PIC18LC242T-E/L [MICROCHIP]

High-Performance Microcontrollers with 10-Bit A/D; 高性能微控制器,10位A / D
PIC18LC242T-E/L
型号: PIC18LC242T-E/L
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance Microcontrollers with 10-Bit A/D
高性能微控制器,10位A / D

微控制器
文件: 总296页 (文件大小:4835K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18CXX2  
High-Performance Microcontrollers with 10-Bit A/D  
High Performance RISC CPU:  
Pin Diagrams  
DIP, Windowed CERDIP  
• C-compiler optimized architecture/instruction set  
RB7  
RB6  
RB5  
RB4  
RB3/CCP2*  
RB2/INT2  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
MCLR/VPP  
RA0/AN0  
-
Source code compatible with the PIC16CXX  
instruction set  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
• Linear program memory addressing to 2M bytes  
• Linear data memory addressing to 4K bytes  
*
*
On-Chip Program Memory  
RB1/INT1  
RB0/INT0  
VDD  
On-Chip  
RAM  
(bytes)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
VSS  
OSC1/CLKI  
Device  
EPROM # Single Word  
9
(bytes)  
Instructions  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
PIC18C242  
PIC18C252  
PIC18C442  
PIC18C452  
16K  
32K  
16K  
32K  
8192  
16384  
8192  
512  
1536  
512  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1  
16384  
1536  
• Up to 10 MIPs operation:  
-
-
RC4/SDI/SDA  
RD3/PSP3  
RC3/SCK/SCL  
RD0/PSP0  
*
*
DC - 40 MHz osc./clock input  
4 MHz - 10 MHz osc./clock input with PLL active  
RD2/PSP2  
RD1/PSP1  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
NOTE: Pin compatible with 40-pin PIC16C7X devices  
• 8 x 8 Single Cycle Hardware Multiplier  
Analog Features:  
Peripheral Features:  
10-bit Analog-to-Digital Converter module (A/D)  
with:  
• High current sink/source 25 mA/25 mA  
• Three external interrupt pins  
-
-
-
Fast sampling rate  
Conversion available during sleep  
DNL = ±1 LSb, INL = ±1 LSb  
Timer0 module: 8-bit/16-bit timer/counter with  
8-bit programmable prescaler  
• Programmable Low-Voltage Detection (LVD)  
module  
Timer1 module: 16-bit timer/counter  
Timer2 module: 8-bit timer/counter with 8-bit  
period register (time-base for PWM)  
-
Supports interrupt on low voltage detection  
• Programmable Brown-out Reset (BOR)  
Timer3 module: 16-bit timer/counter  
*
Special Microcontroller Features:  
• Secondary oscillator clock option - Timer1/Timer3  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Two Capture/Compare/PWM (CCP) modules. CCP  
pins that can be configured as:  
-
Capture input: capture is 16-bit,  
max. resolution 6.25 ns (TCY/16)  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options including:  
-
-
Compare is 16-bit, max. resolution 100 ns (TCY)  
PWM output: PWM resolution is 1- to 10-bit.  
Max. PWM freq. @:8-bit resolution = 156 kHz  
10-bit resolution= 39 kHz  
-
-
4X Phase Lock Loop (of primary oscillator)  
Secondary Oscillator (32 kHz) clock input  
Master Synchronous Serial Port (MSSP) module.  
Two modes of operation:  
• In-Circuit Serial Programming (ICSP™) via two pins  
- 3-wire SPI™ (supports all 4 SPI modes)  
- I2C™ master and slave mode  
CMOS Technology:  
• Low-power, high-speed EPROM technology  
• Fully static design  
• Wide operating voltage range (2.5V to 5.5V)  
• Industrial and Extended temperature ranges  
• Low-power consumption  
Addressable USART module:  
- Supports interrupt on Address bit  
Parallel Slave Port (PSP) module  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 1  
PIC18CXX2  
Pin Diagrams  
PLCC  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
7
RB3/CCP2*  
RB2/INT2  
RB1/INT1  
RB0/INT0  
VDD  
RA4/T0CKI  
8
RA5/AN4/SS/LVDIN  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
PIC18C4X2  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
VSS  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
NC  
TQFP  
NC  
33  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
1
2
3
4
5
6
7
8
RC0/T1OSO/T1CKI  
OSC2/CLKO/RA6  
OSC1/CLKI  
VSS  
32  
31  
30  
29  
28  
27  
26  
PIC18C4X2  
VDD  
RE2/AN7/CS  
RE1/AN6/WR  
RE0/AN5/RD  
RA5/AN4/SS/LVDIN  
RA4/T0CKI  
VDD  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2*  
9
10  
11  
25  
24  
23  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
NOTE: Pin compatible with 44-pin PIC16C7X devices  
DS39026B-page 2  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Pin Diagrams (Cont.d)  
DIP, JW  
MCLR/VPP  
RA0/AN0  
1
2
3
4
5
6
7
8
RB7  
RB6  
RB5  
RB4  
RB3/CCP2*  
RB2/INT2  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB1/INT1  
RB0/INT0  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
VSS  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD1/PSP1  
RD2/PSP2  
NOTE: Pin compatible with 40-pin PIC16C7X devices  
DIP, SOIC, JW  
28  
27  
26  
1
2
3
4
5
6
7
8
9
RB7  
RB6  
RB5  
RB4  
RB3/CCP2*  
RB2/INT2  
RB1/INT1  
RB0/INT0  
VDD  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RA5/AN4/SS/LVDIN  
VSS  
OSC1/CLKI  
VSS  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2*  
RC2/CCP1  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
12  
13  
14  
RC4/SDI/SDA  
RC3/SCK/SCL  
* RB3 is the alternate pin for the CCP2 pin multiplexing.  
NOTE: Pin compatible with 28-pin PIC16C7X devices  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 3  
PIC18CXX2  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Oscillator Configurations ............................................................................................................................................................ 15  
3.0 Reset.......................................................................................................................................................................................... 23  
4.0 Memory Organization................................................................................................................................................................. 33  
5.0 Table Reads/Table Writes.......................................................................................................................................................... 53  
6.0 8 X 8 Hardware Multiplier........................................................................................................................................................... 61  
7.0 Interrupts .................................................................................................................................................................................... 65  
8.0 I/O Ports ..................................................................................................................................................................................... 77  
9.0 Timer0 Module ........................................................................................................................................................................... 93  
10.0 Timer1 Module ........................................................................................................................................................................... 97  
11.0 Timer2 Module ......................................................................................................................................................................... 102  
12.0 Timer3 Module ......................................................................................................................................................................... 105  
13.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 109  
14.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 117  
15.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART).............................................................. 151  
16.0 10-bit Analog-to-Digital Converter (A/D) Module...................................................................................................................... 167  
17.0 Low Voltage Detect .................................................................................................................................................................. 175  
18.0 Special Features of the CPU.................................................................................................................................................... 181  
19.0 Instruction Set Summary.......................................................................................................................................................... 191  
20.0 Development Support............................................................................................................................................................... 235  
21.0 Electrical Characteristics.......................................................................................................................................................... 241  
22.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 273  
23.0 Packaging Information.............................................................................................................................................................. 275  
Appendix A: Revision History......................................................................................................................................................... 283  
Appendix B: Device Differences..................................................................................................................................................... 283  
Appendix C: Conversion Considerations........................................................................................................................................ 284  
Appendix D: Migration from Baseline to Enhanced Devices .......................................................................................................... 284  
Appendix E: Migration from Midrange to Enhanced Devices......................................................................................................... 285  
Appendix F: Migration from High-end to Enhanced Devices ......................................................................................................... 285  
Index ................................................................................................................................................................................................. 287  
On-Line Support................................................................................................................................................................................. 293  
Reader Response .............................................................................................................................................................................. 294  
PIC18CXX2 Product Identification System ........................................................................................................................................ 295  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS39026B-page 4  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The following two figures are device block diagrams  
sorted by pin count; 28-pin for Figure 1-1 and 40-pin for  
Figure 1-2. The 28-pin and 40-pin pinouts are listed in  
Table 1-2 and Table 1-3 respectively.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following four devices:  
1. PIC18C242  
2. PIC18C252  
3. PIC18C442  
4. PIC18C452  
These devices come in 28 and 40-pin packages. The  
28-pin devices do not have a Parallel Slave Port (PSP)  
implemented and the number of Analog-to-Digital (A/D)  
converter input channels is reduced to 5. An overview  
of features is shown in Table 1-1.  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18C242  
PIC18C252  
PIC18C442  
PIC18C452  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt sources  
DC - 40 MHz  
DC - 40 MHz  
DC - 40 MHz  
DC - 40 MHz  
32K  
16K  
32K  
16K  
8192  
512  
17  
8192  
16384  
16384  
1536  
512  
1536  
16  
16  
17  
I/O Ports  
Ports A, B, C  
Ports A, B, C  
Ports A, B, C, D, E Ports A, B, C, D, E  
Timers  
4
2
4
2
4
2
4
2
Capture/Compare/PWM modules  
Serial Communications  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
MSSP,  
Addressable  
USART  
Parallel Communications  
10-bit Analog-to-Digital Module  
Resets (and Delays)  
PSP  
PSP  
5 input channels  
5 input channels  
8 input channels  
8 input channels  
POR, BOR,  
POR, BOR,  
POR, BOR,  
POR, BOR,  
Reset Instruction, Reset Instruction, Reset Instruction, Reset Instruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Programmable Low Voltage Detect  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
75 Instructions  
75 Instructions  
75 Instructions  
75 Instructions  
Packages  
28-pin DIP  
28-pin SOIC  
28-pin JW  
28-pin DIP  
28-pin SOIC  
28-pin JW  
40-pin DIP  
40-pin PLCC  
40-pin TQFP  
40-pin JW  
40-pin DIP  
40-pin PLCC  
40-pin TQFP  
40-pin JW  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 5  
PIC18CXX2  
FIGURE 1-1: PIC18C2X2 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Table Pointer <2>  
21  
Data Latch  
RA0/AN0  
RA1/AN1  
8
8
8
Data RAM  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RA6  
inc/dec logic  
20  
21  
21  
Address Latch  
12(2)  
PCLATU PCLATH  
Address Latch  
Address<12>  
Program Memory  
(up to 2M Bytes)  
PCU PCH PCL  
Program Counter  
4
BSR  
12  
FSR0  
4
Data Latch  
Bank0, F  
FSR1  
FSR2  
31 Level Stack  
12  
16  
inc/dec  
logic  
Decode  
TABLELATCH  
8
PORTB  
ROMLATCH  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2(1)  
Instruction  
Register  
8
Instruction  
Decode &  
Control  
RB7:RB4  
PRODH PRODL  
8 x 8 Multiply  
OSC2/CLKO  
OSC1/CLKI  
3
Power-up  
Timer  
8
Timing  
Generation  
Oscillator  
Start-up Timer  
T1OSI  
T1OSO  
WREG  
8
BIT OP  
8
8
Power-on  
Reset  
8
Watchdog  
Timer  
4X PLL  
ALU<8>  
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1  
8
Brown-out  
Reset  
Precision  
Voltage  
Reference  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
MCLR  
VDD, VSS  
A/D Converter  
Timer0  
Timer1  
Timer2  
Timer3  
Master  
Synchronous  
Serial Port  
Addressable  
USART  
CCP1  
CCP2  
Note 1: Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of configuration bit.  
2: The high order bits of the Direct Address for the RAM are from the BSR register (except for the MOVFF  
instruction).  
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions. The  
multiplexing combinations are device dependent.  
DS39026B-page 6  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 1-2: PIC18C4X2 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
Table Pointer <2>  
21  
Data Latch  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RA6  
Data RAM  
(up to 4K  
address reach)  
8
8
8
inc/dec logic  
20  
21  
21  
Address Latch  
12(2)  
PCLATU  
PCLATH  
Address Latch  
Program Memory  
(up to 2M Bytes)  
Address<12>  
PCH PCL  
Program Counter  
PCU  
PORTB  
4
BSR  
12  
4
Data Latch  
Bank0, F  
FSR0  
FSR1  
FSR2  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/CCP2(1)  
31 Level Stack  
12  
16  
inc/dec  
logic  
RB7:RB4  
Decode  
TABLELATCH  
8
ROMLATCH  
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1  
Instruction  
Register  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
8
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
PRODH PRODL  
8 x 8 Multiply  
OSC2/CLKO  
OSC1/CLKI  
3
Power-up  
Timer  
PORTD  
8
Timing  
Generation  
Oscillator  
Start-up Timer  
T1OSI  
T1OSO  
WREG  
8
BIT OP  
8
8
Power-on  
Reset  
RD7/PSP7:RD0/PSP0  
8
Watchdog  
Timer  
4X PLL  
ALU<8>  
Brown-out  
Reset  
8
Precision  
Voltage  
Reference  
PORTE  
RE0/AN5/RD  
RE1/AN6/WR  
RE2/AN7/CS  
MCLR  
VDD, VSS  
Timer0  
Timer1  
Timer2  
A/D Converter  
Timer3  
Master  
Addressable  
USART  
Synchronous  
CCP1  
CCP2  
Parallel Slave Port  
Serial Port  
Note 1: Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of configuration bit.  
2: The high order bits of the Direct Address for the RAM are from the BSR register (except for the MOVFF  
instruction).  
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions.  
The multiplexing combinations are device dependent.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 7  
PIC18CXX2  
TABLE 1-2:  
PIC18C2X2 PINOUT I/O DESCRIPTIONS  
Pin Number  
DIP SOIC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
Master clear (reset) input. This pin is an active low reset  
MCLR/VPP  
MCLR  
1
1
I
ST  
to the device.  
VPP  
NC  
P
Programming voltage input.  
9
9
These pins should be left unconnected.  
OSC1/CLKI  
OSC1  
I
I
ST  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode. CMOS otherwise.  
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKIN,  
OSC2/CLKOUT pins).  
CLKI  
CMOS  
OSC2/CLKO/RA6  
OSC2  
10  
10  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in crystal oscillator mode.  
In RC mode, OSC2 pin outputs CLKOUT which has 1/4  
the frequency of OSC1, and denotes the instruction  
cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General Purpose I/O pin.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
2
3
4
2
3
4
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D Reference Voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
5
5
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D Reference Voltage (High) input.  
RA4/T0CKI  
RA4  
6
7
6
7
I/O  
I
ST/OD  
ST  
Digital I/O. Open drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
SPI Slave Select input.  
Low Voltage Detect Input.  
I
I
I
LVDIN  
Analog  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026B-page 8  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 1-2:  
Pin Name  
PIC18C2X2 PINOUT I/O DESCRIPTIONS (Cont.d)  
Pin Number  
Pin  
Type  
Buffer  
Type  
DIP SOIC  
Description  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0  
RB0  
21  
22  
23  
24  
21  
22  
23  
24  
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
INT1  
External Interrupt 1.  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 2.  
INT2  
RB3/CCP2  
RB3  
I/O  
I/O  
TTL  
ST  
Digital I/O.  
CCP2  
Capture2 input, Compare2 output, PWM2 output.  
RB4  
RB5  
RB6  
25  
26  
27  
25  
26  
27  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
Digital I/O.  
Interrupt on change pin.  
Digital I/O.  
Interrupt on change pin.  
Digital I/O.  
Interrupt on change pin.  
ICSP programming clock.  
I
ST  
RB7  
28  
28  
I/O  
TTL  
Digital I/O.  
Interrupt on change pin.  
ICSP programming data.  
I/O  
ST  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 9  
PIC18CXX2  
TABLE 1-2:  
PIC18C2X2 PINOUT I/O DESCRIPTIONS (Cont.d)  
Pin Number  
DIP SOIC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
11  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
12  
12  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture2 input, Compare2 output, PWM2 output.  
T1OSI  
CCP2  
RC2/CCP1  
RC2  
13  
14  
13  
14  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture1 input/Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C mode  
RC4/SDI/SDA  
RC4  
15  
15  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI Data In.  
I2C Data I/O.  
RC5/SDO  
RC5  
16  
17  
16  
17  
I/O  
O
ST  
Digital I/O.  
SPI Data Out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
USART Asynchronous Transmit.  
USART Synchronous Clock.  
(See related RX/DT)  
RC7/RX/DT  
18  
18  
RC7  
RX  
DT  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
USART Asynchronous Receive.  
USART Synchronous Data.  
(See related TX/CK)  
VSS  
VDD  
8, 19 8, 19  
20 20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
CMOS = CMOS compatible input or output  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026B-page 10  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 1-3:  
Pin Name  
PIC18C4X2 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Buffer  
Type  
Type  
DIP PLCC TQFP  
Description  
MCLR/VPP  
MCLR  
1
2
18  
I
ST  
Master clear (reset) input. This pin is an active  
low reset to the device.  
VPP  
NC  
P
Programming voltage input.  
These pins should be left unconnected.  
OSC1/CLKI  
OSC1  
13  
14  
30  
I
I
ST  
Oscillator crystal input or external clock  
source input. ST buffer when configured in  
RC mode. CMOS otherwise.  
External clock source input. Always  
associated with pin function OSC1. (See  
related OSC1/CLKIN, OSC2/CLKOUT pins).  
CLKI  
CMOS  
OSC2/CLKO/RA6  
OSC2  
14  
15  
31  
O
O
Oscillator crystal output. Connects to crystal  
or resonator in crystal oscillator mode.  
In RC mode, OSC2 pin outputs CLKOUT,  
which has 1/4 the frequency of OSC1 and  
denotes the instruction cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General Purpose I/O pin.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
2
3
4
3
4
5
19  
20  
21  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D Reference Voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
5
6
22  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D Reference Voltage (High) input.  
RA4/T0CKI  
RA4  
6
7
7
8
23  
24  
I/O  
I
ST/OD  
ST  
Digital I/O. Open drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
SPI Slave Select input.  
Low Voltage Detect Input.  
I
I
I
LVDIN  
Analog  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 11  
PIC18CXX2  
TABLE 1-3:  
PIC18C4X2 PINOUT I/O DESCRIPTIONS (Cont.d)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
DIP PLCC TQFP  
Description  
PORTB is a bi-directional I/O port. PORTB can be  
software programmed for internal weak pull-ups on all  
inputs.  
RB0/INT0  
RB0  
33  
34  
35  
36  
36  
37  
38  
39  
8
9
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
INT1  
External Interrupt 1.  
RB2/INT2  
RB2  
10  
11  
I/O  
I
TTL  
ST  
Digital I/O.  
External Interrupt 2.  
INT2  
RB3/CCP2  
RB3  
I/O  
I/O  
TTL  
ST  
Digital I/O.  
CCP2  
Capture2 input, Compare2 output, PWM2 output.  
RB4  
RB5  
RB6  
37  
38  
39  
41  
42  
43  
14  
15  
16  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
Digital I/O.  
Interrupt on change pin.  
Digital I/O.  
Interrupt on change pin.  
Digital I/O.  
Interrupt on change pin.  
ICSP programming clock.  
I
ST  
RB7  
40  
44  
17  
I/O  
TTL  
Digital I/O.  
Interrupt on change pin.  
ICSP programming data.  
I/O  
ST  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026B-page 12  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 1-3:  
Pin Name  
PIC18C4X2 PINOUT I/O DESCRIPTIONS (Cont.d)  
Pin Number  
Pin  
Type  
Buffer  
Type  
DIP PLCC TQFP  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
15  
16  
32  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
16  
18  
35  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture2 input, Compare2 output, PWM2 output.  
T1OSI  
CCP2  
RC2/CCP1  
RC2  
17  
18  
19  
20  
36  
37  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture1 input/Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Synchronous serial clock input/output for  
SPI mode.  
SCK  
SCL  
I/O  
ST  
Synchronous serial clock input/output for  
I2C mode.  
RC4/SDI/SDA  
RC4  
23  
25  
42  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI Data In.  
I2C Data I/O.  
RC5/SDO  
RC5  
24  
25  
26  
27  
43  
44  
I/O  
O
ST  
Digital I/O.  
SPI Data Out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
USART Asynchronous Transmit.  
USART Synchronous Clock.  
(See related RX/DT)  
RC7/RX/DT  
26  
29  
1
RC7  
RX  
DT  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
USART Asynchronous Receive.  
USART Synchronous Data.  
(See related TX/CK)  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 13  
PIC18CXX2  
TABLE 1-3:  
PIC18C4X2 PINOUT I/O DESCRIPTIONS (Cont.d)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
DIP PLCC TQFP  
Description  
PORTD is a bi-directional I/O port.  
Parallel Slave Port (PSP) for interfacing to a micropro-  
cessor port. These pins have TTL input buffers when  
PSP module is enabled.  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
3
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
4
ST  
TTL  
Digital I/O.  
Parallel Slave Port Data.  
5
ST  
Digital I/O.  
TTL  
Parallel Slave Port Data.  
PORTE is a bi-directional I/O port.  
RE0/RD/AN5  
RE0  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
RD  
Read control for parallel slave port.  
(See also WR and CS pins)  
Analog input 5.  
AN5  
Analog  
RE1/WR/AN6  
RE1  
10  
11  
ST  
TTL  
Digital I/O.  
WR  
Write control for parallel slave port.  
(See CS and RD pins)  
Analog input 6.  
AN6  
Analog  
RE2/CS/AN7  
RE2  
10  
ST  
Digital I/O.  
CS  
TTL  
Chip Select control for parallel slave port.  
(See related RD and WR)  
Analog input 7.  
AN7  
VSS  
Analog  
12, 31 13, 34 6, 29  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
11, 32 12, 35 7, 28  
P
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
I = Input  
O = Output  
P = Power  
OD = Open Drain (no P diode to VDD)  
DS39026B-page 14  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 2-1: CRYSTAL/CERAMIC  
2.0  
OSCILLATOR  
CONFIGURATIONS  
RESONATOR OPERATION  
(HS, XT OR LP  
2.1  
Oscillator Types  
OSC CONFIGURATION)  
(1)  
The PIC18CXX2 can be operated in eight different  
oscillator modes. The user can program three configu-  
ration bits (FOSC2, FOSC1, and FOSC0) to select one  
of these eight modes:  
C1  
C2  
OSC1  
To  
internal  
logic  
(3)  
RF  
XTAL  
1. LP  
2. XT  
3. HS  
Low Power Crystal  
SLEEP  
(2)  
Crystal/Resonator  
RS  
(1)  
PIC18CXXX  
High Speed Crystal/Resonator  
OSC2  
4. HS + PLL High Speed Crystal/Resonator with  
PLL enabled  
Note 1: See Table 2-1 and Table 2-2 for recom-  
mended values of C1 and C2.  
5. RC  
External Resistor/Capacitor  
Note 2: A series resistor (RS) may be required  
6. RCIO  
External Resistor/Capacitor with  
I/O pin enabled  
for AT strip cut crystals.  
Note 3: RF varies with the crystal chosen.  
7. EC  
External Clock  
8. ECIO  
External Clock with I/O pin enabled  
FIGURE 2-2: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
OSC CONFIGURATION)  
In XT, LP, HS or HS-PLL oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections. An external clock source may also  
be connected to the OSC1 pin in these modes, as  
shown in Figure 2-2.  
OSC1  
OSC2  
Clock from  
ext. system  
PIC18CXXX  
Open  
The PIC18CXX2 oscillator design requires the use of a  
parallel cut crystal.  
Note: Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 15  
PIC18CXX2  
TABLE 2-1:  
CERAMIC RESONATORS  
2.3  
RC Oscillator  
Ranges Tested:  
For timing insensitive applications, the “RC” and  
"RCIO" device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit due  
to normal process parameter variation. Furthermore,  
the difference in lead frame capacitance between  
package types will also affect the oscillation frequency,  
especially for low CEXT values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used. Figure 2-3 shows how the  
R/C combination is connected.  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
16.0 MHz  
These values are for design guidance only. See  
notes at bottom of page.  
Resonators Used:  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Panasonic EFO-A455K04B  
± 0.3%  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
In the RC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
16.0 MHz Murata Erie CSA16.00MX  
All resonators used did not have built-in capacitors.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
FIGURE 2-3: RC OSCILLATOR MODE  
Cap.  
Crystal Cap. Range  
Range  
VDD  
Osc Type  
Freq  
C1  
C2  
REXT  
Internal  
OSC1  
LP  
XT  
32.0 kHz  
200 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
25.0 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
clock  
CEXT  
PIC18CXXX  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
VSS  
OSC2/CLKO  
15 pF  
15 pF  
FOSC/4  
HS  
15 pF  
15 pF  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20pF  
15-33 pF  
15-33 pF  
TBD  
15-33 pF  
15-33 pF  
TBD  
The RCIO oscillator mode functions like the RC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6).  
These values are for design guidance only. See  
notes at bottom of page.  
Crystals Used  
32.0 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
2.4  
External Clock Input  
The EC and ECIO oscillator modes require an external  
clock source to be connected to the OSC1 pin. The  
feedback device between OSC1 and OSC2 is turned  
off in these modes to save current. There is no oscilla-  
tor startup time required after a Power-On-Reset or  
after a recovery from SLEEP mode.  
ECS ECS-40-20-1  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 2-1).  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the start-  
up time.  
In the EC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
oscillator mode.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
4: Rs may be required in HS mode, as well as  
XT mode, to avoid overdriving crystals with  
low drive level specification.  
DS39026B-page 16  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 2-4: EXTERNAL CLOCK INPUT  
OPERATION  
2.5  
HS/PLL  
A Phase Locked Loop circuit is provided as a program-  
mable option for users that want to multiply the fre-  
quency of the incoming crystal oscillator signal by 4.  
For an input clock frequency of 10 MHz, the internal  
clock frequency will be multiplied to 40 MHz. This is  
useful for customers who are concerned with EMI due  
to high frequency crystals.  
(EC OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC18CXXX  
FOSC/4  
The PLL can only be enabled when the oscillator con-  
figuration bits are programmed for HS mode. If they  
are programmed for any other mode, the PLL is not  
enabled and the system clock will come directly from  
OSC1.  
The ECIO oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes Bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO oscillator mode.  
The PLL is one of the modes of the FOSC<2:0> con-  
figuration bits. The oscillator mode is specified during  
device programming.  
FIGURE 2-5: EXTERNAL CLOCK INPUT  
OPERATION  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out that is called TPLL.  
(ECIO CONFIGURATION)  
OSC1  
Clock from  
ext. system  
PIC18CXXX  
I/O (OSC2)  
RA6  
FIGURE 2-6: PLL BLOCK DIAGRAM  
(from configuration  
HS Osc  
bit register)  
PLL Enable  
Phase  
Comparator  
OSC2  
FIN  
Loop  
Filter  
VCO  
Crystal  
Osc  
SYSCLK  
FOUT  
Divide by 4  
OSC1  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 17  
PIC18CXX2  
been enabled, the device can switch to a low power  
execution mode. Figure 2-7 shows a block diagram of  
the system clock sources. The clock switching feature  
is enabled by programming the Oscillator Switching  
Enable (OSCSEN) bit in Configuration Register1H to a  
’0’. Clock switching is disabled in an erased device.  
See Section 9 for further details of the Timer1 oscillator.  
See Section 18.0 for Configuration Register details.  
2.6  
Oscillator Switching Feature  
The PIC18CXX2 devices include a feature that allows  
the system clock source to be switched from the main  
oscillator to an alternate low frequency clock source.  
For the PIC18CXX2 devices, this alternate clock  
source is the Timer1 oscillator. If a low-frequency crys-  
tal (32 KHz, for example) has been attached to the  
Timer1 oscillator pins and the Timer1 oscillator has  
FIGURE 2-7: DEVICE CLOCK SOURCES  
PIC18CXXX  
Main Oscillator  
OSC2  
Tosc/4  
4 x PLL  
Sleep  
TOSC  
TT1P  
TSCLK  
OSC1  
Timer1 Oscillator  
T1OSO  
T1OSCEN  
Clock  
Source  
Enable  
Oscillator  
T1OSI  
Clock Source option  
for other modules  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
Note: The Timer1 oscillator must be enabled to  
switch the system clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 control register  
(T1CON). If the Timer1 oscillator is not  
enabled, then any write to the SCS bit will  
be ignored (SCS bit forced cleared) and  
the main oscillator will continue to be the  
system clock source.  
The system clock source switching is performed under  
software control. The system clock switch bit, SCS  
(OSCCON<0>) controls the clock switching. When the  
SCS bit is ’0’, the system clock source comes from the  
main oscillator that is selected by the FOSC configura-  
tion bits in Configuration Register1H. When the SCS  
bit is set, the system clock source will come from the  
Timer1 oscillator. The SCS bit is cleared on all forms  
of reset.  
Register 2-1: OSCCON Register  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
SCS  
bit 7  
bit 0  
bit 7-1  
bit 0  
Unimplemented: Read as '0'  
SCS: System Clock Switch bit  
when OSCSEN configuration bit = ’0’ and T1OSCEN bit is set:  
1= Switch to Timer1 Oscillator/Clock pin  
0= Use primary Oscillator/Clock input pin  
when OSCSEN and T1OSCEN are in other states:  
bit is forced clear  
Legend  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026B-page 18  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
2.6.2  
OSCILLATOR TRANSITIONS  
A timing diagram indicating the transition from the  
main oscillator to the Timer1 oscillator is shown in  
Figure 2-8. The Timer1 oscillator is assumed to be  
running all the time. After the SCS bit is set, the pro-  
cessor is frozen at the next occurring Q1 cycle. After  
eight synchronization cycles are counted from the  
Timer1 oscillator, operation resumes. No additional  
delays are required after the synchronization cycles.  
The PIC18CXX2 devices contain circuitry to prevent  
"glitches" when switching between oscillator sources.  
Essentially, the circuitry waits for eight rising edges of  
the clock source that the processor is switching to. This  
ensures that the new clock source is stable and that its  
pulse width will not be less than the shortest pulse  
width of the two clock sources.  
FIGURE 2-8: TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q1 Q2 Q3 Q4 Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Tscs  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Delay on internal system clock is eight oscillator cycles for synchronization.  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
If the main oscillator is configured for an external crys-  
tal (HS, XT, LP), then the transition will take place after  
an oscillator startup time (TOST) has occurred. A timing  
diagram indicating the transition from the Timer1 oscil-  
lator to the main oscillator for HS, XT and LP modes is  
shown in Figure 2-9.  
FIGURE 2-9: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS,XT,LP)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q3  
Q4  
Q1  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
OSC2  
TOSC  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 6  
Note 1: TOST = 1024TOSC (drawing not to scale).  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 19  
PIC18CXX2  
If the main oscillator is configured for HS-PLL mode, an  
oscillator startup time (TOST) plus an additional PLL  
timeout (TPLL) will occur. The PLL timeout is typically 2  
ms and allows the PLL to lock to the main oscillator fre-  
quency. A timing diagram indicating the transition from  
the Timer1 oscillator to the main oscillator for HS-PLL  
mode is shown in Figure 2-10.  
FIGURE 2-10: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
OSC2  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1: TOST = 1024TOSC (drawing not to scale).  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator startup timeout.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram indicat-  
ing the transition from the Timer1 oscillator to the main  
oscillator for RC, RCIO, EC and ECIO modes is shown  
in Figure 2-11.  
FIGURE 2-11: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
T1OSI  
OSC1  
TOSC  
6
1
4
5
7
8
2
3
OSC2  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1: RC oscillator mode assumed.  
DS39026B-page 20  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
ing currents have been removed, sleep mode achieves  
the lowest current consumption of the device (only  
leakage currents). Enabling any on-chip feature that  
will operate during sleep will increase the current con-  
sumed during sleep. The user can wake from SLEEP  
through external reset, Watchdog Timer Reset or  
through an interrupt.  
2.7  
Effects of Sleep Mode on the On-chip  
Oscillator  
When the device executes a SLEEP instruction, the on-  
chip clocks and oscillator are turned off and the device  
is held at the beginning of an instruction cycle (Q1  
state). With the oscillator off, the OSC1 and OSC2 sig-  
nals will stop oscillating. Since all the transistor switch-  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC Mode OSC1 Pin  
OSC2 Pin  
RC  
Floating, external resistor should pull  
high  
At logic low  
RCIO  
Floating, external resistor should pull  
high  
Configured as Port A, bit 6  
ECIO  
EC  
Floating  
Floating  
Configured as Port A, bit 6  
At logic low  
LP, XT, and HS  
Feedback inverter disabled, at quies-  
cent voltage level  
Feedback inverter disabled, at quies-  
cent voltage level  
See Table 3-1, in the “Reset” section, for time-outs due to Sleep and MCLR reset.  
With the PLL enabled (HS/PLL oscillator mode), the  
time-out sequence following a power-on reset is differ-  
ent from other oscillator modes. The time-out sequence  
is as follows: First the PWRT time-out is invoked after a  
POR time delay has expired. Then the Oscillator Start-  
up Timer (OST) is invoked. However, this is still not a  
sufficient amount of time to allow the PLL to lock at high  
frequencies. The PWRT timer is used to provide an  
additional fixed 2ms (nominal) time-out to allow the PLL  
ample time to lock to the incoming clock frequency.  
2.8  
Power-up Delays  
Power up delays are controlled by two timers, so that no  
external reset circuitry is required for most applications.  
The delays ensure that the device is kept in RESET  
until the device power supply and clock are stable. For  
additional information on RESET operation, see the  
“Reset” section.  
The first timer is the Power-up Timer (PWRT), which  
optionally provides a fixed delay of 72 ms (nominal) on  
power-up only (POR and BOR). The second timer is  
the Oscillator Start-up Timer OST, intended to keep the  
chip in RESET until the crystal oscillator is stable.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 21  
PIC18CXX2  
NOTES:  
DS39026B-page 22  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Power-on Reset, MCLR, WDT reset, Brown-out Reset,  
MCLR reset during SLEEP and by the RESET instruc-  
tion.  
3.0  
RESET  
The PIC18CXXX differentiates between various kinds  
of reset:  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR, are set or cleared differently in different  
reset situations, as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
reset. See Table 3-3 for a full description of the reset  
states of all registers.  
a) Power-on Reset (POR)  
b) MCLR reset during normal operation  
c) MCLR reset during SLEEP  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
e) Programmable Brown-out Reset (BOR)  
f) Reset Instruction  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 3-1.  
g) Stack Full reset  
h) Stack Underflow reset  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR reset path. The filter will detect and ignore  
small pulses.  
Most registers are unaffected by a reset. Their status is  
unknown on POR and unchanged by all other resets.  
The other registers are forced to a “reset state” on  
A WDT reset does not drive MCLR pin low.  
FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack  
Stack Full/Underflow Reset  
Pointer  
External Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BOREN  
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
PWRT  
10-bit Ripple counter  
On-chip  
( )  
RC OSC 1  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2: See Table 3-1 for time-out situations.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 23  
PIC18CXX2  
3.1  
Power-On Reset (POR)  
3.2  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, just tie the MCLR pin directly (or through a resis-  
tor) to VDD. This will eliminate external RC components  
usually needed to create a Power-on Reset delay. A  
maximum rise time for VDD is specified (parameter  
D004). For a slow rise time, see Figure 3-2.  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33) only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/dis-  
able the PWRT.  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature,...) must be met to ensure oper-  
ation. If these conditions are not met, the device must  
be held in reset until the operating conditions are met.  
Brown-out Reset may be used to meet the voltage  
start-up condition.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
3.3  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This ensures that  
the crystal oscillator or resonator has started and stabi-  
lized.  
FIGURE 3-2: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
VDD  
3.4  
PLL Lock Timeout  
D
R
R1  
With the PLL enabled, the timeout sequence following  
a power-on reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed timeout that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock timeout  
(TPLL) is typically 2 ms and follows the oscillator startup  
timeout (OST).  
MCLR  
PIC18CXXX  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
3.5  
Brown-Out Reset (BOR)  
2: R < 40 kis recommended to make sure  
that the voltage drop across R does not  
violate the device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
A configuration bit, BOREN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below parameter D005 for greater  
than parameter #35, the brown-out situation will reset  
the chip. A reset may not occur if VDD falls below  
parameter D005 for less than parameter #35. The chip  
will remain in Brown-out Reset until VDD rises above  
BVDD. The Power-up Timer will then be invoked and will  
keep the chip in RESET an additional time delay  
(parameter #33). If VDD drops below BVDD while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be initial-  
ized. Once VDD rises above BVDD, the Power-up Timer  
will execute the additional time delay.  
(ESD) or Electrical Overstress (EOS).  
DS39026B-page 24  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18CXXX device operat-  
ing in parallel.  
3.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows: First,  
PWRT time-out is invoked after the POR time delay has  
expired. Then, OST is activated. The total time-out will  
vary based on oscillator configuration and the status of  
the PWRT. For example, in RC mode with the PWRT  
disabled, there will be no time-out at all. Figure 3-3,  
Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7  
depict time-out sequences on power-up.  
Table 3-2 shows the reset conditions for some Special  
Function Registers, while Table 3-3 shows the reset  
conditions for all the registers.  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up (2)  
Wake-up from  
SLEEP or  
Oscillator Switch  
Oscillator  
Configuration  
PWRTE = 0  
PWRTE = 1  
Brown-out (2)  
HS with PLL enabled (1)  
HS, XT, LP  
72 ms + 1024Tosc + 2ms 1024Tosc + 2 ms 72 ms + 1024Tosc + 2ms 1024Tosc + 2 ms  
72 ms + 1024Tosc  
72 ms  
1024Tosc  
72 ms + 1024Tosc  
72 ms  
1024Tosc  
EC  
External RC  
72 ms  
72 ms  
Note 1: 2 ms = Nominal time required for the 4x PLL to lock.  
2: 72 ms is the nominal power-up timer delay  
Register 3-1: RCON Register Bits and Positions  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
BOR  
IPEN  
LWRT  
RI  
TO  
PD  
POR  
bit 7  
bit 0  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
00-1 1100  
00-u uuuu  
1
u
1
u
1
u
0
u
0
u
u
u
u
u
MCLR Reset during normal  
operation  
Software Reset during normal  
operation  
0000h  
0u-0 uuuu  
0u-u uu11  
0u-u uu11  
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
1
u
1
u
Stack Full Reset during normal 0000h  
operation  
Stack Underflow Reset during  
normal operation  
0000h  
MCLR Reset during SLEEP  
WDT Reset  
0000h  
0000h  
PC + 2  
0000h  
00-u 10uu  
0u-u 01uu  
uu-u 00uu  
0u-1 11u0  
uu-u 00uu  
u
1
u
1
u
1
0
0
1
1
0
1
0
1
0
u
u
u
1
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
Brown-out Reset  
PC + 2(1)  
Interrupt wake-up from SLEEP  
Legend: u = unchanged, x = unknown, — = unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 25  
PIC18CXX2  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Reset Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
TOSU  
Applicable Devices  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
242 442 252 452  
242 442 252 452  
242 442 252 452  
---0 0000  
0000 0000  
0000 0000  
---0 0000  
0000 0000  
0000 0000  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
PRODH  
PRODL  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
INTCON  
INTCON2  
INTCON3  
INDF0  
242 442 252 452  
242 442 252 452  
242 442 252 452  
1111 -1-1  
11-0 0-00  
1111 -1-1  
11-0 0-00  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
POSTINC0 242 442 252 452  
POSTDEC0 242 442 252 452  
N/A  
N/A  
N/A  
PREINC0  
PLUSW0  
FSR0H  
FSR0L  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
WREG  
INDF1  
POSTINC1 242 442 252 452  
POSTDEC1 242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC1  
PLUSW1  
242 442 252 452  
242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as ’0’, q = value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ’0’.  
DS39026B-page 26  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Reset Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
FSR1H  
FSR1L  
BSR  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- 0000  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
INDF2  
POSTINC2 242 442 252 452  
POSTDEC2 242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PREINC2  
PLUSW2  
FSR2H  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
00-1 11q0  
---- 0000  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
00-1 qquu  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
--uu uuuu  
---- ---u  
uu-u qquu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4, 6)  
TMR1H  
TMR1L  
T1CON  
TMR2  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
xxxx xxxx  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1 242 442 252 452  
SSPCON2 242 442 252 452  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as ’0’, q = value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ’0’.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 27  
PIC18CXX2  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Reset Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
CCPR1H  
CCPR1L  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
xxxx xxxx  
xxxx xxxx  
0000 0000  
--0- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 -01x  
0000 000x  
---- 1111  
---- 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
--0- 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 -01u  
0000 000u  
---- 1111  
---- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--u- uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
---- uuuu  
CCP1CON 242 442 252 452  
CCPR2H  
CCPR2L  
242 442 252 452  
242 442 252 452  
CCP2CON 242 442 252 452  
TMR3H  
TMR3L  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
IPR2  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
---- uuuu(1)  
---- uuuu  
uuuu uuuu  
-uuu uuuu  
PIR2  
PIE2  
IPR1  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
---- 0000  
1111 1111  
-111 1111  
0000 0000  
---- 0000  
1111 1111  
-111 1111  
0000 0000  
uuuu uuuu(1)  
PIR1  
PIE1  
-uuu uuuu(1)  
uuuu uuuu  
-uuu uuuu  
242 442 252 452  
-000 0000  
-000 0000  
242 442 252 452  
242 442 252 452  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as ’0’, q = value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ’0’.  
DS39026B-page 28  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Reset Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5, 7)  
LATE  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
---- -000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
LATD  
LATC  
LATB  
LATA(5, 7)  
PORTE  
PORTD  
PORTC  
PORTB  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
242 442 252 452  
PORTA(5, 7)  
-x0x 0000(5)  
-u0u 0000(5)  
-uuu uuuu(5)  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as ’0’, q = value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hard-  
ware stack.  
4: See Table 3-2 for reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read ’0’.  
6: The long write enable is only reset on a POR or MCLR reset.  
7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ’0’.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 29  
PIC18CXX2  
FIGURE 3-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS39026B-page 30  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 3-6: SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7: TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
IINTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
TPLL  
OST TIME-OUT  
PLL TIME-OUT  
INTERNAL RESET  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 31  
PIC18CXX2  
NOTES:  
DS39026B-page 32  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
4.0  
MEMORY ORGANIZATION  
There are two memory blocks in Enhanced MCU  
devices. These memory blocks are:  
• Program Memory  
• Data Memory  
Each block has its own bus so that concurrent access  
can occur.  
4.1  
Program Memory Organization  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ’0’s (a NOP  
instruction).  
PIC18C252 and PIC18C452 have 32-KBytes of  
EPROM, while PIC18C242 and PIC18C442 have  
16-KBytes of EPROM. This means that PIC18CX52  
devices can store up to 16K of single word instruc-  
tions, and PIC18CX42 devices can store up to 8K of  
single word instructions.  
The reset vector address is at 0000h and the interrupt  
vector addresses are at 0008h and 0018h.  
Figure 4-1 shows the Program Memory Map for  
PIC18C242/442 devices and Figure 4-2 shows the  
Program Memory Map for PIC18C252/452 devices.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 33  
PIC18CXX2  
FIGURE 4-1: PROGRAM MEMORY MAP  
AND STACK FOR PIC18C442/  
242  
FIGURE 4-2: PROGRAM MEMORY MAP  
AND STACK FOR PIC18C452/  
252  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,BSUB,RETURN  
RETFIE,RETLW  
CALL,BSUB,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
Reset Vector  
Stack Level 31  
Reset Vector  
0000h  
0000h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
0008h  
0018h  
On-chip  
Program Memory  
3FFFh  
4000h  
On-chip  
Program Memory  
7FFFh  
8000h  
Read ’0’  
Read ’0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
DS39026B-page 34  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
4.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed or an interrupt is  
acknowledged. The PC value is pulled off the stack on  
a RETURN, RETLWor a RETFIEinstruction. PCLATU  
and PCLATH are not affected by any of the return  
instructions.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (stack over-  
flow reset enable) configuration bit. Refer to Section 18  
for a description of the device configuration bits. If  
STVREN is set (default) the 31st push will push the (PC  
+ 2) value onto the stack, set the STKFUL bit, and reset  
the device. The STKFUL bit will remain set and the  
stack pointer will be set to 0.  
The stack operates as a 31 word by 21-bit RAM and a  
5-bit stack pointer, with the stack pointer initialized to  
00000b after all resets. There is no RAM associated  
with stack pointer 00000b. This is only a reset value.  
During a CALLtype instruction causing a push onto the  
stack, the stack pointer is first incremented and the  
RAM location pointed to by the stack pointer is written  
with the contents of the PC. During a RETURN type  
instruction causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR is trans-  
ferred to the PC and then the stack pointer is decre-  
mented.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
The 32nd push will overwrite the 31st push (and so on),  
while STKPTR remains at 31.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at 0. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable, and  
the address on the top of the stack is readable and writ-  
able through SFR registers. Data can also be pushed  
to or popped from the stack using the top-of-stack  
SFRs. Status bits indicate if the stack pointer is at or  
beyond the 31 levels provided.  
Note: Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the reset vector, where the  
stack conditions can be verified and appro-  
priate actions can be taken.  
4.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL hold the  
contents of the stack location pointed to by the  
STKPTR register. This allows users to implement a  
software stack if necessary. After a CALL, RCALLor  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
The user must disable the global interrupt enable bits  
during this time to prevent inadvertent stack operations.  
4.2.2  
RETURN STACK POINTER (STKPTR)  
The STKPTR register contains the stack pointer value,  
the STKFUL (stack full) status bit, and the STKUNF  
(stack underflow) status bits. Register 4-1 shows the  
STKPTR register. The value of the stack pointer can be  
0 through 31. The stack pointer increments when val-  
ues are pushed onto the stack and decrements when  
values are popped off the stack. At reset, the stack  
pointer value will be 0. The user may read and write the  
stack pointer value. This feature can be used by a Real  
Time Operating System for return stack maintenance.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 35  
PIC18CXX2  
Register 4-1: STKPTR - Stack Pointer Register  
R/C-0  
STKFUL STKUNF  
bit7  
R/C-0  
U-0  
-
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
R
= Readable bit  
W = Writeable bit  
C
U
6
5
4
3
2
1
bit0  
= Clearable bit  
= Unimplemented bit,  
Read as ‘0’  
- n = Value at POR reset  
bit 7(1): STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
bit 6(1): STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5:  
Unimplemented: Read as ’0’  
bit 4-0: SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and Bit 6 can only be cleared in user software or by a POR.  
FIGURE 4-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
0x00  
TOSH  
0x1A  
TOSL  
0x34  
00010  
00011  
0x001A34 00010  
0x000D58 00001  
00000  
Top of Stack  
4.2.3  
PUSH AND POP INSTRUCTIONS  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack without disturbing normal program execu-  
tion is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place a return address on the  
stack.  
These resets are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the appro-  
priate STKFUL or STKUNF bit, but not cause a device  
reset. When the STVREN bit is enabled, a full or under-  
flow will set the appropriate STKFUL or STKUNF bit  
and then cause a device reset. The STKFUL or  
STKUNF bits are only cleared by the user software or  
a POR reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POPinstruction. The POPinstruc-  
tion discards the current TOS by decrementing the  
stack pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
DS39026B-page 36  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
4.3  
Fast Register Stack  
4.4  
PCL, PCLATH and PCLATU  
A "fast interrupt return" option is available for interrupts.  
A Fast Register Stack is provided for the STATUS,  
WREG and BSR registers and are only one in depth.  
The stack is not readable or writable and is loaded with  
the current value of the corresponding register when  
the processor vectors for an interrupt. The values in the  
registers are then loaded back into the working regis-  
ters if the fast return instruction is used to return from  
the interrupt.  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable. Updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable. Updates to the PCU register may  
be performed through the PCLATU register.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register valves stored by the low priority inter-  
rupt will be overwritten.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of PCL is fixed to a value of ’0’.  
The PC increments by 2 to address sequential instruc-  
tions in the program memory.  
If high priority interrupts are not disabled during low pri-  
ority interrupts, users must save the key registers in  
software during a low priority interrupt.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
If no interrupts are used, the fast register stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the fast register  
stack for a subroutine call, a fast call instruction must be  
executed.  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC. (See Section 4.8.1)  
Example 4-1 shows a source code example that uses  
the fast register stack.  
4.5  
Clocking Scheme/Instruction Cycle  
EXAMPLE 4-1: FAST REGISTER STACK  
CODE EXAMPLE  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 4-4.  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
FIGURE 4-4: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+2  
PC+4  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-2)  
Fetch INST (PC+2)  
Execute INST (PC)  
Fetch INST (PC+4)  
Execute INST (PC+2)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 37  
PIC18CXX2  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
4.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g. GOTO)  
then two cycles are required to complete the instruction  
(Example 4-2).  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register" (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW  
Tcy0  
Tcy1  
Tcy2  
Tcy3  
Tcy4  
Tcy5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
boundaries, the data contained in the instruction is a  
word address. The word address is written to  
PC<20:1>, which accesses the desired byte address  
in program memory. Instruction #2 in Figure 4-5  
shows how the instruction "GOTO 000006h’ is  
encoded in the program memory. Program branch  
instructions which encode a relative address offset  
operate in the same manner. The offset value stored  
in a branch instruction represents the number of sin-  
gle word instructions that the PC will be offset by.  
Section 19.0 provides further details of the instruction  
set.  
4.7  
Instructions in Program Memory  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The least significant byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = ’0’). Figure 4-5 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read ’0’. (See Section 4.4)  
The CALL and GOTO instructions have an absolute  
program memory address embedded into the instruc-  
tion. Since instructions are always stored on word  
FIGURE 4-5: INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
000006h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 3:  
MOVFF  
123h, 456h  
DS39026B-page 38  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
4.7.1  
TWO-WORD INSTRUCTIONS  
the instruction is executed by itself (first word was  
skipped), it will execute as a NOP. This action is neces-  
sary when the two word instruction is preceded by a  
conditional instruction that changes the PC. A program  
example that demonstrates this concept is shown in  
Example 4-3. Refer to Section 19.0 for further details of  
the instruction set.  
The PIC18CXX2 devices have 4 two-word instructions:  
MOVFF, CALL, GOTOand LFSR. The second word of  
these instructions has the 4 MSB’s set to 1’s and is a  
special kind of NOPinstruction. The lower 12 bits of the  
second word contain data to be used by the instruction.  
If the first word of the instruction is executed, the data  
in the second word is accessed. If the second word of  
EXAMPLE 4-3: TWO-WORD INSTRUCTIONS  
CASE 1:  
Object code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
REG3  
ADDWF  
; continue code  
CASE 2:  
Object code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
; continue code  
ADDWF  
REG3  
4.8.2  
TABLE READS/TABLE WRITES  
4.8  
Lookup Tables  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
Look-up tables are implemented two ways. These are:  
• Computed GOTO  
Table Reads  
Lookup table data may be stored 2 bytes per program  
word by using table reads and writes. The table pointer  
(TBLPTR) specifies the byte address and the table  
latch (TABLAT) contains the data that is read from or  
written to program memory. Data is transferred to/from  
program memory one byte at a time.  
4.8.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
A lookup table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions that returns the value 0xnn to the calling  
function.  
A description of the Table Read/Table Write operation  
is shown in Section 5.0.  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 39  
PIC18CXX2  
4.9.2  
SPECIAL FUNCTION REGISTERS  
4.9  
Data Memory Organization  
The Special Function Registers (SFRs) are registers  
used by the CPU and Peripheral Modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 4-1 and Table 4-2.  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 4-6  
and Figure 4-7 show the data memory organization for  
the PIC18CXX2 devices.  
The SFRs can be classified into two sets; those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
Banking is required to allow more than 256 bytes to be  
accessed. The data memory map is divided into as  
many as 16 banks that contain 256 bytes each. The  
lower 4 bits of the Bank Select Register (BSR<3:0>)  
select which bank will be accessed. The upper 4 bits  
for the BSR are not implemented.  
The SFRs are typically distributed among the peripher-  
als whose functions they control.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(OxFFF) and grow downwards. Any remaining space  
beyond the SFRs in the Bank may be implemented as  
GPRs. GPRs start at the first location of Bank 0 and  
grow upwards. Any read of an unimplemented location  
will read as ’0’s.  
The unused SFR locations will be unimplemented and  
read as '0's. See Table 4-1 for addresses for the SFRs.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of  
the File Select Register (FSR). Each FSR holds a 12-  
bit address value that can be used to access any loca-  
tion in the Data Memory map without banking.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFF instruction.  
The MOVFF instruction is a two word/two cycle instruc-  
tion that moves a value from one register to another.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle regard-  
less of the current BSR values, an Access Bank is  
implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10 pro-  
vides a detailed description of the Access RAM.  
4.9.1  
GENERAL PURPOSE REGISTER FILE  
The register file can be accessed either directly or indi-  
rectly. Indirect addressing operates through the File  
Select Registers (FSR). The operation of indirect  
addressing is shown in Section 4.12.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other resets.  
Data RAM is available for use as GPR registers by all  
instructions. The top half of bank 15 (0xF80 to 0xFFF)  
contains SFRs. All other banks of data memory contain  
GPR registers starting with bank 0.  
DS39026B-page 40  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 4-6: DATA MEMORY MAP FOR PIC18C242/442  
BSR<3:0>  
= 0000b  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
100h  
00h  
Access RAM  
GPR  
Bank 0  
Bank 1  
FFh  
00h  
= 0001b  
GPR  
1FFh  
200h  
FFh  
Access Bank  
00h  
Access RAM low  
7Fh  
80h  
= 0010b  
= 1110b  
Access RAM high  
FFh  
Bank 2  
to  
Bank 14  
Unused  
Read ’00h’  
(SFR’s)  
When a = 0,  
the BSR is ignored and the  
Access Bank is used.  
The first 128 bytes are  
General Purpose RAM  
(from Bank 0).  
The second 128 bytes are  
Special Function Registers  
(from Bank 15).  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111b  
Bank 15  
When a = 1,  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 41  
PIC18CXX2  
FIGURE 4-7: DATA MEMORY MAP FOR PIC18C252/452  
BSR<3:0>  
= 0000b  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
00h  
Access RAM  
GPR  
Bank 0  
FFh  
00h  
100h  
= 0001b  
= 0010b  
GPR  
GPR  
Bank 1  
Bank 2  
Bank 3  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
FFh  
00h  
= 0011b  
= 0100b  
= 0101b  
GPR  
FFh  
3FFh  
400h  
Access Bank  
Bank 4  
Bank 5  
GPR  
GPR  
4FFh  
500h  
00h  
7Fh  
80h  
Access RAM low  
00h  
FFh  
Access RAM high  
FFh  
5FFh  
600h  
(SFR’s)  
When a = 0,  
= 0110b  
= 1110b  
the BSR is ignored and the  
Access Bank is used.  
The first 128 bytes are  
General Purpose RAM  
(from Bank 0).  
Bank 6  
to  
Bank 14  
Unused  
Read ’00h’  
The second 128 bytes are  
Special Function Registers  
(from Bank 15).  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111b  
Bank 15  
When a = 1,  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
DS39026B-page 42  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER MAP  
INDF2 (3)  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
TOSU  
FDFh  
FDEh  
FDDh  
FDCh  
FDBh  
FBFh  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
F9Fh  
F9Eh  
F9Dh  
F9Ch  
F9Bh  
IPR1  
PIR1  
PIE1  
POSTINC2 (3)  
POSTDEC2 (3)  
PREINC2 (3)  
TOSH  
FBEh  
FBDh  
FBCh  
FBBh  
TOSL  
STKPTR  
PCLATU  
PLUSW2 (3)  
FSR2H  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
PCLATH  
PCL  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FBAh  
FB9h  
FB8h  
FB7h  
FB6h  
CCP2CON  
F9Ah  
F99h  
F98h  
F97h  
F96h  
FSR2L  
TBLPTRU  
TBLPTRH  
TBLPTRL  
STATUS  
TMR0H  
TMR0L  
TRISE (2)  
TRISD (2)  
TRISC  
TRISB  
TRISA  
FF5h  
TABLAT  
FD5h  
T0CON  
FB5h  
F95h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
PRODH  
PRODL  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR3H  
TMR3L  
T3CON  
INTCON  
INTCON2  
INTCON3  
INDF0 (3)  
TMR1H  
SPBRG  
POSTINC0 (3)  
POSTDEC0(3)  
PREINC0 (3)  
FEEh  
FEDh  
FECh  
FEBh  
FCEh  
FCDh  
FCCh  
FCBh  
TMR1L  
T1CON  
TMR2  
PR2  
FAEh  
FADh  
FACh  
FABh  
RCREG  
TXREG  
TXSTA  
RCSTA  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
LATE (2)  
LATD (2)  
LATC  
PLUSW0 (3)  
FSR0H  
FEAh  
FE9h  
FE8h  
FE7h  
FCAh  
FC9h  
FC8h  
FC7h  
T2CON  
FAAh  
FA9h  
FA8h  
FA7h  
F8Ah  
F89h  
F88h  
F87h  
LATB  
LATA  
FSR0L  
SSPBUF  
SSPADD  
SSPSTAT  
WREG  
INDF1 (3)  
POSTINC1 (3)  
POSTDEC1(3)  
PREINC1 (3)  
FE6h  
FE5h  
FE4h  
FE3h  
FC6h  
FC5h  
FC4h  
FC3h  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
FA6h  
FA5h  
FA4h  
FA3h  
F86h  
F85h  
F84h  
F83h  
PORTE (2)  
PLUSW1 (3)  
FSR1H  
FSR1L  
PORTD (2)  
PORTC  
PORTB  
PORTA  
FE2h  
FE1h  
FE0h  
FC2h  
FC1h  
FC0h  
ADCON0  
ADCON1  
FA2h  
FA1h  
FA0h  
IPR2  
PIR2  
PIE2  
F82h  
F81h  
F80h  
BSR  
Note 1: Unimplemented registers are read as ’0’  
2: This registers is not available on PIC18C2X2 devices  
3: This is not a physical register  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 43  
PIC18CXX2  
TABLE 4-2:  
REGISTER FILE SUMMARY  
Value on  
all other  
resets  
Value on  
POR,  
BOR  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(note 3)  
TOSU  
Top-of-Stack upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
---0 0000  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
---0 0000  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
bit21(2)  
TBLPTRU  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
TBLPTRH  
TBLPTRL  
TABLAT  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
n/a  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
n/a  
PRODH  
Product Register High Byte  
PRODL  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBPU  
INTEDG0  
INT1IP  
INTEDG1  
INTEDG2  
INT2IE  
RBIP  
INT1IF  
INT2IP  
INT1IE  
INT2IF  
Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)  
POSTINC0  
n/a  
n/a  
POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register) n/a  
n/a  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)  
n/a  
n/a  
n/a  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) -  
value of FSR0 offset by value in WREG  
n/a  
FSR0H  
FSR0L  
Indirect Data Memory Address Pointer 0 High Byte  
---- 0000  
xxxx xxxx  
xxxx xxxx  
n/a  
---- 0000  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
uuuu uuuu  
WREG  
uuuu uuuu  
INDF1  
Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
POSTINC1  
n/a  
POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register) n/a  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)  
n/a  
n/a  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) -  
value of FSR1 offset by value in WREG  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 High Byte  
---- 0000  
xxxx xxxx  
---- 0000  
n/a  
---- 0000  
Indirect Data Memory Address Pointer 1 Low Byte  
uuuu uuuu  
Bank Select Register  
---- 0000  
INDF2  
Uses contents of FSR2 to address data memory - value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
POSTINC2  
n/a  
POSTDEC2 Uses contents of FSR2 to address data memory - value of FSR2 post-decremented (not a physical register) n/a  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)  
n/a  
n/a  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register) -  
value of FSR2 offset by value in WREG  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
Indirect Data Memory Address Pointer 2 High Byte  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
---- 0000  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
Indirect Data Memory Address Pointer 2 Low Byte  
N
OV  
Z
DC  
C
Timer0 register high byte  
Timer0 register low byte  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0  
Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only and read ’0’ in all  
other oscillator modes.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
DS39026B-page 44  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 4-2:  
REGISTER FILE SUMMARY (Cont.d)  
Value on  
all other  
resets  
Value on  
POR,  
BOR  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(note 3)  
OSCCON  
LVDCON  
WDTCON  
RCON  
SCS  
---- ---0  
--00 0101  
---- ---0  
0q-1 11qq  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
---- ---0  
--00 0101  
---- ---0  
0q-q qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
IRVST  
LVDEN  
LVDL3  
LVDL2  
LVDL1  
LVDL0  
SWDTE  
BOR  
IPEN  
LWRT  
RI  
TO  
PD  
POR  
TMR1H  
TMR1L  
T1CON  
TMR2  
Timer1 Register High Byte  
Timer1 Register Low Byte  
RD16  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
T2CKPS0  
Timer2 Register  
PR2  
Timer2 Period Register  
TOUTPS3  
T2CON  
SSPBUF  
SSPADD  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
SSP Receive Buffer/Transmit Register  
SSP Address Register in I2C Slave Mode. SSP Baud Rate Reload Register in I2C Master Mode.  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
TMR3H  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 00-0  
00-- 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
WCOL  
GCEN  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
ACKEN  
SSPM3  
RCEN  
SSPM2  
PEN  
SSPM1  
RSEN  
SSPM0  
SEN  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCS1  
ADFM  
ADCS0  
ADCS2  
CHS2  
CHS1  
CHS0  
GO/DONE  
PCFG2  
ADON  
PCFG3  
PCFG1  
PCFG0  
Capture/Compare/PWM Register1 High Byte  
Capture/Compare/PWM Register1 Low Byte  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
T3CCP1  
CCP1M2  
CCP2M2  
T3SYNC  
CCP1M1  
CCP2M1  
TMR3CS  
CCP1M0  
CCP2M0  
TMR3ON  
Capture/Compare/PWM Register2 High Byte  
Capture/Compare/PWM Register2 Low Byte  
DC2B1  
DC2B0  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
RD16  
T3CCP2  
T3CKPS1  
T3CKPS0  
SPBRG  
USART1 Baud Rate Generator  
USART1 Receive Register  
USART1 Transmit Register  
RCREG  
TXREG  
TXSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
RCSTA  
ADDEN  
Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only and read ’0’ in all  
other oscillator modes.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 45  
PIC18CXX2  
TABLE 4-2:  
REGISTER FILE SUMMARY (Cont.d)  
Value on  
all other  
resets  
Value on  
POR,  
BOR  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(note 3)  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
TRISE  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
LVDIP  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
CCP2IP  
CCP2IF  
CCP2IE  
TMR1IP  
TMR1IF  
TMR1IE  
---- 1111  
---- 0000  
---- 0000  
1111 1111  
0000 0000  
0000 0000  
0000 -111  
---- 1111  
---- 0000  
---- 0000  
1111 1111  
0000 0000  
0000 0000  
0000 -111  
LVDIF  
LVDIE  
PSPIP  
PSPIF  
PSPIE  
IBF  
ADIP  
RCIP  
TXIP  
CCP1IP  
CCP1IF  
CCP1IE  
ADIF  
ADIE  
OBF  
RCIF  
RCIE  
IBOV  
TXIF  
TXIE  
PSP-  
Data Direction bits for PORTE  
MODE  
TRISD  
TRISC  
TRISB  
TRISA  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
1111 1111  
1111 1111  
1111 1111  
-111 1111  
1111 1111  
1111 1111  
1111 1111  
-111 1111  
TRISA6(1)  
Data Direction Control Register for PORTA  
LATE  
Read PORTE Data Latch, Write  
PORTE Data Latch  
---- -xxx  
---- -uuu  
LATD  
LATC  
LATB  
LATA  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
LATA6(1)  
Read PORTA Data Latch, Write PORTA Data Latch(1)  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
Read PORTE pins, Write PORTE Data Latch  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch  
---- -000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000  
---- -000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000  
RA6(1)  
Read PORTA pins, Write PORTA Data Latch(1)  
Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO oscillator mode only and read ’0’ in all  
other oscillator modes.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted by the ’a’ bit (for  
access bit).  
4.10  
Access Bank  
The Access Bank is an architectural enhancement  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
When forced in the Access Bank (a = ’0’), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function registers so that these registers  
can be accessed without any software overhead. This  
is useful for testing status flags and modifying control  
bits.  
This data memory region can be used for:  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
• Faster evaluation/control of SFRs (no banking)  
The Access Bank is comprised of the upper 128 bytes  
in Bank 15 (SFRs) and the lower 128 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 4-6  
and Figure 4-7 indicate the Access RAM areas.  
DS39026B-page 46  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
If the currently selected bank is not implemented, any  
read will return all '0's and all writes are ignored. The  
STATUS register bits will be set/cleared as appropriate  
for the instruction performed.  
4.11  
Bank Select Register (BSR)  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A MOVFF instruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ’0’s, and  
writes will have no effect.  
Section 4.12 provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
A MOVLB instruction has been provided in the instruc-  
tion set to assist in selecting banks.  
FIGURE 4-8: DIRECT ADDRESSING  
Direct Addressing  
(3)  
from opcode  
BSR<3:0>  
7
0
(2)  
(3)  
bank select  
location select  
00h  
000h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 4-1.  
2: The access bit of the instruction can be used to force an override of the selected bank  
(BSR<3:0>) to the registers of the Access Bank.  
3: The MOVFF instruction embeds the entire 12-bit address in the instruction.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 47  
PIC18CXX2  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all ’0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
STATUS bits are not affected.  
4.12  
Indirect Addressing, INDF and FSR  
Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. An SFR register is used as a pointer to the  
data memory location that is to be read or written.  
Since this pointer is in RAM, the contents can be mod-  
ified by the program. This can be useful for data tables  
in the data memory and for software stacks. Figure 4-9  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address  
specified by the value of the FSR register.  
4.12.1 INDIRECT ADDRESSING OPERATION  
Each FSR register has an INDF register associated  
with it, plus four additional register addresses. Per-  
forming an operation on one of these five registers  
determines how the FSR will be modified during indi-  
rect addressing.  
When data access is done to one of the five INDFn  
locations, the address selected will configure the FSRn  
register to:  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction using the INDF register  
actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself  
indirectly (FSR = ’0’) will read 00h. Writing to the INDF  
register indirectly results in a no-operation. The FSR  
register contains a 12-bit address, which is shown in  
Figure 4-10.  
• Do nothing to FSRn after an indirect access (no  
change) - INDFn  
• Auto-decrement FSRn after an indirect access  
(post-decrement) - POSTDECn  
• Auto-increment FSRn after an indirect access  
(post-increment) - POSTINCn  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer). This is indirect addressing.  
• Auto-increment FSRn before an indirect access  
(pre-increment) - PREINCn  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) - PLUSWn  
Example 4-4 shows a simple use of indirect addressing  
to clear the RAM in Bank1 (locations 100h-1FFh) in a  
minimum number of instructions.  
When using the auto-increment or auto-decrement  
features, the effect on the FSR is not reflected in the  
STATUS register. For example, if the indirect address  
causes the FSR to equal '0', the Z bit will not be set.  
EXAMPLE 4-4: HOW TO CLEAR RAM  
(BANK1) USING INDIRECT  
ADDRESSING  
LFSR 0x100, FSR0  
NEXT CLRF POSTINC0  
;
Incrementing or decrementing an FSR affects all 12  
bits. That is, when FSRnL overflows from an increment,  
FSRnH will be incremented automatically.  
; Clear INDF register  
; & inc pointer  
; All done w/ Bank1?  
; NO, clear next  
;
BTFSS FSR0H, 1  
GOTO NEXT  
CONTINUE  
Adding these features allows the FSRn to be used as a  
stack pointer in addition to its uses for table operations  
in data memory.  
:
; YES, continue  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bit wide. To store the 12-bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
Each FSR has an address associated with it that per-  
forms an indexed indirect access. When a data access  
to this INDFn location (PLUSWn) occurs, the FSRn is  
configured to add the signed value in the WREG regis-  
ter and the value in FSR to form the address before an  
indirect access. The FSR value is not changed.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(STATUS bits are not affected).  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data.  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register, the  
write operation will dominate over the pre- or post-  
increment/decrement functions.  
If an instruction writes a value to INDF0, the value will  
be written to the address pointed to by FSR0H:FSR0L.  
A read from INDF1 reads the data from the address  
pointed to by FSR1H:FSR1L. INDFn can be used in  
code anywhere an operand can be used.  
DS39026B-page 48  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 4-9: INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
FFFh  
File Address = access of an indirect addressing register  
BSR<3:0>  
12  
12  
Instruction  
Fetched  
4
8
Opcode  
FSR  
File  
FIGURE 4-10: INDIRECT ADDRESSING  
Indirect Addressing  
11  
FSR register  
0
location select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-1.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 49  
PIC18CXX2  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
4.13  
STATUS Register  
The STATUS register, shown in Register 4-2, contains  
the arithmetic status of the ALU. The STATUS register  
can be the destination for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV or N bits,  
then the write to these five bits is disabled. These bits  
are set or cleared according to the device logic. There-  
fore, the result of an instruction with the STATUS regis-  
ter as destination may be different than intended.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFFand MOVWFinstructions are used to  
alter the STATUS register, because these instruc-  
tions do not affect the Z, C, DC, OVor Nbits from  
the STATUS register. For other instructions not  
affecting any status bits, see Table 19-2.  
Note: The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
Register 4-2: STATUS Register  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
N
OV  
Z
DC  
C
bit 7  
bit 0  
bit 7:5  
bit 4  
Unimplemented: Read as ’0’  
N: Negative bit  
This bit is used for signed arithmatic (2’s complement). It indicates whether the result was neg-  
ative, (ALU MSB = 1)  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit mag-  
nitude, which causes the sign bit (bit7) to change state.  
1= Overflow occurred for signed arithmatic (in this arithmetic operation)  
0= No overflow occurred  
bit2  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
bit 1  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLW, and SUBWFinstructions  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLW, and SUBWFinstructions  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026B-page 50  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
4.13.1 RCON REGISTER  
Note 1: If the BOREN configuration bit is set, BOR  
is ’1’ on Power-on Reset. If the BOREN  
configuration bit is clear, BOR is unknown  
on Power-on Reset.  
The Reset Control (RCON) register contains flag bits,  
that allow differentiation between the sources of a  
device reset. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
The BOR status bit is a "don't care" and is  
not necessarily predictable if the brown-  
out circuit is disabled (the BOREN config-  
uration bit is clear). BOR must then be set  
by the user and checked on subsequent  
resets to see if it is clear, indicating a  
brown-out has occurred.  
2: It is recommended that the POR bit be set  
after  
a
Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
Register 4-3: RCON Register  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
RI  
TO  
PD  
POR  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable bit  
1= Enable TBLWTto internal program memory  
Once this bit is set, it can only be cleared by a POR or MCLR reset.  
0= Disable TBLWTto internal program memory; TBLWTonly to external program memory  
bit 5  
bit 4  
Unimplemented: Read as ’0’  
RI: Reset Instruction Flag bit  
1= The Reset instruction was not executed  
0= The Reset instruction was executed causing a device reset  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
TO: Watchdog Time-out Flag bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred  
0= A Power-on Reset occurred  
(must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred  
0= A Brown-out Reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 51  
PIC18CXX2  
NOTES:  
DS39026B-page 52  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Table Read operations retrieve data from program  
memory and place it into the Data memory space.  
Figure 5-1 shows the operation of a Table Read with  
program and data memory.  
5.0  
TABLE READS/TABLE WRITES  
Enhanced devices have two memory spaces: the pro-  
gram memory space and the data memory space. The  
program memory space is 16 bits wide, while the data  
memory space is 8 bits wide. Table Reads and Table  
Writes have been provided to move data between  
these two memory spaces through an 8 bit register  
(TABLAT).  
Table Write operations store data from the data mem-  
ory space into program memory. Figure 5-2 shows the  
operation of a Table Write with program and data mem-  
ory.  
Table operations work with byte entities. A table block  
containing data is not required to be word aligned, so a  
table block can start and end at any byte address. If a  
table write is being used to write an executable program  
to program memory, program instructions will need to  
be word aligned.  
The operations that allow the processor to move data  
between the data and program memory spaces are:  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 5-1: TABLE READ OPERATION  
(1)  
TABLE LATCH (8-bit)  
TABLAT  
TABLE POINTER  
TBLPTRU TBLPTRH TBLPTRL  
PROGRAM MEMORY  
Program Memory  
(TBLPTR)  
Instruction: TBLRD*  
Note 1: Table Pointer points to a byte in  
program memory  
FIGURE 5-2: TABLE WRITE OPERATION  
(1)  
TABLE LATCH (8-bit)  
TABLAT  
TABLE POINTER  
TBLPTRU TBLPTRH TBLPTRL  
PROGRAM MEMORY  
Program Memory  
(TBLPTR)  
Instruction: TBLWT*  
Note 1: Table Pointer points to a byte in  
program memory  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 53  
PIC18CXX2  
5.1.1  
RCON REGISTER  
5.1  
Control Registers  
The LWRT bit specifies the operation of Table Writes to  
internal memory when the VPP voltage is applied to the  
MCLR pin. When the LWRT bit is set, the controller  
continues to execute user code, but long table writes  
are allowed (for programming internal program mem-  
ory) from user mode. The LWRT bit can be cleared only  
by performing either a POR or MCLR reset.  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• TBLPTR registers  
TABLAT register  
• RCON register  
Register 5-1: RCON Register (Address: 08h)  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
RI  
TO  
PD  
POR  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable  
1= Enable TBLWT to internal program memory  
0= Disable TBLWT to internal program memory.  
Note 1: Only cleared on a POR or MCLR reset.  
This bit has no effect on TBLWTsto external program memory.  
bit 5  
bit 4  
Unimplemented: Read as ’0’  
RI: Reset Instruction Flag bit  
1= No Reset instruction occurred  
0= A Reset instruction occurred  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset nor POR reset occurred  
0= A Brown-out Reset nor POR reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
DS39026B-page 54  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
5.1.2  
TABLAT - TABLE LATCH REGISTER  
address up to 2M bytes of program memory space. The  
22nd bit allows access to the Device ID, the User ID  
and the Configuration bits.  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data memory.  
The table pointer TBLPTR is used by the TBLRD and  
TBLWT instructions. These instructions can update  
the TBLPTR in one of four ways based on the table  
operation. These operations are shown in Table 5-1.  
These operations on the TBLPTR only affect the low  
order 21-bits.  
5.1.3  
TBLPTR - TABLE POINTER REGISTER  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers (Table Pointer Upper byte, High  
byte and Low byte). These three registers (TBLP-  
TRU:TBLPTRH:TBLPTRL) join to form a 22-bit wide  
pointer. The low order 21-bits allow the device to  
TABLE 5-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 55  
PIC18CXX2  
When a Table Write occurs to an even program mem-  
ory address (TBLPTR<0> = 0), the contents of TABLAT  
are transferred to an internal holding register. This is  
performed as a short write and the program memory  
block is not actually programmed at this time. The hold-  
ing register is not accessible by the user.  
5.2  
Internal Program Memory Read/  
Writes  
5.2.1  
TABLE READ OVERVIEW (TBLRD)  
The TBLRDinstructions are used to read data from pro-  
gram memory to data memory.  
When a Table Write occurs to an odd program memory  
address (TBLPTR,)>=1), a long write is started. During  
the long write, the contents of TABLAT are written to the  
high byte of the program memory block and the con-  
tents of the holding register are transferred to the low  
byte of the program memory block.  
TBLPTR points to a byte address in program space.  
Executing TBLRDplaces the byte pointed to into TAB-  
LAT. In addition, TBLPTR can be modified automati-  
cally for the next Table Read operation.  
Table Reads from program memory are performed one  
byte at a time. The instruction will load TABLAT with the  
one byte from program memory pointed to by TBLPTR.  
Figure 5-3 shows the holding register and the program  
memory write blocks.  
5.2.2  
INTERNAL PROGRAM MEMORY WRITE  
BLOCK SIZE  
If a single byte is to be programmed, the low (even) byte  
of the destination program word should be read using  
TBLRD*, modified or changed, if required, and written  
back to the same address using TBLWT*+. The high  
(odd) byte should be read using TBLRD*, modified or  
changed if required, and written back to the same  
address using TBLWT. The write to an odd address will  
cause a long write to begin. This process ensures that  
existing data in either byte will not be changed unless  
desired.  
The internal program memory of PIC18CXXX devices  
is written in blocks. For PIC18CXX2 devices, the write  
block size is 2 bytes. Consequently, Table Write oper-  
ations to internal program memory are performed in  
pairs, one byte at a time.  
FIGURE 5-3: HOLDING REGISTER AND THE WRITE BLOCK  
Program Memory (x 2-bits)  
Block n  
Write Block  
MSB  
Holding Register  
Block n + 1  
Block n + 2  
The write to the MSB of the Write Block  
causes the entire block to be written to pro-  
gram memory. The program memory block  
that is written depends on the address that is  
written to in the MSB of the Write Block.  
DS39026B-page 56  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
5.2.2.1  
OPERATION  
5.2.2.2  
SEQUENCE OF EVENTS  
The long write is what actually programs words of data  
into the internal memory. When a TBLWTto the MSB of  
the write block occurs, instruction execution is halted.  
During this time, programming voltage and the data  
stored in internal latches is applied to program memory.  
The sequence of events for programming an internal  
program memory location should be:  
1. Enable the interrupt that terminates the long  
write. Disable all other interrupts.  
2. Clear the source interrupt flag.  
For a long write to occur:  
3. If Interrupt Service Routine execution is desired  
when the device wakes, enable global inter-  
rupts.  
1. MCLR/VPP pin must be at the programming volt-  
age  
2. LWRT bit must be set  
4. Set LWRT bit in the RCON register.  
3. TBLWT to the address of the MSB of the write  
block  
5. Raise MCLR/VPP pin to the programming volt-  
age, VPP.  
6. Clear the WDT (if enabled).  
If the LWRT bit is clear, a short write will occur and pro-  
gram memory will not be changed. If the TBLWTis not  
to the MSB of the write block, then the programming  
phase is not initiated.  
7. Set the interrupt source to interrupt at the  
required time.  
8. Execute the table write for the lower (even) byte.  
This will be a short write.  
Setting the LWRT bit enables long writes when the  
MCLR pin is taken to VPP voltage. Once the LWRT bit  
is set, it can be cleared only by performing a POR or  
MCLR reset.  
9. Execute the table write for the upper (odd) byte.  
This will be a long write. The controller will go to  
sleep while programming. The interrupt wakes  
the controller.  
To ensure that the memory location has been well pro-  
grammed, a minimum programming time is required.  
The long write can be terminated after the program-  
ming time has expired by a reset or an interrupt. Having  
only one interrupt source enabled to terminate the long  
write ensures that no unintended interrupts will prema-  
turely terminate the long write.  
10. If GIE was set, service the interrupt request.  
11. Lower MCLR/VPP pin to VDD.  
12. Verify the memory location (table read).  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 57  
PIC18CXX2  
5.2.3  
INTERRUPTS  
Depending on the states of interrupt priority bits, the  
GIE/GIEH bit or the PIE/GIEL bit, program execution  
can either be vectored to the high or low priority Inter-  
rupt Service Routine (ISR) or continue execution from  
where programming commenced.  
The long write must be terminated by a reset or any  
interrupt.  
The interrupt source must have its interrupt enable bit  
set. When the source sets its interrupt flag, program-  
ming will terminate. This will occur regardless of the  
settings of interrupt priority bits, the GIE/GIEH bit or the  
PIE/GIEL bit.  
In either case, the interrupt flag will not be cleared  
when programming is terminated and will need to be  
cleared by the software.  
TABLE 5-2:  
SLEEP MODE, INTERRUPT ENABLE BITS AND INTERRUPT RESULTS  
GIE/  
GIEH  
PIE/  
GIEL  
Interrupt Interrupt  
Priority  
Action  
Enable  
Flag  
X
X
0
X
X
0
X
0
X
Long write continues even if interrupt  
flag becomes set during sleep.  
(default)  
X
X
1
0
1
Long write continues, will wake when  
the interrupt flag is set.  
1
Terminates long write,  
(default) (default)  
executes next instruction. Interrupt flag  
not cleared.  
0
1
1
1
1
Terminates long write,  
(default)  
high priority  
(default)  
executes next instruction. Interrupt flag  
not cleared.  
1
0
0
low  
1
1
1
1
Terminates long write, executes next  
instruction. Interrupt flag not cleared.  
(default)  
0
1
0
low  
Terminates long write, branches to low  
priority interrupt vector.  
(default)  
Interrupt flag can be cleared by ISR.  
1
0
1
1
1
Terminates long write, branches to high  
priority interrupt vector.  
Interrupt flag can be cleared by ISR.  
(default) high priority  
(default)  
DS39026B-page 58  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
5.2.4  
UNEXPECTED TERMINATION OF WRITE  
OPERATIONS  
If a write is terminated by an unplanned event such as  
loss of power, an unexpected reset, or an interrupt that  
was not disabled, the memory location just pro-  
grammed should be verified and reprogrammed if  
needed.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 59  
PIC18CXX2  
NOTES:  
DS39026B-page 60  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
6.0  
8 X 8 HARDWARE MULTIPLIER  
6.1  
Introduction  
• Higher computational throughput  
• Reduces code size requirements for multiply algo-  
rithms  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18CXX2 devices. By making the multiply a  
hardware operation, it completes in a single instruction  
cycle. This is an unsigned multiply that gives a 16-bit  
result. The result is stored into the 16-bit product regis-  
ter pair (PRODH:PRODL). The multiplier does not  
affect any flags in the ALUSTA register.  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
Table 6-1 shows a performance comparison between  
enhanced devices using the single cycle hardware mul-  
tiply, and performing the same function without the  
hardware multiply.  
TABLE 6-1:  
Routine  
PERFORMANCE COMPARISON  
Multiply Method  
Program  
Cycles  
(Max)  
Time  
Memory  
(Words)  
@ 40 MHz @ 10 MHz @ 4 MHz  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.4 µs  
25.4 µs  
3.6 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
69 µs  
1 µs  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 µs  
6 µs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
96.8 µs  
9.6 µs  
242 µs  
24 µs  
254 µs  
36 µs  
Without hardware multiply  
Hardware multiply  
102.6 µs  
14.4 µs  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 61  
PIC18CXX2  
6.2  
Operation  
EXAMPLE 6-3: 16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
Example 6-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2L  
; ARG1L * ARG2L ->  
PRODH:PRODL  
;
MOVFF  
MOVFF  
PRODH, RES1 ;  
PRODL, RES0 ;  
Example 6-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s most significant bit (MSb) is tested  
and the appropriate subtractions are done.  
;
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2H  
; ARG1H * ARG2H ->  
PRODH:PRODL  
;
MOVFF  
MOVFF  
PRODH, RES3 ;  
PRODL, RES2 ;  
EXAMPLE 6-1: 8 x 8 UNSIGNED MULTIPLY  
ROUTINE  
MOVFF  
MULWF  
ARG1, WREG  
ARG2  
;
MOVFF  
MULWF  
ARG1L, WREG  
ARG2H  
; ARG1 * ARG2 ->  
; ARG1L * ARG2H ->  
;
PRODH:PRODL  
;
PRODH:PRODL  
MOVFF  
ADDWF  
MOVFF  
ADDWFC  
CLRF  
PRODL, WREG ;  
RES1, F  
; Add cross  
PRODH, WREG ;  
products  
EXAMPLE 6-2: 8 x 8 SIGNED MULTIPLY  
ROUTINE  
RES2, F  
WREG, F  
RES3, F  
;
;
;
MOVFF  
MULWF  
ARG1, WREG  
ARG2  
ADDWFC  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
;
MOVFF  
MULWF  
ARG1H, WREG ;  
ARG2L ; ARG1H * ARG2L ->  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
PRODH:PRODL  
;
- ARG1  
MOVFF  
ADDWF  
MOVFF  
ADDWFC  
CLRF  
PRODL, WREG ;  
MOVFF  
BTFSC  
SUBWF  
ARG2, WREG  
ARG1, SB  
PRODH, F  
RES1, F  
; Add cross  
; Test Sign Bit  
; PRODH = PRODH  
PRODH, WREG ;  
products  
RES2, F  
WREG, F  
RES3, F  
;
;
;
;
- ARG2  
ADDWFC  
Example 6-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 6-1 shows the algorithm  
that is used. The 32-bit result is stored in 4 registers  
RES3:RES0.  
Example 6-4 shows the sequence to do an 16 x 16  
signed multiply. Equation 6-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs most significant bit (MSb)  
is tested and the appropriate subtractions are done.  
EQUATION 6-1: 16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
EQUATION 6-2: 16 x 16 SIGNED  
MULTIPLICATION  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(ARG1H ARG2H 2 )+  
8
(ARG1H ARG2L 2 )+  
ALGORITHM  
8
(ARG1L ARG2H 2 )+  
RES3:RES0  
(ARG1L ARG2L)  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(ARG1H ARG2H 2 )+  
8
(ARG1H ARG2L 2 )+  
8
(ARG1L ARG2H 2 )+  
(ARG1L ARG2L)+  
(-1 ARG2H<7> ARG1H:ARG1L 2 )+  
(-1 ARG1H<7> ARG2H:ARG2L 2  
16  
16  
)
DS39026B-page 62  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
EXAMPLE 6-4: 16 x 16 SIGNED MULTIPLY  
ROUTINE  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2L  
; ARG1L * ARG2L ->  
PRODH:PRODL  
;
MOVFF  
MOVFF  
PRODH, RES1 ;  
PRODL, RES0 ;  
;
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2H  
; ARG1H * ARG2H ->  
PRODH:PRODL  
;
MOVFF  
MOVFF  
PRODH, RES3 ;  
PRODL, RES2 ;  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2H  
; ARG1L * ARG2H ->  
;
PRODH:PRODL  
MOVFF  
ADDWF  
MOVFF  
ADDWFC  
CLRF  
PRODL, WREG ;  
RES1, F  
; Add cross  
PRODH, WREG ;  
products  
RES2, F  
WREG, F  
RES3, F  
;
;
;
ADDWFC  
;
MOVFF  
MULWF  
ARG1H, WREG ;  
ARG2L ; ARG1H * ARG2L ->  
;
PRODH:PRODL  
MOVFF  
ADDWF  
MOVFF  
ADDWFC  
CLRF  
PRODL, WREG ;  
RES1, F  
; Add cross  
PRODH, WREG ;  
products  
RES2, F  
WREG, F  
RES3, F  
;
;
;
ADDWFC  
;
;
BTFSS  
GOTO  
MOVFF  
SUBWF  
MOVFF  
SUBWFB  
ARG2H, 7  
SIGN_ARG1  
ARG1L, WREG ;  
RES2  
ARG1H, WREG ;  
RES3  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
SIGN_ARG1  
BTFSS  
GOTO  
ARG1H, 7  
CONT_CODE  
; ARG1H:ARG1L neg?  
; no, done  
MOVFF  
SUBWF  
MOVFF  
SUBWFB  
;
ARG2L, WREG ;  
RES2  
ARG2H, WREG ;  
RES3  
;
CONT_CODE  
:
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 63  
PIC18CXX2  
NOTES:  
DS39026B-page 64  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
When the IPEN bit is cleared (default state), the inter-  
rupt priority feature is disabled and interrupts are com-  
7.0  
INTERRUPTS  
The PIC18CXX2 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level or a low priority level. The high priority interrupt  
vector is at 000008h and the low priority interrupt vector  
is at 000018h. High priority interrupt events will over-  
ride any low priority interrupts that may be in progress.  
patible with PICmicro mid-range devices.  
In  
compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit,  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit, which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in compatibility mode.  
There are ten registers which are used to control inter-  
rupt operation. These registers are:  
When an interrupt is responded to, the Global Interrupt  
Enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt prior-  
ity levels are used, this will be either the GIEH or GIEL  
bit. High priority interrupt sources can interrupt a low  
priority interrupt.  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
• PIR1, PIR2  
• PIE1, PIE2  
• IPR1, IPR2  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the interrupt service  
routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
It is recommended that the Microchip header files sup-  
plied with MPLAB be used for the symbolic bit names  
in these registers. This allows the assembler/compiler  
to automatically take care of the placement of these bits  
within the specified register.  
The "return from interrupt" instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
Each interrupt source has three bits to control its oper-  
ation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when  
the flag bit is set  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts glo-  
bally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set. Setting the GIEL  
bit (INTCON<6>) enables all interrupts that have the  
priority bit cleared. When the interrupt flag, enable bit  
and appropriate global interrupt enable it are set, the  
interrupt will vector immediately to address 000008h or  
000018h depending on the priority level. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 65  
PIC18CXX2  
FIGURE 7-1: INTERRUPT LOGIC  
Wake-up if in SLEEP mode  
T0IF  
T0IE  
T0IP  
RBIF  
RBIE  
RBIP  
INT0F  
INT0E  
Interrupt to CPU  
Vector to location  
0008h  
INT1F  
INT1E  
INT1P  
INT2F  
INT2E  
INT2P  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIEH/GIE  
TMR1IF  
TMR1IE  
TMR1IP  
IPE  
IPE  
GIEL/PEIE  
XXXXIF  
XXXXIE  
XXXXIP  
IPE  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
T0IF  
T0IE  
T0IP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
RBIP  
GIEL\PEIE  
XXXXIF  
XXXXIE  
XXXXIP  
INT0F  
INT0E  
INT1F  
INT1E  
INT1P  
Additional Peripheral Interrupts  
INT2F  
INT2E  
INT2P  
DS39026B-page 66  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
7.0.1  
INTCON REGISTERS  
The INTCON Registers are readable and writable  
registers, which contains various enable, priority and  
flag bits.  
Register 7-1: INTCON Register  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH  
PEIE/GIEL  
TMR0IE  
INT0IE  
TMR0IF  
bit 7  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GEIL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 67  
PIC18CXX2  
Register 7-2: INTCON2 Register  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0  
INTEDG1  
INTEDG2  
TMR0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0:External Interrupt0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as '0'  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as '0'  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
DS39026B-page 68  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Register 7-3: INTCON3 Register  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1=High priority  
0=Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1=High priority  
0=Low priority  
bit 5  
bit 4  
Unimplemented: Read as '0'  
INT2IE: INT2 External Interrupt Enable bit  
1=Enables the INT2 external interrupt  
0=Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1=Enables the INT1 external interrupt  
0=Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as '0'  
INT2IF: INT2 External Interrupt Flag bit  
1=The INT2 external interrupt occurred  
(must be cleared in software)  
0=The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1=The INT1 external interrupt occurred  
(must be cleared in software)  
0=The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 69  
PIC18CXX2  
7.0.2  
PIR REGISTERS  
7.0.3  
PIE REGISTERS  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to he number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Flag Registers (PIR1, PIR2).  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two Peripheral Inter-  
rupt Enable Registers (PIE1, PIE2). When IPEN = 0,  
the PEIE bit must be set to enable any of these periph-  
eral interrupts.  
Note 1: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
7.0.4  
IPR REGISTERS  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to on the number of  
peripheral interrupt sources, there are two Peripheral  
Interrupt Priority Registers (IPR1, IPR2). The operation  
of the priority bits requires that the Interrupt Priority  
Enable (IPEN) bit be set.  
Note 2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt, and after servicing  
that interrupt.  
7.0.5  
RCON REGISTER  
The RCON register contains the bit which is used to  
enable prioritized interrupts (IPEN).  
Register 7-4: RCON Register  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
RI  
TO  
PD  
POR  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable  
For details of bit operation see Register 4-1  
bit 5  
bit 4  
Unimplemented: Read as ’0’  
RI: Reset Instruction Flag bit  
For details of bit operation see Register 4-1  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
For details of bit operation see Register 4-1  
PD: Power-down Detection Flag bit  
For details of bit operation see Register 4-1  
POR: Power-on Reset Status bit  
For details of bit operation see Register 4-1  
BOR: Brown-out Reset Status bit  
For details of bit operation see Register 4-1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
DS39026B-page 70  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Register 7-5: Peripheral Interrupt Request (Flag) Registers  
R/W-0  
PSPIF  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
PIR1  
PIR2  
PIR1  
RCIF  
TXIF  
CCP1IF TMR2IF TMR1IF  
bit 0  
bit 7  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BCLIF  
LVDIF  
TMR3IF  
CCP2IF  
bit 7  
bit 0  
bit 7  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place  
(must be cleared in software)  
0= No read or write has occurred  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
(must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer, RCREG, is full  
(cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty  
(cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete  
(must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred  
(must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred  
(must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred  
(must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed  
(must be cleared in software)  
0= TMR1 register did not overflow  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 71  
PIC18CXX2  
Register 7-5: Peripheral Interrupt Request (Flag) Registers (cont’d)  
PIR2  
bit 7-4  
bit 3  
Unimplemented: Read as ’0’  
BCLIF: Bus Collision Interrupt Flag bit  
1= A Bus Collision occurred  
(must be cleared in software)  
0= No Bus Collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low voltage condition occurred  
(must be cleared in software)  
0= The device voltage is above the Low Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed  
(must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: CCPx Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred  
(must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred  
(must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
DS39026B-page 72  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Register 7-6: Peripheral Interrupt Enable Registers  
R/W-0  
PSPIE  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
PIE1  
CCP1IE TMR2IE TMR1IE  
bit 0  
bit 7  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PIE2  
PIE1  
BCLIE  
LVDIE  
TMR3IE CCP2IE  
bit 0  
bit 7  
bit 7  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
PIE2  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 2  
bit 1  
bit 0  
LVDIE: Low-voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 73  
PIC18CXX2  
Register 7-7: Peripheral Interrupt Priority Registers  
R/W-1  
PSPIP  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
IPR1  
CCP1IP TMR2IP TMR1IP  
bit 7  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
IPR2  
IPR1  
BCLIP  
LVDIP  
TMR3IP CCP2IP  
bit 7  
bit 0  
bit 7  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
IPR2  
bit 7-4  
bit 3  
Unimplemented: Read as '0'  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2  
bit 1  
bit 0  
LVDIP: Low-voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
- n = Value at POR reset  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
DS39026B-page 74  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
7.0.6  
INT0 INTERRUPT  
TMR0H:TMR0L registers will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit T0IE (INTCON<5>). Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit TMR0IP (INTCON2<2>). See Sec-  
tion 8.0 for further details on the Timer0 module.  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge triggered: either rising if the  
corresponding INTEDGx bit is set in the INTCON2 reg-  
ister, or falling, if the INTEDGx bit is clear. When a valid  
edge appears on the RBx/INTx pin, the corresponding  
flag bit INTxF is set. This interrupt can be disabled by  
clearing the corresponding enable bit INTxE. Flag bit  
INTxF must be cleared in software in the interrupt ser-  
vice routine before re-enabling the interrupt. All exter-  
nal interrupts (INT0, INT1 and INT2) can wake-up the  
processor from SLEEP, if bit INTxE was set prior to  
going into SLEEP. If the global interrupt enable bit GIE  
set, the processor will branch to the interrupt vector fol-  
lowing wake-up.  
7.0.8  
PORTB INTERRUPT ON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<3>).  
Interrupt priority for PORTB Interrupt on change is  
determined by the value contained in the interrupt pri-  
ority bit RBIP (INTCON2<0>).  
7.1  
Context Saving During Interrupts  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits INT1IP  
(INTCON3<6>) and INT2IP (INTCON3<7>). There is  
no priority bit associated with INT0. It is always a high  
priority interrupt source.  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, STATUS and BSR reg-  
isters are saved on the fast return stack. If a fast return  
from interrupt is not used (See Section 4.3), the user  
may need to save the WREG, STATUS and BSR regis-  
ters in software. Depending on the user’s application,  
other registers may also need to be saved. Example 6-  
1 saves and restores the WREG, STATUS and BSR  
registers during an interrupt service routine.  
7.0.7  
TMR0 INTERRUPT  
In 8-bit mode (which is the default), an overflow (FFh →  
00h) in the TMR0 register will set flag bit TMR0IF. In  
16-bit mode, an overflow (FFFFh 0000h) in the  
EXAMPLE 7-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 75  
PIC18CXX2  
NOTES:  
DS39026B-page 76  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register reads and writes the latched output value for  
PORTA.  
8.0  
I/O PORTS  
Depending on the device selected, there are either five  
ports or three ports available. Some pins of the I/O  
ports are multiplexed with an alternate function from  
the peripheral features on the device. In general, when  
a peripheral is enabled, that pin may not be used as a  
general purpose I/O pin.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The RA4/  
T0CKI pin is a Schmitt Trigger input and an open drain  
output. All other RA port pins have TTL input levels and  
full CMOS output drivers.  
Each port has three registers for its operation. These  
registers are:  
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register1).  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The data latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are driv-  
ing.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
8.1  
PORTA, TRISA and LATA Registers  
PORTA is a 6-bit wide bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output, (i.e., put  
the contents of the output latch on the selected pin).  
EXAMPLE 8-1: INITIALIZING PORTA  
CLRF PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
CLRF LATA  
; Alternate method  
; to clear output  
; data latches  
Note: On a Power-on Reset, these pins are con-  
figured as inputs and read as '0'.  
MOVLW 0x07  
MOVWF ADCON1  
MOVLW 0xCF  
; Configure A/D  
; for digital inputs  
; Value used to  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
; initialize data  
; direction  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 77  
PIC18CXX2  
FIGURE 8-1: BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
FIGURE 8-3: BLOCK DIAGRAM OF RA6  
ECRA6 or  
RCRA6 enable  
Data  
Bus  
RD LATA  
RD LATA  
Data  
Bus  
D
Q
Q
VDD  
P
D
Q
VDD  
P
WR LATA  
or  
PORTA  
CK  
WR LATA  
or  
PORTA  
Q
CK  
Data Latch  
I/O pin(1)  
N
Data Latch  
D
Q
I/O pin(1)  
N
D
Q
WR TRISA  
VSS  
Analog  
Q
CK  
WR  
TRISA  
VSS  
input  
mode  
Q
CK  
TRIS Latch  
ECRA6 or  
TRIS Latch  
RCRA6  
enable  
TTL  
Data Bus  
Data Bus  
RD TRISA  
Q
input  
TTL  
buffer  
input  
buffer  
D
RD TRISA  
EN  
Q
D
RD PORTA  
SS input (RA5 only)  
To A/D Converter and LVD Modules  
EN  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 8-2: BLOCK DIAGRAM OF RA4/  
T0CKI PIN  
RD LATA  
Data  
Bus  
D
Q
Q
WR LATA  
or  
PORTA  
CK  
I/O pin(1)  
N
Data Latch  
D
Q
VSS  
WR TRISA  
Schmitt  
Trigger  
input  
Q
CK  
TRIS Latch  
buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
TMR0 Cock Input  
Note 1: I/O pin has protection diodes to VSS only.  
DS39026B-page 78  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 8-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
RA1/AN1  
Input/output or analog input  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output or analog input or VREF-  
Input/output or analog input or VREF+  
Input/output or external clock input for Timer0  
Output is open drain type  
RA5/SS/AN4/LVDIN  
OSC2/CLKO/RA6  
bit5  
bit6  
TTL  
Input/output or slave select input for synchronous serial port or analog  
input, or low voltage detect input  
OSC2 or clock output or I/O pin  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 8-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on Valueon all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
resets  
PORTA  
LATA  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--xx xxxx --uu uuuu  
--11 1111 --11 1111  
Latch A Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1  
ADFM ADCS2  
PCFG3  
PCFG2  
PCFG1  
PCFG0 --0- 0000 --0- 0000  
Legend: x = unknown, u = unchanged, - = unimplemented locations read as ’0’. Shaded cells are not used by PORTA.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 79  
PIC18CXX2  
8.2  
PORTB, TRISB and LATB Registers  
FIGURE 8-4: BLOCK DIAGRAM OF  
RB7:RB4 PINS  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output, ( i.e. put  
the contents of the output latch on the selected pin).  
VDD  
RBPU(2)  
weak  
pull-up  
P
Data Latch  
Data Bus  
D
Q
I/O  
WR LATB  
or  
PORTB  
pin(1)  
CK  
TRIS Latch  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register reads and writes the latched output value for  
PORTB.  
D
Q
WR TRISB  
TTL  
CK  
Input  
Buffer  
ST  
Buffer  
EXAMPLE 8-2: INITIALIZING PORTB  
RD TRISB  
RD LATB  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
Latch  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
Q
Q
D
EN  
Q1  
RD PORTB  
MOVLW 0xCF  
Set RBIF  
D
MOVWF TRISB  
From other  
RB7:RB4 pins  
RD PORTB  
Q3  
EN  
RBx/INTx  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2<7>).  
FIGURE 8-5: BLOCK DIAGRAM OF  
RB2:RB0 PINS  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
VDD  
RBPU(2)  
weak  
P
pull-up  
Data Latch  
Data Bus  
WR Port  
D
Q
I/O  
pin(1)  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
WR TRIS  
CK  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
RD TRIS  
RD Port  
Q
D
b) Clear flag bit RBIF.  
EN  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
RB0/INT  
Schmitt Trigger  
Buffer  
RD Port  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
DS39026B-page 80  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 8-6: BLOCK DIAGRAM OF RB3  
VDD  
RBPU(2)  
weak  
pull-up  
P
CCP2MX  
CCP Output(3)  
1
0
VDD  
P
Enable (3)  
CCP Output  
Data Latch  
I/O  
Data Bus  
D
Q
Pin(1)  
WR LATB or  
WR PORTB  
N
CK  
TRIS Latch  
D
VSS  
TTL  
WR TRISB  
Input  
CK  
Q
Buffer  
RD TRISB  
RD LATB  
D
Q
EN  
RD PORTB  
RD PORTB  
CCP2 input(3)  
Schmitt Trigger  
Buffer  
CCP2MX = 0  
Note 1: I/O pin has diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate DDR bit(s) and clear the RBPU bit (INTCON2<7>).  
3: The CCP2 input/output is multiplexed with RB3 if the CCP2MX bit is enabled (=’0’) in the configuration register.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 81  
PIC18CXX2  
TABLE 8-3:  
Name  
PORTB FUNCTIONS  
Bit#  
Buffer  
Function  
TTL/ST(1)  
RB0/INT0  
RB1/INT1  
RB2/INT2  
bit0  
Input/output pin or external interrupt input1. Internal software  
programmable weak pull-up.  
TTL/ST(1)  
TTL/ST(1)  
TTL/ST(4)  
bit1  
bit2  
bit3  
Input/output pin or external interrupt input2. Internal software programma-  
ble weak pull-up.  
Input/output pin or external interrupt input3. Internal software programma-  
ble weak pull-up.  
RB3/CCP2 (3)  
Input/output pin. Capture2 input/Compare2 output/PWM output when  
CCP2MX configuration bit is enabled. Internal software programmable  
weak pull-up.  
RB4  
RB5  
RB6  
RB7  
bit4  
bit5  
bit6  
bit7  
TTL  
TTL  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up.  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up.  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: A device configuration bit selects which I/O pin the CCP2 pin is multiplexed on.  
4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.  
TABLE 8-4:  
SUMMARY OF REGISTERS  
ASSOCIATED WITH PORTB  
Value on  
POR,  
BOR  
Value on all  
other resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx  
uuuu uuuu  
LATB Data Output Register  
PORTB Data Direction Register  
1111 1111  
0000 000x  
1111 1111  
0000 000u  
TRISB  
INTCON  
GIE/  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
GIEH  
RBPU  
INTEDG0 INTEDG1 INTEDG2  
INT1IP INT2IE  
TMR0IP  
RBIP  
1111 -1-1  
11-0 0-00  
1111 -1-1  
11-0 0-00  
INTCON2  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
INTCON3  
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.  
DS39026B-page 82  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
make a pin an input. The user should refer to the corre-  
sponding peripheral section for the correct TRIS bit set-  
tings.  
8.3  
PORTC, TRISC and LATC Registers  
PORTC is an 8 bit wide bi-directional port. The corre-  
sponding Data Direction Register is TRISC. Setting a  
TRISC bit (=1) will make the corresponding PORTC pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISC bit (=0) will  
make the corresponding PORTC pin an output, (i.e.,  
put the contents of the output latch on the selected pin).  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register,  
without concern due to peripheral overrides.  
EXAMPLE 8-3: INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register reads and writes the latched output value for  
PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
PORTC is multiplexed with several peripheral functions  
(Table 8-5). PORTC pins have Schmitt Trigger input  
buffers.  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
FIGURE 8-7: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
Peripheral Data Out  
RD LATC  
Data Bus  
1
RC7: RC0  
D
Q
Q
WR LATC or  
WR PORTC  
0
CK  
Peripheral Out  
Select  
RD TRISC  
Peripheral Output Enable  
D
Q
Q
WR TRISC  
CK  
Q
Q
D
ST Buffer  
CK  
RD PORTC  
Peripheral Data In  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 83  
PIC18CXX2  
TABLE 8-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
bit0  
bit1  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
Input/output port pin, Timer1 oscillator input, or Capture2 input/  
Compare2 output/PWM output when CCP2MX configuration bit is  
disabled.  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
RC3 can also be the synchronous serial clock for both SPI and I2C  
modes.  
RC3/SCK/SCL  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output  
RC4/SDI/SDA  
bit4  
ST  
RC5/SDO  
bit5  
bit6  
ST  
ST  
RC6/TX/CK  
Input/output port pin, Addressable USART Asynchronous Transmit, or  
Addressable USART Synchronous Clock  
RC7/RX/DT  
bit7  
ST  
Input/output port pin, Addressable USART Asynchronous Receive, or  
Addressable USART Synchronous Data  
Legend: ST = Schmitt Trigger input  
TABLE 8-6:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
POR,  
BOR  
Value on all  
other resets  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx  
xxxx xxxx  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
LATC Data Output Register  
TRISC  
PORTC Data Direction Register  
Legend: x = unknown, u = unchanged.  
DS39026B-page 84  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
8.4  
PORTD, TRISD and LATD Registers  
FIGURE 8-8: PORTD BLOCK DIAGRAM  
IN I/O PORT MODE  
This section is applicable to only the PIC18C4X2  
devices.  
PORTD is an 8 bit wide bi-directional port. The corre-  
sponding Data Direction Register is TRISD. Setting a  
TRISD bit (=1) will make the corresponding PORTD pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISD bit (=0) will  
make the corresponding PORTD pin an output, (i.e.,  
put the contents of the output latch on the selected pin).  
RD LATD  
Data  
Bus  
D
Q
I/O pin(1)  
WR LATD  
or  
PORTD  
CK  
Data Latch  
D
Q
The Data Latch Register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register reads and writes the latched output value for  
PORTD.  
WR TRISD  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
buffer  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
RD TRISD  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL. See Section 8.6 for additional information on  
the Parallel Slave Port (PSP).  
Q
D
EN  
RD PORTD  
EXAMPLE 8-4: INITIALIZING PORTD  
Note 1: I/O pins have protection diodes to VDD and VSS.  
CLRF  
PORTD ; Initialize PORTD by  
; clearing output  
; data latches  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISD  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 85  
PIC18CXX2  
TABLE 8-7:  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Function  
bit0  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
Input/output port pin or parallel slave port bit0  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.  
TABLE 8-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
POR,  
BOR  
Value on all  
other resets  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0000 -111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
0000 -111  
LATD Data Output Register  
TRISD  
TRISE  
PORTD Data Direction Register  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
Legend: x = unknown, u = unchanged, - = unimplemented read as ’0’. Shaded cells are not used by PORTD.  
DS39026B-page 86  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
8.5  
PORTE, TRISE and LATE Registers  
FIGURE 8-9: PORTE BLOCK DIAGRAM  
IN I/O PORT MODE  
This section is only applicable to the PIC18C4X2  
devices.  
PORTE is an 3 bit wide bi-directional port. The corre-  
sponding Data Direction Register is TRISE. Setting a  
TRISE bit (=1) will make the corresponding PORTE pin  
an input, (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISE bit (=0) will  
make the corresponding PORTE pin an output, (i.e.,  
put the contents of the output latch on the selected pin).  
RD LATE  
Data  
Bus  
D
Q
I/O pin(1)  
WR LATE  
or  
PORTE  
CK  
Data Latch  
The Data Latch Register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register reads and writes the latched output value for  
PORTE.  
D
Q
WR TRISE  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
PORTE has three pins RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
buffer  
RD TRISE  
Figure 8-1 shows the TRISE register, which also con-  
trols the parallel slave port operation. Capture2 input/  
Compare2 output/PWM output when CCP2MX config-  
uration bit is enabled.  
Q
D
EN  
PORTE pins are multiplexed with analog inputs. When  
selected as an analog input, these pins will read as ’0’s.  
RD PORTE  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
To Analog Converter  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs.  
EXAMPLE 8-5: INITIALIZING PORTE  
CLRF  
PORTE  
; Initialize PORTE by  
; clearing output  
; data latches  
CLRF  
LATE  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0x07  
; Configure A/D  
MOVWF ADCON1 ; for digital inputs  
MOVLW 0x03  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RE<0> as inputs  
; RE<1> as outputs  
; RE<2> as inputs  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 87  
PIC18CXX2  
Register 8-1: TRISE Register  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel slave port mode  
0= General purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as ’0’  
TRISE2: RE2 direction control bit  
1= Input  
0= Output  
bit 1  
bit 0  
TRISE1: RE1 direction control bit  
1= Input  
0= Output  
TRISE0: RE0 direction control bit  
1= Input  
0= Output  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR reset  
DS39026B-page 88  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 8-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
ST/TTL(1)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
bit0  
Input/output port pin or read control input in parallel slave port mode  
or analog input:  
RD  
1= Not a read operation  
0= Read operation. Reads PORTD register (if chip selected)  
ST/TTL(1)  
ST/TTL(1)  
bit1  
bit2  
Input/output port pin or write control input in parallel slave port mode  
or analog input:  
WR  
1= Not a write operation  
0= Write operation. Writes PORTD register (if chip selected)  
Input/output port pin or chip select control input in parallel slave port  
mode or analog input:  
CS  
1= Device is not selected  
0= Device is selected  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.  
TABLE 8-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on Value on all  
POR,  
BOR  
other  
resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTE  
LATE  
RE2  
RE1  
RE0  
---- -000  
---- -xxx  
0000 -111  
--0- -000  
---- -000  
---- -uuu  
0000 -111  
--0- -000  
PSPMODE  
LATE Data Output Register  
PORTE Data Direction Bits  
TRISE  
IBF  
OBF  
IBOV  
ADCON1 ADFM ADCS2  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
Legend: x = unknown, u = unchanged, - = unimplemented read as ’0’. Shaded cells are not used by PORTE.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 89  
PIC18CXX2  
8.6  
Parallel Slave Port  
FIGURE 8-10: PORTD AND PORTE BLOCK  
DIAGRAM  
The Parallel Slave Port is implemented on the 40-pin  
devices only (PIC18C4X2).  
(PARALLEL SLAVE PORT)  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or microprocessor port when control bit PSPMODE  
(TRISE<4>) is set. In slave mode it is asynchronously  
readable and writable by the external world through RD  
control input pin RE0/RD and WR control input pin  
RE1/WR.  
Data Bus  
D
Q
RDx  
Pin  
WR LATD  
or  
PORTD  
CK  
Data Latch  
TTL  
Q
D
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD to be the RD input, RE1/WR  
to be the WR input and RE2/CS to be the CS (chip  
select) input. For this functionality, the corresponding  
data direction bits of the TRISE register (TRISE<2:0>)  
must be configured as inputs (set). The A/D port con-  
figuration bits PCFG2:PCFG0 (ADCON1<2:0>) must  
be set, which will configure pins RE2:RE0 as digital I/O.  
RD PORTD  
EN  
RD LATD  
One bit of PORTD  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
The PORTE I/O pins become control inputs for the  
microprocessor port when bit PSPMODE (TRISE<4>)  
is set. In this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs), and the ADCON1 is configured for digital I/O. In  
this mode, the input buffers are TTL.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
Write  
TTL  
Note: I/O pin has protection diodes to VDD and VSS.  
FIGURE 8-11: PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
DS39026B-page 90  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 8-12: PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 8-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
POR, BOR  
Value on all  
other resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
Port data latch when written; port pins when read  
LATD Data Output Bits  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- -000 ---- -000  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
0000 000x 0000 000u  
TRISD  
PORTE  
LATE  
PORTD Data Direction Bits  
RE2  
RE1  
RE0  
LATE Data Output Bits  
PORTE Data Direction Bits  
TMR0IF INT0IF RBIF  
TRISE  
INTCON  
IBF  
OBF  
IBOV  
TMR0IF  
PSPMODE  
INT0IE  
GIE/  
GIEH  
PEIE/  
GIEL  
RBIE  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADFM  
ADIF  
ADIE  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
PCFG3  
CCP1IF TMR2IF  
TMR1IF 0000 0000 0000 0000  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
ADIP  
ADCON1  
ADCS2  
PCFG2  
PCFG1  
PCFG0  
--0- -000 --0- -000  
Legend: x = unknown, u = unchanged, - = unimplemented read as ’0’.  
Shaded cells are not used by the Parallel Slave Port.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 91  
PIC18CXX2  
NOTES:  
DS39026B-page 92  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Figure 9-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 9-1 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
9.0  
TIMER0 MODULE  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or 16-bit timer/  
counter  
• Readable and writable  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt on overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
The T0CON register is a readable and writable register  
that controls all the aspects of Timer0, including the  
prescale selection.  
Register 9-1: T0CON: Timer0 Control Register  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2:0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output  
T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 93  
PIC18CXX2  
FIGURE 9-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
FOSC/4  
0
1
8
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
Pin  
1
(2 Tcy delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note:  
Upon reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 9-2: TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
FOSC/4  
0
1
0
1
Sync with  
Internal  
Clocks  
Set Interrupt  
Flag bit TMR0IF  
on overflow  
TMR0  
High Byte  
TMR0L  
Programmable  
Prescaler  
T0CKI pin  
8
(2 Tcy delay)  
T0SE  
3
Read TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS  
Write TMR0L  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note:  
Upon reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39026B-page 94  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
9.2.1  
SWITCHING PRESCALER ASSIGNMENT  
9.1  
Timer0 Operation  
The prescaler assignment is fully under software con-  
trol, (i.e., it can be changed “on-the-fly” during program  
execution).  
Timer0 can operate as a timer or as a counter.  
Timer mode is selected by clearing the T0CS bit. In  
timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
9.3  
Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode or FFFFh  
to 0000h in 16-bit mode. This overflow sets the TMR0IF  
bit. The interrupt can be masked by clearing the  
TMR0IE bit. The TMR0IE bit must be cleared in soft-  
ware by the Timer0 module interrupt service routine  
before re-enabling this interrupt. The TMR0 interrupt  
cannot awaken the processor from SLEEP, since the  
timer is shut off during SLEEP.  
Counter mode is selected by setting the T0CS bit. In  
counter mode, Timer0 will increment either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
9.4  
16-Bit Mode Timer Reads and Writes  
TMR0H is not the high byte of the timer/counter in 16-  
bit mode, but is actually a buffered version of the high  
byte of Timer0 (refer to Figure 9-1). The high byte of  
the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16-bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid due to a rollover between successive reads  
of the high and low byte.  
9.2  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module. The prescaler is not readable or writ-  
able.  
The PSA and T0PS2:T0PS0 bits determine the pres-  
caler assignment and prescale ratio.  
A write to the high byte of Timer0 must also take place  
through the TMR0H buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16 bits of Timer0 to  
be updated at once.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF TMR0,  
MOVWF TMR0, BSF TMR0, x....etc.) will clear the  
prescaler count.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
TABLE 9-1:  
Name  
REGISTERS ASSOCIATED WITH TIMER0  
Value on Value on all  
POR, BOR other resets  
Bit 7  
Timer0 Module’s Low Byte Register  
TMR0H Timer0 Module’s High Byte Register  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
xxxx xxxx  
0000 0000  
0000 000x  
1111 1111  
--11 1111  
uuuu uuuu  
0000 0000  
0000 000u  
1111 1111  
--11 1111  
TMR0L  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2 T0PS1 T0PS0  
PORTA Data Direction Register  
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.  
Shaded cells are not used by Timer0.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 95  
PIC18CXX2  
NOTES:  
DS39026B-page 96  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Figure 10-1 is a simplified block diagram of the Timer1  
module.  
10.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
Register 10-1 shows the Timer1 control register. This  
register controls the operating mode of the Timer1  
module as well as contains the Timer1 oscillator enable  
bit (T1OSCEN). Timer1 can be enabled/disabled by  
setting/clearing control bit TMR1ON (T1CON<0>).  
• 16-bit timer/counter  
(Two 8-bit registers; TMR1H and TMR1L)  
• Readable and writable (Both registers)  
• Internal or external clock select  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module special event trigger  
Register 10-1: T1CON: Timer1 Control Register  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register Read/Write of TImer1 in one 16-bit operation  
0= Enables register Read/Write of Timer1 in two 8-bit operations  
bit 6  
Unimplemented: Read as '0'  
bit 5:4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 Oscillator is enabled  
0= Timer1 Oscillator is shut off.  
The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
TMR1CS: Timer1 Clock Source Select bit  
bit 1  
bit 0  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 97  
PIC18CXX2  
When TMR1CS = 0, Timer1 increments every instruc-  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input or the  
Timer1 oscillator, if enabled.  
10.1  
Timer1 Operation  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Timer1 also has an internal “reset input”. This reset can  
be generated by the CCP module (Section 13.0).  
FIGURE 10-1: TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Synchronized  
TMR1  
0
Clock Input  
CLR  
TMR1L  
Flag Bit  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
1
0
T1CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
(1)  
Internal  
Clock  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This  
eliminates power drain.  
FIGURE 10-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
Synchronized  
0
TMR1IF  
Overflow  
Interrupt  
TMR1  
8
clock input  
Timer 1  
high byte  
TMR1L  
flag bit  
1
TMR1ON  
on/off  
T1SYNC  
T1OSC  
T13CKI/T1OSO  
T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
Fosc/4  
Internal  
Clock  
0
(1)  
2
SLEEP input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates  
power drain.  
DS39026B-page 98  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
10.2  
Timer1 Oscillator  
10.3  
Timer1 Interrupt  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 10-1 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit TMR1IF (PIR1<0>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR1 interrupt enable bit TMR1IE (PIE1<0>).  
10.4  
Resetting Timer1 using a CCP Trigger  
Output  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
If the CCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
TABLE 10-1: CAPACITOR SELECTION FOR  
THE ALTERNATE OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
TBD (1)  
TBD (1)  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
LP  
32 kHz  
Crystal to be Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
PPM  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
4: Capacitor values are for design guidance  
only.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
10.5  
Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 10-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16-bits of  
Timer1 without having to determine whether a read of  
the high byte followed by a read of the low byte is valid  
due to a rollover between reads.  
A write to the high byte of Timer1 must also take place  
through the TMR1H buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 high byte buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The pres-  
caler is only cleared on writes to TMR1L.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 99  
PIC18CXX2  
TABLE 10-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF  
TMR1IE  
TMR1IP  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
(1)  
(1)  
PIE1  
IPR1  
TMR1L  
TMR1H  
T1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x = unknown, u = unchanged, - = unimplemented read as ’0’.  
Shaded cells are not used by the Timer1 module.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
DS39026B-page 100  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
NOTES:  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 101  
PIC18CXX2  
11.1  
Timer2 Operation  
11.0 TIMER2 MODULE  
The Timer2 module timer has the following features:  
Timer2 can be used as the PWM time-base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
reset. The input clock (FOSC/4) has a prescale option of  
1:1, 1:4 or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
• SSP module optional use of TMR2 output to gen-  
erate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 has a control register shown in Register 11-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Figure 11-1 is a simplified block diagram of the Timer2  
module. Figure 11-1 shows the Timer2 control register.  
The prescaler and postscaler selection of Timer2 are  
controlled by this register.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
Register 11-1: T2CON: Timer2 Control Register  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit  
7
bit 7  
Unimplemented: Read as '0'  
bit 6:3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1:0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x = Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026B-page 102  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
11.2  
Timer2 Interrupt  
11.3  
Output of TMR2  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is ini-  
tialized to FFh upon reset.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate the shift clock.  
FIGURE 11-1: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
bit TMR2IF  
output (1)  
Prescaler  
Reset  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
2
Comparator  
1:1 to 1:16  
EQ  
T2CKPS1:T2CKPS0  
4
PR2  
TOUTPS3:TOUTPS0  
Note 1: TMR2 register output can be software selected by the SSP Module as a baud clock.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL  
TMR0IE  
RCIF  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
-000 0000  
1111 1111  
0000 000u  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
-000 0000  
1111 1111  
PSPIF (1)  
PSPIE (1)  
PSPIP (1)  
ADIF  
ADIE  
ADIP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
RCIE  
TXIE  
TXIP  
IPR1  
RCIP  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3  
Timer2 Period Register  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
Legend: x = unknown, u = unchanged, - = unimplemented read as ’0’. Shaded cells are not used by the Timer2 module.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 103  
PIC18CXX2  
NOTES:  
DS39026B-page 104  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Figure 12-1 is a simplified block diagram of the Timer3  
module.  
12.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following fea-  
tures:  
Register 12-1 shows the Timer3 control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP clock source.  
• 16-bit timer/counter  
(Two 8-bit registers; TMR3H and TMR3L)  
Register 10-1 shows the Timer1 control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 oscillator  
enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
Register 12-1: T3CON: Timer3 Control Register  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0  
T3CCP1  
T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable  
1= Enables register Read/Write of Timer3 in one 16-bit operation  
0= Enables register Read/Write of Timer3 in two 8-bit operations  
bit 6,3  
T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the clock source for compare/capture CCP modules  
01= Timer3 is the clock source for compare/capture of CCP2,  
Timer1 is the clock source for compare/capture of CCP1  
00= Timer1 is the clock source for compare/capture CCP modules  
bit 5:4  
bit 2  
T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first falling  
edge)  
0= Internal clock (Fosc/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 105  
PIC18CXX2  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
12.1  
Timer3 Operation  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
Timer3 also has an internal “reset input”. This reset can  
be generated by the CCP module (Section 12.0).  
FIGURE 12-1: TIMER3 BLOCK DIAGRAM  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
0
clock input  
flag bit  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
on/off  
T3SYNC  
(3)  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
Fosc/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
SLEEP input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 12-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT MODE  
Data bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
Synchronized  
clock input  
8
TMR3  
Set TMR3IF flag bit  
on overflow  
0
CLR  
Timer3  
High Byte  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
on/off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
SLEEP input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39026B-page 106  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
12.2  
Timer1 Oscillator  
12.4  
Resetting Timer3 Using a CCP Trigger  
Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low  
power oscillator rated up to 200 KHz. See Section 10.0  
for further details.  
If the CCP module is configured in compare mode to  
generate a “special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer3.  
Note: The special event triggers from the CCP  
module will not set interrupt flag bit  
TMR3IF (PIR1<0>).  
12.3  
Timer3 Interrupt  
The TMR3 Register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 Interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR3IF (PIR2<1>).  
This interrupt can be enabled/disabled by setting/clear-  
ing TMR3 interrupt enable bit TMR3IE (PIE2<1>).  
Timer3 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature. If  
Timer3 is running in asynchronous counter mode, this  
reset operation may not work. In the event that a write  
to Timer3 coincides with a special event trigger from  
CCP1, the write will take precedence. In this mode of  
operation, the CCPR1H:CCPR1L registers pair effec-  
tively becomes the period register for Timer3.  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF  
CCP2IE  
CCP2IP  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Holding register for the Least Significant Byte of the 16-bit TMR3 register  
Holding register for the Most Significant Byte of the 16-bit TMR3 register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
T3CKPS2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON -000 0000 -uuu uuuu  
Legend: x = unknown, u = unchanged, - = unimplemented read as ’0’. Shaded cells are not used by the Timer1 module.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 107  
PIC18CXX2  
NOTES:  
DS39026B-page 108  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the special event trigger. Therefore,  
operation of a CCP module in the following sections is  
described with respect to CCP1.  
13.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave Duty Cycle register. Table 13-1 shows the  
timer resources of the CCP module modes.  
Table 13-2 shows the interaction of the CCP modules.  
Register 13-1: CCP1CON Register/CCP2CON Register  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7:6  
bit 5:4  
Unimplemented: Read as '0'  
DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0  
Capture Mode:  
Unused  
Compare Mode:  
Unused  
PWM Mode:  
These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3:0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode,  
Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)  
1001= Compare mode,  
Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)  
1010= Compare mode,  
Generate software interrupt on compare match  
(CCPIF bit is set, CCP pin is unaffected)  
1011= Compare mode,  
Trigger special event (CCPIF bit is set)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 109  
PIC18CXX2  
13.1  
CCP1 Module  
13.2  
CCP2 Module  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
TABLE 13-1: CCP MODE - TIMER RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
TABLE 13-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time-base. Time base can be different for each CCP.  
Compare  
The compare could be configured for the special event trigger, which clears either TMR1  
or TMR3 depending upon which time base is used.  
Compare  
PWM  
Compare  
PWM  
The compare(s) could be configured for the special event trigger, which clears TMR1 or  
TMR3 depending upon which time base is used.  
The PWMs will have the same frequency and update rate  
(TMR2 interrupt).  
PWM  
PWM  
Capture  
None  
None  
Compare  
DS39026B-page 110  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
13.3.3 SOFTWARE INTERRUPT  
13.3  
Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
In Capture mode, CCPR1H:CCPR1L captures the 16-  
bit value of the TMR1 or TMR3 registers when an event  
occurs on pin RC2/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
13.3.4 CCP PRESCALER  
• every 4th rising edge  
• every 16th rising edge  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 13-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
13.3.1 CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
EXAMPLE 13-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
13.3.2 TIMER1/TIMER3 MODE SELECTION  
CLRF  
CCP1CON, F ; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
The timers that are to be used with the capture feature  
(either Timer1 and/or Timer3) must be running in timer  
mode or synchronized counter mode. In asynchronous  
counter mode, the capture operation may not work.  
The timer to be used with each CCP module is selected  
in the T3CON register.  
; value and CCP ON  
MOVWF CCP1CON  
; Load CCP1CON with  
; this value  
FIGURE 13-1: CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
Set flag bit CCP1IF  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP1 Pin  
CCPR1H  
TMR1  
Enable  
and  
edge detect  
T3CCP2  
TMR1H  
CCP1CON<3:0>  
Q’s  
Set flag bit CCP2IF  
T3CCP1  
T3CCP2  
TMR3H  
TMR3L  
CCPR2L  
TMR1L  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP2 Pin  
CCPR2H  
TMR1  
Enable  
and  
edge detect  
T3CCP2  
T3CCP1  
TMR1H  
CCP2CON<3:0>  
Q’s  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 111  
PIC18CXX2  
13.4.2 TIMER1/TIMER3 MODE SELECTION  
13.4  
Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 (CCPR2) register  
value is constantly compared against either the TMR1  
register pair value or the TMR3 register pair value.  
When a match occurs, the RC2/CCP1 (RC1/CCP2) pin  
is:  
13.4.3 SOFTWARE INTERRUPT MODE  
• driven High  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
• driven Low  
• toggle output (High to Low or Low to High)  
• remains Unchanged  
13.4.4 SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the  
same time, interrupt flag bit CCP1IF (CCP2IF) is set.  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
13.4.1 CCP PIN CONFIGURATION  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRISC bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
The special trigger output of CCPx resets either the  
TMR1 or TMR3 register pair. Additionally, the CCP2  
Special Event Trigger will start an A/D conversion if the  
A/D module is enabled.  
Note: The special event trigger from the CCP2  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 13-2: COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1or Timer3, but not set Timer1 or Timer3 interrupt flag bit,  
and set bit GO/DONE (ADCON0<2>)  
which starts an A/D conversion (CCP2 only)  
Special Event Trigger  
Set flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
match  
RC2/CCP1  
Pin  
TRISC<2>  
Output Enable  
1
0
CCP1CON<3:0>  
Mode Select  
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
Special Event Trigger  
Set flag bit CCP2IF  
match  
T3CCP1  
T3CCP2  
0
1
Q
S
R
Output  
Logic  
Comparator  
RC1/CCP2  
Pin  
TRISC<1>  
Output Enable  
CCPR2H CCPR2L  
CCP2CON<3:0>  
Mode Select  
DS39026B-page 112  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 13-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
POR,  
BOR  
Value on  
all other  
resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
(1)  
(1)  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF  
TMR1IE  
TMR1IP  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
PIE1  
IPR1  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
PIR2  
PORTC Data Direction Register  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
T1CKPS1 T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS TMR1ON --00 0000  
xxxx xxxx  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1 CCP1M0  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
Capture/Compare/PWM register2 (LSB)  
Capture/Compare/PWM register2 (MSB)  
DC2B1  
DC2B0  
CCP2M3  
BCLIF  
CCP2M2  
LVDIF  
CCP2M1 CCP2M0  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF  
CCP2IE  
CCP2IP  
PIE2  
BCLIE  
BCLIP  
LVDIE  
IPR2  
LVDIP  
TMR3L  
TMR3H  
T3CON  
Holding register for the Least Significant Byte of the 16-bit TMR3 register  
Holding register for the Most Significant Byte of the 16-bit TMR3 register  
T3CKPS2  
T3CKPS1 T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS TMR3ON -000 0000  
Legend: x = unknown, u = unchanged, - = unimplemented read as ’0’.  
Shaded cells are not used by Capture and Timer1.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2x2 devices. Always maintain these bits clear.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 113  
PIC18CXX2  
A PWM output (Figure 13-4) has a time base (period)  
and a time that the output stays high (duty cycle).  
The frequency of the PWM is the inverse of the  
period (1/period).  
13.5  
PWM Mode  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
FIGURE 13-4: PWM OUTPUT  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
Period  
Duty Cycle  
Figure 13-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
TMR2 = PR2  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 13.5.3.  
TMR2 = Duty Cycle  
TMR2 = PR2  
FIGURE 13-3: SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
CCPR1H (Slave)  
Q
R
S
Comparator  
RC2/CCP1  
(Note 1)  
TMR2  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
Note: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
DS39026B-page 114  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
13.5.1 PWM PERIOD  
13.5.2 PWM DUTY CYCLE  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
PWM period = (PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 prescale value)  
• TMR2 is cleared  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
Note: The Timer2 postscaler (see Section 10.0)  
is not used in the determination of the  
PWM frequency. The postscaler could be  
used to have a servo update rate at a dif-  
ferent frequency than the PWM output.  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
Maximum PWM resolution (bits) for a given PWM fre-  
quency:  
FOSC  
---------------  
log  
FPWM  
-----------------------------  
=
bits  
log(2)  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 115  
PIC18CXX2  
13.5.3 SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 13-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz 9.76 kHz 19.53 kHz 39.06 kHz 78.12 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 13-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
resets  
INTCON  
GIE/  
PEIE/  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
GIEH  
GIEL  
ADIF  
ADIE  
ADIP  
PIR1  
PSPIF (1)  
PSPIE(1)  
PSPIP(1)  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF  
TMR1IE  
TMR1IP  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
PIE1  
IPR1  
TRISC  
PORTC Data Direction Register  
Timer2 module’s register  
TMR2  
PR2  
Timer2 module’s period register  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
TOUTPS3  
TOUTPS2  
TOUTPS1  
DC1B0  
TOUTPS0  
CCP1M3  
CCP2M3  
TMR2ON  
CCP1M2  
CCP2M2  
T2CKPS1  
CCP1M1  
CCP2M1  
T2CKPS0  
CCP1M0  
CCP2M0  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
DC1B1  
Capture/Compare/PWM register2 (LSB)  
Capture/Compare/PWM register2 (MSB)  
DC2B1  
DC2B0  
Legend: x= unknown, u= unchanged, = unimplemented read as ’0’.  
Shaded cells are not used by PWM and Timer2.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
DS39026B-page 116  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
14.1  
Master SSP (MSSP) Module Overview  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master Mode  
- Slave mode (with general address call)  
The I2C interface supports the following modes in hard-  
ware:  
• Master mode  
• Multi-master mode  
• Slave mode  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 117  
PIC18CXX2  
14.2  
Control Registers  
The MSSP module has three associated registers.  
These include a status register and two control regis-  
ters.  
Register 14-1: SSPSTAT: MSSP Status Register  
R/W-0  
R/W-0  
R-0  
R-0  
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
SMP  
CKE  
D/A  
P
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master Mode  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
2
In I C master or slave mode:  
1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select  
CKP = 0  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: Stop bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1= Indicates that a stop bit has been detected last (this bit is ’0’ on RESET)  
0= Stop bit was not detected last  
bit 3  
bit 2  
S: Start bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared)  
1= Indicates that a start bit has been detected last (this bit is ’0’ on RESET)  
0= Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address  
match to the next start bit, stop bit, or not ACK bit.  
2
In I C slave mode:  
1= Read  
0= Write  
2
In I C master mode:  
1= Transmit is in progress  
0= Transmit is not in progress.  
OR-ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.  
2
bit 1  
bit 0  
UA: Update Address (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1= Data Transmit in progress (does not include the ACK and stop bits), SSPBUF is full  
0= Data Transmit complete (does not include the ACK and stop bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
DS39026B-page 118  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Register 14-2: SSPCON1: MSSP Control Register1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPM1  
R/W-0  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
Master Mode:  
2
1= A write to the SSPBUF register was attempted while the I C conditions were not valid for a transmission  
to be started  
0= No collision  
Slave Mode:  
1= The SSPBUF register is written while it is still transmitting the previous word must be cleared in software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode. In slave mode the user must read the  
SSPBUF, even if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not  
set since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be  
cleared in software)  
0= No overflow  
2
In I C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. (Must be cleared in software)  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output.  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
2
In I C slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch) (Used to ensure data setup time)  
2
In I C master mode  
Unused in this mode  
bit 3 - 0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master mode, clock = FOSC/4  
0001= SPI master mode, clock = FOSC/16  
0010= SPI master mode, clock = FOSC/64  
0011= SPI master mode, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1000= I C master mode, clock = FOSC / (4 * (SSPADD+1) )  
1001= Reserved  
1010= Reserved  
2
1011= I C firmware controlled Master mode (Slave idle)  
1100= Reserved  
1101= Reserved  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 119  
PIC18CXX2  
Register 14-3: SSPCON2: MSSP Control Register2  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
GCEN: General Call Enable bit (In I2C slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (In I2C master mode only)  
In master transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (In I2C master mode only)  
In master receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the end of  
a receive.  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (In I2C master mode only)  
In master receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (In I2C master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: Stop Condition Enable bit (In I2C master mode only)  
SCK release control  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition idle  
bit 1  
bit 0  
RSEN: Repeated Start Condition Enabled bit (In I2C master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition idle.  
SEN: Start Condition Enabled bit (In I2C master mode only)  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition idle  
Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
DS39026B-page 120  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.2.1  
SPI Mode  
FIGURE 14-1: MSSP BLOCK DIAGRAM  
(SPI MODE)  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. All  
four modes of SPI are supported. To accomplish com-  
munication, typically three pins are used:  
Internal  
data bus  
Read  
Write  
• Serial Data Out (SDO) - RC5/SDO  
• Serial Data In (SDI) - RC4/SDI/SDA  
• Serial Clock (SCK) - RC3/SCK/SCL/LVOIN  
SSPBUF reg  
SSPSR reg  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
shift  
clock  
• Slave Select (SS) - RA5/SS/AN4  
14.2.1.1 OPERATION  
SDI  
bit0  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0>) and SSPSTAT<7:6>.  
These control bits allow the following to be specified:  
Control  
Enable  
SS  
SS  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Data input sample phase (middle or end of data  
output time)  
Edge  
Select  
2
Clock Select  
• Clock edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select Mode (Slave mode only)  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 output  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Figure 14-1 shows the block diagram of the MSSP  
module, when in SPI mode.  
SCK  
Data to TX/RX in SSPSR  
TRIS bit  
The MSSP consists of a transmit/receive Shift Register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF, are  
set. This double buffering of the received data (SSP-  
BUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored, and the write collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed suc-  
cessfully.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 121  
PIC18CXX2  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally the MSSP Interrupt is used to  
determine when the transmission/reception has  
completed. The SSPBUF must be read and/or written.  
If the interrupt method is not going to be used, then  
software polling can be done to ensure that a write  
collision does not occur. Example 14-1 shows the  
loading of the SSPBUF (SSPSR) for data transmission.  
EXAMPLE 14-1: LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
GOTO LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF TXDATA, W  
MOVWF SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
The SSPSR is not directly readable or writable, and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP status register (SSPSTAT) indi-  
cates the various status conditions.  
14.2.1.2 ENABLING SPI I/O  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the SSP-  
CON registers, and then set the SSPEN bit. This con-  
figures the SDI, SDO, SCK, and SS pins as serial port  
pins. For the pins to behave as the serial port function,  
some must have their data direction bits (in the TRIS  
register) appropriately programmed. That is:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISC<4> bit set  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
14.2.1.3 TYPICAL CONNECTION  
Figure 14-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite edge  
of the clock. Both processors should be programmed to  
same Clock Polarity (CKP), then both controllers would  
send and receive data at the same time. Whether the  
data is meaningful (or dummy data) depends on the  
application software. This leads to three scenarios for  
data transmission:  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
• Master sends dummy data — Slave sends data  
DS39026B-page 122  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 14-2: SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
SCK  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
PROCESSOR 1  
PROCESSOR 2  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 123  
PIC18CXX2  
14.2.1.4 MASTER MODE  
Figure 14-3, Figure 14-5, and Figure 14-6 where the  
MSB is transmitted first. In master mode, the SPI clock  
rate (bit rate) is user programmable to be one of the fol-  
lowing:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 14-2) is to broad-  
cast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In master mode the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be disabled  
(programmed as an input). The SSPSR register will  
continue to shift in the signal present on the SDI pin at  
the programmed clock rate. As each byte is received, it  
will be loaded into the SSPBUF register as if a normal  
received byte (interrupts and status bits appropriately  
set). This could be useful in receiver applications as a  
“line activity monitor” mode.  
This allows a maximum data rate (at 40 MHz) of 10.00  
Mbps.  
Figure 14-3 Shows the waveforms for master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1<4>). This then would give  
waveforms for SPI communication as shown in  
FIGURE 14-3: SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 clock  
modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39026B-page 124  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.2.1.5 SLAVE MODE  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. External pull-up/ pull-down resistors may be  
desirable, depending on the application.  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave Mode with SS pin  
control enabled, (SSPCON<3:0> = 0100)  
the SPI module will reset if the SS pin is  
set to VDD.  
While in slave mode the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
Note 2: If the SPI is used in Slave Mode with CKE  
set, then the SS pin control must be  
enabled.  
While in sleep mode, the slave can transmit/receive  
data. When a byte is receive the device will wake-up  
from sleep.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either by forcing the SS pin to  
a high level or clearing the SSPEN bit.  
14.2.1.6 SLAVE SELECT SYNCHRONIZATION  
The SS pin allows a synchronous slave mode. The  
SPI must be in slave mode with SS pin control  
enabled (SSPCON1<3:0> = 04h). The pin must not  
be driven low for the SS pin to function as an input.  
The Data Latch must be high. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver the SDO pin can be configured as  
an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 14-4: SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
SSPSR to  
SSPBUF  
after Q2↓  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 125  
PIC18CXX2  
FIGURE 14-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 14-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
not optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39026B-page 126  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.2.1.7 SLEEP OPERATION  
In master mode all module clocks are halted, and the  
transmission/reception will remain in that state until the  
device wakes from sleep. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
In slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in sleep mode, and data to be  
shifted into the SPI transmit/receive shift register.  
When all 8-bits have been received, the MSSP interrupt  
flag bit will be set and if enabled will wake the device  
from sleep.  
14.2.1.8 EFFECTS OF A RESET  
A reset disables the MSSP module and terminates the  
current transfer.  
14.2.1.9 BUS MODE COMPATIBILITY  
Table 14-1 shows the compatibility between the stan-  
dard SPI modes and the states the the CKP and CKE  
control bits.  
TABLE 14-1: SPI BUS MODES  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
There is also a SMP bit which controls when the data is  
sampled.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 127  
PIC18CXX2  
TABLE 14-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
resets  
0000 000x 0000 000u  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
--11 1111 --11 1111  
0000 0000 0000 0000  
PIR1  
PIE1  
PSPIF (1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TRISC  
PORTC Data Direction Register  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON  
TRISA  
WCOL SSPOV SSPEN  
CKP  
PORTA Data Direction Register  
CKE D/A  
SSPM3 SSPM2 SSPM1 SSPM0  
SSPSTAT  
SMP  
P
S
R/W  
UA  
BF  
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'.  
Shaded cells are not used by the MSSP in SPI mode.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
14.3  
MSSP I2C Operation  
FIGURE 14-7: MSSP BLOCK DIAGRAM  
(I2C MODE)  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on start and stop bits in  
hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
Internal  
Data Bus  
Read  
Write  
SSPBUF reg  
SSPSR reg  
RC3/SCK/SCL  
Two pins are used for data transfer. These are the RC3/  
SCK/SCL pin, which is the clock (SCL), and the RC4/  
SDI/SDA pin, which is the data (SDA). The user must  
configure these pins as inputs or outputs through the  
TRISC<4:3> bits.  
Shift  
Clock  
RC4/  
SDI/  
MSb  
LSb  
The MSSP module functions are enabled by setting  
MSSP Enable bit SSPEN (SSPCON<5>).  
SDA  
Addr Match  
Match detect  
SSPADD reg  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit detect  
The MSSP module has six registers for I2C operation.  
These are the:  
• MSSP Control Register1 (SSPCON1)  
• MSSP Control Register2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) - Not directly  
accessible  
• MSSP Address Register (SSPADD)  
DS39026B-page 128  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The SSPCON1 register allows control of the I2C oper-  
ation. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
SSPBUF register.  
b) The buffer full bit BF is set.  
c) An ACK pulse is generated.  
d) MSSP interrupt flag bit SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) on the falling  
edge of the ninth SCL pulse.  
• I2C Slave mode (7-bit address), with start and  
stop bit interrupts enabled  
• I2C Slave mode (10-bit address), with start and  
stop bit interrupts enabled  
• I2C Firmware controlled master operation, slave  
is idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
‘1111 0 A9 A8 0’, where A9 and A8 are the two MSbs  
of the address. The sequence of events for 10-bit  
address is as follows with steps 7- 9 for slave-transmit-  
ter:  
1. Receive first (high) byte of Address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
14.3.1 SLAVE MODE  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse and  
load the SSPBUF register with the received value cur-  
rently in the SSPSR register.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of Address. If match releases SCL line, this  
will clear bit UA.  
There are certain conditions that will cause the MSSP  
module not to give this ACK pulse. These are if either  
(or both):  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
7. Receive repeated START condition.  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, is shown in timing parameter #100 and  
parameter #101.  
14.3.1.1 ADDRESSING  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
a) The SSPSR register value is loaded into the  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 129  
PIC18CXX2  
14.3.1.2 RECEPTION  
Then pin RC3/SCK/SCL should be enabled by setting  
bit CKP (SSPCON<4>). The master must monitor the  
SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input. This ensures that the SDA  
signal is valid during the SCL high time (Figure 14-9).  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
As a slave-transmitter, the ACK pulse from the mas-  
ter-receiver is latched on the rising edge of the ninth  
SCL input pulse. If the SDA line is high (not ACK),  
then the data transfer is complete. When the ACK is  
latched by the slave, the slave logic is reset (resets  
SSPSTAT register) and the slave monitors for  
another occurrence of the START bit. If the SDA line  
was low (ACK), the transmit data must be loaded into  
the SSPBUF register, which also loads the SSPSR  
register. Pin RC3/SCK/SCL should be enabled by  
setting bit CKP.  
14.3.1.3 TRANSMISSION  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the SSP-  
BUF register, which also loads the SSPSR register.  
FIGURE 14-8: I2C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
ACK  
Receiving Data  
Receiving Data  
ACK  
Not ACK  
9
SDA  
A3 A2 A1  
D7 D6 D5 D4 D3 D2  
D0  
8
D7 D6  
D5  
D4 D3  
D2  
D0  
8
D1  
7
D1  
7
1
2
3
4
5
6
1
2
3
4
9
5
6
1
2
3
4
5
6
7
8
9
P
SCL  
S
SSPIF  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON1<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
FIGURE 14-9: I2C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Not ACK  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is written in software  
From SSP interrupt  
service routine  
CKP (SSPCON1<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS39026B-page 130  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
2
FIGURE 14-10: I C SLAVE MODE WAVEFORM (TRANSMISSION 10-BIT ADDRESS)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 131  
PIC18CXX2  
2
FIGURE 14-11: I C SLAVE MODE WAVEFORM (RECEPTION 10-BIT ADDRESS)  
DS39026B-page 132  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.3.2 GENERAL CALL ADDRESS SUPPORT  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eight  
bit), and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address which  
can address all devices. When this address is used, all  
devices should, in theory, respond with an acknowl-  
edge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-bit address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set, and the slave will begin receiving data after the  
acknowledge (Figure 14-12).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
set). Following a start-bit detect, 8-bits are shifted into  
the SSPSR and the address is compared against the  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 14-12: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT ADDRESS  
MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
9
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
’0’  
’1’  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 133  
PIC18CXX2  
14.3.3 MASTER MODE  
14.3.4 I2C MASTER MODE SUPPORT  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a reset or when the MSSP module is dis-  
abled. Control of the I2C bus may be taken when the P  
bit is set or the bus is idle with both the S and P bits  
clear.  
Master Mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. Once master mode is enabled, the user has  
six options.  
1. Assert a start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
In master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
3. Write to the SSPBUF register initiating transmis-  
sion of data/address.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
4. Generate a stop Condition on SDA and SCL.  
5. Configure the I2C port to receive data.  
• START condition  
• STOP condition  
6. Generate an acknowledge condition at the end  
of a received byte of data.  
• Data transfer byte transmitted/received  
• Acknowledge Transmit  
• Repeated Start  
Note: The MSSP Module, when configured in I2C  
Master Mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a start condition and  
immediately write the SSPBUF register to  
imitate transmission before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
2
FIGURE 14-13: MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit detect  
Stop bit detect  
Write collision detect  
Clock Arbitration  
State counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
DS39026B-page 134  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.3.4.1 I2C MASTER MODE OPERATION  
A typical transmit sequence would go as follows:  
a) The user generates a Start Condition by setting  
the START enable bit SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a repeated  
START condition. Since the repeated START condition  
is also the beginning of the next serial transfer, the I2C  
bus will not be released.  
b) SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
c) The user loads the SSPBUF with the address to  
transmit.  
In Master transmitter mode serial data is output through  
SDA, while SCL outputs the serial clock. The first byte  
transmitted contains the slave address of the receiving  
device (7 bits) and the Read/Write (R/W) bit. In this  
case, the R/W bit will be logic ’0’. Serial data is trans-  
mitted 8 bits at a time. After each byte is transmitted, an  
acknowledge bit is received. START and STOP condi-  
tions are output to indicate the beginning and the end  
of a serial transfer.  
d) Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
e) The MSSP Module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
f) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ’1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ’1’ to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) DATA is shifted out the SDA pin until all 8 bits are  
transmitted.  
i) The MSSP Module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The baud rate generator used for the SPI mode opera-  
tion is now used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. The  
baud rate generator reload value is contained in the  
lower 7 bits of the SSPADD register. The baud rate gen-  
erator will automatically begin counting on a write to the  
SSPBUF. Once the given operation is complete, (i.e.  
transmission of the last data bit is followed by ACK), the  
internal clock will automatically stop counting and the  
SCL pin will remain in its last state.  
k) The user generates a STOP condition by setting  
the STOP enable bit PEN (SSPCON2<2>).  
l) Interrupt is generated once the stop condition is  
complete.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 135  
PIC18CXX2  
14.3.5 BAUD RATE GENERATOR  
remented twice per instruction cycle (TCY) on the Q2  
and Q4 clocks. In I2C master mode, the BRG is  
reloaded automatically. If Clock Arbitration is taking  
place for instance, the BRG will be reloaded when the  
SCL pin is sampled high (Figure 14-15).  
In I2C master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 14-14). When the BRG is loaded with this  
value, the BRG counts down to 0 and stops until  
another reload has taken place. The BRG count is dec-  
FIGURE 14-14: BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKOUT  
Fosc/4  
FIGURE 14-15: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count.  
BRG  
reload  
DS39026B-page 136  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.3.6 I2C MASTER MODE START CONDITION  
TIMING  
14.3.6.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when an START  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
To initiate a START condition, the user sets the start  
condition enable bit SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is re-loaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the baud rate generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low, while SCL is high, is the START condition,  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware, the baud rate generator is suspended  
leaving the SDA line held low and the START condition  
is complete.  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
Note: If at the beginning of the START condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the START condition  
the SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs, the  
Bus Collision Interrupt Flag BCLIF is set,  
the START condition is aborted, and the  
I2C module is reset into its IDLE state.  
FIGURE 14-16: FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here.  
SDA = 1,  
At completion of start bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st Bit  
2nd Bit  
SDA  
TBRG  
SCL  
TBRG  
S
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 137  
PIC18CXX2  
14.3.7 I2C MASTER MODE REPEATED START  
CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional  
eight bits of address (10-bit mode) or eight bits of data  
(7-bit mode).  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the baud rate generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one baud rate  
generator count (TBRG). When the baud rate generator  
times out, if SDA is sampled high, the SCL pin will be  
de-asserted (brought high). When SCL is sampled  
high, the baud rate generator is re-loaded with the con-  
tents of SSPADD<6:0> and begins counting. SDA and  
SCL must be sampled high for one TBRG. This action is  
then followed by assertion of the SDA pin (SDA = 0) for  
one TBRG, while SCL is high. Following this, the RSEN  
bit (SSPCON2<1>) will be automatically cleared and  
the baud rate generator will not be reloaded, leaving  
the SDA pin held low. As soon as a start condition is  
detected on the SDA and SCL pins, the S bit (SSP-  
STAT<3>) will be set. The SSPIF bit will not be set until  
the baud rate generator has timed-out.  
14.3.7.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
Note 2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data "1".  
FIGURE 14-17: REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
SDA = 1,  
occurs here.  
At completion of start bit,  
hardware clear RSEN bit  
and set SSPIF  
SCL = 1  
SDA = 1,  
SCL(no change)  
TBRG  
TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here.  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS39026B-page 138  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.3.8 I2C MASTER MODE TRANSMISSION  
14.3.8.2 WCOL STATUS FLAG  
Transmission of a data byte, a 7-bit address or the other  
half of a 10-bit address is accomplished by simply writ-  
ing a value to the SSPBUF register. This action will set  
the buffer full flag bit, BF, and allow the baud rate gen-  
erator to begin counting and start the next transmis-  
sion. Each bit of address/data will be shifted out onto  
the SDA pin after the falling edge of SCL is asserted  
(see data hold time specification parameter 106). SCL  
is held low for one baud rate generator roll over count  
(TBRG). Data should be valid before SCL is released  
high (see Data setup time specification parameter  
107). When the SCL pin is released high, it is held that  
way for TBRG. The data on the SDA pin must remain  
stable for that duration and some hold time after the  
next falling edge of SCL. After the eighth bit is shifted  
out (the falling edge of the eighth clock), the BF flag is  
cleared and the master releases SDA. allowing the  
slave device being addressed to respond with an ACK  
bit during the ninth bit time, if an address match occurs  
or if data was received properly. The status of ACK is  
written into the ACKDT bit on the falling edge of the  
ninth clock. If the master receives an acknowledge, the  
acknowledge status bit, ACKSTAT, is cleared. If not, the  
bit is set. After the ninth clock, the SSPIF bit is set and  
the master clock (baud rate generator) is suspended  
until the next data byte is loaded into the SSPBUF, leav-  
ing SCL low and SDA unchanged (Figure 14-18).  
If the user writes the SSPBUF when a transmit is  
already in progress, (i.e. SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
14.3.8.3 ACKSTAT STATUS FLAG  
In transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an acknowledge  
(ACK = 0), and is set when the slave does not acknowl-  
edge (ACK = 1). A slave sends an acknowledge when  
it has recognized its address (including a general call)  
or when the slave has properly received its data.  
14.3.9 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
Note: The MSSP Module must be in an IDLE  
STATE before the RCEN bit is set, or the  
RCEN bit will be disregarded.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag bit is  
set, the SSPIF flag bit is set and the baud rate genera-  
tor is suspended from counting, holding SCL low. The  
MSSP is now in IDLE state, awaiting the next com-  
mand. When the buffer is read by the CPU, the BF flag  
bit is automatically cleared. The user can then send an  
acknowledge bit at the end of reception, by setting the  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will de-assert  
the SDA pin allowing the slave to respond with an  
acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared and the baud rate generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
acknowledge  
sequence  
enable  
bit  
ACKEN  
(SSPCON2<4>).  
14.3.9.1 BF STATUS FLAG  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
14.3.8.1 BF STATUS FLAG  
14.3.9.2 SSPOV STATUS FLAG  
In transmit mode, the BF bit (SSPSTAT<0>) is set when  
the CPU writes to SSPBUF and is cleared when all 8  
bits are shifted out.  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
14.3.9.3 WCOL STATUS FLAG  
If the user writes the SSPBUF when a receive is  
already in progress (i.e. SSPSR is still shifting in a data  
byte), the the WCOL bit is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 139  
PIC18CXX2  
2
FIGURE 14-18: I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS39026B-page 140  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
2
FIGURE 14-19: I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 141  
PIC18CXX2  
14.3.10 ACKNOWLEDGE SEQUENCE TIMING  
14.3.11 STOP CONDITION TIMING  
An acknowledge sequence is enabled by setting the  
A stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop sequence enable  
bit, PEN (SSPCON2<2>). At the end of a receive/trans-  
mit the SCL line is held low after the falling edge of the  
ninth clock. When the PEN bit is set, the master will  
assert the SDA line low. When the SDA line is sampled  
low, the baud rate generator is reloaded and counts  
down to 0. When the baud rate generator times out, the  
SCL pin will be brought high, and one TBRG (baud rate  
generator rollover count) later, the SDA pin will be de-  
asserted. When the SDA pin is sampled high while SCL  
is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the  
PEN bit is cleared and the SSPIF bit is set (Figure 14-  
21).  
acknowledge  
sequence  
enable  
bit  
ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the acknowledge data bit  
is presented on the SDA pin. If the user wishes to gen-  
erate an acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit  
before starting an acknowledge sequence. The baud  
rate generator then counts for one rollover period  
(TBRG) and the SCL pin is de-asserted (pulled high).  
When the SCL pin is sampled high (clock arbitration),  
the baud rate generator counts for TBRG. The SCL pin  
is then pulled low. Following this, the ACKEN bit is auto-  
matically cleared, the baud rate generator is turned off  
and the MSSP module then goes into IDLE mode  
(Figure 14-20).  
14.3.11.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
14.3.10.1 WCOL STATUS FLAG  
If the user writes the SSPBUF when an acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 14-20: ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of acknowledge sequence  
Note: TBRG= one baud rate generator period.  
DS39026B-page 142  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 14-21: STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for Tbrg, followed by SDA = 1 for Tbrg  
after SDA sampled high. P bit (SSPSTAT<4>) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup stop condition.  
Note: TBRG = one baud rate generator period.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 143  
PIC18CXX2  
14.3.12 CLOCK ARBITRATION  
14.3.13 SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit or repeated start/stop condition, de-  
asserts the SCL pin (SCL allowed to float high). When  
the SCL pin is allowed to float high, the baud rate gen-  
erator (BRG) is suspended from counting until the SCL  
pin is actually sampled high. When the SCL pin is sam-  
pled high, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. This  
ensures that the SCL high time will always be at least  
one BRG rollover count in the event that the clock is  
held low by an external device (Figure 14-22).  
While in sleep mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor from  
sleep (if the MSSP interrupt is enabled).  
14.3.14 EFFECT OF A RESET  
A reset disables the MSSP module and terminates the  
current transfer.  
FIGURE 14-22: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1 Load BRG with  
SSPADD<6:0>, and start count  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
to measure high time interval  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SDA  
SCL line sampled once every machine cycle (TOSC² 4).  
Hold off BRG until SCL is sampled high.  
TBRG  
TBRG  
TBRG  
DS39026B-page 144  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.3.15 MULTI-MASTER MODE  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag BCLIF and reset the I2C  
port to its IDLE state. (Figure 14-23).  
In multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a reset or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when the P bit (SSPSTAT<4>) is set,  
or the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP Interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision interrupt service routine, and if the I2C  
bus is free, the user can resume communication by  
asserting a START condition.  
If a START, Repeated Start, STOP, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision interrupt service routine, and if  
the I2C bus is free, the user can resume communication  
by asserting a START condition.  
In multi-master operation, the SDA line must be moni-  
tored, for arbitration, to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
• A Repeated Start Condition  
• An Acknowledge Condition  
The Master will continue to monitor the SDA and SCL  
pins. If a STOP condition occurs, the SSPIF bit will be  
set.  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
14.3.16 MULTI -MASTER COMMUNICATION, BUS  
COLLISION, AND BUS ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a '1' on SDA by letting SDA float high and  
another master asserts a '0'. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a '1' and the data sampled on the SDA pin = '0',  
In multi-master mode, the interrupt generation on the  
detection of start and stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT reg-  
ister, or the bus is idle and the S and P bits are cleared.  
FIGURE 14-23: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF).  
BCLIF  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 145  
PIC18CXX2  
14.3.16.1 BUS COLLISION DURING A START  
CONDITION  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data ’1’ during the START condition.  
During a START condition, a bus collision occurs if:  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 14-26). If however a ’1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pins  
is sampled as ’0’, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 14-24).  
b) SCL is sampled low before SDA is asserted low  
(Figure 14-25).  
During a START condition, both the SDA and the SCL  
pins are monitored.  
If:  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or STOP conditions.  
the SDA pin is already low  
or the SCL pin is already low,  
then:  
the START condition is aborted,  
and the BCLIF flag is set,  
and the MSSP module is reset to its IDLE state  
(Figure 14-24).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
FIGURE 14-24: BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
. Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
SDA  
SCL  
Set SEN, enable start  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into idle state.  
SEN  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
DS39026B-page 146  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 14-25: BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
SCL = 0 before SDA = 0,  
Bus collision occurs, Set BCLIF.  
SCL = 0 before BRG time out,  
Bus collision occurs, Set BCLIF.  
BCLIF  
Interrupt cleared  
in software.  
S
’0’  
’0’  
’0’  
’0’  
SSPIF  
FIGURE 14-26: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA  
SDA  
SCL  
S
SCL pulled low after BRG  
Timeout  
SEN  
Set SEN, enable start  
sequence if SDA = 1, SCL = 1  
BCLIF  
’0’  
S
SSPIF  
Interrupts cleared  
in software.  
SDA = 0, SCL = 1  
Set SSPIF  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 147  
PIC18CXX2  
14.3.16.2 BUS COLLISION DURING A REPEATED  
START CONDITION  
If SDA is low, a bus collision has occurred (i.e. another  
master, Figure 14-27, is attempting to transmit a data  
’0’). If SDA is sampled high, the BRG is reloaded and  
begins counting. If SDA goes from high to low before  
the BRG times out, no bus collision occurs because no  
two masters can assert SDA at exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ’1’ during the Repeated Start condition,  
Figure 14-28.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data ’1’.  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted,  
and when sampled high, the SDA pin is sampled.  
If at the end of the BRG time out both SCL and SDA are  
still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is com-  
plete.  
FIGURE 14-27: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL  
RSEN  
BCLIF  
Cleared in software  
'0'  
S
'0'  
SSPIF  
FIGURE 14-28: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
Set BCLIF. Release SDA and SCL  
Interrupt cleared  
in software  
’0’  
S
SSPIF  
DS39026B-page 148  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
14.3.16.3 BUS COLLISION DURING A STOP  
CONDITION  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ’0’ (Figure 14-29). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master attempt-  
ing to drive a data ’0’ (Figure 14-30).  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 14-29: BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
Set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
SSPIF  
FIGURE 14-30: BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high  
Set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
SSPIF  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 149  
PIC18CXX2  
NOTES:  
DS39026B-page 150  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices, such as A/D or D/A inte-  
grated circuits, Serial EEPROMs, etc.  
15.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The USART can be configured in the following modes:  
• Asynchronous (full duplex)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI). The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices, such as CRT ter-  
minals and personal computers, or it can be configured  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to  
be set in order to configure pins RC6/TX/CK and  
RC7/RX/DT as the Universal Synchronous Asynchro-  
nous Receiver Transmitter.  
Register 15-1: TXSTA: Transmit Status and Control Register  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1= High speed  
0= Low speed  
Synchronous mode  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of transmit data. Can be Address/Data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 151  
PIC18CXX2  
Register 15-2: RCSTA: Receive Status and Control Register  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (Configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode  
Don’t care  
Synchronous mode - master  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave  
Unused in this mode  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1)  
1= Enables address detection, enable interrupt and load of the receive buffer  
when RSR<8> is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (Can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of received data, can be Address/Data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
DS39026B-page 152  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
15.1  
USART Baud Rate Generator (BRG)  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode, bit BRGH is ignored.  
Table 15-1 shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
15.1.1 SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 15-1. From this, the error in  
baud rate can be determined.  
Example 15-1 shows the calculation of the baud rate  
error for the following conditions:  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
SYNC = 0  
EXAMPLE 15-1: CALCULATING BAUD RATE ERROR  
Desired Baud rate  
Solving for X:  
= Fosc / (64 (X + 1))  
X
X
X
= ( (Fosc / Desired Baud rate) / 64 ) - 1  
= ((16000000 / 9600) / 64) - 1  
= [25.042] = 25  
Calculated Baud Rate  
= 16000000 / (64 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
= (9615 - 9600) / 9600  
= 0.16%  
TABLE 15-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate= FOSC/(16(X+1))  
NA  
X = value in SPBRG (0 to 255)  
TABLE 15-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR,  
BOR  
Value on all  
other resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
RCSTA  
SPBRG  
CSRC  
TX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010 0000 -010  
FERR OERR RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
SPEN  
RX9  
SREN CREN  
Baud Rate Generator Register  
Legend: x = unknown, - = unimplemented read as '0'.  
Shaded cells are not used by the BRG.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 153  
PIC18CXX2  
TABLE 15-3: BAUD RATES FOR SYNCHRONOUS MODE  
BAUD FOSC = 20 MHz  
SPBRG  
value  
16 MHz  
SPBRG  
value  
10 MHz  
SPBRG  
value  
7.15909 MHz  
%
SPBRG  
value  
RATE  
%
-
%
%
-
(K)  
0.3  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
NA  
-
NA  
-
-
NA  
-
NA  
-
-
1.2  
2.4  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
-
9.6  
NA  
-
+1.73  
+0.16  
+0.16  
-1.96  
0
-
NA  
-
-
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73  
+0.16  
-1.36  
+0.16  
+4.17  
0
255  
129  
32  
25  
7
9.622  
19.24  
77.82  
94.20  
298.3  
NA  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-
185  
92  
22  
18  
5
19.2  
76.8  
96  
19.53  
76.92  
96.15  
294.1  
500  
255  
64  
51  
16  
9
19.23  
76.92  
95.24  
+0.16  
+0.16  
-0.79  
207  
51  
41  
12  
7
300  
307.69 +2.56  
500  
500  
4000  
0
-
4
-
HIGH  
LOW  
5000  
19.53  
-
0
0
2500  
9.766  
-
0
1789.8  
6.991  
-
0
-
255  
15.625  
-
255  
-
255  
-
255  
BAUD  
RATE  
(K)  
FOSC = 5.0688 MHz  
4 MHz  
SPBRG  
value  
3.579545 MHz  
%
SPBRG  
value  
1 MHz  
SPBRG  
value  
32.768 kHz  
%
SPBRG  
value  
%
-
SPBRG  
%
-
%
-
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
NA  
-
NA  
-
NA  
-
-
NA  
-
0.303  
+1.14  
26  
1.2  
2.4  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
-
-
-
-
1.202  
2.404  
9.615  
19.24  
83.34  
NA  
+0.16  
207  
103  
25  
12  
2
1.170  
NA  
-2.48  
6
-
NA  
+0.16  
-
-
-
-
-
-
-
-
-
-
9.6  
9.6  
0
131  
65  
15  
12  
3
9.615  
+0.16  
103  
51  
12  
9
9.622  
19.04  
74.57  
99.43  
298.3  
NA  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-
92  
46  
11  
8
+0.16  
NA  
-
19.2  
76.8  
96  
19.2  
79.2  
97.48  
316.8  
NA  
0
19.231 +0.16  
76.923 +0.16  
+0.16  
NA  
-
+3.13  
+8.51  
NA  
-
+1.54  
1000  
NA  
+4.17  
-
-
-
-
-
-
NA  
-
-
300  
+5.60  
-
-
-
-
-
2
NA  
-
NA  
500  
-
-
-
-
NA  
-
-
NA  
-
NA  
-
HIGH  
LOW  
1267  
4.950  
0
100  
0
894.9  
3.496  
-
0
250  
0
8.192  
0.032  
0
255  
3.906  
255  
-
255  
0.9766  
255  
255  
DS39026B-page 154  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 15-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
BAUD FOSC = 20 MHz  
SPBRG  
value  
16 MHz  
SPBRG  
value  
10 MHz  
SPBRG  
value  
7.15909 MHz  
SPBRG  
value  
RATE  
%
%
%
-
%
(K)  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
NA  
-
-
255  
129  
32  
15  
3
NA  
1.202  
2.404  
9.615  
19.23  
83.33  
NA  
-
-
207  
103  
25  
12  
2
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
-
129  
64  
15  
7
NA  
1.203  
2.380  
9.322  
18.64  
NA  
-
-
92  
46  
11  
5
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
+0.16  
+0.16  
+0.23  
2.4  
+0.16  
+0.16  
-0.83  
9.6  
+0.16  
+1.73  
-2.90  
19.2  
76.8  
96  
+0.16  
+1.73  
-2.90  
+8.51  
+1.73  
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
NA  
-
300  
500  
HIGH  
LOW  
0
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
NA  
-
312.5  
1.221  
-
0
250  
0
156.3  
0.6104  
0
111.9  
0.437  
0
-
255  
0.977  
255  
255  
255  
BAUD  
RATE  
(K)  
FOSC = 5.0688 MHz  
4 MHz  
SPBRG  
value  
(decimal)  
3.579545 MHz  
%
SPBRG  
value  
(decimal)  
1 MHz  
SPBRG  
value  
(decimal)  
32.768 kHz  
%
SPBRG  
value  
(decimal)  
%
SPBRG  
%
%
0.3  
1.2  
0.31  
1.2  
+3.13  
255  
65  
32  
7
0.3005  
1.202  
2.404  
NA  
-0.17  
207  
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
+0.23  
185  
46  
22  
5
0.300  
1.202  
2.232  
NA  
+0.16  
51  
0.256  
NA  
-14.67  
1
0
+1.67  
51  
-0.83  
+0.16  
12  
-
-
2.4  
2.4  
0
+1.67  
25  
+1.32  
-6.99  
6
NA  
NA  
-
-
-
-
-
-
-
-
-
-
9.6  
9.9  
+3.13  
-
-
-
-
-
-
-
-
-
-2.90  
-
-
-
-
-
-
-
-
-
-
19.2  
76.8  
96  
19.8  
79.2  
NA  
+3.13  
3
NA  
-
-2.90  
2
NA  
-
NA  
-
+3.13  
0
NA  
-
-
-
-
-
-
-
-
NA  
-
NA  
-
-
-
-
-
-
-
NA  
-
-
NA  
-
NA  
-
-
NA  
-
-
300  
500  
HIGH  
LOW  
NA  
-
NA  
NA  
-
NA  
NA  
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
79.2  
0.3094  
0
62.500  
3.906  
0
55.93  
0.2185  
0
15.63  
0.0610  
0
0.512  
0.0020  
0
255  
255  
255  
255  
255  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 155  
PIC18CXX2  
TABLE 15-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
BAUD  
RATE  
(K)  
FOSC = 20 MHz  
SPBRG  
value  
(decimal)  
16 MHz  
SPBRG  
value  
(decimal)  
10 MHz  
SPBRG  
value  
(decimal)  
7.16 MHz  
SPBRG  
value  
(decimal)  
%
%
%
%
9.6  
9.615  
+0.16  
129  
9.615  
+0.16  
103  
9.615  
+0.16  
64  
9.520  
-0.83  
46  
19.2  
38.4  
57.6  
115.2  
250  
19.230  
37.878  
56.818  
113.636  
250  
+0.16  
-1.36  
-1.36  
-1.36  
0
64  
32  
21  
10  
4
19.230 +0.16  
38.461 +0.16  
58.823 +2.12  
111.111 -3.55  
51  
25  
16  
8
18.939  
39.062  
56.818  
125  
-1.36  
+1.7  
-1.36  
+8.51  
-
32  
15  
10  
4
19.454 +1.32  
22  
11  
7
37.286  
55.930  
-2.90  
-2.90  
111.860 -2.90  
3
250  
NA  
NA  
0
-
3
NA  
-
NA  
NA  
NA  
-
-
-
-
625  
625  
0
1
-
625  
0
0
-
1250  
1250  
0
0
-
-
NA  
-
-
-
BAUD  
RATE  
(K)  
FOSC = 5.068  
%
SPBRG  
value  
4 MHz  
SPBRG  
value  
3.579 MHz  
SPBRG  
value  
1 MHz  
SPBRG  
value  
32.768 kHz  
%
SPBRG  
value  
%
-
%
%
(decimal)  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
9.6  
9.6  
0
32  
NA  
-
9.727  
+1.32  
22  
8.928  
-6.99  
6
2
1
0
-
NA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
19.2  
38.4  
57.6  
115.2  
250  
18.645  
39.6  
52.8  
105.6  
NA  
-2.94  
16  
7
5
2
-
1.202  
2.403  
9.615  
+0.17  
+0.13  
+0.16  
207  
103  
25  
12  
-
18.643  
37.286  
55.930  
111.86  
-2.90  
-2.90  
-2.90  
-2.90  
11  
5
3
1
0
-
20.833 +8.51  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
+3.12  
31.25  
62.5  
NA  
-18.61  
-8.33  
+8.51  
-8.33  
19.231 +0.16  
-
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
223.72 -10.51  
NA  
-
625  
NA  
-
-
NA  
NA  
-
-
NA  
-
1250  
NA  
-
-
-
NA  
-
DS39026B-page 156  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
( PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicated the sta-  
tus of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register. Sta-  
tus bit TRMT is a read only bit, which is set when the  
TSR register is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty.  
15.2  
USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one start bit, eight or nine data bits  
and one stop bit). The most common data format is  
8-bits. An on-chip dedicated 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent, but use the same data format  
and baud rate. The baud rate generator produces a  
clock, either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
Note 2: Flag bit TXIF is set when enable bit TXEN  
is set.  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
Steps to follow when setting up an asynchronous trans-  
mission:  
• Baud Rate Generator  
• Sampling Circuit  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 15.1)  
• Asynchronous Transmitter  
• Asynchronous Receiver  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
15.2.1 USART ASYNCHRONOUS TRANSMITTER  
3. If interrupts are desired, set enable bit TXIE.  
The USART transmitter block diagram is shown in  
Figure 15-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts trans-  
mission).  
FIGURE 15-1: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 157  
PIC18CXX2  
FIGURE 15-2: ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 15-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Start Bit  
WORD 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
POR,  
BOR  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1)  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
IPR1  
RCSTA  
TXREG  
TXSTA  
SPBRG  
SPEN  
USART Transmit Register  
CSRC TX9 TXEN SYNC  
Baud Rate Generator Register  
RX9  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x = unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Transmission.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
DS39026B-page 158  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
15.2.2 USART ASYNCHRONOUS RECEIVER  
15.2.3 SETTING UP 9-BIT MODE WITH ADDRESS  
DETECT  
The receiver block diagram is shown in Figure 15-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC. This mode would typi-  
cally be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
Steps to follow when setting up an Asynchronous  
Reception with Address Detect Enable:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is required,  
set the BRGH bit.  
Steps to follow when setting up an Asynchronous  
Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 15.1).  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be acknowledged if the  
RCIE and GIE bits are set.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG to determine if the device is being  
addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
RCREG register.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
FIGURE 15-4: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR Register  
LSb  
MSb  
or  
÷ 16  
0
Baud Rate Generator  
1
7
Stop (8)  
Start  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 159  
PIC18CXX2  
FIGURE 15-5: ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit0  
bit1  
Stop  
bit  
Stop  
bit  
bit7/8 Stop  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 2  
RCREG  
WORD 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 15-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
POR,  
BOR  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1)  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN  
FERR OERR RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA  
CSRC  
TX9  
TXEN SYNC  
BRGH TRMT TX9D  
SPBRG  
Baud Rate Generator Register  
Legend: x = unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Reception.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits  
clear.  
DS39026B-page 160  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE, and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit, which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory, so it is not  
available to the user.  
15.3  
USART Synchronous Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner, (i.e. transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
Steps to follow when setting up a Synchronous Master  
Transmission:  
15.3.1 USART SYNCHRONOUS MASTER  
TRANSMISSION  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 15.1).  
The USART transmitter block diagram is shown in  
Figure 15-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit TXIF (PIR1<4>) is set. The interrupt can be  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x  
0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
TXIP SSPIP CCP1IP TMR2IP TMR1IP  
0000 0000  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 -010  
0000 0000  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN  
FERR  
OERR  
RX9D  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, — = unimplemented, read as '0'.  
Shaded cells are not used for Synchronous Master Transmission.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
BRGH  
TRMT  
TX9D  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 161  
PIC18CXX2  
FIGURE 15-6: SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
WORD 2  
Bit 7  
RC7/RX/DT pin  
RC6/TX/CK pin  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
’1’  
’1’  
TXEN bit  
Note: Sync master mode; SPBRG = ’0’. Continuous transmission of two 8-bit words  
FIGURE 15-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS39026B-page 162  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
15.3.2 USART SYNCHRONOUS MASTER  
RECEPTION  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 15.1)  
Once synchronous mode is selected, reception is  
enabled by setting either enable bit SREN (RCSTA<5>)  
or enable bit CREN (RCSTA<4>). Data is sampled on  
the RC7/RX/DT pin on the falling edge of the clock. If  
enable bit SREN is set, only a single word is received.  
If enable bit CREN is set, the reception is continuous  
until CREN is cleared. If both bits are set, then CREN  
takes precedence.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
POR,  
BOR  
Value on all  
other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, — = unimplemented read as '0'.  
Shaded cells are not used for Synchronous Master Reception.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
BRGH  
TRMT  
TX9D  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 163  
PIC18CXX2  
FIGURE 15-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
’0’  
’0’  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with bit SREN = ’1’ and bit BRGH = ’0’.  
DS39026B-page 164  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
15.4.2 USART SYNCHRONOUS SLAVE  
15.4  
USART Synchronous Slave Mode  
RECEPTION  
Synchronous Slave Mode differs from the Master Mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
The operation of the synchronous master and slave  
modes is identical, except in the case of the SLEEP  
mode and bit SREN, which is a "don’t care" in slave  
mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEP instruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register,  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
15.4.1 USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical, except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEP instruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
5. Flag bit RCIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
8. If any error occurred, clear the error by clearing  
bit CREN.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 165  
PIC18CXX2  
TABLE 15-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
POR,  
BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
SPBRG  
SPEN  
USART Transmit Register  
CSRC TX9 TXEN SYNC  
Baud Rate Generator Register  
RX9  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x = unknown, — = unimplemented read as '0'.  
Shaded cells are not used for Synchronous Slave Transmission.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
TABLE 15-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
Resets  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
PSPIP(1) ADIP  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
SPEN  
RX9  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
RCREG USART Receive Register  
TXSTA  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
SPBRG  
Baud Rate Generator Register  
Legend: x = unknown, — = unimplemented read as '0'.  
Shaded cells are not used for Synchronous Slave Reception.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
DS39026B-page 166  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The A/D module has four registers. These registers  
are:  
16.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has five  
inputs for the PIC18C2x2 devices and eight for the  
PIC18C4x2 devices. This module has the ADCON0  
and ADCON1 register definitions that are compatible  
with the mid-range A/D module.  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The ADCON0 register, shown in Register 16-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 16-2, configures the func-  
tions of the port pins.  
The A/D allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
Register 16-1: ADCON0 Register  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADCS1  
ADCS0  
GO/DONE  
ADON  
bit 7  
bit 0  
bit 7:6  
ADCS1:ADCS0: A/D Conversion Clock Select bits (shown in bold)  
000 = FOSC/2  
001 = FOSC/8  
010 = FOSC/32  
011 = FRC (clock derived from the internal A/D RC oscillator)  
100 = FOSC/4  
101 = FOSC/16  
110 = FOSC/64  
111 = FRC (clock derived from the internal A/D RC oscillator)  
Note: The ADCS2 bit is located in the ADCON1 register  
CHS2:CHS0: Analog Channel Select bits  
bit 5:3  
000= channel 0, (AN0)  
001= channel 1, (AN1)  
010= channel 2, (AN2)  
011= channel 3, (AN3)  
100= channel 4, (AN4)  
101= channel 5, (AN5)  
110= channel 6, (AN6)  
111= channel 7, (AN7)  
Note: The PIC18C2X2 devices do not implement the full 8 A/D channels, the unimple-  
mented selections are reserved. Do not select any unimplemented channel.  
bit 2  
GO/DONE: A/D Conversion Status bit  
When ADON = 1  
1= A/D conversion in progress (setting this bit starts the A/D conversion which is automatically  
cleared by hardware when the A/D conversion is complete)  
0= A/D conversion not in progress  
Unimplemented: Read as ’0’  
ADON: A/D On bit  
bit 1  
bit 0  
1= A/D converter module is powered up  
0= A/D converter module is shut off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
’1’ = Bit is set  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 167  
PIC18CXX2  
Register 16-2: ADCON1 Register  
R/W-0  
ADFM  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS2  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7:6  
bit 7  
Unimplemented: Read as ’0’  
ADFM: A/D Result format select.  
1= Right justified. 6 Most Significant bits of ADRESH are read as ’0’.  
0= Left justified. 6 Least Significant bits of ADRESL are read as ’0’.  
bit 6  
ADCS2: A/D Conversion Clock Select bit (shown in bold)  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from the internal A/D RC oscillator)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from the internal A/D RC oscillator)  
Note: The ADCS1:ADCS0 bits are located in the ADCON0 register  
Unimplemented: Read as ’0’  
bit 5:4  
bit 3:0  
PCFG3:PCFG0: A/D Port Configuration Control bits  
PCFG AN7 AN6 AN5 AN4 AN3  
AN2  
AN1 AN0 VREF+ VREF- C / R  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
AN3  
VDD  
AN3  
VDD  
AN3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8 / 0  
7 / 1  
5 / 0  
4 / 1  
3 / 0  
2 / 1  
0 / 0  
6 / 2  
6 / 0  
5 / 1  
4 / 2  
3 / 2  
2 / 2  
1 / 0  
1 / 2  
VREF+  
A
VREF+  
A
VREF+  
D
VREF+ VREF-  
AN3  
VDD  
AN3  
AN3  
AN3  
AN3  
VDD  
AN3  
AN2  
VSS  
VSS  
AN2  
AN2  
AN2  
VSS  
AN2  
A
A
A
VREF+  
VREF+ VREF-  
VREF+ VREF-  
VREF+ VREF-  
D
D
VREF+ VREF-  
A = Analog input D = Digital I/O  
C/R = # of analog input channels / # of A/D voltage references  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: On any device reset, the port pins that are multiplexed with analog functions (ANx) are  
forced to be an analog input.  
DS39026B-page 168  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS) or the voltage level on the RA3/AN3/  
VREF+ pin and RA2/AN2/VREF-.  
Each port pin associated with the A/D converter can  
be configured as an analog input (RA3 can also be a  
voltage reference) or as a digital I/O.  
The ADRESH and ADRESL registers contain the result  
of the A/D conversion. When the A/D conversion is  
complete, the result is loaded into the ADRESH/  
ADRESL registers, the GO/DONE bit (ADCON0<2>) is  
cleared, and A/D interrupt flag bit ADIF is set. The block  
diagram of the A/D module is shown in Figure 16-1.  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D conversion clock must be derived from  
the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted.  
FIGURE 16-1: A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
AN7  
110  
AN6  
101  
AN5  
100  
AN4  
VAIN  
011  
(Input voltage)  
AN3  
010  
AN2  
10-bit  
Converter  
A/D  
001  
AN1  
PCFG0  
000  
AN0  
VDD  
VREF+  
Reference  
voltage  
VREF-  
VSS  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 169  
PIC18CXX2  
The value that is in the ADRESH/ADRESL registers is  
not modified for a Power-on Reset. The ADRESH/  
ADRESL registers will contain unknown data after a  
Power-on Reset.  
16.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 16-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 16.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH/ADRESL);  
clear bit ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
FIGURE 16-2: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
Rs  
SS  
RIC 1k  
RSS  
CPIN  
VAIN  
I leakage  
± 500 nA  
CHOLD = 120 pF  
VT = 0.6V  
5 pF  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
I LEAKAGE = leakage current at the pin due to  
various junctions  
3V  
2V  
RIC  
= interconnect resistance  
= sampling switch  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5
6 7 8 9 10 11  
Sampling Switch ( k)  
DS39026B-page 170  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
To calculate the minimum acquisition time,  
Equation 16-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
Equation 16-1: Acquisition Time  
TACQ  
=
Amplifier Settling Time +  
Holding Capacitor Charging Time +  
Temperature Coefficient  
=
TAMP + TC + TCOFF  
Equation 16-2: A/D Minimum Charging Time  
VHOLD  
or  
Tc  
=
(VREF - (VREF/2048)) • (1 - e(-Tc/CHOLD(RIC + RSS + RS))  
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
)
=
Example 16-3 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system assump-  
tions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
EXAMPLE 16-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ =  
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25°C.  
TACQ =  
TC =  
2 µs + Tc + [(Temp - 25°C)(0.05 µs/°C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 µs (-7.6241)  
9.61 µs  
TACQ =  
2 µs + 9.61 µs + [(50°C - 25°C)(0.05 µs/°C)]  
11.61 µs + 1.25 µs  
12.86 µs  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 171  
PIC18CXX2  
16.2  
Selecting the A/D Conversion Clock  
16.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The seven possible options for TAD are:  
The ADCON1, TRISA and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their corresponding  
TRIS bits set (input). If the TRIS bit is cleared (output),  
the digital output level (VOH or VOL) will be converted.  
• 2TOSC  
• 4TOSC  
• 8TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 16TOSC  
• 32TOSC  
• 64TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 16-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins) may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
TABLE 16-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Device Frequency  
Operation  
2TOSC  
ADCS2:ADCS0  
20 MHz  
5 MHz  
1.25 MHz  
1.6 µs  
333.33 kHz  
6 µs  
(2)  
(2)  
(2)  
000  
100  
001  
101  
010  
110  
011  
100 ns  
400 ns  
(2)  
4TOSC  
3.2 µs  
12 µs  
200 ns  
800 ns  
(2)  
(3)  
8TOSC  
1.6 µs  
6.4 µs  
400 ns  
24 µs  
(2)  
(3)  
16TOSC  
32TOSC  
64TOSC  
RC  
3.2 µs  
6.4 µs  
12.8 µs  
800 ns  
48 µs  
(3)  
(3)  
1.6 µs  
3.2 µs  
25.6 µs  
96 µs  
(3)  
(3)  
12.8 µs  
2 - 6 µs  
51.2 µs  
192 µs  
(1,4)  
(1,4)  
(1,4)  
(1)  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D accuracy may be  
out of specification.  
TABLE 16-2: TAD vs. DEVICE OPERATING FREQUENCIES (FOR EXTENDED, LC, DEVICES)  
AD Clock Source (TAD)  
Device Frequency  
Operation  
2TOSC  
ADCS2:ADCS0  
4 MHz  
2 MHz  
1.25 MHz  
333.33 kHz  
6 µs  
(2)  
(2)  
(2)  
000  
100  
001  
101  
010  
110  
011  
500 ns  
1.0 µs  
1.6 µs  
(2)  
(2)  
(2)  
4TOSC  
12 µs  
1.0 µs  
2.0 µs  
4.0 µs  
3.2 µs  
(2)  
(3)  
8TOSC  
6.4 µs  
2.0 µs  
24 µs  
(2)  
(3)  
16TOSC  
32TOSC  
64TOSC  
RC  
8.0 µs  
12.8 µs  
4.0 µs  
48 µs  
(3)  
(3)  
8.0 µs  
16.0 µs  
32.0 µs  
25.6 µs  
96 µs  
(3)  
(3)  
16.0 µs  
51.2 µs  
192 µs  
(1,4)  
(1,4)  
(1,4)  
(1,4)  
3 - 9 µs  
3 - 9 µs  
3 - 9 µs  
3 - 9 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 6 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D accuracy may be  
out of specification.  
DS39026B-page 172  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
16.4  
A/D Conversions  
16.5  
Use of the CCP2 Trigger  
Figure 16-3 shows the operation of the A/D converter  
after the GO bit has been set. Clearing the GO/DONE  
bit during a conversion will abort the current conver-  
sion. The A/D result register pair will NOT be updated  
with the partially completed A/D conversion sample.  
That is, the ADRESH:ADRESL registers will continue  
to contain the value of the last completed conversion  
(or the last value written to the ADRESH:ADRESL reg-  
isters). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, acquisition on the selected channel is  
automatically started.  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as 1011 and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the GO/  
DONE bit will be set, starting the A/D conversion, and  
the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the “special  
event trigger” sets the GO/DONE bit (starts a conver-  
sion).  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D mod-  
ule, but will still reset the Timer1 (or Timer3) counter.  
FIGURE 16-3: A/D CONVERSION TAD CYCLES  
Tcy - TAD  
TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5  
b7 b6  
b5  
b4  
b3  
b2  
b1  
b0  
b0  
b8  
b9  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 173  
PIC18CXX2  
TABLE 16-3: SUMMARY OF A/D REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
(1)  
PIR1  
PIE1  
IPR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF TMR1IF 0000 0000  
TMR2IE TMR1IE 0000 0000  
TMR2IP TMR1IP 0000 0000  
0000 0000  
0000 0000  
0000 0000  
PSPIF  
PSPIE  
(1)  
(1)  
PSPIP  
PIR2  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
CCP2IF ---- 0000  
---- 0000  
---- 0000  
---- 0000  
uuuu uuuu  
uuuu uuuu  
0000 00-0  
PIE2  
TMR3IE CCP2IE ---- 0000  
TMR3IP CCP2IP ---- 0000  
xxxx xxxx  
IPR2  
ADRESH  
ADRESL  
ADCON0  
A/D Result Register  
A/D Result Register  
xxxx xxxx  
ADCS1  
ADCS0  
CHS2  
CHS1  
CHS0  
GO/  
ADON  
0000 00-0  
DONE  
ADCON1  
PORTA  
TRISA  
PORTE  
LATE  
ADFM  
ADCS2  
RA6  
PCFG3  
RA3  
PCFG2  
RA2  
PCFG1  
RA1  
PCFG0 ---- -000  
---- -000  
--0u 0000  
--11 1111  
---- -000  
---- -uuu  
0000 -111  
RA5  
RA4  
RA0  
--0x 0000  
--11 1111  
---- -000  
---- -xxx  
0000 -111  
PORTA Data Direction Register  
RE2  
RE1  
RE0  
LATE2  
LATE1  
LATE0  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
Legend: x = unknown, u = unchanged, = unimplemented read as ’0’. Shaded cells are not used for A/D conversion.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.  
DS39026B-page 174  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The Low Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be "turned  
off" by the software, which minimizes the current con-  
sumption for the device.  
17.0 LOW VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do "housekeeping tasks" before the device  
voltage exits the valid operating range. This can be  
done using the Low Voltage Detect module.  
Figure 17-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time until  
the device voltage is no longer in valid operating range  
to shut down the system. Voltage point VB is the mini-  
mum valid operating voltage specification. This occurs  
at time TB. TB - TA is the total time for shutdown.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
FIGURE 17-1: TYPICAL LOW VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 175  
PIC18CXX2  
Figure 17-2 shows the block diagram for the LVD mod-  
ule. A comparator uses an internally generated refer-  
ence voltage as the set point. When the selected tap  
output of the device voltage crosses the set point (is  
lower than), the LVDIF bit is set.  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the voltage  
generated by the internal voltage reference module.  
The comparator then generates an interrupt signal set-  
ting the LVDIF bit. This voltage is software programma-  
ble to any one of 16 values (See Figure 17-2). The trip  
point is selected by programming the LVDL3:LVDL0  
bits (LVDCON<3:0>).  
Each node in the resister divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
FIGURE 17-2: LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD Control  
Register  
LVDIF  
Internally generated  
reference voltage  
LVDEN  
DS39026B-page 176  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
17.1  
Control Register  
The Low Voltage Detect Control register controls the  
operation of the Low Voltage Detect circuitry.  
Register 17-1: LVDCON Register  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
LVDL1  
R/W-1  
IRVST  
LVDEN  
LVDL3  
LVDL2  
LVDL0  
bit 7  
bit 0  
bit 7:6  
bit 5  
Unimplemented: Read as ’0’  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low Voltage Detect logic will generate the interrupt flag at the  
specified voltage range.  
0= Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low-voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3:0  
LVDL3:LVDL0: Low Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.5V min - 4.77V max.  
1101= 4.2V min - 4.45V max.  
1100= 4.0V min - 4.24V max.  
1011= 3.8V min - 4.03V max.  
1010= 3.6V min - 3.82V max.  
1001= 3.5V min - 3.71V max.  
1000= 3.3V min - 3.50V max.  
0111= 3.0V min - 3.18V max.  
0110= 2.8V min - 2.97V max.  
0101= 2.7V min - 2.86V max.  
0100= 2.5V min - 2.65V max.  
0011= 2.4V min - 2.54V max.  
0010= 2.2V min - 2.33V max.  
0001= 2.0V min - 2.12V max.  
0000= 1.8V min - 1.91V max.  
Note: LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage  
of the device are not tested.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 177  
PIC18CXX2  
The following steps are needed to setup the LVD  
module:  
17.2  
Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be con-  
stantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods, where the voltage is checked. After  
doing the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits (LVD-  
CON register), which selects the desired LVD  
Trip Point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (Set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set until the LVD module has sta-  
bilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 17-3 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 17-3: LOW VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
.
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference stable  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS39026B-page 178  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
17.2.1 REFERENCE VOLTAGE SET POINT  
17.3  
Operation During Sleep  
The Internal Reference Voltage of the LVD module may  
be used by other internal circuitry (the programmable  
brown-out reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter #36. The low-voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 17-  
3.  
When enabled, the LVD circuitry continues to operate  
during sleep. If the device voltage crosses the trip point,  
the LVDIF bit will be set and the device will wake-up  
from sleep. Device execution will continue from the  
interrupt vector address if interrupts have been globally  
enabled.  
17.4  
Effects of a Reset  
A device reset forces all registers to their reset state.  
This forces the LVD module to be turned off.  
17.2.2 CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 179  
PIC18CXX2  
NOTES:  
DS39026B-page 180  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost, while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
18.0 SPECIAL FEATURES OF THE  
CPU  
There are several features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power saving operating  
modes and offer code protection. These are:  
• OSC Selection  
• Reset  
18.1  
Configuration Bits  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h - 3FFFFFh),  
which can only be accessed using table reads and  
table writes.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code protection  
• ID locations  
• In-circuit serial programming  
These devices have a Watchdog Timer, which is per-  
manently enabled via the configuration bits or software-  
controlled. It runs off its own RC oscillator for added  
reliability. There are two timers that offer necessary  
delays on power-up. One is the Oscillator Start-up  
Timer (OST), intended to keep the chip in reset until the  
crystal oscillator is stable. The other is the Power-up  
Timer (PWRT), which provides a fixed delay on power-  
up only, designed to keep the part in reset while the  
power supply stabilizes. With these two timers on-chip,  
most applications need no external reset circuitry.  
TABLE 18-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
unprogrammed  
value  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300000h  
300001h  
300002h  
300003h  
300005h  
300006h  
3FFFFEh  
3FFFFFh  
CONFIG1L  
CP  
CP  
CP  
CP  
CP  
CP  
CP  
CP  
1111 1111  
111- -111  
---- 1111  
---- 1111  
---- ---1  
---- --11  
0000 0000  
0000 0010  
CONFIG1H  
CONFIG2L  
CONFIG2H  
CONFIG3H  
CONFIG4L  
DEVID1  
OSCSEN  
FOSC2  
BORV0  
WDTPS1  
FOSC1  
BODEN  
WDTPS0  
FOSC0  
PWRTEN  
WDTEN  
CCP2MX  
STVREN  
REV0  
BORV1  
WDTPS2  
LVEN  
DEV2  
DEV10  
DEV1  
DEV9  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
DEVID2  
DEV3  
Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, grayed cells are unimplemented read as 0  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 181  
PIC18CXX2  
Register 18-1: Configuration Register 1 High (CONFIG1H: Byte Address 300001h)  
R/P-1  
R/P-1  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
FOSC0  
bit 0  
Reserved Reserved OSCSEN  
FOSC2 FOSC1  
bit 7  
bit 7-6  
bit 5  
Reserved: Read as ’1’  
OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (Main oscillator is source)  
0= Oscillator system clock switch option is enabled  
(Oscillator switching is enabled)  
bit 4-3  
bit 2-0  
Reserved: Read as ’0’  
FOSC2:FOSC0: Oscillator Selection bits  
111= RC oscillator w/ OSC2 configured as RA6  
110= HS oscillator with PLL enabled/CLock frequency = (4 x Fosc)  
101= EC oscillator w/ OSC2 configured as RA6  
100= EC oscillator w/ OSC2 configured as divide by 4 clock output  
011= RC oscillator  
010= HS oscillator  
001= XT oscillator  
000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
Register 18-2: Configuration Register 1 Low (CONFIG1L: Byte Address 300000h)  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
bit 7  
bit 0  
CP: Code Protection bits (apply when in Code Protected Microcontroller Mode)  
1= Program memory code protection off  
0= All of program memory code protected  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39026B-page 182  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Register 18-3: Configuration Register 2 High (CONFIG2H: Byte Address 300003h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-1  
Reserved: Read as ’0’  
WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits  
000= 1:128  
001= 1:64  
010= 1:32  
011= 1:16  
100= 1:8  
101= 1:4  
110= 1:2  
111= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
Register 18-4: Configuration Register 2 Low (CONFIG2L: Byte Address 300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1  
BORV0 BOREN PWRTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-2  
Reserved: Read as ’0’  
BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.5V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
BOREN: Brown-out Reset Enable bit (1)  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
Note: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT),  
regardless of the value of bit PWRTEN. Ensure the Power-up Timer is enabled any-  
time Brown-out Reset is enabled.  
bit 0  
PWRTEN: Power-up Timer Enable bit (1)  
1= PWRT disabled  
0= PWRT enabled  
Note: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT),  
regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any-  
time Brown-out Reset is enabled.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 183  
PIC18CXX2  
Register 18-5: Configuration Register 3 High (CONFIG3H: Byte Address 300005h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
CCP2MX  
bit 0  
bit 7  
bit 7-1  
bit 0  
Reserved: Read as ’0’  
CCP2MX: CCP2 Mux bit  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RB3  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
Register 18-6: Configuration Register 4 Low (CONFIG3H: Byte Address 300006h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
Reserved STVREN  
bit 0  
bit 7  
bit 7-2  
bit 1  
Reserved: Read as ’0’  
Reserved: Maintain this bit set.  
bit 0  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack Full/Underflow will cause reset  
0= Stack Full/Underflow will not cause reset  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39026B-page 184  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The WDT time-out period values may be found in the  
Electrical Specifications section under parameter #31.  
Values for the WDT postscaler may be assigned using  
the configuration bits.  
18.2  
Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKI pin. That means that the WDT will run,  
even if the clock on the OSC1/CLKI and OSC2/CLKO/  
RA6 pins of the device has been stopped, for example,  
by execution of a SLEEPinstruction.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler if assigned to  
the WDT, and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The Watchdog Timer is enabled/disabled by a device  
configuration bit. If the WDT is enabled, software exe-  
cution may not disable this function. When the WDTEN  
configuration bit is cleared, the SWDTEN bit enables/  
disables the operation of the WDT.  
18.2.1 CONTROL REGISTER  
Register 18-7 shows the WDTCON register. This is a  
readable and writable register, which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only when the configuration bit has  
disabled the WDT.  
Register 18-7 WDTCON Register  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7:1  
bit 0  
Unimplemented: Read as ’0’  
SWDTEN: Software Controlled Watchdog Timer Enable Bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if the WDTEN configuration bit in the configuration  
register = ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR reset  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 185  
PIC18CXX2  
18.2.2 WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
reset period. The postscaler is selected at the time of  
the device programming, by the value written to the  
CONFIG2H configuration register.  
FIGURE 18-1: WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
8
8 - to - 1 MUX  
WDTPS2:WDTPS0  
WDTEN  
SWDTEN bit  
Configuration bit  
Note: WDPS2:WDPS0 are bits in a configuration register.  
WDT  
Time-out  
FIGURE 18-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
LWRT  
RI  
WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
DS39026B-page 186  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and will cause a "wake-up". The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared, if a WDT time-out occurred (and caused  
wake-up).  
18.3  
Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared, but  
keeps running, the PD bit (RCON<3>) is cleared, the  
TO (RCON<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low or hi-impedance).  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOP after the SLEEPinstruction.  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
The MCLR pin must be at a logic high level (VIHMC).  
18.3.1 WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
Peripheral Interrupt.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
3. TMR3 interrupt. Timer3 must be operating as  
an asynchronous counter.  
4. CCP capture mode interrupt.  
5. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
6. MSSP (Start/Stop) bit detect interrupt.  
7. MSSP transmit or receive in slave mode (SPI/  
I2C).  
8. USART RX or TX (synchronous slave mode).  
9. A/D conversion (when A/D clock source is RC).  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 187  
PIC18CXX2  
18.3.2 WAKE-UP USING INTERRUPTS  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If an interrupt condition (interrupt flag bit and inter-  
rupt enable bits are set) occurs before the execu-  
tion of a SLEEPinstruction, the SLEEPinstruction  
will complete as a NOP. Therefore, the WDT and  
WDT postscaler will not be cleared, the TO bit will  
not be set and PD bits will not be cleared.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake up from sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
FIGURE 18-3: WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
(4)  
TOST  
CLKOUT  
INT pin  
INTF flag  
(INTCON<1>)  
(3)  
Interrupt Latency  
GIEH bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+2  
PC+4  
PC+4  
PC + 4  
0008h  
000Ah  
Instruction  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(000Ah)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 2)  
Inst(0008h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: GIE = '1' assumed. In this case, after wake- up, the processor jumps to the interrupt routine. If GIE = '0',  
execution will continue in-line.  
3: TOST = 1024TOSC (drawing not to scale) This delay will not occur for RC and EC osc modes.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
DS39026B-page 188  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
18.4  
Program Verification/Code Protection  
18.6  
In-Circuit Serial Programming  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
PIC18CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming volt-  
age. This allows customers to manufacture boards with  
unprogrammed devices, and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
Note: Microchip Technology does not recom-  
mend code protecting windowed devices.  
18.5  
ID Locations  
Five memory locations (200000h - 200004h) are desig-  
nated as ID locations, where the user can store check-  
sum or other code-identification numbers. These  
locations are accessible during normal execution  
through the TBLRD instruction or during program/ver-  
ify. The ID locations can be read when the device is  
code protected.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 189  
PIC18CXX2  
NOTES:  
DS39026B-page 190  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
The control instructions may use some of the following  
operands:  
19.0 INSTRUCTION SET SUMMARY  
The PIC18CXXX instruction set adds many enhance-  
ments to the previous PICmicro instruction sets, while  
maintaining an easy migration from these PICmicro  
instruction sets.  
• A program memory address (specified by the  
value of ’n’)  
• The mode of the Call or Return instructions (spec-  
ified by the value of ’s’)  
• The mode of the Table Read and Table Write  
instructions (specified by the value of ’m’)  
• No operand required  
Most instructions are a single program memory word  
(16-bits), but there are three instructions that require  
two program memory locations.  
Each single word instruction is a 16-bit word divided  
into an OPCODE, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction.  
(specified by the value of ’—’)  
All instructions are a single word, except for three dou-  
ble word instructions. These three instructions were  
made double word instructions so that all the required  
information is available in these 32-bits. In the second  
word, the 4-MSb’s are 1’s. If this second word is exe-  
cuted as an instruction (by itself), it will execute as a  
NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18CXXX instruction set summary in  
Table 19-2 lists byte-oriented, bit-oriented, literal  
and control operations. Table 19-1 shows the  
opcode field descriptions.  
The double word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by the value of ’f’)  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true or the program counter is changed as a result of an  
instruction, the instruction execution time is 2 µs. Two  
word branch instructions (if true) would take 3 µs.  
2. The destination of the result  
(specified by the value of ’d’)  
3. The accessed memory  
(specified by the value of ’a’)  
'f' represents a file register designator and 'd' repre-  
sents a destination designator. The file register desig-  
nator specifies which file register is to be used by the  
instruction.  
Figure 19-1 shows the general formats that the instruc-  
tions can have.  
All examples use the following format to represent a  
hexadecimal number:  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the WREG register. If 'd' is one, the result is  
placed in the file register specified in the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
All bit-oriented instructions have three operands:  
The Instruction Set Summary, shown in Table 19-2,  
lists the instructions recognized by the Microchip  
assembler (MPASM).  
1. The file register (specified by the value of ’f’)  
2. The bit in the file register  
(specified by the value of ’b’)  
Section 19.1 provides a description of each instruction.  
3. The accessed memory  
(specified by the value of ’a’)  
'b' represents a bit field designator which selects the  
number of the bit affected by the operation, while 'f' rep-  
resents the number of the file in which the bit is located.  
The literal instructions may use some of the following  
operands:  
• A literal value to be loaded into a file register  
(specified by the value of ’k’)  
• The desired FSR register to load the literal value  
into (specified by the value of ’f’)  
• No operand required  
(specified by the value of ’—’)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 191  
PIC18CXX2  
TABLE 19-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7)  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit;  
d = 0: store result in WREG,  
d = 1: store result in file register f.  
dest  
f
Destination either the WREG register or the specified register file location  
8-bit Register file address (0x00 to 0xFF)  
fs  
12-bit Register file address (0x000 to 0xFFF). This is the source address.  
12-bit Register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)  
Label name  
fd  
k
label  
mm  
The mode of the TBLPTR register for the Table Read and Table Write instructions  
Only used with Table Read and Table Write instructions:  
*
No Change to register (such as TBLPTR with Table reads and writes)  
Post-Increment register (such as TBLPTR with Table reads and writes)  
Post-Decrement register (such as TBLPTR with Table reads and writes)  
Pre-Increment register (such as TBLPTR with Table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct  
address for Call/Branch and Return instructions  
PRODH  
PRODL  
s
Product of Multiply high byte  
Product of Multiply low byte  
Fast Call / Return mode select bit.  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged  
WREG  
x
Working register (accumulator)  
Don't care (0 or 1)  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility  
with all Microchip software tools.  
TBLPTR  
TABLAT  
TOS  
21-bit Table Pointer (points to a Program Memory location)  
8-bit Table Latch  
Top of Stack  
PC  
Program Counter  
PCL  
Program Counter Low Byte  
Program Counter High Byte  
Program Counter High Byte Latch  
Program Counter Upper Byte Latch  
Global Interrupt Enable bit  
Watchdog Timer  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit  
PD  
Power-down bit  
C, DC, Z, OV, N ALU status bits Carry, Digit Carry, Zero, Overflow, Negative  
[ ]  
( )  
Optional  
Contents  
Assigned to  
< >  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
DS39026B-page 192  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 19-1: GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
9
d
8
7
0
OPCODE  
a
f (FILE #)  
ADDWF MYREG, W, B  
d = 0 for result destination to be WREG register  
d = 1 for result destination to be file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11  
9
8
7
0
OPCODE b (BIT #)  
a
f (FILE #)  
BSF MYREG, bit, B  
b = 3-bit position of bit in file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
OPCODE  
k (literal)  
MOVLW 0x7F  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
0
OPCODE  
12 11  
n<7:0> (literal)  
GOTO Label  
15  
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
8 7  
15  
15  
0
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 193  
PIC18CXX2  
TABLE 19-2: PIC18CXXX INSTRUCTION SET  
Mnemonic,  
16-Bit Instruction Word  
MSb LSb  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
ADDWFC f, d, a Add WREG and Carry bit to f  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
1,2  
2
1, 2  
4
4
1, 2  
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
f, a  
f, a  
f, a  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ  
DCFSNZ  
INCF  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination)2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
RRNCF  
SETF  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap nibbles in f  
f, a Test f, skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff  
1000 bbba ffff  
ffff None  
ffff None  
ffff None  
ffff None  
ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff  
1 (2 or 3) 1010 bbba ffff  
1
0111 bbba ffff  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven  
low by an external device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instruction will be executed as a NOP, unless  
the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program  
memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39026B-page 194  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TABLE 19-2: PIC18CXXX INSTRUCTION SET (Cont.d)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn  
1110 0110 nnnn  
1110 0011 nnnn  
1110 0111 nnnn  
1110 0101 nnnn  
1110 0001 nnnn  
1110 0100 nnnn  
1101 0nnn nnnn  
1110 0000 nnnn  
1110 110s kkkk  
1111 kkkk kkkk  
0000 0000 0000  
0000 0000 0000  
1110 1111 kkkk  
1111 kkkk kkkk  
0000 0000 0000  
1111 xxxx xxxx  
0000 0000 0000  
0000 0000 0000  
1101 1nnn nnnn  
0000 0000 1111  
0000 0000 0001  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
kkkk None  
kkkk  
0100 TO, PD  
0111 C  
kkkk None  
kkkk  
0000 None  
xxxx None  
0110 None  
0101 None  
nnnn None  
1111 All  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
Call subroutine1st word  
2nd word  
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address1st word  
2nd word  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
CLRWDT  
DAW  
GOTO  
n
1
1
2
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
1
1
1
1
2
1
2
No Operation (Note 4)  
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device RESET  
Return from interrupt enable  
s
000s GIE/GIEH,  
PEIE/GIEL  
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into standby mode  
2
2
1
0000 1100 kkkk  
0000 0000 0001  
0000 0000 0000  
kkkk None  
001s None  
0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven  
low by an external device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instruction will be executed as a NOP, unless  
the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program  
memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 195  
PIC18CXX2  
TABLE 19-2: PIC18CXXX INSTRUCTION SET (Cont.d)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
1
1
1
2
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit)1st word  
to FSRx2nd word  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven  
low by an external device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instruction will be executed as a NOP, unless  
the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program  
memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39026B-page 196  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
19.1  
Instruction Set  
ADDLW  
ADDWF  
ADD literal to WREG  
ADD WREG to f  
Syntax:  
[ label ] ADDLW  
k
Syntax:  
[ label ] ADDWF f,d,a  
Operands:  
Operation:  
0 k 255  
Operands:  
0 f 255  
d
a
[0,1]  
[0,1]  
(WREG) + k WREG  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Operation:  
(WREG) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of WREG are added  
to the 8-bit literal ’k’ and the result is  
placed in WREG.  
0010  
01da  
ffff  
ffff  
Description:  
Add WREG to register ’f’. If ’d’ is 0,  
the result is stored in WREG. If ’d’  
is 1, the result is stored back in reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected. If ’a’  
is 1, the BSR will not be overridden  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
ADDLW  
0x15  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG = 0x10  
After Instruction  
WREG = 0x25  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
ADDWF  
REG, 0, 0  
Example:  
Before Instruction  
WREG  
REG  
=
=
0x17  
0xC2  
After Instruction  
WREG  
REG  
=
=
0xD9  
0xC2  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 197  
PIC18CXX2  
ADDWFC  
ANDLW  
ADD WREG and Carry bit to f  
[ label ] ADDWFC f,d,a  
0 f 255  
AND literal with WREG  
Syntax:  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
Operands:  
Operation:  
d
a
[0,1]  
[0,1]  
(WREG) .AND. k WREG  
Status Affected:  
Encoding:  
N,Z  
Operation:  
(WREG) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of WREG are AND’ed  
with the 8-bit literal 'k'. The result is  
placed in WREG.  
0010  
00da  
ffff  
ffff  
Description:  
Add WREG, the Carry Flag and data  
memory location ’f’. If ’d’ is 0, the  
Words:  
Cycles:  
1
1
result is placed in WREG. If ’d’ is 1,  
the result is placed in data memory  
location 'f'. If ’a’ is 0, the Access  
Bank will be selected. If ’a’ is 1, the  
BSR will not be overridden.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG  
=
0xA3  
0x03  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
After Instruction  
WREG  
=
ADDWFC  
REG, 0, 1  
Example:  
Before Instruction  
Carry bit=  
1
REG  
=
=
0x02  
WREG  
0x4D  
After Instruction  
Carry bit=  
0
REG  
=
=
0x02  
WREG  
0x50  
DS39026B-page 198  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
BC  
Branch if Carry  
[ label ] BC  
ANDWF  
AND WREG with f  
[ label ] ANDWF f,d,a  
0 f 255  
Syntax:  
Operands:  
Operation:  
n
Syntax:  
-128 n 127  
Operands:  
d
a
[0,1]  
[0,1]  
if carry bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
Status Affected:  
Encoding:  
None  
(WREG) .AND. (f) dest  
1110  
0010  
nnnn  
nnnn  
Status Affected:  
Encoding:  
N,Z  
Description:  
If the Carry bit is ’1’, then the pro-  
gram will branch.  
0001  
01da  
ffff  
ffff  
Description:  
The contents of WREG are AND’ed  
with register 'f'. If 'd' is 0, the result  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
is stored in WREG. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected. If ’a’ is 1, the  
BSR will not be overridden  
(default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
Q1  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
ANDWF  
REG, 0, 0  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read literal  
’n’  
Process  
Data  
No  
WREG  
REG  
=
=
0x17  
0xC2  
operation  
After Instruction  
HERE  
BC  
5
Example:  
WREG  
REG  
=
=
0x02  
0xC2  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
address (HERE+12)  
0;  
If Carry  
PC  
address (HERE+2)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 199  
PIC18CXX2  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
Operands:  
[ label ] BCF f,b,a  
Syntax:  
Operands:  
Operation:  
n
0 f 255  
0 b 7  
-128 n 127  
if negative bit is ’1’  
(PC) + 2 + 2n PC  
a
[0,1]  
Operation:  
0 f<b>  
None  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ’1’, then the  
program will branch.  
Description:  
Bit 'b' in register 'f' is cleared. If ’a’  
is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
BCF  
FLAG_REG, 7, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
FLAG_REG = 0xC7  
If No Jump:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FLAG_REG = 0x47  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative=  
PC  
If Negative=  
PC  
1;  
=
address (Jump)  
0;  
=
address (HERE+2)  
DS39026B-page 200  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if carry bit is ’0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if negative bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ’0’, then the pro-  
gram will branch.  
Description:  
If the Negative bit is ’0’, then the  
program will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
=
=
=
=
0;  
If Negative=  
PC  
If Negative=  
PC  
0;  
PC  
address (Jump)  
1;  
=
address (Jump)  
1;  
If Carry  
PC  
address (HERE+2)  
=
address (HERE+2)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 201  
PIC18CXX2  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if zero bit is ’0’  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
if overflow bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ’0’, then the  
program will branch.  
Description:  
If the Zero bit is ’0’, then the pro-  
gram will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow=  
0;  
If Zero  
=
=
=
=
0;  
PC  
=
address (Jump)  
1;  
PC  
address (Jump)  
1;  
If Overflow=  
If Zero  
PC  
PC  
=
address (HERE+2)  
address (HERE+2)  
DS39026B-page 202  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
Operands:  
[ label ] BSF f,b,a  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
0 f 255  
0 b 7  
a
[0,1]  
Operation:  
1 f<b>  
None  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
Add the 2’s complement number  
’2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a two-  
cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit 'b' in register 'f' is set. If ’a’ is 0  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7, 1  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG=  
0x0A  
0x8A  
Before Instruction  
After Instruction  
PC  
=
=
address (HERE)  
address (Jump)  
FLAG_REG=  
After Instruction  
PC  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 203  
PIC18CXX2  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b,a  
Syntax:  
[ label ] BTFSS f,b,a  
Operands:  
0 f 255  
0 b 7  
Operands:  
0 f 255  
0 b < 7  
a
[0,1]  
a
[0,1]  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit 'b' in register ’f' is 0, then the  
next instruction is skipped.  
Description:  
If bit 'b' in register 'f' is 1 then the next  
instruction is skipped.  
If bit 'b' is 0, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
If bit 'b' is 1, then the next instruction  
fetched during the current instruc-  
tion execution, is discarded and an  
NOPis executed instead, making this  
a two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
Process Data  
No  
Decode  
Read  
Process Data  
No  
register ’f’  
operation  
register ’f’  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
=
=
=
=
0;  
If FLAG<1>  
=
=
=
=
0;  
PC  
If FLAG<1>  
PC  
address (TRUE)  
1;  
PC  
If FLAG<1>  
PC  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS39026B-page 204  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
Operands:  
[ label ] BTG f,b,a  
Syntax:  
[ label ] BOV  
n
0 f 255  
0 b < 7  
Operands:  
Operation:  
-128 n 127  
if overflow bit is ’1’  
(PC) + 2 + 2n PC  
a
[0,1]  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ’1’, then the  
program will branch.  
Description:  
Bit ’b’ in data memory location ’f’ is  
inverted. If ’a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ’a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
BTG  
PORTC, 4, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction:  
PORTC  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Q3  
Q4  
PORTC  
=
0110 0101 [0x65]  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BOV Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow=  
PC  
If Overflow=  
PC  
1;  
=
address (Jump)  
0;  
=
address (HERE+2)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 205  
PIC18CXX2  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
[ label ] CALL k,s  
0 k 1048575  
Syntax:  
Operands:  
Operation:  
n
Syntax:  
Operands:  
-128 n 127  
s
[0,1]  
if Zero bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
(WREG) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
Description:  
If the Zero bit is ’1’, then the pro-  
gram will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2M byte  
memory range. First, return  
address (PC+ 4) is pushed onto the  
return stack. If ’s’ = 1, the W, STA-  
TUS and BSR registers are also  
pushed into their respective  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
shadow registers, WS, STATUSS  
and BSRS. If 's' = 0, no update  
occurs (default). Then the 20-bit  
value ’k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
’k’<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Before Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
PC  
=
address (HERE)  
After Instruction  
If Zero  
=
=
=
=
1;  
PC  
address (Jump)  
0;  
HERE  
CALL THERE,1  
Example:  
If Zero  
PC  
address (HERE+2)  
Before Instruction  
PC  
=
Address(HERE)  
After Instruction  
PC  
TOS =  
WS  
BSRS=  
=
Address(THERE)  
Address (HERE + 4)  
=
WREG  
BSR  
STATUSS = STATUS  
DS39026B-page 206  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
CLRF  
Clear f  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
[label] CLRF f,a  
0 f 255  
Operands:  
Operation:  
a
[0,1]  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ’a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ’a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
CLRWDT  
Example:  
CLRF  
=
FLAG_REG,1  
Example:  
Before Instruction  
WDT counter  
=
=
?
Before Instruction  
FLAG_REG  
0x5A  
0x00  
After Instruction  
WDT counter  
WDT Postscaler =  
TO  
PD  
0x00  
After Instruction  
0
1
1
FLAG_REG  
=
=
=
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 207  
PIC18CXX2  
COMF  
Complement f  
Compare f with WREG, skip if f =  
WREG  
CPFSEQ  
Syntax:  
Operands:  
[ label ] COMF f,d,a  
0 f 255  
Syntax:  
[ label ] CPFSEQ f,a  
0 f 255  
d
a
[0,1]  
[0,1]  
Operands:  
a
[0,1]  
Operation:  
Operation:  
(f) dest  
(f) – (WREG),  
skip if (f) = (WREG)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N,Z  
0001  
11da  
ffff  
ffff  
Status Affected:  
Encoding:  
None  
Description:  
The contents of register ’f’ are com-  
plemented. If ’d’ is 0 the result is  
0110  
001a  
ffff  
ffff  
stored in WREG. If ’d’ is 1 the result  
is stored back in register ’f’  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
of WREG by performing an  
unsigned subtraction.  
If 'f' = WREG, then the fetched  
instruction is discarded and an NOP  
is executed instead making this a  
two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
COMF  
REG, 0, 0  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
After Instruction  
Q2  
Q3  
Q4  
REG  
WREG  
=
=
0x13  
0xEC  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG, 0  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
HERE  
WREG  
REG  
=
=
?
?
After Instruction  
If REG  
PC  
=
=
WREG;  
Address (EQUAL)  
If REG  
PC  
=
WREG;  
Address (NEQUAL)  
DS39026B-page 208  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Compare f with WREG, skip if f >  
WREG  
Compare f with WREG, skip if f <  
WREG  
CPFSGT  
CPFSLT  
Syntax:  
[ label ] CPFSGT f,a  
Syntax:  
[ label ] CPFSLT f,a  
0 f 255  
Operands:  
0 f 255  
Operands:  
a
[0,1]  
a
[0,1]  
Operation:  
Operation:  
(f) − (WREG),  
(f) – (WREG),  
skip if (f) > (WREG)  
skip if (f) < (WREG)  
(unsigned comparison)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
Description:  
Compares the contents of data  
memory location ’f’ to the contents  
memory location 'f' to the contents  
of the WREG by performing an  
unsigned subtraction.  
of WREG by performing an  
unsigned subtraction.  
If the contents of ’f’ are greater than  
If the contents of 'f' are less than  
the contents of , then the fetched  
instruction is discarded and a NOP  
is executed instead making this a  
two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead making  
this a two-cycle instruction. If ’a’ is  
0, the Access Bank will be  
selected. If ’a’ is 1 the BSR will not  
be overridden (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
Example:  
HERE  
NGREATER  
GREATER  
CPFSGT REG, 0  
:
:
Example:  
Before Instruction  
PC  
=
=
Address (HERE)  
?
Before Instruction  
W
PC  
WREG  
=
=
Address (HERE)  
?
After Instruction  
If REG  
PC  
If REG  
PC  
<
WREG;  
Address (LESS)  
WREG;  
Address (NLESS)  
After Instruction  
=
If REG  
PC  
If REG  
PC  
>
=
WREG;  
Address (GREATER)  
WREG;  
Address (NGREATER)  
=
=
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 209  
PIC18CXX2  
DECF  
Decrement f  
DAW  
Decimal Adjust WREG Register  
Syntax:  
Operands:  
[ label ] DECF f,d,a  
Syntax:  
[label] DAW  
None  
0 f 255  
Operands:  
Operation:  
d
a
[0,1]  
[0,1]  
If [WREG<3:0> >9] or [DC = 1]  
then  
Operation:  
(f) – 1 dest  
(WREG<3:0>) + 6 WREG<3:0>;  
else  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
0000  
01da  
ffff  
ffff  
(WREG<3:0>) WREG<3:0>;  
Description:  
Decrement register 'f'. If 'd' is 0, the  
If [WREG<7:4> >9] or [C = 1] then  
result is stored in WREG. If 'd' is 1,  
the result is stored back in register  
'f' (default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
(WREG<7:4>) + 6 WREG<7:4>;  
else  
(WREG<7:4>) WREG<7:4>;  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Words:  
Cycles:  
1
1
Description:  
DAW adjusts the eight bit value in  
WREG resulting from the earlier  
addition of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Words:  
Cycles:  
1
1
DECF  
CNT,  
1, 0  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
CNT  
Z
=
0x01  
0
Decode  
Read  
register  
WREG  
Process  
Data  
Write  
WREG  
=
After Instruction  
CNT  
Z
=
=
0x00  
1
DAW  
Example1:  
Before Instruction  
WREG  
=
0xA5  
C
DC  
=
=
0
0
After Instruction  
WREG  
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
WREG  
=
0xCE  
C
DC  
=
=
0
0
After Instruction  
WREG  
=
0x34  
C
DC  
=
=
1
0
DS39026B-page 210  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
DECFSZ  
Syntax:  
Decrement f, skip if 0  
[ label ] DECFSZ f,d,a  
0 f 255  
DCFSNZ  
Syntax:  
Decrement f, skip if not 0  
[label] DCFSNZ f,d,a  
0 f 255  
Operands:  
Operands:  
d
a
[0,1]  
[0,1]  
d
a
[0,1]  
[0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded, and a NOPis  
executed instead making it a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
TEMP  
=
?
After Instruction  
After Instruction  
CNT  
=
=
=
=
CNT - 1  
0;  
TEMP  
=
=
=
=
TEMP - 1,  
If CNT  
PC  
If TEMP  
PC  
0;  
Address (CONTINUE)  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
If CNT  
PC  
If TEMP  
PC  
Address (HERE+2)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 211  
PIC18CXX2  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
Operands:  
[ label ] INCF f,d,a  
Operands:  
Operation:  
Status Affected:  
0 f 255  
d
a
[0,1]  
[0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
Description:  
The contents of register ’f’ are  
branch anywhere within entire 2M  
byte memory range. The 20-bit  
value ’k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle instruc-  
tion.  
incremented. If ’d’ is 0, the result is  
placed in WREG. If ’d’ is 1, the  
result is placed back in register ’f’  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’<7:0>,  
No  
operation  
Read literal  
’k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT, 1, 0  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
=
0xFF  
Z
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
=
=
=
=
0x00  
Z
1
1
1
C
DC  
DS39026B-page 212  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
INCFSZ  
Syntax:  
Increment f, skip if 0  
[ label ] INCFSZ f,d,a  
0 f 255  
INFSNZ  
Syntax:  
Increment f, skip if not 0  
[label] INFSNZ f,d,a  
0 f 255  
Operands:  
Operands:  
d
a
[0,1]  
[0,1]  
d
a
[0,1]  
[0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
Description:  
The contents of register 'f' are  
incremented. If ’d’ is 0, the result is  
incremented. If 'd' is 0, the result is  
placed in WREG. If ’d’ is 1, the  
result is placed back in register ’f’.  
(default)  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded, and a NOPis  
executed instead making it a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
=
=
=
=
CNT + 1  
REG  
=
=
=
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
If CNT  
PC  
0;  
If REG  
PC  
If REG  
PC  
Address(ZERO)  
0;  
Address(NZERO)  
If CNT  
PC  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 213  
PIC18CXX2  
IORLW  
IORWF  
Inclusive OR literal with WREG  
[ label ] IORLW k  
0 k 255  
Inclusive OR WREG with f  
[ label ] IORWF f,d,a  
0 f 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
d
a
[0,1]  
[0,1]  
(WREG) .OR. k WREG  
Status Affected:  
Encoding:  
N,Z  
Operation:  
(WREG) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,Z  
Description:  
The contents of WREG are OR’ed  
with the eight bit literal 'k'. The  
result is placed in WREG.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR WREG with register  
'f'. If 'd' is 0, the result is placed in  
Words:  
Cycles:  
1
1
WREG. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If ’a’ is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
IORLW  
0x9A  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
WREG  
=
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
WREG  
=
0xBF  
IORWF RESULT, 0, 1  
Example:  
Before Instruction  
RESULT  
WREG  
=
=
0x13  
0x91  
After Instruction  
RESULT  
WREG  
=
=
0x13  
0x93  
DS39026B-page 214  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
Operands:  
[ label ] LFSR f,k  
Syntax:  
Operands:  
[ label ] MOVF f,d,a  
0 f 2  
0 f 255  
0 k 4095  
d
a
[0,1]  
[0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
N,Z  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ’k’ is loaded into  
the file select register pointed to  
by ’f’  
Description:  
The contents of register ’f’ is moved  
to a destination dependent upon  
the status of ’d’. If 'd' is 0, the result  
Words:  
Cycles:  
2
2
is placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default). Location 'f' can be any-  
where in the 256 byte bank. If ’a’ is  
0, the Access Bank will be  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’ MSB  
Process  
Data  
Write  
literal ’k’  
MSB to  
FSRfH  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Decode  
Read literal  
’k’ LSB  
Process  
Data  
Write literal  
’k’ to FSRfL  
Words:  
Cycles:  
1
1
LFSR 2, 0x3AB  
Example:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
WREG  
MOVF  
REG, 0, 0  
Example:  
Before Instruction  
REG  
WREG  
=
=
0x22  
0xFF  
After Instruction  
REG  
WREG  
=
=
0x22  
0x22  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 215  
PIC18CXX2  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[label] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 fs 4095  
0 fd 4095  
None  
Operation:  
(fs) fd  
0000  
0001  
kkkk  
kkkk  
Status Affected:  
None  
The 8-bit literal ’k’ is loaded into  
the Bank Select Register (BSR).  
Encoding:  
1st word (source)  
2nd word (destin.)  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register ’fs’  
are moved to destination register  
’fd’. Location of source ’fs’ can be  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
anywhere in the 4096 byte data  
space (000h to FFFh), and location  
of destination ’fd’ can also be any-  
Decode  
Read literal  
’k’  
Process  
Data  
Write  
literal ’k’ to  
BSR  
where from 000h to FFFh.  
Either source or destination can be  
WREG (a useful special situation).  
MOVLB  
5
Example:  
Before Instruction  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
BSR register= 0x02  
After Instruction  
BSR register= 0x05  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ’f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS39026B-page 216  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
MOVLW  
MOVWF  
Move literal to WREG  
[ label ] MOVLW k  
0 k 255  
Move WREG to f  
Syntax:  
Syntax:  
[ label ] MOVWF f,a  
Operands:  
Operation:  
Operands:  
0 f 255  
a
[0,1]  
k WREG  
Operation:  
(WREG) f  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight bit literal ’k’ is loaded into  
WREG.  
Description:  
Move data from WREG to register  
’f’. Location ’f’ can be anywhere in  
the 256 byte bank. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
WREG  
=
0x5A  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
MOVWF  
REG, 0  
Example:  
Before Instruction  
WREG  
REG  
=
=
0x4F  
0xFF  
After Instruction  
WREG  
REG  
=
=
0x4F  
0x4F  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 217  
PIC18CXX2  
MULLW  
MULWF  
Multiply Literal with WREG  
Multiply WREG with f  
[ label ] MULWF f,a  
0 f 255  
Syntax:  
[ label ] MULLW  
k
Syntax:  
Operands:  
Operation:  
0 k 255  
Operands:  
a
[0,1]  
(WREG) x k PRODH:PRODL  
Operation:  
(WREG) x (f) PRODH:PRODL  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
WREG and the 8-bit literal ’k’.  
The 16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
WREG and the register file loca-  
tion ’f’. The 16-bit result is stored  
in the PRODH:PRODL register  
pair. PRODH contains the high  
byte.  
WREG is unchanged.  
None of the status flags are  
affected.  
Both WREG and ’f’ are  
unchanged.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected. If ’a’ is 0, the  
Words:  
Cycles:  
1
1
Access Bank will be selected,  
overriding the BSR value. If ’a’ =  
1, then the bank will be selected  
as per the BSR value (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
=
0xC4  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
WREG  
PRODH  
PRODL  
0xE2  
registers  
PRODH:  
PRODL  
=
=
?
?
After Instruction  
WREG  
PRODH  
PRODL  
=
=
=
0xE2  
0xAD  
0x08  
MULWF  
=
REG, 1  
Example:  
Before Instruction  
WREG  
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
?
?
After Instruction  
WREG  
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
0x8A  
0x94  
DS39026B-page 218  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
Operands:  
[label] NEGF f,a  
Syntax:  
[ label ] NOP  
None  
0 f 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
a
[0,1]  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ’f’ is negated using two’s  
complement. The result is placed in  
the data memory location 'f'. If ’a’ is  
0, the Access Bank will be  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value.  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
None.  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 219  
PIC18CXX2  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
[ label ] PUSH  
None  
Syntax:  
[ label ] POP  
None  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the previ-  
ous value that was pushed onto the  
return stack.  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows to implement  
a software stack by modifying TOS,  
and then push it onto the return  
stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
PUSH PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
PC  
=
=
00345Ah  
000124h  
Before Instruction  
TOS  
=
0031A2h  
After Instruction  
Stack (1 level down)= 014332h  
PC  
=
=
000126h  
000126h  
TOS  
After Instruction  
Stack (1 level down)= 00345Ah  
TOS  
PC  
=
=
014332h  
NEW  
DS39026B-page 220  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ’2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n.  
This instruction is a two-cycle  
instruction.  
Description:  
This instruction provides a way to  
execute a MCLR reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers= Reset Value  
Q Cycle Activity:  
Q1  
Flags* Reset Value  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address(HERE)  
After Instruction  
PC  
=
Address(Jump)  
Address (HERE+2)  
TOS =  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 221  
PIC18CXX2  
RETFIE  
Return from Interrupt  
[ label ] RETFIE s  
s [0,1]  
RETLW  
Return Literal to WREG  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
k WREG,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) WREG,  
Status Affected:  
Encoding:  
None  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged.  
0000  
1100  
kkkk  
kkkk  
Description:  
WREG is loaded with the eight bit  
literal 'k'. The program counter is  
loaded from the top of the stack  
(the return address). The high  
address latch (PCLATH) remains  
unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH,PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from Interrupt. Stack is  
popped and Top of Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting the either the  
high or low priority global inter-  
rupt enable bit. If ’s’ = 1, the con-  
tents of the shadow registers WS,  
STATUSS and BSRS are loaded  
into their corresponding registers,  
WREG, STATUS and BSR. If ’s’ =  
0, no update of these registers  
occurs (default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
pop PC from  
stack, Write  
to WREG  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
CALL TABLE ; WREG contains table  
;
;
offset value  
WREG now has  
table value  
Decode  
No  
operation  
No  
operation  
pop PC from  
stack  
;
Set GIEH or  
GIEL  
:
TABLE  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
ADDWF PCL  
RETLW k0  
RETLW k1  
; WREG = offset  
; Begin table  
;
:
:
RETFIE  
1
Example:  
After Interrupt  
RETLW kn  
; End of table  
PC  
W
BSR  
STATUS  
=
=
=
=
TOS  
WS  
BSRS  
Before Instruction  
STATUSS  
1
WREG  
=
0x07  
GIE/GIEH, PEIE/GIEL=  
After Instruction  
WREG  
=
value of kn  
DS39026B-page 222  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
RETURN  
Syntax:  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
[ label ] RLCF f,d,a  
0 f 255  
[ label ] RETURN s  
Syntax:  
Operands:  
Operands:  
Operation:  
s
[0,1]  
d
a
[0,1]  
[0,1]  
(TOS) PC,  
if s = 1  
(WS) WREG,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(C) dest<0>  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C,N,Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register 'f' are  
rotated one bit to the left through  
the Carry Flag. If 'd' is 0 the result is  
Description:  
Return from subroutine. The  
stack is popped and the top of the  
stack (TOS) is loaded into the  
program counter. If ’s’ = 1, the  
contents of the shadow registers  
WS, STATUSS and BSRS are  
loaded into their corresponding  
registers, WREG, STATUS and  
BSR. If ’s’ = 0, no update of  
these registers occurs (default).  
placed in WREG. If 'd' is 1 the  
result is stored back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
pop PC from  
stack  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Data  
Write to  
destination  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
register ’f’  
RLCF  
REG, 0, 0  
Example:  
Before Instruction  
RETURN  
Example:  
REG  
=
=
1110 0110  
0
C
After Interrupt  
PC = TOS  
After Instruction  
REG  
=
1110 0110  
WREG  
C
=
=
1100 1100  
1
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 223  
PIC18CXX2  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
[ label ] RRCF f,d,a  
0 f 255  
Syntax:  
[ label ] RLNCF f,d,a  
Syntax:  
Operands:  
Operands:  
0 f 255  
d
a
[0,1]  
[0,1]  
d
a
[0,1]  
[0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
C,N,Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
rotated one bit to the left. If ’d’ is 0  
Description:  
The contents of register 'f' are  
rotated one bit to the right through  
the Carry Flag. If 'd' is 0, the result  
the result is placed in WREG. If ’d’  
is 1, the result is stored back in reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
is placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
RLNCF  
REG, 1, 0  
Example:  
Before Instruction  
RRCF  
REG, 0, 0  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
1110 0110  
WREG  
C
=
=
0111 0011  
0
DS39026B-page 224  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
RRNCF  
Syntax:  
Rotate Right f (no carry)  
[ label ] RRNCF f,d,a  
0 f 255  
SETF  
Set f  
Syntax:  
Operands:  
[label] SETF f,a  
Operands:  
0 f 255  
d
a
[0,1]  
[0,1]  
a
[0,1]  
Operation:  
FFh f  
None  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N,Z  
Description:  
The contents of the specified regis-  
ter are set to FFh. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
rotated one bit to the right. If ’d’ is 0,  
the result is placed in WREG. If ’d’  
is 1, the result is placed back in  
register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
register f  
Words:  
Cycles:  
1
1
SETF  
=
REG,1  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
REG  
=
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
After Instruction  
REG  
=
Example 2:  
Before Instruction  
WREG  
REG  
=
=
?
1101 0111  
After Instruction  
WREG  
REG  
=
=
1110 1011  
1101 0111  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 225  
PIC18CXX2  
SLEEP  
Subtract f from WREG with  
borrow  
Enter SLEEP mode  
SUBFWB  
Syntax:  
Syntax:  
[ label ]  
SLEEP  
[ label ]  
SUBFWB f,d,a  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
00h WDT,  
0 WDT postscaler,  
1 TO,  
d
a
[0,1]  
[0,1]  
Operation:  
(WREG) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register 'f' and carry flag  
(borrow) from WREG (2’s comple-  
ment method). If 'd' is 0, the result  
Description:  
The power-down status bit (PD) is  
cleared. The time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
is stored in WREG. If 'd' is 1, the  
result is stored in register 'f'  
(default) . If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
The processor is put into SLEEP  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
No  
operation  
Process  
Data  
Go to  
sleep  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
SLEEP  
Example:  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Before Instruction  
TO  
=
=
?
?
PD  
After Instruction  
TO  
PD  
=
=
1 †  
0
† If WDT causes wake-up, this bit is cleared  
DS39026B-page 226  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
SUBFWB  
SUBLW  
Subtract WREG from literal  
SUBFWB  
REG, 1, 0  
Example 1:  
Syntax:  
[ label ]  
SUBLW k  
Before Instruction  
Operands:  
Operation:  
0 k 255  
REG  
WREG  
C
=
=
=
3
2
1
k – (WREG) WREG  
N,OV, C, DC, Z  
Status Affected:  
Encoding:  
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
FF  
2
0
0
1
0000  
1000  
kkkk  
kkkk  
Description:  
WREG is subtracted from the  
eight bit literal 'k'. The result is  
placed in WREG.  
; result is negative  
REG, 0, 0  
SUBFWB  
Example 2:  
Words:  
Cycles:  
1
1
Before Instruction  
REG  
WREG  
C
=
=
=
2
5
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to  
WREG  
After Instruction  
REG  
=
2
3
1
0
0
WREG  
=
SUBLW 0x02  
Example 1:  
C
Z
N
=
=
=
Before Instruction  
; result is positive  
REG, 1, 0  
WREG  
C
=
=
1
?
SUBFWB  
Example 3:  
After Instruction  
Before Instruction  
REG  
=
1
WREG  
=
1
WREG  
C
=
=
2
0
C
Z
N
=
=
=
1
0
0
; result is positive  
After Instruction  
REG  
WREG  
=
=
0
2
SUBLW 0x02  
Example 2:  
C
Z
N
=
=
=
1
1
0
Before Instruction  
; result is zero  
WREG  
C
=
=
2
?
After Instruction  
WREG  
=
0
C
Z
N
=
=
=
1
1
0
; result is zero  
SUBLW 0x02  
Example 3:  
Before Instruction  
WREG  
C
=
=
3
?
After Instruction  
WREG  
=
FF  
; (2’s complement)  
; result is negative  
C
Z
N
=
=
=
0
0
1
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 227  
PIC18CXX2  
SUBWF  
SUBWF  
Subtract WREG from f  
Subtract WREG from f (cont’d)  
SUBWF  
REG, 1, 0  
Syntax:  
[ label ]  
Example 1:  
SUBWF f,d,a  
Before Instruction  
Operands:  
0 f 255  
REG  
=
3
2
?
d
a
[0,1]  
[0,1]  
WREG  
C
=
=
Operation:  
(f) – (WREG) dest  
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
1
2
1
0
0
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
0101  
11da  
ffff  
ffff  
; result is positive  
REG, 0, 0  
Description:  
Subtract WREG from register 'f'  
(2’s complement method). If 'd' is  
SUBWF  
Example 2:  
0, the result is stored in WREG. If  
'd' is 1, the result is stored back in  
register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, then the bank will be selected  
as per the BSR value (default).  
Before Instruction  
REG  
=
2
2
?
WREG  
C
=
=
After Instruction  
REG  
=
2
0
WREG  
=
C
Z
N
=
=
=
1
1
0
; result is zero  
REG, 1, 0  
Words:  
Cycles:  
1
1
SUBWF  
Example 3:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
REG  
WREG  
C
=
=
=
1
2
?
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
After Instruction  
REG  
=
FFh  
;(2’s complement)  
WREG  
=
2
C
Z
N
=
=
=
0
0
1
; result is negative  
DS39026B-page 228  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Subtract WREG from f with  
Borrow  
Subtract WREG from f with  
Borrow (cont’d)  
SUBWFB  
SUBWFB  
SUBWFB REG, 1, 0  
Syntax:  
[ label ]  
Example 1:  
SUBWFB f,d,a  
Before Instruction  
Operands:  
0 f 255  
REG  
=
0x19  
0x0D  
1
(0001 1001)  
(0000 1101)  
d
a
[0,1]  
[0,1]  
WREG  
C
=
=
Operation:  
(f) – (WREG) – (C) dest  
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0x0C  
0x0D  
1
0
0
(0000 1011)  
(0000 1101)  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
0101  
10da  
ffff  
ffff  
Description:  
Subtract WREG and the carry flag  
(borrow) from register 'f' (2’s com-  
plement method). If 'd' is 0, the  
; result is positive  
Example2: SUBWFBREG, 0, 0  
Before Instruction  
result is stored in WREG. If 'd' is  
1, the result is stored back in reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, then the bank will be selected  
as per the BSR value (default).  
REG  
=
0x1B  
0x1A  
0
(0001 1011)  
(0001 1010)  
WREG  
C
=
=
After Instruction  
REG  
=
0x1B  
0x00  
1
1
0
(0001 1011)  
WREG  
=
C
Z
N
=
=
=
; result is zero  
Words:  
Cycles:  
1
1
Example3: SUBWFBREG, 1, 0  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
REG  
=
0x03  
0x0E  
1
(0000 0011)  
(0000 1101)  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
WREG  
C
=
=
After Instruction  
REG  
comp]  
=
0xF5  
(1111 0100) [2’s  
WREG  
=
0x0E  
(0000 1101)  
C
Z
N
=
=
=
0
0
1
; result is negative  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 229  
PIC18CXX2  
SWAPF  
Syntax:  
Swap f  
[ label ] SWAPF f,d,a  
Operands:  
0 f 255  
d
a
[0,1]  
[0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
None  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of reg-  
ister ’f’ are exchanged. If ’d’ is 0, the  
result is placed in WREG. If ’d’ is 1,  
the result is placed in register ’f’  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
SWAPF  
REG, 1, 0  
Example:  
Before Instruction  
REG  
=
0x53  
0x35  
After Instruction  
REG  
=
DS39026B-page 230  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TBLRD  
Table Read  
TBLRD  
Table Read (cont’d)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
None  
Example1:  
Operands:  
Operation:  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR - No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) +1 TBLPTR;  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) -1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) +1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
MEMORY(0x00A356)  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example2:  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
0x34  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
Status Affected: None  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the  
contents of Program Memory (P.M.). To  
address the program memory a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 Mbyte address range.  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most  
Significant  
Byte of Program  
Memory Word  
The TBLRD instruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
(Read  
operation  
operation  
(Write  
Program  
Memory)  
TABLAT)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 231  
PIC18CXX2  
TBLWT  
Table Write  
TBLWT  
Table Write (cont.’d)  
TBLWT *+;  
Syntax:  
[ label ]  
None  
TBLWT ( *; *+; *-; +*)  
Example1:  
Operands:  
Operation:  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
0x55  
if TBLWT*,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
TBLPTR - No Change;  
if TBLWT*+,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
0x00A356  
0xFF  
MEMORY(0x00A356)  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
=
=
=
0x55  
0x00A357  
0x55  
MEMORY(0x00A356)  
TBLWT +*;  
Example 2:  
(TBLPTR) +1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
(TBLPTR) -1 TBLPTR;  
if TBLWT+*,  
(TBLPTR) +1 TBLPTR;  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x01389A)  
MEMORY(0x01389B)  
=
=
=
=
0x34  
0x01389A  
0xFF  
0xFF  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
MEMORY(0x01389A)  
MEMORY(0x01389B)  
=
=
=
=
0x34  
0x01389B  
0xFF  
0x34  
Status Affected:  
Encoding:  
None  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to program the  
contents of Program Memory (P.M.).  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 MBtye address  
range. The LSb of the TBLPTR  
selects which byte of the program  
memory location to access.  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2 (many if long write is to on-chip  
EPROM program memory)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
(Read  
TABLAT)  
operation  
operation  
(Write to Holding  
Register or Memory)  
DS39026B-page 232  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TSTFSZ  
Syntax:  
Test f, skip if 0  
[ label ] TSTFSZ f,a  
0 f 255  
XORLW  
Exclusive OR literal with WREG  
Syntax:  
[ label ]  
XORLW k  
Operands:  
Operands:  
Operation:  
0 k 255  
a
[0,1]  
(WREG) .XOR. k WREG  
Operation:  
skip if f = 0  
None  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
Description:  
If ’f’ = 0, the next instruction,  
The contents of WREG are  
fetched during the current instruc-  
tion execution, is discarded and a  
NOPis executed making this a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
XOR’ed with the 8-bit literal 'k'.  
The result is placed in WREG.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Example:  
XORLW0xAF  
= 0xB5  
Before Instruction  
Q Cycle Activity:  
Q1  
WREG  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
WREG  
=
0x1A  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
Example:  
:
Before Instruction  
PC = Address(HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
PC  
If CNT  
PC  
Address (ZERO)  
0x00,  
Address (NZERO)  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 233  
PIC18CXX2  
XORWF  
Exclusive OR WREG with f  
[ label ] XORWF f,d,a  
0 f 255  
Syntax:  
Operands:  
d
a
[0,1]  
[0,1]  
Operation:  
(WREG) .XOR. (f) dest  
Status Affected:  
Encoding:  
N,Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of  
WREG with register ’f’. If ’d’ is 0, the  
result is stored in WREG. If ’d’ is 1,  
the result is stored back in the reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF REG, 1, 0  
Before Instruction  
REG  
WREG  
=
=
0xAF  
0xB5  
After Instruction  
REG  
WREG  
=
=
0x1A  
0xB5  
DS39026B-page 234  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
MPLAB allows you to:  
20.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Integrated Development Environment  
- MPLAB™ IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
• Simulators  
The ability to use MPLAB with Microchip’s simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
• Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- PICMASTER®/PICMASTER-CE In-Circuit  
20.2  
MPASM Assembler  
Emulator  
MPASM is a full featured universal macro assembler for  
all PICmicro MCU’s. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- ICEPIC™  
• In-Circuit Debugger  
- MPLAB-ICD for PIC16F877  
• Device Programmers  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
• Low-Cost Demonstration Boards  
- SIMICE  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
MPASM features include:  
- PICDEM-17  
- SEEVAL  
• MPASM and MPLINK are integrated into MPLAB  
projects.  
- KEELOQ  
• MPASM allows user defined macros to be created  
for streamlined assembly.  
20.1  
MPLAB Integrated Development  
Environment Software  
• MPASM allows conditional assembly for multi pur-  
pose source files.  
• MPASM directives allow complete control over the  
assembly process.  
- The MPLAB IDE software brings an ease of  
software development previously unseen in  
the 8-bit microcontroller market. MPLAB is a  
Windows -based application which contains:  
20.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
• Multiple functionality  
- editor  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
1999 Microchip Technology Inc.  
Preliminary  
DS39026B-page 235  
PIC18CXX2  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
20.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
• MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
• MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
20.7  
PICMASTER/PICMASTER CE  
The PICMASTER system from Microchip Technology is  
a full-featured, professional quality emulator system.  
This flexible in-circuit emulator provides a high-quality,  
universal platform for emulating Microchip 8-bit  
PICmicro microcontrollers (MCUs). PICMASTER sys-  
tems are sold worldwide, with a CE compliant model  
available for European Union (EU) countries.  
MPLIB features include:  
• MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
• MPLIB helps keep code maintainable by grouping  
related modules together.  
• MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
20.8  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X, and PIC16CXXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXXX products through the use of  
interchangeable personality modules or daughter  
boards. The emulator is capable of emulating without  
target application circuitry being present.  
20.5  
MPLAB-SIM Software Simulator  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
20.9  
MPLAB-ICD In-Circuit Debugger  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. MPLAB-ICD utilizes the  
In-Circuit Debugging capability built into the  
PIC16F87X. This feature, along with Microchip’s In-Cir-  
cuit Serial Programming protocol, offers cost-effective  
in-circuit flash programming and debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by watching variables,  
single-stepping and setting break points. Running at  
full speed enables testing hardware in real-time. The  
MPLAB-ICD is also a programmer for the flash  
PIC16F87X family.  
20.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
DS39026B-page 236  
Preliminary  
1999 Microchip Technology Inc.  
PIC18CXX2  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
20.10 PRO MATE II Universal Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
20.14 PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
20.11 PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
20.12 SIMICE Entry-Level  
Hardware Simulator  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB-SIM. Both SIMICE  
and MPLAB-SIM run under Microchip Technology’s  
MPLAB Integrated Development Environment (IDE)  
software. Specifically, SIMICE provides hardware sim-  
ulation for Microchip’s PIC12C5XX, PIC12CE5XX, and  
PIC16C5X families of PICmicro 8-bit microcontrollers.  
SIMICE works in conjunction with MPLAB-SIM to pro-  
vide non-real-time I/O port emulation. SIMICE enables  
a developer to run simulator code for driving the target  
system. In addition, the target system can provide input  
to the simulator code. This capability allows for simple  
and interactive debugging without having to manually  
generate MPLAB-SIM stimulus files. SIMICE is a valu-  
able debugging tool for entry-level system develop-  
ment.  
20.15 PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
20.13 PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
1999 Microchip Technology Inc.  
Preliminary  
DS39026B-page 237  
PIC18CXX2  
20.16 PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
20.17 SEEVAL Evaluation and Programming  
System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
20.18 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS39026B-page 238  
Preliminary  
1999 Microchip Technology Inc.  
PIC18CXX2  
TABLE 20-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0
2 5 P 1 C M  
X X X C R M F  
H C S X X X  
X X C 9 3  
C 5 X 2 X /  
C 4 X 2 X /  
2 X X C 8 C 1 P I  
X X 7 C 7 C 1 P I  
4 X 7 C 1 C I P  
X X 9 C 6 C 1 P I  
X 8 X 6 1 F C I P  
8 X 6 C 1 C I P  
X X 7 C 6 C 1 P I  
7 X 6 C 1 C I P  
6 2 X 6 F 1 C I P  
X X C 6 X 1 C P I  
6 X 6 C 1 C I P  
5 X 6 C 1 C I P  
0
4 0 1 0 C I P  
X X C 2 X 1 C P I  
s o l T e o r a w f t o S s o t r a l  
E m r u g e b e u g D s r  
m m r a g e o P r  
t i s K a l d E v a n d r s a o B m e o D  
1999 Microchip Technology Inc.  
Preliminary  
DS39026B-page 239  
PIC18CXX2  
NOTES:  
DS39026B-page 240  
Preliminary  
1999 Microchip Technology Inc.  
PIC18CXX2  
21.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (†)  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2).......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)....................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined) ..............................................200 mA  
Maximum current sunk by PORTC and PORTD (Note 3) (combined) ..................................................................200 mA  
Maximum current sourced by PORTC and PORTD (Note 3) (combined) .............................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
Note 3: PORTD and PORTE not available on the PIC18C2X2 devices.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 241  
PIC18CXX2  
FIGURE 21-1: PIC18CXX2 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC18CXXX  
4.2V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
40 MHz  
Frequency  
FIGURE 21-2: PIC18LCXX2 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0 V  
5.5 V  
5.0 V  
PIC18LCXXX  
4.5 V  
4.2V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
40 MHz  
6 MHz  
Frequency  
FMAX = (20.0 MHz/V) (VDDAPPMIN - 2.5 V) + 6 MHz  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application  
DS39026B-page 242  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
21.1  
DC Characteristics: PIC18CXX2 (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param Symbol  
No.  
Characteristic  
Min Typ Max Units  
Conditions  
VDD  
Supply Voltage  
D001  
D002  
4.2  
1.5  
5.5  
V
V
VDR  
RAM Data Retention  
Voltage(1)  
D003  
D004  
VPOR  
VDD Start Voltage to  
ensure internal Power-  
on Reset signal  
0.7  
V
See section on Power-on Reset for details  
SVDD  
VBOR  
VDD Rise Rate to  
ensure internal Power-  
on Reset signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset  
Voltage  
D005  
BORV1:BORV0 = 1x N.A.  
BORV1:BORV0 = 01 4.2  
BORV1:BORV0 = 00 4.5  
N.A.  
4.46  
4.78  
V
V
V
Not in operating voltage range of device  
Supply Current(2,4)  
IDD  
XT, RC, RCIO osc configurations  
D010  
TBD mA  
FOSC = 4 MHz, VDD = 4.2V  
D010A  
TBD µA LP osc configuration  
FOSC = 32 kHz, VDD = 4.2V  
mA EC, ECIO osc configurations,  
Fosc = 40 MHz, VDD = 5.5V  
mA HS osc configurations  
D010C  
D013  
D013  
D014  
45  
50  
50  
Fosc = 25 MHz, VDD = 5.5V  
mA HS + PLL osc configuration  
Fosc = 10 MHz, VDD = 5.5V  
OSCB osc configuration  
TBD µA  
TBD µA  
FOSC = 32 kHz, VDD = 4.2V  
FOSC = 32 kHz, VDD = 4.2V, 25°C  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device reset without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all fea-  
tures that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 243  
PIC18CXX2  
21.1  
DC Characteristics: PIC18CXX2 (Industrial, Extended) (cont’d)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param Symbol  
Characteristic  
Min Typ Max Units  
Conditions  
No.  
Power-down Current(3)  
IPD  
D020  
<1 TBD µA VDD = 4.2V, -40°C to +85°C  
36  
µA VDD = 5.5V, -40°C to +85°C  
D020A  
D021B  
TBD µA VDD = 4.2V, 25°C  
<TBD TBD µA VDD = 4.2V, -40°C to +125°C  
42  
VDD = 5.5V, -40°C to +125°C  
Module Differential  
Current  
D022  
IWDT  
Watchdog Timer  
Brown-out Reset  
Low Voltage Detect  
25  
µA VDD = 5.5V, -40°C to +85°C  
TBD µA VDD = 5.5V, -40°C to +125°C  
TBD µA VDD = 4.2V, 25°C  
D022A IBOR  
D022B ILVD  
50  
µA VDD = 5.5V, -40°C to +85°C  
TBD µA VDD = 5.5V, -40°C to +125°  
TBD µA VDD = 4.2V, 25°C  
TBD µA VDD = 4.2V, -40°C to +85°C  
TBD µA VDD = 4.2V, -40°C to +125°C  
TBD µA VDD = 4.2V, 25°C  
D025  
IOSCB Timer1 Oscillator  
TBD µA VDD = 4.2V, -40°C to +85°C  
TBD µA VDD = 4.2V, -40°C to +125°C  
TBD µA VDD = 4.2V, 25°C  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device reset without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS, and all  
features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
DS39026B-page 244  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
21.2  
DC Characteristics: PIC18LCXX2 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param Symbol  
No.  
Characteristic  
Min Typ Max Units  
Conditions  
VDD  
Supply Voltage  
D001  
D002  
2.5  
1.5  
5.5  
V
V
HS, XT, RC and LP osc mode  
VDR  
RAM Data Retention  
Voltage(1)  
D003  
D004  
VPOR  
VDD Start Voltage to  
ensure internal Power-  
on Reset signal  
0.7  
V
See section on Power-on Reset for details  
SVDD  
VBOR  
VDD Rise Rate to  
ensure internal Power-  
on Reset signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset  
Voltage  
D005  
BORV1:BORV0 = 11 2.5  
BORV1:BORV0 = 10 2.7  
BORV1:BORV0 = 01 4.2  
BORV1:BORV0 = 00 4.5  
2.66  
2.86  
4.46  
4.78  
V
V
V
V
Supply Current(2,4)  
IDD  
XT, RC, RCIO osc configurations  
D010  
4
mA  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 2.5V  
FOSC = 4 MHz, VDD = 2.5V  
D010A  
48  
D010C  
D013  
45  
mA EC, ECIO osc configurations,  
Fosc = 40 MHz, VDD = 5.5V  
HS osc configurations  
TBD mA  
Fosc = 6 MHz, VDD = 2.5V  
Fosc = 25 MHz, VDD = 5.5V  
50  
mA  
D013  
D014  
50  
mA HS + PLL osc configuration  
Fosc = 10 MHz, VDD = 5.5V  
Timer1 osc configuration  
48  
µA  
FOSC = 32 kHz, VDD = 2.5V  
FOSC = 32 kHz, VDD = 2.5V, 25°C  
TBD µA  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device reset without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all fea-  
tures that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 245  
PIC18CXX2  
21.2  
DC Characteristics: PIC18LCXX2 (Industrial) (cont’d)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param Symbol  
No.  
Characteristic  
Min Typ Max Units  
Conditions  
Power-down Current(3)  
IPD  
D020  
<2.5  
5
36  
µA VDD = 2.5V, -40°C to +85°C  
µA VDD = 5.5V, -40°C to +85°C  
TBD µA VDD = 2.5V, 25°C  
Module Differential  
Current  
D022  
IWDT  
Watchdog Timer  
12  
25  
µA VDD = 2.5V  
µA VDD = 5.5V  
TBD µA VDD = 2.5V, 25°C  
50 µA VDD = 5.5V  
TBD µA VDD = 2.5V, 25°C  
50 µA VDD = 2.5V  
TBD µA VDD = 2.5V, 25°C  
µA VDD = 2.5V  
TBD µA VDD = 2.5V, 25°C  
D022A IBOR  
D022B ILVD  
Brown-out Reset  
Low Voltage Detect  
D025  
IOSCB Timer1 oscillator  
3
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device reset without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS, and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
DS39026B-page 246  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
21.3  
DC Characteristics: PIC18CXX2 (Industrial, Extended) and PIC18LCXX2 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15VDD  
V
V
VDD < 4.5V  
0.8  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2VDD  
0.3VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2VDD  
0.3VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
OSC1(in RC mode)(1)  
Input High Voltage  
I/O ports:  
D033  
VSS  
0.2VDD  
V
VIH  
D040  
with TTL buffer  
0.25VDD +  
VDD  
VDD  
V
V
VDD < 4.5V  
0.8V  
D040A  
2.0  
4.5V VDD 5.5V  
D041  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042  
MCLR  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
OSC1 (RC mode)(1)  
D043  
0.9VDD  
VDD  
V
V
D050 VHYS  
IIL  
Hysteresis of Schmitt Trigger Inputs  
Input Leakage Current(2,3)  
TBD  
TBD  
D060  
I/O ports  
±1  
µA VSS VPIN VDD,  
Pin at hi-impedance  
D061  
MCLR  
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD  
D063  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070 IPURB  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 247  
PIC18CXX2  
21.3  
DC Characteristics: PIC18CXX2 (Industrial, Extended) and PIC18LCXX2 (Industrial) (cont’d)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
D080  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
D080A  
D083  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT  
(RC mode)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
D083A  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
Output High Voltage(3)  
VOH  
D090  
I/O ports  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
D090A  
D092  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT  
(RC mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
D092A  
D150  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
VOD  
Open-drain High Voltage  
7.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing Specifications  
In I2C mode  
pF  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39026B-page 248  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-3:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 21-1: LOW VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Symbol Characteristic  
Min  
2.5  
Max  
2.66  
2.86  
2.98  
3.2  
3.52  
3.72  
3.84  
4.04  
4.26  
4.46  
4.78  
Units  
Conditions  
D420  
VLVD  
LVV<3:0> = 0100  
LVV<3:0> = 0101  
LVV<3:0> = 0110  
LVV<3:0> = 0111  
LVV<3:0> = 1000  
LVV<3:0> = 1001  
LVV<3:0> = 1010  
LVV<3:0> = 1011  
LVV<3:0> = 1100  
LVV<3:0> = 1101  
LVV<3:0> = 1110  
V
V
V
V
V
V
V
V
V
V
V
LVD Voltage  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 249  
PIC18CXX2  
TABLE 21-2: EPROM PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +40°C  
DC CHARACTERISTICS  
Param.  
No.  
Sym  
Characteristic  
Min  
Max Units  
Conditions  
Internal Program Memory  
Programming Specs (Note 1)  
Voltage on MCLR/VPP pin  
D110  
D111  
VPP  
12.75  
4.75  
13.25  
5.25  
V
V
Note 2  
VDDP Supply voltage during  
programming  
D112  
D113  
IPP  
IDDP  
Current into MCLR/VPP pin  
Supply current during  
programming  
50  
30  
mA  
mA  
D114  
D115  
TPROG Programming pulse width  
100  
1000  
µs Terminated via internal/external  
interrupt or a reset  
TERASE EPROM erase time  
Device operation 3V  
Device operation 3V  
4
TBD  
hrs  
hrs  
Note 1: These specifications are for the programming of the on-chip program memory EPROM through the use of the  
table write instructions. The complete programming specifications can be found in: PIC18CXXX Program-  
ming Specifications (Literature number TBD).  
2: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.  
DS39026B-page 250  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
21.4  
AC (Timing) Characteristics  
21.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 251  
PIC18CXX2  
21.4.2 TIMING CONDITIONS  
The temperature and voltages specified in Table 21-3  
apply to all timing specifications unless otherwise  
noted. Figure 21-4 specifies the load conditions for the  
timing specifications.  
TABLE 21-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 21.1 and Section 21.2.  
LC parts operate for industrial temp’s only.  
FIGURE 21-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1  
Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
VSS  
and including D and E outputs as ports  
DS39026B-page 252  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
21.4.3 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 21-5: EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
CLKOUT  
TABLE 21-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param. No. Symbol Characteristic  
Min  
Max  
Units Conditions  
1A  
Fosc  
Tosc  
TCY  
External CLKIN  
Frequency(1)  
DC  
DC  
4
DC  
DC  
DC  
0.1  
4
4
5
250  
40  
100  
5
40  
40  
10  
40  
40  
4
MHz XT 0osc  
MHz HS osc  
MHz HS + PLL osc  
kHz LP osc  
MHz EC  
MHz RC osc  
MHz XT osc  
MHz HS osc  
MHz HS + PLL osc  
kHz LP osc mode  
Oscillator Frequency(1)  
External CLKIN Period(1)  
Oscillator Period(1)  
4
25  
10  
200  
10,000  
10,000  
100  
1
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
XT and RC osc  
HS osc  
HS + PLL osc  
LP osc  
EC  
RC osc  
XT osc  
HS osc  
HS + PLL osc  
LP osc  
TCY = 4/FOSC  
5
250  
250  
100  
40  
5
Instruction Cycle Time(1)  
External Clock in (OSC1)  
High or Low Time  
2
3
100  
TosL,  
TosH  
30  
2.5  
10  
20  
50  
7.5  
ns  
µs  
ns  
ns  
ns  
ns  
XT osc  
LP osc  
HS osc  
XT osc  
LP osc  
HS osc  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at "min." values with an external  
clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is  
"DC" (no clock) for all devices.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 253  
PIC18CXX2  
TABLE 21-5: PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)  
Param  
Symbol Characteristic  
Min  
Max  
Units Conditions  
No.  
TRC  
PLL Start-up Time  
(Lock Time)  
2
ms  
CLK  
CLKOUT Stability (Jitter) using PLL  
-2  
+2  
%
DS39026B-page 254  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-6: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
16  
19  
18  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-6: CLKOUT AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
(1)  
10  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
(1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
ns  
(1)  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
ns  
(1)  
ns  
(1)  
TckL2ioV CLKOUT to Port out valid  
0.5TCY + 20 ns  
(1)  
(1)  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
TosH2ioI OSC1(Q2 cycle) to PIC18CXXX  
0.25TCY + 25  
ns  
ns  
ns  
ns  
ns  
0
150  
100  
200  
Port input invalid  
(I/O in hold time)  
PIC18LCXXX  
19  
TioV2osH Port input valid to OSC1↑  
0
ns  
(I/O in setup time)  
20  
TioR  
TioF  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20A  
21  
21A  
22††  
23††  
24††  
TINP  
TRBP  
TRCP  
TCY  
TCY  
20  
RB7:RB4 change INT high or low time  
RC7:RC4 change INT high or low time  
††These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 255  
PIC18CXX2  
FIGURE 21-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 21-4 for load conditions.  
FIGURE 21-8: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal Reference Voltage  
Internal Reference Voltage stable  
36  
TABLE 21-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
MCLR Pulse Width (low)  
2
µs  
31  
TWDT  
Watchdog Timer Time-out Period  
(No Prescaler)  
7
18  
33  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
1024TOSC  
72  
2
1024TOSC  
132  
ms  
µs  
TOSC = OSC1 period  
TPWRT Power up Timer Period  
28  
TIOZ  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35  
36  
TBOR  
TIVRST  
Brown-out Reset Pulse Width  
200  
µs  
µs  
VDD BVDD (See  
D005)  
Time for Internal Reference  
Voltage to become stable  
20  
50  
DS39026B-page 256  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
T0CKI Period  
No Prescaler  
TCY + 10  
With Prescaler  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI Synchronous, no prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High  
Time  
Synchronous,  
with prescaler  
PIC18CXXX  
10  
PIC18LCXXX  
25  
Asynchronous PIC18CXXX  
PIC18LCXXX  
30  
50  
T1CKI Synchronous, no prescaler  
0.5TCY + 5  
10  
Low  
Time  
Synchronous,  
with prescaler  
PIC18CXXX  
PIC18LCXXX  
25  
Asynchronous PIC18CXXX  
PIC18LCXXX  
30  
TBD  
TBD  
47  
48  
Tt1P  
Ft1  
T1CKI Synchronous  
input  
period  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI oscillator input frequency range  
Tcke2tmrI Delay from external T1CKI clock edge to  
timer increment  
2Tosc  
7Tosc  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 257  
PIC18CXX2  
FIGURE 21-10: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-9: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx input low No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
time  
With  
PIC18CXXX  
10  
Prescaler  
PIC18LCXXX  
20  
51  
TccH  
CCPx input  
high time  
No Prescaler  
0.5TCY + 20  
With  
PIC18CXXX  
10  
20  
Prescaler  
PIC18LCXXX  
52  
53  
TccP  
TccR  
CCPx input period  
3TCY + 40  
N = prescale  
value (1,4 or 16)  
N
CCPx output fall time  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
CCPx output fall time  
DS39026B-page 258  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-11: PARALLEL SLAVE PORT TIMING (PIC18C4X2)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-10: PARALLEL SLAVE PORT REQUIREMENTS (PIC18C4X2)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH Data in valid before WRor CS↑  
20  
25  
ns  
ns  
(setup time)  
Extended Temp range  
63  
64  
TwrH2dtI  
TrdL2dtV  
WRor CSto data–in invalid PIC18CXXX  
20  
35  
ns  
ns  
(hold time)  
PIC18LCXXX  
RDand CSto data–out valid  
80  
90  
ns  
ns  
Extended Temp range  
65  
66  
TrdH2dtI  
TibfINH  
RDor CSto data–out invalid  
10  
30  
ns  
Inhibit of the IBF flag bit being cleared from  
3TCY  
WRor CS↑  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 259  
PIC18CXX2  
FIGURE 21-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-11: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of  
Byte2  
1.5TCY + 40  
ns Note 2  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18CXXX  
PIC18LCXXX  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter #s 71A and 72A are used.  
DS39026B-page 260  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
Symbol  
TscH  
Characteristic  
Min  
Max Units Conditions  
No.  
71  
SCK input high time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
(slave mode)  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
TscL  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of  
Byte2  
1.5TCY + 40  
ns Note 2  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18CXXX  
PIC18LCXXX  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter #s 71A and 72A are used.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 261  
PIC18CXX2  
FIGURE 21-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))  
Parm.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
SCK input low time  
(slave mode)  
ns  
72A  
73  
ns Note 1  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of Byte2 1.5TCY + 40  
ns Note 2  
ns  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
TscR  
SCK output rise time  
(master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18CXXX  
PIC18LCXXX  
83  
TscH2ssH, SS after SCK edge  
1.5TCY + 40  
TscL2ssH  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter #s 71A and 72A are used.  
DS39026B-page 262  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-15: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Parm.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71  
TscH  
TscL  
TB2B  
SCK input high time  
(slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns Note 1  
ns  
SCK input low time  
(slave mode)  
72A  
73A  
74  
ns Note 1  
ns Note 2  
ns  
Last clock edge of Byte1 to the 1st clock edge of Byte2 1.5TCY + 40  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXXX  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXXX  
76  
77  
78  
TdoF  
SDO data output fall time  
TssH2doZ SSto SDO output hi-impedance  
10  
TscR  
SCK output rise time  
(master mode)  
PIC18CXXX  
PIC18LCXXX  
79  
80  
TscF  
SCK output fall time (master mode)  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
82  
83  
TssL2doV SDO data output valid after SS↓  
edge  
TscH2ssH, SS after SCK edge  
1.5TCY + 40  
TscL2ssH  
Note 1: Requires the use of Parameter # 73A.  
2: Only if Parameter #s 71A and 72A are used.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 263  
PIC18CXX2  
FIGURE 21-16: I2C BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-15: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Parm.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
ns  
ns  
ns  
Only relevant for repeated  
START condition  
91  
92  
93  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first  
clock pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
DS39026B-page 264  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-17: I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-16: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
4.0  
µs  
PIC18CXXX must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
µs  
PIC18CXXX must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
101  
TLOW  
Clock low time  
100 kHz mode  
4.7  
µs  
µs  
PIC18CXXX must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18CXXX must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
91  
START condition hold 100 kHz mode  
time  
After this period the first clock  
pulse is generated  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
Data input hold time  
0
0.9  
Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
STOP condition  
setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
D102  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode I C bus device can be used in a standard-mode I C bus system, but the requirement tsu;DAT 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
2
TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 265  
PIC18CXX2  
FIGURE 21-18: MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-17: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
TSU:STA START condition  
100 kHz mode 2(TOSC)(BRG + 1)  
Only relevant for  
repeated START  
condition  
90  
Setup time  
400 kHz mode 2(TOSC)(BRG + 1)  
ns  
ns  
ns  
ns  
1 MHz mode (1)  
2(TOSC)(BRG + 1)  
91  
92  
93  
THD:STA START condition  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold time  
1 MHz mode (1)  
2(TOSC)(BRG + 1)  
TSU:STO STOP condition  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
Setup time  
1 MHz mode (1)  
2(TOSC)(BRG + 1)  
THD:STO STOP condition  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
Hold time  
1 MHz mode (1)  
2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
DS39026B-page 266  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-19: MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-18: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param.  
Symbol Characteristic  
Min  
Max Units Conditions  
No.  
THIGH  
TLOW  
TR  
Clock high time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
100  
1 MHz mode (1)  
100 kHz mode  
400 kHz mode  
1 MHz mode (1)  
100 kHz mode  
400 kHz mode  
1 MHz mode (1)  
100 kHz mode  
400 kHz mode  
Clock low time  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
101  
102  
103  
90  
SDA and SCL  
rise time  
20 + 0.1Cb  
1000  
300  
300  
ns  
ns  
ns  
Cb is specified to be from  
10 to 400 pF  
TF  
SDA and SCL  
fall time  
20 + 0.1Cb  
300  
300  
100  
ns  
ns  
ns  
Cb is specified to be from  
10 to 400 pF  
1 MHz mode (1)  
TSU:STA  
START condition 100 kHz mode  
setup time  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
Only relevant for repeated  
400 kHz mode  
1 MHz mode (1)  
ms START condition  
ms  
THD:STA START condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms After this period the first  
ms clock pulse is generated  
ms  
91  
hold time  
400 kHz mode  
1 MHz mode (1)  
100 kHz mode  
400 kHz mode  
THD:DAT Data input  
0
0
TBD  
0.9  
ns  
ms  
ns  
106  
107  
92  
hold time  
1 MHz mode (1)  
100 kHz mode  
400 kHz mode  
TSU:DAT Data input  
250  
100  
TBD  
ns  
ns  
ns  
Note 2  
setup time  
1 MHz mode (1)  
TSU:STO STOP condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
setup time  
400 kHz mode  
1 MHz mode (1)  
TAA  
Output valid from 100 kHz mode  
3500  
1000  
ns  
ns  
ns  
109  
110  
clock  
400 kHz mode  
1 MHz mode (1)  
100 kHz mode  
400 kHz mode  
TBUF  
Bus free time  
4.7  
1.3  
TBD  
ms Time the bus must be free  
ms before a new transmis-  
ms  
1 MHz mode (1)  
sion can start  
D102 Cb  
Bus capacitive loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A fast-mode I2C bus device can be used in a standard-mode I2C bus system, but parameter #107 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal.  
If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
parameter #102.+ parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz-mode) before the SCL line is released.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 267  
PIC18CXX2  
FIGURE 21-20: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock high to data out valid  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
PIC18CXXX  
PIC18LCXXX  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time  
(Master Mode)  
50  
Data out rise time and fall time  
20  
50  
DS39026B-page 268  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (MASTER & SLAVE)  
Data hold before CK (DT hold time)  
10  
ns  
ns  
126  
TckL2dtl  
Data hold after CK (DT hold time)  
15  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 269  
PIC18CXX2  
TABLE 21-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX2 (INDUSTRIAL, EXTENDED)  
PIC18LCXX2 (INDUSTRIAL)  
Param  
No.  
Symbol Characteristic  
Min  
Typ  
Max  
Units Conditions  
A01  
NR  
Resolution  
10  
TBD  
bit VREF = VDD 3.0V  
bit VREF = VDD < 3.0V  
A03  
A04  
A05  
A06  
A10  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
Offset error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
EDL  
EFS  
EOFF  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
guaranteed(3)  
Monotonicity  
VSS VAIN VREF  
A20  
A20A  
A21  
A22  
A25  
A30  
VREF  
Reference voltage  
(VREFH - VREFL)  
0V  
3V  
V
V
For 10-bit resolution  
VREFH Reference voltage High  
VREFL Reference voltage Low  
AVSS  
AVSS - 0.3V  
AVSS - 0.3V  
AVDD + 0.3V  
AVDD  
V
V
VAIN  
ZAIN  
Analog input voltage  
VREF + 0.3V  
10.0  
V
Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD  
A/D conversion PIC18CXXX  
180  
90  
µA Average current  
current (VDD)  
consumption when  
A/D is on. (Note 1)  
PIC18LCXXX  
µA  
IREF  
VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN. To charge  
CHOLD see Section 16.0.  
During A/D conversion  
µA cycle  
10  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is  
selected as reference input.  
2: VSS VAIN VREF  
3: The A/D conversion result either increases or remains constant as the analog input increases.  
DS39026B-page 270  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
FIGURE 21-22: A/D CONVERSION TIMING  
BSF ADCON0, GO  
Note 2  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
NEW_DATA  
TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 nS), which also disconnects the holding capacitor from the  
analog input.  
TABLE 21-22: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
20 (5)  
130  
TOSC based, VREF 3.0V  
TAD  
A/D clock period  
PIC18CXXX  
1.6  
3.0  
µs  
20 (5)  
6.0  
PIC18LCXXX  
µs TOSC based, VREF full range  
PIC18CXXX  
2.0  
3.0  
11  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
PIC18LCXXX  
9.0  
131  
132  
TCNV Conversion time  
12  
(not including acquisition time) (Note 1)  
TACQ Acquisition time (Note 3)  
15  
10  
µs -40°C Temp 125°C  
µs  
0°C Temp 125°C  
135  
136  
TSWC Switching Time from convert sample  
TAMP Amplifier settling time (Note 2)  
1
Note 4  
µs This may be used if the  
“new” input voltage has not  
changed by more than 1LSb  
(i.e. 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See the Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage, when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is  
50 .  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 271  
PIC18CXX2  
NOTES:  
DS39026B-page 272  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
22.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and Tables not available at this time.  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 273  
PIC18CXX2  
NOTES:  
DS39026B-page 274  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
23.2  
Package Details  
23.0 PACKAGING INFORMATION  
The following sections give the technical details of the  
packages.  
23.1  
Package Marking Information  
Not available at time of printing. Will be made available  
after definition of QS9000 compliant standard  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 275  
PIC18CXX2  
Package Type: 28-Lead Skinny Plastic Dual In-line (SP) – 300 mil  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
B1  
β
A2  
p
eB  
B
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
28  
MAX  
n
p
B
B1  
R
c
0.100  
0.019  
0.053  
0.005  
0.010  
0.150  
0.090  
0.020  
0.130  
1.365  
0.288  
0.283  
0.350  
10  
2.54  
0.016  
0.022  
0.41  
1.02  
0.48  
1.33  
0.13  
0.25  
3.81  
2.29  
0.51  
3.30  
34.67  
7.30  
7.18  
8.89  
10  
0.56  
0.040  
0.000  
0.008  
0.140  
0.070  
0.015  
0.125  
1.345  
0.280  
0.270  
0.320  
5
0.065  
0.010  
0.012  
0.160  
0.110  
0.025  
0.135  
1.385  
0.295  
0.295  
0.380  
15  
1.65  
0.25  
0.30  
4.06  
2.79  
0.64  
3.43  
35.18  
7.49  
7.49  
9.65  
15  
0.00  
0.20  
3.56  
1.78  
0.38  
3.18  
34.16  
7.11  
6.86  
8.13  
5
A
A1  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MO-095 AH  
DS39026B-page 276  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Package Type: 28-Lead Ceramic Dual In-line with Window (JW) – 600 mil  
E
W
D
2
n
1
E1  
eB  
A
A1  
L
R
c
B1  
A2  
p
B
Units  
INCHES*  
NOM  
0.600  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
MIN  
MAX  
MIN  
NOM  
15.24  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W
28  
2.54  
0.47  
1.46  
0.13  
0.25  
4.70  
3.24  
0.89  
3.49  
37.08  
13.21  
14.73  
16.76  
7.11  
0.098  
0.100  
0.019  
0.058  
0.005  
0.010  
0.185  
0.128  
0.035  
0.138  
1.460  
0.520  
0.580  
0.660  
0.280  
0.102  
2.49  
0.41  
1.27  
0.00  
0.20  
4.32  
2.78  
0.38  
3.18  
36.32  
13.06  
14.22  
15.49  
6.86  
2.59  
0.53  
1.65  
0.25  
0.30  
5.08  
3.70  
1.40  
3.81  
37.85  
13.36  
15.24  
18.03  
7.37  
0.016  
0.050  
0.000  
0.008  
0.170  
0.110  
0.015  
0.125  
1.430  
0.514  
0.560  
0.610  
0.270  
0.021  
0.065  
0.010  
0.012  
0.200  
0.146  
0.055  
0.150  
1.490  
0.526  
0.600  
0.710  
0.290  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Diameter  
* Controlling Parameter.  
JEDEC equivalent:  
MO-103 AB  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 277  
PIC18CXX2  
Package Type: 28-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
E
p
D
B
2
1
n
X
α
45°  
L
R2  
c
A
A1  
φ
R1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
28  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
28  
MAX  
p
n
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
A
A1  
A2  
0.093  
0.099  
0.058  
0.008  
0.706  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
17.93  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
0.048  
0.004  
0.700  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.712  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
1.73  
0.28  
18.08  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.10  
17.78  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-013 AE  
DS39026B-page 278  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Package Type: 40-Lead Plastic Dual In-line (P) – 600 mil  
E
D
α
2
n
1
A1  
L
E1  
A
R
c
B1  
B
β
A2  
p
eB  
Units  
INCHES*  
NOM  
0.600  
40  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
15.24  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
40  
2.54  
0.46  
1.27  
0.13  
0.25  
4.06  
2.36  
0.51  
3.30  
51.26  
13.59  
14.35  
15.49  
10  
0.100  
0.018  
0.050  
0.005  
0.010  
0.160  
0.093  
0.020  
0.130  
2.018  
0.535  
0.565  
0.610  
10  
0.016  
0.020  
0.41  
0.51  
0.045  
0.000  
0.009  
0.110  
0.073  
0.020  
0.125  
2.013  
0.530  
0.545  
0.630  
5
0.055  
0.010  
0.011  
0.160  
0.113  
0.040  
0.135  
2.023  
0.540  
0.585  
0.670  
15  
1.14  
0.00  
0.23  
2.79  
1.85  
0.51  
3.18  
51.13  
13.46  
13.84  
16.00  
5
1.40  
0.25  
0.28  
4.06  
2.87  
1.02  
3.43  
51.38  
13.72  
14.86  
17.02  
15  
β
5
10  
15  
5
10  
15  
* Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-011 AC  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 279  
PIC18CXX2  
Package Type: 40-Lead Ceramic Dual In-line with Window (JW) – 600 mil  
E
W
D
2
n
1
A1  
L
E1  
A
R
c
eB  
B1  
A2  
p
B
Units  
INCHES*  
NOM  
0.600  
40  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
MIN  
MAX  
MIN  
NOM  
15.24  
40  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W
0.098  
0.100  
0.020  
0.053  
0.005  
0.011  
0.205  
0.135  
0.035  
0.140  
2.050  
0.520  
0.580  
0.660  
0.350  
0.102  
2.49  
0.41  
2.54  
0.50  
2.59  
0.58  
1.40  
0.25  
0.36  
5.59  
3.89  
1.40  
3.68  
52.32  
13.36  
15.24  
18.03  
9.14  
0.016  
0.050  
0.000  
0.008  
0.190  
0.117  
0.015  
0.135  
2.040  
0.514  
0.560  
0.610  
0.340  
0.023  
0.055  
0.010  
0.014  
0.220  
0.153  
0.055  
0.145  
2.060  
0.526  
0.600  
0.710  
0.360  
1.27  
0.00  
1.33  
0.13  
0.20  
0.28  
4.83  
5.21  
2.97  
3.43  
0.38  
0.89  
3.43  
3.56  
51.82  
13.06  
14.22  
15.49  
8.64  
52.07  
13.21  
14.73  
16.76  
8.89  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Diameter  
*
Controlling Parameter.  
JEDEC equivalent:  
MO-103 AC  
DS39026B-page 280  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Package Type: 44-Lead Plastic Thin Quad Flatpack (PT)  
10x10x1 mm Body, 1.0/0.1 mm Lead Form  
E1  
E
# leads = n1  
p
D
D1  
2
1
B
n
X x 45°  
L
α
A
R2  
c
φ
R1  
A1  
β
A2  
L1  
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.031  
44  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.80  
MAX  
p
n
n1  
A
A1  
A2  
R1  
R2  
L
Number of Pins  
Pins along Width  
Overall Pack. Height  
Shoulder Height  
Standoff  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
44  
11  
11  
0.039  
0.015  
0.002  
0.003  
0.003  
0.005  
0
0.043  
0.025  
0.004  
0.003  
0.006  
0.010  
3.5  
0.047  
1.00  
1.10  
0.64  
0.10  
0.08  
0.14  
0.25  
3.5  
1.20  
0.035  
0.006  
0.010  
0.008  
0.015  
7
0.38  
0.05  
0.08  
0.08  
0.13  
0
0.89  
0.15  
0.25  
0.20  
0.38  
7
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Outside Tip Length  
Outside Tip Width  
Molded Pack. Length  
Molded Pack. Width  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
0.003  
0.004  
0.012  
0.463  
0.463  
0.390  
0.390  
0.025  
5
0.008  
0.006  
0.015  
0.472  
0.472  
0.394  
0.394  
0.035  
10  
0.013  
0.008  
0.018  
0.482  
0.482  
0.398  
0.398  
0.045  
15  
0.08  
0.09  
0.30  
11.75  
11.75  
9.90  
9.90  
0.64  
5
0.20  
0.15  
0.38  
12.00  
12.00  
10.00  
10.00  
0.89  
10  
0.33  
0.20  
0.45  
12.25  
12.25  
10.10  
10.10  
1.14  
15  
D1  
E1  
D
E
X
α
β
5
12  
15  
5
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MS-026 ACB  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 281  
PIC18CXX2  
Package Type: 44-Lead Plastic Leaded Chip Carrier (L) – Square  
E1  
E
# leads = n1  
D1  
D
n 1 2  
α
A3  
CH2 x 45°  
CH1 x 45°  
R1  
c
L
A
35°  
A1  
B1  
B
R2  
β
A2  
p
E2  
D2  
Units  
INCHES*  
NOM  
44  
MILLIMETERS  
Dimension Limits  
Number of Pins  
Pitch  
Overall Pack. Height  
Shoulder Height  
Standoff  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
A
A1  
A2  
A3  
CH1  
CH2  
E1  
D1  
E
D
E2  
D2  
n1  
c
B1  
B
0.050  
0.173  
0.103  
0.023  
0.029  
0.045  
0.005  
0.690  
0.690  
0.653  
0.653  
0.620  
0.620  
11  
0.010  
0.029  
0.018  
0.058  
0.005  
0.025  
5
1.27  
0.165  
0.180  
4.19  
2.41  
0.38  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
15.49  
15.49  
4.38  
2.60  
0.57  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
11  
4.57  
2.79  
0.76  
0.86  
1.27  
0.095  
0.015  
0.024  
0.040  
0.000  
0.685  
0.685  
0.650  
0.650  
0.610  
0.610  
0.110  
0.030  
0.034  
0.050  
0.010  
0.695  
0.695  
0.656  
0.656  
0.630  
0.630  
Side 1 Chamfer Dim.  
Corner Chamfer (1)  
Corner Chamfer (other)  
Overall Pack. Width  
Overall Pack. Length  
Molded Pack. Width  
Molded Pack. Length  
Footprint Width  
Footprint Length  
Pins along Width  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Upper Lead Length  
Shoulder Inside Radius  
J-Bend Inside Radius  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.008  
0.026  
0.015  
0.050  
0.003  
0.015  
0
0.012  
0.032  
0.021  
0.065  
0.010  
0.035  
10  
0.20  
0.66  
0.38  
1.27  
0.08  
0.38  
0
0.25  
0.74  
0.46  
1.46  
0.13  
0.64  
5
0.30  
0.81  
0.53  
1.65  
0.25  
0.89  
10  
L
R1  
R2  
α
β
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions “D” or “E.”  
JEDEC equivalent: MO-047 AC  
DS39026B-page 282  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
APPENDIX A: REVISION HISTORY  
Revision A  
APPENDIX B: DEVICE DIFFERENCES  
The differences between the devices listed in this data  
sheet are shown in Table 23-1.  
This is a new data sheet.  
TABLE 23-1: Device Differences  
Feature  
PIC18C242  
PIC18C252  
PIC18C442  
PIC18C452  
Program Memory (Bytes)  
Data Memory (Bytes)  
A/D Channels  
8K  
16K  
5
16K  
32K  
5
8K  
16K  
8
16K  
32K  
8
Parallel Slave Port (PSP)  
Package Types  
No  
No  
Yes  
Yes  
28-pin DIP  
28-pin SOIC  
28-pin JW  
28-pin DIP  
28-pin SOIC  
28-pin JW  
40-pin DIP  
40-pin PLCC  
40-pin TQFP  
40-pin JW  
40-pin DIP  
40-pin PLCC  
40-pin TQFP  
40-pin JW  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 283  
PIC18CXX2  
APPENDIX C: CONVERSION  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
CONSIDERATIONS  
ENHANCED DEVICES  
This section discusses how to migrate from a Baseline  
device (i.e., PIC16C5X) to an Enhanced MCU device  
(i.e., PIC18CXXX).  
This appendix discusses the considerations for con-  
verting from previous version of a device to the ones  
listed in this data sheet. Typically these changes are  
due to the differences in the process technology used.  
An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
DS39026B-page 284  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
APPENDIX E: MIGRATION FROM  
MIDRANGE TO  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
This section discusses how to migrate from a Midrange  
device (i.e., PIC16CXXX) to an Enhanced device (i.e.,  
PIC18CXXX).  
This section discusses how to migrate from a High-end  
device (i.e., PIC17CXXX) to an Enhance MCU device  
(i.e., PIC18CXXX).  
The following are the list of modifications over the  
PIC16CXXX microcontroller family:  
The following are the list of modifications over the  
PIC17CXXX microcontroller family:  
Not Currently Available  
Not Currently Available  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 285  
PIC18CXX2  
NOTES:  
DS39026B-page 286  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Software Interrupt .................................................... 111  
Timer1 Mode Selection ............................................ 111  
Capture/Compare/PWM (CCP) ....................................... 109  
CCP1 ....................................................................... 110  
CCPR1H Register ........................................... 110  
INDEX  
A
A/D ................................................................................... 167  
A/D Converter Flag (ADIF Bit) ................................. 169  
A/D Converter Interrupt, Configuring ....................... 170  
ADCON0 Register .................................................... 167  
ADCON1 Register ............................................ 167, 168  
ADRES Register .............................................. 167, 169  
Analog Port Pins .................................................. 89, 90  
Analog Port Pins, Configuring .................................. 171  
Block Diagram .......................................................... 169  
Block Diagram, Analog Input Model ......................... 170  
Configuring the Module ............................................ 170  
Conversion Clock (TAD) ........................................... 171  
Conversion Status (GO/DONE Bit) .......................... 169  
Conversions ............................................................. 172  
Converter Characteristics ........................................ 270  
converter characteristics .......................................... 249  
Effects of a Reset ..................................................... 179  
Operation During Sleep ........................................... 179  
Sampling Requirements ........................................... 170  
Special Event Trigger (CCP) ............................ 112, 172  
Timing Diagram ........................................................ 271  
Absolute Maximum Ratings ............................................. 241  
ADCON0 Register ............................................................ 167  
GO/DONE Bit ........................................................... 169  
ADCON1 Register .................................................... 167, 168  
ADDLW ............................................................................ 197  
ADDWF ............................................................................ 197  
ADDWFC ......................................................................... 198  
ADRES Register ...................................................... 167, 169  
AKS .................................................................................. 139  
Analog-to-Digital Converter. See A/D  
CCPR1L Register ............................................ 110  
CCP2 ....................................................................... 110  
CCPR2H Register ........................................... 110  
CCPR2L Register ............................................ 110  
Interaction of Two CCP Modules ............................. 110  
Timer Resources ..................................................... 110  
Timing Diagram ....................................................... 258  
Clocking Scheme ............................................................... 37  
CLRF ....................................................................... 207, 225  
CLRWDT ......................................................................... 207  
Code Examples  
Loading the SSPBUF register ................................. 122  
Code Protection ....................................................... 181, 189  
COMF .............................................................................. 208  
Compare (CCP Module) .................................................. 112  
Block Diagram ......................................................... 112  
CCP Pin Configuration ............................................ 112  
CCPR1H:CCPR1L Registers .................................. 112  
Software Interrupt .................................................... 112  
Special Event Trigger ........................ 99, 107, 112, 172  
Timer1 Mode Selection ............................................ 112  
Configuration Bits ............................................................ 181  
Conversion Considerations .............................................. 286  
CPFSEQ .......................................................................... 208  
CPFSGT .......................................................................... 209  
CPFSLT ........................................................................... 209  
D
Data Memory ..................................................................... 40  
General Purpose Registers ....................................... 40  
Special Function Registers ........................................ 40  
DAW ................................................................................ 210  
DC ..................................................................................... 54  
DC Characteristics ................................... 243, 244, 247, 248  
DECF ............................................................................... 210  
DECFSNZ ........................................................................ 211  
DECFSZ .......................................................................... 211  
Development Support ...................................................... 235  
Device Differences ........................................................... 285  
Direct Addressing .............................................................. 49  
ANDLW ............................................................................ 198  
ANDWF ............................................................................ 199  
Assembler  
MPASM Assembler .................................................. 235  
B
Baud Rate Generator ....................................................... 136  
BCF .................................................................................. 200  
BF .................................................................................... 139  
Block Diagrams  
Baud Rate Generator ............................................... 136  
SSP (SPI Mode) ....................................................... 121  
Timer1 ...................................................................... 106  
BRG ................................................................................. 136  
Brown-out Reset (BOR) ............................................. 24, 181  
Timing Diagram ........................................................ 256  
BSF .......................... 199, 200, 201, 202, 203, 205, 206, 221  
BTFSC ............................................................................. 204  
BTFSS ............................................................................. 204  
BTG .................................................................................. 205  
Bus Collision During a RESTART Condition .................... 148  
Bus Collision During a Start Condition ............................. 146  
Bus Collision During a Stop Condition ............................. 149  
E
Electrical Characteristics ................................................. 241  
Errata ................................................................................... 4  
F
Firmware Instructions ...................................................... 191  
FS0 .................................................................................... 54  
FS1 .................................................................................... 54  
FS2 .................................................................................... 54  
FS3 .................................................................................... 54  
G
General Call Address Sequence ..................................... 133  
General Call Address Support ......................................... 133  
GOTO .............................................................................. 212  
C
C ........................................................................................ 54  
CALL ................................................................................ 206  
Capture (CCP Module) .................................................... 111  
Block Diagram .......................................................... 111  
CCP Pin Configuration ............................................. 111  
CCPR1H:CCPR1L Registers ................................... 111  
Changing Between Capture Prescalers ................... 111  
I
I/O Ports ............................................................................ 77  
2
I C (SSP Module) ............................................................ 128  
ACK Pulse ....................................................... 129, 130  
Addressing ............................................................... 129  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 287  
PIC18CXX2  
Block Diagram ..........................................................128  
Read/Write Bit Information (R/W Bit) ............... 129, 130  
Reception .................................................................130  
Serial Clock (RC3/SCK/SCL) ...................................130  
Slave Mode ..............................................................129  
Timing Diagram, Data ..............................................265  
Timing Diagram, Start/Stop Bits ...............................264  
Transmission ............................................................130  
COMF ...................................................................... 208  
CPFSEQ .................................................................. 208  
CPFSGT .................................................................. 209  
CPFSLT ................................................................... 209  
DAW ........................................................................ 210  
DECF ....................................................................... 210  
DECFSNZ ................................................................ 211  
DECFSZ .................................................................. 211  
GOTO ...................................................................... 212  
INCF ........................................................................ 212  
INCFSNZ ................................................................. 213  
INCFSZ .................................................................... 213  
IORLW ..................................................................... 214  
IORWF ..................................................................... 214  
MOVFP .................................................................... 216  
MOVLB .................................................................... 215  
MOVLR ............................................................ 215, 216  
MOVLW ................................................................... 217  
MOVWF ................................................................... 217  
MULLW .................................................................... 218  
MULWF .................................................................... 218  
NEGW ..................................................................... 219  
NOP ......................................................................... 219  
RETFIE ............................................................ 221, 222  
RETLW .................................................................... 222  
RETURN .................................................................. 223  
RLCF ....................................................................... 223  
RLNCF ..................................................................... 224  
RRCF ....................................................................... 224  
RRNCF .................................................................... 225  
SLEEP ..................................................................... 226  
SUBLW .................................................................... 227  
SUBWF .................................................... 226, 227, 228  
SUBWFB ................................................................. 229  
SWAPF .................................................................... 230  
TABLRD .................................................................. 231  
TABLWT .................................................................. 232  
TSTFSZ ................................................................... 233  
XORLW ................................................................... 233  
XORWF ................................................................... 234  
Summary Table ....................................................... 194  
2
I C Master Mode Reception .............................................139  
I C Master Mode Restart Condition .................................138  
I C Module  
2
2
Acknowledge Sequence timing ................................142  
Baud Rate Generator ...............................................136  
BRG Block Diagram .................................................136  
BRG Reset due to SDA Collision .............................147  
BRG Timing .............................................................136  
Bus Collision  
Acknowledge ....................................................145  
Restart Condition .............................................148  
Restart Condition Timing (Case1) ....................148  
Restart Condition Timing (Case2) ....................148  
Start Condition .................................................146  
Start Condition Timing ............................. 146, 147  
Stop Condition .................................................149  
Stop Condition Timing (Case1) ........................149  
Stop Condition Timing (Case2) ........................149  
Transmit Timing ...............................................145  
Bus Collision timing ..................................................145  
Clock Arbitration .......................................................144  
Clock Arbitration Timing (Master Transmit) ..............144  
General Call Address Support .................................133  
Master Mode 7-bit Reception timing ........................141  
Master Mode Operation ...........................................135  
Master Mode Start Condition ...................................137  
Master Mode Transmission ......................................139  
Master Mode Transmit Sequence ............................135  
Multi-master Mode ...................................................145  
Repeat Start Condition timing ..................................138  
Stop Condition Receive or Transmit timing ..............143  
Stop Condition timing ...............................................142  
Waveforms for 7-bit Reception ................................130  
Waveforms for 7-bit Transmission ...........................130  
ID Locations ............................................................. 181, 189  
INCF .................................................................................212  
INCFSNZ ..........................................................................213  
INCFSZ ............................................................................213  
In-Circuit Serial Programming (ICSP) ......................181, 189  
Indirect Addressing ............................................................49  
FSR Register .............................................................48  
Instruction Cycle .................................................................37  
Instruction Flow/Pipelining .................................................38  
Instruction Format ............................................................193  
Instruction Set ..................................................................191  
ADDLW ....................................................................197  
ADDWF ....................................................................197  
ADDWFC .................................................................198  
ANDLW ....................................................................198  
ANDWF ....................................................................199  
BCF ..........................................................................200  
BSF .................. 199, 200, 201, 202, 203, 205, 206, 221  
BTFSC .....................................................................204  
BTFSS .....................................................................204  
BTG ..........................................................................205  
CALL ........................................................................206  
CLRF ................................................................207, 225  
CLRWDT ..................................................................207  
INTCON Register  
RBIF Bit ..................................................................... 80  
Interrupt Sources ....................................................... 65, 181  
A/D Conversion Complete ....................................... 170  
Capture Complete (CCP) ......................................... 111  
Compare Complete (CCP) ....................................... 112  
Interrupt on Change (RB7:RB4 ) ............................... 80  
RB0/INT Pin, External ................................................ 75  
SSP Receive/Transmit Complete ............................ 117  
TMR0 Overflow .......................................................... 95  
TMR1 Overflow .................................... 97, 99, 105, 107  
TMR2 to PR2 Match ................................................ 103  
TMR2 to PR2 Match (PWM) ............................ 102, 115  
USART Receive/Transmit Complete ....................... 151  
Interrupts, Enable Bits  
CCP1 Enable (CCP1IE Bit) ..................................... 111  
Interrupts, Flag Bits  
A/D Converter Flag (ADIF Bit) ................................. 169  
CCP1 Flag (CCP1IF Bit) .................................. 111, 112  
Interrupt on Change (RB7:RB4) Flag (RBIF Bit) ........ 80  
IORLW ............................................................................. 214  
IORWF ............................................................................. 214  
K
KeeLoq Evaluation and Programming Tools ................ 238  
DS39026B-page 288  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
RB0/INT ................................................................. 9, 12  
RB1 ........................................................................ 9, 12  
RB2 ........................................................................ 9, 12  
RB3 ........................................................................ 9, 12  
RB4 ........................................................................ 9, 12  
RB5 ........................................................................ 9, 12  
RB6 ........................................................................ 9, 12  
RB7 ........................................................................ 9, 12  
RC0/T1OSO/T1CKI ............................................. 10, 13  
RC1/T1OSI/CCP2 ............................................... 10, 13  
RC2/CCP1 ........................................................... 10, 13  
RC3/SCK/SCL ..................................................... 10, 13  
RC4/SDI/SDA ...................................................... 10, 13  
RC5/SDO ............................................................. 10, 13  
RC6/TX/CK .......................................................... 10, 13  
RC7/RX/DT .......................................................... 10, 13  
RD0/PSP0 ................................................................. 14  
RD1/PSP1 ................................................................. 14  
RD2/PSP2 ................................................................. 14  
RD3/PSP3 ................................................................. 14  
RD4/PSP4 ................................................................. 14  
RD5/PSP5 ................................................................. 14  
RD6/PSP6 ................................................................. 14  
RD7/PSP7 ................................................................. 14  
RE0/RD/AN5 ............................................................. 14  
RE1/WR/AN6 ............................................................. 14  
RE2/CS/AN7 .............................................................. 14  
Vdd ...................................................................... 10, 14  
Vss ....................................................................... 10, 14  
Pointer, FSR ...................................................................... 48  
PORTA  
Initialization ................................................................ 77  
PORTA Register ........................................................ 77  
RA3:RA0 and RA5 Port Pins ..................................... 78  
RA4/T0CKI Pin .......................................................... 78  
TRISA Register .......................................................... 77  
PORTB  
Initialization ................................................................ 80  
PORTB Register ........................................................ 80  
RB0/INT Pin, External ............................................... 75  
RB3:RB0 Port Pins .................................................... 80  
RB7:RB4 Interrupt on Change Flag (RBIF Bit) .......... 80  
RB7:RB4 Port Pins .................................................... 80  
TRISB Register .......................................................... 80  
PORTC  
M
Memory Organization  
Data Memory ............................................................. 40  
Program Memory ....................................................... 33  
MOVFP ............................................................................ 216  
MOVLB ............................................................................ 215  
MOVLR .................................................................... 215, 216  
MOVLW ........................................................................... 217  
MOVWF ........................................................................... 217  
MPLAB Integrated Development Environment Software . 235  
MULLW ............................................................................ 218  
Multi-Master Mode ........................................................... 145  
Multiply Examples  
16 x 16 Routine .......................................................... 62  
16 x 16 Signed Routine .............................................. 63  
8 x 8 Routine .............................................................. 62  
8 x 8 Signed Routine .................................................. 62  
MULWF ............................................................................ 218  
N
NEGW .............................................................................. 219  
NOP ................................................................................. 219  
O
OPCODE Field Descriptions ............................................ 192  
OPTION_REG Register ..................................................... 51  
PS2:PS0 Bits ............................................................. 95  
PSA Bit ....................................................................... 95  
T0CS Bit ..................................................................... 95  
T0SE Bit ..................................................................... 95  
OSCCON ........................................................................... 18  
OSCCON Register ............................................................. 18  
Oscillator Configuration .............................................. 15, 181  
HS .............................................................................. 15  
LP ............................................................................... 15  
RC ........................................................................ 15, 16  
XT .............................................................................. 15  
Oscillator, Timer1 ......................................... 97, 99, 105, 107  
Oscillator, WDT ................................................................ 185  
OV ...................................................................................... 54  
P
Packaging ........................................................................ 275  
Parallel Slave Port (PSP) ............................................. 85, 90  
Block Diagram ............................................................ 90  
RE0/RD/AN5 Pin .................................................. 89, 90  
RE1/WR/AN6 Pin ................................................. 89, 90  
RE2/CS/AN7 Pin .................................................. 89, 90  
Read Waveforms ....................................................... 91  
Select (PSPMODE Bit) ........................................ 85, 90  
Timing Diagram ........................................................ 259  
Write Waveforms ....................................................... 90  
PICDEM-1 Low-Cost PICmicro Demo Board ................... 237  
PICDEM-2 Low-Cost PIC16CXX Demo Board ................ 237  
PICDEM-3 Low-Cost PIC16CXXX Demo Board .............. 237  
PICSTART Plus Entry Level Development System ...... 237  
Pin Functions  
Block Diagram ........................................................... 83  
Initialization .................................................... 83, 85, 87  
PORTC Register ........................................................ 83  
RC3/SCK/SCL Pin ................................................... 130  
RC7/RX/DT Pin ....................................................... 153  
TRISC Register ................................................. 83, 151  
PORTD .............................................................................. 90  
Block Diagram ........................................................... 85  
Parallel Slave Port (PSP) Function ............................ 85  
PORTD Register ........................................................ 85  
TRISD Register ......................................................... 85  
PORTE  
Analog Port Pins .................................................. 89, 90  
Block Diagram ........................................................... 87  
PORTE Register ........................................................ 87  
PSP Mode Select (PSPMODE Bit) ...................... 85, 90  
RE0/RD/AN5 Pin ................................................. 89, 90  
RE1/WR/AN6 Pin ................................................ 89, 90  
RE2/CS/AN7 Pin ................................................. 89, 90  
TRISE Register .......................................................... 87  
Postscaler, WDT  
MCLR/Vpp ............................................................. 8, 11  
OSC1/CLKIN .......................................................... 8, 11  
OSC2/CLKOUT ...................................................... 8, 11  
RA0/AN0 ................................................................ 8, 11  
RA1/AN1 ................................................................ 8, 11  
RA2/AN2 ................................................................ 8, 11  
RA3/AN3/Vref ........................................................ 8, 11  
RA4/T0CKI ............................................................. 8, 11  
RA5/AN4/SS .......................................................... 8, 11  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 289  
PIC18CXX2  
Assignment (PSA Bit) ................................................95  
Rate Select (PS2:PS0 Bits) .......................................95  
Switching Between Timer0 and WDT ........................95  
Power-on Reset (POR) .............................................. 24, 181  
Oscillator Start-up Timer (OST) ......................... 24, 181  
Power-up Timer (PWRT) ................................... 24, 181  
Time-out Sequence ....................................................25  
Time-out Sequence on Power-up ........................30, 31  
Timing Diagram ........................................................256  
Prescaler, Capture ...........................................................111  
Prescaler, Timer0 ...............................................................95  
Assignment (PSA Bit) ................................................95  
Rate Select (PS2:PS0 Bits) .......................................95  
Switching Between Timer0 and WDT ........................95  
Prescaler, Timer1 ...............................................................98  
Prescaler, Timer2 .............................................................115  
PRO MATE II Universal Programmer ............................237  
Product Identification System ...........................................297  
Program Counter  
PCL Register ..............................................................37  
PCLATH Register ......................................................37  
Program Memory ...............................................................33  
Interrupt Vector ..........................................................33  
Reset Vector ..............................................................33  
Program Verification .........................................................189  
Programming, Device Instructions ...................................191  
PWM (CCP Module) .........................................................114  
Block Diagram ..........................................................114  
CCPR1H:CCPR1L Registers ...................................115  
Duty Cycle ................................................................115  
Example Frequencies/Resolutions ..........................116  
Output Diagram ........................................................114  
Period .......................................................................115  
Set-Up for PWM Operation ......................................116  
TMR2 to PR2 Match ........................................ 102, 115  
Simplified Block Diagram of On-Chip Reset Circuit ........... 23  
Slave Select Synchronization .......................................... 125  
Slave Select, SS .............................................................. 121  
SLEEP ............................................................. 181, 187, 226  
Software Simulator (MPLAB-SIM) ................................... 236  
Special Features of the CPU ................................... 175, 181  
Special Function Registers ................................................ 40  
SPI  
Master Mode ............................................................ 124  
Serial Clock .............................................................. 121  
Serial Data In ........................................................... 121  
Serial Data Out ........................................................ 121  
Slave Select ............................................................. 121  
SPI clock .................................................................. 124  
SPI Mode ................................................................. 121  
SPI Master/Slave Connection .......................................... 123  
SPI Module  
Master/Slave Connection ......................................... 123  
Slave Mode .............................................................. 125  
Slave Select Synchronization .................................. 125  
Slave Synch Timnig ................................................. 125  
Slave Timing with CKE = 0 ...................................... 126  
Slave Timing with CKE = 1 ...................................... 126  
SS .................................................................................... 121  
SSP .................................................................................. 117  
Block Diagram (SPI Mode) ...................................... 121  
SPI Mode ................................................................. 121  
SSPBUF .................................................................. 124  
SSPCON1 ............................................................... 119  
SSPCON2 ............................................................... 120  
SSPSR .................................................................... 124  
SSPSTAT ................................................................ 118  
TMR2 Output for Clock Shift ............................ 102, 103  
SSP Module  
SPI Master Mode ..................................................... 124  
SPI Master./Slave Connection ................................. 123  
SPI Slave Mode ....................................................... 125  
SSPCON1 ........................................................................ 119  
SSPCON2 ........................................................................ 120  
SSPOV ............................................................................ 139  
SSPSTAT ........................................................................ 118  
SSPSTAT Register  
Q
Q-Clock ............................................................................115  
R
RCSTA Register  
SPEN Bit ..................................................................151  
Register File .......................................................................40  
Registers  
R/W Bit ............................................................ 129, 130  
SUBLW ............................................................................ 227  
SUBWF ............................................................ 226, 227, 228  
SUBWFB ......................................................................... 229  
SWAPF ............................................................................ 230  
SSPSTAT .................................................................118  
T1CON  
Diagram ...........................................................105  
Section .............................................................105  
Reset .......................................................................... 23, 181  
Timing Diagram ........................................................256  
RETFIE .................................................................... 221, 222  
RETLW .............................................................................222  
RETURN ..........................................................................223  
Revision History ...............................................................285  
RLCF ................................................................................223  
RLNCF .............................................................................224  
RRCF ...............................................................................224  
RRNCF .............................................................................225  
T
TABLRD ........................................................................... 231  
TABLWT .......................................................................... 232  
Timer Modules  
Timer1  
Block Diagram ................................................. 106  
Timer0 ................................................................................ 93  
Clock Source Edge Select (T0SE Bit) ....................... 95  
Clock Source Select (T0CS Bit) ................................. 95  
Overflow Interrupt ...................................................... 95  
Timing Diagram ....................................................... 257  
Timer1 ........................................................................ 97, 105  
Block Diagram ........................................................... 98  
Oscillator .............................................. 97, 99, 105, 107  
Overflow Interrupt ................................ 97, 99, 105, 107  
Special Event Trigger (CCP) ..................... 99, 107, 112  
Timing Diagram ....................................................... 257  
TMR1H Register ................................................ 97, 105  
S
SCK ..................................................................................121  
SDI ...................................................................................121  
SDO .................................................................................121  
SEEVAL Evaluation and Programming System ............238  
Serial Clock, SCK .............................................................121  
Serial Data In, SDI ...........................................................121  
Serial Data Out, SDO .......................................................121  
DS39026B-page 290  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
TMR1L Register ................................................. 97, 105  
Timer2  
Receive Block Diagram ................................... 159  
Reception ........................................................ 160  
Transmit Block Diagram .................................. 157  
Baud Rate Generator (BRG) ................................... 153  
Baud Rate Error, Calculating ........................... 153  
Baud Rate Formula ......................................... 153  
Baud Rates, Asynchronous Mode (BRGH=0) . 155  
Baud Rates, Asynchronous Mode (BRGH=1) . 156  
Baud Rates, Synchronous Mode ..................... 154  
High Baud Rate Select (BRGH Bit) ................. 153  
Sampling ......................................................... 153  
Serial Port Enable (SPEN Bit) ................................. 151  
Synchronous Master Mode ...................................... 161  
Reception ........................................................ 164  
Timing Diagram, Synchronous Receive .......... 269  
Timing Diagram, Synchronous Transmission .. 268  
Transmission ................................................... 162  
Synchronous Slave Mode ........................................ 165  
Block Diagram .......................................................... 103  
Postscaler. See Postscaler, Timer2  
PR2 Register .................................................... 102, 115  
Prescaler. See Prescaler, Timer2  
SSP Clock Shift ................................................ 102, 103  
TMR2 Register ......................................................... 102  
TMR2 to PR2 Match Interrupt .................. 102, 103, 115  
Timing Diagrams  
Acknowledge Sequence Timing ............................... 142  
Baud Rate Generator with Clock Arbitration ............ 136  
BRG Reset Due to SDA Collision ............................ 147  
Bus Collision  
Start Condition Timing ..................................... 146  
Bus Collision During a Restart Condition (Case 1) .. 148  
Bus Collision During a Restart Condition (Case2) ... 148  
Bus Collision During a Start Condition (SCL = 0) .... 147  
Bus Collision During a Stop Condition ..................... 149  
Bus Collision for Transmit and Acknowledge ........... 145  
W
2
Wake-up from SLEEP .............................................. 181, 187  
Timing Diagram ....................................................... 188  
Watchdog Timer (WDT) ........................................... 181, 185  
Block Diagram ......................................................... 186  
Programming Considerations .................................. 185  
RC Oscillator ........................................................... 185  
Time-out Period ....................................................... 185  
Timing Diagram ....................................................... 256  
Waveform for General Call Address Sequence ............... 133  
WCOL .............................................................. 137, 139, 142  
WCOL Status Flag ........................................................... 137  
WWW, On-Line Support ...................................................... 4  
I C Bus Data ............................................................ 267  
2
I C Master Mode First Start bit timing ...................... 137  
2
I C Master Mode Reception timing .......................... 141  
2
I C Master Mode Transmission timing ..................... 140  
Master Mode Transmit Clock Arbitration .................. 144  
Repeat Start Condition ............................................. 138  
Slave Synchronization ............................................. 125  
SPI Mode Timing (Master Mode)SPI Mode  
Master Mode Timing Diagram ......................... 124  
SPI Mode Timing (Slave Mode with CKE = 0) ......... 126  
SPI Mode Timing (Slave Mode with CKE = 1) ......... 126  
Stop Condition Receive or Transmit ........................ 143  
Time-out Sequence on Power-up ........................ 30, 31  
USART Asynchronous Master Transmission ........... 158  
USART Asynchronous Reception ............................ 160  
USART Synchronous Reception .............................. 164  
USART Synchronous Transmission ........................ 162  
Wake-up from SLEEP via Interrupt .......................... 188  
Timing Diagrams and Specifications ................................ 253  
A/D Conversion ........................................................ 271  
Brown-out Reset (BOR) ........................................... 256  
Capture/Compare/PWM (CCP) ................................ 258  
CLKOUT and I/O ...................................................... 255  
External Clock .......................................................... 253  
X
XORLW ........................................................................... 233  
XORWF ........................................................................... 234  
Z
Z ........................................................................................ 54  
2
I C Bus Data ............................................................ 265  
2
I C Bus Start/Stop Bits ............................................. 264  
Oscillator Start-up Timer (OST) ............................... 256  
Parallel Slave Port (PSP) ......................................... 259  
Power-up Timer (PWRT) ......................................... 256  
Reset ........................................................................ 256  
Timer0 and Timer1 ................................................... 257  
USART Synchronous Receive ( Master/Slave) ....... 269  
USART SynchronousTransmission ( Master/Slave) 268  
Watchdog Timer (WDT) ........................................... 256  
TRISE Register .................................................................. 87  
PSPMODE Bit ...................................................... 85, 90  
TSTFSZ ........................................................................... 233  
TXSTA Register  
BRGH Bit ................................................................. 153  
U
Universal Synchronous Asynchronous Receiver Transmitter.  
See USART  
USART ............................................................................. 151  
Asynchronous Mode ................................................ 157  
Master Transmission ....................................... 158  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 291  
PIC18CXX2  
DS39026B-page 292  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1- 800-755-2345 for U.S. and most of Canada, and  
1- 602-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
7/99 Microchip Technology Inc.  
Preliminary  
DS39026B-page 293  
PIC18CXX2  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS39026B  
Device:  
PIC18CXX2  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS39026B-page 294  
Preliminary  
7/99 Microchip Technology Inc.  
PIC18CXX2  
PIC18CXX2 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC18LC452 - I/P 301 = Industrial  
temp., PDIP package,  
4
MHz,  
Extended VDD limits, QTP pattern  
#301.  
PIC18CXX2(1), PIC18CXX2T(2);  
VDD range 4.2V to 5.5V  
b) PIC18LC242 - I/SO = Industrial  
temp., SOIC package, Extended  
VDD limits.  
Device  
PIC18LCXX2(1), PIC18LCXX2T(2);  
VDD range 2.5V to 5.5V  
c) PIC18C442 - E/P = Extended temp.,  
PDIP package, 40MHz, normal VDD  
limits.  
Temperature  
Range  
I
E
= -40°C to+85×C(Industrial)  
= -40°C to+125×C(Extended)  
Note1:  
2:  
C
= Standard Voltage range  
LC = Wide Voltage Range  
T
Package  
JW  
PT  
SO  
SP  
P
=
=
=
=
=
=
Windowed CERDIP(3)  
TQFP (Thin Quad Flatpack)  
SOIC  
= in tape and reel - SOIC,  
PLCC, and TQFP  
packages only.  
Skinny plastic dip  
PDIP  
3: JW Devices are UV erasable and  
can be programmed to any device  
configuration. JW Devices meet  
the electrical requirement of each  
oscillator type (including LC  
devices).  
L
PLCC  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
Preliminary  
DS39026B-page 295  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY