282  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
22.3.2  
INTERNAL REFERENCE SIGNAL  
22.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference from the  
comparator voltage reference module. This module is  
described in more detail in Section 23.0 “Comparator  
Voltage Reference Module”.  
A single comparator is shown in Figure 22-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 22-2 represent  
the uncertainty, due to input offsets and response time.  
The internal reference is only available in the mode  
where four inputs are multiplexed to two comparators  
(CM<2:0> = 110). In this mode, the internal voltage  
reference is applied to the VIN+ pin of both  
comparators.  
22.3 Comparator Reference  
22.4 Comparator Response Time  
Depending on the comparator operating mode, either  
an external or internal voltage reference may be used.  
The analog signal present at VIN- is compared to the  
signal at VIN+ and the digital output of the comparator  
is adjusted accordingly (Figure 22-2).  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal  
reference is changed, the maximum delay of the  
internal voltage reference must be considered when  
using the comparator outputs. Otherwise, the  
maximum delay of the comparators should be used  
(see Section 28.0 “Electrical Characteristics”).  
FIGURE 22-2:  
SINGLE COMPARATOR  
VIN+  
VIN-  
+
22.5 Comparator Outputs  
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the  
comparator. The uncertainty of each of the  
comparators is related to the input offset voltage and  
the response time given in the specifications.  
Figure 22-3 shows the comparator output block  
diagram.  
VIN-  
VIN+  
Output  
The TRISF bits will still function as an output enable/  
disable for the RF1 and RF2 pins while in this mode.  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<5:4>).  
22.3.1  
EXTERNAL REFERENCE SIGNAL  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume more current than is specified.  
© 2008 Microchip Technology Inc.  
DS39646C-page 283  
PIC18F8722 FAMILY  
FIGURE 22-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port pins  
CxOUT  
D
Q
Bus  
Data  
CxINV  
EN  
Read CMCON  
D
Q
Set  
CMIF  
bit  
EN  
CL  
From  
Other  
Comparator  
Reset  
22.6 Comparator Interrupts  
22.7 Comparator Operation  
During Sleep  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR2<6>) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing it. Since it is also  
possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional if enabled. This interrupt will  
wake-up the device from Sleep mode, when enabled.  
Each operational comparator will consume additional  
current, as shown in the comparator specifications. To  
minimize power consumption while in Sleep mode, turn  
off the comparators (CM<2:0> = 111) before entering  
Sleep. If the device wakes up from Sleep, the contents  
of the CMCON register are not affected.  
Both the CMIE bit (PIE2<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit (INTCON<7>) must also be set. If  
any of these bits are clear, the interrupt is not enabled,  
though the CMIF bit will still be set if an interrupt  
condition occurs.  
22.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator modules to be turned off  
(CM<2:0> = 111). However, the input pins (RF3  
through RF6) are configured as analog inputs by  
default on device Reset. The I/O configuration for these  
pins is also determined by the setting of the  
PCFG<3:0> bits (ADCON1<3:0>). Therefore, device  
current is minimized when analog inputs are present at  
Reset time.  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR2  
register) interrupt flag may not get set.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit, CMIF.  
A mismatch condition will continue to set flag bit, CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit, CMIF, to be cleared.  
DS39646C-page 284  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kΩ is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
22.9 Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 22-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
FIGURE 22-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
=
=
Input Capacitance  
Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
CMCON  
CVRCON  
INTCON  
PIR2  
C2OUT  
CVREN  
C1OUT  
CVROE  
C2INV  
CVRR  
C1INV  
CVRSS  
INT0IE  
EEIF  
CIS  
CM2  
CM1  
CVR1  
INT0IF  
CM0  
CVR0  
RBIF  
59  
59  
60  
60  
60  
60  
60  
CVR3  
CVR2  
GIE/GIEH PEIE/GIEL TMR0IE  
RBIE  
TMR0IF  
HLVDIF  
OSCFIF  
OSCFIE  
OSCFIP  
TRISF7  
CMIF  
CMIE  
BCL1IF  
BCL1IE  
BCL1IP  
TRISF3  
TMR3IF CCP2IF  
PIE2  
EEIE  
HLVDIE TMR3IE CCP2IE  
HLVDIP TMR3IP CCP2IP  
IPR2  
CMIP  
EEIP  
TRISF  
TRISF6  
TRISF5  
TRISF4  
TRISF2  
TRISF1  
TRISF0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
© 2008 Microchip Technology Inc.  
DS39646C-page 285  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 286  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
primary difference between the ranges is the size of the  
steps selected by the CVREF Selection bits  
(CVR<3:0>), with one range offering finer resolution.  
The equations used to calculate the output of the  
comparator voltage reference are as follows:  
23.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable reference  
voltage. Although its primary purpose is to provide a  
reference for the analog comparators, it may also be  
used independently of them.  
If CVRR = 1:  
CVREF = ((CVR3:CVR0)/24) x (CVRSRC)  
If CVRR = 0:  
A block diagram of the module is shown in Figure 23-1.  
The resistor ladder is segmented to provide two ranges  
of CVREF values and has a power-down function to  
conserve power when the reference is not being used.  
The module’s supply reference can be provided from  
either device VDD/VSS or an external voltage reference.  
CVREF = (CVRSRC/4) + ((CVR3:CVR0)/32) x  
(CVRSRC)  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF- that are multiplexed with RA2 and RA3. The  
voltage source is selected by the CVRSS bit  
(CVRCON<4>).  
23.1 Configuring the Comparator  
Voltage Reference  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output (see Table 28-3 in Section 28.0 “Electrical  
Characteristics”).  
The voltage reference module is controlled through the  
CVRCON register (Register 23-1). The comparator  
voltage reference provides two ranges of output  
voltage, each with 16 distinct levels. The range to be  
used is selected by the CVRR bit (CVRCON<5>). The  
REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
R/W-0  
CVROE(1)  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the RF5/AN10/CVREF pin  
0= CVREF voltage is disconnected from the RF5/AN10/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.667 CVRSRC, with CVRSRC/24 step size (low range)  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = (VREF+) – (VREF-)  
0= Comparator reference source, CVRSRC = AVDD – AVSS  
CVR<3:0>: Comparator VREF Value Selection bits (0 (CVR<3:0>) 15)  
When CVRR = 1:  
CVREF = ((CVR<3:0>)/24) x (CVRSRC)  
When CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC)  
Note 1: CVROE overrides the TRISF<5> bit setting.  
© 2008 Microchip Technology Inc.  
DS39646C-page 287  
PIC18F8722 FAMILY  
FIGURE 23-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
VREF+  
AVDD  
8R  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
23.2 Voltage Reference Accuracy/Error  
23.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 23-1) keep CVREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the CVREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be  
found in Section 28.0 “Electrical Characteristics”.  
A device Reset disables the voltage reference by  
clearing bit, CVREN (CVRCON<7>). This Reset also  
disconnects the reference from the RF5 pin by clearing  
bit, CVROE (CVRCON<6>), and selects the high-  
voltage range by clearing bit, CVRR (CVRCON<5>).  
The CVR value select bits are also cleared.  
23.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RF5 pin if the  
CVROE bit is set. Enabling the voltage reference out-  
put onto RF5 when it is configured as a digital input will  
increase current consumption. Connecting RF5 as a  
digital output with CVRSS enabled will also increase  
current consumption.  
23.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the voltage  
reference output for external connections to VREF.  
Figure 23-2 shows an example buffering technique.  
DS39646C-page 288  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 23-2:  
COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC18FXXXX  
CVREF  
Module  
(1)  
R
+
CVREF Output  
RF5  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the voltage reference Configuration bits, CVRCON<3:0> and CVRCON<5>.  
TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CVRCON  
CMCON  
TRISF  
CVREN  
C2OUT  
TRISF7  
CVROE  
C1OUT  
TRISF6  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR3  
CIS  
CVR2  
CM2  
CVR1  
CM1  
CVR0  
CM0  
59  
59  
60  
TRISF5 TRISF4  
TRISF3  
TRISF2  
TRISF1  
TRISF0  
Legend: Shaded cells are not used with the comparator voltage reference.  
© 2008 Microchip Technology Inc.  
DS39646C-page 289  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 290  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The High/Low-Voltage Detect Control register  
(Register 24-1) completely controls the operation of the  
HLVD module. This allows the circuitry to be “turned  
off” by the user under software control, which  
minimizes the current consumption for the device.  
24.0 HIGH/LOW-VOLTAGE DETECT  
(HLVD)  
The PIC18F8722 family of devices have  
a
High/Low-Voltage Detect module (HLVD). This is a pro-  
grammable circuit that allows the user to specify both a  
device voltage trip point and the direction of change from  
that point. If the device experiences an excursion past  
the trip point in that direction, an interrupt flag is set. If the  
interrupt is enabled, the program execution will branch to  
the interrupt vector address and the software can then  
respond to the interrupt.  
The block diagram for the HLVD module is shown in  
Figure 24-1.  
REGISTER 24-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER  
R/W-0  
U-0  
R-0  
R/W-0  
R/W-0  
HLVDL3(1)  
R/W-1  
HLVDL2(1)  
R/W-0  
HLVDL1(1)  
R/W-1  
HLVDL0(1)  
VDIRMAG  
IRVST  
HLVDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VDIRMAG: Voltage Direction Magnitude Select bit  
1= Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)  
0= Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range  
0= Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage  
range and the HLVD interrupt should not be enabled  
bit 4  
HLVDEN: High/Low-Voltage Detect Power Enable bit  
1= HLVD enabled  
0= HLVD disabled  
bit 3-0  
HLVDL<3:0>: Voltage Detection Limit bits(1)  
1111= External analog input is used (input comes from the HLVDIN pin)  
1110= Maximum setting  
.
.
.
0000= Minimum setting  
Note 1: See Table 28-4 for specifications.  
© 2008 Microchip Technology Inc.  
DS39646C-page 291  
PIC18F8722 FAMILY  
The module is enabled by setting the HLVDEN bit.  
Each time that the HLVD module is enabled, the  
circuitry requires some time to stabilize. The IRVST bit  
is a read-only bit and is used to indicate when the circuit  
is stable. The module can only generate an interrupt  
after the circuit is stable and IRVST is set.  
event, depending on the configuration of the module.  
When the supply voltage is equal to the trip point, the  
voltage tapped off of the resistor array is equal to the  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal by setting the HLVDIF bit.  
The VDIRMAG bit determines the overall operation of  
the module. When VDIRMAG is cleared, the module  
monitors for drops in VDD below a predetermined set  
point. When the bit is set, the module monitors for rises  
in VDD above the set point.  
The trip point voltage is software programmable to any one  
of 16 values. The trip point is selected by programming the  
HLVDL<3:0> bits (HLVDCON<3:0>).  
The HLVD module has an additional feature that allows  
the user to supply the trip voltage to the module from an  
external source. This mode is enabled when bits  
HLVDL<3:0> are set to ‘1111’. In this state, the  
comparator input is multiplexed from the external input  
pin, HLVDIN. This gives users flexibility because it  
allows them to configure the High/Low-Voltage Detect  
interrupt to occur at any voltage in the valid operating  
range.  
24.1 Operation  
When the HLVD module is enabled, a comparator uses  
an internally generated reference voltage as the set  
point. The set point is compared with the trip point,  
where each node in the resistor divider represents a  
trip point voltage. The “trip point” voltage is the voltage  
level at which the device detects a high or low-voltage  
FIGURE 24-1:  
HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)  
Externally Generated  
Trip Point  
VDD  
VDD  
HLVDL<3:0>  
HLVDCON  
Register  
VDIRMAG  
HLVDEN  
HLVDIN  
Set  
HLVDIF  
HLVDEN  
BOREN  
Internal Voltage  
Reference  
1.2V Typical  
DS39646C-page 292  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Depending on the application, the HLVD module does  
not need to be operating constantly. To decrease the  
current requirements, the HLVD circuitry may only  
need to be enabled for short periods where the voltage  
is checked. After doing the check, the HLVD module  
may be disabled.  
24.2 HLVD Setup  
The following steps are needed to set up the HLVD  
module:  
1. Write the value to the HLVDL<3:0> bits that  
selects the desired HLVD trip point.  
2. Set the VDIRMAG bit to detect high voltage  
24.4 HLVD Start-up Time  
(VDIRMAG = 1) or low voltage (VDIRMAG = 0).  
3. Enable the HLVD module by setting the  
HLVDEN bit.  
The internal reference voltage of the HLVD module,  
specified in electrical specification parameter D420  
(Section 28.2 “DC Characteristics”), may be used  
by other internal circuitry, such as the Programmable  
Brown-out Reset. If the HLVD or other circuits using the  
voltage reference are disabled to lower the device’s  
current consumption, the reference voltage circuit will  
require time to become stable before a low or  
high-voltage condition can be reliably detected. This  
start-up time, TIRVST, is an interval that is independent  
of device clock speed. It is specified in electrical  
specification parameter 36 (Table 28-12).  
4. Clear the HLVD interrupt flag (PIR2<2>), which  
may have been set from a previous interrupt.  
5. Enable the HLVD interrupt if interrupts are  
desired by setting the HLVDIE and GIE bits  
(PIE2<2> and INTCON<7>). An interrupt will not  
be generated until the IRVST bit is set.  
24.3 Current Consumption  
When the module is enabled, the HLVD comparator  
and voltage divider are enabled and will consume static  
current. The total current consumption, when enabled,  
is specified in electrical specification parameter D022B  
(Section 28.2 “DC Characteristics”).  
The HLVD interrupt flag is not enabled until TIRVST has  
expired and a stable reference voltage is reached. For  
this reason, brief excursions beyond the set point may  
not be detected during this interval. Refer to  
Figure 24-2 or Figure 24-3.  
FIGURE 24-2:  
LOW-VOLTAGE DETECT OPERATION (VDIRMAG = 0)  
CASE 1:  
HLVDIF may not be set  
VDD  
VHLVD  
HLVDIF  
Enable HLVD  
IRVST  
TIRVST  
HLVDIF cleared in software  
Internal Reference is stable  
CASE 2:  
VDD  
VHLVD  
HLVDIF  
Enable HLVD  
TIRVST  
IRVST  
Internal Reference is stable  
HLVDIF cleared in software  
HLVDIF cleared in software,  
HLVDIF remains set since HLVD condition still exists  
© 2008 Microchip Technology Inc.  
DS39646C-page 293  
PIC18F8722 FAMILY  
FIGURE 24-3:  
HIGH-VOLTAGE DETECT OPERATION (VDIRMAG = 1)  
CASE 1:  
HLVDIF may not be set  
VHLVD  
VDD  
HLVDIF  
Enable HLVD  
IRVST  
TIRVST  
HLVDIF cleared in software  
Internal Reference is stable  
CASE 2:  
VHLVD  
VDD  
HLVDIF  
Enable HLVD  
TIRVST  
IRVST  
Internal Reference is stable  
HLVDIF cleared in software  
HLVDIF cleared in software,  
HLVDIF remains set since HLVD condition still exists  
FIGURE 24-4:  
TYPICAL LOW-VOLTAGE  
DETECT APPLICATION  
24.5 Applications  
In many applications, the ability to detect a drop below  
or rise above a particular threshold is desirable. For  
example, the HLVD module could be periodically  
enabled to detect Universal Serial Bus (USB) attach or  
detach. This assumes the device is powered by a lower  
voltage source than the USB when detached. An attach  
would indicate a high-voltage detect from, for example,  
3.3V to 5V (the voltage on USB) and vice versa for a  
detach. This feature could save a design a few extra  
components and an attach signal (input pin).  
VA  
VB  
For general battery applications, Figure 24-4 shows a  
possible voltage curve. Over time, the device voltage  
decreases. When the device voltage reaches voltage  
VA, the HLVD logic generates an interrupt at time TA.  
The interrupt could cause the execution of an ISR,  
which would allow the application to perform “house-  
keeping tasks” and perform a controlled shutdown  
before the device voltage exits the valid operating  
range at TB. The HLVD, thus, would give the applica-  
tion a time window, represented by the difference  
between TA and TB, to safely exit.  
TB  
VA = HLVD trip point  
VB = Minimum valid device  
operating voltage  
TA  
Time  
Legend:  
DS39646C-page 294  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
24.6 Operation During Sleep  
24.7 Effects of a Reset  
When enabled, the HLVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the HLVDIF bit will be set and the device will  
wake-up from Sleep. Device execution will continue  
from the interrupt vector address if interrupts have  
been globally enabled.  
A device Reset forces all registers to their Reset state.  
This forces the HLVD module to be turned off.  
TABLE 24-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HLVDCON VDIRMAG  
IRVST  
HLVDEN HLVDL3 HLVDL2 HLVDL1 HLVDL0  
58  
57  
60  
60  
60  
60  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
TMR0IF  
HLVDIF  
INT0IF  
RBIF  
OSCFIF  
OSCFIE  
OSCFIP  
CMIF  
CMIE  
CMIP  
BCL1IF  
BCL1IE  
BCL1IP  
TRISA3  
TMR3IF CCP2IF  
PIE2  
EEIE  
HLVDIE TMR3IE CCP2IE  
HLVDIP TMR3IP CCP2IP  
IPR2  
EEIP  
TRISA  
TRISA7(1) TRISA6(1) TRISA5  
TRISA4  
TRISA2  
TRISA1  
TRISA0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the HLVD module.  
Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary  
oscillator modes. When disabled, these bits read as ‘0’.  
© 2008 Microchip Technology Inc.  
DS39646C-page 295  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 296  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
25.1 Configuration Bits  
25.0 SPECIAL FEATURES OF THE  
CPU  
The Configuration bits can be programmed (read as  
0’) or left unprogrammed (read as ‘1’) to select various  
device Configurations. These bits are mapped starting  
at program memory location 300000h.  
The PIC18F8722 family of devices include several fea-  
tures intended to maximize reliability and minimize cost  
through elimination of external components. These are:  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h-3FFFFFh),  
which can only be accessed using table reads and  
table writes.  
• Oscillator Selection  
• Resets:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
Programming the Configuration registers is done in a  
manner similar to programming the Flash memory. The  
WR bit in the EECON1 register starts a self-timed write  
to the Configuration register. In normal operation mode,  
a TBLWT instruction with the TBLPTR pointing to the  
Configuration register sets up the address and the data  
for the Configuration register write. Setting the WR bit  
starts a long write to the Configuration register. The  
Configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell. For additional details  
on Flash programming, refer to Section 6.5 “Writing  
to Flash Program Memory”.  
• ID Locations  
• In-Circuit Serial Programming  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 2.0  
“Oscillator Configurations”.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, the PIC18F8722 family of  
devices has a Watchdog Timer, which is either perma-  
nently enabled via the Configuration bits or software  
controlled (if configured as disabled).  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure. Two-  
Speed Start-up enables code to be executed almost  
immediately on start-up, while the primary clock source  
completes its start-up delays.  
All of these features are enabled and configured by  
setting the appropriate Configuration register bits.  
© 2008 Microchip Technology Inc.  
DS39646C-page 297  
PIC18F8722 FAMILY  
TABLE 25-1: CONFIGURATION BITS AND DEVICE IDs  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
IESO  
FCMEN  
FOSC3  
BORV0  
FOSC2  
FOSC1  
FOSC0  
00-- 0111  
---1 1111  
---1 1111  
1111 --11  
1--- -011  
1000 -1-1  
1111 1111  
11-- ----  
1111 1111  
111- ----  
1111 1111  
-1-- ----  
xxxx xxxx  
xxxx xxxx  
BORV1  
BOREN1 BOREN0 PWRTEN  
WDTPS3 WDTPS2 WDTPS1 WDTPS0  
WDTEN  
PM0  
(5)  
300004h CONFIG3L  
300005h CONFIG3H  
300006h CONFIG4L  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
30000Bh CONFIG6H  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
WAIT  
MCLRE  
DEBUG  
BW  
ABW1  
ABW0  
PM1  
(5)  
LPT1OSC ECCPMX  
CCP2MX  
STVREN  
CP0  
XINST  
BBSIZ1 BBSIZ0  
LVP  
CP2  
CP1  
(1)  
(1)  
(2)  
(2)  
(3)  
CP7  
CP6  
CP5  
CP4  
CP3  
CPD  
CPB  
(1)  
(1)  
(2)  
(2)  
(2)  
(3)  
(3)  
WRT7  
WRT6  
WRT5  
WRTC  
WRT4  
WRT3  
WRT2  
WRT1  
WRT0  
WRTD  
WRTB  
(1)  
(1)  
(2)  
EBRT7  
EBRT6  
EBTR5  
EBTR4  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
(4)  
3FFFFEh DEVID1  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
(4)  
3FFFFFh DEVID2  
Legend:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition.  
Shaded cells are unimplemented, read as ‘0’.  
Note 1: Unimplemented in PIC18F6527/6622/6627/8527/8622/8627 devices.  
2: Unimplemented in PIC18F6527/6622/8527/8622 devices.  
3: Unimplemented in PIC18F6527/8527 devices.  
4: See Register 25-13 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.  
5: Unimplemented in PIC18F6527/6622/6627/6722 devices.  
DS39646C-page 298  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)  
R/P-0  
IESO  
R/P-0  
U-0  
U-0  
R/P-0  
R/P-1  
R/P-1  
R/P-1  
FCMEN  
FOSC3  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
IESO: Internal/External Oscillator Switchover bit  
1= Two-Speed Start-up enabled  
0= Two-Speed Start-up disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
FOSC<3:0>: Oscillator Selection bits  
11xx= External RC oscillator, CLKO function on RA6  
101x= External RC oscillator, CLKO function on RA6  
1001= Internal oscillator block, CLKO function on RA6, port function on RA7  
1000= Internal oscillator block, port function on RA6 and RA7  
0111= External RC oscillator, port function on RA6  
0110= HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)  
0101= EC oscillator, port function on RA6  
0100= EC oscillator, CLKO function on RA6  
0011= External RC oscillator, CLKO function on RA6  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
© 2008 Microchip Technology Inc.  
DS39646C-page 299  
PIC18F8722 FAMILY  
REGISTER 25-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)  
U-0  
U-0  
U-0  
R/P-1  
BORV1(1)  
R/P-1  
BORV0(1)  
R/P-1  
BOREN1(2)  
R/P-1  
R/P-1  
BOREN0(2) PWRTEN(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-3  
Unimplemented: Read as ‘0’  
BORV<1:0>: Brown-out Reset Voltage bits(1)  
11= Minimum setting  
.
.
.
00= Maximum setting  
bit 2-1  
bit 0  
BOREN<1:0>: Brown-out Reset Enable bits(2)  
11= Brown-out Reset enabled in hardware only (SBOREN is disabled)  
10= Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled)  
01= Brown-out Reset enabled and controlled by software (SBOREN is enabled)  
00= Brown-out Reset disabled in hardware and software  
PWRTEN: Power-up Timer Enable bit(2)  
1= PWRT disabled  
0= PWRT enabled  
Note 1: See Section 28.1 “DC Characteristics: Supply Voltage” for specifications.  
2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently con-  
trolled.  
DS39646C-page 300  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
WDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
© 2008 Microchip Technology Inc.  
DS39646C-page 301  
PIC18F8722 FAMILY  
REGISTER 25-4: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)(1)  
R/P-1  
WAIT  
R/P-1  
BW  
R/P-1  
R/P-1  
U-0  
U-0  
R/P-1  
PM1  
R/P-1  
PM0  
ABW1  
ABW0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WAIT: External Bus Data Wait Enable bit  
1= Wait selections are unavailable for table reads and table writes  
0= Wait selections for table reads and table writes are determined by the WAIT<1:0> bits  
bit 6  
BW: Data Bus Width Select bit  
1= 16-bit External Bus mode  
0= 8-bit External Bus mode  
bit 5-4  
ABW<1:0>: Address Bus Width Select bits  
11= 20-bit address bus  
10= 16-bit address bus  
01= 12-bit address bus  
00= 8-bit address bus  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
PM<1:0>: Processor Data Memory Mode Select bits  
11= Microcontroller mode  
10= Microprocessor mode  
01= Microprocessor with Boot Block mode  
00= Extended Microcontroller mode  
Note 1: This register is unimplemented in PIC18F6527/6622/6627/6722 devices.  
DS39646C-page 302  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-5: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-0  
R/P-1  
ECCPMX(1)  
R/P-1  
MCLRE  
LPT1OSC  
CCP2MX  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
MCLRE: MCLR Pin Enable bit  
1= MCLR pin enabled; RG5 input pin disabled  
0= RG5 input pin enabled; MCLR disabled  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
LPT1OSC: Low-Power Timer1 Oscillator Enable bit  
1= Timer1 configured for low-power operation  
0= Timer1 configured for higher power operation  
bit 1  
bit 0  
ECCPMX: ECCP MUX bit(1)  
1= ECCP1/3 (P1B/P1C/P3B/P3C) are multiplexed onto RE6, RE5, RE4 and RE3 respectively  
0= ECCP1/3 (P1B/P1C/P3B/P3C) are multiplexed onto RH7, RH6, RH5 and RH4 respectively  
CCP2MX: CCP2 MUX bit  
1= ECCP2 input/output is multiplexed with RC1  
0= ECCP2 input/output is multiplexed with RB3 in Extended Microcontroller, Microprocessor or  
Microprocessor with Boot Block mode(1). ECCP2 is multiplexed with RE7 in Microcontroller mode.  
Note 1: This feature is only available on PIC18F8527/8622/8627/8722 devices.  
© 2008 Microchip Technology Inc.  
DS39646C-page 303  
PIC18F8722 FAMILY  
REGISTER 25-6: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)  
R/P-1  
R/P-0  
R/P-0  
R/P-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
DEBUG  
XINST  
BBSIZ1  
BBSIZ0  
STVREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug  
bit 6  
XINST: Extended Instruction Set Enable bit  
1= Instruction set extension and Indexed Addressing mode enabled  
0= Instruction set extension and Indexed Addressing mode disabled (Legacy mode)  
bit 5-4  
BBSIZ<1:0>: Boot Block Size Select bits  
11= 4K words (8 Kbytes) boot block size  
10= 4K words (8 Kbytes) boot block size  
01= 2K words (4 Kbytes) boot block size  
00= 1K word (2 Kbytes) boot block size  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVP: Single-Supply ICSP™ Enable bit  
1= Single-Supply ICSP enabled  
0= Single-Supply ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
DS39646C-page 304  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)  
R/C-1  
CP7(1)  
R/C-1  
CP6(1)  
R/C-1  
CP5(2)  
R/C-1  
CP5(2)  
R/C-1  
CP3(3)  
R/C-1  
CP2  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CP7: Code Protection bit(1)  
1= Block 7 (01C000-01FFFFh) not code-protected  
0= Block 7 (01C000-01FFFFh) code-protected  
CP6: Code Protection bit(1)  
1= Block 6 (01BFFF-018000h) not code-protected  
0= Block 6 (01BFFF-018000h) code-protected  
CP5: Code Protection bit(2)  
1= Block 5 (014000-017FFFh) not code-protected  
0= Block 5 (014000-017FFFh) code-protected  
CP4: Code Protection bit(2)  
1= Block 4 (010000-013FFFh) not code-protected  
0= Block 4 (010000-013FFFh) code-protected  
CP3: Code Protection bit(3)  
1= Block 3 (00C000-00FFFFh) not code-protected  
0= Block 3 (00C000-00FFFFh) code-protected  
CP2: Code Protection bit  
1= Block 2 (008000-00BFFFh) not code-protected  
0= Block 2 (008000-00BFFFh) code-protected  
CP1: Code Protection bit  
1= Block 1 (004000-007FFFh) not code-protected  
0= Block 1 (004000-007FFFh) code-protected  
CP0: Code Protection bit  
1= Block 0 (000800, 001000 or 002000(4)-003FFFh) not code-protected  
0= Block 0 (000800, 001000 or 002000(4)-003FFFh) code-protected  
Note 1: Unimplemented in PIC18F6527/6622/6627/8527/8622/8627 devices; maintain this bit set.  
2: Unimplemented in PIC18F6527/6622/8527/8622 devices; maintain this bit set.  
3: Unimplemented in PIC18F6527/8527 devices; maintain this bit set.  
4: Boot block size is determined by the BBSIZ<1:0> bits in CONFIG4L.  
© 2008 Microchip Technology Inc.  
DS39646C-page 305  
PIC18F8722 FAMILY  
REGISTER 25-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
bit 6  
CPB: Boot Block Code Protection bit  
1= Boot block (000000-0007FFh) not code-protected  
0= Boot block (000000-0007FFh) code-protected  
bit 5-0  
Unimplemented: Read as ‘0’  
DS39646C-page 306  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)  
R/C-1  
WRT7(1)  
R/C-1  
WRT6(1)  
R/C-1  
WRT5(2)  
R/C-1  
WRT4(2)  
R/C-1  
WRT3(3)  
R/C-1  
WRT2  
R/C-1  
WRT1  
R/C-1  
WRT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WRT7: Write Protection bit(1)  
1= Block 7 (01C000-01FFFFh) not write-protected  
0= Block 7 (01C000-01FFFFh) write-protected  
WRT6: Write Protection bit(1)  
1= Block 6 (01BFFF-018000h) not write-protected  
0= Block 6 (01BFFF-018000h) write-protected  
WRT5: Write Protection bit(2)  
1= Block 5 (014000-017FFFh) not write-protected  
0= Block 5 (014000-017FFFh) write-protected  
WRT4: Write Protection bit(2)  
1= Block 4 (010000-013FFFh) not write-protected  
0= Block 4 (010000-013FFFh) write-protected  
WRT3: Write Protection bit(3)  
1= Block 3 (00C000-00FFFFh) not write-protected  
0= Block 3 (00C000-00FFFFh) write-protected  
WRT2: Write Protection bit  
1= Block 2 (008000-00BFFFh) not write-protected  
0= Block 2 (008000-00BFFFh) write-protected  
WRT1: Write Protection bit  
1= Block 1 (004000-007FFFh) not write-protected  
0= Block 1 (004000-007FFFh) write-protected  
WRT0: Write Protection bit  
1= Block 0 (000800, 001000 or 002000(4)-003FFFh) not write-protected  
0= Block 0 (000800, 001000 or 002000(4)-003FFFh) write-protected  
Note 1: Unimplemented in PIC18F6527/6622/6627/8527/8622/8627 devices; maintain this bit set.  
2: Unimplemented in PIC18F6527/6622/8527/8622 devices; maintain this bit set.  
3: Unimplemented in PIC18F6527/8527 devices; maintain this bit set.  
4: Boot block size is determined by the BBSIZ<1:0> bits in CONFIG4L.  
© 2008 Microchip Technology Inc.  
DS39646C-page 307  
PIC18F8722 FAMILY  
REGISTER 25-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)  
R/C-1  
R/C-1  
R-1  
WRTC(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
1= Boot block (000000-007FFF, 000FFF or 001FFFh(1)) not write-protected  
0= Boot block (000000-007FFF, 000FFF or 001FFFh(1)) write-protected  
WRTC: Configuration Register Write Protection bit(2)  
1= Configuration registers (300000-3000FFh) not write-protected  
0= Configuration registers (300000-3000FFh) write-protected  
bit 4-0  
Unimplemented: Read as ‘0’  
Note 1: Boot block size is determined by the BBSIZ<1:0> bits in CONFIG4L.  
2: This bit is read-only in normal execution mode; it can be written only in Program mode.  
DS39646C-page 308  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)  
R/C-1  
R/C-1  
R/C-1  
R/C-1  
R/C-1  
R/C-1  
R/C-1  
R/C-1  
EBTR7(1)  
EBTR6(1)  
EBTR5(2)  
EBTR4(2)  
EBTR3(3)  
EBTR2  
EBTR1  
EBTR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EBTR7: Table Read Protection bit(1)  
1= Block 7 (01C000-01FFFFh) not protected from table reads executed in other blocks  
0= Block 7 (01C000-01FFFFh) protected from table reads executed in other blocks  
EBTR6: Table Read Protection bit(1)  
1= Block 6 (018000-01BFFFh) not protected from table reads executed in other blocks  
0= Block 6 (018000-01BFFFh) protected from table reads executed in other blocks  
EBTR5: Table Read Protection bit(2)  
1= Block 5 (014000-017FFFh) not protected from table reads executed in other blocks  
0= Block 5 (014000-017FFFh) protected from table reads executed in other blocks  
EBTR4: Table Read Protection bit(2)  
1= Block 4 (010000-013FFFh) not protected from table reads executed in other blocks  
0= Block 4 (010000-013FFFh) protected from table reads executed in other blocks  
EBTR3: Table Read Protection bit(3)  
1= Block 3 (00C000-00FFFFh) not protected from table reads executed in other blocks  
0= Block 3 (00C000-00FFFFh) protected from table reads executed in other blocks  
EBTR2: Table Read Protection bit  
1= Block 2 (008000-00BFFFh) not protected from table reads executed in other blocks  
0= Block 2 (008000-00BFFFh) protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit  
1= Block 1 (004000-007FFFh) not protected from table reads executed in other blocks  
0= Block 1 (004000-007FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit  
1= Block 0 (000800, 001000 or 002000(4)-003FFFh) not protected from table reads executed in other  
blocks  
0= Block 0 (000800, 001000 or 002000(4)-003FFFh) protected from table reads executed in other  
blocks  
Note 1: Unimplemented in PIC18F6527/6622/6627/8527/8622/8627 devices; maintain this bit set.  
2: Unimplemented in PIC18F6527/6622/8527/8622 devices; maintain this bit set.  
3: Unimplemented in PIC18F6527/8527 devices; maintain this bit set.  
4: Unimplemented in PIC18F6527/8527 devices; maintain this bit set.  
© 2008 Microchip Technology Inc.  
DS39646C-page 309  
PIC18F8722 FAMILY  
REGISTER 25-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)  
U-0  
R/C-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot block (000000-007FFF, 000FFF or 001FFFh(1)) not protected from table reads executed in  
other blocks  
0= Boot block (000000-007FFF, 000FFF or 001FFFh(1)) protected from table reads executed in other  
blocks  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: Boot block size is determined by the BBSIZ<1:0> bits in CONFIG4L.  
DS39646C-page 310  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-13: DEVID1: DEVICE ID REGISTER 1 FOR THE PIC18F8722 FAMILY  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
DEV<2:0>: Device ID bits  
001= PIC18F8722  
111= PIC18F8627  
101= PIC18F8622  
011= PIC18F8527  
000= PIC18F6722  
110= PIC18F6627  
100= PIC18F6622  
010= PIC18F6527  
bit 4-0  
REV<4:0>: Revision ID bits  
These bits are used to indicate the device revision.  
REGISTER 25-14: DEVID2: DEVICE ID REGISTER 2 FOR THE PIC18F8722 FAMILY  
R
R
R
R
R
R
R
R
DEV10(1)  
DEV9(1)  
DEV8(1)  
DEV7(1)  
DEV6(1)  
DEV5(1)  
DEV4(1)  
DEV3(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
DEV<10:3>: Device ID bits(1)  
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.  
0001 0100= PIC18F6722/8722 devices  
0001 0011= PIC18F6527/6622/6627/8527/8622/8627 devices  
Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by  
using the entire DEV<10:0> bit sequence.  
© 2008 Microchip Technology Inc.  
DS39646C-page 311  
PIC18F8722 FAMILY  
25.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For the PIC18F8722 family of devices, the WDT is  
driven by the INTRC source. When the WDT is  
enabled, the clock source is also enabled. The nominal  
WDT period is 4 ms and has the same stability as the  
INTRC oscillator.  
2: Changing the setting of the IRCF bits  
(OSCCON<6:4>) clears the WDT and  
postscaler counts.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
selected by a multiplexor, controlled by bits in  
Configuration Register 2H. Available periods range  
from 4 ms to 131.072 seconds (2.18 minutes). The  
WDT and postscaler are cleared when any of the  
following events occur: a SLEEPor CLRWDTinstruction  
is executed, the IRCF bits (OSCCON<6:4>) are  
changed or a clock failure has occurred.  
3: When a CLRWDT instruction is executed,  
the postscaler count will be cleared.  
25.2.1  
CONTROL REGISTER  
Register 25-15 shows the WDTCON register. This is a  
readable and writable register which contains a control  
bit that allows software to override the WDT enable  
Configuration bit, but only if the Configuration bit has  
disabled the WDT.  
FIGURE 25-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
WDTEN  
WDT Counter  
Wake-up from  
Power-Managed  
Modes  
÷128  
INTRC Source  
Change on IRCF bits  
CLRWDT  
WDT  
Reset  
Reset  
Programmable Postscaler  
1:1 to 1:32,768  
All Device Resets  
4
WDTPS<4:1>  
Sleep  
DS39646C-page 312  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
REGISTER 25-15: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit(1)  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.  
TABLE 25-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
WDTCON  
IPEN  
SBOREN  
RI  
TO  
PD  
POR  
BOR  
56  
SWDTEN  
58  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
© 2008 Microchip Technology Inc.  
DS39646C-page 313  
PIC18F8722 FAMILY  
In all other power-managed modes, Two-Speed Start-  
up is not used. The device will be clocked by the  
currently selected clock source until the primary clock  
source becomes available. The setting of the IESO bit  
is ignored.  
25.3 Two-Speed Start-up  
The Two-Speed Start-up feature helps to minimize the  
latency period from oscillator start-up to code execution  
by allowing the microcontroller to use the INTOSC  
oscillator as a clock source until the primary clock  
source is available. It is enabled by setting the IESO  
Configuration bit.  
25.3.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
Two-Speed Start-up should be enabled only if the  
primary oscillator mode is LP, XT, HS or HSPLL  
(crystal-based modes). Other sources do not require  
an OST start-up delay; for these, Two-Speed Start-up  
should be disabled.  
While using the INTOSC oscillator in Two-Speed Start-  
up, the device still obeys the normal command  
sequences for entering power-managed modes,  
including multiple SLEEP instructions (refer to  
Section 3.1.4 “Multiple Sleep Commands”). In  
practice, this means that user code can change the  
SCS<1:0> bit settings or issue SLEEP instructions  
before the OST times out. This would allow an  
application to briefly wake-up, perform routine  
“housekeeping” tasks and return to Sleep before the  
device starts to operate from the primary oscillator.  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the  
internal oscillator block as the clock source, following  
the time-out of the Power-up Timer after a Power-on  
Reset is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
User code can also check if the primary clock source is  
currently providing the device clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the clock. Otherwise,  
the internal oscillator block is providing the clock during  
wake-up from Reset or Sleep mode.  
To use a higher clock speed on wake-up, the INTOSC  
or postscaler clock sources can be selected to provide  
a higher clock speed by setting bits IRCF<2:0>  
immediately after Reset. For wake-ups from Sleep, the  
INTOSC or postscaler clock sources can be selected  
by setting the IRCF2:0> bits prior to entering Sleep  
mode.  
FIGURE 25-2:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTOSC  
Multiplexor  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition(2)  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
OSTS bit Set  
Wake from Interrupt Event  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2: Clock transition typically occurs within 2-4 TOSC.  
DS39646C-page 314  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
To use a higher clock speed on wake-up, the INTOSC  
or postscaler clock sources can be selected to provide  
a higher clock speed by setting bits, IRCF<2:0>,  
immediately after Reset. For wake-ups from Sleep, the  
INTOSC or postscaler clock sources can be selected  
by setting the IRCF<2:0> bits prior to entering Sleep  
mode.  
25.4 Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) allows the  
microcontroller to continue operation in the event of an  
external oscillator failure by automatically switching the  
device clock to the internal oscillator block. The FSCM  
function is enabled by setting the FCMEN Configuration  
bit.  
The FSCM will detect failures of the primary or second-  
ary clock sources only. If the internal oscillator block  
fails, no failure would be detected, nor would any action  
be possible.  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provide a  
backup clock in the event of a clock failure. Clock  
monitoring (shown in Figure 25-3) is accomplished by  
creating a sample clock signal, which is the INTRC out-  
put divided by 64. This allows ample time between  
FSCM sample clocks for a peripheral clock edge to  
occur. The peripheral device clock and the sample  
clock are presented as inputs to the Clock Monitor latch  
(CM). The CM is set on the falling edge of the device  
clock source, but cleared on the rising edge of the  
sample clock.  
25.4.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a  
separate divider and counter, disabling the WDT has  
no effect on the operation of the INTRC oscillator when  
the FSCM is enabled.  
As already noted, the clock source is switched to the  
INTOSC clock when a clock failure is detected.  
Depending on the frequency selected by the  
IRCF<2:0> bits, this may mean a substantial change in  
the speed of code execution. If the WDT is enabled  
with a small prescale value, a decrease in clock speed  
allows a WDT time-out to occur and a subsequent  
device Reset. For this reason, fail-safe clock events  
also reset the WDT and postscaler, allowing it to start  
timing from when execution speed was changed and  
decreasing the likelihood of an erroneous time-out.  
FIGURE 25-3:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
Peripheral  
Clock  
S
Q
Q
INTRC  
Source  
C
÷ 64  
25.4.2  
EXITING FAIL-SAFE OPERATION  
(32 μs)  
488 Hz  
(2.048 ms)  
The fail-safe condition is terminated by either a device  
Reset or by entering a power-managed mode. On  
Reset, the controller starts the primary clock source  
specified in Configuration Register 1H (with any  
required start-up delays that are required for the  
oscillator mode, such as OST or PLL timer). The  
INTOSC multiplexor provides the device clock until the  
primary clock source becomes ready (similar to a Two-  
Speed Start-up). The clock source is then switched to  
the primary clock (indicated by the OSTS bit in the  
OSCCON register becoming set). The Fail-Safe Clock  
Monitor then resumes monitoring the peripheral clock.  
Clock  
Failure  
Detected  
Clock failure is tested for on the falling edge of the  
sample clock. If a sample clock falling edge occurs  
while CM is still set, a clock failure has been detected  
(Figure 25-4). This causes the following:  
• the FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>);  
• the device clock source is switched to the internal  
oscillator block (OSCCON is not updated to show  
the current clock source – this is the fail-safe  
condition) and  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTOSC multiplexor. The OSCCON register will remain  
in its Reset state until a power-managed mode is  
entered.  
• the WDT is reset.  
During switchover, the postscaler frequency from the  
internal oscillator block may not be sufficiently stable for  
timing sensitive applications. In these cases, it may be  
desirable to select another clock configuration and enter  
an alternate power-managed mode. This can be done to  
attempt a partial recovery or execute a controlled shut-  
down. See Section 3.1.4 “Multiple Sleep Commands”  
and Section 25.3.1 “Special Considerations for  
Using Two-Speed Start-up” for more details.  
© 2008 Microchip Technology Inc.  
DS39646C-page 315  
PIC18F8722 FAMILY  
FIGURE 25-4:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
Device  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The device clock is normally at a much higher frequency than the sample clock. The relative frequencies in this  
example have been chosen for clarity.  
For oscillator modes involving a crystal or resonator  
(HS, HSPLL, LP or XT), the situation is somewhat  
different. Since the oscillator may require a start-up  
time considerably longer than the FCSM sample clock  
time, a false clock failure may be detected. To prevent  
this, the internal oscillator block is automatically config-  
ured as the device clock and functions until the primary  
clock is stable (the OST and PLL timers have timed  
out). This is identical to Two-Speed Start-up mode.  
Once the primary clock is stable, the INTRC returns to  
its role as the FSCM source.  
25.4.3  
FSCM INTERRUPTS IN  
POWER-MANAGED MODES  
By entering a power-managed mode, the clock  
multiplexor selects the clock source selected by the  
OSCCON register. Fail-Safe Monitoring of the power-  
managed clock source resumes in the power-managed  
mode.  
If an oscillator failure occurs during power-managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTOSC multiplexer. An automatic transition  
back to the failed clock source will not occur.  
Note:  
The same logic that prevents false oscilla-  
tor failure interrupts on POR, or wake from  
Sleep, will also prevent the detection of  
the oscillator’s failure to start at all follow-  
ing these events. This can be avoided by  
monitoring the OSTS bit and using a  
timing routine to determine if the oscillator  
is taking too long to start. Even so, no  
oscillator failure interrupt will be flagged.  
If the interrupt is disabled, subsequent interrupts while  
in Idle mode will cause the CPU to begin executing  
instructions while being clocked by the INTOSC  
source.  
25.4.4  
POR OR WAKE FROM SLEEP  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or low-power Sleep mode. When the primary  
device clock is EC, RC or INTRC modes, monitoring  
can begin immediately following these events.  
As noted in Section 25.3.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration and enter an  
alternate power-managed mode while waiting for the  
primary clock to become stable. When the new power-  
managed mode is selected, the primary clock is  
disabled.  
DS39646C-page 316  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Each of the blocks has three code protection bits  
associated with them. They are:  
25.5 Program Verification and  
Code Protection  
• Code-Protect bit (CPn)  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
The user program memory is divided into four blocks  
for PIC18F6527/8527 devices, five blocks for  
PIC18F6622/8622 devices, six blocks for PIC18F6627/  
8627 devices and eight blocks for PIC18F6722/8722  
devices. One of these is a boot block of 2, 4 or  
8 Kbytes. The remainder of the memory is divided into  
blocks on binary boundaries.  
Figure 25-5 shows the program memory organization for  
48, 64, 96 and 128-Kbyte devices and the specific code  
protection bit associated with each block. The actual  
locations of the bits are summarized in Table 25-3.  
FIGURE 25-5:  
CODE-PROTECTED PROGRAM MEMORY FOR THE PIC18F8722 FAMILY  
000000h  
MEMORY SIZE/DEVICE  
Code Memory  
01FFFFh  
128 Kbytes  
96 Kbytes  
64 Kbytes  
48 Kbytes  
(PIC18FX527)  
Address  
Range  
(PIC18FX722)  
(PIC18FX627)  
(PIC18FX622)  
000000h  
0007FFh* or  
000FFFh* or  
001FFFh*  
Boot Block  
Block 0  
Boot Block  
Boot Block  
Block 0  
Boot Block  
Block 0  
Unimplemented  
Read as ‘0’  
000800h* or  
001000h* or  
002000h*  
Block 0  
Block 1  
003FFFh  
004000h  
Block 1  
Block 1  
Block 1  
007FFFh  
008000h  
200000h  
Block 2  
Block 3  
Block 4  
Block 5  
Block 6  
Block 7  
Block 2  
Block 3  
Block 4  
Block 5  
Block 2  
Block 3  
Block 2  
00BFFFh  
00C000h  
Configuration  
and ID  
Space  
00FFFFh  
010000h  
013FFFh  
014000h  
Unimplemented  
Read ‘0’s  
017FFFh  
018000h  
3FFFFFh  
Unimplemented  
Read ‘0’s  
01BFFFh  
01C000h  
Unimplemented  
Read ‘0’s  
01FFFFh  
Note: Sizes of memory areas are not to scale.  
Boot block size is determined by the BBSIZ<1:0> bits in CONFIG4L.  
*
© 2008 Microchip Technology Inc.  
DS39646C-page 317  
PIC18F8722 FAMILY  
TABLE 25-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
300008h CONFIG5L CP7(1)  
300009h CONFIG5H CPD  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CP6(1)  
CP5(2)  
CP4(2)  
CP3(3)  
CP2  
CP1  
CP0  
CPB  
30000Ah CONFIG6L WRT7(1) WRT6(1) WRT5(2) WRT4(2)  
WRT3(3)  
WRT2  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD WRTB WRTC  
30000Ch CONFIG7L EBRT7(1) EBRT6(1) EBTR5(2) EBTR4(2) EBTR3(3)  
30000Dh CONFIG7H EBTRB  
Legend: Shaded cells are unimplemented.  
EBTR2  
EBTR1  
EBTR0  
Note 1: Unimplemented in PIC18F6527/6622/6627/8527/8622/8627 devices; maintain this bit set.  
2: Unimplemented in PIC18F6527/6622/8527/8622 devices; maintain this bit set.  
3: Unimplemented in PIC18F6527/8527 devices; maintain this bit set.  
not allowed to read and will result in reading ‘0’s.  
Figures 25-6 through 25-8 illustrate table write and table  
read protection.  
25.5.1  
PROGRAM MEMORY  
CODE PROTECTION  
The program memory may be read to or written from  
any location using the table read and table write  
instructions. The device ID may be read with table  
reads. The Configuration registers may be read and  
written with the table read and table write instructions.  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code  
protection bits are only set to ‘1’ by a full  
chip erase or block erase function. The full  
chip erase and block erase functions can  
only be initiated via ICSP or an external  
programmer. Refer to the device  
programming specification for more  
information.  
In normal execution mode, the CPn bits have no direct  
effect. CPn bits inhibit external reads and writes. A block  
of user memory may be protected from table writes if the  
WRTn Configuration bit is ‘0’. The EBTRn bits control  
table reads. For a block of user memory with the EBTRn  
bit set to ‘0’, a table read instruction that executes from  
within that block is allowed to read. A table read instruc-  
tion that executes from a location outside of that block is  
FIGURE 25-6:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
WRTB, EBTRB = 11  
000800h  
TBLPTR = 0008FFh  
PC = 003FFEh  
WRT0, EBTR0 = 01  
TBLWT*  
TBLWT*  
003FFFh  
004000h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
007FFFh  
008000h  
PC = 00BFFEh  
00BFFFh  
00C000h  
00FFFFh  
Results: All table writes disabled to Blockn whenever WRTn = 0.  
DS39646C-page 318  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 25-7:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0007FFh  
000800h  
TBLPTR = 0008FFh  
PC = 007FFEh  
WRT0, EBTR0 = 10  
003FFFh  
004000h  
TBLRD*  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
007FFFh  
008000h  
00BFFFh  
00C000h  
WRT3, EBTR3 = 11  
00FFFFh  
Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 25-8:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
0007FFh  
000800h  
TBLPTR = 0008FFh  
PC = 003FFEh  
TBLRD*  
003FFFh  
004000h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
007FFFh  
008000h  
00BFFFh  
00C000h  
00FFFFh  
Results: Table reads permitted within Blockn, even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
© 2008 Microchip Technology Inc.  
DS39646C-page 319  
PIC18F8722 FAMILY  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to RG5/MCLR/VPP, VDD,  
VSS, RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip or one of  
the third party development tool companies.  
25.5.2  
DATA EEPROM  
CODE PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits internal and external writes to data  
EEPROM. The CPU can always read data EEPROM  
under normal operation, regardless of the protection bit  
settings.  
25.9 Single-Supply ICSP Programming  
The LVP Configuration bit enables Single-Supply ICSP  
Programming (formerly known as Low-Voltage ICSP  
Programming or LVP). When Single-Supply Program-  
ming is enabled, the microcontroller can be programmed  
without requiring high voltage being applied to the  
RG5/MCLR/VPP pin, but the RB5/KBI1/PGM pin is then  
dedicated to controlling Program mode entry and is not  
available as a general purpose I/O pin.  
25.5.3  
CONFIGURATION REGISTER  
PROTECTION  
The Configuration registers can be write-protected.  
The WRTC bit controls protection of the Configuration  
registers. In normal execution mode, the WRTC bit is  
readable only. WRTC can only be written via ICSP or  
an external programmer.  
While programming, using single-supply programming  
mode, VDD is applied to the RG5/MCLR/VPP pin as in  
normal execution mode. To enter Programming mode,  
VDD is applied to the PGM pin.  
25.6 ID Locations  
Eight memory locations (200000h-200007h) are  
designated as ID locations, where the user can store  
checksum or other code identification numbers. These  
locations are both readable and writable during normal  
execution through the TBLRD and TBLWT instructions  
or during program/verify. The ID locations can be read  
when the device is code-protected.  
Note 1: High-voltage programming is always  
available, regardless of the state of the  
LVP bit or the PGM pin, by applying VIHH  
to the MCLR pin.  
2: By default, Single-Supply ICSP is  
enabled in unprogrammed devices (as  
supplied from Microchip) and erased  
devices.  
25.7  
In-Circuit Serial Programming  
3: When Single-Supply Programming is  
enabled, the RB5 pin can no longer be  
used as a general purpose I/O pin.  
The PIC18F8722 family of devices can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
4: When LVP is enabled, externally pull the  
PGM pin to VSS to allow normal program  
execution.  
If Single-Supply ICSP Programming mode will not be  
used, the LVP bit can be cleared. RB5/KBI1/PGM then  
becomes available as the digital I/O pin, RB5. The LVP  
bit may be set or cleared only when using standard  
high-voltage programming (VIHH applied to the RG5/  
MCLR/VPP pin). Once LVP has been disabled, only the  
standard high-voltage programming is available and  
must be used to program the device.  
25.8 In-Circuit Debugger  
When the DEBUG Configuration bit is programmed to  
a ‘0’, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB® IDE. When the microcontroller has  
this feature enabled, some resources are not available  
for general use. Table 25-4 shows which resources are  
required by the background debugger.  
Memory that is not code-protected can be erased using  
a block erase, or erased row by row, then written at any  
specified VDD. If code-protected memory is to be  
erased, a block erase is required. If a block erase is to  
be performed when using Low-Voltage Programming,  
the device must be supplied with VDD of 4.5V to 5.5V.  
TABLE 25-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
2 levels  
Stack:  
Program Memory:  
Data Memory:  
512 bytes  
10 bytes  
DS39646C-page 320  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
The literal instructions may use some of the following  
operands:  
26.0 INSTRUCTION SET SUMMARY  
The PIC18F8722 family of devices incorporates the  
standard set of 75 PIC18 core instructions, as well as  
an extended set of 8 new instructions for the optimiza-  
tion of code that is recursive or that utilizes a software  
stack. The extended set is discussed later in this  
section.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
The control instructions may use some of the following  
operands:  
26.1 Standard Instruction Set  
The standard PIC18 instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from these  
PIC MCU instruction sets. Most instructions are a  
single program memory word (16 bits), but there are  
four instructions that require two program memory  
locations.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for four  
double-word instructions. These instructions were  
made double-word to contain the required information  
in 32 bits. In the second word, the 4 MSbs are 1’s. If this  
second word is executed as an instruction (by itself), it  
will execute as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 26-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 26-1 shows the opcode field  
descriptions.  
The double word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 μs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 μs.  
Two-word branch instructions (if true) would take 3 μs.  
1. The file register (specified by ‘f’)  
2. The destination of the result (specified by ‘d’)  
3. The accessed memory (specified by ‘a’)  
The file register designator ‘f’ specifies which file regis-  
ter is to be used by the instruction. The destination  
designator ‘d’ specifies where the result of the  
operation is to be placed. If ‘d’ is zero, the result is  
placed in the WREG register. If ‘d’ is one, the result is  
placed in the file register specified in the instruction.  
Figure 26-1 shows the general formats that the instruc-  
tions can have. All examples use the convention ‘nnh’  
to represent a hexadecimal number.  
The Instruction Set Summary, shown in Table 26-2,  
lists the standard instructions recognized by the  
Microchip MPASMTM Assembler.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Section 26.1.1 “Standard Instruction Set” provides  
a description of each instruction.  
2. The bit in the file register (specified by ‘b’)  
3. The accessed memory (specified by ‘a’)  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register  
designator ‘f’ represents the number of the file in which  
the bit is located.  
© 2008 Microchip Technology Inc.  
DS39646C-page 321  
PIC18F8722 FAMILY  
TABLE 26-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit:  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
Bit address within an 8-bit file register (0 to 7).  
BSR  
Bank Select Register. Used to select the current RAM bank.  
ALU status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
C, DC, Z, OV, N  
d
Destination select bit:  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination: either the WREG register or the specified register file location.  
8-bit Register file address (00h to FFh), or 2-bit FSR designator (0h to 3h).  
12-bit Register file address (000h to FFFh). This is the source address.  
12-bit Register file address (000h to FFFh). This is the destination address.  
Global Interrupt Enable bit.  
f
f
s
d
GIE  
k
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
No Change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions or the direct address for  
Call/Branch and Return instructions.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Power-Down bit.  
PCH  
PCLATH  
PCLATU  
PD  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit:  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
TBLPTR  
TABLAT  
TO  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Time-out bit.  
TOS  
u
Top-of-Stack.  
Unused or Unchanged.  
Watchdog Timer.  
WDT  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for  
compatibility with all Microchip software tools.  
z
z
7-bit offset value for Indirect Addressing of register files (source).  
7-bit offset value for Indirect Addressing of register files (destination).  
Optional argument.  
s
d
{
}
Indicates an indexed address.  
[text]  
(text)  
[expr]<n>  
The contents of text.  
Specifies bit nof the register indicated by the pointer expr.  
Assigned to.  
< >  
Register bit field.  
In the set of.  
User-defined term (font is Courier).  
italics  
DS39646C-page 322  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 26-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
OPCODE f (FILE #)  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
d
a
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 7Fh  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
1111  
n<19:8> (literal)  
S = Fast bit  
15  
11 10  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
© 2008 Microchip Technology Inc.  
DS39646C-page 323  
PIC18F8722 FAMILY  
TABLE 26-2: PIC18FXXXX INSTRUCTION SET  
Mnemonic,  
16-Bit Instruction Word  
MSb LSb  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
BYTE-ORIENTED OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
DECFSZ  
DCFSNZ  
INCF  
f, a  
f, a  
f, a  
Compare f with WREG, Skip = 1 (2 or 3) 0110 001a ffff ffff None  
Compare f with WREG, Skip > 1 (2 or 3) 0110 010a ffff ffff None  
Compare f with WREG, Skip < 1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
f, d, a Decrement f  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1
1, 2, 3, 4  
1, 2  
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination) 2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
0101 01da ffff ffff C, DC, Z, OV, N  
1, 2  
1, 2  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
RRNCF  
SETF  
f, a  
Set f  
1, 2  
SUBFWB f, d, a Subtract f from WREG with  
Borrow  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N 1, 2  
0101 10da ffff ffff C, DC, Z, OV, N  
SUBWFB f, d, a Subtract WREG from f with  
Borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap Nibbles in f  
f, a Test f, Skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
0001 10da ffff ffff Z, N  
1
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39646C-page 324  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 26-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BIT-ORIENTED OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, b, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call Subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to Address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
Pop Top of Return Stack (TOS)  
Push Top of Return Stack (TOS) 1  
Relative Call  
Software Device Reset  
Return from Interrupt Enable  
1
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
2
1
2
s
RETLW  
RETURN  
SLEEP  
k
s
Return with Literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
© 2008 Microchip Technology Inc.  
DS39646C-page 325  
PIC18F8722 FAMILY  
TABLE 26-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add Literal and WREG  
AND Literal with WREG  
Inclusive OR Literal with WREG 1  
Move Literal (12-bit) 2nd word  
to FSR(f) 1st word  
Move Literal to BSR<3:0>  
Move Literal to WREG  
Multiply Literal with WREG  
Return with Literal in WREG  
Subtract WREG from Literal  
1
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR Literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with Post-Increment  
Table Read with Post-Decrement  
Table Read with Pre-Increment  
Table Write  
Table Write with Post-Increment  
Table Write with Post-Decrement  
Table Write with Pre-Increment  
2
5
5
5
5
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39646C-page 326  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
26.1.1  
STANDARD INSTRUCTION SET  
ADDLW  
ADD Literal to W  
ADDWF  
ADD W to f  
Syntax:  
ADDLW  
k
Syntax:  
ADDWF  
f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed in  
W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ADDLW  
15h  
Before Instruction  
10h  
After Instruction  
25h  
W
=
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWF  
REG, 0, 0  
Before Instruction  
W
REG  
=
=
17h  
0C2h  
After Instruction  
W
REG  
=
=
0D9h  
0C2h  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
© 2008 Microchip Technology Inc.  
DS39646C-page 327  
PIC18F8722 FAMILY  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
ADDWFC  
f {,d {,a}}  
Syntax:  
ANDLW  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ANDLW  
05Fh  
Before Instruction  
W
=
A3h  
03h  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWFC  
REG, 0, 1  
Before Instruction  
Carry bit =  
1
02h  
4Dh  
REG  
W
=
=
After Instruction  
Carry bit =  
0
02h  
50h  
REG  
W
=
=
DS39646C-page 328  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
ANDWF  
AND W with f  
BC  
Branch if Carry  
BC  
Syntax:  
ANDWF  
f {,d {,a}}  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ’1’, then the program  
Description:  
The contents of W are ANDed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Words:  
Cycles:  
1
1
No  
No  
No  
operation  
No  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
ANDWF  
REG, 0, 0  
Example:  
HERE  
BC  
5
Before Instruction  
Before Instruction  
W
REG  
=
=
17h  
C2h  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
1;  
W
REG  
=
=
02h  
C2h  
address (HERE + 12)  
0;  
address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39646C-page 329  
PIC18F8722 FAMILY  
BCF  
Bit Clear f  
BN  
Branch if Negative  
BN  
Syntax:  
BCF f, b {,a}  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register ‘f’ is cleared.  
program will branch.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BCF  
FLAG_REG, 7, 0  
Before Instruction  
FLAG_REG = C7h  
After Instruction  
FLAG_REG = 47h  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
DS39646C-page 330  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
BNC  
Branch if Not Carry  
BNC  
BNN  
Branch if Not Negative  
BNN  
Syntax:  
n
Syntax:  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘0’  
(PC) + 2 + 2n PC  
if Negative bit is ‘0’  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
Description:  
If the Negative bit is ‘0’, then the  
will branch.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
0;  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39646C-page 331  
PIC18F8722 FAMILY  
BNOV  
Branch if Not Overflow  
BNOV  
BNZ  
Branch if Not Zero  
BNZ  
Syntax:  
n
Syntax:  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘0’  
(PC) + 2 + 2n PC  
if Zero bit is ‘0’  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
Description:  
If the Zero bit is ‘0’, then the program  
program will branch.  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
DS39646C-page 332  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
BRA  
Unconditional Branch  
BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
BSF f, b {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Add the 2’s complement number ‘2n’ to  
the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
HERE  
BRA Jump  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
Example:  
BSF  
FLAG_REG, 7, 1  
0Ah  
8Ah  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
© 2008 Microchip Technology Inc.  
DS39646C-page 333  
PIC18F8722 FAMILY  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
BTFSC f, b {,a}  
Syntax:  
BTFSS f, b {,a}  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped. If bit ‘b’ is ‘0’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped. If bit ‘b’ is ‘1’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS39646C-page 334  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
BOV  
Syntax:  
BTG f, b {,a}  
Syntax:  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BTG  
PORTC, 4, 0  
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
=
0111 0101 [75h]  
0110 0101 [65h]  
Example:  
HERE  
BOV Jump  
Before Instruction  
=
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39646C-page 335  
PIC18F8722 FAMILY  
BZ  
Branch if Zero  
BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
CALL k {,s}  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
Status Affected:  
None  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
110s  
k7kkk kkkk0  
kkkk8  
1111 k19kkk kkkk  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
(PC + 4) is pushed onto the return  
stack. If ‘s’ = 1, the W, STATUS and  
BSR registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs (default). Then, the  
20-bit value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
No  
No  
No  
No  
Before Instruction  
operation  
operation  
operation  
operation  
PC  
=
address (HERE)  
After Instruction  
Example:  
HERE  
CALL THERE,1  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
1;  
address (Jump)  
Before Instruction  
PC  
After Instruction  
0;  
=
address (HERE)  
address (HERE + 2)  
PC  
=
address (THERE)  
TOS  
WS  
=
=
=
address (HERE + 4)  
W
BSR  
STATUS  
BSRS  
STATUSS =  
DS39646C-page 336  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
CLRF f {,a}  
Syntax:  
CLRWDT  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the post-  
scaler of the WDT. Status bits, TO and  
PD, are set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
No  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
CLRWDT  
Before Instruction  
Q Cycle Activity:  
Q1  
WDT Counter  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
?
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
=
=
=
=
00h  
0
1
PD  
1
Example:  
CLRF  
FLAG_REG,1  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
5Ah  
00h  
© 2008 Microchip Technology Inc.  
DS39646C-page 337  
PIC18F8722 FAMILY  
CPFSEQ  
Compare f with W, Skip if f = W  
COMF  
Complement f  
Syntax:  
CPFSEQ f {,a}  
Syntax:  
COMF f {,d {,a}}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) = (W)  
(unsigned comparison)  
Operation:  
(f) dest  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, 0, 0  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Before Instruction  
Decode  
REG  
=
13h  
After Instruction  
If skip:  
Q1  
REG  
W
=
=
13h  
ECh  
Q2  
No  
Q3  
No  
Q4  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG, 0  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
=
=
HERE  
?
?
W
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS39646C-page 338  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
CPFSGT f {,a}  
Syntax:  
CPFSLT f {,a}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
Operation:  
(f) – (W),  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
Process  
Data  
No  
operation  
1(2)  
register ‘f’  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Decode  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
No  
Q3  
No  
Q4  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
operation  
No  
Q2  
No  
operation  
No  
Q3  
No  
operation  
No  
Q4  
No  
operation  
No  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
operation  
operation  
operation  
operation  
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Example:  
HERE  
CPFSGT REG, 0  
NGREATER  
GREATER  
:
:
After Instruction  
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Address (NLESS)  
After Instruction  
If REG  
PC  
If REG  
PC  
>
=
=
W;  
Address (GREATER)  
W;  
Address (NGREATER)  
© 2008 Microchip Technology Inc.  
DS39646C-page 339  
PIC18F8722 FAMILY  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
DAW  
None  
Syntax:  
DECF f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) – 1 dest  
(W<3:0>) W<3:0>  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> > 9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
C = 1;  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
else  
(W<7:4>) W<7:4>  
Status Affected:  
Encoding:  
C
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in W,  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
DAW  
Before Instruction  
W
=
A5h  
0
Example:  
DECF  
CNT,  
1, 0  
C
=
=
DC  
0
Before Instruction  
After Instruction  
CNT  
Z
=
01h  
0
W
=
=
=
05h  
1
0
=
C
After Instruction  
DC  
CNT  
Z
=
=
00h  
1
Example 2:  
Before Instruction  
W
=
=
=
CEh  
0
0
C
DC  
After Instruction  
W
=
=
=
34h  
1
0
C
DC  
DS39646C-page 340  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if not 0  
Syntax:  
DECFSZ f {,d {,a}}  
Syntax:  
DCFSNZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
Operation:  
(f) – 1 dest,  
skip if result = 0  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
Process  
Data  
Write to  
destination  
register ‘f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
After Instruction  
=
Address (HERE)  
=
?
CNT  
=
CNT – 1  
0;  
If CNT  
=
=
=
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1,  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
PC  
Address (CONTINUE)  
0;  
If CNT  
PC  
Address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39646C-page 341  
PIC18F8722 FAMILY  
GOTO  
Unconditional Branch  
GOTO  
INCF  
Increment f  
Syntax:  
k
Syntax:  
INCF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
0 k 1048575  
k PC<20:1>  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
k7kkk kkkk0  
kkkk8  
1111 k19kkk kkkk  
0010  
10da  
ffff  
ffff  
Description:  
GOTOallows an unconditional branch  
anywhere within entire 2-Mbyte memory  
range. The 20-bit value ‘k’ is loaded into  
PC<20:1>. GOTOis always a two-cycle  
instruction.  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
2
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
GOTO THERE  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
PC  
=
Address (THERE)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
INCF  
CNT, 1, 0  
Before Instruction  
CNT  
Z
=
FFh  
0
=
=
=
C
?
DC  
?
After Instruction  
CNT  
Z
=
00h  
1
=
=
=
C
1
DC  
1
DS39646C-page 342  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
INFSNZ  
Increment f, Skip if not 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
INFSNZ f {,d {,a}}  
Syntax:  
INCFSZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result 0  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0100  
10da  
ffff  
ffff  
0011  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’. (default)  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
=
=
=
0;  
=
=
=
0;  
Address (NZERO)  
0;  
Address (ZERO)  
Address (ZERO)  
0;  
Address (NZERO)  
© 2008 Microchip Technology Inc.  
DS39646C-page 343  
PIC18F8722 FAMILY  
IORLW  
Inclusive OR Literal with W  
IORLW  
IORWF  
Inclusive OR W with f  
Syntax:  
k
Syntax:  
IORWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .OR. k W  
N, Z  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
eight-bit literal ‘k’. The result is placed  
in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
IORLW  
35h  
Before Instruction  
W
=
9Ah  
BFh  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
IORWF RESULT, 0, 1  
Before Instruction  
RESULT =  
13h  
91h  
W
=
After Instruction  
RESULT =  
13h  
93h  
W
=
DS39646C-page 344  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
LFSR f, k  
Syntax:  
MOVF f {,d {,a}}  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff k11kkk  
k7kkk kkkk  
0101  
00da  
ffff  
ffff  
Description:  
The 12-bit literal ‘k’ is loaded into the  
file select register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
Location ‘f’ can be anywhere in the  
256-byte bank.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Example:  
LFSR 2, 3ABh  
After Instruction  
FSR2H  
FSR2L  
=
=
03h  
ABh  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
Example:  
MOVF  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
22h  
FFh  
After Instruction  
REG  
W
=
=
22h  
22h  
© 2008 Microchip Technology Inc.  
DS39646C-page 345  
PIC18F8722 FAMILY  
MOVFF  
Move f to f  
MOVFF f ,f  
MOVLB  
Move Literal to Low Nibble in BSR  
MOVLW  
Syntax:  
Syntax:  
k
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
k BSR  
None  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The eight-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR). The value  
of BSR<7:4> always remains ‘0’  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Description:  
The contents of source register ‘f ’ are  
regardless of the value of k :k .  
s
7 4  
moved to destination register ‘f ’.  
d
Words:  
Cycles:  
1
1
Location of source ‘f ’ can be anywhere  
s
in the 4096-byte data space (000h to  
FFFh) and location of destination ‘f ’  
can also be anywhere from 000h to  
FFFh.  
d
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write literal  
‘k’ to BSR  
Either source or destination can be W  
(a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
Example:  
MOVLB  
5
Before Instruction  
BSR Register =  
After Instruction  
BSR Register =  
02h  
05h  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
33h  
11h  
After Instruction  
REG1  
REG2  
=
=
33h  
33h  
DS39646C-page 346  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
MOVLW  
Move Literal to W  
MOVLW  
MOVWF  
Move W to f  
Syntax:  
k
Syntax:  
MOVWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 k 255  
k W  
None  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight-bit literal ‘k’ is loaded into W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
MOVLW  
5Ah  
After Instruction  
W
=
5Ah  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG, 0  
Before Instruction  
W
REG  
=
=
4Fh  
FFh  
After Instruction  
W
REG  
=
=
4Fh  
4Fh  
© 2008 Microchip Technology Inc.  
DS39646C-page 347  
PIC18F8722 FAMILY  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
MULLW  
k
Syntax:  
MULWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and the  
8-bit literal ‘k’. The 16-bit result is  
placed in PRODH:PRODL register pair.  
PRODH contains the high byte.  
Description:  
An unsigned multiplication is carried out  
between the contents of W and the  
register file location ‘f’. The 16-bit result is  
stored in the PRODH:PRODL register  
pair. PRODH contains the high byte. Both  
W and ‘f’ are unchanged.  
W is unchanged.  
None of the status flags are affected.  
None of the status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result  
is possible but not detected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result is  
possible but not detected.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Example:  
MULLW  
0C4h  
E2h  
Words:  
Cycles:  
1
1
Before Instruction  
W
PRODH  
PRODL  
=
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
E2h  
ADh  
08h  
registers  
PRODH:  
PRODL  
Example:  
MULWF  
REG, 1  
Before Instruction  
W
=
=
=
=
C4h  
REG  
B5h  
?
PRODH  
PRODL  
?
After Instruction  
W
=
=
=
=
C4h  
B5h  
8Ah  
94h  
REG  
PRODH  
PRODL  
DS39646C-page 348  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
NEGF f {,a}  
Syntax:  
NOP  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
None  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in the  
data memory location ‘f’.  
Description:  
Words:  
No operation.  
1
1
Cycles:  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
operation  
Q4  
Decode  
No  
operation  
No  
operation  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
None.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [3Ah]  
1100 0110 [C6h]  
=
© 2008 Microchip Technology Inc.  
DS39646C-page 349  
PIC18F8722 FAMILY  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
POP  
Syntax:  
PUSH  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
(TOS) bit bucket  
(PC + 2) TOS  
None  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implementing a  
software stack by modifying TOS and  
then pushing it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
PUSH  
No  
No  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PC + 2 onto  
return stack  
operation  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)  
TOS  
PC  
=
=
345Ah  
0124h  
=
=
0031A2h  
014332h  
After Instruction  
After Instruction  
PC  
=
=
=
0126h  
0126h  
345Ah  
TOS  
TOS  
PC  
=
=
014332h  
NEW  
Stack (1 level down)  
DS39646C-page 350  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
RCALL  
Relative Call  
RCALL  
RESET  
Reset  
Syntax:  
n
Syntax:  
RESET  
None  
Operands:  
Operation:  
-1024 n 1023  
Operands:  
Operation:  
(PC) + 2 TOS,  
(PC) + 2 + 2n PC  
Reset all registers and flags that are  
affected by a MCLR Reset.  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
PUSH PC  
to stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39646C-page 351  
PIC18F8722 FAMILY  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
RETLW  
Syntax:  
RETFIE {s}  
Syntax:  
k
Operands:  
Operation:  
s [0,1]  
Operands:  
Operation:  
0 k 255  
(TOS) PC,  
k W,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the eight-bit literal ‘k’.  
The program counter is loaded from the  
top of the stack (the return address).  
The high address latch (PCLATH)  
remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low-priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers WS,  
STATUSS and BSRS are loaded into  
their corresponding registers W,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
POP PC  
from stack,  
write to W  
STATUS and BSR. If ‘s’ = 0, no update  
of these registers occurs (default).  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
POP PC  
from stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE  
1
After Interrupt  
:
PC  
=
=
=
=
=
TOS  
WS  
RETLW kn  
; End of table  
W
BSR  
STATUS  
BSRS  
STATUSS  
1
Before Instruction  
GIE/GIEH, PEIE/GIEL  
W
=
07h  
After Instruction  
W
=
value of kn  
DS39646C-page 352  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
RETURN {s}  
Syntax:  
RLCF f {,d {,a}}  
Operands:  
Operation:  
s [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry flag.  
If ‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in register  
‘f’ (default).  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers WS, STATUSS and BSRS are  
loaded into their corresponding  
registers W, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
POP PC  
register f  
C
from stack  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
RETURN  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction:  
PC = TOS  
Example:  
RLCF  
REG, 0, 0  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
1100 1100  
1
© 2008 Microchip Technology Inc.  
DS39646C-page 353  
PIC18F8722 FAMILY  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
RLNCF f {,d {,a}}  
Syntax:  
RRCF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, 0, 0  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39646C-page 354  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
RRNCF f {,d {,a}}  
Syntax:  
SETF f {,a}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If ‘a’  
is ‘1’, then the bank will be selected as  
per the BSR value (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG,1  
Q Cycle Activity:  
Q1  
Before Instruction  
REG  
After Instruction  
REG  
=
=
5Ah  
FFh  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
© 2008 Microchip Technology Inc.  
DS39646C-page 355  
PIC18F8722 FAMILY  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
SLEEP  
None  
Syntax:  
SUBFWB f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored in  
W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’ (default).  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. The Watchdog Timer and its  
postscaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Words:  
Cycles:  
1
1
Example:  
SLEEP  
Before Instruction  
TO  
PD  
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
TO  
PD  
=
=
1 †  
0
Example 1:  
SUBFWB  
REG, 1, 0  
If WDT causes wake-up, this bit is cleared.  
Before Instruction  
REG  
W
C
=
=
=
3
2
1
After Instruction  
REG  
W
C
=
FF  
2
=
=
=
=
0
Z
0
1
N
; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
=
2
3
1
0
=
=
=
=
Z
N
0
; result is positive  
Example 3:  
Before Instruction  
SUBFWB  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
=
0
2
1
1
0
=
=
=
=
Z
; result is zero  
N
DS39646C-page 356  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
SUBLW  
Subtract W from literal  
SUBLW  
SUBWF  
Subtract W from f  
Syntax:  
k
Syntax:  
SUBWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
Words:  
Cycles:  
1
1
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’ (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example 1:  
SUBLW 02h  
Before Instruction  
W
C
=
=
01h  
?
After Instruction  
W
C
Z
=
01h  
=
=
=
1
0
0
; result is positive  
Words:  
Cycles:  
1
1
N
Example 2:  
SUBLW 02h  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
C
=
=
02h  
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
C
Z
=
00h  
Example 1:  
SUBWF  
REG, 1, 0  
=
=
=
1
1
0
; result is zero  
Before Instruction  
N
REG  
W
C
=
=
=
3
2
?
Example 3:  
SUBLW 02h  
Before Instruction  
After Instruction  
W
C
=
=
03h  
?
REG  
W
C
=
1
2
1
0
0
=
=
=
=
; result is positive  
After Instruction  
Z
W
C
Z
=
FFh ; (2’s complement)  
N
=
=
=
0
0
1
; result is negative  
Example 2:  
Before Instruction  
SUBWF  
REG, 0, 0  
N
REG  
W
C
=
=
=
2
2
?
After Instruction  
REG  
W
C
=
2
0
1
1
0
=
=
=
=
; result is zero  
Z
N
Example 3:  
Before Instruction  
SUBWF  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
?
After Instruction  
REG  
W
C
=
FFh ;(2’s complement)  
2
0
0
1
=
=
=
=
; result is negative  
Z
N
© 2008 Microchip Technology Inc.  
DS39646C-page 357  
PIC18F8722 FAMILY  
SUBWFB  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
SUBWFB f {,d {,a}}  
Syntax:  
SWAPF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0101  
10da  
ffff  
ffff  
Status Affected:  
Encoding:  
None  
Description:  
Subtract W and the Carry flag (borrow)  
from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Decode  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
REG  
W
C
=
=
=
19h  
0Dh  
1
(0001 1001)  
(0000 1101)  
Example:  
SWAPF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
=
53h  
35h  
After Instruction  
REG  
W
C
=
0Ch  
0Dh  
1
(0000 1011)  
(0000 1101)  
=
=
=
=
REG  
=
Z
0
N
0
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, 0, 0  
REG  
W
C
=
=
=
1Bh  
1Ah  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
=
1Bh  
00h  
1
(0001 1011)  
=
=
=
=
Z
1
; result is zero  
N
0
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
W
C
=
=
=
03h  
0Eh  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
F5h  
(1111 0100)  
; [2’s comp]  
W
C
Z
=
=
=
=
0Eh  
0
0
1
(0000 1101)  
N
; result is negative  
DS39646C-page 358  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
Syntax:  
TBLRD ( *; *+; *-; +*)  
None  
Example 1:  
TBLRD *+ ;  
Operands:  
Operation:  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(00A356h)  
=
=
=
55h  
00A356h  
34h  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1 TBLPTR  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1 TBLPTR  
if TBLRD +*,  
(TBLPTR) + 1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT  
After Instruction  
TABLAT  
TBLPTR  
=
=
34h  
00A357h  
Example 2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(01A357h)  
MEMORY(01A358h)  
After Instruction  
=
=
=
=
AAh  
01A357h  
12h  
34h  
TABLAT  
TBLPTR  
=
=
34h  
01A358h  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR<0> = 0:Least Significant Byte of  
Program Memory Word  
TBLPTR<0> = 1:Most Significant Byte of  
Program Memory Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
© 2008 Microchip Technology Inc.  
DS39646C-page 359  
PIC18F8722 FAMILY  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
TBLWT ( *; *+; *-; +*)  
None  
Example 1:  
TBLWT *+;  
Operands:  
Operation:  
Before Instruction  
if TBLWT*,  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A356h  
(TABLAT) Holding Register;  
TBLPTR – No Change  
if TBLWT*+,  
(TABLAT) Holding Register;  
(TBLPTR) + 1 TBLPTR  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) – 1 TBLPTR  
if TBLWT+*,  
(TBLPTR) + 1 TBLPTR;  
(TABLAT) Holding Register  
=
FFh  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A357h  
=
55h  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
34h  
01389Ah  
HOLDING REGISTER  
(01389Ah)  
Status Affected: None  
=
=
FFh  
FFh  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
HOLDING REGISTER  
(01389Bh)  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(01389Ah)  
HOLDING REGISTER  
(01389Bh)  
=
=
34h  
01389Bh  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program Memory  
(P.M.). (Refer to Section 5.0 “Memory  
Organization” for additional details on  
programming Flash memory.)  
=
=
FFh  
34h  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2-Mbyte address range.  
The LSb of the TBLPTR selects which  
byte of the program memory location to  
access.  
TBLPTR<0> = 0:Least Significant Byte of  
Program Memory Word  
TBLPTR<0> = 1:Most Significant Byte of  
Program Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
Decode  
operation operation operation  
No  
No No No  
operation operation operation operation  
(Read  
TABLAT)  
(Write to  
Holding  
Register)  
DS39646C-page 360  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
XORLW  
Syntax:  
TSTFSZ f {,a}  
Syntax:  
k
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
XORLW  
0AFh  
Before Instruction  
W
=
B5h  
1Ah  
After Instruction  
Words:  
Cycles:  
1
W
=
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
PC  
If CNT  
PC  
=
=
=
00h,  
Address (ZERO)  
00h,  
Address (NZERO)  
© 2008 Microchip Technology Inc.  
DS39646C-page 361  
PIC18F8722 FAMILY  
XORWF  
Exclusive OR W with f  
Syntax:  
XORWF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in the register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
AFh  
B5h  
After Instruction  
REG  
W
=
=
1Ah  
B5h  
DS39646C-page 362  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
A summary of the instructions in the extended instruc-  
tion set is provided in Table 26-3. Detailed descriptions  
are provided in Section 26.2.2 “Extended Instruction  
Set”. The opcode field descriptions in Table 26-1  
(page 322) apply to both the standard and extended  
PIC18 instruction sets.  
26.2 Extended Instruction Set  
In addition to the standard 75 instructions of the PIC18  
instruction set, the PIC18F8722 family of devices also  
provide an optional extension to the core CPU function-  
ality. The added features include eight additional  
instructions that augment Indirect and Indexed  
Addressing operations and the implementation of  
Indexed Literal Offset Addressing for many of the  
standard PIC18 instructions.  
Note:  
The instruction set extension and the  
Indexed Literal Offset Addressing mode  
were designed for optimizing applications  
written in C; the user may likely never use  
these instructions directly in assembler.  
The syntax for these commands is  
provided as a reference for users who may  
be reviewing code that has been  
generated by a compiler.  
The additional features of the extended instruction set  
are enabled by default. To enable them, users must set  
the XINST Configuration bit.  
The instructions in the extended set can all be  
classified as literal operations, which either manipulate  
the File Select Registers, or use them for Indexed  
Addressing. Two of the instructions, ADDFSR and  
SUBFSR, each have an additional special instantiation  
for using FSR2. These versions (ADDULNK and  
SUBULNK) allow for automatic return after execution.  
26.2.1  
EXTENDED INSTRUCTION SYNTAX  
Most of the extended instructions use indexed argu-  
ments, using one of the File Select Registers and some  
offset to specify a source or destination register. When  
an argument for an instruction serves as part of  
Indexed Addressing, it is enclosed in square brackets  
(“[ ]”). This is done to indicate that the argument is used  
as an index or offset. The MPASM™ Assembler will  
flag an error if it determines that an index or offset value  
is not bracketed.  
The extended instructions are specifically implemented  
to optimize re-entrant program code (that is, code that  
is recursive or that uses a software stack) written in  
high-level languages, particularly C. Among other  
things, they allow users working in high-level  
languages to perform certain operations on data  
structures more efficiently. These include:  
When the extended instruction set is enabled, brackets  
are also used to indicate index arguments in  
byte-oriented and bit-oriented instructions. This is in  
addition to other changes in their syntax. For more  
details, see Section 26.2.3.1 “Extended Instruction  
Syntax with Standard PIC18 Commands”.  
• dynamic allocation and deallocation of software  
stack space when entering and leaving  
subroutines  
• function pointer invocation  
• software Stack Pointer manipulation  
• manipulation of variables located in a software  
stack  
Note:  
In the past, square brackets have been  
used to denote optional arguments in the  
PIC18 and earlier instruction sets. In this  
text and going forward, optional  
arguments are denoted by braces (“{ }”).  
TABLE 26-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
ADDFSR  
ADDULNK  
CALLW  
f, k  
k
Add Literal to FSR  
Add Literal to FSR2 and Return  
Call Subroutine using WREG  
1
2
2
2
1110 1000 ffkk kkkk  
1110 1000 11kk kkkk  
0000 0000 0001 0100  
1110 1011 0zzz zzzz  
1111 ffff ffff ffff  
1110 1011 1zzz zzzz  
1111 xxxx xzzz zzzz  
1110 1010 kkkk kkkk  
None  
None  
None  
None  
MOVSF  
zs, fd Move zs (source) to 1st word  
fd (destination) 2nd word  
zs, zd Move zs (source) to 1st word  
zd (destination) 2nd word  
MOVSS  
PUSHL  
2
1
None  
None  
k
Store Literal at FSR2,  
Decrement FSR2  
SUBFSR  
SUBULNK  
f, k  
k
Subtract Literal from FSR  
Subtract Literal from FSR2 and  
Return  
1
2
1110 1001 ffkk kkkk  
1110 1001 11kk kkkk  
None  
None  
© 2008 Microchip Technology Inc.  
DS39646C-page 363  
PIC18F8722 FAMILY  
26.2.2  
EXTENDED INSTRUCTION SET  
ADDFSR  
Add Literal to FSR  
ADDULNK  
Add Literal to FSR2 and Return  
Syntax:  
ADDFSR f, k  
Syntax:  
ADDULNK k  
Operands:  
0 k 63  
f [ 0, 1, 2 ]  
Operands:  
Operation:  
0 k 63  
FSR2 + k FSR2,  
(TOS) PC  
None  
Operation:  
FSR(f) + k FSR(f)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
1000  
ffkk  
kkkk  
1110  
1000  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of the FSR specified by ‘f’.  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
The instruction takes two cycles to  
execute; a NOPis performed during  
the second cycle.  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
This may be thought of as a special  
case of the ADDFSRinstruction,  
where f = 3 (binary ‘11’); it operates  
only on FSR2.  
Example:  
ADDFSR 2, 23h  
Words:  
1
2
Before Instruction  
FSR2  
After Instruction  
FSR2  
Cycles:  
=
03FFh  
0422h  
Q Cycle Activity:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
ADDULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
0422h  
(TOS)  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
DS39646C-page 364  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
CALLW  
Subroutine Call using WREG  
MOVSF  
Move Indexed to f  
Syntax:  
CALLW  
None  
Syntax:  
MOVSF [z ], f  
s
d
Operands:  
Operation:  
Operands:  
0 z 127  
s
0 f 4095  
d
(PC + 2) TOS,  
(W) PCL,  
Operation:  
((FSR2) + z ) f  
s
d
(PCLATH) PCH,  
(PCLATU) PCU  
Status Affected:  
None  
Encoding:  
1st word (source)  
2nd word (destin.)  
Status Affected:  
Encoding:  
None  
1110  
1111  
1011  
ffff  
0zzz  
ffff  
zzzzs  
ffffd  
0000  
0000  
0001  
0100  
Description  
First, the return address (PC + 2) is  
pushed onto the return stack. Next, the  
contents of W are written to PCL; the  
existing value is discarded. Then, the  
contents of PCLATH and PCLATU are  
latched into PCH and PCU,  
respectively. The second cycle is  
executed as a NOPinstruction while the  
new next instruction is fetched.  
Description:  
The contents of the source register are  
moved to destination register ‘f ’. The  
d
actual address of the source register is  
determined by adding the 7-bit literal  
offset ‘z ’, in the first word, to the value  
s
of FSR2. The address of the destination  
register is specified by the 12-bit literal  
‘f ’ in the second word. Both addresses  
d
can be anywhere in the 4096-byte data  
space (000h to FFFh).  
Unlike CALL, there is no option to  
update W, STATUS or BSR.  
The MOVSFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Words:  
Cycles:  
1
2
If the resultant source address points to  
an indirect addressing register, the  
value returned will be 00h.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
WREG  
Push PC to  
stack  
No  
operation  
Words:  
Cycles:  
2
2
No  
No  
No  
No  
Q Cycle Activity:  
Q1  
operation  
operation  
operation  
operation  
Q2  
Q3  
Q4  
Decode  
Determine  
source addr source addr source reg  
Determine  
Read  
Example:  
HERE  
CALLW  
Before Instruction  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
PC  
=
address (HERE)  
PCLATH =  
PCLATU =  
10h  
00h  
06h  
No dummy  
read  
W
=
After Instruction  
PC  
=
001006h  
TOS  
=
address (HERE + 2)  
Example:  
MOVSF  
[05h], REG2  
PCLATH =  
PCLATU =  
W
10h  
00h  
06h  
Before Instruction  
=
FSR2  
=
80h  
33h  
Contents  
of 85h  
REG2  
=
=
11h  
After Instruction  
FSR2  
=
80h  
Contents  
of 85h  
REG2  
=
=
33h  
33h  
© 2008 Microchip Technology Inc.  
DS39646C-page 365  
PIC18F8722 FAMILY  
MOVSS  
Move Indexed to Indexed  
PUSHL  
Store Literal at FSR2, Decrement FSR2  
Syntax:  
MOVSS [z ], [z ]  
Syntax:  
PUSHL k  
s
d
Operands:  
0 z 127  
s
Operands:  
Operation:  
0 k 255  
0 z 127  
d
k (FSR2),  
FSR2 – 1FSR2  
Operation:  
((FSR2) + z ) ((FSR2) + z )  
s d  
Status Affected:  
None  
Status Affected:  
Encoding:  
None  
Encoding:  
1st word (source)  
2nd word (dest.)  
1111  
1010  
kkkk  
kkkk  
1110  
1111  
1011  
xxxx  
1zzz  
xzzz  
zzzzs  
zzzzd  
Description:  
The 8-bit literal ‘k’ is written to the data  
memory address specified by FSR2.  
FSR2 is decremented by 1 after the  
operation.  
Description  
The contents of the source register are  
moved to the destination register. The  
addresses of the source and destination  
registers are determined by adding the  
This instruction allows users to push  
values onto a software stack.  
7-bit literal offsets ‘z ’ or ‘z ’,  
s
d
respectively, to the value of FSR2. Both  
registers can be located anywhere in  
the 4096-byte data memory space  
(000h to FFFh).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
The MOVSSinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
data  
Write to  
destination  
If the resultant source address points to  
an Indirect Addressing register, the  
value returned will be 00h. If the  
Example:  
PUSHL 08h  
resultant destination address points to  
an Indirect Addressing register, the  
instruction will execute as a NOP.  
Before Instruction  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01ECh  
00h  
Words:  
2
2
After Instruction  
Cycles:  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01EBh  
08h  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Decode  
Determine  
dest addr  
Determine  
dest addr  
Write  
to dest reg  
Example:  
MOVSS [05h], [06h]  
Before Instruction  
FSR2  
=
=
=
80h  
33h  
11h  
Contents  
of 85h  
Contents  
of 86h  
After Instruction  
FSR2  
=
=
=
80h  
33h  
33h  
Contents  
of 85h  
Contents  
of 86h  
DS39646C-page 366  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
SUBFSR  
Subtract Literal from FSR  
SUBULNK  
Subtract Literal from FSR2 and Return  
Syntax:  
SUBFSR f, k  
0 k 63  
Syntax:  
SUBULNK k  
Operands:  
Operands:  
Operation:  
0 k 63  
f [ 0, 1, 2 ]  
FSRf – k FSRf  
None  
FSR2 – k FSR2  
(TOS) PC  
Operation:  
Status Affected:  
Encoding:  
Status Affected: None  
1110  
1001  
ffkk  
kkkk  
Encoding:  
1110  
1001  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is subtracted from  
the contents of the FSR specified  
by ‘f’.  
Description:  
The 6-bit literal ‘k’ is subtracted from the  
contents of the FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
The instruction takes two cycles to  
execute; a NOPis performed during the  
second cycle.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
This may be thought of as a special case  
of the SUBFSRinstruction, where f = 3  
(binary ‘11’); it operates only on FSR2.  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
1
2
Example:  
SUBFSR 2, 23h  
03FFh  
Cycles:  
Before Instruction  
FSR2  
After Instruction  
FSR2  
Q Cycle Activity:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
=
03DCh  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
SUBULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
03DCh  
(TOS)  
© 2008 Microchip Technology Inc.  
DS39646C-page 367  
PIC18F8722 FAMILY  
26.2.3  
BYTE-ORIENTED AND  
BIT-ORIENTED INSTRUCTIONS IN  
INDEXED LITERAL OFFSET MODE  
26.2.3.1  
Extended Instruction Syntax with  
Standard PIC18 Commands  
When the extended instruction set is enabled, the file  
register argument ‘f’ in the standard byte-oriented and  
bit-oriented commands is replaced with the literal offset  
value ‘k’. As already noted, this occurs only when ‘f’ is  
less than or equal to 5Fh. When an offset value is used,  
it must be indicated by square brackets (“[ ]”). As with  
the extended instructions, the use of brackets indicates  
to the compiler that the value is to be interpreted as an  
index or an offset. Omitting the brackets, or using a  
value greater than 5Fh within the brackets, will  
generate an error in the MPASM Assembler.  
Note: Enabling the PIC18 instruction set exten-  
sion may cause legacy applications to  
behave erratically or fail entirely.  
In addition to eight new commands in the extended set,  
enabling the extended instruction set also enables  
Indexed Literal Offset Addressing (Section 5.5.1  
“Indexed Addressing with Literal Offset”). This has  
a significant impact on the way that many commands of  
the standard PIC18 instruction set are interpreted.  
When the extended set is disabled, addresses embed-  
ded in opcodes are treated as literal memory locations:  
either as a location in the Access Bank (a = 0) or in a  
GPR bank designated by the BSR (a = 1). When the  
extended instruction set is enabled and a = 0, however,  
a file register argument of 5Fh or less is interpreted as  
an offset from the pointer value in FSR2 and not as a  
literal address. For practical purposes, this means that  
all instructions that use the Access RAM bit as an  
argument – that is, all byte-oriented and bit-oriented  
instructions, or almost half of the core PIC18 instruc-  
tions – may behave differently when the extended  
instruction set is enabled.  
If the index argument is properly bracketed for Indexed  
Literal Offset Addressing, the Access RAM argument is  
never specified; it will automatically be assumed to be  
0’. This is in contrast to standard operation (extended  
instruction set disabled), when ‘a’ is set on the basis of  
the target address. Declaring the Access RAM bit in  
this mode will also generate an error in the MPASM  
Assembler.  
The destination argument ‘d’ functions as before.  
In the latest versions of the MPASM Assembler,  
language support for the extended instruction set must  
be explicitly invoked. This is done with either the  
command line option, /y, or the PE directive in the  
source listing.  
When the content of FSR2 is 00h, the boundaries of the  
Access RAM are essentially remapped to their original  
values. This may be useful in creating  
backward-compatible code. If this technique is used, it  
may be necessary to save the value of FSR2 and  
restore it when moving back and forth between C and  
assembly routines in order to preserve the Stack  
Pointer. Users must also keep in mind the syntax  
requirements of the extended instruction set (see  
Section 26.2.3.1 “Extended Instruction Syntax with  
Standard PIC18 Commands”).  
26.2.4  
CONSIDERATIONS WHEN  
ENABLING THE EXTENDED  
INSTRUCTION SET  
It is important to note that the extensions to the instruc-  
tion set may not be beneficial to all users. In particular,  
users who are not writing code that uses a software  
stack may not benefit from using the extensions to the  
instruction set.  
Although the Indexed Literal Offset Addressing mode  
can be very useful for dynamic stack and pointer  
manipulation, it can also be very annoying if a simple  
arithmetic operation is carried out on the wrong  
register. Users who are accustomed to the PIC18 pro-  
gramming must keep in mind that, when the extended  
instruction set is enabled, register addresses of 5Fh or  
less are used for Indexed Literal Offset Addressing.  
Additionally, the Indexed Literal Offset Addressing  
mode may create issues with legacy applications  
written to the PIC18 assembler. This is because  
instructions in the legacy code may attempt to address  
registers in the Access Bank below 5Fh. Since these  
addresses are interpreted as literal offsets to FSR2  
when the instruction set extension is enabled, the  
application may read or write to the wrong data  
addresses.  
Representative examples of typical byte-oriented and  
bit-oriented instructions in the Indexed Literal Offset  
Addressing mode are provided on the following page to  
show how execution is affected. The operand condi-  
tions shown in the examples are applicable to all  
instructions of these types.  
When porting an application to the PIC18F8722 family,  
it is very important to consider the type of code. A large,  
re-entrant application that is written in C and would  
benefit from efficient compilation will do well when  
using the instruction set extensions. Legacy applica-  
tions that heavily use the Access Bank will most likely  
not benefit from using the extended instruction set.  
DS39646C-page 368  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
ADD W to Indexed  
(Indexed Literal Offset mode)  
Bit Set Indexed  
(Indexed Literal Offset mode)  
ADDWF  
BSF  
Syntax:  
ADDWF  
[k] {,d}  
Syntax:  
BSF [k], b  
Operands:  
0 k 95  
d [0,1]  
Operands:  
0 f 95  
0 b 7  
Operation:  
(W) + ((FSR2) + k) dest  
Operation:  
1 ((FSR2) + k)<b>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0010  
01d0  
kkkk  
kkkk  
1000  
bbb0  
kkkk  
kkkk  
Description:  
The contents of W are added to the  
contents of the register indicated by  
FSR2, offset by the value ‘k’.  
Description:  
Bit ‘b’ of the register indicated by FSR2,  
offset by the value ‘k’, is set.  
Words:  
Cycles:  
1
1
If ‘d’ is ‘0’, the result is stored in W. If ‘d’  
is ‘1’, the result is stored back in  
register ‘f’ (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Example:  
BSF  
[FLAG_OFST], 7  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write to  
destination  
Before Instruction  
FLAG_OFST  
FSR2  
=
=
0Ah  
0A00h  
Contents  
of 0A0Ah  
After Instruction  
Example:  
ADDWF  
[OFST],0  
=
55h  
D5h  
Before Instruction  
W
OFST  
FSR2  
=
=
=
17h  
Contents  
of 0A0Ah  
2Ch  
=
0A00h  
Contents  
of 0A2Ch  
=
20h  
After Instruction  
Set Indexed  
(Indexed Literal Offset mode)  
SETF  
W
=
=
37h  
20h  
Contents  
of 0A2Ch  
Syntax:  
SETF [k]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 95  
FFh ((FSR2) + k)  
None  
0110  
1000  
kkkk  
kkkk  
The contents of the register indicated by  
FSR2, offset by ‘k’, are set to FFh.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write  
register  
Example:  
SETF  
[OFST]  
2Ch  
Before Instruction  
OFST  
FSR2  
=
=
0A00h  
Contents  
of 0A2Ch  
=
00h  
After Instruction  
Contents  
of 0A2Ch  
=
FFh  
© 2008 Microchip Technology Inc.  
DS39646C-page 369  
PIC18F8722 FAMILY  
To develop software for the extended instruction set,  
the user must enable support for the instructions and  
the Indexed Addressing mode in their language tool(s).  
Depending on the environment being used, this may be  
done in several ways:  
26.2.5  
SPECIAL CONSIDERATIONS WITH  
MICROCHIP MPLAB® IDE TOOLS  
The latest versions of Microchip’s software tools have  
been designed to fully support the extended instruction  
set for the PIC18F8722 family. This includes the  
MPLAB C18 C Compiler, MPASM assembly language  
and MPLAB Integrated Development Environment  
(IDE).  
• A menu option or dialog box within the  
environment that allows the user to configure the  
language tool and its settings for the project  
• A command line option  
When selecting  
a
target device for software  
• A directive in the source code  
development, MPLAB IDE will automatically set default  
Configuration bits for that device. The default setting for  
the XINST Configuration is ‘0’, disabling the extended  
instruction set and Indexed Literal Offset Addressing  
mode. For proper execution of applications developed  
to take advantage of the extended instruction set,  
XINST must be set during programming.  
These options vary between different compilers,  
assemblers and development environments. Users are  
encouraged to review the documentation accompany-  
ing their development systems for the appropriate  
information.  
DS39646C-page 370  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
27.1 MPLAB Integrated Development  
Environment Software  
27.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
• A single graphical interface to all debugging tools  
- Simulator  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
• Customizable data windows with direct edit of  
contents  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Drag and drop variables from source to watch  
windows  
• Device Programmers  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2008 Microchip Technology Inc.  
DS39646C-page 371  
PIC18F8722 FAMILY  
27.2 MPASM Assembler  
27.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
• Integration into MPLAB IDE projects  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
27.6 MPLAB SIM Software Simulator  
27.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcon-  
trollers and the dsPIC30 and dsPIC33 family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
27.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS39646C-page 372  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
27.7 MPLAB ICE 2000  
High-Performance  
27.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
27.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
27.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2008 Microchip Technology Inc.  
DS39646C-page 373  
PIC18F8722 FAMILY  
®
27.11 PICSTART Plus Development  
27.13 Demonstration, Development and  
Evaluation Boards  
Programmer  
The PICSTART® Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
27.12 PICkit™ 2 Development  
Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39646C-page 374  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR) ................................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the RG5/MCLR/VPP pin, inducing currents greater than 80 mA, may cause  
latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the RG5/MCLR/  
VPP pin, rather than pulling this pin directly to VSS.  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2008 Microchip Technology Inc.  
DS39646C-page 375  
PIC18F8722 FAMILY  
FIGURE 28-1:  
PIC18F8722 DEVICE FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
PIC18F6627/6622/6627/6722  
PIC18F8527/8622/8627/8722  
5.0V  
4.5V  
4.0V  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
Frequency  
FMAX = 20 MHz in 8-bit External Memory mode.  
FMAX = 40 MHz in all other modes.  
FIGURE 28-2:  
PIC18F8722 DEVICE FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED)  
6.0V  
5.5V  
PIC18F6627/6622/6627/6722  
PIC18F8527/8622/8627/8722  
5.0V  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
Frequency  
FMAX = 20 MHz in 8-bit External Memory mode.  
FMAX = 25 MHz in all other modes.  
DS39646C-page 376  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-3:  
PIC18LF8722 DEVICE FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
PIC18LF6627/6622/6627/6722  
PIC18LF8527/8622/8627/8722  
5.0V  
4.5V  
4.0V  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
4 MHz  
Frequency  
In 8-bit External Memory mode:  
FMAX = (9.55 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 25 MHz, if VDDAPPMIN > 4.2V.  
In all other modes:  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz;  
FMAX = 40 MHz, if VDDAPPMIN > 4.2V.  
Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
© 2008 Microchip Technology Inc.  
DS39646C-page 377  
PIC18F8722 FAMILY  
28.1 DC Characteristics: Supply Voltage  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic  
Supply Voltage  
Min  
Typ Max Units  
Conditions  
D001  
VDD  
PIC18LF6X27/6X22/8X27/8X22 2.0  
PIC18F6X27/6X22/8X27/8X22 4.2  
5.5  
5.5  
V
V
V
D002  
D003  
VDR  
RAM Data Retention  
1.5  
(1)  
Voltage  
VPOR  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
0.7  
V
See Section 4.3 “Power-on Reset (POR)” for  
details  
D004  
D005  
SVDD  
VBOR  
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
0.05  
V/ms See Section 4.3 “Power-on Reset (POR)” for  
details  
Brown-out Reset Voltage  
BORV<1:0> = 11  
2.00 2.05 2.16  
2.00 2.11 2.22  
V
V
V
V
V
PIC18LF6627/6722/8627/8722  
PIC18LF6527/6622/8527/8622  
PIC18LF6X27/6X22/8X27/8X22  
All devices  
BORV<1:0> = 11  
BORV<1:0> = 10  
BORV<1:0> = 01(2)  
2.65 2.79 2.93  
4.11 4.33 4.55  
4.36 4.59 4.82  
BORV<1:0> = 00  
All devices  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
2: With BOR enabled, full-speed operation (FOSC = 40 MHz) is supported until a BOR occurs. The VDD may be below the  
minimum voltage for this frequency.  
DS39646C-page 378  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(1)  
Power-Down Current (IPD)  
PIC18LF6X27/6X22/8X27/8X22 120  
700  
700  
3.0  
900  
900  
6
nA  
nA  
μA  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
(Sleep mode)  
120  
0.24  
PIC18LF6X27/6X22/8X27/8X22 120  
VDD = 3.0V  
(Sleep mode)  
120  
+25°C  
+85°C  
-40°C  
0.36  
All devices 0.12  
0.12  
2
2
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
(Sleep mode)  
0.48  
9
Extended devices only  
12  
100  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39646C-page 379  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF6X27/6X22/8X27/8X22  
18  
18  
18  
48  
42  
36  
25  
22  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
25  
PIC18LF6X27/6X22/8X27/8X22  
70  
FOSC = 31 kHz  
(RC_RUN mode,  
50  
+25°C  
+85°C  
-40°C  
47  
Internal oscillator source)  
All devices 126  
180  
150  
140  
230  
440  
440  
440  
800  
740  
740  
1.4  
1.3  
1.3  
1.4  
108  
96  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
Extended devices only  
96  
PIC18LF6X27/6X22/8X27/8X22 380  
380  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
380  
PIC18LF6X27/6X22/8X27/8X22 720  
FOSC = 1 MHz  
(RC_RUN mode,  
700  
+25°C  
+85°C  
-40°C  
720  
Internal oscillator source)  
All devices 1.2  
1.2  
1.2  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
Extended devices only 1.2  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
DS39646C-page 380  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF6X27/6X22/8X27/8X22 1.0  
1.3  
1.3  
1.3  
1.9  
1.9  
1.9  
3.5  
3.4  
3.4  
3.4  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
1.0  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
1.0  
PIC18LF6X27/6X22/8X27/8X22 1.6  
FOSC = 4 MHz  
(RC_RUN mode,  
1.6  
1.6  
Internal oscillator source)  
All devices 3.0  
3.0  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
3.0  
Extended devices only 3.0  
PIC18LF6X27/6X22/8X27/8X22 3.5  
3.7  
5
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
4.3  
9.5  
7
PIC18LF6X27/6X22/8X27/8X22 5.4  
FOSC = 31 kHz  
(RC_IDLE mode,  
5.7  
7.0  
8
+25°C  
+85°C  
-40°C  
15  
15  
15  
35  
200  
Internal oscillator source)  
All devices  
11  
11.8  
13.5  
25  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
Extended devices only  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39646C-page 381  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF6X27/6X22/8X27/8X22 200  
250  
250  
270  
360  
360  
380  
600  
600  
620  
800  
500  
490  
490  
800  
790  
800  
1.4  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
-40°C  
210  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
228  
PIC18LF6X27/6X22/8X27/8X22 300  
FOSC = 1 MHz  
(RC_IDLE mode,  
324  
+25°C  
+85°C  
-40°C  
350  
Internal oscillator source)  
All devices 500  
520  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
550  
Extended devices only 720  
PIC18LF6X27/6X22/8X27/8X22 410  
420  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
430  
PIC18LF6X27/6X22/8X27/8X22 630  
FOSC = 4 MHz  
(RC_IDLE mode,  
650  
+25°C  
+85°C  
-40°C  
690  
Internal oscillator source)  
All devices 1.2  
1.3  
1.2  
1.4  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
1.4  
Extended devices only 1.2  
1.6  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
DS39646C-page 382  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF6X27/6X22/8X27/8X22 300  
350  
350  
350  
800  
700  
670  
1.75  
1.4  
1.3  
1.4  
1.2  
1.2  
1.2  
1.9  
1.8  
1.8  
3.6  
3.5  
3.5  
3.5  
μA  
μA  
-40°C  
310  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
300  
μA  
PIC18LF6X27/6X22/8X27/8X22 660  
μA  
FOSC = 1 MHZ  
(PRI_RUN mode,  
EC oscillator)  
580  
μA  
550  
μA  
All devices 1.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1.1  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
1.0  
Extended devices only 1.0  
PIC18LF6X27/6X22/8X27/8X22 0.86  
0.88  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
VDD = 2.0V  
VDD = 3.0V  
0.88  
PIC18LF6X27/6X22/8X27/8X22 1.6  
FOSC = 4 MHz  
(PRI_RUN mode,  
EC oscillator)  
1.6  
1.6  
All devices 3.2  
3.1  
3.0  
VDD = 5.0V  
Extended devices only 3.1  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39646C-page 383  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
Extended devices only  
10  
13  
15  
18  
mA  
mA  
+125°C  
VDD = 4.2V  
VDD = 5.0V  
FOSC = 25 MHz  
(PRI_RUN mode,  
EC oscillator)  
+125°C  
All devices  
All devices  
18  
19  
19  
25  
25  
25  
23.5  
23.5  
23.5  
29  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 4.2V  
VDD = 5.0V  
FOSC = 40 MHZ  
(PRI_RUN mode,  
EC oscillator)  
29  
29  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
DS39646C-page 384  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
All devices 9.0  
13  
13  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN HS+PLL)  
9.0  
9.0  
+25°C  
VDD = 4.2V  
+85°C  
13  
Extended devices only 9.6  
15  
+125°C  
-40°C  
All devices  
12  
12  
12  
12  
18  
19  
19  
25  
25  
25  
15  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN HS+PLL)  
15  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
15  
Extended devices only  
All devices  
17  
23.5  
23.5  
23.5  
29  
FOSC = 10 MHZ,  
40 MHz internal  
(PRI_RUN HS+PLL)  
+25°C  
+85°C  
-40°C  
VDD = 4.2V  
VDD = 5.0V  
All devices  
FOSC = 10 MHZ,  
40 MHz internal  
(PRI_RUN HS+PLL)  
29  
+25°C  
+85°C  
29  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39646C-page 385  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF6X27/6X22/8X27/8X22  
78  
78  
84  
100  
100  
110  
150  
150  
160  
280  
290  
300  
500  
375  
385  
380  
660  
670  
680  
1.2  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
PIC18LF6X27/6X22/8X27/8X22 130  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
130  
+25°C  
+85°C  
-40°C  
140  
All devices 230  
235  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
240  
Extended devices only 260  
PIC18LF6X27/6X22/8X27/8X22 312  
305  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
324  
PIC18LF6X27/6X22/8X27/8X22 500  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
600  
+25°C  
+85°C  
-40°C  
600  
All devices 1.1  
1.1  
1.1  
1.2  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
1.2  
Extended devices only 1.2  
1.3  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
DS39646C-page 386  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
Extended devices only 3.4  
5.2  
5.8  
7
mA  
mA  
+125°C  
VDD = 4.2V  
VDD = 5.0V  
FOSC = 25 MHz  
(PRI_IDLE mode,  
EC oscillator)  
+125°C  
All devices 7.2  
10  
10  
10  
12  
12  
12  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
7.4  
VDD = 4.2 V  
VDD = 5.0V  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
7.8  
All devices 9.7  
11  
10  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39646C-page 387  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF6X27/6X22/8X27/8X22  
17  
18  
19  
48  
42  
37  
28  
25  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+70°C  
-40°C  
+25°C  
+70°C  
-40°C  
+25°C  
+70°C  
-40°C  
+25°C  
+70°C  
-40°C  
+25°C  
+70°C  
-40°C  
+25°C  
+70°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
28  
PIC18LF6X27/6X22/8X27/8X22  
70  
(3)  
FOSC = 32 kHz  
52  
(SEC_RUN mode,  
Timer1 as clock)  
48  
All devices 120  
180  
130  
125  
10  
97  
90  
PIC18LF6X27/6X22/8X27/8X22 3.0  
4.4  
6.8  
10  
5.4  
PIC18LF6X27/6X22/8X27/8X22 6.0  
15  
(3)  
FOSC = 32 kHz  
6.5  
10  
(SEC_IDLE mode,  
Timer1 as clock)  
7.6  
All devices 10.0  
10.5  
15  
25  
15  
11.0  
25  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
DS39646C-page 388  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
Module Differential Currents (ΔIWDT, ΔIBOR, ΔILVD, ΔIOSCB, ΔIAD)  
D022  
(ΔIWDT)  
Watchdog Timer 1.5  
2.2  
2.2  
2.3  
3.5  
3.5  
3.5  
7.5  
7.5  
7.8  
10  
50  
55  
55  
2.4  
6.0  
38  
40  
45  
45  
9
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
VDD = 2.0V  
VDD = 3.0V  
1.6  
1.7  
2.3  
2.4  
3.4  
4.8  
6.0  
6.1  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
VDD = 5.0V  
VDD = 3.0V  
VDD = 5.0V  
+85°C  
8
+125°C  
-40°C to +85°C  
-40°C to +85°C  
(4)  
D022A  
(ΔIBOR)  
Brown-out Reset  
4.2  
48  
66  
0
μA -40°C to +125°C  
μA -40°C to +85°C  
μA -40°C to +125°C  
Sleep mode,  
BOREN<1:0> = 10  
0
(4)  
D022B  
(ΔILVD)  
High/Low-Voltage Detect  
2.7  
30  
35  
36  
μA  
μA  
μA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
μA -40°C to +125°C  
(3)  
D025  
(ΔIOSCB)  
Timer1 Oscillator 4.5  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
-10°C  
+25°C  
+85°C  
.9  
.9  
1.7  
2.2  
2.2  
10  
1.8  
2.3  
2.3  
11  
VDD = 2.0V  
32 kHz on Timer1  
32 kHz on Timer1  
32 kHz on Timer1  
.9  
(3)  
4.8  
1
-40°C  
-10°C  
+25°C  
+85°C  
VDD = 3.0V  
VDD = 5.0V  
1
1
(3)  
6
-40°C  
-10°C  
+25°C  
+85°C  
1.6  
1.6  
1.6  
6
6
6
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39646C-page 389  
PIC18F8722 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Typ  
Max Units  
Conditions  
0.2  
0.2  
0.2  
0.5  
1
1
1
4
μA  
μA  
μA  
-40°C to +85°C  
VDD = 2.0V  
VDD = 3.0V  
D026  
(ΔIAD)  
A/D Converter  
-40°C to +85°C  
-40°C to +85°C  
A/D on, not converting,  
Sleep mode  
VDD = 5.0V  
μA -40°C to +125°C  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When  
operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than  
the sum of both specifications.  
DS39646C-page 390  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.3 DC Characteristics: PIC18F8722 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O Ports:  
with TTL Buffer  
D030  
D030A  
D031  
D032  
D033  
VSS  
0.15 VDD  
0.8  
V
V
V
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger Buffer  
MCLR  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.3 VDD  
OSC1  
HS, HSPLL modes  
D033A  
D033B  
D034  
OSC1  
OSC1  
T13CKI  
VSS  
VSS  
VSS  
0.2 VDD  
0.3  
0.3  
V
V
V
RC, EC modes(1)  
XT, LP modes  
VIH  
Input High Voltage  
I/O Ports:  
D040  
D040A  
D041  
D042  
D043  
with TTL Buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger Buffer  
0.8 VDD  
0.8 VDD  
0.7 VDD  
MCLR  
OSC1  
HS, HSPLL modes  
D043A  
D043B  
D043C  
D044  
OSC1  
OSC1  
OSC1  
T13CKI  
0.8 VDD  
0.9 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
EC mode  
RC mode(1)  
XT, LP modes  
1.6  
IIL  
Input Leakage Current(2,3)  
D060  
I/O Ports  
±200  
±50  
nA VDD < 5.5V  
VSS VPIN VDD,  
Pin at high-impedance  
nA VDD < 3V  
VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
±1  
±1  
μA Vss VPIN VDD  
μA Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB Weak Pull-up Current  
D070  
IPURB  
50  
400  
μA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
© 2008 Microchip Technology Inc.  
DS39646C-page 391  
PIC18F8722 FAMILY  
28.3 DC Characteristics: PIC18F8722 (Industrial, Extended)  
PIC18LF6X27/6X22/8X27/8X22 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
I/O Ports  
D080  
D083  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
IOL = 1.6 mA, VDD = 4.5V,  
(RC, RCIO, EC, ECIO modes)  
Output High Voltage(3)  
-40°C to +85°C  
VOH  
D090  
D092  
I/O Ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
IOH = -1.3 mA, VDD = 4.5V,  
(RC, RCIO, EC, ECIO modes)  
-40°C to +85°C  
Capacitive Loading Specs  
on Output Pins  
D100  
COSC2 OSC2 Pin  
15  
pF In XT, HS and LP modes  
when external clock is  
used to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O Pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF I2C™ Specification  
SCLx, SDAx  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39646C-page 392  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 28-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
100K  
VMIN  
1M  
E/W -40°C to +85°C  
D121 VDRW VDD for Read/Write  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
4
ms  
40  
Year Provided no other  
specifications are violated  
D124  
D125  
TREF  
IDDP  
Number of Total Erase/Write  
Cycles before Refresh(1)  
1M  
10M  
10  
E/W -40°C to +85°C  
Supply Current during  
Programming  
mA  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10K  
100K  
E/W -40°C to +85°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132B VPEW VDD for Self-Timed Write and  
Row Erase  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133A TIW  
Self-Timed Write Cycle Time  
2
ms  
D134 TRETD Characteristic Retention  
40  
100  
Year Provided no other  
specifications are violated  
D135  
IDDP  
Supply Current during  
Programming  
10  
mA  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Refer to Section 8.8 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
© 2008 Microchip Technology Inc.  
DS39646C-page 393  
PIC18F8722 FAMILY  
TABLE 28-2: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
±5.0  
±10  
VDD – 1.5  
mV  
V
D301  
D302  
300  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time(1)  
CMRR  
TRESP  
55  
dB  
ns  
ns  
150  
150  
400  
PIC18FXXXX  
300A  
600  
PIC18LFXXXX,  
VDD = 2.0V  
301  
TMC2OV Comparator Mode Change to  
Output Valid  
10  
μs  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 28-3: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
2k  
VDD/32  
1/2  
LSb  
LSb  
Ω
D311  
D312  
310  
VRAA  
VRUR  
TSET  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
10  
μs  
Note 1: Settling time measured while CVRR = 1and CVR<3:0> transitions from ‘0000’ to ‘1111’.  
DS39646C-page 394  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-4:  
HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS  
For VDIRMAG = 1:  
VDD  
VHLVD  
(HLVDIF set by hardware)  
(HLVDIF can be  
cleared in software)  
VHLVD  
VDD  
For VDIRMAG = 0:  
HLVDIF  
TABLE 28-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
Param  
No.  
Sym  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
D420  
HLVD Voltage on VDD HLVDL<3:0> = 0000 2.06  
2.17  
2.23  
2.36  
2.44  
2.60  
2.79  
2.89  
3.12  
3.39  
3.55  
3.71  
3.90  
4.11  
4.33  
4.59  
2.28  
2.34  
2.48  
2.56  
2.73  
2.93  
3.04  
3.28  
3.56  
3.73  
3.90  
4.10  
4.32  
4.55  
4.82  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Transition High-to-Low  
HLVDL<3:0> = 0001 2.12  
HLVDL<3:0> = 0010 2.24  
HLVDL<3:0> = 0011 2.32  
HLVDL<3:0> = 0100 2.47  
HLVDL<3:0> = 0101 2.65  
HLVDL<3:0> = 0110 2.74  
HLVDL<3:0> = 0111 2.96  
HLVDL<3:0> = 1000 3.22  
HLVDL<3:0> = 1001 3.37  
HLVDL<3:0> = 1010 3.52  
HLVDL<3:0> = 1011 3.70  
HLVDL<3:0> = 1100 3.90  
HLVDL<3:0> = 1101 4.11  
HLVDL<3:0> = 1110 4.36  
© 2008 Microchip Technology Inc.  
DS39646C-page 395  
PIC18F8722 FAMILY  
28.4 AC (Timing) Characteristics  
28.4.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C™ specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T13CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-Impedance)  
Low  
Valid  
High-Impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
DS39646C-page 396  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
28.4.2  
TIMING CONDITIONS  
Note:  
Because of space limitations, the generic  
terms “PIC18FXXXX” and “PIC18LFXXXX”  
are used throughout this section to refer to  
the PIC18F6X27/6X22/8X27/8X22 and  
PIC18LF6X27/6X22/8X27/8X22 families of  
devices specifically and only those devices.  
The temperature and voltages specified in Table 28-5  
apply to all timing specifications unless otherwise  
noted. Figure 28-5 specifies the load conditions for the  
timing specifications.  
TABLE 28-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in the DC specifications in Section 28.1  
and Section 28.3.  
LF parts operate for industrial temperatures only.  
FIGURE 28-5:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
© 2008 Microchip Technology Inc.  
DS39646C-page 397  
PIC18F8722 FAMILY  
28.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 28-6:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
3
4
3
4
2
TABLE 28-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
DC  
DC  
DC  
DC  
DC  
0.1  
4
1
25  
31.25  
40  
4
MHz XT, RC Oscillator mode  
MHz HS Oscillator mode  
kHz LP Oscillator mode  
MHz EC Oscillator mode  
MHz RC Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz HS + PLL Oscillator mode  
kHz LP Oscillator mode  
Oscillator Frequency(1)  
4
25  
10  
200  
4
5
1
TOSC  
External CLKI Period(1)  
Oscillator Period(1)  
1000  
40  
ns  
ns  
μs  
ns  
ns  
μs  
ns  
ns  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
XT, RC Oscillator mode  
HS Oscillator mode  
LP Oscillator mode  
EC Oscillator mode  
RC Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
HS + PLL Oscillator mode  
LP Oscillator mode  
TCY = 4/FOSC, Industrial  
TCY = 4/FOSC, Extended  
XT Oscillator mode  
LP Oscillator mode  
HS Oscillator mode  
XT Oscillator mode  
LP Oscillator mode  
HS Oscillator mode  
32  
25  
250  
250  
40  
1
250  
250  
200  
100  
5
2
3
TCY  
Instruction Cycle Time(1)  
100  
160  
30  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
2.5  
10  
4
TOSR,  
TOSF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS39646C-page 398  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 28-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
F10  
F11  
F12  
F13  
FOSC Oscillator Frequency Range  
4
10  
40  
2
MHz HS mode only  
FSYS On-Chip VCO System Frequency  
16  
-2  
MHz HS mode only  
trc  
PLL Start-up Time (Lock Time)  
ms  
%
ΔCLK CLKO Stability (Jitter)  
+2  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 28-8: AC CHARACTERISTICS:INTERNAL RC ACCURACY  
PIC18F6X27/6X22/8X27/8X22 (INDUSTRIAL, EXTENDED)  
PIC18LF6X27/6X22/8X27/8X22 (INDUSTRIAL)  
PIC18LF6X27/6X22/8X27/8X22  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X27/6X22/8X27/8X22  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Device  
No.  
Min  
Typ  
Max  
Units  
Conditions  
(1)  
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz  
PIC18LF6X27/6X22/8X27/8X22  
PIC18F6X27/6X22/8X27/8X22  
INTRC Accuracy @ Freq = 31 kHz  
-2  
-5  
-2  
-5  
+/-1  
+/-1  
+/-1  
+/-1  
2
5
2
5
%
%
%
%
+25°C  
VDD = 2.7-3.3V  
VDD = 2.7-3.3V  
VDD = 4.5-5.5V  
VDD = 4.5-5.5V  
-40°C to +85°C  
+25°C  
-40°C to +85°C  
PIC18LF6X27/6X22/8X27/8X22 26.562  
PIC18F6X27/6X22/8X27/8X22 26.562  
35.938  
35.938  
kHz  
kHz  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.7-3.3V  
VDD = 4.5-5.5V  
+/-8  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.  
© 2008 Microchip Technology Inc.  
DS39646C-page 399  
PIC18F8722 FAMILY  
FIGURE 28-7:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
19  
18  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Note:  
Refer to Figure 28-5 for load conditions.  
TABLE 28-9: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TOSH2CKL OSC1 to CLKO ↓  
TOSH2CKH OSC1 to CLKO ↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
TCKR  
TCKF  
CLKO Rise Time  
CLKO Fall Time  
TCKL2IOV CLKO to Port Out Valid  
TIOV2CKH Port In Valid before CLKO ↑  
TCKH2IOI Port In Hold after CLKO ↑  
TOSH2IOV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
0
150  
TOSH2IOI OSC1 (Q2 cycle) to  
Port Input Invalid  
PIC18FXXXX  
100  
200  
PIC18LFXXXX  
ns VDD = 2.0V  
(I/O in hold time)  
19  
TIOV2OSH Port Input Valid to OSC1 (I/O in setup  
0
ns  
time)  
20  
TIOR  
TIOF  
Port Output Rise Time  
Port Output Fall Time  
PIC18FXXXX  
PIC18LFXXXX  
PIC18FXXXX  
PIC18LFXXXX  
10  
10  
25  
60  
25  
60  
ns  
20A  
21  
ns VDD = 2.0V  
ns  
21A  
22†  
23†  
ns VDD = 2.0V  
TINP  
INTx pin High or Low Time  
TCY  
TCY  
ns  
ns  
TRBP  
RB<7:4> Change INTx High or Low Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
DS39646C-page 400  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-8:  
PROGRAM MEMORY READ TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
Data from External  
Address  
AD<15:0>  
163  
162  
150  
151  
160  
155  
161  
166  
167  
168  
ALE  
CE  
164  
169  
171  
171A  
OE  
165  
Operating Conditions: 2.0V < VCC < 5.5V, -40°C < TA < +125°C unless otherwise stated.  
TABLE 28-10: CLKO AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TadV2alL Address Out Valid to ALE (address  
0.25 TCY – 10  
ns  
setup time)  
151  
TalL2adl  
ALE to Address Out Invalid (address  
5
ns  
hold time)  
155  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
171  
171A  
TalL2oeL ALE to OE ↓  
10  
0.125 TCY  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TadZ2oeL AD high-Z to OE (bus release to OE)  
ToeH2adD OE to AD Driven  
0
0.125 TCY – 5  
TadV2oeH LS Data Valid before OE (data setup time)  
ToeH2adl OE to Data In Invalid (data hold time)  
20  
0
TalH2alL  
ALE Pulse Width  
TCY  
0.5 TCY  
0.25 TCY  
ToeL2oeH OE Pulse Width  
0.5 TCY – 5  
TalH2alH ALE to ALE (cycle time)  
Tacc  
Toe  
Address Valid to Data Valid  
0.75 TCY – 25  
0.5 TCY – 25  
0.625 TCY + 10  
OE to Data Valid  
TalL2oeH ALE to OE ↑  
0.625 TCY – 10  
0.25 TCY – 20  
TalH2csL Chip Enable Active to ALE ↓  
TubL2oeH AD Valid to Chip Enable Active  
10  
© 2008 Microchip Technology Inc.  
DS39646C-page 401  
PIC18F8722 FAMILY  
FIGURE 28-9:  
PROGRAM MEMORY WRITE TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
166  
Data  
Address  
Address  
AD<15:0>  
153  
150  
151  
156  
ALE  
CE  
171  
171A  
154  
WRH or  
WRL  
157A  
157  
UB or  
LB  
Operating Conditions: 2.0V < VCC < 5.5V, -40°C < TA < +125°C unless otherwise stated.  
TABLE 28-11: PROGRAM MEMORY WRITE TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TadV2alL Address Out Valid to ALE (address setup time)  
TalL2adl ALE to Address Out Invalid (address hold time)  
TwrH2adl WRn to Data Out Invalid (data hold time)  
TwrL WRn Pulse Width  
0.25 TCY – 10  
5
ns  
ns  
ns  
ns  
ns  
ns  
151  
153  
154  
156  
157  
5
0.5 TCY – 5  
0.5 TCY – 10  
0.25 TCY  
0.5 TCY  
TadV2wrH Data Valid before WRn (data setup time)  
TbsV2wrL Byte Select Valid before WRn (byte select setup  
time)  
157A  
166  
TwrH2bsI WRn to Byte Select Invalid (byte select hold time)  
TalH2alH ALE to ALE (cycle time)  
0.125 TCY – 5  
0.25 TCY  
10  
ns  
ns  
ns  
ns  
0.25 TCY – 20  
171  
TalH2csL Chip Enable Active to ALE ↓  
171A  
TubL2oeH AD Valid to Chip Enable Active  
DS39646C-page 402  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-10:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 28-5 for load conditions.  
FIGURE 28-11:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 28-12: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
μs  
31  
Watchdog Timer Time-out Period  
(no postscaler)  
3.4  
4.0  
4.6  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
1024 TOSC  
55.6  
64  
2
1024 TOSC  
ms  
μs  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
75  
TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
μs VDD BVDD (see D005)  
μs  
TIRVST Time for Internal Reference  
Voltage to become Stable  
20  
50  
37  
38  
39  
TLVD  
TCSD  
High/Low-Voltage Detect Pulse Width  
CPU Start-up Time  
200  
10  
1
μs  
μs  
μs  
VDD VHLVD  
TIOBST Time for INTOSC to Stabilize  
© 2008 Microchip Technology Inc.  
DS39646C-page 403  
PIC18F8722 FAMILY  
FIGURE 28-12:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 28-5 for load conditions.  
TABLE 28-13: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
TT0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4,..., 256)  
45  
46  
TT1H  
TT1L  
T13CKI  
High Time  
Synchronous, no prescaler  
0.5 TCY + 20  
ns  
Synchronous,  
with prescaler  
PIC18FXXXX  
10  
ns  
PIC18LFXXXX  
25  
ns VDD = 2.0V  
Asynchronous PIC18FXXXX  
PIC18LFXXXX  
30  
ns  
50  
ns VDD = 2.0V  
T13CKI  
Low Time  
Synchronous, no prescaler  
0.5 TCY + 5  
ns  
Synchronous,  
with prescaler  
PIC18FXXXX  
10  
25  
30  
50  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
ns  
Asynchronous PIC18FXXXX  
PIC18LFXXXX  
ns VDD = 2.0V  
47  
48  
TT1P  
FT1  
T13CKI  
Input  
Period  
Synchronous  
Greater of:  
20 ns or  
(TCY + 40)/N  
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T13CKI Oscillator Input Frequency Range  
TCKE2TMRI Delay from External T13CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
DS39646C-page 404  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-13:  
CAPTURE/COMPARE/PWM TIMINGS (ALL ECCP/CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Refer to Figure 28-5 for load conditions.  
Note:  
TABLE 28-14: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL ECCP/CCP MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TCCL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
With  
PIC18FXXXX  
10  
prescaler  
PIC18LFXXXX  
20  
VDD = 2.0V  
VDD = 2.0V  
51  
TCCH  
CCPx Input  
High Time  
No prescaler  
0.5 TCY + 20  
With  
PIC18FXXXX  
10  
20  
prescaler  
PIC18LFXXXX  
52  
53  
TCCP  
TCCR  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
CCPx Output Fall Time  
PIC18FXXXX  
PIC18LFXXXX  
PIC18FXXXX  
PIC18LFXXXX  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
VDD = 2.0V  
VDD = 2.0V  
54  
TCCF  
CCPx Output Fall Time  
© 2008 Microchip Technology Inc.  
DS39646C-page 405  
PIC18F8722 FAMILY  
FIGURE 28-14:  
PARALLEL SLAVE PORT TIMING (PIC18F8527/8622/8627/8722)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note:  
Refer to Figure 28-5 for load conditions.  
TABLE 28-15: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F8527/8622/8627/8722)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH  
TwrH2dtI  
Data In Valid before WR or CS (setup time)  
20  
20  
ns  
ns  
63  
WR or CS to Data–In  
PIC18FXXXX  
Invalid (hold time)  
PIC18LFXXXX 35  
ns VDD = 2.0V  
64  
65  
66  
TrdL2dtV  
TrdH2dtI  
TibfINH  
RD and CS to Data–Out Valid  
RD or CS to Data–Out Invalid  
10  
80  
ns  
ns  
30  
Inhibit of the IBF Flag bit being Cleared from  
3 TCY  
WR or CS ↑  
DS39646C-page 406  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-15:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SSx  
70  
SCKx  
(CKP = 0)  
71  
72  
78  
79  
79  
SCKx  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - - 1  
LSb  
SDOx  
SDIx  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-16: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SSx to SCKx or SCKx Input  
TCY  
ns  
TSSL2SCL  
71  
TSCH  
SCKx Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
ns (Note 1)  
TSCL  
SCKx Input Low Time  
(Slave mode)  
1.25 TCY + 30  
ns  
72A  
73  
40  
20  
ns (Note 1)  
TDIV2SCH, Setup Time of SDIx Data Input to SCKx Edge  
TDIV2SCL  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
40  
ns  
75  
TDOR  
SDOx Data Output Rise Time PIC18FXXXX  
PIC18LFXXXX  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns VDD = 2.0V  
76  
78  
TDOF  
TSCR  
SDOx Data Output Fall Time  
ns  
SCKx Output Rise Time  
(Master mode)  
PIC18FXXXX  
PIC18LFXXXX  
ns  
ns VDD = 2.0V  
79  
80  
TSCF  
SCKx Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDOx Data Output Valid after PIC18FXXXX  
TSCL2DOV SCKx Edge  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
© 2008 Microchip Technology Inc.  
DS39646C-page 407  
PIC18F8722 FAMILY  
FIGURE 28-16:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SSx  
81  
SCKx  
(CKP = 0)  
71  
72  
79  
78  
73  
SCKx  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - - 1  
SDOx  
SDIx  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-17: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
TSCH  
Characteristic  
Min  
Max Units Conditions  
71  
SCKx Input High Time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
ns (Note 1)  
TSCL  
SCKx Input Low Time  
(Slave mode)  
1.25 TCY + 30  
ns  
72A  
73  
40  
20  
ns (Note 1)  
TDIV2SCH, Setup Time of SDIx Data Input to SCKx Edge  
TDIV2SCL  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
40  
ns  
75  
TDOR  
SDOx Data Output Rise Time PIC18FXXXX  
PIC18LFXXXX  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns VDD = 2.0V  
76  
78  
TDOF  
TSCR  
SDOx Data Output Fall Time  
ns  
SCKx Output Rise Time  
(Master mode)  
PIC18FXXXX  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
79  
80  
TSCF  
SCKx Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDOx Data Output Valid after PIC18FXXXX  
TSCL2DOV SCKx Edge  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
ns  
81  
TDOV2SCH, SDOx Data Output Setup to SCKx Edge  
TDOV2SCL  
TCY  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39646C-page 408  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-17:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SSx  
70  
SCKx  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCKx  
(CKP = 1)  
80  
MSb  
LSb  
SDOx  
SDIx  
bit 6 - - - - - - 1  
75, 76  
77  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note:  
Refer to Figure 28-5 for load conditions.  
TABLE 28-18: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SSx to SCKx or SCKx Input  
3 TCY  
ns  
TSSL2SCL  
71  
TSCH  
SCKx Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
ns (Note 1)  
TSCL  
SCKx Input Low Time  
(Slave mode)  
1.25 TCY + 30  
ns  
72A  
73  
40  
20  
ns (Note 1)  
TDIV2SCH, Setup Time of SDIx Data Input to SCKx Edge  
TDIV2SCL  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
40  
ns  
75  
TDOR  
SDOx Data Output Rise Time  
PIC18FXXXX  
PIC18LFXXXX  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns VDD = 2.0V  
76  
77  
78  
TDOF  
SDOx Data Output Fall Time  
ns  
TSSH2DOZ SSx to SDOx Output High-Impedance  
10  
ns  
TSCR  
SCKx Output Rise Time (Master mode) PIC18FXXXX  
PIC18LFXXXX  
ns  
ns VDD = 2.0V  
79  
80  
TSCF  
SCKx Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDOx Data Output Valid after SCKx  
TSCL2DOV Edge  
PIC18FXXXX  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
ns  
83  
TSCH2SSH, SSx after SCKx Edge  
1.5 TCY + 40  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
© 2008 Microchip Technology Inc.  
DS39646C-page 409  
PIC18F8722 FAMILY  
FIGURE 28-18:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SSx  
70  
SCKx  
83  
(CKP = 0)  
71  
72  
SCKx  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - - 1  
LSb  
SDOx  
SDIx  
75, 76  
77  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-19: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SSx to SCKx or SCKx Input  
3 TCY  
ns  
TSSL2SCL  
71  
TSCH  
TSCL  
TB2B  
SCKx Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCKx Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
40  
75  
TDOR  
SDOx Data Output Rise Time  
PIC18FXXXX  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
76  
77  
78  
TDOF  
SDOx Data Output Fall Time  
ns  
TSSH2DOZ SSx to SDOx Output High-Impedance  
10  
ns  
TSCR  
SCKx Output Rise Time  
(Master mode)  
PIC18FXXXX  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
79  
80  
TSCF  
SCKx Output Fall Time (Master mode)  
ns  
TSCH2DOV, SDOx Data Output Valid after SCKx PIC18FXXXX  
TSCL2DOV Edge  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
82  
83  
TSSL2DOV SDOx Data Output Valid after SSx ↓  
PIC18FXXXX  
ns  
Edge  
PIC18LFXXXX  
ns VDD = 2.0V  
ns  
TSCH2SSH, SSx after SCKx Edge  
1.5 TCY + 40  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39646C-page 410  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-19:  
SCLx  
I2C™ BUS START/STOP BITS TIMING  
91  
93  
90  
92  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-20: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
FIGURE 28-20:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCLx  
90  
106  
107  
91  
92  
SDAx  
In  
110  
109  
109  
SDAx  
Out  
Note: Refer to Figure 28-5 for load conditions.  
© 2008 Microchip Technology Inc.  
DS39646C-page 411  
PIC18F8722 FAMILY  
TABLE 28-21: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock High Time  
4.0  
μs  
PIC18FXXXX must operate at  
a minimum of 1.5 MHz  
400 kHz mode  
0.6  
μs  
PIC18FXXXX must operate at  
a minimum of 10 MHz  
SSP Module  
1.5 TCY  
4.7  
101  
TLOW  
Clock Low Time  
100 kHz mode  
μs  
μs  
PIC18FXXXX must operate at  
a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18FXXXX must operate at  
a minimum of 10 MHz  
SSP Module  
1.5 TCY  
102  
103  
TR  
SDAx and SCLx Rise Time 100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
TF  
SDAx and SCLx Fall Time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
Start Condition Setup Time 100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
Only relevant for Repeated  
Start condition  
91  
THD:STA Start Condition Hold Time 100 kHz mode  
400 kHz mode  
After this period, the first clock  
pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data Input Setup Time  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO Stop Condition Setup Time 100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output Valid from Clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)  
of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.  
2
2
2: A Fast mode I C™ bus device can be used in a Standard mode I C bus system, but the requirement, TSU:DAT 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal.  
If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line,  
2
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification), before the SCLx  
line is released.  
DS39646C-page 412  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-21:  
SCLx  
MASTER SSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS  
93  
91  
90  
92  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-22: MASTER SSP I2C™ BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
FIGURE 28-22:  
MASTER SSP I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCLx  
90  
106  
91  
92  
107  
SDAx  
In  
110  
109  
109  
SDAx  
Out  
Note: Refer to Figure 28-5 for load conditions.  
© 2008 Microchip Technology Inc.  
DS39646C-page 413  
PIC18F8722 FAMILY  
TABLE 28-23: MASTER SSP I2C™ BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock Low Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDAx and SCLx 100 kHz mode  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
ns  
ns  
TF  
SDAx and SCLx 100 kHz mode  
ns  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
20 + 0.1 CB  
ns  
1 MHz mode(1)  
ns  
TSU:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start  
condition  
ms  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
91  
THD:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
0
0
0.9  
ms  
ns  
TBD  
250  
TSU:DAT Data Input  
Setup Time  
ns  
ns  
(Note 2)  
100  
TBD  
ns  
TSU:STO Stop Condition  
Setup Time  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
ns  
ns  
Bus Free Time  
4.7  
1.3  
TBD  
ms Time the bus must be free  
before a new transmission  
ms  
can start  
ms  
Bus Capacitive Loading  
400  
pF  
Legend: TBD = To Be Determined  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data  
bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode,) before  
the SCLx line is released.  
DS39646C-page 414  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
FIGURE 28-23:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
CKx/TXx  
pin  
121  
121  
DTx/RXx  
pin  
122  
120  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-24: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER and SLAVE)  
Clock High to Data Out Valid  
PIC18FXXXX  
40  
100  
20  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
ns  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time PIC18FXXXX  
(Master mode)  
PIC18LFXXXX  
PIC18FXXXX  
PIC18LFXXXX  
50  
ns VDD = 2.0V  
ns  
Data Out Rise Time and Fall Time  
20  
50  
ns VDD = 2.0V  
FIGURE 28-24:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
CKx/TXx  
pin  
125  
DTx/RXx  
pin  
126  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-25: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER and SLAVE)  
Data Hold before CKx (DTx hold time)  
10  
15  
ns  
ns  
126  
TCKL2DTL Data Hold after CKx (DTx hold time)  
© 2008 Microchip Technology Inc.  
DS39646C-page 415  
PIC18F8722 FAMILY  
TABLE 28-26: A/D CONVERTER CHARACTERISTICS: PIC18F6X27/6X22/8X27/8X22 (INDUSTRIAL)  
PIC18LF6X27/6X22/8X27/8X22 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10  
bit ΔVREF 3.0V  
A03  
A04  
A06  
A07  
A10  
A20  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
<±1  
<±1  
<±2  
<±1  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
Monotonicity  
Guaranteed(1)  
VSS VAIN VREF  
ΔVREF Reference Voltage Range  
1.8  
3
V
V
VDD < 3.0V  
VDD 3.0V  
(VREFH – VREFL)  
A21  
A22  
A25  
A30  
VREFH Reference Voltage High  
VSS  
VREFH  
VDD – 3.0V  
VREFH  
V
V
VREFL  
VAIN  
Reference Voltage Low  
Analog Input Voltage  
VSS – 0.3V  
VREFL  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
2.5  
kΩ  
A40  
A50  
IAD  
A/D Current  
from VDD  
PIC18FXXXX  
PIC18LFXXXX  
180  
90  
μA Average current during  
conversion  
μA  
IREF  
VREF Input Current(2)  
5
150  
μA During VAIN acquisition.  
μA During A/D conversion  
cycle.  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.  
FIGURE 28-25:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 1, 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
DS39646C-page 416  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
TABLE 28-27: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
PIC18FXXXX  
0.7  
1.4  
25.0(1)  
25.0(1)  
μs TOSC based, VREF 3.0V  
PIC18LFXXXX  
μs VDD = 2.0V;  
TOSC based, VREF full range  
PIC18FXXXX  
11  
1
3
μs A/D RC mode  
μs VDD = 2.0V; A/D RC mode  
TAD  
PIC18LFXXXX  
131  
TCNV  
Conversion Time  
12  
(not including acquisition time) (Note 2)  
Acquisition Time (Note 3)  
132  
135  
137  
TACQ  
TSWC  
TDIS  
1.4  
(Note 4)  
μs -40°C to +85°C  
μs  
Switching Time from Convert Sample  
Discharge Time  
0.2  
Legend: TBD = To Be Determined  
Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2: ADRES register may be read on the following TCY cycle.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50Ω.  
4: On the following cycle of the device clock.  
© 2008 Microchip Technology Inc.  
DS39646C-page 417  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 418  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
29.0 PACKAGING INFORMATION  
29.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F6722  
-I/PT  
0810017  
e
3
80-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18F8722-E  
/PT  
0810017  
e
3
Legend: XX...X Product-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS39646C-page 419  
PIC18F8722 FAMILY  
29.2 Package Details  
The following sections give the technical details of the  
packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
c
NOTE 2  
α
A
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
DS39646C-page 420  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
© 2008 Microchip Technology Inc.  
DS39646C-page 421  
PIC18F8722 FAMILY  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
NOTE 1  
12 3  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
M
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
89ꢒ  
@ꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓꢛꢎ1  
DS39646C-page 422  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
© 2008 Microchip Technology Inc.  
DS39646C-page 423  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 424  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Revision C (October 2008)  
APPENDIX A: REVISION HISTORY  
Revision A (September 2004)  
Updated some specifications in Section 28.0 “Electrical  
Characteristics”, package and land pattern illustrations  
in Section 29.0 “Packaging Information” and the  
format of all register tables.  
Original data sheet for the PIC18F8722 family of  
devices.  
Revision B (December 2004)  
APPENDIX B: DEVICE  
DIFFERENCES  
This revision includes updates to the Electrical Specifica-  
tions in Section 28.0 “Electrical Characteristics”,  
minor corrections to the data sheet text and information  
to support the following devices has been added:  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
• PIC18F6527  
• PIC18F6622  
• PIC18F8527  
• PIC18F8622  
• PIC18LF6527  
• PIC18LF6622  
• PIC18LF8527  
• PIC18LF8622  
TABLE B-1:  
DEVICE DIFFERENCES (PIC18F6527/6622/6627/6722)  
Features  
PIC18F6527  
PIC18F6622  
PIC18F6627  
PIC18F6722  
Program Memory (Bytes)  
Program Memory (Instructions)  
Interrupt Sources  
48K  
24576  
28  
64K  
32768  
28  
96K  
49152  
28  
128K  
65536  
28  
I/O Ports  
Ports A, B, C, D, E, Ports A, B, C, D, E, Ports A, B, C, D, E, Ports A, B, C, D, E,  
F, G  
F, G  
F, G  
F, G  
Capture/Compare/PWM Modules  
2
2
2
2
Enhanced  
3
3
3
3
Capture/Compare/PWM Modules  
Parallel Communications (PSP)  
External Memory Bus  
10-bit Analog-to-Digital Module  
Packages  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
12 input channels  
64-pin TQFP  
12 input channels  
64-pin TQFP  
12 input channels  
64-pin TQFP  
12 input channels  
64-pin TQFP  
TABLE B-2:  
DEVICE DIFFERENCES (PIC18F8527/8622/8627/8722)  
Features  
PIC18F8527  
PIC18F8622  
PIC18F8627  
PIC18F8722  
Program Memory (Bytes)  
Program Memory (Instructions)  
Interrupt Sources  
48K  
24576  
29  
64K  
32768  
29  
96K  
49152  
29  
128K  
65536  
29  
I/O Ports  
Ports A, B, C, D, E, Ports A, B, C, D, E, Ports A, B, C, D, E, Ports A, B, C, D, E,  
F, G, H, J  
F, G, H, J  
F, G, H, J  
F, G, H, J  
Capture/Compare/PWM Modules  
2
3
2
3
2
3
2
3
Enhanced  
Capture/Compare/PWM Modules  
Parallel Communications (PSP)  
External Memory Bus  
10-bit Analog-to-Digital Module  
Packages  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
16 input channels  
80-pin TQFP  
16 input channels  
80-pin TQFP  
16 input channels  
80-pin TQFP  
16 input channels  
80-pin TQFP  
© 2008 Microchip Technology Inc.  
DS39646C-page 425  
PIC18F8722 FAMILY  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for  
converting from previous versions of a device to the  
ones listed in this data sheet. Typically, these changes  
are due to the differences in the process technology  
used. An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
This section discusses how to migrate from a Baseline  
device (i.e., PIC16C5X) to an Enhanced MCU device  
(i.e., PIC18FXXX).  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
DS39646C-page 426  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
APPENDIX E: MIGRATION FROM  
MID-RANGE TO  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442”. The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
A detailed discussion of the migration pathway and  
differences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration”.  
This Application Note is available on our web site,  
www.microchip.com, as Literature Number DS00726.  
This Application Note is available on our web site,  
www.microchip.com, as Literature Number DS00716.  
© 2008 Microchip Technology Inc.  
DS39646C-page 427  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 428  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
INDEX  
Analog Input Model .................................................. 275  
Baud Rate Generator .............................................. 232  
Capture Mode Operation ......................................... 181  
Comparator Analog Input Model .............................. 285  
Comparator I/O Operating Modes ........................... 282  
Comparator Output .................................................. 284  
Comparator Voltage Reference ............................... 288  
Comparator Voltage Reference Output  
Buffer Example ................................................ 289  
Compare Mode Operation ....................................... 182  
Device Clock .............................................................. 37  
Enhanced PWM ....................................................... 193  
EUSART Receive .................................................... 260  
EUSART Transmit ................................................... 258  
External Power-on Reset Circuit  
A
A/D ................................................................................... 271  
A/D Converter Interrupt, Configuring ....................... 275  
Acquisition Requirements ........................................ 276  
ADCON0 Register .................................................... 271  
ADCON1 Register .................................................... 271  
ADCON2 Register .................................................... 271  
ADRESH Register ............................................ 271, 274  
ADRESL Register .................................................... 271  
Analog Port Pins ...................................................... 158  
Analog Port Pins, Configuring .................................. 278  
Associated Registers ............................................... 280  
Configuring the Module ............................................ 275  
Conversion Clock (TAD) ........................................... 277  
Conversion Status (GO/DONE Bit) .......................... 274  
Conversions ............................................................. 279  
Converter Characteristics ........................................ 416  
Discharge ................................................................. 279  
Operation in Power-Managed Modes ...................... 278  
Selecting and Configuring Acquisition Time ............ 277  
Special Event Trigger (ECCP) ................................. 192  
Special Event Trigger (ECCP2) ............................... 280  
Use of the ECCP2 Trigger ....................................... 280  
Absolute Maximum Ratings ............................................. 375  
AC (Timing) Characteristics ............................................. 396  
Load Conditions for Device  
(Slow VDD Power-up) ........................................ 51  
Fail-Safe Clock Monitor (FSCM) .............................. 315  
Generic I/O Port Operation ...................................... 135  
High/Low-Voltage Detect with External Input .......... 292  
HSPLL ....................................................................... 33  
Interrupt Logic .......................................................... 120  
INTOSC and PLL ....................................................... 34  
2
MSSP (I C Master Mode) ........................................ 230  
2
MSSP (I C Mode) .................................................... 215  
MSSP (SPI Mode) ................................................... 205  
On-Chip Reset Circuit ................................................ 49  
PIC18F6527/6622/6627/6722 ................................... 11  
PIC18F8527/8622/8627/8722 ................................... 12  
PORTD and PORTE (Parallel Slave Port) ............... 158  
PWM Operation (Simplified) .................................... 184  
Reads from Flash Program Memory ......................... 91  
Single Comparator ................................................... 283  
Table Read Operation ............................................... 87  
Table Write Operation ............................................... 88  
Table Writes to Flash Program Memory .................... 93  
Timer0 in 16-Bit Mode ............................................. 162  
Timer0 in 8-Bit Mode ............................................... 162  
Timer1 ..................................................................... 166  
Timer1 (16-Bit Read/Write Mode) ............................ 166  
Timer2 ..................................................................... 172  
Timer3 ..................................................................... 174  
Timer3 (16-Bit Read/Write Mode) ............................ 174  
Timer4 ..................................................................... 178  
Watchdog Timer ...................................................... 312  
BN .................................................................................... 330  
BNC ................................................................................. 331  
BNN ................................................................................. 331  
BNOV .............................................................................. 332  
BNZ ................................................................................. 332  
BOR. See Brown-out Reset.  
BOV ................................................................................. 335  
BRA ................................................................................. 333  
Break Character (12-Bit) Transmit and Receive .............. 263  
BRG. See Baud Rate Generator.  
Brown-out Reset (BOR) ..................................................... 52  
Detecting ................................................................... 52  
Disabling in Sleep Mode ............................................ 52  
Software Enabled ...................................................... 52  
BSF .................................................................................. 333  
BTFSC ............................................................................. 334  
BTFSS ............................................................................. 334  
BTG ................................................................................. 335  
BZ .................................................................................... 336  
Timing Specifications ....................................... 397  
Parameter Symbology ............................................. 396  
Temperature and Voltage Specifications ................. 397  
Timing Conditions .................................................... 397  
Access Bank  
Mapping in Indexed Literal Offset Mode .................... 85  
ACKSTAT ........................................................................ 236  
ACKSTAT Status Flag ..................................................... 236  
ADCON0 Register ............................................................ 271  
GO/DONE Bit ........................................................... 274  
ADCON1 Register ............................................................ 271  
ADCON2 Register ............................................................ 271  
ADDFSR .......................................................................... 364  
ADDLW ............................................................................ 327  
ADDULNK ........................................................................ 364  
ADDWF ............................................................................ 327  
ADDWFC ......................................................................... 328  
ADRESH Register ............................................................ 271  
ADRESL Register .................................................... 271, 274  
Analog-to-Digital Converter. See A/D.  
ANDLW ............................................................................ 328  
ANDWF ............................................................................ 329  
Assembler  
MPASM Assembler .................................................. 372  
Auto-Wake-up on Sync Break Character ......................... 262  
B
Bank Select Register (BSR) ............................................... 72  
Baud Rate Generator ....................................................... 232  
BC .................................................................................... 329  
BCF .................................................................................. 330  
BF .................................................................................... 236  
BF Status Flag ................................................................. 236  
Block Diagrams  
16-Bit Byte Select Mode .......................................... 103  
16-Bit Byte Write Mode ............................................ 101  
16-Bit Word Write Mode ........................................... 102  
A/D ........................................................................... 274  
© 2008 Microchip Technology Inc.  
DS39646C-page 429  
PIC18F8722 FAMILY  
Operation ................................................................. 283  
Operation During Sleep ........................................... 284  
Outputs .................................................................... 283  
Reference ................................................................ 283  
External Signal ................................................ 283  
C
C Compilers  
MPLAB C18 .............................................................372  
MPLAB C30 .............................................................372  
CALL ................................................................................336  
CALLW .............................................................................365  
Capture (CCP Module) .....................................................181  
Associated Registers ...............................................183  
CCPRxH:CCPRxL Registers ...................................181  
CCPx Pin Configuration ...........................................181  
Prescaler ..................................................................181  
Software Interrupt ....................................................181  
Timer1/Timer3 Mode Selection ................................181  
Capture (ECCP Module) ..................................................192  
Capture/Compare/PWM (CCP) ........................................179  
Capture Mode. See Capture.  
Internal Signal .................................................. 283  
Response Time ........................................................ 283  
Comparator Specifications ............................................... 394  
Comparator Voltage Reference ....................................... 287  
Accuracy and Error .................................................. 288  
Associated Registers ............................................... 289  
Configuring .............................................................. 287  
Connection Considerations ...................................... 288  
Effects of a Reset .................................................... 288  
Operation During Sleep ........................................... 288  
Comparator Voltage Reference Specifications ................ 394  
Compare (CCP Module) .................................................. 182  
Associated Registers ............................................... 183  
CCPRx Registers ..................................................... 182  
Pin Configuration ..................................................... 182  
Software Interrupt .................................................... 182  
Special Event Trigger .............................................. 182  
Timer1/Timer3 Mode Selection ................................ 182  
Compare (CCP Modules)  
CCP Mode and Timer Resources ............................180  
CCPRxH Register ....................................................180  
CCPRxL Register .....................................................180  
Compare Mode. See Compare.  
Interconnect Configurations .....................................180  
Module Configuration ...............................................180  
Clock Sources ....................................................................37  
Selecting the 31 kHz Source ......................................38  
Selection Using OSCCON Register ...........................38  
CLRF ................................................................................337  
CLRWDT ..........................................................................337  
Code Examples  
Special Event Trigger .............................................. 175  
Compare (ECCP Module) ................................................ 192  
Special Event Trigger .............................................. 192  
Compare (ECCP2 Module)  
Special Event Trigger .............................................. 280  
Computed GOTO ............................................................... 68  
Configuration Bits ............................................................ 297  
Configuration Register Protection .................................... 320  
Context Saving During Interrupts ..................................... 134  
Conversion Considerations .............................................. 426  
CPFSEQ .......................................................................... 338  
CPFSGT .......................................................................... 339  
CPFSLT ........................................................................... 339  
Crystal Oscillator/Ceramic Resonator ................................ 31  
Customer Change Notification Service ............................ 439  
Customer Notification Service ......................................... 439  
Customer Support ............................................................ 439  
16 x 16 Signed Multiply Routine ..............................118  
16 x 16 Unsigned Multiply Routine ..........................118  
8 x 8 Signed Multiply Routine ..................................117  
8 x 8 Unsigned Multiply Routine ..............................117  
Changing Between Capture Prescalers ...................181  
Computed GOTO Using an Offset Value ...................68  
Data EEPROM Read ...............................................113  
Data EEPROM Refresh Routine ..............................114  
Data EEPROM Write ...............................................113  
Erasing a Flash Program Memory Row .....................92  
Fast Register Stack ....................................................68  
How to Clear RAM (Bank 1) Using  
Indirect Addressing ............................................81  
Implementing a Real-Time Clock  
D
Using a Timer1 Interrupt Service .....................169  
Initializing PORTA ....................................................135  
Initializing PORTB ....................................................137  
Initializing PORTC ....................................................140  
Initializing PORTD ....................................................143  
Initializing PORTE ....................................................146  
Initializing PORTF ....................................................149  
Initializing PORTG ...................................................151  
Initializing PORTH ....................................................154  
Initializing PORTJ ....................................................156  
Loading the SSP1BUF (SSP1SR) Register .............208  
Reading a Flash Program Memory Word ..................91  
Saving STATUS, WREG and BSR  
Data Addressing Modes .................................................... 81  
Comparing Addressing Modes with the  
Extended Instruction Set Enabled ..................... 84  
Direct ......................................................................... 81  
Indexed Literal Offset ................................................ 83  
Instructions Affected .......................................... 83  
Indirect ....................................................................... 81  
Inherent and Literal .................................................... 81  
Data EEPROM  
Code Protection ....................................................... 320  
Data EEPROM Memory ................................................... 111  
Associated Registers ............................................... 115  
EEADR and EEADRH Registers ............................. 111  
EECON1 and EECON2 Registers ........................... 111  
Operation During Code-Protect ............................... 114  
Protection Against Spurious Write ........................... 114  
Reading ................................................................... 113  
Using ....................................................................... 114  
Write Verify .............................................................. 113  
Writing ..................................................................... 113  
Registers in RAM .............................................134  
Writing to Flash Program Memory ....................... 94–95  
Code Protection ...............................................................297  
COMF ...............................................................................338  
Comparator ......................................................................281  
Analog Input Connection Considerations .................285  
Associated Registers ...............................................285  
Configuration ............................................................282  
Effects of a Reset .....................................................284  
Interrupts ..................................................................284  
DS39646C-page 430  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Data Memory ..................................................................... 72  
Access Bank .............................................................. 74  
and the Extended Instruction Set ............................... 83  
Bank Select Register (BSR) ....................................... 72  
General Purpose Registers ........................................ 74  
Map for PIC18F8722 Family ...................................... 73  
Special Function Registers ........................................ 75  
DAW ................................................................................. 340  
DC Characteristics ........................................................... 391  
Power-Down and Supply Current ............................ 379  
Supply Voltage ......................................................... 378  
DCFSNZ .......................................................................... 341  
DECF ............................................................................... 340  
DECFSZ ........................................................................... 341  
Development Support ...................................................... 371  
Device Differences ........................................................... 425  
Device Overview .................................................................. 7  
Details on Individual Family Members ......................... 9  
Features (table) ...................................................... 9, 10  
New Core Features ...................................................... 7  
Device Reset Timers .......................................................... 53  
Oscillator Start-up Timer (OST) ................................. 53  
PLL Lock Time-out ..................................................... 53  
Power-up Timer (PWRT) ........................................... 53  
Time-out Sequence .................................................... 53  
Direct Addressing ............................................................... 82  
Baud Rate Generator (BRG) ................................... 251  
Associated Registers ....................................... 252  
Auto-Baud Rate Detect .................................... 255  
Baud Rate Error, Calculating ........................... 252  
Baud Rates, Asynchronous Modes ................. 253  
High Baud Rate Select (BRGH Bit) ................. 251  
Sampling ......................................................... 251  
Synchronous Master Mode ...................................... 264  
Associated Registers, Receive ........................ 267  
Associated Registers, Transmit ....................... 265  
Reception ........................................................ 266  
Transmission ................................................... 264  
Synchronous Slave Mode ........................................ 268  
Associated Registers, Receive ........................ 269  
Associated Registers, Transmit ....................... 268  
Reception ........................................................ 269  
Transmission ................................................... 268  
Extended Instruction Set  
ADDFSR .................................................................. 364  
ADDULNK ............................................................... 364  
CALLW .................................................................... 365  
MOVSF .................................................................... 365  
MOVSS .................................................................... 366  
PUSHL ..................................................................... 366  
SUBFSR .................................................................. 367  
SUBULNK ................................................................ 367  
Extended Microcontroller Mode ....................................... 100  
External Clock Input ........................................................... 32  
External Memory Bus ........................................................ 97  
16-Bit Byte Select Mode .......................................... 103  
16-Bit Byte Write Mode ............................................ 101  
16-Bit Data Width Modes ......................................... 100  
16-Bit Mode Timing ................................................. 104  
16-Bit Word Write Mode .......................................... 102  
8-Bit Data Width Modes ........................................... 106  
8-Bit Mode Timing ................................................... 107  
I/O Port Functions ...................................................... 97  
Operation in Power-Managed Modes ...................... 109  
E
ECCP  
Capture and Compare Modes .................................. 192  
Standard PWM Mode ............................................... 192  
Effect on Standard PIC MCU Instructions ........................ 368  
Effects of Power-Managed Modes on Various  
Clock Sources ............................................................ 40  
Electrical Characteristics .................................................. 375  
Enhanced Capture/Compare/PWM (ECCP) .................... 187  
and Program Memory Modes .................................. 188  
Capture Mode. See Capture (ECCP Module).  
Outputs and Configuration ....................................... 188  
Pin Configurations for ECCP1 ................................. 189  
Pin Configurations for ECCP2 ................................. 190  
Pin Configurations for ECCP3 ................................. 191  
PWM Mode. See PWM (ECCP Module).  
F
Fail-Safe Clock Monitor ........................................... 297, 315  
Exiting Operation ..................................................... 315  
Interrupts in Power-Managed Modes ...................... 316  
POR or Wake from Sleep ........................................ 316  
WDT During Oscillator Failure ................................. 315  
Fast Register Stack ........................................................... 68  
Firmware Instructions ...................................................... 321  
Flash Program Memory ..................................................... 87  
Associated Registers ................................................. 95  
Control Registers ....................................................... 88  
EECON1 and EECON2 ..................................... 88  
TABLAT (Table Latch) Register ........................ 90  
TBLPTR (Table Pointer) Register ...................... 90  
Erase Sequence ........................................................ 92  
Erasing ...................................................................... 92  
Operation During Code-Protect ................................. 95  
Reading ..................................................................... 91  
Table Pointer  
Boundaries Based on Operation ....................... 90  
Table Pointer Boundaries .......................................... 90  
Table Reads and Table Writes .................................. 87  
Write Sequence ......................................................... 93  
Writing To .................................................................. 93  
Protection Against Spurious Writes ................... 95  
Unexpected Termination ................................... 95  
Write Verify ........................................................ 95  
FSCM. See Fail-Safe Clock Monitor.  
Timer Resources ...................................................... 192  
Enhanced PWM Mode. See PWM (ECCP Module).  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART). See EUSART.  
Equations  
A/D Acquisition Time ................................................ 276  
A/D Minimum Charging Time ................................... 276  
A/D, Calculating the Minimum Required  
Acquisition Time .............................................. 276  
Errata ................................................................................... 5  
EUSART  
Asynchronous Mode ................................................ 257  
12-Bit Break Transmit and Receive ................. 263  
Associated Registers, Receive ........................ 261  
Associated Registers, Transmit ....................... 259  
Auto-Wake-up on Sync Break ......................... 262  
Receiver ........................................................... 260  
Setting up 9-Bit Mode with  
Address Detect ........................................ 260  
Transmitter ....................................................... 257  
Baud Rate Generator  
Operation in Power-Managed Modes .............. 251  
© 2008 Microchip Technology Inc.  
DS39646C-page 431  
PIC18F8722 FAMILY  
Indexed Literal Offset Addressing  
G
and Standard PIC18 Instructions ............................. 368  
Indexed Literal Offset Mode ............................................. 368  
Indirect Addressing ............................................................ 82  
INFSNZ ............................................................................ 343  
Initialization Conditions for all Registers ...................... 57–61  
Instruction Cycle ................................................................ 69  
Clocking Scheme ....................................................... 69  
Instruction Flow/Pipelining ................................................. 69  
Instruction Set .................................................................. 321  
ADDLW .................................................................... 327  
ADDWF .................................................................... 327  
ADDWF (Indexed Literal Offset Mode) .................... 369  
ADDWFC ................................................................. 328  
ANDLW .................................................................... 328  
ANDWF .................................................................... 329  
BC ............................................................................ 329  
BCF ......................................................................... 330  
BN ............................................................................ 330  
BNC ......................................................................... 331  
BNN ......................................................................... 331  
BNOV ...................................................................... 332  
BNZ ......................................................................... 332  
BOV ......................................................................... 335  
BRA ......................................................................... 333  
BSF .......................................................................... 333  
BSF (Indexed Literal Offset Mode) .......................... 369  
BTFSC ..................................................................... 334  
BTFSS ..................................................................... 334  
BTG ......................................................................... 335  
BZ ............................................................................ 336  
CALL ........................................................................ 336  
CLRF ....................................................................... 337  
CLRWDT ................................................................. 337  
COMF ...................................................................... 338  
CPFSEQ .................................................................. 338  
CPFSGT .................................................................. 339  
CPFSLT ................................................................... 339  
DAW ........................................................................ 340  
DCFSNZ .................................................................. 341  
DECF ....................................................................... 340  
DECFSZ .................................................................. 341  
Extended Instructions .............................................. 363  
Considerations when Enabling ........................ 368  
Syntax .............................................................. 363  
Use with MPLAB IDE Tools ............................. 370  
General Format ........................................................ 323  
GOTO ...................................................................... 342  
INCF ........................................................................ 342  
INCFSZ .................................................................... 343  
INFSNZ .................................................................... 343  
IORLW ..................................................................... 344  
IORWF ..................................................................... 344  
LFSR ....................................................................... 345  
MOVF ...................................................................... 345  
MOVFF .................................................................... 346  
MOVLB .................................................................... 346  
MOVLW ................................................................... 347  
MOVWF ................................................................... 347  
MULLW .................................................................... 348  
MULWF .................................................................... 348  
NEGF ....................................................................... 349  
NOP ......................................................................... 349  
POP ......................................................................... 350  
PUSH ....................................................................... 350  
General Call Address Support .........................................229  
GOTO ...............................................................................342  
H
Hardware Multiplier ..........................................................117  
Introduction ..............................................................117  
Operation .................................................................117  
Performance Comparison ........................................117  
High/Low-Voltage Detect .................................................291  
Applications ..............................................................294  
Associated Registers ...............................................295  
Characteristics .........................................................395  
Current Consumption ...............................................293  
Effects of a Reset .....................................................295  
Operation .................................................................292  
During Sleep ....................................................295  
Setup ........................................................................293  
Start-up Time ...........................................................293  
Typical Application ...................................................294  
HLVD. See High/Low-Voltage Detect. .............................291  
I
I/O Ports ...........................................................................135  
2
I C Mode (MSSP)  
Acknowledge Sequence Timing ...............................239  
Associated Registers ...............................................245  
Baud Rate Generator ...............................................232  
Bus Collision  
During a Repeated Start Condition ..................243  
During a Stop Condition ...................................244  
Clock Arbitration .......................................................233  
Clock Stretching .......................................................225  
10-Bit Slave Receive Mode (SEN = 1) .............225  
10-Bit Slave Transmit Mode .............................225  
7-Bit Slave Receive Mode (SEN = 1) ...............225  
7-Bit Slave Transmit Mode ...............................225  
Clock Synchronization and the CKP bit ...................226  
Effects of a Reset .....................................................240  
General Call Address Support .................................229  
2
I C Clock Rate w/BRG .............................................232  
Master Mode ............................................................230  
Operation .........................................................231  
Reception .........................................................236  
Repeated Start Condition Timing .....................235  
Start Condition Timing .....................................234  
Transmission ....................................................236  
Multi-Master Communication, Bus Collision  
and Arbitration ..................................................240  
Multi-Master Mode ...................................................240  
Operation .................................................................219  
Read/Write Bit Information (R/W Bit) ............... 219, 220  
Registers ..................................................................215  
Serial Clock (RC3/SCKx/SCLx) ...............................220  
Slave Mode ..............................................................219  
Addressing .......................................................219  
Reception .........................................................220  
Transmission ....................................................220  
Sleep Operation .......................................................240  
Stop Condition Timing ..............................................239  
ID Locations ............................................................. 297, 320  
INCF .................................................................................342  
INCFSZ ............................................................................343  
In-Circuit Debugger ..........................................................320  
In-Circuit Serial Programming (ICSP) ......................297, 320  
DS39646C-page 432  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
RCALL ..................................................................... 351  
RESET ..................................................................... 351  
RETFIE .................................................................... 352  
RETLW .................................................................... 352  
RETURN .................................................................. 353  
RLCF ........................................................................ 353  
RLNCF ..................................................................... 354  
RRCF ....................................................................... 354  
RRNCF .................................................................... 355  
SETF ........................................................................ 355  
SETF (Indexed Literal Offset Mode) ........................ 369  
SLEEP ..................................................................... 356  
Standard Instructions ............................................... 321  
SUBFWB .................................................................. 356  
SUBLW .................................................................... 357  
SUBWF .................................................................... 357  
SUBWFB .................................................................. 358  
SWAPF .................................................................... 358  
TBLRD ..................................................................... 359  
TBLWT ..................................................................... 360  
TSTFSZ ................................................................... 361  
XORLW .................................................................... 361  
XORWF .................................................................... 362  
L
LFSR ............................................................................... 345  
Low-Voltage ICSP Programming. See Single-Supply  
ICSP Programming  
M
Master Clear (MCLR) ......................................................... 51  
Master Synchronous Serial Port (MSSP). See MSSP.  
Memory  
Mode Memory Access ............................................... 64  
Memory Maps for PIC18F8722 Family  
Program Memory Modes ........................................... 65  
Memory Organization ........................................................ 63  
Data Memory ............................................................. 72  
Program Memory ....................................................... 63  
Modes ................................................................ 63  
Memory Programming Requirements .............................. 393  
Microchip Internet Web Site ............................................. 439  
Microcontroller Mode ....................................................... 100  
Microprocessor Mode ...................................................... 100  
Microprocessor with Boot Block Mode ............................. 100  
Migration from Baseline to Enhanced Devices ................ 426  
Migration from High-End to Enhanced Devices ............... 427  
Migration from Mid-Range to Enhanced Devices ............ 427  
MOVF .............................................................................. 345  
MOVFF ............................................................................ 346  
MOVLB ............................................................................ 346  
MOVLW ........................................................................... 347  
MOVSF ............................................................................ 365  
MOVSS ............................................................................ 366  
MOVWF ........................................................................... 347  
MPLAB ASM30 Assembler, Linker, Librarian .................. 372  
MPLAB ICD 2 In-Circuit Debugger .................................. 373  
MPLAB ICE 2000 High-Performance  
INTCON Register  
RBIF Bit .................................................................... 137  
INTCON Registers ........................................................... 121  
2
Inter-Integrated Circuit. See I C.  
Internal Oscillator Block ..................................................... 34  
Adjustment ................................................................. 34  
INTIO Modes .............................................................. 34  
INTOSC Frequency Drift ............................................ 35  
INTOSC Output Frequency ........................................ 34  
OSCTUNE Register ................................................... 34  
PLL in INTOSC Modes .............................................. 35  
Internal RC Oscillator  
Use with WDT .......................................................... 312  
Internet Address ............................................................... 439  
Interrupt Sources ............................................................. 297  
A/D Conversion Complete ....................................... 275  
Capture Complete (CCP) ......................................... 181  
Compare Complete (CCP) ....................................... 182  
Interrupt-on-Change (RB7:RB4) .............................. 137  
INTx Pin ................................................................... 134  
PORTB, Interrupt-on-Change .................................. 134  
TMR0 ....................................................................... 134  
TMR0 Overflow ........................................................ 163  
TMR1 Overflow ........................................................ 165  
TMR2 to PR2 Match (PWM) ............................ 184, 192  
TMR3 Overflow ................................................ 173, 175  
TMR4 to PR4 Match ................................................ 178  
TMR4 to PR4 Match (PWM) .................................... 177  
Interrupts .......................................................................... 119  
Interrupts, Flag Bits  
Universal In-Circuit Emulator ................................... 373  
MPLAB Integrated Development  
Environment Software ............................................. 371  
MPLAB PM3 Device Programmer ................................... 373  
MPLAB REAL ICE In-Circuit Emulator System ............... 373  
MPLINK Object Linker/MPLIB Object Librarian ............... 372  
MSSP  
ACK Pulse ....................................................... 219, 220  
Control Registers (general) ..................................... 205  
I C Mode. See I C Mode.  
2
2
Module Overview ..................................................... 205  
SPI Master/Slave Connection .................................. 209  
TMR4 Output for Clock Shift .................................... 178  
MULLW ............................................................................ 348  
MULWF ............................................................................ 348  
N
NEGF ............................................................................... 349  
NOP ................................................................................. 349  
Interrupt-on-Change (RB7:RB4) Flag  
O
(RBIF Bit) ........................................................ 137  
INTOSC, INTRC. See Internal Oscillator Block.  
Opcode Field Descriptions ............................................... 322  
Oscillator Configuration ..................................................... 31  
EC .............................................................................. 31  
ECIO .......................................................................... 31  
HS .............................................................................. 31  
HSPLL ....................................................................... 31  
Internal Oscillator Block ............................................. 34  
INTIO1 ....................................................................... 31  
INTIO2 ....................................................................... 31  
LP .............................................................................. 31  
IORLW ............................................................................. 344  
IORWF ............................................................................. 344  
IPR Registers ................................................................... 130  
K
Key Features  
Easy Migration ............................................................. 8  
Expanded Memory ....................................................... 7  
External Memory Interface ........................................... 8  
© 2008 Microchip Technology Inc.  
DS39646C-page 433  
PIC18F8722 FAMILY  
RC ..............................................................................31  
RCIO ..........................................................................31  
XT ..............................................................................31  
Oscillator Selection ..........................................................297  
Oscillator Start-up Timer (OST) ................................... 40, 53  
Oscillator Switching ............................................................37  
Oscillator Transitions ..........................................................38  
Oscillator, Timer1 ..................................................... 165, 175  
Oscillator, Timer3 .............................................................173  
RD7/AD7/PSP7/SS2 .................................................. 25  
RD7/PSP7/SS2 ......................................................... 17  
RE0/AD8/RD/P2D ...................................................... 26  
RE0/RD/P2D .............................................................. 18  
RE1/AD9/WR/P2C ..................................................... 26  
RE1/WR/P2C ............................................................. 18  
RE2/AD10/CS/P2B .................................................... 26  
RE2/CS/P2D .............................................................. 18  
RE3/AD11/P3C .......................................................... 26  
RE3/P3C .................................................................... 18  
RE4/AD12/P3B .......................................................... 26  
RE4/P3B .................................................................... 18  
RE5/AD13/P1C .......................................................... 26  
RE5/P1C .................................................................... 18  
RE6/AD14/P1B .......................................................... 26  
RE6/P1B .................................................................... 18  
RE7/AD15/ECCP2/P2A ............................................. 26  
RE7/ECCP2/P2A ....................................................... 18  
RF0/AN5 .............................................................. 19, 27  
RF1/AN6/C2OUT ................................................. 19, 27  
RF2/AN7/C1OUT ................................................. 19, 27  
RF3/AN8 .............................................................. 19, 27  
RF4/AN9 .............................................................. 19, 27  
RF5/AN10/CVREF ................................................ 19, 27  
RF6/AN11 ............................................................ 19, 27  
RF7/SS1 .............................................................. 19, 27  
RG0/ECCP3/P3A ................................................. 20, 28  
RG1/TX2/CK2 ...................................................... 20, 28  
RG2/RX2/DT2 ...................................................... 20, 28  
RG3/CCP4/P3D ................................................... 20, 28  
RG4/CCP5/P1D ................................................... 20, 28  
RG5 ..................................................................... 20, 28  
RG5/MCLR/VPP ................................................... 13, 21  
RH0/A16 .................................................................... 29  
RH1/A17 .................................................................... 29  
RH2/A18 .................................................................... 29  
RH3/A19 .................................................................... 29  
RH4/AN12/P3C .......................................................... 29  
RH5/AN13/P3B .......................................................... 29  
RH6/AN14/P1C .......................................................... 29  
RH7/AN15/P1B .......................................................... 29  
RJ0/ALE .................................................................... 30  
RJ1/OE ...................................................................... 30  
RJ2/WRL ................................................................... 30  
RJ3/WRH ................................................................... 30  
RJ4/BA0 .................................................................... 30  
RJ5/CE ...................................................................... 30  
RJ6/LB ....................................................................... 30  
RJ7/UB ...................................................................... 30  
VDD ............................................................................ 20  
VDD ............................................................................ 30  
VSS ............................................................................ 20  
VSS ............................................................................ 30  
Pinout I/O Descriptions  
P
Packaging ........................................................................419  
Details ......................................................................420  
Marking ....................................................................419  
Parallel Slave Port (PSP) .................................................158  
Associated Registers ...............................................160  
RE0/RD Pin ..............................................................158  
RE1/WR Pin .............................................................158  
RE2/CS Pin ..............................................................158  
Select (PSPMODE Bit) ............................................158  
PICSTART Plus Development Programmer ....................374  
PIE Registers ...................................................................127  
Pin Functions  
AVDD ..........................................................................20  
AVDD ..........................................................................30  
AVSS ..........................................................................20  
AVSS ..........................................................................30  
OSC1/CLKI/RA7 .................................................. 13, 21  
OSC2/CLKO/RA6 ................................................ 13, 21  
RA0/AN0 .............................................................. 14, 22  
RA1/AN1 .............................................................. 14, 22  
RA2/AN2/VREF- .................................................... 14, 22  
RA3/AN3/VREF+ ................................................... 14, 22  
RA4/T0CKI ........................................................... 14, 22  
RA5/AN4/HLVDIN ................................................ 14, 22  
RB0/INT0/FLT0 .................................................... 15, 23  
RB1/INT1 ............................................................. 15, 23  
RB2/INT2 ............................................................. 15, 23  
RB3/INT3 ...................................................................15  
RB3/INT3/ECCP2/P2A ..............................................23  
RB4/KBI0 ............................................................. 15, 23  
RB5/KBI1/PGM .................................................... 15, 23  
RB6/KBI2/PGC .................................................... 15, 23  
RB7/KBI3/PGD .................................................... 15, 23  
RC0/T1OSO/T13CKI ...........................................16, 24  
RC1/T1OSI/ECCP2/P2A ...................................... 16, 24  
RC2/ECCP1/P1A ................................................. 16, 24  
RC3/SCK1/SCL1 ................................................. 16, 24  
RC4/SDI1/SDA1 .................................................. 16, 24  
RC5/SDO1 ........................................................... 16, 24  
RC6/TX1/CK1 ...................................................... 16, 24  
RC7/RX1/DT1 ...................................................... 16, 24  
RD0/AD0/PSP0 ..........................................................25  
RD0/PSP0 ..................................................................17  
RD1/AD1/PSP1 ..........................................................25  
RD1/PSP1 ..................................................................17  
RD2/AD2/PSP2 ..........................................................25  
RD2/PSP2 ..................................................................17  
RD3/AD3/PSP3 ..........................................................25  
RD3/PSP3 ..................................................................17  
RD4/AD4/PSP4/SDO2 ...............................................25  
RD4/PSP4/SDO2 .......................................................17  
RD5/AD5/PSP5/SDI2/SDA2 ......................................25  
RD5/PSP5/SDI2/SDA2 ..............................................17  
RD6/AD6/PSP6/SCK2/SCL2 .....................................25  
RD6/PSP6/SCK2/SCL2 .............................................17  
PIC18F6527/6622/6627/6722 ................................... 13  
PIC18F8527/8622/8627/8722 ................................... 21  
PIR Registers ................................................................... 124  
PLL Frequency Multiplier ................................................... 33  
HSPLL Oscillator Mode ............................................. 33  
Use with INTOSC ...................................................... 33  
POP ................................................................................. 350  
POR. See Power-on Reset.  
DS39646C-page 434  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
PORTA  
Associated Registers ............................................... 136  
Power-Managed Modes ..................................................... 41  
and A/D Operation ................................................... 278  
and EUSART Operation .......................................... 251  
and Multiple Sleep Commands .................................. 42  
and PWM Operation ................................................ 203  
and SPI Operation ................................................... 213  
Associated Registers ............................................... 109  
Clock Transitions and Status Indicators .................... 42  
Effects on Clock Sources .......................................... 40  
Entering ..................................................................... 41  
Exiting Idle and Sleep Modes .................................... 47  
by Interrupt ........................................................ 47  
by Reset ............................................................ 47  
by WDT Time-out .............................................. 47  
Without a Start-up Delay ................................... 48  
Idle Modes ................................................................. 45  
PRI_IDLE .......................................................... 46  
RC_IDLE ........................................................... 47  
SEC_IDLE ......................................................... 46  
Run Modes ................................................................ 42  
PRI_RUN ........................................................... 42  
RC_RUN ............................................................ 43  
SEC_RUN ......................................................... 42  
Selecting .................................................................... 41  
Sleep Mode ............................................................... 45  
Summary (table) ........................................................ 41  
Power-on Reset (POR) ...................................................... 51  
Power-up Timer (PWRT) ........................................... 53  
Time-out Sequence ................................................... 53  
Power-up Delays ............................................................... 40  
Power-up Timer (PWRT) ................................................... 40  
Prescaler  
Timer2 ..................................................................... 193  
Prescaler, Timer0 ............................................................ 163  
Prescaler, Timer2 ............................................................ 185  
PRI_IDLE Mode ................................................................. 46  
PRI_RUN Mode ................................................................. 42  
Program Counter ............................................................... 66  
PCL, PCH and PCU Registers .................................. 66  
PCLATH and PCLATU Registers .............................. 66  
Program Memory  
and Extended Instruction Set .................................... 85  
Code Protection ....................................................... 318  
Extended Microcontroller Mode ................................. 63  
Instructions ................................................................ 70  
Two-Word .......................................................... 71  
Interrupt Vector .......................................................... 63  
Look-up Tables .......................................................... 68  
Map and Stack (diagram) .......................................... 64  
Microcontroller Mode ................................................. 63  
Microprocessor Mode ................................................ 63  
Microprocessor with Boot Block Mode ...................... 63  
Reset Vector .............................................................. 63  
Program Verification and Code Protection ...................... 317  
Associated Registers ............................................... 318  
Programming, Device Instructions ................................... 321  
PSP.See Parallel Slave Port.  
Functions ................................................................. 136  
LATA Register .......................................................... 135  
PORTA Register ...................................................... 135  
TRISA Register ........................................................ 135  
PORTB  
Associated Registers ............................................... 139  
Functions ................................................................. 138  
LATB Register .......................................................... 137  
PORTB Register ...................................................... 137  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF Bit) ......................................................... 137  
TRISB Register ........................................................ 137  
PORTC  
Associated Registers ............................................... 142  
Functions ................................................................. 141  
LATC Register ......................................................... 140  
PORTC Register ...................................................... 140  
RC3/SCKx/SCLx Pin ................................................ 220  
TRISC Register ........................................................ 140  
PORTD ............................................................................ 158  
Associated Registers ............................................... 145  
Functions ................................................................. 144  
LATD Register ......................................................... 143  
PORTD Register ...................................................... 143  
TRISD Register ........................................................ 143  
PORTE  
Analog Port Pins ...................................................... 158  
Associated Registers ............................................... 148  
Functions ................................................................. 147  
LATE Register .......................................................... 146  
PORTE Register ...................................................... 146  
PSP Mode Select (PSPMODE Bit) .......................... 158  
RE0/RD Pin .............................................................. 158  
RE1/WR Pin ............................................................. 158  
RE2/CS Pin .............................................................. 158  
TRISE Register ........................................................ 146  
PORTF  
Associated Registers ............................................... 150  
Functions ................................................................. 150  
LATF Register .......................................................... 149  
PORTF Register ...................................................... 149  
TRISF Register ........................................................ 149  
PORTG  
Associated Registers ............................................... 153  
Functions ................................................................. 152  
LATG Register ......................................................... 151  
PORTG Register ...................................................... 151  
TRISG Register ........................................................ 151  
PORTH  
Associated Registers ............................................... 155  
Functions ................................................................. 155  
LATH Register ......................................................... 154  
PORTH Register ...................................................... 154  
TRISH Register ........................................................ 154  
PORTJ  
Associated Registers ............................................... 157  
Functions ................................................................. 157  
LATJ Register .......................................................... 156  
PORTJ Register ....................................................... 156  
TRISJ Register ......................................................... 156  
Pulse-Width Modulation. See PWM (CCP Module)  
and PWM (ECCP Module).  
PUSH ............................................................................... 350  
PUSH and POP Instructions .............................................. 67  
PUSHL ............................................................................. 366  
© 2008 Microchip Technology Inc.  
DS39646C-page 435  
PIC18F8722 FAMILY  
PWM (CCP Module)  
DEVID2 (Device ID 2) .............................................. 311  
ECCPxDEL (Enhanced PWM  
Associated Registers ...............................................186  
Duty Cycle ................................................................184  
Example Frequencies/Resolutions ..........................185  
Period .......................................................................184  
Setup for PWM Operation ........................................185  
TMR2 to PR2 Match ................................................184  
TMR4 to PR4 Match ................................................177  
PWM (ECCP Module) ......................................................192  
Associated Registers ...............................................204  
CCPR1H:CCPR1L Registers ...................................192  
Direction Change in Full-Bridge Output Mode .........198  
Duty Cycle ................................................................193  
Effects of a Reset .....................................................203  
Enhanced PWM Auto-Shutdown .............................200  
Example Frequencies/Resolutions ..........................193  
Full-Bridge Application Example ..............................198  
Full-Bridge Mode ......................................................197  
Half-Bridge Mode .....................................................196  
Half-Bridge Output Mode  
Dead-Band Delay) ........................................... 200  
EECON1 (Data EEPROM Control 1) ....................... 112  
EECON1 (EEPROM Control 1) ................................. 89  
HLVDCON (High/Low-Voltage Detect Control) ....... 291  
INTCON (Interrupt Control) ...................................... 121  
INTCON2 (Interrupt Control 2) ................................. 122  
INTCON3 (Interrupt Control 3) ................................. 123  
IPR1 (Peripheral Interrupt Priority 1) ....................... 130  
IPR2 (Peripheral Interrupt Priority 2) ....................... 131  
MEMCON (External Memory Bus Control) ................ 98  
OSCCON (Oscillator Control) .................................... 39  
OSCTUNE (Oscillator Tuning) ................................... 35  
PIR1 (Peripheral Interrupt Request (Flag) 1) ........... 124  
PIR2 (Peripheral Interrupt Request (Flag) 2) ........... 125  
PSPCON (Parallel Slave Port Control) .................... 159  
RCON (Reset Control) ....................................... 50, 133  
RCSTAx (Receive Status and Control) .................... 249  
2
SSPxCON1 (MSSPx Control 1, I C Mode) .............. 217  
Applications Example .......................................196  
Operation in Power-Managed Modes ......................203  
Operation with Fail-Safe Clock Monitor ...................203  
Output Configurations ..............................................194  
Output Relationships (Active-High) ..........................194  
Output Relationships (Active-Low) ...........................195  
Period .......................................................................192  
Programmable Dead-Band Delay ............................200  
Setup for PWM Operation ........................................203  
Start-up Considerations ...........................................202  
TMR2 to PR2 Match ................................................192  
SSPxCON1 (MSSPx Control 1, SPI Mode) ............. 207  
2
SSPxCON2 (MSSPx Control 2, I C Mode) .............. 219  
2
SSPxSTAT (MSSPx Status, I C Mode) ................... 216  
SSPxSTAT (MSSPx Status, SPI Mode) .................. 206  
STATUS (Arithmetic Status) ...................................... 80  
STKPTR (Stack Pointer) ............................................ 67  
T0CON (Timer0 Control) ......................................... 161  
T1CON (Timer1 Control) ......................................... 165  
T2CON (Timer2 Control) ......................................... 171  
T3CON (Timer3 Control) ......................................... 173  
T4CON (Timer 4 Control) ........................................ 177  
TXSTAx (Transmit Status and Control) ................... 248  
WDTCON (Watchdog Timer Control) ...................... 313  
RESET ............................................................................. 351  
Reset State of Registers .................................................... 56  
Resets ........................................................................ 49, 297  
Brown-out Reset (BOR) ........................................... 297  
Oscillator Start-up Timer (OST) ............................... 297  
Power-on Reset (POR) ............................................ 297  
Power-up Timer (PWRT) ......................................... 297  
RETFIE ............................................................................ 352  
RETLW ............................................................................ 352  
RETURN .......................................................................... 353  
Return Address Stack ........................................................ 66  
Return Stack Pointer (STKPTR) ........................................ 67  
Revision History ............................................................... 425  
RLCF ............................................................................... 353  
RLNCF ............................................................................. 354  
RRCF ............................................................................... 354  
RRNCF ............................................................................ 355  
Q
Q Clock .................................................................... 185, 193  
R
RAM. See Data Memory.  
RC Oscillator ......................................................................33  
RCIO Oscillator Mode ................................................33  
RC_IDLE Mode ..................................................................47  
RC_RUN Mode ..................................................................43  
RCALL ..............................................................................351  
RCON Register  
Bit Status During Initialization ....................................56  
Reader Response ............................................................440  
Register File .......................................................................74  
Registers  
ADCON0 (A/D Control 0) .........................................271  
ADCON1 (A/D Control 1) .........................................272  
ADCON2 (A/D Control 2) .........................................273  
BAUDCONx (Baud Rate Control) ............................250  
CCPxCON (CCPx Control, CCP4 and CCP5) .........179  
CMCON (Comparator Control) ................................281  
CONFIG1H (Configuration 1 High) ..........................299  
CONFIG2H (Configuration 2 High) ..........................301  
CONFIG2L (Configuration 2 Low) ............................300  
CONFIG3H (Configuration 3 High) ..........................303  
CONFIG3L (Configuration 3 Low) ............................302  
CONFIG4L (Configuration 4 Low) ............................304  
CONFIG5H (Configuration 5 High) ..........................306  
CONFIG5L (Configuration 5 Low) ............................305  
CONFIG6H (Configuration 6 High) ..........................308  
CONFIG6L (Configuration 6 Low) ............................307  
CONFIG7H (Configuration 7 High) ..........................310  
CONFIG7L (Configuration 7 Low) ............................309  
DEVID1 (Device ID 1) ..............................................311  
S
SCKx ................................................................................ 205  
SDIx ................................................................................. 205  
SDOx ............................................................................... 205  
SEC_IDLE Mode ............................................................... 46  
SEC_RUN Mode ................................................................ 42  
Serial Clock, SCKx .......................................................... 205  
Serial Data In (SDIx) ........................................................ 205  
Serial Data Out (SDOx) ................................................... 205  
Serial Peripheral Interface. See SPI Mode.  
SETF ................................................................................ 355  
Single-Supply ICSP Programming.  
Slave Select (SSx) ........................................................... 205  
Slave Select Synchronization .......................................... 211  
SLEEP ............................................................................. 356  
DS39646C-page 436  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Sleep  
OSC1 and OSC2 Pin States ...................................... 40  
Sleep Mode ........................................................................ 45  
Software Simulator (MPLAB SIM) .................................... 372  
Special Event Trigger. See Compare (CCP Mode).  
Timer1 ............................................................................. 165  
16-Bit Read/Write Mode .......................................... 167  
Associated Registers ............................................... 169  
Interrupt ................................................................... 168  
Operation ................................................................. 166  
Oscillator .......................................................... 165, 167  
Layout Considerations ..................................... 168  
Overflow Interrupt .................................................... 165  
Resetting, Using the CCP  
Special Event Trigger. See Compare (ECCP Module).  
Special Features of the CPU ........................................... 297  
Special Function Registers ................................................ 75  
Map ............................................................................ 75  
SPI Mode (MSSP) ............................................................ 205  
Associated Registers ............................................... 214  
Bus Mode Compatibility ........................................... 213  
Clock Speed, Interactions ........................................ 213  
Effects of a Reset ..................................................... 213  
Enabling SPI I/O ...................................................... 209  
Master Mode ............................................................ 210  
Master/Slave Connection ......................................... 209  
Operation ................................................................. 208  
Operation in Power-Managed Modes ...................... 213  
Serial Clock .............................................................. 205  
Serial Data In ........................................................... 205  
Serial Data Out ........................................................ 205  
Slave Mode .............................................................. 211  
Slave Select ............................................................. 205  
Slave Select Synchronization .................................. 211  
SPI Clock ................................................................. 210  
SSPxBUF Register .................................................. 210  
SSPxSR Register ..................................................... 210  
Typical Connection .................................................. 209  
SSPOV ............................................................................. 236  
SSPOV Status Flag ......................................................... 236  
SSPxSTAT Register  
Special Event Trigger ...................................... 168  
Special Event Trigger (ECCP) ................................. 192  
TMR1H Register ...................................................... 165  
TMR1L Register ...................................................... 165  
Use as a Real-Time Clock ....................................... 168  
Timer2 ............................................................................. 171  
Associated Registers ............................................... 172  
Interrupt ................................................................... 172  
Operation ................................................................. 171  
Output ...................................................................... 172  
PR2 Register ................................................... 184, 192  
TMR2 to PR2 Match Interrupt .......................... 184, 192  
Timer3 ............................................................................. 173  
16-Bit Read/Write Mode .......................................... 175  
Associated Registers ............................................... 175  
Operation ................................................................. 174  
Oscillator .......................................................... 173, 175  
Overflow Interrupt ............................................ 173, 175  
Special Event Trigger (CCP) ................................... 175  
TMR3H Register ...................................................... 173  
TMR3L Register ...................................................... 173  
Timer4 ............................................................................. 177  
Associated Registers ............................................... 178  
MSSP Clock Shift .................................................... 178  
Operation ................................................................. 177  
Postscaler. See Postscaler, Timer4.  
R/W Bit ............................................................. 219, 220  
SSx .................................................................................. 205  
Stack Full/Underflow Resets .............................................. 68  
SUBFSR .......................................................................... 367  
SUBFWB .......................................................................... 356  
SUBLW ............................................................................ 357  
SUBULNK ........................................................................ 367  
SUBWF ............................................................................ 357  
SUBWFB .......................................................................... 358  
SWAPF ............................................................................ 358  
PR4 Register ........................................................... 177  
Prescaler. See Prescaler, Timer4.  
TMR4 Register ........................................................ 177  
TMR4 to PR4 Match Interrupt .......................... 177, 178  
Timing Diagrams  
A/D Conversion ....................................................... 416  
Asynchronous Reception ......................................... 261  
Asynchronous Transmission ................................... 258  
Asynchronous Transmission (Back to Back) ........... 258  
Automatic Baud Rate Calculation ............................ 256  
Auto-Wake-up Bit (WUE) During  
Normal Operation ............................................ 262  
Auto-Wake-up Bit (WUE) During Sleep ................... 262  
Baud Rate Generator with Clock Arbitration ............ 233  
BRG Overflow Sequence ........................................ 256  
BRG Reset Due to SDAx Arbitration  
During Start Condition ..................................... 242  
Brown-out Reset (BOR) ........................................... 403  
Bus Collision During a Repeated Start  
Condition (Case 1) ........................................... 243  
Bus Collision During a Repeated Start  
T
Table Pointer Operations (table) ........................................ 90  
Table Reads/Table Writes ................................................. 69  
TBLRD ............................................................................. 359  
TBLWT ............................................................................. 360  
Time-out in Various Situations (table) ................................ 53  
Timer0 .............................................................................. 161  
Associated Registers ............................................... 163  
Operation ................................................................. 162  
Overflow Interrupt .................................................... 163  
Prescaler .................................................................. 163  
Prescaler Assignment (PSA Bit) .............................. 163  
Prescaler Select (T0PS2:T0PS0 Bits) ..................... 163  
Prescaler. See Prescaler, Timer0.  
Condition (Case 2) ........................................... 243  
Bus Collision During a Start  
Condition (SCLx = 0) ....................................... 242  
Bus Collision During a Stop  
Condition (Case 1) ........................................... 244  
Bus Collision During a Stop  
Reads and Writes in 16-Bit Mode ............................ 162  
Source Edge Select (T0SE Bit) ................................ 162  
Source Select (T0CS Bit) ......................................... 162  
Switching Prescaler Assignment .............................. 163  
Condition (Case 2) ........................................... 244  
© 2008 Microchip Technology Inc.  
DS39646C-page 437  
PIC18F8722 FAMILY  
Bus Collision During Start  
Reset, Watchdog Timer (WDT), Oscillator Start-up  
Timer (OST) and Power-up Timer (PWRT) ..... 403  
Send Break Character Sequence ............................ 263  
Slave Synchronization ............................................. 211  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................ 55  
SPI Mode (Master Mode) ......................................... 210  
SPI Mode (Slave Mode, CKE = 0) ........................... 212  
SPI Mode (Slave Mode, CKE = 1) ........................... 212  
Synchronous Reception (Master Mode, SREN) ...... 266  
Synchronous Transmission ..................................... 264  
Synchronous Transmission (Through TXEN) .......... 265  
Time-out Sequence on POR w/PLL Enabled  
(MCLR Tied to VDD) .......................................... 55  
Time-out Sequence on Power-up  
Condition (SDAx Only) .....................................241  
Bus Collision for Transmit and Acknowledge ...........240  
Capture/Compare/PWM (All ECCP/CCP  
Modules) ..........................................................405  
CLKO and I/O ..........................................................400  
Clock Synchronization .............................................226  
Clock/Instruction Cycle ..............................................69  
EUSART Synchronous Receive  
(Master/Slave) ..................................................415  
EUSART Synchronous Transmission  
(Master/Slave) ..................................................415  
Example SPI Master Mode (CKE = 0) .....................407  
Example SPI Master Mode (CKE = 1) .....................408  
Example SPI Slave Mode (CKE = 0) .......................409  
Example SPI Slave Mode (CKE = 1) .......................410  
External Clock (All Modes Except PLL) ...................398  
External Memory Bus for Sleep  
(Microprocessor Mode) ............................ 105, 108  
External Memory Bus for TBLRD (Extended  
Microcontroller Mode) .............................. 104, 107  
External Memory Bus for TBLRD  
(MCLR Not Tied to VDD, Case 1) ...................... 54  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD, Case 2) ...................... 54  
Time-out Sequence on Power-up  
(MCLR Tied to VDD, VDD Rise < TPWRT) ........... 54  
Timer0 and Timer1 External Clock .......................... 404  
Transition for Entry to Idle Mode ................................ 46  
Transition for Entry to SEC_RUN Mode .................... 43  
Transition for Entry to Sleep Mode ............................ 45  
Transition for Two-Speed Start-up  
(INTOSC to HSPLL) ........................................ 314  
Transition for Wake from Idle to Run Mode ............... 46  
Transition for Wake from Sleep (HSPLL) .................. 45  
Transition from RC_RUN Mode to  
(Microprocessor Mode) ....................................107  
External Memory Bus for TBLRD with 1 TCY  
Wait State (Microprocessor Mode) ..................104  
Fail-Safe Clock Monitor (FSCM) ..............................316  
First Start Bit Timing ................................................234  
Full-Bridge PWM Output ..........................................197  
Half-Bridge PWM Output .........................................196  
High/Low-Voltage Detect Characteristics ................395  
High-Voltage Detect Operation  
PRI_RUN Mode ................................................. 44  
Transition from SEC_RUN Mode to  
(VDIRMAG = 1) ................................................294  
I C Acknowledge Sequence ....................................239  
I C Bus Data ............................................................411  
I C Bus Start/Stop Bits .............................................411  
I C Master Mode (7 or 10-Bit Transmission) ...........237  
I C Master Mode (7-Bit Reception) ..........................238  
I C Slave Mode (10-Bit Reception, SEN = 0) ..........223  
I C Slave Mode (10-Bit Reception, SEN = 1) ..........228  
I C Slave Mode (10-Bit Transmission) .....................224  
I C Slave Mode (7-bit Reception, SEN = 0) .............221  
I C Slave Mode (7-Bit Reception, SEN = 1) ............227  
I C Slave Mode (7-Bit Transmission) .......................222  
PRI_RUN Mode (HSPLL) .................................. 43  
Transition to RC_RUN Mode ..................................... 44  
Typical Opcode Fetch, 8-Bit Mode .......................... 108  
Timing Diagrams and Specifications  
2
2
2
2
A/D Conversion Requirements ................................ 417  
AC Characteristics  
Internal RC Accuracy ....................................... 399  
Capture/Compare/PWM Requirements  
(All ECCP/CCP Modules) ................................ 405  
CLKO and I/O Requirements ........................... 400, 401  
EUSART Synchronous Receive  
Requirements .................................................. 415  
EUSART Synchronous Transmission  
2
2
2
2
2
2
2
2
I C Slave Mode General Call Address  
Sequence (7 or 10-Bit Address Mode) .............229  
I C Stop Condition Receive or Transmit Mode ........239  
Requirements .................................................. 415  
Example SPI Mode Requirements  
2
Low-Voltage Detect Operation (VDIRMAG = 0) .......293  
(Master Mode, CKE = 0) .................................. 407  
Example SPI Mode Requirements  
(Master Mode, CKE = 1) .................................. 408  
Example SPI Mode Requirements  
2
Master SSP I C Bus Data ........................................413  
2
Master SSP I C Bus Start/Stop Bits ........................413  
Parallel Slave Port  
(PIC18F8527/8622/8627/8722) .......................406  
Parallel Slave Port (PSP) Read ...............................160  
Parallel Slave Port (PSP) Write ...............................160  
Program Memory Read ............................................401  
Program Memory Write ............................................402  
PWM Auto-Shutdown (P1RSEN = 0,  
(Slave Mode, CKE = 0) .................................... 409  
Example SPI Slave Mode Requirements  
(CKE = 1) ......................................................... 410  
External Clock Requirements .................................. 398  
2
I C Bus Data Requirements (Slave Mode) .............. 412  
2
I C Bus Start/Stop Bits Requirements  
Auto-Restart Disabled) .....................................202  
PWM Auto-Shutdown (P1RSEN = 1,  
Auto-Restart Enabled) .....................................202  
PWM Direction Change ...........................................199  
PWM Direction Change at Near  
(Slave Mode) ................................................... 411  
2
Master SSP I C Bus Data Requirements ................ 414  
2
Master SSP I C Bus Start/Stop Bits  
Requirements .................................................. 413  
Parallel Slave Port Requirements  
100% Duty Cycle .............................................199  
PWM Output ............................................................184  
Repeated Start Condition .........................................235  
(PIC18F8527/8622/8627/8722) ....................... 406  
PLL Clock ................................................................ 399  
Program Memory Write Requirements .................... 402  
DS39646C-page 438  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
Reset, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and Brown-out  
Reset Requirements ........................................ 403  
Timer0 and Timer1 External Clock  
W
Watchdog Timer (WDT) ........................................... 297, 312  
Associated Registers ............................................... 313  
Control Register ....................................................... 312  
During Oscillator Failure .......................................... 315  
Programming Considerations .................................. 312  
WCOL ...................................................... 234, 235, 236, 239  
WCOL Status Flag ................................... 234, 235, 236, 239  
WWW Address ................................................................ 439  
WWW, On-Line Support ...................................................... 5  
Requirements ................................................. 404  
Top-of-Stack Access .......................................................... 66  
TRISE Register  
PSPMODE Bit .......................................................... 158  
TSTFSZ ........................................................................... 361  
Two-Speed Start-up ................................................. 297, 314  
IESO (CONFIG1H, Internal/External  
Oscillator Switchover Bit .................................. 299  
Two-Word Instructions  
Example Cases .......................................................... 71  
TXSTAx Register  
X
XORLW ........................................................................... 361  
XORWF ........................................................................... 362  
BRGH Bit ................................................................. 251  
© 2008 Microchip Technology Inc.  
DS39646C-page 439  
PIC18F8722 FAMILY  
NOTES:  
DS39646C-page 440  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following informa-  
tion:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata, appli-  
cation notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
• Development Systems Information Line  
Customers should contact their distributor, representa-  
tive or field application engineer (FAE) for support.  
Local sales offices are also available to help custom-  
ers. A listing of sales offices and locations is included in  
the back of this document.  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of Micro-  
chip sales offices, distributors and factory repre-  
sentatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a spec-  
ified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change Notifi-  
cation and follow the registration instructions.  
© 2008 Microchip Technology Inc.  
DS39646C-page 441  
PIC18F8722 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F8722 Family  
DS39646C  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39646C-page 442  
© 2008 Microchip Technology Inc.  
PIC18F8722 FAMILY  
PIC18F8722 FAMILY PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC18LF6622-I/PT 301 = Industrial temp.,  
TQFP package, Extended VDD  
limits, QTP pattern #301.  
b)  
PIC18LF6722-E/PT = Extended temp.,  
TQFP package, standard VDD limits.  
Device  
PIC18F6527/6622/6627/6722(1), PIC18F8527/8622/8627/8722(1)  
,
PIC18F6527/6622/6627/6722T(2), PIC18F8527/8622/8627/8722T(2)  
VDD range 4.2V to 5.5V  
;
PIC18LF6627/6722(1), PIC18LF8627/8722(1)  
PIC18LF6627/6722T(2), PIC18LF8627/8722T(2)  
VDD range 2.0V to 5.5V  
,
;
Temperature  
Range  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package  
Pattern  
PT  
=
TQFP (Thin Quad Flatpack)  
Note 1:  
2:  
F
LF  
T
=
=
=
Standard Voltage Range  
Wide Voltage Range  
in tape and reel TQFP  
packages only.  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2008 Microchip Technology Inc.  
DS39646C-page 443  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS39646C-page 444  
© 2008 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY