PIC18LC242T-/PT [MICROCHIP]

RISC MICROCONTROLLER;
PIC18LC242T-/PT
型号: PIC18LC242T-/PT
厂家: MICROCHIP    MICROCHIP
描述:

RISC MICROCONTROLLER

外围集成电路
文件: 总304页 (文件大小:4529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18CXX2  
High Performance Microcontrollers with 10-bit A/D  
High Performance RISC CPU:  
Pin Diagrams  
DIP, Windowed CERDIP  
• C compiler optimized architecture/instruction set  
- Source code compatible with the PIC16CXX  
instruction set  
• Linear program memory addressing to 2 Mbytes  
Linear data memory addressing to 4 Kbytes  
RB7  
RB6  
RB5  
RB4  
RB3/CCP2*  
RB2/INT2  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
MCLR/VPP  
RA0/AN0  
2
3
RA1/AN1  
RA2/AN2/VREF-  
4
RA3/AN3/VREF+  
RA4/T0CKI  
5
6
On-Chip Program Memory  
RB1/INT1  
RB0/INT0  
VDD  
On-Chip  
RAM  
(bytes)  
RA5/AN4/SS/LVDIN  
7
8
9
Device  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
VSS  
OSC1/CLKI  
EPROM  
(bytes)  
# Single Word  
Instructions  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
PIC18C242  
PIC18C252  
PIC18C442  
16K  
32K  
16K  
8192  
16384  
8192  
512  
1536  
512  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1  
PIC18C452  
32K  
16384  
1536  
• Up to 10 MIPs operation:  
- DC - 40 MHz osc./clock input  
- 4 MHz - 10 MHz osc./clock input with PLL active  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
RC4/SDI/SDA  
RD3/PSP3  
RC3/SCK/SCL  
RD0/PSP0  
RD2/PSP2  
RD1/PSP1  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
Note: Pin compatible with 40-pin PIC16C7X devices.  
• 8 x 8 Single Cycle Hardware Multiplier  
Analog Features:  
Peripheral Features:  
• Compatible 10-bit Analog-to-Digital Converter  
module (A/D) with:  
- Fast sampling rate  
• High current sink/source 25 mA/25 mA  
• Three external interrupt pins  
- Conversion available during SLEEP  
- DNL = ±1 LSb, INL = ±1 LSb  
• Programmable Low Voltage Detection (LVD)  
module  
- Supports interrupt-on-low voltage detection  
• Programmable Brown-out Reset (BOR)  
• Timer0 module: 8-bit/16-bit timer/counter with  
8-bit programmable prescaler  
• Timer1 module: 16-bit timer/counter  
• Timer2 module: 8-bit timer/counter with 8-bit  
period register (time-base for PWM)  
• Timer3 module: 16-bit timer/counter  
• Secondary oscillator clock option - Timer1/Timer3  
• Two Capture/Compare/PWM (CCP) modules.  
CCP pins that can be configured as:  
- Capture input: capture is 16-bit,  
Special Microcontroller Features:  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Programmable code protection  
• Power saving SLEEP mode  
• Selectable oscillator options including:  
- 4X Phase Lock Loop (of primary oscillator)  
- Secondary Oscillator (32 kHz) clock input  
• In-Circuit Serial Programming (ICSP™) via two pins  
max. resolution 6.25 ns (TCY/16)  
- Compare is 16-bit, max. resolution 100 ns (TCY)  
- PWM output: PWM resolution is 1- to 10-bit.  
Max. PWM freq. @: 8-bit resolution = 156 kHz  
10-bit resolution = 39 kHz  
• Master Synchronous Serial Port (MSSP) module.  
Two modes of operation:  
- 3-wire SPI (supports all 4 SPI modes)  
- I2C™ master and slave mode  
CMOS Technology:  
• Addressable USART module:  
- Supports interrupt on Address bit  
• Parallel Slave Port (PSP) module  
• Low power, high speed EPROM technology  
• Fully static design  
• Wide operating voltage range (2.5V to 5.5V)  
• Industrial and Extended temperature ranges  
• Low power consumption  
1999-2013 Microchip Technology Inc.  
DS39026D-page 1  
PIC18CXX2  
Pin Diagrams  
PLCC  
39  
38  
37  
RB3/CCP2*  
RB2/INT2  
RB1/INT1  
RB0/INT0  
VDD  
7
RA4/T0CKI  
8
RA5/AN4/SS/LVDIN  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
36  
35  
34  
33  
32  
31  
30  
29  
PIC18C4X2  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
VSS  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
NC  
TQFP  
NC  
33  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
1
2
3
4
5
6
7
8
9
RC0/T1OSO/T1CKI  
OSC2/CLKO/RA6  
OSC1/CLKI  
VSS  
32  
31  
30  
29  
28  
27  
26  
PIC18C4X2  
VDD  
RE2/AN7/CS  
RE1/AN6/WR  
RE0/AN5/RD  
RA5/AN4/SS/LVDIN  
RA4/T0CKI  
VDD  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2*  
25  
24  
23  
10  
11  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
Note: Pin compatible with 44-pin PIC16C7X devices.  
DS39026D-page 2  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Pin Diagrams (Cont.’d)  
DIP, JW  
MCLR/VPP  
RA0/AN0  
1
2
3
4
5
6
7
8
RB7  
RB6  
RB5  
RB4  
RB3/CCP2*  
RB2/INT2  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB1/INT1  
RB0/INT0  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
VSS  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
RD1/PSP1  
Note: Pin compatible with 40-pin PIC16C7X devices.  
DIP, SOIC, JW  
28  
27  
26  
1
RB7  
RB6  
RB5  
RB4  
RB3/CCP2*  
RB2/INT2  
RB1/INT1  
RB0/INT0  
VDD  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
2
3
4
5
6
7
8
9
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RA5/AN4/SS/LVDIN  
VSS  
OSC1/CLKI  
VSS  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
12  
13  
14  
RC4/SDI/SDA  
RC3/SCK/SCL  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
Note: Pin compatible with 28-pin PIC16C7X devices.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 3  
PIC18CXX2  
Table of Contents  
1.0 Device Overview......................................................................................................................................................................... 7  
2.0 Oscillator Configurations........................................................................................................................................................... 17  
3.0 Reset......................................................................................................................................................................................... 25  
4.0 Memory Organization................................................................................................................................................................ 35  
5.0 Table Reads/Table Writes ........................................................................................................................................................ 55  
6.0 8 X 8 Hardware Multiplier.......................................................................................................................................................... 61  
7.0 Interrupts................................................................................................................................................................................... 63  
8.0 I/O Ports.................................................................................................................................................................................... 77  
9.0 Timer0 Module.......................................................................................................................................................................... 93  
10.0 Timer1 Module.......................................................................................................................................................................... 97  
11.0 Timer2 Module........................................................................................................................................................................ 101  
12.0 Timer3 Module........................................................................................................................................................................ 103  
13.0 Capture/Compare/PWM (CCP) Modules................................................................................................................................ 107  
14.0 Master Synchronous Serial Port (MSSP) Module................................................................................................................... 115  
15.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) ............................................................ 149  
16.0 Compatible 10-bit Analog-to-Digital Converter (A/D) Module ................................................................................................. 165  
17.0 Low Voltage Detect................................................................................................................................................................. 173  
18.0 Special Features of the CPU .................................................................................................................................................. 179  
19.0 Instruction Set Summary......................................................................................................................................................... 187  
20.0 Development Support ............................................................................................................................................................. 229  
21.0 Electrical Characteristics......................................................................................................................................................... 235  
22.0 DC and AC Characteristics Graphs and Tables ..................................................................................................................... 263  
23.0 Packaging Information ............................................................................................................................................................ 277  
Appendix A: Revision History......................................................................................................................................................... 287  
Appendix B: Device Differences..................................................................................................................................................... 287  
Appendix C: Conversion Considerations........................................................................................................................................ 288  
Appendix D: Migration from Baseline to Enhanced Devices.......................................................................................................... 288  
Appendix E: Migration from Mid-Range to Enhanced Devices ...................................................................................................... 289  
Appendix F: Migration from High-End to Enhanced Devices......................................................................................................... 289  
Index ................................................................................................................................................................................................. 291  
On-Line Support................................................................................................................................................................................ 299  
Reader Response ............................................................................................................................................................................. 300  
PIC18CXX2 Product Identification System ....................................................................................................................................... 301  
DS39026D-page 4  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 5  
PIC18CXX2  
NOTES:  
DS39026D-page 6  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The following two figures are device block diagrams  
sorted by pin count: 28-pin for Figure 1-1 and 40-pin for  
Figure 1-2. The 28-pin and 40-pin pinouts are listed in  
Table 1-2 and Table 1-3, respectively.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following four devices:  
1. PIC18C242  
2. PIC18C252  
3. PIC18C442  
4. PIC18C452  
These devices come in 28-pin and 40-pin packages.  
The 28-pin devices do not have a Parallel Slave Port  
(PSP) implemented and the number of Analog-to-  
Digital (A/D) converter input channels is reduced to 5.  
An overview of features is shown in Table 1-1.  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18C242  
PIC18C252  
PIC18C442  
PIC18C452  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC - 40 MHz  
DC - 40 MHz  
DC - 40 MHz  
DC - 40 MHz  
32K  
16K  
32K  
16K  
8192  
512  
17  
8192  
16384  
16384  
1536  
512  
1536  
16  
16  
17  
I/O Ports  
Ports A, B, C  
Ports A, B, C  
Ports A, B, C, D, E Ports A, B, C, D, E  
Timers  
4
2
4
2
4
2
4
2
Capture/Compare/PWM Modules  
Serial Communications  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
Parallel Communications  
10-bit Analog-to-Digital Module  
RESETS (and Delays)  
PSP  
PSP  
5 input channels  
POR, BOR,  
5 input channels  
POR, BOR,  
8 input channels  
POR, BOR,  
8 input channels  
POR, BOR,  
RESETInstruction, RESETInstruction, RESETInstruction, RESETInstruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Programmable Low Voltage  
Detect  
Yes  
Yes  
Yes  
Yes  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
75 Instructions  
75 Instructions  
75 Instructions  
75 Instructions  
Packages  
28-pin DIP  
28-pin SOIC  
28-pin JW  
28-pin DIP  
28-pin SOIC  
28-pin JW  
40-pin DIP  
44-pin PLCC  
44-pin TQFP  
40-pin JW  
40-pin DIP  
44-pin PLCC  
44-pin TQFP  
40-pin JW  
1999-2013 Microchip Technology Inc.  
DS39026D-page 7  
PIC18CXX2  
FIGURE 1-1:  
PIC18C2X2 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Table Pointer <2>  
inc/dec logic  
20  
Data Latch  
21  
RA0/AN0  
8
8
8
Data RAM  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RA6  
21  
21  
Address Latch  
12(2)  
PCLATU PCLATH  
Address Latch  
Address<12>  
Program Memory  
(up to 2M Bytes)  
PCU PCH PCL  
Program Counter  
4
BSR  
12  
4
Data Latch  
Bank0, F  
FSR0  
FSR1  
FSR2  
31 Level Stack  
12  
16  
inc/dec  
logic  
Decode  
Table Latch  
8
PORTB  
ROM Latch  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2(1)  
Instruction  
Register  
8
Instruction  
Decode &  
Control  
RB7:RB4  
PRODH PRODL  
8 x 8 Multiply  
OSC2/CLKO  
OSC1/CLKI  
3
Power-up  
Timer  
8
Timing  
Generation  
Oscillator  
Start-up Timer  
WREG  
8
BIT OP  
8
8
T1OSI  
T1OSO  
Power-on  
Reset  
8
Watchdog  
Timer  
4X PLL  
PORTC  
ALU<8>  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1  
8
Brown-out  
Reset  
Precision  
Voltage  
Reference  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
MCLR  
VDD, VSS  
A/D Converter  
Timer0  
CCP1  
Timer1  
Timer2  
Timer3  
Master  
Synchronous  
Serial Port  
Addressable  
USART  
CCP2  
Note 1: Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of configuration bit.  
2: The high order bits of the Direct Address for the RAM are from the BSR register (except for the MOVFFinstruction).  
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions. The multiplexing combinations  
are device dependent.  
DS39026D-page 8  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 1-2:  
PIC18C4X2 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
Table Pointer <2>  
Data Latch  
21  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RA6  
Data RAM  
(up to 4K  
address reach)  
8
8
8
inc/dec logic  
20  
21  
21  
Address Latch  
12(2)  
PCLATU  
PCLATH  
Address Latch  
Program Memory  
(up to 2M Bytes)  
Address<12>  
PCH PCL  
Program Counter  
PCU  
PORTB  
4
BSR  
12  
4
Data Latch  
Bank0, F  
FSR0  
FSR1  
FSR2  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2(1)  
31 Level Stack  
12  
16  
inc/dec  
logic  
RB7:RB4  
Decode  
Table Latch  
8
PORTC  
ROM Latch  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
Instruction  
Register  
8
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
PRODH PRODL  
8 x 8 Multiply  
OSC2/CLKO  
OSC1/CLKI  
3
Power-up  
Timer  
PORTD  
8
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
Timing  
Generation  
Oscillator  
Start-up Timer  
WREG  
8
BIT OP  
8
8
T1OSI  
T1OSO  
Power-on  
Reset  
8
4X PLL  
Watchdog  
Timer  
ALU<8>  
8
Brown-out  
Reset  
Precision  
Voltage  
Reference  
PORTE  
RE0/AN5/RD  
RE1/AN6/WR  
RE2/AN7/CS  
MCLR  
VDD, VSS  
Timer0  
CCP1  
Timer1  
Timer2  
A/D Converter  
Timer3  
Master  
Synchronous  
Serial Port  
Addressable  
USART  
CCP2  
Parallel Slave Port  
Note 1: Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of configuration bit.  
2: The high order bits of the Direct Address for the RAM are from the BSR register (except for the MOVFFinstruction).  
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions. The multiplexing combinations  
are device dependent.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 9  
PIC18CXX2  
TABLE 1-2:  
Pin Name  
PIC18C2X2 PINOUT I/O DESCRIPTIONS  
Pin Number  
DIP SOIC  
Pin  
Type  
Buffer  
Type  
Description  
MCLR/VPP  
MCLR  
1
1
Master clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active low  
RESET to the device.  
I
ST  
VPP  
NC  
P
Programming voltage input.  
9
9
These pins should be left unconnected.  
OSC1/CLKI  
OSC1  
Oscillator crystal or external clock input.  
I
I
ST  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode. CMOS otherwise.  
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKIN,  
OSC2/CLKOUT pins.)  
CLKI  
CMOS  
OSC2/CLKO/RA6  
OSC2  
10  
10  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKOUT which has 1/4  
the frequency of OSC1, and denotes the instruction  
cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General Purpose I/O pin.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
2
3
4
2
3
4
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D Reference Voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
5
5
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D Reference Voltage (High) input.  
RA4/T0CKI  
RA4  
6
7
6
7
I/O  
I
ST/OD  
ST  
Digital I/O. Open drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
SPI Slave Select input.  
Low Voltage Detect Input.  
I
I
I
LVDIN  
Analog  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026D-page 10  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 1-2:  
Pin Name  
PIC18C2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
DIP SOIC  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0  
RB0  
21  
22  
23  
24  
21  
22  
23  
24  
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
INT1  
External Interrupt 1.  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 2.  
INT2  
RB3/CCP2  
RB3  
I/O  
I/O  
TTL  
ST  
Digital I/O.  
CCP2  
Capture2 input, Compare2 output, PWM2 output.  
RB4  
RB5  
RB6  
25  
26  
27  
25  
26  
27  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
Digital I/O.  
Interrupt-on-change pin.  
Digital I/O.  
Interrupt-on-change pin.  
ICSP programming clock.  
I
ST  
RB7  
28  
28  
I/O  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
ICSP programming data.  
I/O  
ST  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 11  
PIC18CXX2  
TABLE 1-2:  
PIC18C2X2 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
DIP SOIC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
11  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
12  
12  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture2 input, Compare2 output, PWM2 output.  
T1OSI  
CCP2  
RC2/CCP1  
RC2  
13  
14  
13  
14  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture1 input/Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C mode.  
RC4/SDI/SDA  
RC4  
15  
15  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI Data In.  
I2C Data I/O.  
RC5/SDO  
RC5  
16  
17  
16  
17  
I/O  
O
ST  
Digital I/O.  
SPI Data Out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
USART Asynchronous Transmit.  
USART Synchronous Clock (see related RX/DT).  
RC7/RX/DT  
18  
18  
RC7  
RX  
DT  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
USART Asynchronous Receive.  
USART Synchronous Data (see related TX/CK).  
VSS  
VDD  
8, 19 8, 19  
20 20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
CMOS = CMOS compatible input or output  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026D-page 12  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 1-3:  
Pin Name  
PIC18C4X2 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Description  
Type Type  
DIP PLCC TQFP  
MCLR/VPP  
MCLR  
1
2
18  
Master clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active  
low RESET to the device.  
I
ST  
VPP  
NC  
P
Programming voltage input.  
These pins should be left unconnected.  
OSC1/CLKI  
OSC1  
13  
14  
30  
Oscillator crystal or external clock input.  
I
I
ST  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode, CMOS otherwise.  
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKIN,  
OSC2/CLKOUT pins.)  
CLKI  
CMOS  
OSC2/CLKO/RA6  
OSC2  
14  
15  
31  
Oscillator crystal output.  
O
O
Oscillator crystal output. Connects to crystal  
or resonator in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKOUT, which has  
1/4 the frequency of OSC1 and denotes the instruction  
cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General Purpose I/O pin.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
2
3
4
3
4
5
19  
20  
21  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D Reference Voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
5
6
22  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D Reference Voltage (High) input.  
RA4/T0CKI  
RA4  
6
7
7
8
23  
24  
I/O  
I
ST/OD  
ST  
Digital I/O. Open drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
SPI Slave Select input.  
Low Voltage Detect Input.  
I
I
I
LVDIN  
Analog  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 13  
PIC18CXX2  
TABLE 1-3:  
PIC18C4X2 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
DIP PLCC TQFP  
PORTB is a bi-directional I/O port. PORTB can be  
software programmed for internal weak pull-ups on all  
inputs.  
RB0/INT0  
RB0  
33  
34  
35  
36  
36  
37  
38  
39  
8
9
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
INT1  
External Interrupt 1.  
RB2/INT2  
RB2  
10  
11  
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 2.  
INT2  
RB3/CCP2  
RB3  
I/O  
I/O  
TTL  
ST  
Digital I/O.  
CCP2  
Capture2 input, Compare2 output, PWM2 output.  
RB4  
RB5  
RB6  
37  
38  
39  
41  
42  
43  
14  
15  
16  
I/O  
I/O  
TTL  
TTL  
Digital I/O. Interrupt-on-change pin.  
Digital I/O. Interrupt-on-change pin.  
I/O  
I
TTL  
ST  
Digital I/O. Interrupt-on-change pin.  
ICSP programming clock.  
RB7  
40  
44  
17  
I/O  
I/O  
TTL  
ST  
Digital I/O. Interrupt-on-change pin.  
ICSP programming data.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026D-page 14  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 1-3:  
Pin Name  
PIC18C4X2 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Description  
Type Type  
DIP PLCC TQFP  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
15  
16  
18  
32  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
16  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture2 input, Compare2 output, PWM2 output.  
T1OSI  
CCP2  
RC2/CCP1  
RC2  
17  
18  
19  
20  
36  
37  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture1 input/Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Synchronous serial clock input/output for  
SPI mode.  
SCK  
SCL  
I/O  
ST  
Synchronous serial clock input/output for  
I2C mode.  
RC4/SDI/SDA  
RC4  
23  
25  
42  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI Data In.  
I2C Data I/O.  
RC5/SDO  
RC5  
24  
25  
26  
27  
43  
44  
I/O  
O
ST  
Digital I/O.  
SPI Data Out.  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX  
CK  
USART Asynchronous Transmit.  
USART Synchronous Clock (see related RX/DT).  
RC7/RX/DT  
RC7  
26  
29  
1
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX  
DT  
USART Asynchronous Receive.  
USART Synchronous Data (see related TX/CK).  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 15  
PIC18CXX2  
TABLE 1-3:  
PIC18C4X2 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
DIP PLCC TQFP  
PORTD is a bi-directional I/O port, or a Parallel Slave Port  
(PSP) for interfacing to a microprocessor port. These pins  
have TTL input buffers when PSP module is enabled.  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
3
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
4
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
5
ST  
Digital I/O.  
TTL  
Parallel Slave Port Data.  
PORTE is a bi-directional I/O port.  
RE0/RD/AN5  
RE0  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
RD  
Read control for parallel slave port (see also WR  
and CS pins).  
Analog input 5.  
AN5  
Analog  
RE1/WR/AN6  
RE1  
10  
11  
ST  
TTL  
Digital I/O.  
WR  
Write control for parallel slave port (see CS  
and RD pins).  
Analog input 6.  
AN6  
Analog  
RE2/CS/AN7  
RE2  
10  
ST  
Digital I/O.  
CS  
TTL  
Chip Select control for parallel slave port (see related  
RD and WR).  
AN7  
VSS  
Analog  
Analog input 7.  
12, 31 13, 34 6, 29  
11, 32 12, 35 7, 28  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026D-page 16  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Ranges Tested:  
Oscillator Types  
Mode  
Freq  
C1  
C2  
The PIC18CXX2 can be operated in eight different  
oscillator modes. The user can program three configu-  
ration bits (FOSC2, FOSC1, and FOSC0) to select one  
of these eight modes:  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF 68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
1. LP  
Low Power Crystal  
2. XT  
Crystal/Resonator  
These values are for design guidance only.  
See notes following this table.  
3. HS  
High Speed Crystal/Resonator  
4. HS + PLL  
High Speed Crystal/Resonator  
with x 4 PLL enabled  
Resonators Used:  
455 kHz Panasonic EFO-A455K04B  
0.3%  
5. RC  
External Resistor/Capacitor  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
0.5%  
0.5%  
0.5%  
0.5%  
6. RCIO  
External Resistor/Capacitor with  
RA6 I/O pin enabled  
7. EC  
External Clock  
8. ECIO  
External Clock with RA6 I/O pin  
enabled  
16.0 MHz Murata Erie CSA16.00MX  
All resonators used did not have built-in capacitors.  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
In XT, LP, HS or HS-PLL oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections.  
2: When operating below 3V VDD, it may be  
necessary to use high gain HS mode on  
lower frequency ceramic resonators.  
The PIC18CXX2 oscillator design requires the use of a  
parallel cut crystal.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external compo-  
nents or verify oscillator performance.  
Note: Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
OSC CONFIGURATION)  
(1)  
C1  
OSC1  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
SLEEP  
(2)  
RS  
(1)  
PIC18CXXX  
C2  
OSC2  
Note 1: See Table 2-1 and Table 2-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
3: RF varies with the osc mode chosen.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 17  
PIC18CXX2  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATORS  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP CONFIGURATION)  
Ranges Tested:  
Mode  
Freq  
C1  
C2  
OSC1  
Clock from  
Ext. System  
LP  
32.0 kHz  
200 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
4.0 MHz  
8.0 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
PIC18CXXX  
OSC2  
Open  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
2.3  
RC Oscillator  
15 pF  
15 pF  
15 pF  
15 pF  
For timing insensitive applications, the “RC” and  
"RCIO" device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit due to  
normal process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency, espe-  
cially for low CEXT values. The user also needs to take  
into account variation due to tolerance of external R  
and C components used. Figure 2-3 shows how the  
R/C combination is connected.  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20.0  
MHz  
25.0  
MHz  
15-33 pF  
15-33 pF  
These values are for design guidance only.  
See notes following this table.  
Crystals Used  
32.0 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
8.0 MHz  
Epson C-001R32.768K-A ± 20 PPM  
STD XTL 200.000kHz  
ECS ECS-10-13-1  
ECS ECS-40-20-1  
± 20 PPM  
± 50 PPM  
± 50 PPM  
In the RC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
Epson CA-301 8.000M-C ± 30 PPM  
20.0 MHz Epson CA-301 20.000M-C ± 30 PPM  
FIGURE 2-3:  
RC OSCILLATOR MODE  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
VDD  
REXT  
Internal  
OSC1  
2: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
Clock  
CEXT  
VSS  
PIC18CXXX  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external compo-  
nents or verify oscillator performance.  
OSC2/CLKO  
FOSC/4  
Recommended values:3 k  REXT 100 k  
CEXT > 20pF  
An external clock source may also be connected to the  
OSC1 pin in these modes, as shown in Figure 2-2.  
The RCIO oscillator mode functions like the RC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6).  
DS39026D-page 18  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 2-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
(ECIOCONFIGURATION)  
2.4  
External Clock Input  
The EC and ECIO oscillator modes require an external  
clock source to be connected to the OSC1 pin. The  
feedback device between OSC1 and OSC2 is turned  
off in these modes to save current. There is no oscilla-  
tor start-up time required after a Power-on Reset or  
after a recovery from SLEEP mode.  
OSC1  
Clock from  
Ext. System  
PIC18CXXX  
I/O (OSC2)  
RA6  
In the EC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
oscillator mode.  
2.5  
HS/PLL  
A Phase Locked Loop circuit is provided as a program-  
mable option for users that want to multiply the fre-  
quency of the incoming crystal oscillator signal by 4.  
For an input clock frequency of 10 MHz, the internal  
clock frequency will be multiplied to 40 MHz. This is  
useful for customers who are concerned with EMI due  
to high frequency crystals.  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION (EC OSC  
CONFIGURATION)  
OSC1  
Clock from  
Ext. System  
The PLL can only be enabled when the oscillator con-  
figuration bits are programmed for HS mode. If they are  
programmed for any other mode, the PLL is not  
enabled and the system clock will come directly from  
OSC1.  
PIC18CXXX  
OSC2  
FOSC/4  
The ECIO oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO oscillator mode.  
The PLL is one of the modes of the FOSC<2:0> config-  
uration bits. The oscillator mode is specified during  
device programming.  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out that is called TPLL.  
FIGURE 2-6:  
PLL BLOCK DIAGRAM  
(from Configuration  
HS Osc  
bit Register)  
PLL Enable  
Phase  
Comparator  
FIN  
OSC2  
Loop  
Filter  
VCO  
Crystal  
Osc  
SYSCLK  
FOUT  
Divide by 4  
OSC1  
1999-2013 Microchip Technology Inc.  
DS39026D-page 19  
PIC18CXX2  
been enabled, the device can switch to a low power  
execution mode. Figure 2-7 shows a block diagram of  
the system clock sources. The clock switching feature  
is enabled by programming the Oscillator Switching  
Enable (OSCSEN) bit in Configuration Register1H to a  
’0’. Clock switching is disabled in an erased device.  
See Section 9.0 for further details of the Timer1 oscilla-  
tor. See Section 18.0 for Configuration Register details.  
2.6  
Oscillator Switching Feature  
The PIC18CXX2 devices include a feature that allows  
the system clock source to be switched from the main  
oscillator to an alternate low frequency clock source.  
For the PIC18CXX2 devices, this alternate clock  
source is the Timer1 oscillator. If a low frequency crys-  
tal (32 kHz, for example) has been attached to the  
Timer1 oscillator pins and the Timer1 oscillator has  
FIGURE 2-7:  
DEVICE CLOCK SOURCES  
PIC18CXXX  
Main Oscillator  
OSC2  
TOSC/4  
4 x PLL  
SLEEP  
TOSC  
TT1P  
TSCLK  
OSC1  
Timer1 Oscillator  
T1OSO  
T1OSCEN  
Clock  
Source  
Enable  
Oscillator  
T1OSI  
Clock Source option  
for other modules  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
Note: The Timer1 oscillator must be enabled and  
operating to switch the system clock  
source. The Timer1 oscillator is enabled by  
setting the T1OSCEN bit in the Timer1  
control register (T1CON). If the Timer1  
oscillator is not enabled, then any write to  
the SCS bit will be ignored (SCS bit forced  
cleared) and the main oscillator will con-  
tinue to be the system clock source.  
The system clock source switching is performed under  
software control. The system clock switch bit, SCS  
(OSCCON<0>) controls the clock switching. When the  
SCS bit is’0’, the system clock source comes from the  
main oscillator that is selected by the FOSC configura-  
tion bits in Configuration Register1H. When the SCS bit  
is set, the system clock source will come from the  
Timer1 oscillator. The SCS bit is cleared on all forms of  
RESET.  
REGISTER 2-1:  
OSCCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
SCS  
bit 7  
bit 0  
bit 7-1  
bit 0  
Unimplemented: Read as '0'  
SCS: System Clock Switch bit  
When OSCSEN configuration bit = ’0’ and T1OSCEN bit is set:  
1= Switch to Timer1 oscillator/clock pin  
0= Use primary oscillator/clock input pin  
When OSCSEN and T1OSCEN are in other states:  
bit is forced clear  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026D-page 20  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
A timing diagram indicating the transition from the main  
oscillator to the Timer1 oscillator is shown in  
Figure 2-8. The Timer1 oscillator is assumed to be run-  
ning all the time. After the SCS bit is set, the processor  
is frozen at the next occurring Q1 cycle. After eight syn-  
chronization cycles are counted from the Timer1 oscil-  
lator, operation resumes. No additional delays are  
required after the synchronization cycles.  
2.6.2  
OSCILLATOR TRANSITIONS  
The PIC18CXX2 devices contain circuitry to prevent  
"glitches" when switching between oscillator sources.  
Essentially, the circuitry waits for eight rising edges of  
the clock source that the processor is switching to. This  
ensures that the new clock source is stable and that it’s  
pulse width will not be less than the shortest pulse  
width of the two clock sources.  
FIGURE 2-8:  
TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q1 Q2 Q3 Q4 Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Tscs  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Delay on internal system clock is eight oscillator cycles for synchronization.  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
If the main oscillator is configured for an external crys-  
tal (HS, XT, LP), then the transition will take place after  
an oscillator start-up time (TOST) has occurred. A timing  
diagram indicating the transition from the Timer1 oscil-  
lator to the main oscillator for HS, XT and LP modes is  
shown in Figure 2-9.  
FIGURE 2-9:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, XT, LP)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q3  
Q4  
Q1  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
OSC2  
TOSC  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 6  
Note 1: TOST = 1024TOSC (drawing not to scale).  
1999-2013 Microchip Technology Inc.  
DS39026D-page 21  
PIC18CXX2  
If the main oscillator is configured for HS-PLL mode, an  
oscillator start-up time (TOST) plus an additional PLL  
time-out (TPLL) will occur. The PLL time-out is typically  
2 ms and allows the PLL to lock to the main oscillator  
frequency. A timing diagram, indicating the transition  
from the Timer1 oscillator to the main oscillator for  
HS-PLL mode, is shown in Figure 2-10.  
FIGURE 2-10:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
OSC2  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1: TOST = 1024TOSC (drawing not to scale).  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator start-up time-out.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram, indi-  
cating the transition from the Timer1 oscillator to the  
main oscillator for RC, RCIO, EC and ECIO modes, is  
shown in Figure 2-11.  
FIGURE 2-11:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
T1OSI  
OSC1  
TOSC  
6
1
4
5
7
8
2
3
OSC2  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1: RC oscillator mode assumed.  
DS39026D-page 22  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
switching currents have been removed, SLEEP mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
that will operate during SLEEP will increase the current  
consumed during SLEEP. The user can wake from  
SLEEP through external RESET, Watchdog Timer  
Reset, or through an interrupt.  
2.7  
Effects of SLEEP Mode on the  
On-chip Oscillator  
When the device executes a SLEEP instruction, the  
on-chip clocks and oscillator are turned off and the  
device is held at the beginning of an instruction cycle  
(Q1 state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC Mode  
OSC1 Pin  
OSC2 Pin  
RC  
Floating, external resistor should  
pull high  
At logic low  
RCIO  
Floating, external resistor should  
pull high  
Configured as PORTA, bit 6  
ECIO  
EC  
Floating  
Floating  
Configured as PORTA, bit 6  
At logic low  
LP, XT, and HS  
Feedback inverter disabled, at  
quiescent voltage level  
Feedback inverter disabled, at  
quiescent voltage level  
Note: See Table 3-1, in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.  
With the PLL enabled (HS/PLL oscillator mode), the  
2.8  
Power-up Delays  
time-out sequence following a Power-on Reset is differ-  
ent from other oscillator modes. The time-out sequence  
is as follows: First, the PWRT time-out is invoked after  
a POR time delay has expired. Then, the Oscillator  
Start-up Timer (OST) is invoked. However, this is still  
not a sufficient amount of time to allow the PLL to lock  
at high frequencies. The PWRT timer is used to provide  
an additional fixed 2ms (nominal) time-out to allow the  
PLL ample time to lock to the incoming clock frequency.  
Power up delays are controlled by two timers, so that  
no external RESET circuitry is required for most appli-  
cations. The delays ensure that the device is kept in  
RESET until the device power supply and clock are sta-  
ble. For additional information on RESET operation,  
see the “RESET” section.  
The first timer is the Power-up Timer (PWRT), which  
optionally provides a fixed delay of 72 ms (nominal) on  
power-up only (POR and BOR). The second timer is  
the Oscillator Start-up Timer, OST, intended to keep the  
chip in RESET until the crystal oscillator is stable.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 23  
PIC18CXX2  
NOTES:  
DS39026D-page 24  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR, are set or cleared differently in different  
RESET situations, as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
RESET. See Table 3-3 for a full description of the  
RESET states of all registers.  
3.0  
RESET  
The PIC18CXX2 differentiates between various kinds  
of RESET:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during SLEEP  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses.  
g) Stack Full Reset  
h) Stack Underflow Reset  
MCLR pin is not driven low by any internal RESETS,  
including WDT.  
Most registers are unaffected by a RESET. Their status  
is unknown on POR and unchanged by all other  
RESETS. The other registers are forced to a “RESET  
state” on Power-on Reset, MCLR, WDT Reset, Brown-  
out Reset, MCLR Reset during SLEEP, and by the  
RESETinstruction.  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack  
Pointer  
Stack Full/Underflow Reset  
External Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BOREN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
Q
R
OSC1  
PWRT  
10-bit Ripple Counter  
On-chip  
RC OSC(1)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2: See Table 3-1 for time-out situations.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 25  
PIC18CXX2  
3.1  
Power-on Reset (POR)  
3.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, just tie the MCLR pin directly (or through a resis-  
tor) to VDD. This will eliminate external RC components  
usually needed to create a Power-on Reset delay. A  
minimum rise rate for VDD is specified (parameter  
D004). For a slow rise time, see Figure 3-2.  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
When the device starts normal operation (i.e., exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in reset until the operating condi-  
tions are met.  
3.4  
PLL Lock Time-out  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed time-out that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock time-out  
(TPLL) is typically 2 ms and follows the oscillator start-  
up time-out (OST).  
FIGURE 3-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
3.5  
Brown-out Reset (BOR)  
VDD  
A configuration bit, BOREN, can disable (if clear/  
programmed), or enable (if set) the Brown-out Reset  
circuitry. If VDD falls below parameter D005 for greater  
than parameter #35, the brown-out situation will reset  
the chip. A RESET may not occur if VDD falls below  
parameter D005 for less than parameter #35. The chip  
will remain in Brown-out Reset until VDD rises above  
BVDD. The Power-up Timer will then be invoked and  
will keep the chip in RESET an additional time delay  
(parameter #33). If VDD drops below BVDD while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be initial-  
ized. Once VDD rises above BVDD, the Power-up Timer  
will execute the additional time delay.  
D
R
R1  
MCLR  
PIC18CXXX  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3.6  
Time-out Sequence  
3: R1 = 100to 1 kwill limit any current flow-  
ing into MCLR from external capacitor C in  
the event of MCLR/VPP pin breakdown, due  
to Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired. Then, OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and  
Figure 3-7 depict time-out sequences on power-up.  
3.2  
Power-up Timer (PWRT)  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33) only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/  
disable the PWRT.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18CXXX device oper-  
ating in parallel.  
Table 3-2 shows the RESET conditions for some  
Special Function Registers, while Table 3-3 shows the  
RESET conditions for all the registers.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
DS39026D-page 26  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 3-1:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2)  
Wake-up from  
SLEEP or  
Oscillator Switch  
Brown-out(2)  
Configuration  
PWRTE = 0  
PWRTE = 1  
72 ms + 1024TOSC  
+ 2ms  
1024TOSC  
+ 2 ms  
72 ms + 1024TOSC  
+ 2ms  
HS with PLL enabled(1)  
1024TOSC + 2 ms  
HS, XT, LP  
EC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
External RC  
72 ms  
72 ms  
Note 1: 2 ms is the nominal time required for the 4x PLL to lock.  
2: 72 ms is the nominal Power-up Timer delay.  
REGISTER 3-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Note: See Register 4-3 on page 53 for bit definitions.  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
00-1 1100  
00-u uuuu  
1
u
1
u
1
u
0
u
0
u
u
u
u
u
MCLR Reset during normal  
operation  
Software Reset during normal  
operation  
0000h  
0000h  
0000h  
0u-0 uuuu  
0u-u uu11  
0u-u uu11  
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
1
u
1
u
Stack Full Reset during normal  
operation  
Stack Underflow Reset during  
normal operation  
MCLR Reset during SLEEP  
WDT Reset  
0000h  
0000h  
00-u 10uu  
0u-u 01uu  
uu-u 00uu  
0u-1 11u0  
uu-u 00uu  
u
1
u
1
u
1
0
0
1
1
0
1
0
1
0
u
u
u
1
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
PC + 2  
0000h  
PC + 2(1)  
Brown-out Reset  
Interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
1999-2013 Microchip Technology Inc.  
DS39026D-page 27  
PIC18CXX2  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TOSU  
TOSH  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
N/A  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU 242 442 252 452  
TBLPTRH 242 442 252 452  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0 242 442 252 452  
POSTDEC0 242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC0  
PLUSW0  
FSR0H  
FSR0L  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
WREG  
INDF1  
POSTINC1 242 442 252 452  
POSTDEC1 242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC1  
PLUSW1  
242 442 252 452  
242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u = unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR Reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as ’0’.  
DS39026D-page 28  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
FSR1H  
FSR1L  
BSR  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- 0000  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
INDF2  
POSTINC2 242 442 252 452  
POSTDEC2 242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC2  
PLUSW2  
FSR2H  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
00-1 11q0  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
xxxx xxxx  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
00-1 qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
--uu uuuu  
---- ---u  
uu-u qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4, 6) 242 442 252 452  
TMR1H  
TMR1L  
T1CON  
TMR2  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1 242 442 252 452  
SSPCON2 242 442 252 452  
Legend: u = unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR Reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as ’0’.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 29  
PIC18CXX2  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
CCPR1H  
CCPR1L  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
xxxx xxxx  
xxxx xxxx  
0000 0000  
--0- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 -01x  
0000 000x  
---- 1111  
---- 0000  
---- 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
--0- 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 -01u  
0000 000u  
---- 1111  
---- 0000  
---- 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--u- uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
---- uuuu  
---- uuuu(1)  
---- uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu(1)  
-uuu uuuu(1)  
uuuu uuuu  
-uuu uuuu  
CCP1CON 242 442 252 452  
CCPR2H  
CCPR2L  
242 442 252 452  
242 442 252 452  
CCP2CON 242 442 252 452  
TMR3H  
TMR3L  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
IPR2  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
Legend: u = unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR Reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as ’0’.  
DS39026D-page 30  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
TRISE  
TRISD  
TRISC  
TRISB  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
---- -000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000(5)  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000(5)  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
TRISA(5, 7) 242 442 252 452  
LATE  
LATD  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
LATC  
LATB  
LATA(5, 7)  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5, 7) 242 442 252 452  
Legend: u = unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR Reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as ’0’.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 31  
PIC18CXX2  
FIGURE 3-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS39026D-page 32  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 3-6:  
SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
IINTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note: TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 33  
PIC18CXX2  
NOTES:  
DS39026D-page 34  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
4.0  
MEMORY ORGANIZATION  
There are two memory blocks in Enhanced MCU  
devices. These memory blocks are:  
• Program Memory  
• Data Memory  
Program and data memory use separate buses so that  
concurrent access can occur.  
4.1  
Program Memory Organization  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ’0’s (a NOP  
instruction).  
PIC18C252 and PIC18C452 have 32 Kbytes of  
EPROM, while PIC18C242 and PIC18C442 have  
16 Kbytes of EPROM. This means that PIC18CX52  
devices can store up to 16K of single word instructions,  
and PIC18CX42 devices can store up to 8K of single  
word instructions.  
The RESET vector address is at 0000h and the inter-  
rupt vector addresses are at 0008h and 0018h.  
Figure 4-1 shows the Program Memory Map for  
PIC18C242/442 devices and Figure 4-2 shows the  
Program Memory Map for PIC18C252/452 devices.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 35  
PIC18CXX2  
FIGURE 4-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18C442/242  
FIGURE 4-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18C452/252  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
RESET Vector  
Stack Level 31  
RESET Vector  
0000h  
0000h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
0008h  
0018h  
On-chip  
Program Memory  
3FFFh  
4000h  
On-chip  
Program Memory  
7FFFh  
8000h  
Read '0'  
Read '0'  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
DS39026D-page 36  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
4.2.2  
RETURN STACK POINTER  
(STKPTR)  
4.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed, or an interrupt  
is acknowledged. The PC value is pulled off the stack  
on a RETURN, RETLW or a RETFIE instruction.  
PCLATUand PCLATHare not affected by any of the call  
or return instructions.  
The STKPTR register contains the stack pointer value,  
the STKFUL (stack full) status bit, and the STKUNF  
(stack underflow) status bits. Register 4-1 shows the  
STKPTR register. The value of the stack pointer can be  
0 through 31. The stack pointer increments when val-  
ues are pushed onto the stack and decrements when  
values are popped off the stack. At RESET, the stack  
pointer value will be 0. The user may read and write the  
stack pointer value. This feature can be used by a Real  
Time Operating System for return stack maintenance.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit stack pointer, with the stack pointer initialized to  
00000b after all RESETS. There is no RAM associated  
with stack pointer 00000b. This is only a RESET value.  
During a CALLtype instruction causing a push onto the  
stack, the stack pointer is first incremented and the  
RAM location pointed to by the stack pointer is written  
with the contents of the PC. During a RETURN type  
instruction causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR is trans-  
ferred to the PC and then the stack pointer is  
decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
The action that takes place when the stack becomes  
full, depends on the state of the STVREN (Stack Over-  
flow Reset Enable) configuration bit. Refer to  
Section 18.0 for a description of the device configura-  
tion bits. If STVREN is set (default), the 31st push will  
push the (PC + 2) value onto the stack, set the STKFUL  
bit, and reset the device. The STKFUL bit will remain  
set and the stack pointer will be set to 0.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable, and  
the address on the top of the stack is readable and writ-  
able through SFR registers. Data can also be pushed  
to, or popped from, the stack, using the top-of-stack  
SFRs. Status bits indicate if the stack pointer is at, or  
beyond the 31 levels provided.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and STKPTR will remain at 31.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at 0. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
4.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL hold the  
contents of the stack location pointed to by the  
STKPTR register. This allows users to implement a  
software stack, if necessary. After a CALL, RCALLor  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
Note: Returning a value of zero to the PC on an  
underflow, has the effect of vectoring the  
program to the RESET vector, where the  
stack conditions can be verified and appro-  
priate actions can be taken.  
The user must disable the global interrupt enable bits  
during this time to prevent inadvertent stack opera-  
tions..  
1999-2013 Microchip Technology Inc.  
DS39026D-page 37  
PIC18CXX2  
REGISTER 4-1:  
STKPTR REGISTER  
R/C-0 R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKFUL STKUNF  
bit 7  
bit 0  
bit 7(1)  
bit 6(1)  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
Unimplemented: Read as '0'  
bit 5  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 can only be cleared in user software or by a POR.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
FIGURE 4-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
00010  
TOSU  
0x00  
TOSH  
0x1A  
TOSL  
0x34  
00011  
0x001A34 00010  
0x000D58 00001  
00000  
Top-of-Stack  
4.2.3  
PUSH AND POP INSTRUCTIONS  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program execu-  
tion, is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place a return address on the  
stack.  
These resets are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the appro-  
priate STKFUL or STKUNF bit, but not cause a device  
RESET. When the STVREN bit is enabled, a full or  
underflow will set the appropriate STKFUL or STKUNF  
bit and then cause a device RESET. The STKFUL or  
STKUNF bits are only cleared by the user software or  
a POR Reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POPinstruction. The POPinstruc-  
tion discards the current TOS by decrementing the  
stack pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
DS39026D-page 38  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
4.3  
Fast Register Stack  
4.4  
PCL, PCLATH and PCLATU  
A "fast interrupt return" option is available for interrupts.  
A Fast Register Stack is provided for the STATUS,  
WREG and BSR registers and are only one in depth.  
The stack is not readable or writable and is loaded with  
the current value of the corresponding register when  
the processor vectors for an interrupt. The values in the  
registers are then loaded back into the working regis-  
ters, if the FAST RETURNinstruction is used to return  
from the interrupt.  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable. Updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable. Updates to the PCU register may  
be performed through the PCLATU register.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority inter-  
rupt will be overwritten.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of PCL is fixed to a value of ’0’.  
The PC increments by 2 to address sequential instruc-  
tions in the program memory.  
If high priority interrupts are not disabled during low pri-  
ority interrupts, users must save the key registers in  
software during a low priority interrupt.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
If no interrupts are used, the fast register stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the fast register  
stack for a subroutine call, a FAST CALL instruction  
must be executed.  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 4.8.1).  
Example 4-1 shows a source code example that uses  
the fast register stack.  
4.5  
Clocking Scheme/Instruction  
Cycle  
EXAMPLE 4-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 4-4.  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
FIGURE 4-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC  
PC+2  
PC+4  
OSC2/CLKOUT  
(RC mode)  
Execute INST (PC-2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+2)  
Fetch INST (PC+4)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 39  
PIC18CXX2  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
4.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g. GOTO),  
then two cycles are required to complete the instruction  
(Example 4-2).  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register" (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 4-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
The CALLand GOTOinstructions have an absolute pro-  
4.7  
Instructions in Program Memory  
gram memory address embedded into the instruction.  
Since instructions are always stored on word bound-  
aries, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 4-5 shows how the  
instruction “GOTO 000006h” is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner.  
The offset value stored in a branch instruction repre-  
sents the number of single word instructions that the  
PC will be offset by. Section 19.0 provides further  
details of the instruction set.  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB =’0’). Figure 4-5 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read ’0’ (see Section 4.4).  
FIGURE 4-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations   
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
MOVLW  
GOTO  
055h  
000006h  
Instruction 3:  
MOVFF  
123h, 456h  
DS39026D-page 40  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
second word of the instruction is executed by itself (first  
word was skipped), it will execute as a NOP. This action  
is necessary when the two-word instruction is preceded  
by a conditional instruction that changes the PC. A pro-  
gram example that demonstrates this concept is shown  
in Example 4-3. Refer to Section 19.0 for further details  
of the instruction set.  
4.7.1  
TWO-WORD INSTRUCTIONS  
The PIC18CXX2 devices have four two-word instruc-  
tions: MOVFF, CALL, GOTOand LFSR. The second  
word of these instructions has the 4 MSBs set to 1’s  
and is a special kind of NOPinstruction. The lower 12-  
bits of the second word contain data to be used by the  
instruction. If the first word of the instruction is exe-  
cuted, the data in the second word is accessed. If the  
EXAMPLE 4-3:  
TWO-WORD INSTRUCTIONS  
CASE 1:  
Object Code  
Source Code  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
ADDWF  
REG3  
REG1  
; continue code  
Object Code  
Source Code  
TSTFSZ  
; is RAM location 0?  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
MOVFF  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
ADDWF  
REG3  
; continue code  
4.8.2  
TABLE READS/TABLE WRITES  
4.8  
Lookup Tables  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
Lookup tables are implemented two ways. These are:  
• Computed GOTO  
Table Reads  
Lookup table data may be stored 2 bytes per program  
word by using table reads and writes. The table pointer  
(TBLPTR) specifies the byte address and the table  
latch (TABLAT) contains the data that is read from, or  
written to program memory. Data is transferred to/from  
program memory one byte at a time.  
4.8.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
A lookup table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table, before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions that returns the value 0xnn to the calling  
function.  
A description of the Table Read/Table Write operation  
is shown in Section 5.0.  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 41  
PIC18CXX2  
4.9.1  
GENERAL PURPOSE REGISTER  
FILE  
4.9  
Data Memory Organization  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 4-6  
and Figure 4-7 show the data memory organization for  
the PIC18CXX2 devices.  
The register file can be accessed either directly, or indi-  
rectly. Indirect addressing operates using the File  
Select Registers (FSRn) and corresponding Indirect  
File Operand (INDFn). The operation of indirect  
addressing is shown in Section 4.12.  
The data memory map is divided into as many as 16  
banks that contain 256 bytes each. The lower 4 bits of  
the Bank Select Register (BSR<3:0>) select which  
bank will be accessed. The upper 4 bits for the BSR are  
not implemented.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other RESETS.  
Data RAM is available for use as GPR registers by all  
instructions. The top half of bank 15 (0xF80 to 0xFFF)  
contains SFRs. All other banks of data memory contain  
GPR registers, starting with bank 0.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(0xFFF) and extend downwards. Any remaining space  
beyond the SFRs in the Bank may be implemented as  
GPRs. GPRs start at the first location of Bank 0 and  
grow upwards. Any read of an unimplemented location  
will read as ’0’s.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and Peripheral Modules for control-  
ling the desired operation of the device. These regis-  
ters are implemented as static RAM. A list of these  
registers is given in Table 4-1 and Table 4-2.  
The SFRs can be classified into two sets; those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
The entire data memory may be accessed directly, or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSRn) and corresponding Indirect  
File Operand (INDFn). Each FSR holds a 12-bit  
address value that can be used to access any location  
in the Data Memory map without banking.  
The SFRs are typically distributed among the peripher-  
als whose functions they control.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
The unused SFR locations will be unimplemented and  
read as '0's. See Table 4-1 for addresses for the SFRs.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10 pro-  
vides a detailed description of the Access RAM.  
DS39026D-page 42  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 4-6:  
BSR<3:0>  
DATA MEMORY MAP FOR PIC18C242/442  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000b  
= 0001b  
Bank 0  
Bank 1  
FFh  
00h  
GPR  
1FFh  
200h  
FFh  
Access Bank  
00h  
Access RAM low  
7Fh  
80h  
= 0010b  
= 1110b  
Access RAM high  
FFh  
Bank 2  
to  
Bank 14  
Unused  
Read ’00h’  
(SFR’s)  
When a = 0,  
the BSR is ignored and the  
Access Bank is used.  
The first 128 bytes are General  
Purpose RAM (from Bank 0).  
The second 128 bytes are  
Special Function Registers  
(from Bank 15).  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111b  
Bank 15  
When a = 1,  
the BSR is used to specify the  
RAM location that the instruc-  
tion uses.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 43  
PIC18CXX2  
FIGURE 4-7:  
DATA MEMORY MAP FOR PIC18C252/452  
BSR<3:0>  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
00h  
Access RAM  
GPR  
= 0000b  
Bank 0  
FFh  
00h  
100h  
= 0001b  
= 0010b  
GPR  
GPR  
Bank 1  
Bank 2  
Bank 3  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
FFh  
00h  
= 0011b  
= 0100b  
= 0101b  
GPR  
FFh  
3FFh  
400h  
Access Bank  
Bank 4  
Bank 5  
GPR  
GPR  
4FFh  
500h  
00h  
7Fh  
80h  
Access RAM low  
00h  
FFh  
Access RAM high  
(SFR’s)  
FFh  
5FFh  
600h  
When a = 0,  
the BSR is ignored and the  
Access Bank is used.  
The first 128 bytes are General  
Purpose RAM (from Bank 0).  
The second 128 bytes are  
Special Function Registers  
(from Bank 15).  
= 0110b  
= 1110b  
Bank 6  
to  
Bank 14  
Unused  
Read ’00h’  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111b  
Bank 15  
When a = 1,  
the BSR is used to specify the  
RAM location that the instruc-  
tion uses.  
DS39026D-page 44  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER MAP  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
FEEh  
FEDh  
FECh  
FEBh  
FEAh  
FE9h  
FE8h  
FE7h  
FE6h  
FE5h  
FE4h  
FE3h  
FE2h  
FE1h  
FE0h  
TOSU  
TOSH  
FDFh  
FDEh  
FDDh  
FDCh  
FDBh  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
INDF2(3)  
POSTINC2(3)  
POSTDEC2(3)  
PREINC2(3)  
PLUSW2(3)  
FSR2H  
FBFh  
FBEh  
FBDh  
FBCh  
FBBh  
FBAh  
FB9h  
FB8h  
FB7h  
FB6h  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
F9Fh  
F9Eh  
F9Dh  
F9Ch  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
IPR1  
PIR1  
PIE1  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
FSR2L  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
STATUS  
TMR0H  
TMR0L  
TRISE(2)  
TRISD(2)  
TRISC  
TRISB  
TRISA  
T0CON  
PRODH  
PRODL  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR3H  
TMR3L  
T3CON  
INTCON  
INTCON2  
INTCON3  
INDF0(3)  
POSTINC0(3)  
POSTDEC0(3)  
PREINC0(3)  
PLUSW0(3)  
FSR0H  
TMR1H  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
TMR1L  
T1CON  
LATE(2)  
LATD(2)  
LATC  
LATB  
LATA  
TMR2  
PR2  
T2CON  
FSR0L  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
WREG  
INDF1(3)  
POSTINC1(3)  
POSTDEC1(3)  
PREINC1(3)  
PLUSW1(3)  
FSR1H  
PORTE(2)  
PORTD(2)  
PORTC  
PORTB  
PORTA  
IPR2  
PIR2  
PIE2  
FSR1L  
BSR  
Note 1: Unimplemented registers are read as ’0’.  
2: This register is not available on PIC18C2X2 devices.  
3: This is not a physical register.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 45  
PIC18CXX2  
TABLE 4-2:  
REGISTER FILE SUMMARY  
Value on  
POR,  
BOR  
Details  
on page:  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TOSU  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
---0 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
37  
37  
37  
38  
39  
39  
39  
57  
57  
57  
57  
61  
61  
65  
66  
67  
50  
50  
50  
50  
50  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit21(2)  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
RBPU  
INTEDG0  
INT1IP  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)  
POSTINC0  
N/A  
POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register)  
N/A  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) -  
value of FSR0 offset by value in WREG  
N/A  
FSR0H  
FSR0L  
Indirect Data Memory Address Pointer 0 High Byte  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
50  
50  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)  
50  
50  
50  
50  
50  
POSTINC1  
N/A  
POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register)  
N/A  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) -  
value of FSR1 offset by value in WREG  
N/A  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 High Byte  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
50  
50  
49  
50  
50  
50  
50  
50  
Indirect Data Memory Address Pointer 1 Low Byte  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory - value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)  
POSTINC2  
N/A  
POSTDEC2 Uses contents of FSR2 to address data memory - value of FSR2 post-decremented (not a physical register)  
N/A  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register) -  
value of FSR2 offset by value in WREG  
N/A  
FSR2H  
FSR2L  
Indirect Data Memory Address Pointer 2 High Byte  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
50  
50  
52  
95  
95  
93  
20  
175  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
Legend:  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0  
SCS  
IRVST  
LVDEN  
LVDL3  
LVDL2  
LVDL1  
LVDL0  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
DS39026D-page 46  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
on page:  
WDTCON  
RCON  
RI  
SWDTE  
BOR  
---- ---0  
0q-1 11qq  
183  
IPEN  
LWRT  
TO  
PD  
POR  
53, 56,  
74  
TMR1H  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
1111 1111  
97  
97  
TMR1L  
T1CON  
RD16  
T1CKPS1  
TOUTPS2  
T1CKPS0  
TOUTPS1  
T1OSCEN  
TOUTPS0  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON  
97  
TMR2  
Timer2 Register  
101  
PR2  
Timer2 Period Register  
TOUTPS3  
102  
T2CON  
T2CKPS0 -000 0000  
xxxx xxxx  
101  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
TMR3H  
SSP Receive Buffer/Transmit Register  
SSP Address Register in I2C Slave Mode. SSP Baud Rate Reload Register in I2C Master Mode.  
121  
0000 0000  
128  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
116  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
SEN  
118  
ACKEN  
120  
A/D Result Register High Byte  
A/D Result Register Low Byte  
171,172  
171,172  
165  
ADCS1  
ADFM  
ADCS0  
ADCS2  
CHS2  
CHS1  
CHS0  
GO/DONE  
PCFG2  
ADON  
PCFG3  
PCFG1  
PCFG0  
166  
Capture/Compare/PWM Register1 High Byte  
Capture/Compare/PWM Register1 Low Byte  
111, 113  
111, 113  
107  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
T3CCP1  
CCP1M2  
CCP2M2  
T3SYNC  
CCP1M1  
CCP2M1  
TMR3CS  
CCP1M0  
CCP2M0  
TMR3ON  
Capture/Compare/PWM Register2 High Byte  
Capture/Compare/PWM Register2 Low Byte  
111, 113  
111, 113  
107  
DC2B1  
DC2B0  
Timer3 Register High Byte  
Timer3 Register Low Byte  
103  
TMR3L  
103  
T3CON  
RD16  
T3CCP2  
T3CKPS1  
T3CKPS0  
103  
SPBRG  
USART1 Baud Rate Generator  
USART1 Receive Register  
151  
158,161,  
163  
RCREG  
TXREG  
0000 0000  
0000 0000  
156,159,  
162  
USART1 Transmit Register  
TXSTA  
RCSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 -010  
0000 000x  
149  
150  
ADDEN  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 47  
PIC18CXX2  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR,  
BOR  
Details  
on page:  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPR2  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
LVDIP  
LVDIF  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
CCP2IP  
CCP2IF  
CCP2IE  
TMR1IP  
TMR1IF  
TMR1IE  
---- 1111  
---- 0000  
---- 0000  
1111 1111  
0000 0000  
0000 0000  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111  
---- -xxx  
73  
69  
71  
72  
68  
70  
88  
85  
83  
80  
77  
87  
PIR2  
PIE2  
LVDIE  
IPR1  
PSPIP  
PSPIF  
PSPIE  
IBF  
ADIP  
ADIF  
ADIE  
OBF  
RCIP  
RCIF  
RCIE  
IBOV  
TXIP  
TXIF  
TXIE  
PSPMODE  
CCP1IP  
CCP1IF  
CCP1IE  
PIR1  
PIE1  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATE  
Data Direction bits for PORTE  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
TRISA6(1)  
Data Direction Control Register for PORTA  
Read PORTE Data Latch,  
Write PORTE Data Latch  
LATD  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
---- -000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000  
85  
83  
80  
77  
87  
85  
83  
80  
77  
LATC  
LATB  
LATA  
LATA6(1)  
Read PORTA Data Latch, Write PORTA Data Latch(1)  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
Read PORTE pins, Write PORTE Data Latch  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch  
RA6(1)  
Read PORTA pins, Write PORTA Data Latch(1)  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only, and read '0' in all other oscillator modes.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
DS39026D-page 48  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
can be accessed without any software overhead. This  
is useful for testing status flags and modifying control  
bits.  
4.10  
Access Bank  
The Access Bank is an architectural enhancement,  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
4.11 Bank Select Register (BSR)  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ’0’s, and  
writes will have no effect.  
• Faster evaluation/control of SFRs (no banking)  
The Access Bank is comprised of the upper 128 bytes  
in Bank 15 (SFRs) and the lower 128 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 4-6  
and Figure 4-7 indicate the Access RAM areas.  
A MOVLBinstruction has been provided in the instruc-  
tion set to assist in selecting banks.  
If the currently selected bank is not implemented, any  
read will return all '0's and all writes are ignored. The  
STATUS register bits will be set/cleared as appropriate  
for the instruction performed.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted by the ’a’ bit (for  
access bit).  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
When forced in the Access Bank (a = ’0’), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function registers, so that these registers  
A MOVFFinstruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
Section 4.12 provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
FIGURE 4-8:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<3:0>  
7
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
000h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 4-1.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the reg-  
isters of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 49  
PIC18CXX2  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all '0's are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
STATUS bits are not affected.  
4.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. An FSR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 4-9  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address,  
specified by the value of the FSR register.  
4.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated  
with it, plus four additional register addresses. Perform-  
ing an operation on one of these five registers deter-  
mines how the FSR will be modified during indirect  
addressing.  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction using the INDF register  
actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself,  
indirectly (FSR = '0'), will read 00h. Writing to the INDF  
register indirectly, results in a no operation. The FSR  
register contains a 12-bit address, which is shown in  
Figure 4-10.  
When data access is done to one of the five INDFn  
locations, the address selected will configure the FSRn  
register to:  
• Do nothing to FSRn after an indirect access (no  
change) - INDFn  
• Auto-decrement FSRn after an indirect access  
(post-decrement) - POSTDECn  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer). This is indirect addressing.  
• Auto-increment FSRn after an indirect access  
(post-increment) - POSTINCn  
• Auto-increment FSRn before an indirect access  
(pre-increment) - PREINCn  
Example 4-4 shows a simple use of indirect addressing  
to clear the RAM in Bank1 (locations 100h-1FFh) in a  
minimum number of instructions.  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) - PLUSWn  
EXAMPLE 4-4:  
HOW TO CLEAR RAM  
(BANK1) USING INDIRECT  
ADDRESSING  
When using the auto-increment or auto-decrement fea-  
tures, the effect on the FSR is not reflected in the  
STATUS register. For example, if the indirect address  
causes the FSR to equal '0', the Z bit will not be set.  
LFSR FSR0, 0x100 ;  
NEXT CLRF POSTINC0  
; Clear INDF register  
; & inc pointer  
; All done w/ Bank1?  
; NO, clear next  
; YES, continue  
Incrementing or decrementing an FSR affects all 12  
bits. That is, when FSRnL overflows from an increment,  
FSRnH will be incremented automatically.  
BTFSS FSR0H, 1  
GOTO NEXT  
CONTINUE  
Adding these features allows the FSRn to be used as a  
stack pointer, in addition to its uses for table operations  
in data memory.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bit wide. To store the 12-bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
Each FSR has an address associated with it that per-  
forms an indexed indirect access. When a data access  
to this INDFn location (PLUSWn) occurs, the FSRn is  
configured to add the signed value in the WREG regis-  
ter and the value in FSR to form the address before an  
indirect access. The FSR value is not changed.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(STATUS bits are not affected).  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data.  
If an instruction writes a value to INDF0, the value will  
be written to the address pointed to by FSR0H:FSR0L.  
A read from INDF1 reads the data from the address  
pointed to by FSR1H:FSR1L. INDFn can be used in  
code anywhere an operand can be used.  
DS39026D-page 50  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register, the  
write operation will dominate over the pre- or post-  
increment/decrement functions.  
FIGURE 4-9:  
INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
FFFh  
File Address = access of an indirect addressing register  
BSR<3:0>  
12  
12  
Instruction  
Fetched  
4
8
Opcode  
FSR  
File  
FIGURE 4-10:  
INDIRECT ADDRESSING  
Indirect Addressing  
11  
FSR Register  
0
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-1.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 51  
PIC18CXX2  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
4.13 STATUS Register  
The STATUS register, shown in Register 4-2, contains  
the arithmetic status of the ALU. The STATUS register  
can be the destination for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV or N bits,  
then the write to these five bits is disabled. These bits  
are set or cleared according to the device logic. There-  
fore, the result of an instruction with the STATUS regis-  
ter as destination may be different than intended.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the STATUS register, because these instructions  
do not affect the Z, C, DC, OV or N bits from the  
STATUS register. For other instructions not affecting  
any status bits, see Table 19-2.  
Note: The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
REGISTER 4-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7-5  
Unimplemented: Read as '0'  
N: Negative bit  
bit 4  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative, (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit  
magnitude, which causes the sign bit (bit7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLW, and SUBWFinstructions  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLW, and SUBWFinstructions  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026D-page 52  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
.
4.13.1  
RCON REGISTER  
Note 1: If the BOREN configuration bit is set  
(Brown-out Reset enabled), the BOR bit is  
’1’ on a Power-on Reset. After a Brown-  
out Reset has occurred, the BOR bit will  
be clear and must be set by firmware to  
indicate the occurrence of the next Brown-  
out Reset.  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device RESET. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
If the BOREN configuration bit is clear  
(Brown-out Reset disabled), BOR is  
unknown after Power-on Reset and  
Brown-out Reset conditions.  
2: It is recommended that the POR bit be set  
after  
a Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
REGISTER 4-3:  
RCON REGISTER  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable bit  
1= Enable TBLWTto internal program memory  
Once this bit is set, it can only be cleared by a POR or MCLR Reset.  
0= Disable TBLWTto internal program memory; TBLWTonly to external program memory  
bit 5  
bit 4  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed  
0= The RESETinstruction was executed causing a device RESET  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
TO: Watchdog Time-out Flag bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred  
0= A Power-on Reset occurred  
(must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred  
0= A Brown-out Reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 53  
PIC18CXX2  
NOTES:  
DS39026D-page 54  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Table Read operations retrieve data from program  
memory and place it into the data memory space.  
Figure 5-1 shows the operation of a Table Read with  
program and data memory.  
5.0  
TABLE READS/TABLE WRITES  
Enhanced devices have two memory spaces: the pro-  
gram memory space and the data memory space. The  
program memory space is 16-bits wide, while the data  
memory space is 8 bits wide. Table Reads and Table  
Writes have been provided to move data between  
these two memory spaces through an 8-bit register  
(TABLAT).  
Table Write operations store data from the data mem-  
ory space into program memory. Figure 5-2 shows the  
operation of a Table Write with program and data  
memory.  
Table operations work with byte entities. A table block  
containing data is not required to be word aligned, so a  
table block can start and end at any byte address. If a  
Table Write is being used to write an executable pro-  
gram to program memory, program instructions will  
need to be word aligned.  
The operations that allow the processor to move data  
between the data and program memory spaces are:  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 5-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
FIGURE 5-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 55  
PIC18CXX2  
5.1.1  
RCON REGISTER  
5.1  
Control Registers  
The LWRT bit specifies the operation of Table Writes to  
internal memory when the VPP voltage is applied to the  
MCLR pin. When the LWRT bit is set, the controller  
continues to execute user code, but long Table Writes  
are allowed (for programming internal program mem-  
ory) from user mode. The LWRT bit can be cleared only  
by performing either a POR or MCLR Reset.  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• TBLPTR registers  
• TABLAT register  
• RCON register  
REGISTER 5-1:  
RCON REGISTER (ADDRESS: FD0h)  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable bit  
1= Enable TBLWTto internal program memory  
0= Disable TBLWTto internal program memory.  
Note:  
Only cleared on a POR or MCLR Reset.  
This bit has no effect on TBLWTsto external program memory.  
bit 5  
bit 4  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
1= No RESETinstruction occurred  
0= A RESETinstruction occurred  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset or POR Reset occurred  
0= A Brown-out Reset or POR Reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026D-page 56  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
5.1.2  
TABLAT - TABLE LATCH REGISTER  
5.1.3  
TBLPTR - TABLE POINTER  
REGISTER  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data memory.  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers (Table Pointer Upper Byte, High  
Byte and Low Byte). These three registers  
(TBLPTRU:TBLPTRH:TBLPTRL) join to form a 22-bit  
wide pointer. The lower 21-bits allow the device to  
address up to 2 Mbytes of program memory space. The  
22nd bit allows access to the Device ID, the User ID  
and the Configuration bits.  
The Table Pointer, TBLPTR, is used by the TBLRD and  
TBLWT instructions. These instructions can update the  
TBLPTR in one of four ways, based on the table operation.  
These operations are shown in Table 5-1. These opera-  
tions on the TBLPTR only affect the lower 21-bits.  
TABLE 5-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
When a Table Write occurs to an even program mem-  
5.2  
Internal Program Memory Read/  
Writes  
ory address (TBLPTR<0> = 0), the contents of TABLAT  
are transferred to an internal holding register. This is  
performed as a short write and the program memory  
block is not actually programmed at this time. The hold-  
ing register is not accessible by the user.  
5.2.1  
TABLE READ OVERVIEW (TBLRD)  
The TBLRD instructions are used to read data from  
program memory to data memory.  
When a Table Write occurs to an odd program memory  
address (TBLPTR<0>=1), a long write is started. Dur-  
ing the long write, the contents of TABLAT are written  
to the high byte of the program memory block and the  
contents of the holding register are transferred to the  
low byte of the program memory block.  
TBLPTR points to a byte address in program space.  
Executing TBLRDplaces the byte pointed to into TAB-  
LAT. In addition, TBLPTR can be modified automati-  
cally for the next Table Read operation.  
Table Reads from program memory are performed one  
byte at a time. The instruction will load TABLAT with the  
one byte from program memory pointed to by TBLPTR.  
Figure 5-3 shows the holding register and the program  
memory write blocks.  
If a single byte is to be programmed, the low (even)  
byte of the destination program word should be read  
using TBLRD*, modified or changed, if required, and  
written back to the same address using TBLWT*+. The  
high (odd) byte should be read using TBLRD*, modified  
or changed if required, and written back to the same  
address using TBLWT. A write to the odd address will  
cause a long write to begin. This process ensures that  
existing data in either byte will not be changed unless  
desired.  
5.2.2  
INTERNAL PROGRAM MEMORY  
WRITE BLOCK SIZE  
The internal program memory of PIC18CXXX devices  
is written in blocks. For PIC18CXX2 devices, the write  
block size is 2 bytes. Consequently, Table Write opera-  
tions to internal program memory are performed in  
pairs, one byte at a time.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 57  
PIC18CXX2  
FIGURE 5-3:  
HOLDING REGISTER AND THE WRITE BLOCK  
Program Memory (x 2-bits)  
Block n  
Write Block  
MSB  
Holding Register  
Block n + 1  
Block n + 2  
The write to the MSB of the Write Block  
causes the entire block to be written to pro-  
gram memory. The program memory block  
that is written depends on the address that is  
written to in the MSB of the Write Block.  
5.2.2.1  
Operation  
5.2.2.2  
Sequence of Events  
The long write is what actually programs words of data  
into the internal memory. When a TBLWTto the MSB of  
the write block occurs, instruction execution is halted.  
During this time, programming voltage and the data  
stored in internal latches is applied to program memory.  
The sequence of events for programming an internal  
program memory location should be:  
1. Enable the interrupt that terminates the long  
write. Disable all other interrupts.  
2. Clear the source interrupt flag.  
For a long write to occur:  
3. If Interrupt Service Routine execution is desired  
when the device wakes, enable global  
interrupts.  
1. MCLR/VPP pin must be at the programming  
voltage  
2. LWRT bit must be set  
4. Set LWRT bit in the RCON register.  
3. TBLWT to the address of the MSB of the write  
block  
5. Raise MCLR/VPP pin to the programming  
voltage, VPP.  
6. Clear the WDT (if enabled).  
If the LWRT bit is clear, a short write will occur and pro-  
gram memory will not be changed. If the TBLWTis not  
to the MSB of the write block, then the programming  
phase is not initiated.  
7. Set the interrupt source to interrupt at the  
required time.  
8. Execute the Table Write for the lower (even)  
byte. This will be a short write.  
Setting the LWRT bit enables long writes when the  
MCLR pin is taken to VPP voltage. Once the LWRT bit  
is set, it can be cleared only by performing a POR or  
MCLR Reset.  
9. Execute the Table Write for the upper (odd) byte.  
This will be a long write. The microcontroller will  
then halt internal operations. (This is not the  
same as SLEEP mode, as the clocks and  
peripherals will continue to run.) The interrupt  
will cause the microcontroller to resume  
operation.  
To ensure that the memory location has been well pro-  
grammed, a minimum programming time is required.  
The long write can be terminated after the program-  
ming time has expired by a RESET or an interrupt.  
Having only one interrupt source enabled to terminate  
the long write ensures that no unintended interrupts will  
prematurely terminate the long write.  
10. If GIE was set, service the interrupt request.  
11. Lower MCLR/VPP pin to VDD.  
12. Verify the memory location (Table Read).  
DS39026D-page 58  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Depending on the states of interrupt priority bits, the  
GIE/GIEH bit or the PIE/GIEL bit, program execution  
can either be vectored to the high or low priority Inter-  
rupt Service Routine (ISR), or continue execution from  
where programming commenced.  
5.2.3  
INTERRUPTS  
The long write must be terminated by a RESET or any  
interrupt.  
The interrupt source must have its interrupt enable bit  
set. When the source sets its interrupt flag, program-  
ming will terminate. This will occur, regardless of the  
settings of interrupt priority bits, the GIE/GIEH bit, or  
the PIE/GIEL bit.  
In either case, the interrupt flag will not be cleared  
when programming is terminated and will need to be  
cleared by the software.  
TABLE 5-2:  
LONG WRITE EXECUTION, INTERRUPT ENABLE BITS AND INTERRUPT RESULTS  
GIE/  
GIEH  
PIE/  
GIEL  
Interrupt Interrupt  
Priority  
Action  
Enable  
Flag  
0
Long write continues  
even if interrupt flag becomes set.  
X
X
X
X
X
X
(default)  
Long write continues, will resume operations  
when the interrupt flag is set.  
X
0
X
0
1
1
0
1
Terminates long write, executes next instruction.  
Interrupt flag not cleared.  
(default) (default)  
1
0
Terminates long write, executes next instruction.  
Interrupt flag not cleared.  
1
0
high priority  
(default)  
1
1
1
1
1
1
(default)  
0
low  
Terminates long write, executes next instruction.  
Interrupt flag not cleared.  
1
(default)  
Terminates long write,  
branches to low priority interrupt vector.  
Interrupt flag can be cleared by ISR.  
0
0
low  
1
(default)  
1
Terminates long write,  
branches to high priority interrupt vector.  
Interrupt flag can be cleared by ISR.  
0
1
high priority  
(default)  
1
1
(default)  
5.2.4  
UNEXPECTED TERMINATION OF  
WRITE OPERATIONS  
If a write is terminated by an unplanned event such as  
loss of power, an unexpected RESET, or an interrupt  
that was not disabled, the memory location just pro-  
grammed should be verified and reprogrammed if  
needed.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 59  
PIC18CXX2  
NOTES:  
DS39026D-page 60  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
6.0  
6.1  
8 X 8 HARDWARE MULTIPLIER  
Introduction  
• Higher computational throughput  
• Reduces code size requirements for multiply  
algorithms  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18CXX2 devices. By making the multiply a  
hardware operation, it completes in a single instruction  
cycle. This is an unsigned multiply that gives a 16-bit  
result. The result is stored into the 16-bit product regis-  
ter pair (PRODH:PRODL). The multiplier does not  
affect any flags in the ALUSTA register.  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
Table 6-1 shows a performance comparison between  
enhanced devices using the single cycle hardware mul-  
tiply, and performing the same function without the  
hardware multiply.  
TABLE 6-1:  
Routine  
PERFORMANCE COMPARISON  
Multiply Method  
Program  
Memory  
(Words)  
Time  
Cycles  
(Max)  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 s  
100 ns  
9.1 s  
600 ns  
24.2 s  
2.4 s  
25.4 s  
3.6 s  
27.6 s  
400 ns  
36.4 s  
2.4 s  
69 s  
1 s  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 s  
6 s  
Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
96.8 s  
9.6 s  
242 s  
24 s  
254 s  
36 s  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
102.6 s  
14.4 s  
EXAMPLE 6-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
6.2  
Operation  
Example 6-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
MOVF  
ARG1,  
ARG2  
W
MULWF  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
Example 6-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2,  
W
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
EXAMPLE 6-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
Example 6-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 6-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
;
PRODH:PRODL  
EQUATION 6-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(ARG1H ARG2H 2 )+  
8
(ARG1H ARG2L 2 )+  
8
(ARG1L ARG2H 2 )+  
(ARG1L ARG2L)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 61  
PIC18CXX2  
EXAMPLE 6-3:  
16 x 16 UNSIGNED  
EXAMPLE 6-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES1 ;  
PRODL, RES0 ;  
MOVFF  
MOVFF  
PRODH, RES1 ;  
PRODL, RES0 ;  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES3 ;  
PRODL, RES2 ;  
MOVFF  
MOVFF  
PRODH, RES3 ;  
PRODL, RES2 ;  
MOVF  
ARG1L, W  
MOVF  
ARG1L, W  
MULWF  
ARG2H  
; ARG1L * ARG2H ->  
MULWF  
ARG2H  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
; PRODH:PRODL  
MOVF  
PRODL, W  
;
MOVF  
PRODL, W  
;
ADDWF  
MOVF  
RES1,  
PRODH, W  
F
; Add cross  
; products  
ADDWF  
MOVF  
RES1,  
PRODH, W  
F
; Add cross  
; products  
ADDWFC  
CLRF  
ADDWFC  
RES2,  
WREG,  
RES3,  
F
F
F
;
;
;
ADDWFC  
CLRF  
ADDWFC  
RES2,  
WREG,  
RES3,  
F
F
F
;
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
; PRODH:PRODL  
MOVF  
PRODL, W  
;
MOVF  
PRODL, W  
;
ADDWF  
MOVF  
ADDWFC  
CLRF  
RES1,  
PRODH, W  
RES2,  
WREG,  
RES3,  
F
; Add cross  
; products  
;
;
;
ADDWF  
MOVF  
ADDWFC  
CLRF  
RES1,  
F
; Add cross  
; products  
;
;
;
PRODH, W  
RES2, F  
WREG, F  
RES3, F  
F
F
F
ADDWFC  
ADDWFC  
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
SUBWFB  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
ARG1H, W  
RES3  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
Example 6-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 6-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs’ Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
ARG2H, W  
RES3  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
EQUATION 6-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
MOVF  
SUBWF  
MOVF  
RES3:RES0  
SUBWFB  
;
CONT_CODE  
:
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(ARG1H ARG2H 2 )+  
8
(ARG1H ARG2L 2 )+  
8
(ARG1L ARG2H 2 )+  
(ARG1L ARG2L)+  
(-1 ARG2H<7> ARG1H:ARG1L 2 )+  
(-1 ARG1H<7> ARG2H:ARG2L 2  
16  
16  
)
DS39026D-page 62  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
When the IPEN bit is cleared (default state), the inter-  
rupt priority feature is disabled and interrupts are com-  
patible with PIC® mid-range devices. In Compatibility  
mode, the interrupt priority bits for each source have no  
effect. INTCON<6> is the PEIE bit, which enables/dis-  
ables all peripheral interrupt sources. INTCON<7> is  
the GIE bit, which enables/disables all interrupt  
sources. All interrupts branch to address 000008h in  
Compatibility mode.  
7.0  
INTERRUPTS  
The PIC18CXX2 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level, or a low priority level. The high priority interrupt  
vector is at 000008h and the low priority interrupt vector  
is at 000018h. High priority interrupt events will over-  
ride any low priority interrupts that may be in progress.  
There are ten registers which are used to control inter-  
rupt operation. These registers are:  
When an interrupt is responded to, the Global Interrupt  
Enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH, or GIEL bit.  
High priority interrupt sources can interrupt a low prior-  
ity interrupt.  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
• PIR1, PIR2  
• PIE1, PIE2  
• IPR1, IPR2  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
It is recommended that the Microchip header files sup-  
plied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
Each interrupt source has three bits to control its oper-  
ation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts glo-  
bally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set. Setting the GIEL  
bit (INTCON<6>) enables all interrupts that have the  
priority bit cleared. When the interrupt flag, enable bit  
and appropriate global interrupt enable bit are set, the  
interrupt will vector immediately to address 000008h or  
000018h, depending on the priority level. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 63  
PIC18CXX2  
FIGURE 7-1:  
INTERRUPT LOGIC  
Wake-up if in SLEEP mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIEH/GIE  
TMR1IF  
TMR1IE  
TMR1IP  
IPE  
IPEN  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
RBIP  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL\PEIE  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39026D-page 64  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
7.1  
INTCON Registers  
The INTCON Registers are readable and writable reg-  
isters, which contains various enable, priority, and flag  
bits.  
REGISTER 7-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
bit 0  
GIE/GIEH PEIE/GIEL  
bit 7  
TMR0IE  
INT0IE  
TMR0IF  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all high priority interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 65  
PIC18CXX2  
REGISTER 7-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
bit 0  
INTEDG0 INTEDG1 INTEDG2  
TMR0IP  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0:External Interrupt0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as '0'  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as '0'  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
DS39026D-page 66  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
REGISTER 7-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as '0'  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as '0'  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred  
(must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred  
(must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 67  
PIC18CXX2  
7.2  
PIR Registers  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Flag Registers (PIR1, PIR2).  
Note 1: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit, or the global  
enable bit, GIE (INTCON<7>).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt, and after servicing  
that interrupt.  
REGISTER 7-4:  
PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (PIR1)  
R/W-0  
PSPIF  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF  
bit 0  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= MR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset ’1’ = Bit is set  
DS39026D-page 68  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
REGISTER 7-5:  
PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (PIR2)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
R/W-0  
CCP2IF  
bit 0  
TMR3IF  
bit 7  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low Voltage Detect Interrupt Flag bit  
1= A low voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: CCPx Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset ’1’ = Bit is set  
1999-2013 Microchip Technology Inc.  
DS39026D-page 69  
PIC18CXX2  
7.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two Peripheral Inter-  
rupt Enable Registers (PIE1, PIE2). When IPEN = 0,  
the PEIE bit must be set to enable any of these periph-  
eral interrupts.  
REGISTER 7-6:  
PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1)  
R/W-0  
PSPIE  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE TMR2IE TMR1IE  
bit 0  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39026D-page 70  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
REGISTER 7-7:  
PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
R/W-0  
TMR3IE  
CCP2IE  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 2  
bit 1  
bit 0  
LVDIE: Low Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1999-2013 Microchip Technology Inc.  
DS39026D-page 71  
PIC18CXX2  
7.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two Peripheral Inter-  
rupt Priority Registers (IPR1, IPR2). The operation of  
the priority bits requires that the Interrupt Priority  
Enable (IPEN) bit be set.  
REGISTER 7-8:  
PERIPHERAL INTERRUPT PRIORITY REGISTER 1 (IPR1)  
R/W-1  
PSPIP  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39026D-page 72  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
REGISTER 7-9:  
PERIPHERAL INTERRUPT PRIORITY REGISTER 2 (IPR2)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
R/W-1  
TMR3IP  
CCP2IP  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2  
bit 1  
bit 0  
LVDIP: Low Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1999-2013 Microchip Technology Inc.  
DS39026D-page 73  
PIC18CXX2  
7.5  
RCON Register  
The RCON register contains the bit which is used to  
enable prioritized interrupts (IPEN).  
REGISTER 7-10: RCON REGISTER  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable bit  
For details of bit operation, see Register 4-3  
Unimplemented: Read as '0'  
bit 5  
bit 4  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-3  
TO: Watchdog Time-out Flag bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 4-3  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 4-3  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-3  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-3  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026D-page 74  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
7.6  
INT0 Interrupt  
7.7  
TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge triggered: either rising, if the  
corresponding INTEDGx bit is set in the INTCON2 reg-  
ister, or falling, if the INTEDGx bit is clear. When a valid  
edge appears on the RBx/INTx pin, the corresponding  
flag bit INTxF is set. This interrupt can be disabled by  
clearing the corresponding enable bit INTxE. Flag bit  
INTxF must be cleared in software in the Interrupt Ser-  
vice Routine before re-enabling the interrupt. All exter-  
nal interrupts (INT0, INT1 and INT2) can wake-up the  
processor from SLEEP, if bit INTxE was set prior to  
going into SLEEP. If the global interrupt enable bit GIE  
set, the processor will branch to the interrupt vector  
following wake-up.  
In 8-bit mode (which is the default), an overflow (FFh   
00h) in the TMR0 register will set flag bit TMR0IF. In  
16-bit mode, an overflow (FFFFh  0000h) in the  
TMR0H:TMR0L registers will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit T0IE (INTCON<5>). Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit TMR0IP (INTCON2<2>). See Sec-  
tion 8.0 for further details on the Timer0 module.  
7.8  
PORTB Interrupt-on-Change  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB Interrupt-on-change is  
determined by the value contained in the interrupt pri-  
ority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits, INT1IP  
(INTCON3<6>) and INT2IP (INTCON3<7>). There is  
no priority bit associated with INT0. It is always a high  
priority interrupt source.  
7.9  
Context Saving During Interrupts  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, STATUS and BSR regis-  
ters are saved on the fast return stack. If a fast return  
from interrupt is not used (see Section 4.3), the user  
may need to save the WREG, STATUS and BSR regis-  
ters in software. Depending on the user’s application,  
other registers may also need to be saved. Example 7-1  
saves and restores the WREG, STATUS and BSR regis-  
ters during an Interrupt Service Routine.  
EXAMPLE 7-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
1999-2013 Microchip Technology Inc.  
DS39026D-page 75  
PIC18CXX2  
NOTES:  
DS39026D-page 76  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
EXAMPLE 8-1:  
INITIALIZING PORTA  
8.0  
I/O PORTS  
CLRF PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Configure A/D  
; for digital inputs  
; Value used to  
; initialize data  
; direction  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
Depending on the device selected, there are either five  
ports, or three ports available. Some pins of the I/O  
ports are multiplexed with an alternate function from  
the peripheral features on the device. In general, when  
a peripheral is enabled, that pin may not be used as a  
general purpose I/O pin.  
CLRF LATA  
MOVLW 0x07  
MOVWF ADCON1  
MOVLW 0xCF  
Each port has three registers for its operation. These  
registers are:  
• TRIS register (data direction register)  
MOVWF TRISA  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The data latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
FIGURE 8-1:  
BLOCK DIAGRAM OF  
RA3:RA0AND RA5PINS  
8.1  
PORTA, TRISA and LATA  
Registers  
PORTA is a 6-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
RD LATA  
Data  
Bus  
D
Q
VDD  
WR LATA  
Q
Data Latch  
CK  
or  
P
PORTA  
I/O pin(1)  
N
Note: On a Power-on Reset, these pins are con-  
D
Q
figured as digital inputs.  
WR TRISA  
VSS  
Analog  
Q
CK  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
Input  
Mode  
TRIS Latch  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register reads and writes the latched output value for  
PORTA.  
TTL  
Input  
Buffer  
RD TRISA  
Q
D
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The RA4/  
T0CKI pin is a Schmitt Trigger input and an open drain  
output. All other RA port pins have TTL input levels and  
full CMOS output drivers.  
EN  
RD PORTA  
SS Input (RA5 only)  
To A/D Converter and LVD Modules  
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register1).  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 77  
PIC18CXX2  
FIGURE 8-2:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
FIGURE 8-3:  
BLOCKDIAGRAMOFRA6  
ECRA6 or  
RCRA6 Enable  
Data  
Bus  
RD LATA  
Data  
Bus  
RD LATA  
D
Q
Q
D
Q
WR LATA  
or  
PORTA  
CK  
VDD  
P
I/O pin(1)  
N
WR LATA  
or  
PORTA  
Data Latch  
Q
CK  
D
Q
VSS  
Data Latch  
I/O pin(1)  
N
WR TRISA  
D
Q
Q
CK  
Schmitt  
Trigger  
Input  
Buffer  
TRIS Latch  
WR  
TRISA  
VSS  
Q
CK  
ECRA6 or  
TRIS Latch  
RCRA6  
RD TRISA  
Enable  
Data Bus  
TTL  
Input  
Buffer  
Q
D
RD TRISA  
EN  
RD PORTA  
TMR0 Clock Input  
Data Bus  
Q
D
Note 1: I/O pins have protection diodes to VDD and VSS.  
EN  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39026D-page 78  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 8-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
Input/output or analog input.  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output or analog input or VREF-.  
Input/output or analog input or VREF+.  
Input/output or external clock input for Timer0.  
Output is open drain type.  
RA5/SS/AN4/LVDIN  
OSC2/CLKO/RA6  
bit5  
bit6  
TTL  
TTL  
Input/output or slave select input for synchronous serial port or analog  
input, or low voltage detect input.  
OSC2 or clock output or I/O pin.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 8-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on Valueon all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
PORTA  
LATA  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--xx xxxx --uu uuuu  
--11 1111 --11 1111  
Latch A Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1 ADFM ADCS2  
PCFG3 PCFG2  
PCFG1 PCFG0 --0- 0000 --0- 0000  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'.  
Shaded cells are not used by PORTA.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 79  
PIC18CXX2  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
8.2  
PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISB bit (= 0) will  
make the corresponding PORTB pin an output (i.e., put  
the contents of the output latch on the selected pin).  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
RB3 can be configured by the configuration bit  
CCP2MX as the alternate peripheral pin for the CCP2  
module (CCP2MX = ‘0’).  
Note: On a Power-on Reset, these pins are con-  
figured as digital inputs.  
FIGURE 8-4:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register reads and writes the latched output value for  
PORTB.  
VDD  
RBPU(2)  
Data Bus  
Weak  
Pull-up  
P
EXAMPLE 8-2:  
INITIALIZING PORTB  
Data Latch  
D
Q
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
I/O  
WR LATB  
or  
PORTB  
pin(1)  
CK  
TRIS Latch  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
D
Q
WR TRISB  
TTL  
Input  
Buffer  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
CK  
ST  
Buffer  
MOVWF TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
RD TRISB  
RD LATB  
Latch  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
Q
Q
D
EN  
Q1  
RD PORTB  
Set RBIF  
D
RD PORTB  
Q3  
Four of the PORTB pins, RB7:RB4, have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RB Port Change  
Interrupt with flag bit RBIF (INTCON<0>).  
From other  
EN  
RB7:RB4 pins  
RBx/INTx  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2<7>).  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
b) Clear flag bit RBIF.  
DS39026D-page 80  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 8-5:  
BLOCK DIAGRAM OF RB2:RB0 PINS  
VDD  
Weak  
RBPU(2)  
P
Pull-up  
Data Latch  
Data Bus  
D
Q
I/O pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Q
D
EN  
RB0/INT  
Schmitt Trigger Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
RD Port  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).  
FIGURE 8-6:  
BLOCK DIAGRAM OF RB3  
VDD  
Weak  
RBPU(2)  
CCP2MX  
P
Pull-up  
CCP Output(3)  
1
0
VDD  
P
Enable  
CCP Output(3)  
Data Latch  
I/O pin(1)  
Data Bus  
D
Q
WR LATB or  
WR PORTB  
N
CK  
VSS  
TRIS Latch  
D
TTL  
WR TRISB  
Input  
CK  
Q
Buffer  
RD TRISB  
RD LATB  
D
Q
EN  
RD PORTB  
RD PORTB  
CCP2 Input(3)  
Schmitt Trigger  
Buffer  
CCP2MX = 0  
Note 1: I/O pin has diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate DDR bit(s) and clear the RBPU bit (INTCON2<7>).  
3: The CCP2 input/output is multiplexed with RB3, if the CCP2MX bit is enabled (=’0’) in the configuration register.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 81  
PIC18CXX2  
TABLE 8-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT0  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt input1. Internal software  
programmable weak pull-up.  
RB1/INT1  
RB2/INT2  
bit1  
bit2  
bit3  
TTL/ST(1)  
TTL/ST(1)  
TTL/ST(4)  
Input/output pin or external interrupt input2. Internal software  
programmable weak pull-up.  
Input/output pin or external interrupt input3. Internal software  
programmable weak pull-up.  
RB3/CCP2(3)  
Input/output pin. Capture2 input/Compare2 output/PWM output when  
CCP2MX configuration bit is enabled. Internal software  
programmable weak pull-up.  
RB4  
RB5  
RB6  
RB7  
bit4  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up.  
TTL  
Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up.  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Serial programming clock.  
Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: A device configuration bit selects which I/O pin the CCP2 pin is multiplexed on.  
4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.  
TABLE 8-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx  
uuuu uuuu  
LATB Data Output Register  
TRISB  
INTCON  
PORTB Data Direction Register  
1111 1111  
0000 000x  
1111 1111  
0000 000u  
GIE/  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
GIEH  
INTCON2  
RBPU INTEDG0 INTEDG1 INTEDG2  
INT2IP INT1IP INT2IE  
TMR0IP  
RBIP  
1111 -1-1  
11-0 0-00  
1111 -1-1  
11-0 0-00  
INTCON3  
INT1IE  
INT2IF  
INT1IF  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS39026D-page 82  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register,  
without concern due to peripheral overrides.  
8.3  
PORTC, TRISC and LATC  
Registers  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction Register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISC bit (= 0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
RC1 is normally configured by the configuration bit  
CCP2MX as the default peripheral pin for the CCP2  
module (default/erased state, CCP2MX = ‘1’).  
EXAMPLE 8-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
Note: On a Power-on Reset, these pins are con-  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
figured as digital inputs.  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register reads and writes the latched output value for  
PORTC.  
MOVLW 0xCF  
MOVWF TRISC  
PORTC is multiplexed with several peripheral functions  
(Table 8-5). PORTC pins have Schmitt Trigger input  
buffers.  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to make  
a pin an input. The user should refer to the correspond-  
ing peripheral section for the correct TRIS bit settings.  
FIGURE 8-7:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
Port/Peripheral Select(2)  
VDD  
Peripheral Data Out  
RD LATC  
0
Data Latch  
Data Bus  
D
Q
P
WR LATC or  
WR PORTC  
1
I/O pin(1)  
Q
CK  
DDR Latch  
D
Q
WR TRISC  
RD TRISC  
CK  
Q
N
Schmitt  
Trigger  
VSS  
Peripheral Output  
Enable(3)  
Q
D
EN  
RD PORTC  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port data (input) and peripheral output.  
3: Peripheral Output Enable is only active if peripheral select is active.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 83  
PIC18CXX2  
TABLE 8-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI bit0  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
RC1/T1OSI/CCP2  
bit1  
Input/output port pin, Timer1 oscillator input, or Capture2 input/  
Compare2 output/PWM output when CCP2MX configuration bit is  
disabled.  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC3 can also be the synchronous serial clock for both SPI and  
I2C modes.  
RC4/SDI/SDA  
RC5/SDO  
bit4  
bit5  
bit6  
ST  
ST  
ST  
RC4 can also be the SPI Data In (SPI mode) or Data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port Data output.  
RC6/TX/CK  
Input/output port pin, Addressable USART Asynchronous Transmit, or  
Addressable USART Synchronous Clock.  
RC7/RX/DT  
bit7  
ST  
Input/output port pin, Addressable USART Asynchronous Receive, or  
Addressable USART Synchronous Data.  
Legend: ST = Schmitt Trigger input  
TABLE 8-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATC  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
DS39026D-page 84  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 8-8:  
PORTD BLOCK DIAGRAM  
IN I/O PORT MODE  
8.4  
PORTD, TRISD and LATD  
Registers  
This section is only applicable to the PIC18C4X2  
devices.  
RD LATD  
PORTD is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISD bit (= 0) will  
make the corresponding PORTD pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Data  
Bus  
D
Q
I/O pin(1)  
WR LATD  
or  
PORTD  
CK  
Data Latch  
D
Q
Note: On a Power-on Reset, these pins are con-  
WR TRISD  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
figured as digital inputs.  
The Data Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register reads and writes the latched output value for  
PORTD.  
Buffer  
RD TRISD  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
Q
D
EN  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL. See Section 8.6 for additional information on  
the Parallel Slave Port (PSP).  
RD PORTD  
Note 1: I/O pins have diode protection to VDD and VSS.  
EXAMPLE 8-4:  
INITIALIZING PORTD  
CLRF  
PORTD ; Initialize PORTD by  
; clearing output  
; data latches  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISD  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
1999-2013 Microchip Technology Inc.  
DS39026D-page 85  
PIC18CXX2  
TABLE 8-7:  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
Function  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or parallel slave port bit0.  
Input/output port pin or parallel slave port bit1.  
Input/output port pin or parallel slave port bit2.  
Input/output port pin or parallel slave port bit3.  
Input/output port pin or parallel slave port bit4.  
Input/output port pin or parallel slave port bit5.  
Input/output port pin or parallel slave port bit6.  
Input/output port pin or parallel slave port bit7.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 8-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
POR,  
Value on all  
other  
Name Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
PORTD RD7 RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
LATD  
TRISD PORTD Data Direction Register  
TRISE IBF OBF IBOV PSPMODE  
LATD Data Output Register  
PORTE Data Direction bits  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.  
DS39026D-page 86  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 8-9:  
PORTEBLOCKDIAGRAM  
IN I/O PORT MODE  
8.5  
PORTE, TRISE and LATE  
Registers  
This section is only applicable to the PIC18C4X2  
devices.  
RD LATE  
PORTE is a 3-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISE bit (= 0) will  
make the corresponding PORTE pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Data  
Bus  
D
Q
I/O pin(1)  
WR LATE  
or  
PORTE  
CK  
Data Latch  
D
Q
Note: On a Power-on Reset, these pins are con-  
WR TRISE  
figured as digital inputs.  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
The Data Latch register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register reads and writes the latched output value for  
PORTE.  
Buffer  
RD TRISE  
PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7), which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
Q
D
EN  
RD PORTE  
Register 8-1 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
To Analog Converter  
PORTE pins are multiplexed with analog inputs. When  
selected as an analog input, these pins will read as '0's.  
Note 1: I/O pins have diode protection to VDD and VSS.  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs.  
EXAMPLE 8-5:  
INITIALIZING PORTE  
CLRF  
PORTE  
; Initialize PORTE by  
; clearing output  
; data latches  
CLRF  
LATE  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0x07  
; Configure A/D  
MOVWF ADCON1 ; for digital inputs  
MOVLW 0x03  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RE<0> as inputs  
; RE<1> as outputs  
; RE<2> as inputs  
1999-2013 Microchip Technology Inc.  
DS39026D-page 87  
PIC18CXX2  
REGISTER 8-1:  
TRISE REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
TRISE2: RE2 Direction Control bit  
1= Input  
0= Output  
bit 1  
bit 0  
TRISE1: RE1 Direction Control bit  
1= Input  
0= Output  
TRISE0: RE0 Direction Control bit  
1= Input  
0= Output  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39026D-page 88  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 8-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
Input/output port pin or read control input in Parallel Slave Port mode  
or analog input:  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
bit0  
ST/TTL(1)  
RD  
1= Not a read operation  
0= Read operation. Reads PORTD register (if chip selected).  
Input/output port pin or write control input in Parallel Slave Port mode  
or analog input:  
bit1  
bit2  
ST/TTL(1)  
ST/TTL(1)  
WR  
1= Not a write operation  
0= Write operation. Writes PORTD register (if chip selected).  
Input/output port pin or chip select control input in Parallel Slave Port  
mode or analog input:  
CS  
1= Device is not selected  
0= Device is selected  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 8-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
PORTE  
LATE  
RE2  
RE1  
RE0  
---- -000  
---- -xxx  
0000 -111  
--0- -000  
---- -000  
---- -uuu  
0000 -111  
--0- -000  
PSPMODE  
LATE Data Output Register  
PORTE Data Direction bits  
TRISE  
IBF  
OBF  
IBOV  
ADCON1 ADFM ADCS2  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 89  
PIC18CXX2  
FIGURE 8-10:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE  
PORT)  
8.6  
Parallel Slave Port  
The Parallel Slave Port is implemented on the 40-pin  
devices only (PIC18C4X2).  
PORTD operates as an 8-bit wide, parallel slave port,  
or microprocessor port, when control bit PSPMODE  
(TRISE<4>) is set. It is asynchronously readable and  
writable by the external world through RD control input  
pin RE0/RD and WR control input pin RE1/WR.  
Data Bus  
D
Q
RDx  
pin  
WR LATD  
or  
PORTD  
CK  
Data Latch  
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD to be the RD input, RE1/WR  
to be the WR input and RE2/CS to be the CS (chip  
select) input. For this functionality, the corresponding  
data direction bits of the TRISE register (TRISE<2:0>)  
must be configured as inputs (set). The A/D port config-  
uration bits PCFG2:PCFG0 (ADCON1<2:0>) must be  
set, which will configure pins RE2:RE0 as digital I/O.  
TTL  
Q
D
RD PORTD  
EN  
RD LATD  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
The PORTE I/O pins become control inputs for the  
microprocessor port when bit PSPMODE (TRISE<4>)  
is set. In this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs), and the ADCON1 is configured for digital I/O.  
In this mode, the input buffers are TTL.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
Write  
TTL  
Note: I/O pin has protection diodes to VDD and VSS.  
FIGURE 8-11:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
DS39026D-page 90  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 8-12:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 8-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on all  
other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
Port Data Latch when written; Port pins when read  
LATD Data Output bits  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- -000 ---- -000  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
0000 000x 0000 000u  
TRISD  
PORTE  
LATE  
PORTD Data Direction bits  
RE2  
RE1  
RE0  
LATE Data Output bits  
PORTE Data Direction bits  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
GIE/  
GIEH  
PEIE/  
GIEL  
INTCON  
TMR0IF  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADFM  
ADIF  
ADIE  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF  
TMR1IF 0000 0000 0000 0000  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
ADIP  
ADCON1  
ADCS2  
PCFG3 PCFG2  
PCFG1  
PCFG0  
--0- -000 --0- -000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 91  
PIC18CXX2  
NOTES:  
DS39026D-page 92  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Figure 9-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 9-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
9.0  
TIMER0 MODULE  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or 16-bit timer/  
counter  
The T0CON register (Register 9-1) is a readable and  
writable register that controls all the aspects of Timer0,  
including the prescale selection.  
• Readable and writable  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 9-1:  
T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2:0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 93  
PIC18CXX2  
FIGURE 9-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
FOSC/4  
0
1
8
0
Sync with  
Internal  
Clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
1
(2 TCY delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note:  
Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 9-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
FOSC/4  
0
0
Sync with  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
Internal  
Clocks  
1
TMR0L  
Programmable  
Prescaler  
T0CKI pin  
1
8
(2 TCY delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note:  
Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39026D-page 94  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
9.2.1  
SWITCHING PRESCALER ASSIGNMENT  
9.1  
Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed “on-the-fly” during program  
execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
9.3  
Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode, or FFFFh  
to 0000h in 16-bit mode. This overflow sets the TMR0IF  
bit. The interrupt can be masked by clearing the  
TMR0IE bit. The TMR0IE bit must be cleared in soft-  
ware by the Timer0 module Interrupt Service Routine  
before re-enabling this interrupt. The TMR0 interrupt  
cannot awaken the processor from SLEEP, since the  
timer is shut-off during SLEEP.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment either on every  
rising, or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
9.4  
16-Bit Mode Timer Reads and  
Writes  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 9-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16-bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid due to a rollover between successive reads  
of the high and low byte.  
9.2  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module. The prescaler is not readable or  
writable.  
The PSA and T0PS2:T0PS0 bits determine the pres-  
caler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4,..., 1:256 are  
selectable.  
A write to the high byte of Timer0 must also take place  
through the TMR0H buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16-bits of Timer0 to be  
updated at once.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x....etc.) will clear the prescaler  
count.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on all  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
POR, BOR  
RESETS  
TMR0L Timer0 Module’s Low Byte Register  
TMR0H Timer0 Module’s High Byte Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
--11 1111 --11 1111  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
PSA  
TMR0IF INT0IF  
T0PS2 T0PS1  
RBIF  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
T0PS0  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 95  
PIC18CXX2  
NOTES:  
DS39026D-page 96  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Figure 10-1 is a simplified block diagram of the Timer1  
module.  
10.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
Register 10-1 details the Timer1 control register. This  
register controls the operating mode of the Timer1  
module, and contains the Timer1 oscillator enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by set-  
ting or clearing control bit TMR1ON (T1CON<0>).  
• 16-bit timer/counter  
(two 8-bit registers: TMR1H and TMR1L)  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module special event trigger  
REGISTER 10-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
bit 7  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register Read/Write of TImer1 in one 16-bit operation  
0= Enables register Read/Write of Timer1 in two 8-bit operations  
bit 6  
Unimplemented: Read as '0'  
bit 5-4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 Oscillator is enabled  
0= Timer1 Oscillator is shut-off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
TMR1CS: Timer1 Clock Source Select bit  
bit 1  
bit 0  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 97  
PIC18CXX2  
When TMR1CS = 0, Timer1 increments every instruc-  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input or the  
Timer1 oscillator, if enabled.  
10.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Timer1 also has an internal “RESET input”. This  
RESET can be generated by the CCP module  
(Section 13.0).  
FIGURE 10-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag bit  
Synchronized  
TMR1  
CLR  
0
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
1
T1CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
(1)  
0
Clock  
2
SLEEP Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 10-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
CCP Special Event Trigger  
0
TMR1IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
TMR1  
8
CLR  
Timer 1  
High Byte  
TMR1L  
Flag bit  
1
TMR1ON  
T1SYNC  
On/Off  
T1OSC  
T13CKI/T1OSO  
T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
FOSC/4  
Internal  
Clock  
Enable  
0
(1)  
Oscillator  
2
SLEEP Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39026D-page 98  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
10.2 Timer1 Oscillator  
10.4 Resetting Timer1 using a CCP  
Trigger Output  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 10-1 shows the capacitor  
selection for the Timer1 oscillator.  
If the CCP module is configured in compare mode to  
generate a “special event trigger” (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
TABLE 10-1: CAPACITOR SELECTION FOR  
THE ALTERNATE  
OSCILLATOR  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
Osc Type  
Freq.  
C1  
C2  
LP  
32 kHz  
TBD(1)  
TBD(1)  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
Crystal to be Tested:  
32.768 kHz Epson C-001R32.768K-A  
20  
PPM  
10.5 Timer1 16-Bit Read/Write Mode  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 10-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16-bits of  
Timer1, without having to determine whether a read of  
the high byte, followed by a read of the low byte, is  
valid, due to a rollover between reads.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external  
components.  
4: Capacitor values are for design guidance  
only.  
A write to the high byte of Timer1 must also take place  
through the TMR1H buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
TMR1H is updated from the high byte when TMR1L is  
read.  
10.3 Timer1 Interrupt  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 high byte buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The pres-  
caler is only cleared on writes to TMR1L.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 99  
PIC18CXX2  
TABLE 10-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
GIEL  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
(1)  
(1)  
PIE1  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON RD16  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
DS39026D-page 100  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
11.1 Timer2 Operation  
11.0 TIMER2 MODULE  
Timer2 can be used as the PWM time-base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
RESET. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4, or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
• SSP module optional use of TMR2 output to gen-  
erate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 has a control register shown in Register 11-1.  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Figure 11-1 is a simplified block diagram of the Timer2  
module. Register 11-1 shows the Timer2 control regis-  
ter. The prescaler and postscaler selection of Timer2  
are controlled by this register.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device RESET (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 11-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 101  
PIC18CXX2  
11.2 Timer2 Interrupt  
11.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate the shift clock.  
FIGURE 11-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
Output(1)  
bit TMR2IF  
Prescaler  
RESET  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
2
Comparator  
PR2  
1:16  
1:1 to  
EQ  
T2CKPS1:T2CKPS0  
4
TOUTPS3:TOUTPS0  
Note 1: TMR2 register output can be software selected by the SSP Module as a baud clock.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PIE1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
0000 0000 0000 0000  
(1)  
(1)  
TXIE  
TXIP  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
DS39026D-page 102  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Figure 12-1 is a simplified block diagram of the Timer3  
module.  
12.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 12-1 shows the Timer3 control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP clock source.  
• 16-bit timer/counter  
(two 8-bit registers: TMR3H and TMR3L)  
Register 10-1 shows the Timer1 control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 oscillator  
enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
REGISTER 12-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable  
1= Enables register Read/Write of Timer3 in one 16-bit operation  
0= Enables register Read/Write of Timer3 in two 8-bit operations  
bit 6-3  
T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the clock source for compare/capture CCP modules  
01= Timer3 is the clock source for compare/capture of CCP2,  
Timer1 is the clock source for compare/capture of CCP1  
00= Timer1 is the clock source for compare/capture CCP modules  
bit 5-4  
bit 2  
T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
TMR3CS: Timer3 Clock Source Select bit  
bit 1  
bit 0  
1= External clock input from Timer1 oscillator or T1CKI  
(on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 103  
PIC18CXX2  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
12.1 Timer3 Operation  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
Timer3 also has an internal “RESET input”. This  
RESET can be generated by the CCP module  
(Section 12.0).  
FIGURE 12-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Trigger  
T3CCPx  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
0
Flag bit  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
On/Off  
T3SYNC  
(3)  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
Oscillator  
2
SLEEP Input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 12-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
0
Synchronized  
Clock Input  
8
TMR3  
Set TMR3IF Flag bit  
on Overflow  
CLR  
Timer3  
High Byte  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
SLEEP Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39026D-page 104  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
12.2 Timer1 Oscillator  
12.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low  
power oscillator rated up to 200 KHz. See Section 10.0  
for further details.  
If the CCP module is configured in Compare mode to  
generate a “special event trigger” (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer3.  
Note: The special event triggers from the CCP  
module will not set interrupt flag bit  
TMR3IF (PIR1<0>).  
12.3 Timer3 Interrupt  
The TMR3 Register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR3IF (PIR2<1>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR3 interrupt enable bit, TMR3IE (PIE2<1>).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer3 is running in Asynchronous Counter mode,  
this RESET operation may not work. In the event that a  
write to Timer3 coincides with a special event trigger  
from CCP1, the write will take precedence. In this mode  
of operation, the CCPR1H:CCPR1L registers pair  
effectively becomes the period register for Timer3.  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GIE/  
GIEH  
PEIE/  
GIEL  
INTCON  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF 0000 0000 0000 0000  
CCP2IE 0000 0000 0000 0000  
CCP2IP 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
RD16  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON -000 0000 -uuu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 105  
PIC18CXX2  
NOTES:  
DS39026D-page 106  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the special event trigger. Therefore,  
operation of a CCP module in the following sections is  
described with respect to CCP1.  
13.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register, or as a PWM  
master/slave Duty Cycle register. Table 13-1 shows the  
timer resources of the CCP module modes.  
Table 13-2 shows the interaction of the CCP modules.  
REGISTER 13-1: CCP1CON REGISTER/CCP2CON REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode,  
Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)  
1001= Compare mode,  
Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)  
1010= Compare mode,  
Generate software interrupt on compare match (CCPIF bit is set, CCP pin is  
unaffected)  
1011= Compare mode,  
Trigger special event (CCPIF bit is set)  
11xx= PWM mode  
Legend:  
R = Readable bit  
- n = Value at POR reset  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
1999-2013 Microchip Technology Inc.  
DS39026D-page 107  
PIC18CXX2  
13.1 CCP1 Module  
13.2 CCP2 Module  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
TABLE 13-1: CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
TABLE 13-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time-base. Time-base can be different for each CCP.  
Compare The compare could be configured for the special event trigger,  
which clears either TMR1, or TMR3, depending upon which time-base is used.  
Compare  
Compare The compare(s) could be configured for the special event trigger,  
which clears TMR1, or TMR3, depending upon which time-base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
None.  
Capture  
Compare None.  
DS39026D-page 108  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
13.3.3  
SOFTWARE INTERRUPT  
13.3 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit, CCP1IF, following any such  
change in operating mode.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 or TMR3 registers when an  
event occurs on pin RC2/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
• every 4th rising edge  
• every 16th rising edge  
13.3.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 13-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
13.3.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
EXAMPLE 13-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
CCP1CON, F ; Turn CCP module off  
13.3.2  
TIMER1/TIMER3 MODE SELECTION  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
The timers that are to be used with the capture feature  
(either Timer1 and/or Timer3) must be running in Timer  
mode or Synchronized Counter mode. In Asynchro-  
nous Counter mode, the capture operation may not  
work. The timer to be used with each CCP module is  
selected in the T3CON register.  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVWF CCP1CON  
FIGURE 13-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
Set Flag bit CCP1IF  
T3CCP2  
T3CCP2  
TMR3  
Enable  
Prescaler  
1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
Enable  
and  
Edge Detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
Set Flag bit CCP2IF  
T3CCP1  
TMR3H  
TMR3L  
CCPR2L  
TMR1L  
T3CCP2  
TMR3  
Enable  
Prescaler  
1, 4, 16  
CCP2 pin  
CCPR2H  
TMR1  
Enable  
and  
Edge Detect  
T3CCP2  
T3CCP1  
TMR1H  
CCP2CON<3:0>  
Q’s  
1999-2013 Microchip Technology Inc.  
DS39026D-page 109  
PIC18CXX2  
13.4.2  
TIMER1/TIMER3 MODE SELECTION  
13.4 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 (CCPR2) register  
value is constantly compared against either the TMR1  
register pair value or the TMR3 register pair value.  
When a match occurs, the RC2/CCP1 (RC1/CCP2) pin  
is:  
13.4.3  
SOFTWARE INTERRUPT MODE  
• driven High  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
• driven Low  
• toggle output (High to Low or Low to High)  
• remains unchanged  
13.4.4  
SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the  
same time, interrupt flag bit, CCP1IF (CCP2IF) is set.  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
13.4.1  
CCP PIN CONFIGURATION  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRISC bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
The special trigger output of CCPx resets either the  
TMR1 or TMR3 register pair. Additionally, the CCP2  
Special Event Trigger will start an A/D conversion if the  
A/D module is enabled.  
Note: The special event trigger from the CCP2  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 13-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1or Timer3, but not set Timer1 or Timer3 Interrupt Flag bit,  
and set bit GO/DONE (ADCON0<2>)  
which starts an A/D Conversion (CCP2 only)  
Special Event Trigger  
Set Flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RC2/CCP1  
pin  
TRISC<2>  
Output Enable  
1
0
CCP1CON<3:0>  
Mode Select  
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
Special Event Trigger  
Set Flag bit CCP2IF  
Match  
T3CCP1  
T3CCP2  
0
1
Q
S
R
Output  
Logic  
Comparator  
RC1/CCP2  
pin  
TRISC<1>  
Output Enable  
CCPR2H CCPR2L  
CCP2CON<3:0>  
Mode Select  
DS39026D-page 110  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 13-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PEIE/  
GIEL  
INTCON  
GIE/GIEH  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
1111 1111 1111 1111  
(1)  
PIE1  
PSPIE  
(1)  
IPR1  
PSPIP  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Capture/Compare/PWM Register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
CCP1CON  
CCPR2L  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
PIR2  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF 0000 0000 0000 0000  
TMR3IE CCP2IE 0000 0000 0000 0000  
TMR3IP CCP2IP 0000 0000 0000 0000  
PIE2  
IPR2  
TMR3L  
TMR3H  
T3CON  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON -000 0000 -uuu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 111  
PIC18CXX2  
13.5.1  
PWM PERIOD  
13.5 PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = (PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 13-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 13.5.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 11.0)  
is not used in the determination of the  
PWM frequency. The postscaler could be  
used to have a servo update rate at a dif-  
ferent frequency than the PWM output.  
FIGURE 13-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
13.5.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Comparator  
Q
R
S
RC2/CCP1  
(Note 1)  
TMR2  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read only register.  
CCP1 pin and  
latch D.C.  
Note:  
8-bit timer is concatenated with 2-bit internal Q clock or  
2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 13-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 13-4:  
PWM OUTPUT  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
Period  
FOSC   
log ---------------  
FPWM  
= ----------------------------- b i t s  
log2  
PWM Resolution (max)  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = PR2  
DS39026D-page 112  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
13.5.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
1. Set the PWM period by writing to the PR2  
register.  
5. Configure the CCP1 module for PWM operation.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
TABLE 13-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
14  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
12  
0xFF  
10  
0x17  
6.58  
Maximum Resolution (bits)  
TABLE 13-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Module Register  
0000 0000 0000 0000  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
CCPR1L  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM Register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
CCP1CON  
CCPR2L  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
CCP2CON DC2B1 DC2B0  
xxxx xxxx uuuu uuuu  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 113  
PIC18CXX2  
NOTES:  
DS39026D-page 114  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
14.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
14.1 Master SSP (MSSP) Module  
Overview  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPITM  
)
• Inter-Integrated Circuit (I2CTM  
)
- Full Master mode  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
• Master mode  
• Multi-Master mode  
• Slave mode  
1999-2013 Microchip Technology Inc.  
DS39026D-page 115  
PIC18CXX2  
14.2 Control Registers  
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON1 and SSPCON2).  
REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
In I2C Master or Slave mode:  
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select bit  
CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
bit 5  
bit 4  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a STOP bit has been detected last (this bit is '0' on RESET)  
0= STOP bit was not detected last  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39026D-page 116  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER (CONTINUED)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 3  
bit 2  
S: START bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a START bit has been detected last (this bit is '0' on RESET)  
0= START bit was not detected last  
R/W: Read/Write bit information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from  
the address match to the next START bit, STOP bit, or not ACK bit.  
In I2C Slave mode:  
1= Read  
0= Write  
In I2C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
OR-ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in  
IDLE mode.  
bit 1  
bit 0  
UA: Update Address bit (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only):  
1= Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1999-2013 Microchip Technology Inc.  
DS39026D-page 117  
PIC18CXX2  
REGISTER 14-2: SSPCON1: MSSP CONTROL REGISTER1  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started  
0= No collision  
Slave mode:  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode.  
In Slave mode, the user must read the SSPBUF, even if only transmitting data to avoid  
setting overflow.  
In Master mode, the overflow bit is not set, since each new reception (and transmission) is  
initiated by writing to the SSPBUF register (must be cleared in software).  
0= No overflow  
In I2C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a  
“don’t care” in Transmit mode (must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes when enabled, these pins must be properly configured as input or output.  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial  
port pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode:  
1= Enables the serial port and configures the SDA and SCL pins as the source of the  
serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39026D-page 118  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
REGISTER 14-2: SSPCON1: MSSP CONTROL REGISTER1 (CONTINUED)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
In I2C Slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
In I2C Master mode:  
Unused in this mode  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1000= I2C Master mode, clock = FOSC / (4 * (SSPADD+1))  
1001= Reserved  
1010= Reserved  
1011= I2C firmware controlled Master mode (Slave idle)  
1100= Reserved  
1101= Reserved  
1110= I2C Slave mode, 7-bit address with START and STOP bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with START and STOP bit interrupts enabled  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1999-2013 Microchip Technology Inc.  
DS39026D-page 119  
PIC18CXX2  
REGISTER 14-3: SSPCON2: MSSP CONTROL REGISTER2  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
GCEN: General Call Enable bit (In I2C Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (In I2C Master mode only)  
In Master Transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (In I2C Master mode only)  
In Master Receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the end of  
a receive.  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (In I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (In I2C Master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: STOP Condition Enable bit (In I2C Master mode only)  
SCK Release Control:  
1= Initiate STOP condition on SDA and SCL pins. Automatically cleared by hardware.  
0= STOP condition idle  
bit 1  
bit 0  
RSEN: Repeated START Condition Enabled bit (In I2C Master mode only)  
1= Initiate Repeated START condition on SDA and SCL pins.  
Automatically cleared by hardware.  
0= Repeated START condition idle  
SEN: START Condition Enabled bit (In I2C Master mode only)  
1= Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= START condition idle  
Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026D-page 120  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 14-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
14.3 SPI Mode  
The SPI mode allows 8-bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish communi-  
cation, typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
• Serial Data Out (SDO) - RC5/SDO  
• Serial Data In (SDI) - RC4/SDI/SDA  
• Serial Clock (SCK) - RC3/SCK/SCL/LVOIN  
SSPBUF reg  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
SSPSR reg  
Shift  
SDI  
bit0  
• Slave Select (SS) - RA5/SS/AN4  
Clock  
14.3.1  
OPERATION  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0>) and SSPSTAT<7:6>.  
These control bits allow the following to be specified:  
Control  
Enable  
SS  
SS  
Edge  
Select  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
2
Clock Select  
• Data input sample phase (middle or end of data  
output time)  
SSPM3:SSPM0  
• Clock edge (output data on rising/falling edge of  
SCK)  
SMP:CKE  
2
4
TMR2 output  
(
)
2
• Clock Rate (Master mode only)  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
• Slave Select mode (Slave mode only)  
SCK  
Figure 14-1 shows the block diagram of the MSSP  
module, when in SPI mode.  
Data to TX/RX in SSPSR  
TRIS bit  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8-bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF, are  
set. This double buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored, and the write collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed  
successfully.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 121  
PIC18CXX2  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally the MSSP Interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 14-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
EXAMPLE 14-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
GOTO LOOP  
;Has data been received(transmit complete)?  
;No  
MOVF SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF TXDATA, W  
MOVWF SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
The SSPSR is not directly readable or writable, and  
can only be accessed by addressing the SSPBUF reg-  
ister. Additionally, the MSSP status register (SSPSTAT)  
indicates the various status conditions.  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed. That is:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
14.3.2  
ENABLING SPI I/O  
• SCK (Master mode) must have TRISC<3> bit cleared  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISC<4> bit set  
To enable the serial port, SSP enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers, and then set the SSPEN bit. This  
configures the SDI, SDO, SCK, and SS pins as serial  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
DS39026D-page 122  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
trollers would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
14.3.3  
TYPICAL CONNECTION  
Figure 14-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite  
edge of the clock. Both processors should be pro-  
grammed to same Clock Polarity (CKP), then both con-  
• Master sends dataSlave sends dummy data  
• Master sends dataSlave sends data  
• Master sends dummy dataSlave sends data  
FIGURE 14-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
1999-2013 Microchip Technology Inc.  
DS39026D-page 123  
PIC18CXX2  
Figure 14-3, Figure 14-5, and Figure 14-6, where the  
MSB is transmitted first. In Master mode, the SPI clock  
rate (bit rate) is user programmable to be one of the  
following:  
14.3.4  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 14-2) is to broad-  
cast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
This allows a maximum data rate (at 40 MHz) of 10.00  
Mbps.  
Figure 14-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1<4>). This then, would  
give waveforms for SPI communication as shown in  
FIGURE 14-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2  
SSPSR to  
SSPBUF  
DS39026D-page 124  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. External pull-up/pull-down resistors may be  
desirable, depending on the application.  
14.3.5  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in SLEEP mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from SLEEP.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either forcing the SS pin to a  
high level, or clearing the SSPEN bit.  
14.3.6  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function),  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control  
enabled (SSPCON1<3:0> = 04h). The pin must not  
be driven low for the SS pin to function as an input.  
The Data Latch must be high. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
FIGURE 14-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
SSPSR to  
SSPBUF  
after Q2  
1999-2013 Microchip Technology Inc.  
DS39026D-page 125  
PIC18CXX2  
FIGURE 14-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2  
SSPSR to  
SSPBUF  
FIGURE 14-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
not optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2  
SSPSR to  
SSPBUF  
DS39026D-page 126  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
14.3.7  
SLEEP OPERATION  
14.3.9  
BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted, and the  
transmission/reception will remain in that state until the  
device wakes from SLEEP. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
Table 14-1 shows the compatibility between the stan-  
dard SPI modes and the states of the CKP and CKE  
control bits.  
TABLE 14-1: SPI BUS MODES  
In Slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in SLEEP mode, and data to be  
shifted into the SPI transmit/receive shift register.  
When all 8-bits have been received, the MSSP inter-  
rupt flag bit will be set and if enabled, will wake the  
device from SLEEP.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
14.3.8  
EFFECTS OF A RESET  
There is also a SMP bit which controls when the data is  
sampled.  
A RESET disables the MSSP module and terminates  
the current transfer.  
TABLE 14-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF TMR1IF 0000 0000 0000 0000  
TMR2IE TMR1IE 0000 0000 0000 0000  
TMR2IP TMR1IP 0000 0000 0000 0000  
1111 1111 1111 1111  
(1)  
PIE1  
PSPIE  
(1)  
IPR1  
PSPIP  
TRISC  
SSPBUF  
SSPCON  
TRISA  
PORTC Data Direction Register  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
WCOL  
SSPOV SSPEN  
PORTA Data Direction Register  
CKE D/A  
CKP  
SSPM3  
SSPM2  
R/W  
SSPM1  
SSPM0 0000 0000 0000 0000  
--11 1111 --11 1111  
SSPSTAT  
SMP  
P
S
UA  
BF  
0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 127  
PIC18CXX2  
The SSPCON1 register allows control of the I2C oper-  
ation. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
2
14.4 MSSP I C Operation  
The MSSP module in I2C mode, fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on START and STOP bits  
in hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled  
Two pins are used for data transfer. These are the RC3/  
SCK/SCL pin, which is the clock (SCL), and the RC4/  
SDI/SDA pin, which is the data (SDA). The user must  
configure these pins as inputs or outputs through the  
TRISC<4:3> bits.  
• I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled  
• I2C Firmware controlled master operation, slave  
is idle  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to be inputs by set-  
ting the appropriate TRISC bits.  
The MSSP module functions are enabled by setting  
MSSP enable bit SSPEN (SSPCON<5>).  
FIGURE 14-7:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
14.4.1  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
Internal  
Data Bus  
Read  
Write  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value cur-  
rently in the SSPSR register.  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
SSPSR reg  
There are certain conditions that will cause the MSSP  
module not to give this ACK pulse. These are if either  
(or both):  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
SSPADD reg  
START and  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
STOP bit Detect  
The MSSP module has six registers for I2C operation.  
These are the:  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
• MSSP Control Register1 (SSPCON1)  
• MSSP Control Register2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) - Not directly  
accessible  
• MSSP Address Register (SSPADD)  
DS39026D-page 128  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
14.4.1.1  
Addressing  
14.4.1.2  
Reception  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
b) The buffer full bit BF is set.  
c) An ACK pulse is generated.  
14.4.1.3  
Transmission  
d) MSSP interrupt flag bit SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) on the falling  
edge of the ninth SCL pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Then pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON<4>). The master must monitor  
the SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 14-9).  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write so  
the slave device will receive the second address byte.  
For a 10-bit address, the first byte would equal ‘1111 0  
A9 A8 0’, where A9 and A8are the two MSbs of the  
address. The sequence of events for 10-bit address is  
as follows, with steps 7-9 for slave-transmitter:  
1. Receive first (high) byte of Address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
As a slave-transmitter, the ACK pulse from the  
master-receiver is latched on the rising edge of the  
ninth SCL input pulse. If the SDA line is high (not ACK),  
then the data transfer is complete. When the ACK is  
latched by the slave, the slave logic is reset (resets  
SSPSTAT register) and the slave monitors for another  
occurrence of the START bit. If the SDA line was low  
(ACK), the transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Pin RC3/SCK/SCL should be enabled by setting bit  
CKP.  
5. Update the SSPADD register with the first (high)  
byte of Address. If match releases SCL line, this  
will clear bit UA.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive Repeated START condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 129  
PIC18CXX2  
FIGURE 14-8:  
I2C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
Not ACK  
D0  
ACK  
9
SDA  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D7 D6  
D4 D3  
D1  
7
D7 D6  
D4 D3  
D1  
7
1
2
3
4
5
6
9
1
2
3
4
9
8
5
6
1
2
3
4
5
6
7
8
P
SCL  
S
SSPIF  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON1<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
FIGURE 14-9:  
I2C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
R/W = 1  
ACK  
Transmitting Data  
Not ACK  
SDA  
SCL  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is written in software  
From SSP Interrupt  
Service Routine  
CKP (SSPCON1<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
DS39026D-page 130  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
2
FIGURE 14-10:  
I C SLAVE MODE WAVEFORM (TRANSMISSION 10-BIT ADDRESS)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 131  
PIC18CXX2  
2
FIGURE 14-11:  
I C SLAVE MODE WAVEFORM (RECEPTION 10-BIT ADDRESS)  
DS39026D-page 132  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit),  
the SSPIF interrupt flag bit is set.  
14.4.2  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address which  
can address all devices. When this address is used, all  
devices should, in theory, respond with an acknowl-  
edge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-bit address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set, and the slave will begin receiving data after the  
Acknowledge (Figure 14-12).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
is set). Following a START bit detect, 8-bits are shifted  
into the SSPSR and the address is compared against  
the SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 14-12:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
'0'  
'1'  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP interrupt, if enabled):  
14.4.3  
MASTER MODE  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a RESET or when the MSSP module is  
disabled. Control of the I2C bus may be taken when the  
P bit is set, or the bus is idle, with both the S and P bits  
clear.  
• START condition  
• STOP condition  
• Data transfer byte transmitted/received  
• Acknowledge Transmit  
• Repeated START  
In Master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 133  
PIC18CXX2  
14.4.4  
I2C MASTER MODE SUPPORT  
Note: The MSSP module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a START condition and  
immediately write the SSPBUF register to  
imitate transmission, before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. Once Master mode is enabled, the user  
has six options.  
1. Assert a START condition on SDA and SCL.  
2. Assert a Repeated START condition on SDA  
and SCL.  
3. Write to the SSPBUF register initiating transmis-  
sion of data/address.  
4. Generate a STOP condition on SDA and SCL.  
5. Configure the I2C port to receive data.  
6. Generate an Acknowledge condition at the end  
of a received byte of data.  
2
FIGURE 14-13:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
START bit, STOP bit,  
Acknowledge  
Generate  
SCL  
START bit Detect  
STOP bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
DS39026D-page 134  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
a) The user generates a START condition by set-  
14.4.4.1  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
START condition. Since the Repeated START condi-  
tion is also the beginning of the next serial transfer, the  
I2C bus will not be released.  
ting  
the  
START  
enable  
bit,  
SEN  
(SSPCON2<0>).  
b) SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
c) The user loads the SSPBUF with the address to  
transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic '0'. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. START and STOP  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
d) Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
e) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
f) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic '1'. Thus, the first byte transmitted is a 7-bit slave  
address followed by a '1' to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
i) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The baud rate generator used for the SPI mode opera-  
tion is now used to set the SCL clock frequency for  
either 100 kHz, 400 kHz, or 1 MHz I2C operation. The  
baud rate generator reload value is contained in the  
lower 7 bits of the SSPADD register. The baud rate  
generator will automatically begin counting on a write to  
the SSPBUF. Once the given operation is complete,  
(i.e., transmission of the last data bit is followed by  
ACK), the internal clock will automatically stop counting  
and the SCL pin will remain in its last state.  
k) The user generates a STOP condition by setting  
the STOP enable bit, PEN (SSPCON2<2>).  
l) Interrupt is generated once the STOP condition  
is complete.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 135  
PIC18CXX2  
remented twice per instruction cycle (TCY) on the Q2  
and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically. If Clock Arbitration is taking  
place, for instance, the BRG will be reloaded when the  
SCL pin is sampled high (Figure 14-15).  
14.4.5  
BAUD RATE GENERATOR  
In I2C Master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 14-14). When the BRG is loaded with this  
value, the BRG counts down to 0 and stops until  
another reload has taken place. The BRG count is dec-  
FIGURE 14-14:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKOUT  
FOSC/4  
FIGURE 14-15:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL allowed to transition high  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count.  
BRG  
Reload  
DS39026D-page 136  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
14.4.6  
I2C MASTER MODE START  
CONDITION TIMING  
14.4.6.1  
WCOL Status Flag  
If the user writes the SSPBUF when a START  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
To initiate a START condition, the user sets the START  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is reloaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the baud rate generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low, while SCL is high, is the START condition  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware, the baud rate generator is suspended  
leaving the SDA line held low and the START condition  
is complete.  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
Note: If, at the beginning of the START condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the START condition,  
the SCL line is sampled low before the  
SDA line is driven low, a bus collision  
occurs, the Bus Collision Interrupt Flag,  
BCLIF is set, the START condition is  
aborted, and the I2C module is reset into its  
IDLE state.  
FIGURE 14-16:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here.  
SDA = 1,  
At completion of START bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
SDA  
TBRG  
SCL  
TBRG  
S
1999-2013 Microchip Technology Inc.  
DS39026D-page 137  
PIC18CXX2  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode), or eight bits of data (7-bit  
mode).  
14.4.7  
A Repeated START condition occurs when the RSEN  
bit (SSPCON2<1>) is programmed high and the I2C  
logic module is in the idle state. When the RSEN bit is  
set, the SCL pin is asserted low. When the SCL pin is  
sampled low, the baud rate generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one baud rate  
generator count (TBRG). When the baud rate generator  
times out, if SDA is sampled high, the SCL pin will be  
de-asserted (brought high). When SCL is sampled  
high, the baud rate generator is reloaded with the con-  
tents of SSPADD<6:0> and begins counting. SDA and  
SCL must be sampled high for one TBRG. This action is  
then followed by assertion of the SDA pin (SDA = 0) for  
one TBRG, while SCL is high. Following this, the RSEN  
bit (SSPCON2<1>) will be automatically cleared and  
the baud rate generator will not be reloaded, leaving  
the SDA pin held low. As soon as a START condition is  
detected on the SDA and SCL pins, the S bit  
(SSPSTAT<3>) will be set. The SSPIF bit will not be set  
until the baud rate generator has timed out.  
14.4.7.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated  
START sequence is in progress, the WCOL is set and  
the contents of the buffer are unchanged (the write  
doesn’t occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
START condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated  
START condition occurs if:  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data "1".  
FIGURE 14-17:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SDA = 1,  
SCL = 1  
At completion of START bit,  
hardware clear RSEN bit  
and set SSPIF  
SCL (no change)  
TBRG  
TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here.  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated START  
DS39026D-page 138  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
14.4.8  
I2C MASTER MODE  
TRANSMISSION  
14.4.8.3  
ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0), and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address, is accomplished by sim-  
ply writing a value to the SSPBUF register. This action  
will set the buffer full flag bit, BF, and allow the baud  
rate generator to begin counting and start the next  
transmission. Each bit of address/data will be shifted  
out onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification parameter  
106). SCL is held low for one baud rate generator roll-  
over count (TBRG). Data should be valid before SCL is  
released high (see Data setup time specification  
parameter 107). When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
allowing the slave device being addressed to respond  
with an ACK bit during the ninth bit time, if an address  
match occurs, or if data was received properly. The sta-  
tus of ACK is written into the ACKDT bit on the falling  
edge of the ninth clock. If the master receives an  
Acknowledge, the Acknowledge status bit, ACKSTAT,  
is cleared. If not, the bit is set. After the ninth clock, the  
SSPIF bit is set and the master clock (baud rate gener-  
ator) is suspended until the next data byte is loaded into  
the SSPBUF, leaving SCL low and SDA unchanged  
(Figure 14-18).  
14.4.9  
I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
Note: The MSSP module must be in an IDLE  
state before the RCEN bit is set, or the  
RCEN bit will be disregarded.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag bit is  
set, the SSPIF flag bit is set and the baud rate genera-  
tor is suspended from counting, holding SCL low. The  
MSSP is now in IDLE state, awaiting the next com-  
mand. When the buffer is read by the CPU, the BF flag  
bit is automatically cleared. The user can then send an  
Acknowledge bit at the end of reception, by setting the  
Acknowledge sequence enable bit, ACKEN  
(SSPCON2<4>).  
14.4.9.1  
BF Status Flag  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will de-assert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared and the baud rate generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
14.4.9.2  
SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
14.4.9.3  
WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
14.4.8.1  
BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared, when  
all 8 bits are shifted out.  
14.4.8.2  
WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress, (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 139  
PIC18CXX2  
2
FIGURE 14-18:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS39026D-page 140  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
2
FIGURE 14-19:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 141  
PIC18CXX2  
14.4.10 ACKNOWLEDGE SEQUENCE  
TIMING  
14.4.11 STOP CONDITION TIMING  
A STOP bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the STOP sequence enable  
bit, PEN (SSPCON2<2>). At the end of a receive/trans-  
mit, the SCL line is held low after the falling edge of the  
ninth clock. When the PEN bit is set, the master will  
assert the SDA line low. When the SDA line is sampled  
low, the baud rate generator is reloaded and counts  
down to 0. When the baud rate generator times out, the  
SCL pin will be brought high, and one TBRG (baud rate  
generator rollover count) later, the SDA pin will be  
de-asserted. When the SDA pin is sampled high while  
SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG  
later, the PEN bit is cleared and the SSPIF bit is set  
(Figure 14-21).  
An Acknowledge sequence is enabled by setting the  
Acknowledge  
sequence  
enable  
bit,  
ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
is presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The baud rate gen-  
erator then counts for one rollover period (TBRG) and the  
SCL pin is de-asserted (pulled high). When the SCL pin  
is sampled high (clock arbitration), the baud rate gener-  
ator counts for TBRG. The SCL pin is then pulled low. Fol-  
lowing this, the ACKEN bit is automatically cleared, the  
baud rate generator is turned off and the MSSP module  
then goes into IDLE mode (Figure 14-20).  
14.4.11.1 WCOL Status Flag  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
14.4.10.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 14-20:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
DS39026D-page 142  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 14-21:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for Tbrg, followed by SDA = 1 for Tbrg  
after SDA sampled high. P bit (SSPSTAT<4>) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup STOP condition.  
Note: TBRG = one baud rate generator period.  
14.4.12 CLOCK ARBITRATION  
14.4.13 SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit, or Repeated START/STOP condi-  
tion, de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count, in the event that the clock  
is held low by an external device (Figure 14-22).  
While in SLEEP mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from SLEEP (if the MSSP interrupt is enabled).  
14.4.14 EFFECT OF A RESET  
A RESET disables the MSSP module and terminates  
the current transfer.  
FIGURE 14-22:  
CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1, Load BRG with  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
SSPADD<6:0>, and start count  
to measure high time interval  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SCL line sampled once every machine cycle (TOSC² 4).  
Hold off BRG until SCL is sampled high.  
SDA  
TBRG  
TBRG  
TBRG  
1999-2013 Microchip Technology Inc.  
DS39026D-page 143  
PIC18CXX2  
SDA is a '1' and the data sampled on the SDA pin = '0',  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
I2C port to its IDLE state (Figure 14-23).  
14.4.15 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET, or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when the P bit (SSPSTAT<4>) is set,  
or the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision Interrupt Service Routine, and if the  
I2C bus is free, the user can resume communication by  
asserting a START condition.  
In multi-master operation, the SDA line must be moni-  
tored, for arbitration, to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
If a START, Repeated START, STOP, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine, and if  
the I2C bus is free, the user can resume communication  
by asserting a START condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A START Condition  
• A Repeated START Condition  
• An Acknowledge Condition  
The master will continue to monitor the SDA and SCL  
pins. If a STOP condition occurs, the SSPIF bit will be  
set.  
14.4.16 MULTI -MASTER  
COMMUNICATION, BUS  
COLLISION, AND BUS  
ARBITRATION  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of START and STOP conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is idle and the S and P bits are  
cleared.  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a '1' on SDA by letting SDA float high and  
another master asserts a '0'. When the SCL pin floats  
high, data should be stable. If the expected data on  
FIGURE 14-23:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
DS39026D-page 144  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 14-26). If, however, a '1' is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pins  
are sampled as '0', a bus collision does not occur. At  
the end of the BRG count, the SCLpin is asserted low.  
14.4.16.1 Bus Collision During a START  
Condition  
During a START condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 14-24).  
b) SCL is sampled low before SDA is asserted low  
(Figure 14-25).  
During a START condition, both the SDA and the SCL  
pins are monitored.  
Note: The reason that bus collision is not a factor  
during a START condition, is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
START, or STOP conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the START condition is aborted,  
• the BCLIF flag is set, and  
the MSSP module is reset to its IDLE state  
(Figure 14-24).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data '1' during the START condition.  
FIGURE 14-24:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
. Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable START  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into idle state.  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
1999-2013 Microchip Technology Inc.  
DS39026D-page 145  
PIC18CXX2  
FIGURE 14-25:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
SCL = 0 before SDA = 0,  
Bus collision occurs, set BCLIF  
SCL = 0 before BRG time-out,  
Bus collision occurs, set BCLIF  
BCLIF  
Interrupt cleared  
in software  
S
'0'  
'0'  
'0'  
'0'  
SSPIF  
FIGURE 14-26:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
BCLIF  
'0'  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1  
Set SSPIF  
DS39026D-page 146  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
reloaded and begins counting. If SDA goes from high to  
low before the BRG times out, no bus collision occurs  
because no two masters can assert SDA at exactly the  
same time.  
14.4.16.2 Bus Collision During a Repeated  
START Condition  
During a Repeated START condition, a bus collision  
occurs if:  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ’1’ during the Repeated START condi-  
tion, Figure 14-28.  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data ’1’.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated START condition is  
complete.  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted,  
and when sampled high, the SDA pin is sampled.  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit  
a
data ’0’,  
Figure 14-27). If SDA is sampled high, the BRG is  
FIGURE 14-27:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
'0'  
S
'0'  
SSPIF  
FIGURE 14-28:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
Set BCLIF. Release SDA and SCL.  
Interrupt cleared  
in software  
'0'  
S
SSPIF  
1999-2013 Microchip Technology Inc.  
DS39026D-page 147  
PIC18CXX2  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data '0' (Figure 14-29). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master attempt-  
ing to drive a data '0' (Figure 14-30).  
14.4.16.3 Bus Collision During a STOP  
Condition  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 14-29:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
TBRG  
TBRG  
TBRG  
low after TBRG,  
Set BCLIF  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
'0'  
'0'  
SSPIF  
FIGURE 14-30:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high  
Set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
'0'  
'0'  
SSPIF  
DS39026D-page 148  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The USART can be configured in the following modes:  
15.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
In order to configure pins RC6/TX/CK and RC7/RX/DT  
as the Universal Synchronous Asynchronous Receiver  
Transmitter:  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI.) The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices, such as CRT ter-  
minals and personal computers, or it can be configured  
as a half-duplex synchronous system that can commu-  
nicate with peripheral devices, such as A/D or D/A inte-  
grated circuits, serial EEPROMs, etc.  
• bit SPEN (RCSTA<7>) must be set (= 1), and  
• bits TRISC<7:6> must be cleared (= 0).  
Register 15-1 shows the Transmit Status and Control  
Register (TXSTA) and Register 15-2 shows the  
Receive Status and Control Register (RCSTA).  
REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of transmit data. Can be Address/Data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR reset  
’0’ = Bit is cleared  
x = Bit is unknown  
1999-2013 Microchip Technology Inc.  
DS39026D-page 149  
PIC18CXX2  
REGISTER 15-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode - master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave:  
Unused in this mode  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load of the receive buffer  
when RSR<8> is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of received data, can be Address/Data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026D-page 150  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Example 15-1 shows the calculation of the baud rate  
error for the following conditions:  
15.1 USART Baud Rate Generator  
(BRG)  
• FOSC = 16 MHz  
• Desired Baud Rate = 9600  
• BRGH = 0  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 15-1 shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in Master mode (internal clock).  
• SYNC = 0  
It may be advantageous to use the high baud rate  
(BRGH = 1), even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 15-1. From this, the error in  
baud rate can be determined.  
15.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
EXAMPLE 15-1:  
Desired Baud Rate  
Solving for X:  
CALCULATING BAUD RATE ERROR  
=
FOSC / (64 (X + 1))  
X
X
X
=
=
=
( (FOSC / Desired Baud rate) / 64 ) - 1  
((16000000 / 9600) / 64) - 1  
[25.042] = 25  
Calculated Baud Rate  
=
=
16000000 / (64 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 - 9600) / 9600  
0.16%  
TABLE 15-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate = FOSC/(16(X+1))  
NA  
Legend: X = value in SPBRG (0 to 255)  
TABLE 15-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010  
0000 -010  
0000 -00x  
0000 0000  
SREN CREN ADDEN FERR OERR RX9D 0000 -00x  
0000 0000  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 151  
PIC18CXX2  
TABLE 15-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 40 MHz  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
(K)  
SPBRG Actua  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
Actual  
Rate (K) Error  
%
%
Error  
%
Error  
%
Error  
value  
l Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
0
NA  
NA  
NA  
NA  
NA  
NA  
2.4  
NA  
NA  
NA  
NA  
9.6  
NA  
NA  
NA  
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73  
+0.16  
-1.36  
+0.16  
+4.17  
0
255  
129  
32  
25  
7
19.2  
76.8  
96  
NA  
19.53  
76.92  
96.15  
294.1  
500  
+1.73  
+0.16  
+0.16  
-1.96  
0
255  
64  
51  
16  
9
19.23  
76.92  
95.24  
+0.16  
+0.16  
-0.79  
207  
51  
41  
12  
7
76.92  
96.15  
303.03  
500.00  
39.06  
129  
103  
32  
19  
255  
0
0
300  
500  
HIGH  
-0.01  
0
307.69 +2.56  
500  
4000  
0
4
5000  
19.53  
0
0
2500  
9.766  
0
LOW 10000.00  
255  
15.625  
255  
255  
FOSC = 7.15909 MHz  
FOSC = 5.0688 MHz  
FOSC = 4 MHz  
FOSC = 3.579545 MHz  
BAUD  
RATE Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
(K)  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
NA  
NA  
NA  
NA  
——  
NA  
92  
46  
11  
8
NA  
2.4  
NA  
NA  
NA  
NA  
9.6  
9.622  
19.24  
77.82  
94.20  
298.3  
NA  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
185  
92  
22  
18  
5
9.6  
0
131  
65  
15  
12  
3
9.615  
+0.16  
103  
51  
12  
9
9.622  
19.04  
74.57  
99.43  
298.3  
NA  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
19.2  
76.8  
96  
19.2  
79.2  
97.48  
316.8  
NA  
0
19.231 +0.16  
76.923 +0.16  
+3.13  
+1.54  
+5.60  
1000  
NA  
+4.17  
300  
500  
2
NA  
0
HIGH 1789.8  
0
1267  
4.950  
0
100  
0
894.9  
3.496  
LOW  
6.991  
255  
255  
3.906  
255  
255  
FOSC = 1 MHz  
FOSC = 32.768 kHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
Rate  
(K)  
(decimal)  
0.3  
1.2  
NA  
1.202  
2.404  
9.615  
19.24  
83.34  
NA  
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
207  
103  
25  
12  
2
0.303  
1.170  
NA  
+1.14  
-2.48  
26  
6
2.4  
0
9.6  
NA  
19.2  
76.8  
96  
NA  
NA  
NA  
300  
500  
HIGH  
NA  
NA  
NA  
NA  
250  
0
8.192  
0.032  
LOW 0.9766  
255  
255  
DS39026D-page 152  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 15-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 40 MHz  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
(K)  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
NA  
255  
64  
32  
7
NA  
255  
129  
32  
15  
3
NA  
1.202  
2.404  
9.615  
19.23  
83.33  
NA  
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
207  
103  
25  
12  
2
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
+0.16  
+0.16  
+1.73  
+1.73  
+1.73  
129  
64  
15  
7
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
2.4  
2.44  
-1.70  
-0.16  
+1.38  
-1.70  
+7.52  
-4.00  
9.6  
9.62  
19.2  
76.8  
96  
18.94  
78.13  
89.29  
312.50  
1
6
2
0
300  
500  
HIGH  
1
0
NA  
NA  
625.00 -20.00  
0
0
NA  
NA  
2.44  
255  
0
312.5  
1.221  
250  
0
156.3  
0.6104  
LOW 625.00  
255  
0.977  
255  
255  
FOSC = 7.15909 MHz  
FOSC = 5.0688 MHz  
FOSC = 4 MHz  
FOSC = 3.579545 MHz  
BAUD  
RATE Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
(K)  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
1.203  
2.380  
9.322  
18.64  
NA  
+0.23  
-0.83  
-2.90  
-2.90  
92  
46  
11  
5
0.31  
1.2  
+3.13  
0
255  
65  
32  
7
0.3005  
1.202  
2.404  
NA  
-0.17  
+1.67  
+1.67  
207  
51  
25  
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
+0.23  
-0.83  
+1.32  
-2.90  
-2.90  
185  
46  
22  
5
2.4  
2.4  
0
9.6  
9.9  
+3.13  
+3.13  
+3.13  
19.2  
76.8  
96  
19.8  
79.2  
NA  
3
NA  
2
0
0
NA  
0
NA  
0
NA  
NA  
300  
500  
HIGH  
LOW  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
111.9  
0.437  
79.2  
0.3094  
62.500  
3.906  
0
55.93  
0.2185  
255  
255  
255  
255  
FOSC = 1 MHz  
FOSC = 32.768 kHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
Rate  
(K)  
(decimal)  
0.3  
1.2  
0.300  
1.202  
2.232  
NA  
+0.16  
+0.16  
-6.99  
51  
12  
6
0.256  
NA  
-14.67  
1
0
2.4  
NA  
9.6  
0
NA  
19.2  
76.8  
96  
NA  
NA  
NA  
NA  
NA  
NA  
300  
500  
HIGH  
NA  
NA  
NA  
NA  
15.63  
0.512  
0.0020  
LOW 0.0610  
255  
255  
1999-2013 Microchip Technology Inc.  
DS39026D-page 153  
PIC18CXX2  
TABLE 15-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 40 MHz  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
(K)  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
9.6  
19.2  
38.4  
57.6  
115.2  
250  
9.77  
19.23  
38.46  
58.14  
113.64  
250.00  
625.00  
-1.70  
-0.16  
-0.16  
-0.93  
+1.38  
0
255  
129  
64  
42  
21  
9
9.615  
+0.16  
129  
64  
32  
21  
10  
4
9.615  
+0.16  
103  
51  
25  
16  
8
9.615  
18.939  
39.062  
56.818  
125  
+0.16  
-1.36  
+1.7  
-1.36  
+8.51  
64  
32  
15  
10  
4
19.230 +0.16  
19.230 +0.16  
38.461 +0.16  
58.823 +2.12  
37.878  
56.818  
113.63  
250  
-1.36  
-1.36  
-1.36  
0
111.11  
250  
NA  
-3.55  
0
3
NA  
0
625  
0
3
625  
0
1
625  
0
1250 1250.00  
0
1
1250  
0
0
NA  
NA  
FOSC = 7.16MHz  
FOSC = 5.068 MHz  
FOSC = 4 MHz  
FOSC = 3.579545 MHz  
BAUD  
RATE Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
(K)  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
9.6  
9.520  
-0.83  
46  
22  
11  
7
9.6  
18.645  
39.6  
52.8  
105.6  
NA  
0
32  
16  
7
NA  
207  
103  
25  
9.727  
18.643  
37.286  
55.930  
111.86  
+1.32  
-2.90  
-2.90  
-2.90  
-2.90  
22  
11  
5
19.2  
38.4  
57.6  
19.454 +1.32  
-2.94  
+3.12  
-8.33  
-8.33  
1.202  
2.403  
9.615  
+0.17  
+0.13  
+0.16  
37.286  
55.930  
-2.90  
-2.90  
5
3
115.2 111.860 -2.90  
3
2
19.231 +0.16  
12  
1
250  
625  
NA  
NA  
NA  
NA  
NA  
NA  
223.72 -10.51  
0
NA  
NA  
NA  
1250  
NA  
FOSC = 1 MHz  
FOSC = 32.768 kHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
Rate  
(K)  
(decimal)  
9.6  
19.2  
38.4  
57.6  
115.2  
250  
8.928  
-6.99  
6
2
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
20.833 +8.51  
31.25  
62.5  
NA  
-18.61  
+8.51  
1
0
NA  
625  
NA  
1250  
NA  
DS39026D-page 154  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit, TXIE  
( PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicated the sta-  
tus of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register. Sta-  
tus bit TRMT is a read only bit, which is set when the  
TSR register is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty.  
15.2 USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one START bit, eight or nine data  
bits and one STOP bit). The most common data format  
is 8-bits. An on-chip dedicated 8-bit baud rate genera-  
tor can be used to derive standard baud rate frequen-  
cies from the oscillator. The USART transmits and  
receives the LSb first. The USART’s transmitter and  
receiver are functionally independent, but use the  
same data format and baud rate. The baud rate gener-  
ator produces a clock, either x16 or x64 of the bit shift  
rate, depending on bit BRGH (TXSTA<2>). Parity is not  
supported by the hardware, but can be implemented in  
software (and stored as the ninth data bit). Asynchro-  
nous mode is stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
is set.  
To set up an asynchronous transmission:  
• Baud Rate Generator  
• Sampling Circuit  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 15.1).  
• Asynchronous Transmitter  
• Asynchronous Receiver  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
15.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
The USART transmitter block diagram is shown in  
Figure 15-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts trans-  
mission).  
FIGURE 15-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG Register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
Pin Buffer  
and Control  
0
  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
1999-2013 Microchip Technology Inc.  
DS39026D-page 155  
PIC18CXX2  
FIGURE 15-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(shift clock)  
RC6/TX/CK (pin)  
START Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
STOP Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 15-3:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG Output  
(shift clock)  
RC6/TX/CK (pin)  
START Bit  
START Bit  
Word 2  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Bit 0  
STOP Bit  
TXIF bit  
(interrupt reg. flag)  
TRMT bit  
(Transmit shift  
reg. empty flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1)  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
IPR1  
RCSTA  
TXREG  
TXSTA  
SPBRG  
SPEN  
USART Transmit Register  
CSRC TX9 TXEN SYNC  
Baud Rate Generator Register  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
BRGH TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x= unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Transmission.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
DS39026D-page 156  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
15.2.2  
USART ASYNCHRONOUS  
RECEIVER  
15.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 15-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate, or at FOSC. This mode would typi-  
cally be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is required,  
set the BRGH bit.  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
To set up an Asynchronous Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 15.1).  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be acknowledged if the  
RCIE and GIE bits are set.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG to determine if the device is being  
addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
RCREG register.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
FIGURE 15-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
64  
or  
16  
RSR Register  
LSb  
MSb  
Baud Rate Generator  
STOP (8)  
7
1
0
START  
  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
1999-2013 Microchip Technology Inc.  
DS39026D-page 157  
PIC18CXX2  
FIGURE 15-5:  
ASYNCHRONOUS RECEPTION  
START  
bit  
START  
bit  
START  
bit7/8 STOP bit  
bit  
RX (pin)  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, causing  
the OERR (overrun) bit to be set.  
TABLE 15-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
INTCON GIE/GIEH PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1)  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR OERR RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA  
CSRC  
TX9  
TXEN SYNC  
BRGH TRMT TX9D  
SPBRG  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Reception.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
DS39026D-page 158  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
rupt bit TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE, and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit, which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory, so it is not  
available to the user.  
15.3 USART Synchronous Master  
Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner, (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 15.1).  
15.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
The USART transmitter block diagram is shown in  
Figure 15-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCYCLE), the TXREG is empty and inter-  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
POR,  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
GIE/  
GIEH  
PEIE/  
GIEL  
INTCON  
TMR0IE INT0IE RBIE TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for Synchronous Master Transmission.  
BRGH  
TRMT  
TX9D  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 159  
PIC18CXX2  
FIGURE 15-6:  
SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
Word 2  
Bit 7  
RC7/RX/DT  
pin  
Word 1  
RC6/TX/CK pin  
Write to  
TXREG reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
'1'  
'1'  
TXEN bit  
Note:  
Sync Master mode; SPBRG = '0'. Continuous transmission of two 8-bit words.  
FIGURE 15-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit0  
bit2  
bit1  
bit6  
bit7  
RC6/TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS39026D-page 160  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
3. Ensure bits CREN and SREN are clear.  
15.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN  
(RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, only a single word  
is received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
To set up a Synchronous Master Reception:  
9. Read the 8-bit received data by reading the  
RCREG register.  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 15.1).  
10. If any error occurred, clear the error by clearing  
bit CREN.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
GIE/  
GIEH  
PEIE/  
GIEL  
INTCON  
TMR0IE INT0IE RBIE TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for Synchronous Master Reception.  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
FIGURE 15-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = '1' and bit BRGH = '0'.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 161  
PIC18CXX2  
To set up a Synchronous Slave Transmission:  
15.4 USART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
Synchronous Slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
15.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the SLEEP  
mode.  
7. Start transmission by loading data to the TXREG  
register.  
If two words are written to the TXREG and then the  
SLEEP instruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second word  
to the TSR and flag bit TXIF will now be set.  
e) If enable bit TXIE is set, the interrupt will wake the  
chip from SLEEP. If the global interrupt is enabled,  
the program will branch to the interrupt vector.  
TABLE 15-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
POR,  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF 0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for Synchronous Slave Transmission.  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
DS39026D-page 162  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
To set up a Synchronous Slave Reception:  
15.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the SLEEP  
mode and bit SREN, which is a “don't care” in Slave  
mode.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register,  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
5. Flag bit RCIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCIE was set.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 15-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF 0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9 TXEN  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'.  
Shaded cells are not used for Synchronous Slave Reception.  
SYNC  
BRGH TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 163  
PIC18CXX2  
NOTES:  
DS39026D-page 164  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The A/D module has four registers. These registers  
are:  
16.0 COMPATIBLE 10-BIT ANALOG-  
TO-DIGITAL CONVERTER (A/D)  
MODULE  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The analog-to-digital (A/D) converter module has five  
inputs for the PIC18C2x2 devices and eight for the  
PIC18C4x2 devices. This module has the ADCON0  
and ADCON1 register definitions that are compatible  
with the mid-range A/D module.  
The ADCON0 register, shown in Register 16-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 16-2, configures the func-  
tions of the port pins.  
The A/D allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
REGISTER 16-1: ADCON0 REGISTER  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6  
ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in bold)  
ADCON1  
<ADCS2> <ADCS1:ADCS0>  
ADCON0  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-3  
CHS2:CHS0: Analog Channel Select bits  
000= channel 0 (AN0)  
001= channel 1 (AN1)  
010= channel 2 (AN2)  
011= channel 3 (AN3)  
100= channel 4 (AN4)  
101= channel 5 (AN5)  
110= channel 6 (AN6)  
111= channel 7 (AN7)  
Note: The PIC18C2X2 devices do not implement the full 8 A/D channels; the unimplemented selections  
are reserved. Do not select any unimplemented channel.  
bit 2  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion which is automatically  
cleared by hardware when the A/D conversion is complete)  
0= A/D conversion not in progress  
bit 1  
bit 0  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is powered up  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 165  
PIC18CXX2  
REGISTER 16-2: ADCON1 REGISTER  
R/W-0  
ADFM  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG0  
bit 0  
ADCS2  
PCFG3  
PCFG2  
PCFG1  
bit 7  
bit 7  
bit 6  
ADFM: A/D Result Format Select bit  
1= Right justified. Six (6) Most Significant bits of ADRESH are read as ’0’.  
0= Left justified. Six (6) Least Significant bits of ADRESL are read as ’0’.  
ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in bold)  
ADCON1  
<ADCS2> <ADCS1:ADCS0>  
ADCON0  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-4  
bit 3-0  
Unimplemented: Read as '0'  
PCFG3:PCFG0: A/D Port Configuration Control bits  
PCFG AN7 AN6 AN5 AN4  
AN3  
AN2 AN1 AN0 VREF+ VREF- C / R  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
VREF+  
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
AN3  
VDD  
AN3  
VDD  
AN3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8 / 0  
7 / 1  
5 / 0  
4 / 1  
3 / 0  
2 / 1  
0 / 0  
6 / 2  
6 / 0  
5 / 1  
4 / 2  
3 / 2  
2 / 2  
1 / 0  
1 / 2  
VREF+  
A
VREF+  
D
VREF+ VREF-  
AN3  
VDD  
AN3  
AN3  
AN3  
AN3  
VDD  
AN3  
AN2  
VSS  
VSS  
AN2  
AN2  
AN2  
VSS  
AN2  
A
A
A
VREF+  
VREF+ VREF-  
VREF+ VREF-  
VREF+ VREF-  
D
D
VREF+ VREF-  
A = Analog input D = Digital I/O  
C/R = # of analog input channels/# of A/D voltage references  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: On any device RESET, the port pins that are multiplexed with analog functions (ANx) are  
forced to be an analog input.  
DS39026D-page 166  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS) or the voltage level on the RA3/AN3/  
VREF+ pin and RA2/AN2/VREF-.  
Each port pin associated with the A/D converter can be  
configured as an analog input (RA3 can also be a volt-  
age reference) or as a digital I/O.  
The ADRESH and ADRESL registers contain the result  
of the A/D conversion. When the A/D conversion is  
complete, the result is loaded into the ADRESH/  
ADRESL registers, the GO/DONE bit (ADCON0<2>) is  
cleared, and A/D interrupt flag bit ADIF is set. The block  
diagram of the A/D module is shown in Figure 16-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off and  
any conversion is aborted.  
FIGURE 16-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
AN7  
110  
AN6  
101  
AN5  
100  
AN4  
VAIN  
011  
(Input Voltage)  
AN3  
010  
AN2  
10-bit  
Converter  
A/D  
001  
AN1  
PCFG0  
000  
AN0  
VDD  
VREF+  
VREF-  
Reference  
voltage  
VSS  
1999-2013 Microchip Technology Inc.  
DS39026D-page 167  
PIC18CXX2  
The value that is in the ADRESH/ADRESL registers is  
not modified for a Power-on Reset. The ADRESH/  
ADRESL registers will contain unknown data after a  
Power-on Reset.  
16.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 16-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 16.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH/ADRESL);  
clear bit ADIF if required.  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
FIGURE 16-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
5 pF  
I leakage  
± 500 nA  
VAIN  
CHOLD = 120 pF  
VT = 0.6V  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
I LEAKAGE = leakage current at the pin due to  
various junctions  
3V  
2V  
RIC  
= interconnect resistance  
= sampling switch  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5
6 7 8 9 10 11  
Sampling Switch (k)  
DS39026D-page 168  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
To calculate the minimum acquisition time,  
Equation 16-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
EQUATION 16-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 16-2: A/D MINIMUM CHARGING TIME  
VHOLD =  
or  
(VREF - (VREF/2048)) • (1 - e(-Tc/CHOLD(RIC + RSS + RS))  
)
TC  
=
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
Example 16-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system assump-  
tions:  
• CHOLD  
• Rs  
=
=
120 pF  
2.5 k  
• Conversion Error 1/2 LSb  
• VDD  
=
=
=
5V Rss = 7 k  
50C (system max.)  
0V @ time = 0  
Temperature  
• VHOLD  
EXAMPLE 16-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
=
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25C.  
TACQ  
TC  
=
=
2 s + Tc + [(Temp - 25C)(0.05 s/C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 s (-7.6241)  
9.61 s  
TACQ  
=
2 s + 9.61 s + [(50C - 25C)(0.05 s/C)]  
11.61 s + 1.25 s  
12.86 s  
1999-2013 Microchip Technology Inc.  
DS39026D-page 169  
PIC18CXX2  
16.2 Selecting the A/D Conversion  
Clock  
16.3 Configuring Analog Port Pins  
The ADCON1, TRISA and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their corresponding  
TRIS bits set (input). If the TRIS bit is cleared (output),  
the digital output level (VOH or VOL) will be converted.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The seven possible options for TAD are:  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 2TOSC  
• 4TOSC  
• 8TOSC  
Note 1: When reading the port register, all pins con-  
figured as analog input channels will read as  
cleared (a low level). Pins configured as dig-  
ital inputs will convert an analog input. Ana-  
log levels on a digitally configured input will  
not affect the conversion accuracy.  
• 16TOSC  
• 32TOSC  
• 64TOSC  
• Internal RC oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 s.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins) may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
Table 16-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 16-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Device Frequency  
Operation ADCS2:ADCS0  
40 MHz  
20 MHz  
5 MHz  
1.25 MHz  
333.33 kHz  
2TOSC  
4TOSC  
8TOSC  
16TOSC  
32TOSC  
64TOSC  
RC  
000  
100  
001  
101  
010  
110  
011  
50 ns  
100 ns  
200 ns  
400 ns  
800 ns  
1.6 s  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 s  
400 ns(2)  
800 ns(2)  
1.6 s  
1.6 s  
3.2 s  
6 s  
12 s  
6.4 s  
24 s(3)  
48 s(3)  
96 s(3)  
192 s(3)  
2 - 6 s(1)  
3.2 s  
12.8 s  
25.6 s(3)  
51.2 s(3)  
2 - 6 s(1)  
6.4 s  
3.2 s  
2 - 6 s(1)  
12.8 s  
2 - 6 s(1)  
2 - 6 s(1)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 s.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
TABLE 16-2: TAD vs. DEVICE OPERATING FREQUENCIES (FOR EXTENDED, LC, DEVICES)  
AD Clock Source (TAD)  
Operation ADCS2:ADCS0  
000  
Device Frequency  
4 MHz  
2 MHz  
1.25 MHz  
333.33 kHz  
2TOSC  
500 ns(2)  
1.0 s(2)  
2.0 s(2)  
4.0 s(2)  
8.0 s  
1.0 s(2)  
2.0 s(2)  
4.0 s  
1.6 s(2)  
3.2 s(2)  
6.4 s  
6 s  
12 s  
4TOSC  
8TOSC  
16TOSC  
32TOSC  
64TOSC  
RC  
100  
001  
101  
010  
110  
011  
24 s(3)  
48 s(3)  
96 s(3)  
192 s(3)  
3 - 9 s(1,4)  
8.0 s  
12.8 s  
16.0 s  
32.0 s  
3 - 9 s(1,4)  
25.6 s(3)  
51.2 s(3)  
3 - 9 s(1,4)  
16.0 s  
3 - 9 s(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 6 s.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
DS39026D-page 170  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
16.4 A/D Conversions  
16.5 Use of the CCP2 Trigger  
Figure 16-3 shows the operation of the A/D converter  
after the GO bit has been set. Clearing the GO/DONE  
bit during a conversion will abort the current conver-  
sion. The A/D result register pair will NOT be updated  
with the partially completed A/D conversion sample.  
That is, the ADRESH:ADRESL registers will continue  
to contain the value of the last completed conversion  
(or the last value written to the ADRESH:ADRESL reg-  
isters). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, acquisition on the selected channel is  
automatically started.  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the GO/  
DONE bit will be set, starting the A/D conversion and  
the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the “special  
event trigger” sets the GO/DONE bit (starts a  
conversion).  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D mod-  
ule, but will still reset the Timer1 (or Timer3) counter.  
FIGURE 16-3:  
A/D CONVERSION TAD CYCLES  
TCY - TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b0  
b5  
b4  
b3  
b2  
b1  
b0  
b7  
b6  
b8  
b9  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 171  
PIC18CXX2  
TABLE 16-3: SUMMARY OF A/D REGISTERS  
Value on all  
other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GIE/  
GIEH  
PEIE/  
GIEL  
INTCON  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
PIR2  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF ---- 0000 ---- 0000  
TMR3IE CCP2IE ---- 0000 ---- 0000  
TMR3IP CCP2IP ---- 0000 ---- 0000  
xxxx xxxx uuuu uuuu  
PIE2  
IPR2  
ADRESH  
ADRESL  
ADCON0  
A/D Result Register  
A/D Result Register  
xxxx xxxx uuuu uuuu  
ADCS1  
ADCS0  
CHS2  
CHS1  
CHS0  
GO/  
ADON  
0000 00-0 0000 00-0  
DONE  
ADCON1  
PORTA  
TRISA  
PORTE  
LATE  
ADFM  
ADCS2  
RA6  
PCFG3 PCFG2  
PCFG1  
RA1  
PCFG0 ---- -000 ---- -000  
RA5  
RA4  
RA3  
RA2  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
---- -000 ---- -000  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
PORTA Data Direction Register  
RE2  
RE1  
RE0  
LATE2  
LATE1  
LATE0  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction bits  
Legend: x= unknown, u= unchanged, — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
DS39026D-page 172  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The Low Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be “turned  
off” by the software, which minimizes the current con-  
sumption for the device.  
17.0 LOW VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do “housekeeping tasks” before the device  
voltage exits the valid operating range. This can be  
done using the Low Voltage Detect module.  
Figure 17-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shut-down the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference TB - TA is the total  
time for shut-down.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
FIGURE 17-1:  
TYPICAL LOW VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
The block diagram for the LVD module is shown in  
Figure 17-2. A comparator uses an internally gener-  
ated reference voltage as the set point. When the  
selected tap output of the device voltage crosses the  
set point (is lower than), the LVDIF bit is set.  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the 1.2V  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal setting the LVDIF bit. This voltage is  
software programmable to any one of 16 values (see  
Figure 17-2). The trip point is selected by program-  
ming the LVDL3:LVDL0 bits (LVDCON<3:0>).  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
1999-2013 Microchip Technology Inc.  
DS39026D-page 173  
PIC18CXX2  
FIGURE 17-2:  
LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD Control  
Register  
LVDIF  
Internally Generated  
LVDEN  
Nominal Reference Voltage  
1.2V  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when bits  
LVDL3:LVDL0 are set to 1111. In this state, the com-  
parator input is multiplexed from the external input pin  
LVDIN (Figure 17-3).  
This gives flexibility, because it allows a user to config-  
ure the Low Voltage Detect interrupt to occur at any  
voltage in the valid operating range.  
FIGURE 17-3:  
LOW VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVD Control  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS39026D-page 174  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
17.1 Control Register  
The Low Voltage Detect Control register controls the  
operation of the Low Voltage Detect circuitry.  
REGISTER 17-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as '0'  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low Voltage Detect logic will generate the interrupt flag at the  
specified voltage range  
0= Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0  
LVDL3:LVDL0: Low Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.5V min. - 4.77V max.  
1101= 4.2V min. - 4.45V max.  
1100= 4.0V min. - 4.24V max.  
1011= 3.8V min. - 4.03V max.  
1010= 3.6V min. - 3.82V max.  
1001= 3.5V min. - 3.71V max.  
1000= 3.3V min. - 3.50V max.  
0111= 3.0V min. - 3.18V max.  
0110= 2.8V min. - 2.97V max.  
0101= 2.7V min. - 2.86V max.  
0100= 2.5V min. - 2.65V max.  
0011= 2.4V min. - 2.54V max.  
0010= 2.2V min. - 2.33V max.  
0001= 2.0V min. - 2.12V max.  
0000= 1.8V min. - 1.91V max.  
Note:  
LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage  
of the device are not tested.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 175  
PIC18CXX2  
The following steps are needed to set up the LVD module:  
17.2 Operation  
1. Write the value to the LVDL3:LVDL0 bits (LVD-  
CON register), which selects the desired LVD  
Trip Point.  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be con-  
stantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods, where the voltage is checked. After  
doing the check, the LVD module may be disabled.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared, or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
5. Clear the LVD interrupt flag, which may have  
falsely become set until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 17-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 17-4:  
LOW VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference stable  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS39026D-page 176  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
17.2.1  
REFERENCE VOLTAGE SET POINT  
17.3 Operation During SLEEP  
The Internal Reference Voltage of the LVD module may  
be used by other internal circuitry (the Programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter #36. The low voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 17-4.  
When enabled, the LVD circuitry continues to operate  
during SLEEP. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from SLEEP. Device execution will continue from  
the interrupt vector address, if interrupts have been glo-  
bally enabled.  
17.4 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the LVD module to be turned off.  
17.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 177  
PIC18CXX2  
NOTES:  
DS39026D-page 178  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
SLEEP mode is designed to offer a very low current  
Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
Wake-up or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The RC oscillator option saves system  
cost, while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
18.0 SPECIAL FEATURES OF THE  
CPU  
There are several features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power saving operating  
modes and offer code protection. These are:  
• OSC Selection  
• RESET  
18.1 Configuration Bits  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h - 3FFFFFh),  
which can only be accessed using table reads and  
table writes.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code Protection  
• ID Locations  
• In-circuit Serial Programming  
All PIC18CXX2 devices have a Watchdog Timer, which  
is permanently enabled via the configuration bits or  
software-controlled. It runs off its own RC oscillator for  
added reliability. There are two timers that offer neces-  
sary delays on power-up. One is the Oscillator Start-up  
Timer (OST), intended to keep the chip in RESET until  
the crystal oscillator is stable. The other is the Power-  
up Timer (PWRT), which provides a fixed delay on  
power-up only, designed to keep the part in RESET  
while the power supply stabilizes. With these two tim-  
ers on-chip, most applications need no external  
RESET circuitry.  
TABLE 18-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300000h CONFIG1L  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
300005h CONFIG3H  
300006h CONFIG4L  
3FFFFEh DEVID1  
CP  
CP  
CP  
OSCSEN  
CP  
CP  
CP  
CP  
CP  
1111 1111  
111- -111  
---- 1111  
---- 1111  
---- ---1  
---- --11  
0000 0000  
0000 0010  
FOSC2  
BORV0  
FOSC1  
BODEN  
FOSC0  
PWRTEN  
WDTEN  
CCP2MX  
STVREN  
REV0  
BORV1  
WDTPS2 WDTPS1 WDTPS0  
LVEN  
REV1  
DEV4  
DEV2  
DEV10  
DEV1  
DEV9  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
3FFFFFh DEVID2  
DEV3  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition.  
Shaded cells are unimplemented, read as ‘0’  
1999-2013 Microchip Technology Inc.  
DS39026D-page 179  
PIC18CXX2  
REGISTER 18-1: CONFIGURATION REGISTER 1 HIGH (CONFIG1H:BYTE ADDRESS 300001h)  
R/P-1  
R/P-1  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
Reserved Reserved OSCSEN  
bit 7  
FOSC2 FOSC1 FOSC0  
bit 0  
bit 7-6  
bit 5  
Reserved: Read as ’1’  
OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (main oscillator is source)  
0= Oscillator system clock switch option is enabled (oscillator switching is enabled)  
bit 4-3  
bit 2-0  
Unimplemented: Read as ’0’  
FOSC2:FOSC0: Oscillator Selection bits  
111= RC oscillator w/OSC2 configured as RA6  
110= HS oscillator with PLL enabled/Clock frequency = (4 x FOSC)  
101= EC oscillator w/OSC2 configured as RA6  
100= EC oscillator w/OSC2 configured as divide-by-4 clock output  
011= RC oscillator  
010= HS oscillator  
001= XT oscillator  
000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 18-2: CONFIGURATION REGISTER 1 LOW (CONFIG1L: BYTE ADDRESS 300000h)  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
bit 7  
bit 0  
bit 7-0  
CP: Code Protection bits (apply when in Code Protected Microcontroller mode)  
1= Program memory code protection off  
0= All of program memory code protected  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
DS39026D-page 180  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
REGISTER 18-3: CONFIGURATIONREGISTER2HIGH(CONFIG2H:BYTEADDRESS300003h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-1  
Unimplemented: Read as ’0’  
WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits  
111= 1:1  
110= 1:2  
101= 1:4  
100= 1:8  
011= 1:16  
010= 1:32  
001= 1:64  
000= 1:128  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 18-4: CONFIGURATION REGISTER 2 LOW (CONFIG2L:BYTE ADDRESS300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1  
BORV0 BOREN PWRTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-2  
Unimplemented: Read as ’0’  
BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.5V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit(1)  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
Note:  
Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT),  
regardless of the value of bit PWRTEN. Ensure the Power-up Timer is enabled any  
time Brown-out Reset is enabled.  
PWRTEN: Power-up Timer Enable bit(1)  
1= PWRT disabled  
0= PWRT enabled  
Note:  
Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT),  
regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any  
time Brown-out Reset is enabled.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
1999-2013 Microchip Technology Inc.  
DS39026D-page 181  
PIC18CXX2  
REGISTER 18-5: CONFIGURATION REGISTER 3HIGH (CONFIG3H:BYTE ADDRESS300005h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
CCP2MX  
bit 0  
bit 7  
bit 7-1  
bit 0  
Unimplemented: Read as ’0’  
CCP2MX: CCP2 Mux bit  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RB3  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 18-6: CONFIGURATION REGISTER 4 LOW (CONFIG4L:BYTE ADDRESS300006h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
Reserved STVREN  
bit 0  
bit 7  
bit 7-2  
bit 1  
Unimplemented: Read as ’0’  
Reserved: Maintain this bit set  
bit 0  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack Full/Underflow will cause RESET  
0= Stack Full/Underflow will not cause RESET  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39026D-page 182  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The WDT time-out period values may be found in the  
Electrical Specifications section under parameter #31.  
Values for the WDT postscaler may be assigned using  
the configuration bits.  
18.2 Watchdog Timer (WDT)  
The Watchdog Timer is a free running, on-chip RC  
oscillator, which does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKI pin. That means that the WDT  
will run, even if the clock on the OSC1/CLKI and OSC2/  
CLKO/RA6 pins of the device has been stopped, for  
example, by execution of a SLEEPinstruction.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler, if assigned to  
the WDT, and prevent it from timing out  
and generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
Note: When a CLRWDT instruction is executed  
and the postscaler is assigned to the WDT,  
the postscaler count will be cleared, but the  
postscaler assignment is not changed.  
The Watchdog Timer is enabled/disabled by a device  
configuration bit. If the WDT is enabled, software exe-  
cution may not disable this function. When the WDTEN  
configuration bit is cleared, the SWDTEN bit enables/  
disables the operation of the WDT.  
18.2.1  
CONTROL REGISTER  
Register 18-7 shows the WDTCON register. This is a  
readable and writable register, which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only when the configuration bit has  
disabled the WDT.  
REGISTER 18-7: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1  
bit 0  
Unimplemented: Read as ’0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if the WDTEN configuration bit in the configuration  
register = ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR Reset  
1999-2013 Microchip Technology Inc.  
DS39026D-page 183  
PIC18CXX2  
18.2.2  
WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler is selected at the time of  
device programming, by the value written to the  
CONFIG2H configuration register.  
FIGURE 18-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
8
8 - to - 1 MUX  
WDTPS2:WDTPS0  
WDTEN  
Configuration bit  
SWDTEN bit  
WDT  
Time-out  
Note: WDPS2:WDPS0 are bits in register CONFIG2H.  
TABLE 18-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
LWRT  
RI  
WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
DS39026D-page 184  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
18.3 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared, but  
keeps running, the PD bit (RCON<3>) is cleared, the  
TO (RCON<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
18.3.2  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If an interrupt condition (interrupt flag bit and inter-  
rupt enable bits are set) occurs before the execu-  
tion of a SLEEPinstruction, the SLEEPinstruction  
will complete as a NOP. Therefore, the WDT and  
WDT postscaler will not be cleared, the TO bit will  
not be set and PD bits will not be cleared.  
The MCLR pin must be at a logic high level (VIHMC).  
18.3.1  
WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake up from SLEEP. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
1. External RESET input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or a  
Peripheral Interrupt.  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
The following peripheral interrupts can wake the device  
from SLEEP:  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
3. TMR3 interrupt. Timer3 must be operating as an  
asynchronous counter.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
4. CCP capture mode interrupt.  
5. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
6. MSSP (START/STOP) bit detect interrupt.  
7. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
8. USART RX or TX (Synchronous Slave mode).  
9. A/D conversion (when A/D clock source is RC).  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and will cause a “wake-up”. The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared, if a WDT time-out occurred (and caused  
wake-up).  
1999-2013 Microchip Technology Inc.  
DS39026D-page 185  
PIC18CXX2  
FIGURE 18-2:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF Flag  
Interrupt Latency(3)  
(INTCON<1>)  
GIEH bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+2  
PC+4  
PC+4  
PC + 4  
0008h  
000Ah  
Instruction  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(000Ah)  
Inst(PC) = SLEEP  
Fetched  
Instruction  
Executed  
Inst(PC + 2)  
Dummy cycle  
Dummy cycle  
Inst(0008h)  
SLEEP  
Inst(PC - 1)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: GIE = '1' assumed. In this case, after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
3: TOST = 1024TOSC (drawing not to scale) This delay will not occur for RC and EC osc modes.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
18.4 Program Verification/Code  
Protection  
18.6  
In-Circuit Serial Programming  
PIC18CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
Note: Microchip Technology does not recom-  
mend code protecting windowed devices.  
18.5 ID Locations  
Five memory locations (200000h - 200004h) are desig-  
nated as ID locations, where the user can store check-  
sum or other code identification numbers. These  
locations are accessible during normal execution  
through the TBLRDinstruction or during program/verify.  
The ID locations can be read when the device is code  
protected.  
DS39026D-page 186  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The control instructions may use some of the following  
operands:  
19.0 INSTRUCTION SET SUMMARY  
The PIC18CXXX instruction set adds many enhance-  
ments to the previous PIC instruction sets, while main-  
taining an easy migration from these PIC MCU  
instruction sets.  
• A program memory address (specified by ‘n’)  
• The mode of the Call or Return instructions  
(specified by ‘s’)  
• The mode of the Table Read and Table Write  
instructions (specified by ‘m’)  
Most instructions are a single program memory word  
(16-bits), but there are three instructions that require  
two program memory locations.  
• No operand required (specified by ‘—’)  
All instructions are a single word, except for three dou-  
ble word instructions. These three instructions were  
made double word instructions so that all the required  
information is available in these 32-bits. In the second  
word, the 4 MSb’s are 1’s. If this second word is exe-  
cuted as an instruction (by itself), it will execute as a  
NOP.  
Each single word instruction is a 16-bit word divided  
into an OPCODE, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18CXXX instruction set summary in Table 19-2  
lists byte-oriented, bit-oriented, literal and control  
operations. Table 19-1 shows the opcode field descrip-  
tions.  
The double word instructions execute in two instruction  
cycles.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 s. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 s.  
Two word branch instructions (if true) would take 3 s.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
2. The destination of the result (specified by ‘d’)  
3. The accessed memory (specified by ‘a’)  
The file register designator 'f' specifies which file regis-  
ter is to be used by the instruction.  
Figure 19-1 shows the general formats that the instruc-  
tions can have.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If 'd' is zero, the  
result is placed in the WREG register. If 'd' is one, the  
result is placed in the file register specified in the  
instruction.  
All examples use the format ‘nnh’ to represent a  
hexadecimal number, where ‘hsignifies a hexadeci-  
mal digit.  
The Instruction Set Summary, shown in Table 19-2,  
lists the instructions recognized by the Microchip  
assembler (MPASMTM).  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Section 19.1 provides a description of each instruction.  
2. The bit in the file register (specified by ‘b’)  
3. The accessed memory (specified by ‘a’)  
The bit field designator 'b' selects the number of the bit  
affected by the operation, while the file register desig-  
nator 'f' represents the number of the file in which the  
bit is located.  
The literal instructions may use some of the following  
operands:  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required (specified by ‘—’)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 187  
PIC18CXX2  
TABLE 19-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7)  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit;  
d = 0: store result in WREG,  
d = 1: store result in file register f.  
dest  
f
Destination either the WREG register or the specified register file location  
8-bit Register file address (0x00 to 0xFF)  
fs  
12-bit Register file address (0x000 to 0xFFF). This is the source address.  
12-bit Register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)  
Label name  
fd  
k
label  
mm  
The mode of the TBLPTR register for the Table Read and Table Write instructions  
Only used with Table Read and Table Write instructions:  
*
No Change to register (such as TBLPTR with Table reads and writes)  
Post-Increment register (such as TBLPTR with Table reads and writes)  
Post-Decrement register (such as TBLPTR with Table reads and writes)  
Pre-Increment register (such as TBLPTR with Table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for  
Call/Branch and Return instructions  
PRODH  
PRODL  
s
Product of Multiply high byte  
Product of Multiply low byte  
Fast Call/Return mode select bit.  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged  
WREG  
x
Working register (accumulator)  
Don't care (0 or 1)  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
21-bit Table Pointer (points to a Program Memory location)  
8-bit Table Latch  
TABLAT  
TOS  
Top-of-Stack  
PC  
Program Counter  
PCL  
Program Counter Low Byte  
Program Counter High Byte  
Program Counter High Byte Latch  
Program Counter Upper Byte Latch  
Global Interrupt Enable bit  
Watchdog Timer  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit  
PD  
Power-down bit  
C, DC, Z, OV, N  
ALU status bits Carry, Digit Carry, Zero, Overflow, Negative  
Optional  
[
]
)
(
Contents  
< >  
Assigned to  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
DS39026D-page 188  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 19-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
OPCODE  
9
8
7
0
ADDWF MYREG, W, B  
d
a
f (FILE #)  
d = 0 for result destination to be WREG register  
d = 1 for result destination to be file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 189  
PIC18CXX2  
TABLE 19-2: PIC18CXXX INSTRUCTION SET  
16-bit Instruction Word  
MSb LSb  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
f, d, a Add WREG and f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
ADDWFC f, d, a Add WREG and Carry bit to f  
ANDWF  
CLRF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
COMF  
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
f, a  
f, a  
f, a  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ  
DCFSNZ  
INCF  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination)2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
RRNCF  
SETF  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap nibbles in f  
f, a Test f, skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is  
driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39026D-page 190  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 19-2: PIC18CXXX INSTRUCTION SET (CONTINUED)  
Mnemonic,  
16-bit Instruction Word  
MSb LSb  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
Call subroutine1st word  
2nd word  
1 (2)  
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
1
1
1
1
2
1
2
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
No Operation (Note 4)  
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device RESET  
Return from interrupt enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is  
driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 191  
PIC18CXX2  
TABLE 19-2: PIC18CXXX INSTRUCTION SET (CONTINUED)  
16-bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
1
1
1
2
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit) 2nd word  
to FSRx 1st word  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is  
driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39026D-page 192  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
19.1 Instruction Set  
ADDLW  
ADD literal to WREG  
ADDWF  
ADD WREG to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a] f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(WREG) + k WREG  
N,OV, C, DC, Z  
Operation:  
(WREG) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of WREG are added  
to the 8-bit literal 'k' and the result is  
placed in WREG.  
0010  
01da  
ffff  
ffff  
Description:  
Add WREG to register 'f'. If 'd' is 0,  
the result is stored in WREG. If 'd'  
is 1, the result is stored back in reg-  
ister 'f' (default). If ‘a’ is 0, the  
Access Bank will be selected. If ‘a’  
is 1, the BSR is used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
ADDLW  
0x15  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
WREG = 0x10  
After Instruction  
WREG = 0x25  
ADDWF  
REG, 0, 0  
Example:  
Before Instruction  
WREG  
REG  
=
=
0x17  
0xC2  
After Instruction  
WREG  
REG  
=
=
0xD9  
0xC2  
1999-2013 Microchip Technology Inc.  
DS39026D-page 193  
PIC18CXX2  
ADDWFC  
ADD WREG and Carry bit to f  
ANDLW  
AND literal with WREG  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(WREG) .AND. k WREG  
N,Z  
Operation:  
(WREG) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of WREG are ANDed  
with the 8-bit literal 'k'. The result is  
placed in WREG.  
0010  
00da  
ffff  
ffff  
Description:  
Add WREG, the Carry Flag and data  
memory location 'f'. If 'd' is 0, the  
result is placed in WREG. If 'd' is 1,  
the result is placed in data memory  
location 'f'. If ‘a’ is 0, the Access  
Bank will be selected. If ‘a’ is 1, the  
BSR will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
'k'  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG  
=
0xA3  
0x03  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
After Instruction  
WREG  
=
ADDWFC  
REG, 0, 1  
Example:  
Before Instruction  
Carry bit=  
1
REG  
=
0x02  
WREG  
=
0x4D  
After Instruction  
Carry bit=  
0
REG  
=
0x02  
WREG  
=
0x50  
DS39026D-page 194  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
ANDWF  
AND WREG with f  
BC  
Branch if Carry  
[ label ] BC  
Syntax:  
[ label ] ANDWF  
f [,d [,a]  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if carry bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(WREG) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N,Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ’1’, then the pro-  
gram will branch.  
Description:  
The contents of WREG are AND’ed  
with register 'f'. If 'd' is 0, the result  
is stored in WREG. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected. If ‘a’ is 1, the  
BSR will not be overridden  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
(default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
ANDWF  
REG, 0, 0  
Example:  
If No Jump:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG  
REG  
=
=
0x17  
0xC2  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
After Instruction  
WREG  
REG  
=
=
0x02  
0xC2  
HERE  
BC  
5
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
1;  
address (HERE+12)  
0;  
address (HERE+2)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 195  
PIC18CXX2  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if negative bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ’1’, then the  
program will branch.  
Description:  
Bit 'b' in register 'f' is cleared. If ‘a’  
is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register 'f'  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
BCF  
FLAG_REG, 7, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
FLAG_REG = 0xC7  
If No Jump:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FLAG_REG = 0x47  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative=  
PC  
If Negative  
PC  
1;  
=
address (Jump)  
0;  
address (HERE+2)  
=
DS39026D-page 196  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if carry bit is ’0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if negative bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ’0’, then the pro-  
gram will branch.  
Description:  
If the Negative bit is ’0’, then the  
program will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
0;  
If Negative  
PC  
If Negative=  
PC  
0;  
address (Jump)  
1;  
address (HERE+2)  
=
address (Jump)  
1;  
address (HERE+2)  
=
1999-2013 Microchip Technology Inc.  
DS39026D-page 197  
PIC18CXX2  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if zero bit is ’0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if overflow bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ’0’, then the  
program will branch.  
Description:  
If the Zero bit is ’0’, then the pro-  
gram will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow=  
PC  
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
0;  
=
address (Jump)  
1;  
address (HERE+2)  
address (Jump)  
1;  
address (HERE+2)  
If Overflow  
PC  
=
DS39026D-page 198  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Description:  
Add the 2’s complement number  
’2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a two-  
cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit 'b' in register 'f' is set. If ‘a’ is 0  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
register 'f'  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7, 1  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG=  
0x0A  
0x8A  
Before Instruction  
After Instruction  
PC  
=
=
address (HERE)  
address (Jump)  
FLAG_REG=  
After Instruction  
PC  
1999-2013 Microchip Technology Inc.  
DS39026D-page 199  
PIC18CXX2  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit 'b' in register ’f' is 0, then the  
next instruction is skipped.  
Description:  
If bit 'b' in register 'f' is 1 then the next  
instruction is skipped.  
If bit 'b' is 0, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a two-  
cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
If bit 'b' is 1, then the next instruction  
fetched during the current instruc-  
tion execution, is discarded and a  
NOPis executed instead, making this  
a two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
Process Data  
No  
Decode  
Read  
Process Data  
No  
register 'f'  
operation  
register 'f'  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
=
=
=
=
0;  
If FLAG<1>  
=
=
=
=
0;  
PC  
If FLAG<1>  
PC  
address (TRUE)  
1;  
address (FALSE)  
PC  
If FLAG<1>  
PC  
address (FALSE)  
1;  
address (TRUE)  
DS39026D-page 200  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if overflow bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ’1’, then the  
program will branch.  
Description:  
Bit 'b' in data memory location 'f' is  
inverted. If ‘a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register 'f'  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
BTG  
PORTC, 4, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction:  
PORTC  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Q3  
Q4  
PORTC  
=
0110 0101 [0x65]  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
HERE  
BOV Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow=  
PC  
If Overflow  
PC  
1;  
=
address (Jump)  
0;  
address (HERE+2)  
=
1999-2013 Microchip Technology Inc.  
DS39026D-page 201  
PIC18CXX2  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
(WREG) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
Description:  
If the Zero bit is ’1’, then the pro-  
gram will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2M byte  
memory range. First, return  
address (PC+ 4) is pushed onto the  
return stack. If ’s’ = 1, the W,  
Words:  
Cycles:  
1
1(2)  
STATUS and BSR registers are  
also pushed into their respective  
shadow registers, WS, STATUSS  
and BSRS. If 's' = 0, no update  
occurs (default). Then the 20-bit  
value ’k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
'k'<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Before Instruction  
PC  
=
address (HERE)  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
After Instruction  
If Zero  
PC  
If Zero  
PC  
=
=
=
1;  
address (Jump)  
0;  
address (HERE+2)  
HERE  
CALL THERE,1  
Example:  
Before Instruction  
PC  
=
Address(HERE)  
After Instruction  
PC  
TOS =  
WS  
BSRS=  
=
Address(THERE)  
Address (HERE + 4)  
WREG  
BSR  
=
STATUSS = STATUS  
DS39026D-page 202  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[label] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
register 'f'  
CLRWDT  
Example:  
CLRF  
=
FLAG_REG,1  
Example:  
Before Instruction  
WDT counter  
=
=
?
Before Instruction  
FLAG_REG  
0x5A  
0x00  
After Instruction  
WDT counter  
WDT Postscaler =  
TO  
PD  
0x00  
After Instruction  
0
1
1
FLAG_REG  
=
=
=
1999-2013 Microchip Technology Inc.  
DS39026D-page 203  
PIC18CXX2  
Compare f with WREG,  
skip if f = WREG  
CPFSEQ  
COMF  
Complement f  
Syntax:  
[ label ] COMF f [,d [,a]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (WREG),  
Operation:  
(f) dest  
skip if (f) = (WREG)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register 'f' are com-  
plemented. If 'd' is 0, the result is  
stored in WREG. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of WREG by performing an  
unsigned subtraction.  
If 'f' = WREG, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
1(2)  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
COMF  
REG, 0, 0  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register 'f'  
Process  
Data  
No  
operation  
REG  
=
0x13  
0xEC  
WREG  
=
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG, 0  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
HERE  
WREG  
REG  
=
=
?
?
After Instruction  
If REG  
PC  
=
=
WREG;  
Address (EQUAL)  
If REG  
PC  
 WREG;  
Address (NEQUAL)  
=
DS39026D-page 204  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Compare f with WREG,  
skip if f > WREG  
Compare f with WREG,  
skip if f < WREG  
CPFSGT  
CPFSLT  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) WREG),  
Operation:  
(f) –WREG),  
skip if (f) > (WREG)  
skip if (f) < (WREG)  
(unsigned comparison)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of the WREG by performing an  
unsigned subtraction.  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of WREG by performing an  
unsigned subtraction.  
If the contents of 'f' are greater than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0, the Access Bank will be  
If the contents of 'f' are less than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
selected. If ’a’ is 1, the BSR will not  
be overridden (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register 'f'  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
Example:  
HERE  
CPFSGT REG, 0  
Example:  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
=
=
Address (HERE)  
?
WREG  
If REG  
PC  
<
WREG;  
Address (LESS)  
=
After Instruction  
If REG  
PC  
=
WREG;  
Address (NLESS)  
If REG  
PC  
>
=
WREG;  
Address (GREATER)  
If REG  
PC  
WREG;  
Address (NGREATER)  
=
1999-2013 Microchip Technology Inc.  
DS39026D-page 205  
PIC18CXX2  
DAW  
Decimal Adjust WREG Register  
DECF  
Decrement f  
Syntax:  
[label] DAW  
Syntax:  
[ label ] DECF f [,d [,a]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [WREG<3:0> >9] or [DC = 1] then  
(WREG<3:0>) + 6 WREG<3:0>;  
else  
Operation:  
(f) – 1 dest  
(WREG<3:0>) WREG<3:0>;  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
0000  
01da  
ffff  
ffff  
If [WREG<7:4> >9] or [C = 1] then  
(WREG<7:4>) + 6 WREG<7:4>;  
else  
Description:  
Decrement register 'f'. If 'd' is 0, the  
result is stored in WREG. If 'd' is 1,  
the result is stored back in register  
'f' (default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
(WREG<7:4>) WREG<7:4>;  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in  
WREG, resulting from the earlier  
addition of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
WREG  
Process  
Data  
Write  
WREG  
DECF  
CNT,  
1, 0  
Example:  
Before Instruction  
CNT  
Z
=
=
0x01  
0
DAW  
Example1:  
Before Instruction  
After Instruction  
CNT  
Z
=
=
0x00  
1
WREG  
C
DC  
=
=
=
0xA5  
0
0
After Instruction  
WREG  
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
WREG  
=
0xCE  
C
DC  
=
=
0
0
After Instruction  
WREG  
=
0x34  
C
DC  
=
=
1
0
DS39026D-page 206  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[label] DCFSNZ f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register 'f' are  
decremented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded and a NOPis  
executed instead, making it a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
TEMP  
=
?
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT - 1  
0;  
Address (CONTINUE)  
0;  
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP - 1,  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
Address (HERE+2)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 207  
PIC18CXX2  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
[ label ] INCF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
branch anywhere within entire  
2 Mbyte memory range. The 20-bit  
value ’k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
'k'<7:0>,  
No  
operation  
Read literal  
’k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT, 1, 0  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
Z
=
0xFF  
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
Z
C
=
=
=
=
0x00  
1
1
1
DC  
DS39026D-page 208  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
INCFSZ  
Increment f, skip if 0  
INFSNZ  
Increment f, skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]  
Syntax:  
[label] INFSNZ f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded and a NOPis  
executed instead, making it a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
0;  
Address(ZERO)  
0;  
Address(NZERO)  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 209  
PIC18CXX2  
IORLW  
Inclusive OR literal with WREG  
IORWF  
Inclusive OR WREG with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(WREG) .OR. k WREG  
N,Z  
Operation:  
(WREG) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,Z  
Description:  
The contents of WREG are OR’ed  
with the eight-bit literal 'k'. The  
result is placed in WREG.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR WREG with register  
'f'. If 'd' is 0, the result is placed in  
WREG. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If ’a’ is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
IORLW  
0x9A  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
WREG  
=
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
WREG  
=
0xBF  
IORWF RESULT, 0, 1  
Example:  
Before Instruction  
RESULT  
=
0x13  
0x91  
WREG  
=
After Instruction  
RESULT  
=
0x13  
0x93  
WREG  
=
DS39026D-page 210  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N,Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal 'k' is loaded into  
the file select register pointed to  
by 'f'.  
Description:  
The contents of register 'f' are  
moved to a destination dependent  
upon the status of ’d’. If 'd' is 0, the  
result is placed in WREG. If 'd' is 1,  
the result is placed back in register  
'f' (default). Location 'f' can be any-  
where in the 256 byte bank. If ’a’ is  
0, the Access Bank will be  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Decode  
Read literal  
'k' MSB  
Process  
Data  
Write  
literal 'k'  
MSB to  
FSRfH  
Decode  
Read literal  
'k' LSB  
Process  
Data  
Write literal  
'k' to FSRfL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
LFSR 2, 0x3AB  
Example:  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register 'f'  
Process  
Data  
Write WREG  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
MOVF  
REG, 0, 0  
Example:  
Before Instruction  
REG  
=
=
0x22  
0xFF  
WREG  
After Instruction  
REG  
=
=
0x22  
0x22  
WREG  
1999-2013 Microchip Technology Inc.  
DS39026D-page 211  
PIC18CXX2  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[label] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
0 fs 4095  
0 fd 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
(fs) fd  
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
Description:  
The 8-bit literal 'k' is loaded into  
the Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register 'fs'  
are moved to destination register  
'fd'. Location of source 'fs' can be  
anywhere in the 4096 byte data  
space (000h to FFFh), and location  
of destination 'fd' can also be any-  
where from 000h to FFFh.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
'k'  
Process  
Data  
Write  
literal 'k' to  
BSR  
Either source or destination can be  
WREG (a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
MOVLB  
5
Example:  
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register 'f'  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS39026D-page 212  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
MOVLW  
Move literal to WREG  
MOVWF  
Move WREG to f  
Syntax:  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
k WREG  
None  
Operation:  
(WREG) f  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight-bit literal 'k' is loaded into  
WREG.  
Description:  
Move data from WREG to register  
'f'. Location 'f' can be anywhere in  
the 256 byte bank. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
WREG  
=
0x5A  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
register 'f'  
MOVWF  
REG, 0  
Example:  
Before Instruction  
WREG  
REG  
=
=
0x4F  
0xFF  
After Instruction  
WREG  
REG  
=
=
0x4F  
0x4F  
1999-2013 Microchip Technology Inc.  
DS39026D-page 213  
PIC18CXX2  
MULLW  
Multiply Literal with WREG  
MULWF  
Multiply WREG with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
(WREG) x k PRODH:PRODL  
Operation:  
(WREG) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
WREG and the 8-bit literal 'k'.  
The 16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
WREG is unchanged.  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
WREG and the register file loca-  
tion 'f'. The 16-bit result is stored  
in the PRODH:PRODL register  
pair. PRODH contains the high  
byte.  
None of the status flags are  
affected.  
Both WREG and 'f' are  
Note that neither overflow, nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected.  
unchanged.  
None of the status flags are  
affected.  
Note that neither overflow, nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected. If ‘a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’=  
1, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
=
0xC4  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
WREG  
PRODH  
PRODL  
0xE2  
registers  
PRODH:  
PRODL  
=
=
?
?
After Instruction  
WREG  
PRODH  
PRODL  
=
=
=
0xE2  
0xAD  
0x08  
MULWF  
=
REG, 1  
Example:  
Before Instruction  
WREG  
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
?
?
After Instruction  
WREG  
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
0x8A  
0x94  
DS39026D-page 214  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[label] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in  
the data memory location 'f'. If ’a’ is  
0, the Access Bank will be  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value.  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
register 'f'  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
1999-2013 Microchip Technology Inc.  
DS39026D-page 215  
PIC18CXX2  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
Description:  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the previ-  
ous value that was pushed onto the  
return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Description:  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows to implement  
a software stack by modifying TOS,  
and then push it onto the return  
stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
PUSH PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
PC  
=
=
00345Ah  
000124h  
Before Instruction  
TOS  
= 0031A2h  
After Instruction  
Stack (1 level down)= 014332h  
PC  
TOS  
=
=
=
000126h  
000126h  
00345Ah  
After Instruction  
Stack (1 level down)  
TOS  
PC  
=
=
014332h  
NEW  
DS39026D-page 216  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ’2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n.  
This instruction is a two-cycle  
instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers  
Flags*  
=
=
Reset Value  
Reset Value  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
'n'  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address(HERE)  
After Instruction  
PC  
TOS =  
=
Address(Jump)  
Address (HERE+2)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 217  
PIC18CXX2  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to WREG  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
k WREG,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) WREG,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
WREG is loaded with the eight-bit  
literal 'k'. The program counter is  
loaded from the top of the stack  
(the return address). The high  
address latch (PCLATH) remains  
unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH,PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from Interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting either the high  
or low priority global interrupt  
enable bit. If ‘s’ = 1, the contents of  
the shadow registers WS,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
STATUSS and BSRS are loaded  
into their corresponding registers,  
WREG, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs (default).  
Decode  
Read  
literal 'k'  
Process  
Data  
pop PC from  
stack, Write  
to WREG  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
Example:  
Q Cycle Activity:  
Q1  
CALL TABLE ; WREG contains table  
Q2  
Q3  
Q4  
; offset value  
; WREG now has  
; table value  
:
Decode  
No  
operation  
No  
operation  
pop PC from  
stack  
Set GIEH or  
GIEL  
TABLE  
ADDWF PCL  
; WREG = offset  
; Begin table  
;
No  
operation  
No  
operation  
No  
operation  
No  
operation  
RETLW k0  
RETLW k1  
:
RETFIE  
1
:
Example:  
RETLW kn  
; End of table  
After Interrupt  
PC  
W
=
=
=
=
TOS  
WS  
BSRS  
STATUSS  
1
Before Instruction  
BSR  
STATUS  
GIE/GIEH, PEIE/GIEL=  
WREG  
=
0x07  
After Instruction  
WREG  
=
value of kn  
DS39026D-page 218  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ] RLCF f [,d [,a]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) WREG,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(C) dest<0>  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C,N,Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register 'f' are  
rotated one bit to the left through  
the Carry Flag. If 'd' is 0, the result  
is placed in WREG. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Return from subroutine. The stack  
is popped and the top of the stack  
(TOS) is loaded into the program  
counter. If ‘s’= 1, the contents of the  
shadow registers WS, STATUSS  
and BSRS are loaded into their cor-  
responding registers, WREG,  
STATUS and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
pop PC from  
stack  
operation  
Decode  
Read  
Process  
Write to  
No  
No  
No  
No  
register 'f'  
Data  
destination  
operation  
operation  
operation  
operation  
RLCF  
REG, 0, 0  
Example:  
Before Instruction  
RETURN  
Example:  
REG  
C
=
=
1110 0110  
0
After Interrupt  
After Instruction  
PC = TOS  
REG  
=
1110 0110  
WREG  
C
=
=
1100 1100  
1
1999-2013 Microchip Technology Inc.  
DS39026D-page 219  
PIC18CXX2  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]  
Syntax:  
[ label ] RRCF f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
C,N,Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register 'f' are  
rotated one bit to the left. If 'd' is 0,  
the result is placed in WREG. If 'd'  
is 1, the result is stored back in reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, then  
the bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register 'f' are  
rotated one bit to the right through  
the Carry Flag. If 'd' is 0, the result  
is placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to  
register 'f'  
Data  
destination  
RLNCF  
REG, 1, 0  
Example:  
Before Instruction  
RRCF  
REG, 0, 0  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
1110 0110  
WREG  
C
=
=
0111 0011  
0
DS39026D-page 220  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]  
Syntax:  
[label] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N,Z  
Description:  
The contents of the specified regis-  
ter are set to FFh. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, then  
the bank will be selected as per the  
BSR value (default).  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register 'f' are  
rotated one bit to the right. If 'd' is 0,  
the result is placed in WREG. If 'd'  
is 1, the result is placed back in  
register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register 'f'  
Process  
Data  
Write  
register 'f'  
Words:  
Cycles:  
1
1
SETF  
=
REG,1  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
REG  
=
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
After Instruction  
REG  
=
Example 2:  
Before Instruction  
WREG  
REG  
=
=
?
1101 0111  
After Instruction  
WREG  
REG  
=
=
1110 1011  
1101 0111  
1999-2013 Microchip Technology Inc.  
DS39026D-page 221  
PIC18CXX2  
SLEEP  
Enter SLEEP mode  
SUBFWB  
Subtract f from WREG with borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(WREG) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register 'f' and carry flag  
(borrow) from WREG (2’s comple-  
ment method). If 'd' is 0, the result is  
stored in WREG. If 'd' is 1, the result  
is stored in register 'f' (default). If ’a’ is  
0, the Access Bank will be selected,  
overriding the BSR value. If ’a’ is 1,  
then the bank will be selected as per  
the BSR value (default).  
Description:  
The power-down status bit (PD) is  
cleared. The time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
Go to  
sleep  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
SUBFWB  
REG, 1, 0  
Example 1:  
Before Instruction  
TO  
PD  
=
=
?
?
Before Instruction  
REG  
=
3
After Instruction  
WREG  
C
=
=
2
1
TO  
PD  
=
=
1 †  
0
After Instruction  
† If WDT causes wake-up, this bit is cleared.  
REG  
=
FF  
2
WREG  
=
C
Z
N
=
=
=
0
0
1
; result is negative  
REG, 0, 0  
SUBFWB  
Example 2:  
Before Instruction  
REG  
=
2
WREG  
C
=
=
5
1
After Instruction  
REG  
=
2
3
WREG  
=
C
Z
N
=
=
=
1
0
0
; result is positive  
REG, 1, 0  
SUBFWB  
Example 3:  
Before Instruction  
REG  
=
1
WREG  
C
=
=
2
0
After Instruction  
REG  
=
0
2
WREG  
=
C
Z
N
=
=
=
1
1
0
; result is zero  
DS39026D-page 222  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
SUBLW  
Subtract WREG from literal  
[ label ]  
SUBWF  
Syntax:  
Subtract WREG from f  
Syntax:  
[ label ]  
SUBLW k  
SUBWF f [,d [,a]  
Operands:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k – (WREG) WREG  
N,OV, C, DC, Z  
Status Affected:  
Encoding:  
Operation:  
(f) – (WREG) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
WREG is subtracted from the  
eight-bit literal 'k'. The result is  
placed in WREG.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract WREG from register 'f'  
(2’s complement method). If 'd' is  
0, the result is stored in WREG. If  
'd' is 1, the result is stored back in  
register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
Data  
Write to  
WREG  
SUBLW 0x02  
Example 1:  
Words:  
Cycles:  
1
1
Before Instruction  
WREG  
C
=
=
1
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
WREG  
=
1
C
Z
N
=
=
=
1
0
0
; result is positive  
SUBWF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
3
SUBLW 0x02  
Example 2:  
WREG  
C
=
=
2
?
Before Instruction  
WREG  
C
=
=
2
?
After Instruction  
REG  
=
1
2
After Instruction  
WREG  
=
C
Z
N
=
=
=
1
0
0
; result is positive  
REG, 0, 0  
WREG  
=
0
C
Z
N
=
=
=
1
1
0
; result is zero  
SUBWF  
Example 2:  
SUBLW 0x02  
Example 3:  
Before Instruction  
REG  
=
2
Before Instruction  
WREG  
C
=
=
2
?
WREG  
C
=
=
3
?
After Instruction  
After Instruction  
REG  
=
2
0
WREG  
=
FF  
; (2’s complement)  
; result is negative  
WREG  
=
C
Z
N
=
=
=
0
0
1
C
Z
N
=
=
=
1
1
0
; result is zero  
REG, 1, 0  
SUBWF  
Example 3:  
Before Instruction  
REG  
=
1
WREG  
C
=
=
2
?
After Instruction  
REG  
=
FFh  
2
;(2’s complement)  
WREG  
=
C
Z
N
=
=
=
0
0
1
; result is negative  
1999-2013 Microchip Technology Inc.  
DS39026D-page 223  
PIC18CXX2  
SUBWFB  
Subtract WREG from f with Borrow  
SWAPF  
Swap f  
Syntax:  
[ label ] SUBWFB f [,d [,a]  
Syntax:  
[ label ] SWAPF f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (WREG) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0101  
10da  
ffff  
ffff  
0011  
10da  
ffff  
ffff  
Description:  
Subtract WREG and the carry flag  
(borrow) from register 'f' (2’s comple-  
ment method). If 'd' is 0, the result is  
stored in WREG. If 'd' is 1, the result  
is stored back in register 'f' (default).  
If ’a’ is 0, the Access Bank will be  
selected, overriding the BSR value. If  
’a’ is 1, then the bank will be selected  
as per the BSR value (default).  
Description:  
The upper and lower nibbles of reg-  
ister 'f' are exchanged. If 'd' is 0, the  
result is placed in WREG. If 'd' is 1,  
the result is placed in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
SUBWFB REG, 1, 0  
Example 1:  
Before Instruction  
SWAPF  
REG, 1, 0  
Example:  
REG  
=
0x19  
0x0D  
1
(0001 1001)  
(0000 1101)  
WREG  
C
=
=
Before Instruction  
REG  
=
0x53  
0x35  
After Instruction  
After Instruction  
REG  
=
0x0C  
0x0D  
(0000 1011)  
(0000 1101)  
REG  
=
WREG  
=
C
Z
N
=
=
=
1
0
0
; result is positive  
SUBWFB REG, 0, 0  
Example 2:  
Before Instruction  
REG  
=
0x1B  
0x1A  
0
(0001 1011)  
(0001 1010)  
WREG  
C
=
=
After Instruction  
REG  
=
0x1B  
0x00  
(0001 1011)  
WREG  
=
C
Z
N
=
=
=
1
1
0
; result is zero  
SUBWFB REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
0x03  
0x0E  
1
(0000 0011)  
(0000 1101)  
WREG  
C
=
=
After Instruction  
REG  
=
0xF5  
0x0E  
(1111 0100)  
; [2’s comp]  
(0000 1101)  
WREG  
=
C
Z
N
=
=
=
0
0
1
; result is negative  
DS39026D-page 224  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TBLRD  
Table Read  
TBLRD  
Table Read (cont’d)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR - No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) +1 TBLPTR;  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) -1 TBLPTR;  
if TBLRD +*,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example 2:  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
=
=
=
=
0xAA  
0x01A357  
0x12  
0x34  
(TBLPTR) +1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
Status Affected: None  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the  
contents of Program Memory (P.M.). To  
address the program memory, a  
pointer called Table Pointer (TBLPTR)  
is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 Mbyte address range.  
TBLPTR[0] = 0:Least Significant  
Byte of Program Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
(Read  
operation  
operation  
(Write  
Program  
Memory)  
TABLAT)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 225  
PIC18CXX2  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
TBLWT *+;  
Syntax:  
[ label ]  
None  
TBLWT ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
0x55  
0x00A356  
0xFF  
if TBLWT*,  
(TABLAT) Prog Mem (TBLPTR)  
MEMORY(0x00A356)  
or Holding Register;  
TBLPTR - No Change;  
if TBLWT*+,  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A357  
0x55  
(TABLAT) Prog Mem (TBLPTR)  
or Holding Register;  
TBLWT +*;  
Example 2:  
(TBLPTR) +1 TBLPTR;  
if TBLWT*-,  
Before Instruction  
TABLAT  
=
=
=
=
0x34  
0x01389A  
0xFF  
TBLPTR  
MEMORY(0x01389A)  
MEMORY(0x01389B)  
(TABLAT) Prog Mem (TBLPTR)  
or Holding Register;  
(TBLPTR) -1 TBLPTR;  
0xFF  
After Instruction (table write completion)  
if TBLWT+*,  
TABLAT  
TBLPTR  
MEMORY(0x01389A)  
MEMORY(0x01389B)  
=
=
=
=
0x34  
0x01389B  
0xFF  
(TBLPTR) +1 TBLPTR;  
(TABLAT) Prog Mem (TBLPTR)  
or Holding Register;  
0x34  
Status Affected:  
Encoding:  
None  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to program the  
contents of Program Memory (P.M.).  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 Mbyte address  
range. The LSb of the TBLPTR  
selects which byte of the program  
memory location to access.  
TBLPTR[0] = 0:Least Significant  
Byte of Program Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program Memory Word  
The TBLWTinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2 (many if long write is to on-chip  
EPROM program memory)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
(Read  
TABLAT)  
operation  
operation  
(Write to Holding  
Register or Memory)  
DS39026D-page 226  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with WREG  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ]  
XORLW k  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 k 255  
Operation:  
(WREG) .XOR. k WREG  
Operation:  
skip if f = 0  
None  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of WREG are  
XORed with the 8-bit literal 'k'.  
The result is placed in WREG.  
Description:  
If 'f' = 0, the next instruction,  
fetched during the current instruc-  
tion execution, is discarded and a  
NOPis executed, making this a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1(2)  
Example:  
XORLW0xAF  
= 0xB5  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Before Instruction  
WREG  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
WREG  
=
0x1A  
Decode  
Read  
register 'f'  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
Example:  
:
Before Instruction  
PC = Address(HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
Address (ZERO)  
0x00,  
PC  
If CNT  
PC  
Address (NZERO)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 227  
PIC18CXX2  
XORWF  
Exclusive OR WREG with f  
Syntax:  
[ label ] XORWF f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(WREG) .XOR. (f) dest  
Status Affected:  
Encoding:  
N,Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of  
WREG with register 'f'. If 'd' is 0, the  
result is stored in WREG. If 'd' is 1,  
the result is stored back in the reg-  
ister 'f' (default). If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Data  
Write to  
destination  
XORWF  
REG, 1, 0  
Example:  
Before Instruction  
REG  
=
0xAF  
0xB5  
WREG  
=
After Instruction  
REG  
=
0x1A  
0xB5  
WREG  
=
DS39026D-page 228  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
The MPLAB IDE allows you to:  
20.0 DEVELOPMENT SUPPORT  
• Edit your source files (either assembly or ‘C’)  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools (auto-  
matically updates all project information)  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
20.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPIC™ In-Circuit Emulator  
• In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PIC MCUs.  
- MPLAB ICD for PIC16F87X  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects.  
• User-defined macros to streamline assembly  
code.  
20.1 MPLAB Integrated Development  
Environment Software  
• Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
• Directives that allow complete control over the  
assembly process.  
20.3 MPLAB C17 and MPLAB C18  
C Compilers  
• An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI ‘C’ compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor  
• A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• Customizable toolbar and key mapping  
• A status bar  
• On-line help  
1999-2013 Microchip Technology Inc.  
DS39026D-page 229  
PIC18CXX2  
20.4 MPLINK Object Linker/  
MPLIB Object Librarian  
20.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC micro-  
controllers (MCUs). Software control of the MPLAB ICE  
in-circuit emulator is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
building, downloading and source debugging from a  
single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PIC microcontrollers.  
The MPLINK object linker features include:  
• Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
• Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
• Easier linking because single libraries can be  
included instead of many smaller files.  
• Helps keep code maintainable by grouping  
related modules together.  
20.7 ICEPIC In-Circuit Emulator  
• Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
20.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PIC series microcontrollers on an instruction level. On  
any given instruction, the data areas can be examined  
or modified and stimuli can be applied from a file, or  
user-defined key press, to any of the pins. The execu-  
tion can be performed in single step, execute until  
break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS39026D-page 230  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
20.8 MPLAB ICD In-Circuit Debugger  
20.11 PICDEM 1 Low Cost PIC MCU  
Demonstration Board  
Microchip's In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PIC16F87X and can be used to  
develop for this and other PIC microcontrollers from the  
PIC16CXXX family. The MPLAB ICD utilizes the in-cir-  
cuit debugging capability built into the PIC16F87X. This  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchip’s microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
feature, along with Microchip's  
In-Circuit Serial  
ProgrammingTM protocol, offers cost-effective in-circuit  
FLASH debugging from the graphical user interface of  
the MPLAB Integrated Development Environment. This  
enables a designer to develop and debug source code  
by watching variables, single-stepping and setting  
break points. Running at full speed enables testing  
hardware in real-time.  
20.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program PIC  
devices. It can also set code protection in this mode.  
20.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
20.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PIC devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 231  
PIC18CXX2  
20.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
20.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
20.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchip’s HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS39026D-page 232  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 20-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m r e g g u b D e s r e m m a o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
1999-2013 Microchip Technology Inc.  
DS39026D-page 233  
PIC18CXX2  
NOTES:  
DS39026D-page 234  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
21.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (†)  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ....................................... -0.3 V to (VDD + 0.3 V)  
Voltage on VDD with respect to VSS ....................................................................................................... -0.3 V to +7.5 V  
Voltage on MCLR with respect to VSS (Note 2) ....................................................................................... 0 V to +13.25 V  
Voltage on RA4 with respect to Vss............................................................................................................. 0 V to +8.5 V  
Total power dissipation (Note 1) ..............................................................................................................................1.0 W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk byPORTA, PORTB, and PORTE (Note 3) (combined)...................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)..............................................200 mA  
Maximum current sunk by PORTC and PORTD (Note 3) (combined)..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (Note 3) (combined).............................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
3: PORTD and PORTE not available on the PIC18C2X2 devices.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 235  
PIC18CXX2  
FIGURE 21-1:  
PIC18CXX2 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL, EXTENDED)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC18CXXX  
4.2V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
40 MHz  
Frequency  
FIGURE 21-2:  
PIC18LCXX2 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC18LCXXX  
4.2V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
40 MHz  
6 MHz  
Frequency  
FMAX = (20.0 MHz/V) (VDDAPPMIN - 2.5 V) + 6 MHz  
Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
DS39026D-page 236  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
21.1 DC Characteristics  
PIC18LCXX2  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18CXX2  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic  
Supply Voltage  
Min  
Typ Max Units  
Conditions  
VDD  
D001  
PIC18LCXX2 2.5  
PIC18CXX2 4.2  
5.5  
5.5  
V
V
V
HS, XT, RC and LP osc mode  
D001  
D002  
VDR  
RAM Data Retention  
1.5  
Voltage(1)  
D003  
D004  
VPOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
0.7  
V
See section on Power-on Reset for details  
SVDD  
VBOR  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset Voltage  
PIC18LCXX2  
D005  
D005  
BORV1:BORV0 = 11 2.5  
BORV1:BORV0 = 10 2.7  
BORV1:BORV0 = 01 4.2  
BORV1:BORV0 = 00 4.5  
PIC18CXX2  
2.66  
2.86  
4.46  
4.78  
V
V
V
V
BORV1:BORV0 = 1x N.A.  
BORV1:BORV0 = 01 4.2  
BORV1:BORV0 = 00 4.5  
N.A.  
4.46  
4.78  
V
V
V
Not in operating voltage range of device  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all fea-  
tures that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 237  
PIC18CXX2  
21.1 DC Characteristics (Continued)  
PIC18LCXX2  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18CXX2  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ Max Units  
Conditions  
IDD  
Supply Current(2,4)  
D010  
PIC18LCXX2  
2
4
mA XT, RC, RCIO osc configurations  
FOSC = 4 MHz, VDD = 2.5V  
D010  
PIC18CXX2  
PIC18LCXX2  
PIC18CXX2  
PIC18LCXX2  
PIC18CXX2  
PIC18LCXX2  
mA XT, RC, RCIO osc configurations  
FOSC = 4 MHz, VDD = 4.2V  
D010A  
D010A  
D010C  
D010C  
D013  
55  
A LP osc configuration  
FOSC = 32 kHz, VDD = 2.5V  
250 A LP osc configuration  
FOSC = 32 kHz, VDD = 4.2V  
38  
mA EC, ECIO osc configurations  
FOSC = 40 MHz, VDD = 5.5V  
38  
mA EC, ECIO osc configurations  
FOSC = 40 MHz, VDD = 5.5V  
HS osc configuration  
3.5 mA FOSC = 6 MHz, VDD = 2.5V  
25  
mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc configurations  
38  
mA FOSC = 10 MHz, VDD = 5.5V  
D013  
PIC18CXX2  
HS osc configuration  
25  
38  
mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc configurations  
mA FOSC = 10 MHz, VDD = 5.5V  
D014  
D014  
PIC18LCXX2  
PIC18CXX2  
Timer1 osc configuration  
A FOSC = 32 kHz, VDD = 2.5V  
55  
OSCB osc configuration  
200 A FOSC = 32 kHz, VDD = 4.2V, -40C to +85C  
250 A FOSC = 32 kHz, VDD = 4.2V, -40C to +125C  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all fea-  
tures that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
DS39026D-page 238  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
21.1 DC Characteristics (Continued)  
PIC18LCXX2  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18CXX2  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ Max Units  
Conditions  
IPD  
Power-down Current(3)  
D020  
<.5  
2
4
A VDD = 2.5V, -40C to +85C  
A VDD = 5.5V, -40C to +85C  
PIC18LCXX2  
D020  
PIC18CXX2  
<1  
3
4
15  
20  
A VDD = 4.2V, -40C to +85C  
A VDD = 5.5V, -40C to +85C  
A VDD = 4.2V, -40C to +125C  
A VDD = 5.5V, -40C to +125C  
D021B  
Module Differential Current  
D022  
IWDT  
IBOR  
ILVD  
Watchdog Timer  
1
15  
A VDD = 2.5V  
A VDD = 5.5V  
A VDD = 5.5V, -40C to +85C  
A VDD = 5.5V, -40C to +125C  
PIC18LCXX2  
D022  
Watchdog Timer  
15  
20  
PIC18CXX2  
D022A  
D022A  
D022B  
D022B  
D025  
Brown-out Reset  
45  
A VDD = 2.5V  
PIC18LCXX2  
Brown-out Reset  
50  
50  
A VDD = 5.5V, -40C to +85C  
A VDD = 5.5V, -40C to +125  
A VDD = 2.5V  
PIC18CXX2  
Low Voltage Detect  
45  
PIC18LCXX2  
Low Voltage Detect  
50  
50  
A VDD = 4.2V, -40C to +85C  
A VDD = 4.2V, -40C to +125C  
A VDD = 2.5V  
PIC18CXX2  
IOSCB  
Timer1 Oscillator  
15  
PIC18LCXX2  
D025  
Timer1 Oscillator  
100 A VDD = 4.2V, -40C to +85C  
120 A VDD = 4.2V, -40C to +125C  
PIC18CXX2  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all fea-  
tures that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 239  
PIC18CXX2  
21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended)  
PIC18LCXX2 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
Vss  
0.15VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
Vss  
Vss  
0.2VDD  
0.3VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2VDD  
0.3VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
OSC1 (in RC and EC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2VDD  
V
VIH  
D040  
with TTL buffer  
0.25VDD +  
0.8V  
VDD  
VDD  
V
V
VDD < 4.5V  
D040A  
2.0  
4.5V VDD 5.5V  
D041  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042  
MCLR, OSC1 (EC mode)  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D043  
D060  
OSC1 (RC mode)(1)  
Input Leakage Current(2,3)  
I/O ports  
0.9VDD  
VDD  
V
IIL  
1  
A VSS VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR  
5  
5  
A Vss VPIN VDD  
A Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070 IPURB  
50  
400  
A VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that  
the PIC MCU be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39026D-page 240  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
21.2 DC Characteristics: PIC18CXX2 (Industrial, Extended)  
PIC18LCXX2 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
I/O ports  
D080  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40C to +85C  
IOL = 7.0 mA, VDD = 4.5V,  
-40C to +125C  
IOL = 1.6 mA, VDD = 4.5V,  
-40C to +85C  
IOL = 1.2 mA, VDD = 4.5V,  
D080A  
D083  
OSC2/CLKOUT  
(RC mode)  
D083A  
-40C to +125C  
VOH  
Output High Voltage(3)  
D090  
I/O ports  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40C to +85C  
IOH = -2.5 mA, VDD = 4.5V,  
-40C to +125C  
IOH = -1.3 mA, VDD = 4.5V,  
-40C to +85C  
IOH = -1.0 mA, VDD = 4.5V,  
-40C to +125C  
D090A  
D092  
OSC2/CLKOUT  
(RC mode)  
D092A  
D150 VOD  
Open Drain High Voltage  
8.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
D101 CIO  
D102 CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that  
the PIC MCU be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 241  
PIC18CXX2  
FIGURE 21-3:  
LOW VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 21-1: LOW VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
LVD Voltage  
Min  
Max  
Units  
Conditions  
D420  
VLVD  
LVV<3:0> = 0100  
LVV<3:0> = 0101  
LVV<3:0> = 0110  
LVV<3:0> = 0111  
LVV<3:0> = 1000  
LVV<3:0> = 1001  
LVV<3:0> = 1010  
LVV<3:0> = 1011  
LVV<3:0> = 1100  
LVV<3:0> = 1101  
LVV<3:0> = 1110  
2.5  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
2.66  
2.86  
2.98  
3.2  
3.52  
3.72  
3.84  
4.04  
4.26  
4.46  
4.78  
V
V
V
V
V
V
V
V
V
V
V
DS39026D-page 242  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 21-2: EPROM PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +40°C  
DC CHARACTERISTICS  
Param.  
Sym  
Characteristic  
Min  
Max Units  
Conditions  
No.  
Internal Program Memory  
Programming Specs (Note 1)  
Voltage on MCLR/VPP pin  
Supply voltage during  
programming  
D110  
D111  
VPP  
12.75  
4.75  
13.25  
5.25  
V
V
(Note 2)  
VDDP  
D112  
D113  
IPP  
Current into MCLR/VPP pin  
Supply current during  
programming  
50  
30  
mA  
mA  
IDDP  
D114  
D115  
TPROG Programming pulse width  
50  
1000  
s Terminated via internal/external  
interrupt or a RESET  
TERASE EPROM erase time  
Device operation 3V  
Device operation 3V  
60  
30  
min.  
min.  
Note 1: These specifications are for the programming of the on-chip program memory EPROM through the use of  
the table write instructions. The complete programming specifications can be found in the  
PIC18CXXX Programming Specifications (Literature Number DS39028).  
2: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 243  
PIC18CXX2  
21.3 AC (Timing) Characteristics  
21.3.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
START condition  
STO  
STOP condition  
DS39026D-page 244  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
21.3.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 21-3  
apply to all timing specifications unless otherwise  
noted. Figure 21-4 specifies the load conditions for the  
timing specifications.  
TABLE 21-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 21.1.  
LC parts operate for industrial temperatures only.  
FIGURE 21-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2/CLKOUT  
and including D and E outputs as ports  
VSS  
1999-2013 Microchip Technology Inc.  
DS39026D-page 245  
PIC18CXX2  
21.3.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 21-5:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
1
3
4
4
3
2
CLKOUT  
TABLE 21-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param. No. Symbol  
1A  
Characteristic  
Min  
Max  
Units  
Conditions  
FOSC  
External CLKIN  
DC  
DC  
4
DC  
DC  
4
MHz XT osc  
MHz HS osc  
MHz HS + PLL osc  
kHz LP osc  
Frequency(1)  
25  
10  
40  
40  
MHz EC, ECIO  
Oscillator Frequency(1)  
DC  
0.1  
4
4
5
4
4
25  
10  
200  
MHz RC osc  
MHz XT osc  
MHz HS osc  
MHz HS + PLL osc  
kHz LP osc mode  
1
TOSC  
External CLKIN Period(1)  
Oscillator Period(1)  
250  
40  
100  
25  
250  
ns  
ns  
ns  
s  
ns  
XT and RC osc  
HS osc  
HS + PLL osc  
LP osc  
25  
EC, ECIO  
250  
250  
25  
100  
25  
10,000  
250  
250  
ns  
ns  
ns  
ns  
s  
RC osc  
XT osc  
HS osc  
HS + PLL osc  
LP osc  
2
3
TCY  
TosL,  
TosH  
Instruction Cycle Time(1)  
External Clock in (OSC1)  
High or Low Time  
100  
30  
2.5  
10  
ns  
ns  
s  
ns  
ns  
ns  
ns  
TCY = 4/FOSC  
XT osc  
LP osc  
HS osc  
XT osc  
LP osc  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
HS osc  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKIN pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS39026D-page 246  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 21-5: PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
TRC  
PLL Start-up Time (Lock Time)  
-2  
2
ms  
%
CLK  
CLKOUT Stability (Jitter) using PLL  
+2  
FIGURE 21-6:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
19  
18  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-6: CLKOUT AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TosH2ckL OSC1to CLKOUT  
TosH2ckH OSC1to CLKOUT  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
TckL2ioV CLKOUT to Port out valid  
0.5TCY + 20 ns  
TioV2ckH Port in valid before CLKOUT   
TckH2ioI Port in hold after CLKOUT   
TosH2ioV OSC1(Q1 cycle) to Port out valid  
TosH2ioI OSC1(Q2 cycle) to PIC18CXXX  
0.25TCY + 25  
ns  
ns  
ns  
ns  
ns  
0
150  
100  
200  
Port input invalid  
(I/O in hold time)  
PIC18LCXXX  
19  
TioV2osH Port input valid to OSC1  
0
ns  
(I/O in setup time)  
20  
TioR  
TioF  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
12  
12  
25  
50  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20A  
21  
21A  
22††  
23††  
24††  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 change INT high or low time  
RC7:RC4 change INT high or low time  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 247  
PIC18CXX2  
FIGURE 21-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 21-4 for load conditions.  
FIGURE 21-8:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal Reference Voltage  
Internal Reference Voltage Stable  
36  
TABLE 21-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
s  
ms  
31  
Watchdog Timer Time-out Period  
(No Postscaler)  
18  
33  
32  
33  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period 1024TOSC  
72  
2
1024TOSC  
132  
ms  
s  
TOSC = OSC1 period  
Power up Timer Period  
28  
I/O Hi-impedance from MCLR  
Low or Watchdog Timer Reset  
35  
36  
TBOR  
Tivrst  
Brown-out Reset Pulse Width  
200  
s  
s  
VDD BVDD (See D005)  
Time for Internal Reference  
Voltage to become stable  
20  
50  
DS39026D-page 248  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
T0CKI Period  
No Prescaler  
TCY + 10  
With Prescaler  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI Synchronous, no prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High  
Time  
Synchronous,  
with prescaler  
PIC18CXXX  
10  
PIC18LCXXX  
25  
Asynchronous PIC18CXXX  
PIC18LCXXX  
30  
40  
T1CKI Synchronous, no prescaler  
0.5TCY + 20  
Low  
Time  
Synchronous,  
with prescaler  
PIC18CXXX  
15  
30  
30  
40  
PIC18LCXXX  
Asynchronous PIC18CXXX  
PIC18LCXXX  
47  
48  
Tt1P  
Ft1  
T1CKI Synchronous  
input  
period  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI oscillator input frequency range  
Tcke2tmrI Delay from external T1CKI clock edge to  
timer increment  
2TOSC  
7TOSC  
1999-2013 Microchip Technology Inc.  
DS39026D-page 249  
PIC18CXX2  
FIGURE 21-10:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-9: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx input low No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
time  
With  
PIC18CXXX  
10  
Prescaler  
PIC18LCXXX  
20  
0.5TCY + 20  
10  
51  
TccH  
CCPx input  
high time  
No Prescaler  
With  
PIC18CXXX  
Prescaler  
PIC18LCXXX  
20  
52  
53  
TccP  
TccR  
CCPx input period  
3TCY + 40  
N
N = prescale  
value (1,4 or 16)  
CCPx output fall time  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
25  
50  
25  
50  
ns  
ns  
ns  
ns  
54  
TccF  
CCPx output fall time  
DS39026D-page 250  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-11:  
PARALLEL SLAVE PORT TIMING (PIC18C4X2)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-10: PARALLEL SLAVE PORT REQUIREMENTS (PIC18C4X2)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH Data in valid before WRor CS  
20  
25  
ns  
ns  
(setup time)  
Extended Temp. Range  
63  
64  
TwrH2dtI WRor CSto data–in invalid PIC18CXXX  
20  
35  
ns  
ns  
(hold time)  
PIC18LCXXX  
TrdL2dtV RDand CSto data–out valid  
80  
90  
ns  
ns  
Extended Temp. Range  
65  
66  
TrdH2dtI RDor CSto data–out invalid  
10  
30  
ns  
TibfINH  
Inhibit of the IBF flag bit being cleared from  
3TCY  
WRor CS  
1999-2013 Microchip Technology Inc.  
DS39026D-page 251  
PIC18CXX2  
FIGURE 21-12:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-11: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
ns  
ns  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
(Note 1)  
(Note 1)  
SCK input low time  
(Slave mode)  
72A  
73  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
1.5TCY + 40  
100  
ns  
ns  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge  
of Byte2  
(Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18CXXX  
PIC18LCXXX  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
DS39026D-page 252  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-13:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
Symbol  
TscH  
TscL  
Characteristic  
Min  
Max Units Conditions  
No.  
71  
SCK input high time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
ns  
ns  
ns  
(Slave mode)  
71A  
72  
40  
1.25TCY + 30  
40  
(Note 1)  
(Note 1)  
SCK input low time  
(Slave mode)  
72A  
73  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
ns  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge  
of Byte2  
1.5TCY + 40  
(Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18CXXX  
PIC18LCXXX  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
ns  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 253  
PIC18CXX2  
FIGURE 21-14:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))  
Param.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
ns  
ns  
ns  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
(Note 1)  
(Note 1)  
SCK input low time  
(Slave mode)  
72A  
73  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the first clock edge of Byte2 1.5TCY + 40  
ns  
ns  
(Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
TscR  
SCK output rise time  
(Master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18CXXX  
PIC18LCXXX  
83  
TscH2ssH, SS after SCK edge  
1.5TCY + 40  
TscL2ssH  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
DS39026D-page 254  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-15:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
TB2B  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
ns  
ns  
ns  
ns  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
(Note 1)  
SCK input low time  
(Slave mode)  
72A  
73A  
74  
(Note 1)  
(Note 2)  
Last clock edge of Byte1 to the first clock edge of Byte2 1.5TCY + 40  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
TscR  
SCK output rise time  
(Master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after SCK PIC18CXXX  
TscL2doV edge  
PIC18LCXXX  
TssL2doV SDO data output valid after SSPIC18CXXX  
82  
83  
edge  
PIC18LCXXX  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5TCY + 40  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter # 71A and # 72A are used.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 255  
PIC18CXX2  
FIGURE 21-16:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-15: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
Tsu:sta START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
START condition  
91  
92  
93  
Thd:sta START condition  
Hold time  
4000  
600  
ns  
ns  
ns  
After this period the first  
clock pulse is generated  
Tsu:sto STOP condition  
Setup time  
4700  
600  
Thd:sto STOP condition  
Hold time  
4000  
600  
DS39026D-page 256  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-17:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-16: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
4.0  
s  
PIC18CXXX must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
s  
PIC18CXXX must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
s  
s  
PIC18CXXX must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18CXXX must operate at a  
minimum of 10 MHz  
SSP Module  
100 kHz mode  
400 kHz mode  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
1000  
300  
ns  
ns  
20 + 0.1CB  
CB is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1CB  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
s  
s  
s  
s  
ns  
s  
ns  
ns  
s  
s  
ns  
ns  
s  
s  
pF  
Only relevant for Repeated  
START condition  
91  
START condition hold  
time  
After this period the first clock  
pulse is generated  
106  
107  
92  
Data input hold time  
0
0.9  
Data input setup time  
250  
100  
4.7  
0.6  
(Note 2)  
STOP condition setup  
time  
109  
110  
D102  
Output valid from  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free before  
a new transmission can start  
CB  
Bus capacitive loading  
400  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast mode I C bus device can be used in a standard mode I C bus system, but the requirement TSU:DAT 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
2
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I C bus specification) before the SCL line is  
released.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 257  
PIC18CXX2  
FIGURE 21-18:  
MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-17: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA START condition  
Setup time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated START  
condition  
91  
92  
93  
THD:STA START condition  
Hold time  
ns After this period the  
first clock pulse is  
generated  
TSU:STO STOP condition  
Setup time  
ns  
THD:STO STOP condition  
Hold time  
ns  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
DS39026D-page 258  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-19:  
MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-18: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock high time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
101  
102  
103  
90  
TLOW  
TR  
Clock low time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
1000  
300  
ms  
ns  
ns  
SDA and SCL  
rise time  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1CB  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
300  
300  
300  
ns  
ns  
ns  
TF  
SDA and SCL  
fall time  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1CB  
1 MHz mode(1)  
100  
ns  
TSU:STA  
THD:STA  
START condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms Only relevant for  
ms Repeated START  
setup time  
400 kHz mode  
1 MHz mode(1)  
condition  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
91  
START condition 100 kHz mode  
ms After this period the  
ms first clock pulse is  
hold time  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
0.9  
generated  
ms  
ns  
ms  
106  
107  
92  
THD:DAT Data input  
hold time  
0
0
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
TBD  
250  
100  
ns  
ns  
ns  
TSU:DAT  
TSU:STO  
TAA  
Data input  
setup time  
(Note 2)  
1 MHz mode(1)  
TBD  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
ms  
ms  
STOP condition 100 kHz mode  
setup time  
400 kHz mode  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
3500  
1000  
ms  
ns  
ns  
109  
110  
Output valid from 100 kHz mode  
clock  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
4.7  
1.3  
ns  
TBUF  
Bus free time  
ms Time the bus must be  
ms free before a new  
1 MHz mode(1)  
Bus capacitive loading  
TBD  
400  
ms  
pF  
transmission can start  
D102 CB  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to  
the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL  
line is released.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 259  
PIC18CXX2  
FIGURE 21-20:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 21-4 for load conditions.  
122  
TABLE 21-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock high to data out valid  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
40  
100  
25  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time  
(Master mode)  
50  
Data out rise time and fall time  
25  
50  
FIGURE 21-21:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (MASTER & SLAVE)  
Data hold before CK (DT hold time)  
Data hold after CK (DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
DS39026D-page 260  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
TABLE 21-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX2 (INDUSTRIAL, EXTENDED)  
PIC18LCXX2 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
10  
10  
bit VREF = VDD 3.0V  
bit VREF = VDD 3.0V  
A03  
A04  
A05  
A06  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
<±1  
<±2  
LSb VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
EDL  
EFS  
EOFF  
<±1  
<±2  
LSb VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
<±1  
<±1  
LSb VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
Offset error  
<±1  
<±1  
LSb VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
A10  
A20  
A20A  
A21  
A22  
Monotonicity  
guaranteed(3)  
V
V
V
V
VSS VAIN VREF  
VREF  
Reference voltage  
(VREFH - VREFL)  
0V  
3V  
For 10-bit resolution  
VREFH Reference voltage High  
AVSS  
AVDD + 0.3V  
AVDD  
VREFL  
VAIN  
ZAIN  
IAD  
Reference voltage Low  
AVSS -  
0.3V  
A25  
A30  
A40  
Analog input voltage  
AVSS -  
0.3V  
VREF + 0.3V  
10.0  
V
Recommended impedance of  
analog voltage source  
k  
A/D conversion PIC18CXXX  
current (VDD)  
180  
90  
A Average current  
consumption when  
A/D is on (Note 1).  
PIC18LCXXX  
A  
A50  
IREF  
VREF input current (Note 2)  
10  
1000  
A During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN. To charge  
CHOLD, see Section 16.0.  
A During A/D conversion  
cycle.  
10  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is  
selected as reference input.  
2: VSS VAIN VREF  
3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 261  
PIC18CXX2  
FIGURE 21-22:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
Note 2  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 21-22: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D clock period  
PIC18CXXX  
1.6  
20(5)  
s TOSC based, VREF 3.0V  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
3.0  
2.0  
3.0  
11  
20(5)  
6.0  
9.0  
12  
s TOSC based, VREF full range  
s A/D RC mode  
s A/D RC mode  
TAD  
131  
132  
TCNV  
TACQ  
Conversion time  
(not including acquisition time) (Note 1)  
Acquisition time (Note 3)  
15  
10  
s -40C Temp 125C  
s  
0C Temp 125C  
135  
136  
TSWC  
TAMP  
Switching Time from convert sample  
Amplifier settling time (Note 2)  
1
(Note 4)  
s This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from  
the last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage, when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is  
50 .  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
DS39026D-page 262  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
22.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. 'Typical' represents the mean of the distribution at 25C. 'Max' or 'min' represents  
(mean + 3) or (mean - 3) respectively, where is standard deviation, over the whole temperature range.  
FIGURE 22-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
16  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
14  
12  
10  
8
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
6
3.2V  
4
3.0V  
2.7V  
2
2.5V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
FIGURE 22-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
16  
5.5V  
Typical: statistical mean @ 25°C  
14  
12  
10  
8
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.2V  
6
3.0V  
4
2.7V  
2
2.5V  
0
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
FOSC (MHz)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 263  
PIC18CXX2  
FIGURE 22-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS/PLL MODE)  
25  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
20  
15  
10  
5
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
4
5
6
7
8
9
10  
F
(MHz)  
OSC  
FIGURE 22-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE)  
25  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
20  
15  
10  
5
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
4
5
6
7
8
9
10  
F
(MHz)  
OSC  
DS39026D-page 264  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 22-5:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
1.0  
5.5V  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
0.8  
0.6  
0.4  
0.2  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 22-6:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
2.5  
5.5V  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
2.0  
1.5  
1.0  
0.5  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 265  
PIC18CXX2  
FIGURE 22-7:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
200  
180  
160  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
140  
120  
100  
80  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
60  
40  
20  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 22-8:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
300  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
250  
200  
5.5V  
5.0V  
150  
4.5V  
4.0V  
100  
3.5V  
3.0V  
50  
2.5V  
0
20  
30  
40  
50  
60  
(kHz)  
70  
80  
90  
100  
F
OSC  
DS39026D-page 266  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 22-9:  
TYPICAL AND MAXIMUM IDD vs. VDD  
(TIMER1 AS MAIN OSCILLATOR, 32.768 kHz, C = 47 pF)  
300  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
250  
200  
150  
100  
50  
Max (-40C)  
Typ (25C)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 22-10:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 20 pF, 25C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.3k  
5.1k  
10k  
100k  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 267  
PIC18CXX2  
FIGURE 22-11:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 100 pF, 25C)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
3.3k  
5.1k  
10k  
100k  
0.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
FIGURE 22-12:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 300 pF, 25C)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
3.3k  
5.1k  
10k  
100k  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39026D-page 268  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 22-13:  
IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
100.00  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
Max (125C)  
Max (85C)  
10.00  
1.00  
0.10  
Typ (25C)  
0.01  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 22-14:  
IBOR vs. VDD OVER TEMPERATURE (BOR ENABLED, VBOR = 2.50V - 2.66V)  
150  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
125  
100  
75  
Maximum RESET current - example only  
(Depends on osc mode, osc freq, temp, V  
)
DD  
Device in SLEEP  
Indeterminate State  
(May be in RESET or SLEEP  
50  
25  
0
MAX  
(-40C to 125C)  
I
BOR  
Typ IBOR  
(25C)  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
1999-2013 Microchip Technology Inc.  
DS39026D-page 269  
PIC18CXX2  
FIGURE 22-15:  
TYPICAL AND MAXIMUMITMR1 vs. VDD OVER TEMPERATURE  
(-40C TO +125C, TIMER1 WITH OSCILLATOR, XTAL=32 kHZ, C1 AND C2 = 47 pF)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Max (-40C to 125C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
Typ (25C)  
0
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
FIGURE 22-16:  
TYPICAL AND MAXIMUM IWDT vs. VDD OVER TEMPERATURE  
(WDT ENABLED)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
Maximum (-40C)  
Typical (25C)  
0.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
DS39026D-page 270  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 22-17:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40C TO +125C)  
60  
Typical: statistical mean @ 25°C  
50  
40  
30  
20  
10  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
Max (125C)  
Typ (25C)  
Min (-40C)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 22-18:  
ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 3.0V - 3.2V)  
50  
45  
Max  
(-40C to 125C)  
40  
35  
30  
25  
20  
15  
10  
5
Max (-40C to 125C)  
Typ (25C)  
Typ (25C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
LVDIF is  
unknown  
LVDIF can  
be cleared  
by firmware  
LVDIF is set  
by hardware  
0
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
1999-2013 Microchip Technology Inc.  
DS39026D-page 271  
PIC18CXX2  
FIGURE 22-19:  
ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5V - 4.78V)  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max (125C)  
Typ (25C)  
Max (125C)  
Typ (25C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
LVDIF is  
unknown  
LVDIF can  
be cleared  
by firmware  
LVDIF is set  
by hardware  
0
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
FIGURE 22-20:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40C TO +125C)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
Max  
(-40C)  
Typ  
(25C)  
Min  
(125C)  
Typical: statistical mean @ 25°C  
1.5  
1.0  
0.5  
0.0  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS39026D-page 272  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 22-21:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40C TO +125C)  
3.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-40C)  
Typ (25C)  
Min (125C)  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 22-22:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 5V, -40C TO +125C)  
1.4  
1.2  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max (-40C to 125C)  
Typ (25C)  
0
5
10  
15  
20  
25  
IOL (mA)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 273  
PIC18CXX2  
FIGURE 22-23:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 3V, -40C TO +125C)  
2.4  
2.2  
2.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max (-40C to 125C)  
Typ (25C)  
0
5
10  
15  
20  
25  
I
(mA)  
OL  
FIGURE 22-24:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40C TO +125C)  
4.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max (125C)  
VIH Min (-40C)  
VIL Max (-40C)  
VIL Min (125C)  
0.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
DS39026D-page 274  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 22-25:  
MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40C TO +125C)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
Max VTH (-40C)  
Min VTH (125C)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 22-26:  
MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40C TO +125C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Min VIH (-40C)  
Max VIH (125C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
Min VIL (-40C)  
Max VIL (125C)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 275  
PIC18CXX2  
NOTES:  
DS39026D-page 276  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
23.0 PACKAGING INFORMATION  
23.1 Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18C242-I/SP  
0117017  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC18C242-E/SO  
0110017  
YYWWNNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 277  
PIC18CXX2  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18C442-I/P  
0112017  
Example  
28- and 40-Lead JW (CERDIP)  
PIC18C452  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
-I/JW  
0115017  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18C442  
-E/PT  
0120017  
44-Lead PLCC  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18C452  
-I/L  
0120017  
DS39026D-page 278  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
23.2 Package Details  
The following sections give the technical details of the  
packages.  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E1  
D
2
n
1
E
A2  
L
A
c
B1  
A1  
eB  
B
p
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
0.29  
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
5
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
1999-2013 Microchip Technology Inc.  
DS39026D-page 279  
PIC18CXX2  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
p
D
B
2
n
1
h
45  
c
A2  
A
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS39026D-page 280  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E1  
D
2
1
n
E
A2  
A
L
c
B1  
B
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
5
10  
15  
5
10  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
1999-2013 Microchip Technology Inc.  
DS39026D-page 281  
PIC18CXX2  
28-Lead Ceramic Dual In-line with Window (JW) – 600 mil (CERDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E1  
W
D
2
n
1
E
A2  
A
L
c
B1  
eB  
A1  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.210  
.160  
.038  
.600  
.520  
1.460  
.138  
.010  
.058  
.020  
.660  
.280  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.195  
.225  
.165  
.060  
.625  
.526  
1.490  
.150  
.012  
.065  
.023  
.710  
.290  
4.95  
3.94  
5.33  
4.06  
5.72  
A2  
A1  
.155  
.015  
.595  
.514  
1.430  
.125  
.008  
.050  
.016  
.610  
.270  
4.19  
1.52  
0.38  
15.11  
13.06  
36.32  
3.18  
0.95  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
15.24  
13.21  
37.08  
3.49  
15.88  
13.36  
37.85  
3.81  
Tip to Seating Plane  
Lead Thickness  
c
0.20  
0.25  
0.30  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Diameter  
B1  
B
1.27  
1.46  
1.65  
0.41  
0.51  
0.58  
§
eB  
W
15.49  
6.86  
16.76  
7.11  
18.03  
7.37  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-103  
Drawing No. C04-013  
DS39026D-page 282  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
40-Lead Ceramic Dual In-line with Window (JW) – 600 mil (CERDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E1  
W
D
2
n
1
E
A2  
A
A1  
c
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.205  
.160  
.045  
.600  
.520  
2.050  
.140  
.011  
.053  
.020  
.660  
.350  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.185  
.225  
4.70  
3.94  
5.21  
4.06  
5.72  
4.19  
A2  
A1  
.155  
.030  
.595  
.514  
2.040  
.135  
.008  
.050  
.016  
.610  
.340  
.165  
.060  
.625  
.526  
2.060  
.145  
.014  
.055  
.023  
.710  
.360  
0.76  
15.11  
13.06  
51.82  
3.43  
1.14  
1.52  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
15.24  
13.21  
52.07  
3.56  
15.88  
13.36  
52.32  
3.68  
Tip to Seating Plane  
Lead Thickness  
c
0.20  
0.28  
0.36  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Diameter  
B1  
B
1.27  
1.33  
1.40  
0.41  
0.51  
0.58  
§
eB  
W
15.49  
8.64  
16.76  
8.89  
18.03  
9.14  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-103  
Drawing No. C04-014  
1999-2013 Microchip Technology Inc.  
DS39026D-page 283  
PIC18CXX2  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45  
A
c
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
DS39026D-page 284  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45  
CH1 x 45  
A3  
A2  
A
35  
B1  
B
c
A1  
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.050  
11  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
1999-2013 Microchip Technology Inc.  
DS39026D-page 285  
PIC18CXX2  
NOTES:  
DS39026D-page 286  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision A (July 1999)  
The differences between the devices listed in this data  
sheet are shown in Table 1.  
Original data sheet for PIC18CXX2 family.  
Revision B (March 2001)  
Added DC and AC characteristics graphs  
(Section 22.0).  
Revision C (January 2013)  
Added a note to each package outline drawing.  
TABLE 1:  
DEVICE DIFFERENCES  
Feature  
PIC18C242  
PIC18C252  
PIC18C442  
PIC18C452  
Program Memory (Kbytes)  
Data Memory (Bytes)  
A/D Channels  
16  
512  
5
32  
1536  
5
16  
512  
8
32  
1536  
8
Parallel Slave Port (PSP)  
Package Types  
No  
No  
Yes  
Yes  
28-pin DIP  
28-pin SOIC  
28-pin JW  
28-pin DIP  
28-pin SOIC  
28-pin JW  
40-pin DIP  
44-pin PLCC  
44-pin TQFP  
40-pin JW  
40-pin DIP  
44-pin PLCC  
44-pin TQFP  
40-pin JW  
1999-2013 Microchip Technology Inc.  
DS39026D-page 287  
PIC18CXX2  
APPENDIX C: CONVERSION  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
CONSIDERATIONS  
ENHANCED DEVICES  
This appendix discusses the considerations for con-  
verting from previous versions of a device to the ones  
listed in this data sheet. Typically, these changes are  
due to the differences in the process technology used.  
An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
This section discusses how to migrate from a Baseline  
device (i.e., PIC16C5X) to an Enhanced MCU device  
(i.e., PIC18CXXX).  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
DS39026D-page 288  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
APPENDIX E: MIGRATION FROM  
MID-RANGE TO  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18CXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442.” The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
A detailed discussion of the migration pathway and dif-  
ferences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18CXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration.” This Application Note is avail-  
able as Literature Number DS00726.  
This Application Note is available as Literature Number  
DS00716.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 289  
PIC18CXX2  
NOTES:  
DS39026D-page 290  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
INDEX  
PORTB  
A
RB3 Pin ............................................................. 81  
RB3:RB0 Port Pins ............................................ 81  
RB7:RB4 Port Pins ............................................ 80  
PORTC (Peripheral Output Override) ........................ 83  
PORTD (I/O Mode) .................................................... 85  
PORTE (I/O Mode) .................................................... 87  
PWM Operation (Simplified) .................................... 112  
SSP (SPI Mode) ...................................................... 121  
Timer1 ....................................................................... 98  
Timer1 (16-bit R/W Mode) ......................................... 98  
Timer2 ..................................................................... 102  
Timer3 ..................................................................... 104  
Timer3 (16-bit R/W Mode) ....................................... 104  
USART  
A/D ................................................................................... 165  
A/D Converter Flag (ADIF Bit) ................................. 167  
A/D Converter Interrupt, Configuring ....................... 168  
ADCON0 Register .................................................... 165  
ADCON1 Register ............................................ 165, 166  
ADRES Register .............................................. 165, 167  
Analog Port Pins .................................................. 89, 90  
Analog Port Pins, Configuring .................................. 170  
Associated Registers ............................................... 172  
Block Diagram .......................................................... 167  
Block Diagram, Analog Input Model ......................... 168  
Configuring the Module ............................................ 168  
Conversion Clock (TAD) ........................................... 170  
Conversion Status (GO/DONE Bit) .......................... 167  
Conversions ............................................................. 171  
Converter Characteristics ........................................ 261  
Equations ................................................................. 169  
Sampling Requirements ........................................... 168  
Sampling Time ......................................................... 169  
Special Event Trigger (CCP) ............................ 110, 171  
Timing Diagram ........................................................ 262  
Absolute Maximum Ratings ............................................. 235  
ACKSTAT ........................................................................ 139  
ADCON0 Register ............................................................ 165  
GO/DONE Bit ........................................................... 167  
ADCON1 Register .................................................... 165, 166  
ADDLW ............................................................................ 193  
ADDWF ............................................................................ 193  
ADDWFC ......................................................................... 194  
ADRES Register ...................................................... 165, 167  
Analog-to-Digital Converter. See A/D  
Asynchronous Receive .................................... 157  
Asynchronous Transmit ................................... 155  
Watchdog Timer ...................................................... 184  
BN .................................................................................... 196  
BNC ................................................................................. 197  
BNOV .............................................................................. 198  
BNZ ................................................................................. 198  
BOR. See Brown-out Reset  
BOV ................................................................................. 201  
BRA ................................................................................. 199  
BRG. See Baud Rate Generator  
Brown-out Reset (BOR) ............................................. 26, 179  
Timing Diagram ....................................................... 248  
BSF .................................................................................. 199  
BTFSC ............................................................................. 200  
BTFSS ............................................................................. 200  
BTG ................................................................................. 201  
Bus Collision During a Repeated START Condition ........ 147  
Bus Collision During a START Condition ........................ 145  
Bus Collision During a STOP Condition .......................... 148  
BZ .................................................................................... 202  
ANDLW ............................................................................ 194  
ANDWF ............................................................................ 195  
Assembler  
MPASM Assembler .................................................. 229  
C
B
CALL ................................................................................ 202  
Capture (CCP Module) .................................................... 109  
Associated Registers ............................................... 111  
Block Diagram ......................................................... 109  
CCP Pin Configuration ............................................ 109  
CCPR1H:CCPR1L Registers .................................. 109  
Software Interrupt .................................................... 109  
Timer1 Mode Selection ............................................ 109  
Capture/Compare/PWM (CCP) ....................................... 107  
Capture Mode. See Capture  
Baud Rate Generator ....................................................... 136  
BC .................................................................................... 195  
BCF .................................................................................. 196  
BF .................................................................................... 139  
Block Diagrams  
A/D Converter .......................................................... 167  
Analog Input Model .................................................. 168  
Baud Rate Generator ............................................... 136  
Capture Mode Operation ......................................... 109  
Compare Mode Operation ....................................... 110  
Low Voltage Detect  
CCP1 ....................................................................... 108  
CCPR1H Register ........................................... 108  
CCPR1L Register ............................................ 108  
CCP1CON and CCP2CON Registers ..................... 107  
CCP2 ....................................................................... 108  
CCPR2H Register ........................................... 108  
CCPR2L Register ............................................ 108  
Compare Mode. See Compare  
External Reference Source .............................. 174  
Internal Reference Source ............................... 174  
MSSP  
2
I C Mode .......................................................... 128  
SPI Mode ......................................................... 121  
On-Chip Reset Circuit ................................................ 25  
Parallel Slave Port (PORTD and PORTE) ................. 90  
PORTA  
Interaction of Two CCP Modules ............................. 108  
PWM Mode. See PWM  
RA3:RA0 and RA5 Port Pins ............................. 77  
RA4/T0CKI Pin .................................................. 78  
RA6 Pin .............................................................. 78  
Timer Resources ..................................................... 108  
Timing Diagram ....................................................... 250  
Clocking Scheme ............................................................... 39  
CLRF ............................................................................... 203  
CLRWDT ......................................................................... 203  
1999-2013 Microchip Technology Inc.  
DS39026D-page 291  
PIC18CXX2  
Code Examples  
I
16 x 16 Signed Multiply Routine ................................62  
16 x 16 Unsigned Multiply Routine ............................62  
8 x 8 Signed Multiply Routine ....................................61  
8 x 8 Unsigned Multiply Routine ................................61  
Changing Between Capture Prescalers ...................109  
Fast Register Stack ....................................................39  
Initializing PORTA ......................................................77  
Initializing PORTB ......................................................80  
Initializing PORTC ......................................................83  
Initializing PORTD ......................................................85  
Initializing PORTE ......................................................87  
Loading the SSPBUF Register ................................122  
Saving STATUS, WREG and BSR Registers  
I/O Ports ............................................................................. 77  
I C (SSP Module) ............................................................ 128  
2
ACK Pulse ....................................................... 128, 129  
Addressing ............................................................... 129  
Block Diagram ......................................................... 128  
Read/Write Bit Information (R/W Bit) ....................... 129  
Reception ................................................................ 129  
Serial Clock (RC3/SCK/SCL) ................................... 129  
Slave Mode .............................................................. 128  
Timing Diagram, Data .............................................. 257  
Timing Diagram, START/STOP Bits ........................ 256  
Transmission ........................................................... 129  
2
I C Master Mode Reception ............................................ 139  
I C Master Mode Repeated START Condition ................ 138  
I C Module  
in RAM ...............................................................75  
Code Protection ....................................................... 179, 186  
COMF ...............................................................................204  
Compare (CCP Module) ...................................................110  
Associated Registers ...............................................111  
Block Diagram ..........................................................110  
CCP Pin Configuration .............................................110  
CCPR1H:CCPR1L Registers ...................................110  
Software Interrupt ....................................................110  
Special Event Trigger .........................99, 105, 110, 171  
Timer1 Mode Selection ............................................110  
Configuration Bits .............................................................179  
Context Saving During Interrupts .......................................75  
Example Code ...........................................................75  
Conversion Considerations ..............................................288  
CPFSEQ ..........................................................................204  
CPFSGT ...........................................................................205  
CPFSLT ...........................................................................205  
2
2
Acknowledge Sequence Timing .............................. 142  
Baud Rate Generator  
Block Diagram  
Baud Rate Generator ...................................... 136  
BRG Reset Due to SDA Collision ............................ 146  
BRG Timing ............................................................. 136  
Bus Collision  
Acknowledge ................................................... 144  
Repeated START Condition ............................ 147  
Repeated START Condition Timing  
(Case 1) ................................................... 147  
Repeated START Condition Timing  
(Case 2) ................................................... 147  
START Condition ............................................. 145  
START Condition Timing ......................... 145, 146  
STOP Condition ............................................... 148  
STOP Condition Timing (Case 1) .................... 148  
STOP Condition Timing (Case 2) .................... 148  
Transmit Timing ............................................... 144  
Bus Collision Timing ................................................ 144  
Clock Arbitration ...................................................... 143  
Clock Arbitration Timing (Master Transmit) ............. 143  
General Call Address Support ................................. 133  
Master Mode 7-bit Reception Timing ....................... 141  
Master Mode Operation ........................................... 135  
Master Mode START Condition ............................... 137  
Master Mode Transmission ..................................... 139  
Master Mode Transmit Sequence ............................ 135  
Multi-Master Mode ................................................... 144  
Repeat START Condition Timing ............................ 138  
STOP Condition Receive or Transmit Timing .......... 143  
STOP Condition Timing ........................................... 142  
Waveforms for 7-bit Reception ................................ 130  
Waveforms for 7-bit Transmission ........................... 130  
ICEPIC In-Circuit Emulator .............................................. 230  
ID Locations ............................................................. 179, 186  
INCF ................................................................................ 208  
INCFSZ ............................................................................ 209  
In-Circuit Serial Programming (ICSP) ...................... 179, 186  
Indirect Addressing ............................................................ 51  
FSR Register ............................................................. 50  
INFSNZ ............................................................................ 209  
Instruction Cycle ................................................................ 39  
Instruction Flow/Pipelining ................................................. 40  
Instruction Format ............................................................ 189  
D
Data Memory ......................................................................42  
General Purpose Registers ........................................42  
Special Function Registers ........................................42  
DAW .................................................................................206  
DC Characteristics ................................................... 237, 240  
DECF ...............................................................................206  
DECFSNZ ........................................................................207  
DECFSZ ...........................................................................207  
Device Differences ...........................................................287  
Direct Addressing ...............................................................51  
E
Electrical Characteristics ..................................................235  
Errata ...................................................................................5  
F
Firmware Instructions .......................................................187  
G
General Call Address Sequence ......................................133  
General Call Address Support .........................................133  
GOTO ...............................................................................208  
DS39026D-page 292  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
Instruction Set .................................................................. 187  
ADDLW .................................................................... 193  
ADDWF .................................................................... 193  
ADDWFC ................................................................. 194  
ANDLW .................................................................... 194  
ANDWF .................................................................... 195  
BC ............................................................................ 195  
BCF .......................................................................... 196  
BN ............................................................................ 196  
BNC ......................................................................... 197  
BNOV ....................................................................... 198  
BNZ .......................................................................... 198  
BOV ......................................................................... 201  
BRA .......................................................................... 199  
BSF .......................................................................... 199  
BTFSC ..................................................................... 200  
BTFSS ..................................................................... 200  
BTG .......................................................................... 201  
BZ ............................................................................ 202  
CALL ........................................................................ 202  
CLRF ........................................................................ 203  
CLRWDT .................................................................. 203  
COMF ...................................................................... 204  
CPFSEQ .................................................................. 204  
CPFSGT .................................................................. 205  
CPFSLT ................................................................... 205  
DAW ......................................................................... 206  
DECF ....................................................................... 206  
DECFSNZ ................................................................ 207  
DECFSZ ................................................................... 207  
GOTO ...................................................................... 208  
INCF ......................................................................... 208  
INCFSZ .................................................................... 209  
INFSNZ .................................................................... 209  
IORLW ..................................................................... 210  
IORWF ..................................................................... 210  
LFSR ........................................................................ 211  
MOVF ....................................................................... 211  
MOVFF .................................................................... 212  
MOVLB .................................................................... 212  
MOVLW ................................................................... 213  
MOVWF ................................................................... 213  
MULLW .................................................................... 214  
MULWF .................................................................... 214  
NEGF ....................................................................... 215  
NOP ......................................................................... 215  
RCALL ..................................................................... 217  
RESET ..................................................................... 217  
RETFIE .................................................................... 218  
RETLW .................................................................... 218  
RETURN .................................................................. 219  
RLCF ........................................................................ 219  
RLNCF ..................................................................... 220  
RRCF ....................................................................... 220  
RRNCF .................................................................... 221  
SETF ........................................................................ 221  
SLEEP ..................................................................... 222  
SUBFWB .................................................................. 222  
SUBLW .................................................................... 223  
SUBWF .................................................................... 223  
SUBWFB .................................................................. 224  
SWAPF .................................................................... 224  
TBLRD ..................................................................... 225  
TBLWT ..................................................................... 226  
TSTFSZ ................................................................... 227  
XORLW ................................................................... 227  
XORWF ................................................................... 228  
Summary Table ....................................................... 190  
INT Interrupt (RB0/INT). See Interrupt Sources  
INTCON Register  
RBIF Bit ..................................................................... 80  
INTCON Registers ............................................................. 65  
2
Inter-Integrated Circuit. See I C  
Internal Program Memory  
Read/Writes ............................................................... 57  
Interrupt Sources ....................................................... 63, 179  
A/D Conversion Complete ....................................... 168  
Capture Complete (CCP) ........................................ 109  
Compare Complete (CCP) ...................................... 110  
INT0 ........................................................................... 75  
Interrupt-on-Change (RB7:RB4 ) ............................... 80  
PORTB, on Change ................................................... 75  
RB0/INT Pin, External ............................................... 75  
SSP Receive/Transmit Complete ............................ 115  
TMR0 ......................................................................... 75  
TMR0 Overflow .......................................................... 95  
TMR1 Overflow .................................... 97, 99, 103, 105  
TMR2 to PR2 Match ................................................ 102  
TMR2 to PR2 Match (PWM) ............................ 101, 112  
USART Receive/Transmit Complete ....................... 149  
Interrupts, Enable Bits  
CCP1 Enable (CCP1IE Bit) ..................................... 109  
Interrupts, Flag Bits  
A/D Converter Flag (ADIF Bit) ................................. 167  
CCP1 Flag (CCP1IF Bit) .................................. 109, 110  
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) ....... 80  
IORLW ............................................................................. 210  
IORWF ............................................................................. 210  
IPR Registers ..................................................................... 72  
K
KEELOQ Evaluation and Programming Tools ................... 232  
L
LFSR ............................................................................... 211  
Long Write  
and Interrupts ............................................................ 59  
Operation ................................................................... 58  
Sequence of Events .................................................. 58  
Unexpected Termination ........................................... 59  
Low Voltage Detect ......................................................... 173  
Block Diagrams  
External Reference Source ............................. 174  
Internal Reference Source ............................... 174  
Converter Characteristics ........................................ 242  
Effects of a RESET .................................................. 177  
Operation ................................................................. 176  
Current Consumption ...................................... 177  
During SLEEP ................................................. 177  
Reference Voltage Set Point ........................... 177  
LVD. See Low Voltage Detect.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 293  
PIC18CXX2  
PICSTART Plus Entry Level Development System ......... 231  
PIE Registers ..................................................................... 70  
Pin Functions  
M
Master Synchronous Serial Port (MSSP). See SSP.  
Memory Organization  
MCLR/VPP ........................................................... 10, 13  
OSC1/CLKIN ....................................................... 10, 13  
OSC2/CLKOUT ................................................... 10, 13  
RA0/AN0 .............................................................. 10, 13  
RA1/AN1 .............................................................. 10, 13  
RA2/AN2 .............................................................. 10, 13  
RA3/AN3/VREF ..................................................... 10, 13  
RA4/T0CKI .......................................................... 10, 13  
RA5/AN4/SS ........................................................ 10, 13  
RB0/INT ............................................................... 11, 14  
RB1 ...................................................................... 11, 14  
RB2 ...................................................................... 11, 14  
RB3 ...................................................................... 11, 14  
RB4 ...................................................................... 11, 14  
RB5 ...................................................................... 11, 14  
RB6 ...................................................................... 11, 14  
RB7 ...................................................................... 11, 14  
RC0/T1OSO/T1CKI ............................................. 12, 15  
RC1/T1OSI/CCP2 ................................................ 12, 15  
RC2/CCP1 ........................................................... 12, 15  
RC3/SCK/SCL ..................................................... 12, 15  
RC4/SDI/SDA ...................................................... 12, 15  
RC5/SDO ............................................................. 12, 15  
RC6/TX/CK .......................................................... 12, 15  
RC7/RX/DT .......................................................... 12, 15  
RD0/PSP0 ................................................................. 16  
RD1/PSP1 ................................................................. 16  
RD2/PSP2 ................................................................. 16  
RD3/PSP3 ................................................................. 16  
RD4/PSP4 ................................................................. 16  
RD5/PSP5 ................................................................. 16  
RD6/PSP6 ................................................................. 16  
RD7/PSP7 ................................................................. 16  
RE0/RD/AN5 .............................................................. 16  
RE1/WR/AN6 ............................................................. 16  
RE2/CS/AN7 .............................................................. 16  
VDD ...................................................................... 12, 16  
VSS ...................................................................... 12, 16  
PIR Registers ..................................................................... 68  
Pointer, FSR ...................................................................... 50  
POR. See Power-on Reset.  
Data Memory .............................................................42  
Program Memory .......................................................35  
Migration from Baseline to Enhanced Devices ................288  
MOVF ...............................................................................211  
MOVFF .............................................................................212  
MOVLB .............................................................................212  
MOVLW ............................................................................213  
MOVWF ...........................................................................213  
MPLAB C17 and MPLAB C18 C Compilers .....................229  
MPLAB ICD In-Circuit Debugger ......................................231  
MPLAB ICE High Performance Universal  
In-Circuit Emulator with MPLAB IDE ........................230  
MPLAB Integrated Development  
Environment Software ..............................................229  
MPLINK Object Linker/MPLIB Object Librarian ...............230  
MULLW ............................................................................214  
Multi-Master Mode ...........................................................144  
MULWF ............................................................................214  
N
NEGF ...............................................................................215  
NOP .................................................................................215  
O
On-Chip Reset Circuit  
Block Diagram ............................................................25  
OPCODE Field Descriptions ............................................188  
OPTION_REG Register  
PS2:PS0 Bits .............................................................95  
PSA Bit .......................................................................95  
T0CS Bit .....................................................................95  
T0SE Bit .....................................................................95  
Oscillator Configuration ....................................................179  
Oscillator Configurations ....................................................17  
HS ..............................................................................17  
HS + PLL ....................................................................17  
LP ...............................................................................17  
RC ........................................................................ 17, 18  
RCIO ..........................................................................17  
XT ..............................................................................17  
Oscillator, Timer1 .........................................97, 99, 103, 105  
Oscillator, WDT ................................................................183  
PORTA  
Associated Registers ................................................. 79  
Initialization ................................................................ 77  
PORTA Register ........................................................ 77  
RA3:RA0 and RA5 Port Pins ..................................... 77  
RA4/T0CKI Pin .......................................................... 78  
RA6 Pin ..................................................................... 78  
TRISA Register .......................................................... 77  
PORTB  
P
Packaging ........................................................................277  
Parallel Slave Port (PSP) .............................................85, 90  
Associated Registers .................................................91  
Block Diagram ............................................................90  
RE0/RD/AN5 Pin .................................................. 89, 90  
RE1/WR/AN6 Pin ................................................. 89, 90  
RE2/CS/AN7 Pin .................................................. 89, 90  
Read Waveforms .......................................................91  
Select (PSPMODE Bit) ........................................ 85, 90  
Timing Diagram ........................................................251  
Write Waveforms .......................................................90  
PICDEM 1 Low Cost PIC MCU  
Associated Registers ................................................. 82  
Initialization ................................................................ 80  
PORTB Register ........................................................ 80  
RB0/INT Pin, External ................................................ 75  
RB3 Pin ..................................................................... 81  
RB3:RB0 Port Pins .................................................... 81  
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) .......... 80  
RB7:RB4 Port Pins .................................................... 80  
TRISB Register .......................................................... 80  
Demonstration Board ...............................................231  
PICDEM 17 Demonstration Board ...................................232  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board ...............................................231  
PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board ...............................................232  
DS39026D-page 294  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
PORTC  
Associated Registers ................................................. 84  
Q
Q Clock ............................................................................ 112  
Block Diagram (Peripheral Output Override) ............. 83  
Initialization .......................................................... 83, 85  
PORTC Register ........................................................ 83  
RC3/SCK/SCL Pin ................................................... 129  
RC7/RX/DT Pin ........................................................ 151  
TRISC Register .................................................. 83, 149  
PORTD .............................................................................. 90  
Associated Registers ................................................. 86  
Block Diagram (I/O Mode) ......................................... 85  
Parallel Slave Port (PSP) Function ............................ 85  
PORTD Register ........................................................ 85  
TRISD Register .......................................................... 85  
PORTE  
Analog Port Pins .................................................. 89, 90  
Associated Registers ................................................. 89  
Block Diagram (I/O Mode) ......................................... 87  
Initialization ................................................................ 87  
PORTE Register ........................................................ 87  
PSP Mode Select (PSPMODE Bit) ...................... 85, 90  
RE0/RD/AN5 Pin .................................................. 89, 90  
RE1/WR/AN6 Pin ................................................. 89, 90  
RE2/CS/AN7 Pin .................................................. 89, 90  
TRISE Register .................................................... 87, 88  
Postscaler, WDT  
R
RAM. See Data Memory.  
RCALL ............................................................................. 217  
RCON Register ............................................................ 53, 56  
RCSTA Register  
SPEN Bit .................................................................. 149  
Register File ....................................................................... 42  
Registers  
ADCON0 (A/D Control 0) ......................................... 165  
ADCON1 (A/D Control 1) ......................................... 166  
CCP1CON and CCP2CON  
(Capture/Compare/PWM Control) ................... 107  
CONFIG1H (Configuration 1 High) .......................... 180  
CONFIG1L (Configuration 1 Low) ........................... 180  
CONFIG2H (Configuration 2 High) .......................... 181  
CONFIG2L (Configuration 2 Low) ........................... 181  
CONFIG3H (Configuration 3 High) .......................... 182  
CONFIG4L (Configuration 4 Low) ........................... 182  
Flag ...................................................................... 68, 69  
INTCON (Interrupt Control) ....................................... 65  
INTCON2 (Interrupt Control 2) .................................. 66  
INTCON3 (Interrupt Control 3) .................................. 67  
IPR1 (Peripheral Interrupt Priority 1) ......................... 72  
IPR2 (Peripheral Interrupt Priority 2) ......................... 73  
LVDCON (LVD Control) ........................................... 175  
PIE2 (Peripheral Interrupt Enable 1) ......................... 70  
PIE2 (Peripheral Interrupt Enable 2) ......................... 71  
PIR1 (Peripheral Interrupt Request 1) ....................... 68  
PIR2 (Peripheral Interrupt Request 2) ....................... 69  
RCON (Register Control) ........................................... 74  
RCON (RESET Control) ...................................... 53, 56  
RCSTA (Receive Status and Control) ..................... 150  
SSPCON1 (SSP Control 1) ..................................... 118  
SSPCON2 (SSP Control 2) ..................................... 120  
SSPSTAT (SSP Status) .......................................... 116  
STATUS .................................................................... 52  
STKPTR (Stack Pointer) ............................................ 38  
Summary ................................................................... 46  
T0CON (Timer0 Control) ........................................... 93  
T1CON (Timer1 Control) ........................................... 97  
T2CON (Timer2 Control) ......................................... 101  
T3CON (Timer3 Control) ......................................... 103  
TRISE ........................................................................ 88  
TXSTA (Transmit Status and Control) ..................... 149  
RESET ............................................................... 25, 179, 217  
Timing Diagram ....................................................... 248  
RETFIE ............................................................................ 218  
RETLW ............................................................................ 218  
RETURN .......................................................................... 219  
Revision History ............................................................... 287  
RLCF ............................................................................... 219  
RLNCF ............................................................................. 220  
RRCF ............................................................................... 220  
RRNCF ............................................................................ 221  
Assignment (PSA Bit) ................................................ 95  
Rate Select (PS2:PS0 Bits) ....................................... 95  
Switching Between Timer0 and WDT ........................ 95  
Power-down Mode. See SLEEP.  
Power-on Reset (POR) .............................................. 26, 179  
Oscillator Start-up Timer (OST) ......................... 26, 179  
Power-up Timer (PWRT) ................................... 26, 179  
Time-out Sequence .................................................... 26  
Time-out Sequence on Power-up ........................ 32, 33  
Timing Diagram ........................................................ 248  
Prescaler, Capture ........................................................... 109  
Prescaler, Timer0 ............................................................... 95  
Assignment (PSA Bit) ................................................ 95  
Rate Select (PS2:PS0 Bits) ....................................... 95  
Switching Between Timer0 and WDT ........................ 95  
Prescaler, Timer1 ............................................................... 98  
Prescaler, Timer2 ............................................................. 112  
PRO MATE II Universal Programmer .............................. 231  
Product Identification System .......................................... 301  
Program Counter  
PCL Register .............................................................. 39  
PCLATH Register ...................................................... 39  
Program Memory ............................................................... 35  
Interrupt Vector .......................................................... 35  
RESET Vector ............................................................ 35  
Program Verification ........................................................ 186  
Programming, Device Instructions ................................... 187  
PSP.See Parallel Slave Port.  
Pulse Width Modulation. See PWM (CCP Module).  
PWM (CCP Module) ........................................................ 112  
Associated Registers ............................................... 113  
Block Diagram .......................................................... 112  
CCPR1H:CCPR1L Registers ................................... 112  
Duty Cycle ................................................................ 112  
Example Frequencies/Resolutions .......................... 113  
Output Diagram ........................................................ 112  
Period ....................................................................... 112  
Setup for PWM Operation ........................................ 113  
TMR2 to PR2 Match ........................................ 101, 112  
1999-2013 Microchip Technology Inc.  
DS39026D-page 295  
PIC18CXX2  
S
T
SCI. See USART.  
TABLAT Register ............................................................... 57  
Table Pointer Operations (Table) ...................................... 57  
Table Read Operation, Diagram ........................................ 55  
Table Write Operation, Diagram ........................................ 55  
TBLPTR Register ............................................................... 57  
TBLRD ............................................................................. 225  
TBLWT ............................................................................. 226  
Timer0 ................................................................................ 93  
Clock Source Edge Select (T0SE Bit) ....................... 95  
Clock Source Select (T0CS Bit) ................................. 95  
Overflow Interrupt ...................................................... 95  
Prescaler. See Prescaler, Timer0  
T0CON Register ........................................................ 93  
Timing Diagram ....................................................... 249  
Timer1 ................................................................................ 97  
Block Diagram ........................................................... 98  
Block Diagram (16-bit R/W Mode) ............................. 98  
Oscillator .............................................. 97, 99, 103, 105  
Overflow Interrupt ................................ 97, 99, 103, 105  
Prescaler. .................................................................. 98  
Special Event Trigger (CCP) ..................... 99, 105, 110  
T1CON Register ........................................................ 97  
Timing Diagram ....................................................... 249  
TMR1H Register ................................................ 97, 103  
TMR1L Register ................................................. 97, 103  
Timer2 .............................................................................. 101  
Associated Registers ............................................... 102  
Block Diagram ......................................................... 102  
Postscaler. See Postscaler, Timer2.  
SCK ..................................................................................121  
SDI ...................................................................................121  
SDO .................................................................................121  
Serial Clock, SCK .............................................................121  
Serial Communication Interface. See USART  
Serial Data In, SDI ...........................................................121  
Serial Data Out, SDO .......................................................121  
Serial Peripheral Interface. See SPI  
SETF ................................................................................221  
Slave Select Synchronization ...........................................125  
Slave Select, SS ..............................................................121  
SLEEP ..............................................................179, 185, 222  
Software Simulator (MPLAB SIM) ....................................230  
Special Event Trigger. See Compare  
Special Features of the CPU ............................................179  
Configuration Registers ................................... 180–182  
Special Function Registers ................................................42  
Map ............................................................................45  
SPI  
Master Mode ............................................................124  
Serial Clock ..............................................................121  
Serial Data In ...........................................................121  
Serial Data Out ........................................................121  
Slave Select .............................................................121  
SPI Clock .................................................................124  
SPI Mode .................................................................121  
SPI Master/Slave Connection ..........................................123  
SPI Module  
Master/Slave Connection .........................................123  
Slave Mode ..............................................................125  
Slave Select Synchronization ..................................125  
Slave Synch Timing .................................................125  
Slave Timing with CKE = 0 ......................................126  
Slave Timing with CKE = 1 ......................................126  
SS ....................................................................................121  
SSP ..................................................................................115  
Block Diagram (SPI Mode) ......................................121  
PR2 Register ................................................... 101, 112  
Prescaler. See Prescaler, Timer2.  
SSP Clock Shift ............................................... 101, 102  
T2CON Register ...................................................... 101  
TMR2 Register ......................................................... 101  
TMR2 to PR2 Match Interrupt .................. 101, 102, 112  
Timer3 .............................................................................. 103  
Associated Registers ............................................... 105  
Block Diagram ......................................................... 104  
Block Diagram (16-bit R/W Mode) ........................... 104  
T3CON Register ...................................................... 103  
Timing Diagrams  
2
2
I C Mode. See I C.  
SPI Mode .................................................................121  
Associated Registers .......................................127  
Block Diagram ..................................................121  
SPI Mode. See SPI.  
SSPBUF ...................................................................124  
SSPCON1 ................................................................118  
SSPCON2 Register .................................................120  
SSPSR .....................................................................124  
SSPSTAT .................................................................116  
TMR2 Output for Clock Shift ............................ 101, 102  
Acknowledge Sequence Timing .............................. 142  
Baud Rate Generator with Clock Arbitration ............ 136  
BRG Reset Due to SDA Collision ............................ 146  
Bus Collision  
START Condition Timing ................................. 145  
Bus Collision During a Repeated START  
Condition (Case 1) ........................................... 147  
Bus Collision During a Repeated START  
SSP Module  
Condition (Case2) ............................................ 147  
Bus Collision During a START Condition  
SPI Master Mode .....................................................124  
SPI Master./Slave Connection .................................123  
SPI Slave Mode .......................................................125  
SSPCON1 Register ..........................................................118  
SSPOV .............................................................................139  
SSPSTAT Register ..........................................................116  
R/W Bit .....................................................................129  
STATUS Register ...............................................................52  
STKPTR Register ...............................................................38  
SUBFWB ..........................................................................222  
SUBLW ............................................................................223  
SUBWF ............................................................................223  
SUBWFB ..........................................................................224  
SWAPF ............................................................................224  
Synchronous Serial Port. See SSP.  
(SCL = 0) ......................................................... 146  
Bus Collision During a STOP Condition .................. 148  
Bus Collision for Transmit and Acknowledge .......... 144  
2
I C Bus Data ............................................................ 259  
2
I C Master Mode First START Bit Timing ................ 137  
2
I C Master Mode Reception Timing ......................... 141  
2
I C Master Mode Transmission Timing ................... 140  
Master Mode Transmit Clock Arbitration ................. 143  
Repeat START Condition ........................................ 138  
Slave Synchronization ............................................. 125  
SPI Mode Timing (Master Mode) SPI Mode  
Master Mode Timing Diagram ......................... 124  
SPI Mode Timing (Slave Mode with CKE = 0) ......... 126  
SPI Mode Timing (Slave Mode with CKE = 1) ......... 126  
DS39026D-page 296  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
STOP Condition Receive or Transmit ...................... 143  
Time-out Sequence on Power-up ........................ 32, 33  
USART Asynchronous Master Transmission ........... 156  
USART Asynchronous Reception ............................ 158  
USART Synchronous Reception .............................. 161  
USART Synchronous Transmission ........................ 160  
Wake-up from SLEEP via Interrupt .......................... 186  
Timing Diagrams and Specifications ................................ 246  
A/D Conversion ........................................................ 262  
Brown-out Reset (BOR) ........................................... 248  
Capture/Compare/PWM (CCP) ................................ 250  
CLKOUT and I/O ...................................................... 247  
External Clock .......................................................... 246  
Baud Rate Generator (BRG) ................................... 151  
Associated Registers ....................................... 151  
Baud Rate Error, Calculating ........................... 151  
Baud Rate Formula ......................................... 151  
Baud Rates, Asynchronous Mode  
(BRGH = 0) .............................................. 153  
Baud Rates, Asynchronous Mode  
(BRGH = 1) .............................................. 154  
Baud Rates, Synchronous Mode ..................... 152  
High Baud Rate Select (BRGH Bit) ................. 151  
Sampling ......................................................... 151  
RCSTA Register ...................................................... 150  
Serial Port Enable (SPEN Bit) ................................. 149  
Synchronous Master Mode ...................................... 159  
Associated Registers, Reception ..................... 161  
Associated Registers, Transmit ....................... 159  
Reception ........................................................ 161  
Timing Diagram, Synchronous Receive .......... 260  
Timing Diagram, Synchronous  
Transmission ........................................... 260  
Transmission ................................................... 160  
Associated Registers ............................... 159  
Synchronous Slave Mode ........................................ 162  
Associated Registers, Receive ........................ 163  
Associated Registers, Transmit ....................... 162  
Reception ........................................................ 163  
Transmission ................................................... 162  
TXSTA Register ....................................................... 149  
2
I C Bus Data ............................................................ 257  
2
I C Bus START/STOP Bits ...................................... 256  
Oscillator Start-up Timer (OST) ............................... 248  
Parallel Slave Port (PSP) ......................................... 251  
Power-up Timer (PWRT) ......................................... 248  
RESET ..................................................................... 248  
Timer0 and Timer1 ................................................... 249  
USART Synchronous Receive  
(Master/Slave) ................................................. 260  
USART SynchronousTransmission  
(Master/Slave) ................................................. 260  
Watchdog Timer (WDT) ........................................... 248  
TRISE Register .................................................................. 87  
PSPMODE Bit ...................................................... 85, 90  
TSTFSZ ........................................................................... 227  
Two-Word Instructions  
W
Example Cases .......................................................... 41  
TXSTA Register  
Wake-up from SLEEP .............................................. 179, 185  
Timing Diagram ....................................................... 186  
Using Interrupts ....................................................... 185  
Watchdog Timer (WDT) ........................................... 179, 183  
Associated Registers ............................................... 184  
Block Diagram ......................................................... 184  
Postscaler ................................................................ 184  
Programming Considerations .................................. 183  
RC Oscillator ........................................................... 183  
Time-out Period ....................................................... 183  
Timing Diagram ....................................................... 248  
Waveform for General Call Address Sequence ............... 133  
WCOL .............................................................. 137, 139, 142  
WCOL Status Flag ........................................................... 137  
WDT ................................................................................ 183  
WWW, On-Line Support ...................................................... 5  
BRGH Bit ................................................................. 151  
U
Universal Synchronous Asynchronous Receiver  
Transmitter. See USART.  
USART ............................................................................. 149  
Asynchronous Mode ................................................ 155  
Associated Registers, Receive ........................ 158  
Associated Registers, Transmit ....................... 156  
Master Transmission ....................................... 156  
Receive Block Diagram ................................... 157  
Receiver ........................................................... 157  
Reception ......................................................... 158  
Transmit Block Diagram .................................. 155  
Transmitter ....................................................... 155  
X
XORLW ........................................................................... 227  
XORWF ........................................................................... 228  
1999-2013 Microchip Technology Inc.  
DS39026D-page 297  
PIC18CXX2  
NOTES:  
DS39026D-page 298  
1999-2013 Microchip Technology Inc.  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
1999-2013 Microchip Technology Inc.  
DS39026D-page 299  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS39026D  
Application (optional):  
Would you like a reply?  
Y
N
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39026D-page 300  
1999-2013 Microchip Technology Inc.  
PIC18CXX2  
PIC18CXX2 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC18LC452 - I/P 301 = Industrial temp.,  
PDIP package, 4 MHz, Extended VDD  
limits, QTP pattern #301.  
b) PIC18LC242 - I/SO = Industrial temp.,  
SOIC package, Extended VDD limits.  
c) PIC18C442 - E/P = Extended temp.,  
PDIP package, 40MHz, normal VDD  
limits.  
(1)  
(2)  
Device  
PIC18CXX2 , PIC18CXX2T ;  
VDD range 4.2V to 5.5V  
(1)  
(2)  
PIC18LCXX2 , PIC18LCXX2T  
VDD range 2.5V to 5.5V  
;
Temperature  
Range  
I
E
=
=
-40C to  
-40C to  
+85C (Industrial)  
+125C (Extended)  
(3)  
Note 1:  
2:  
C
= Standard Voltage range  
Package  
JW  
PT  
SO  
SP  
P
=
=
=
=
=
=
Windowed CERDIP  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny plastic dip  
PDIP  
LC = Wide Voltage Range  
T
= in tape and reel - SOIC,  
PLCC, and TQFP  
packages only.  
L
PLCC  
3: JW Devices are UV erasable and can  
be programmed to any device configu-  
ration. JW Devices meet the electrical  
requirement of each oscillator type  
(including LC devices).  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Worldwide Site (www.microchip.com)  
1999-2013 Microchip Technology Inc.  
DS39026D-page 301  
PIC18CXX2  
DS39026D-page 302  
1999-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 1999-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620769676  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
1999-2013 Microchip Technology Inc.  
DS39026D-page 303  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS39026D-page 304  
1999-2013 Microchip Technology Inc.  

相关型号:

PIC18LC242T-/SO

RISC MICROCONTROLLER
MICROCHIP

PIC18LC242T-E/JW

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-E/L

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-E/P

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-E/PT

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-E/SO

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-E/SP

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-I/JW

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-I/L

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-I/P

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-I/PT

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP

PIC18LC242T-I/SO

High-Performance Microcontrollers with 10-Bit A/D
MICROCHIP