PIC18LF1320-I/SOG [MICROCHIP]

MCU CMOS 18LD 40MHZ LOW PWR, -40C to +85C, 18-SOIC 300mil, TUBE;
PIC18LF1320-I/SOG
型号: PIC18LF1320-I/SOG
厂家: MICROCHIP    MICROCHIP
描述:

MCU CMOS 18LD 40MHZ LOW PWR, -40C to +85C, 18-SOIC 300mil, TUBE

时钟 光电二极管 外围集成电路
文件: 总290页 (文件大小:2981K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F1220/1320  
Data Sheet  
18/20/28-Pin High Performance,  
Enhanced FLASH Microcontrollers  
with 10-bit A/D and nanoWatt Technology  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable”.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, KEELOQ,  
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,  
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS39605B - page ii  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
18/20/28-Pin High Performance, Enhanced FLASH MCUs  
with 10-bit A/D and nanoWatt Technology  
Low Power Features:  
Peripheral Highlights:  
• High current sink/source 25 mA/25 mA  
• Three external interrupts  
• Power Managed modes:  
- RUN  
CPU on, peripherals on  
- IDLE  
- SLEEP  
CPU off, peripherals on  
CPU off, peripherals off  
• Enhanced Capture/Compare/PWM (ECCP) module:  
- One, two, or four PWM outputs  
• Power Consumption modes:  
- Selectable polarity  
- Programmable dead-time  
- Auto shutdown and auto restart  
- Capture is 16-bit, max resolution 6.25 ns (TCY/16)  
- Compare is 16-bit, max resolution 100 ns (TCY)  
• Compatible 10-bit, up to 13-channel Analog-to-  
Digital Converter module (A/D) with programmable  
acquisition time  
• Dual analog comparators  
• Enhanced USART module:  
- Supports RS-485, RS-232, and LIN 1.2  
- Auto wake-up on START bit  
- Auto baud detect  
- PRI_RUN  
- PRI_IDLE  
- SEC_RUN  
- SEC_IDLE  
- RC_RUN  
- RC_IDLE  
- SLEEP  
150 µA, 1 MHz, 2V  
37 µA, 1 MHz, 2V  
14 µA, 32 kHz, 2V  
5.8 µA, 32 kHz, 2V  
110 µA, 1 MHz, 2V  
52 µA, 1 MHz, 2V  
0.1 µA, 1 MHz, 2V  
• Timer1 oscillator 1.1 µA, 32 kHz, 2V  
• Watchdog Timer 2.1 µA  
• Two-speed Oscillator Start-up  
Oscillators:  
• Four Crystal modes:  
Special Microcontroller Features:  
• 100,000 erase/write cycle Enhanced FLASH  
program memory typical  
• 1,000,000 erase/write cycle Data EEPROM  
memory typical  
• FLASH/Data EEPROM Retention: > 40 years  
• Self-programmable under software control  
• Priority levels for interrupts  
• 8 X 8 Single Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- LP, XT, HS  
- HSPLL  
up to 25 MHz  
4 - 10 MHz (16 - 40 MHz internal)  
• Two External RC modes, up to 4 MHz  
• Two External Clock modes, up to 40 MHz  
• Internal oscillator block:  
- 8 user selectable frequencies: 31 kHz, 125 kHz,  
250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz  
- 125 kHz - 8 MHz calibrated to 1%  
- Two modes select one or two I/O pins  
- OSCTUNE - Allows user to shift frequency  
• Secondary oscillator using Timer1 @ 32 kHz  
• Fail-Safe Clock Monitor  
- Programmable period from 41 ms to 131s  
- 2% stability over VDD and Temperature  
• Single supply 5V In-Circuit Serial Programming™  
(ICSP™) via two pins  
- Allows for safe shutdown if peripheral clock stops  
• In-Circuit Debug (ICD) via two pins  
• Wide operating voltage range: 2.0V to 5.5V  
Program Memory  
Data Memory  
10-bit  
ECCP  
Timers  
8/16-bit  
Device  
I/O  
EUSART Comparators  
FLASH # Single Word SRAM EEPROM  
(bytes) Instructions (bytes) (bytes)  
A/D (ch) (PWM)  
PIC18F1220  
PIC18F1320  
4K  
8K  
2048  
4096  
256  
256  
256  
256  
16  
16  
7
7
1
1
Y
Y
2
2
1/3  
1/3  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 1  
PIC18F1220/1320  
Pin Diagrams  
20-Pin SSOP  
18-Pin PDIP, SOIC  
RA0/AN0  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
RB3/CCP1/P1A  
RA0/AN0  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
RB3/CCP1/P1A  
RB2/P1B/INT2  
RA1/AN1/LVDIN  
RB2/P1B/INT2  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
VDD  
RA1/AN1/LVDIN  
RA4/T0CKI  
RA4/T0CKI  
MCLR/VPP/RA5  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
VDD/AVDD  
MCLR/VPP/RA5  
VSS  
AVSS  
VSS/AVSS  
AVDD  
RB7/PGD/T1OSI/  
RA2/AN2/VREF-  
P1D/KBI3  
RB7/PGD/T1OSI/  
RA2/AN2/VREF-  
RB6/PGC/T1OSO/  
T1CKI/P1C/KBI2  
RB5/PGM/KBI1  
P1D/KBI3  
RA3/AN3/VREF+  
RB0/AN4/INT0  
7
8
12  
11  
RB6/PGC/T1OSO/  
T1CKI/P1C/KBI2  
RA3/AN3/VREF+  
RB1/AN5/TX/  
CK/INT1  
RB4/AN6/RX/  
DT/KBI0  
RB5/PGM/KBI1  
RB0/AN4/INT0  
RB1/AN5/TX/  
CK/INT1  
9
10  
9
12  
11  
RB4/AN6/RX/  
10  
DT/KBI0  
28-Pin QFN  
MCLR/VPP/RA5  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
VDD  
NC  
AVDD  
NC  
VSS  
NC  
AVSS  
NC  
PIC18F1X20  
RB7/PGD/T1OSI/P1D/KBI3  
RB6/PGC/T1OSO/T1CKI/P1C/KBI2  
RA2/AN2/VREF-  
DS39605B-page 2  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Oscillator Configurations ............................................................................................................................................................ 11  
3.0 Power Managed Modes ............................................................................................................................................................. 19  
4.0 Reset.......................................................................................................................................................................................... 33  
5.0 Memory Organization................................................................................................................................................................. 43  
6.0 FLASH Program Memory........................................................................................................................................................... 59  
7.0 Data EEPROM Memory ............................................................................................................................................................. 69  
8.0 8 X 8 Hardware Multiplier........................................................................................................................................................... 73  
9.0 Interrupts .................................................................................................................................................................................... 75  
10.0 I/O Ports ..................................................................................................................................................................................... 89  
11.0 Timer0 Module ......................................................................................................................................................................... 101  
12.0 Timer1 Module ......................................................................................................................................................................... 105  
13.0 Timer2 Module ......................................................................................................................................................................... 111  
14.0 Timer3 Module ......................................................................................................................................................................... 113  
15.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 117  
16.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (USART) ................................................................. 133  
17.0 10-bit Analog-to-Digital Converter (A/D) Module...................................................................................................................... 155  
18.0 Low Voltage Detect .................................................................................................................................................................. 165  
19.0 Special Features of the CPU.................................................................................................................................................... 171  
20.0 Instruction Set Summary.......................................................................................................................................................... 189  
21.0 Development Support............................................................................................................................................................... 231  
22.0 Electrical Characteristics.......................................................................................................................................................... 237  
23.0 Preliminary DC and AC Characteristics Graphs and Tables.................................................................................................... 263  
24.0 Packaging Information.............................................................................................................................................................. 267  
Appendix A: Revision History............................................................................................................................................................. 273  
Appendix B: Device Differences ........................................................................................................................................................ 273  
Appendix C: Conversion Considerations ........................................................................................................................................... 274  
Appendix D: Migration from Baseline to Enhanced Devices.............................................................................................................. 274  
Appendix E: Migration from Mid-range to Enhanced Devices ........................................................................................................... 275  
Appendix F: Migration from High-end to Enhanced Devices ............................................................................................................. 275  
Index .................................................................................................................................................................................................. 277  
On-Line Support................................................................................................................................................................................. 285  
Systems Information and Upgrade Hot Line ...................................................................................................................................... 285  
Reader Response.............................................................................................................................................................................. 286  
PIC18F1220/1320 Product Identification System .............................................................................................................................. 287  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 3  
PIC18F1220/1320  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS39605B-page 4  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
Besides its availability as a clock source, the internal  
oscillator block provides a stable reference source that  
gives the family additional features for robust  
operation:  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a reference  
signal provided by the internal oscillator. If a clock  
failure occurs, the controller is switched to the inter-  
nal oscillator block, allowing for continued low speed  
operation, or a safe application shutdown.  
Two-Speed Start-up: This option allows the internal  
oscillator to serve as the clock source from  
Power-on Reset, or wake-up from SLEEP mode,  
until the primary clock source is available. This  
allows for code execution during what would other-  
wise be the clock start-up interval, and can even  
allow an application to perform routine background  
activities and return to SLEEP without returning to  
full power operation.  
• PIC18F1220  
• PIC18F1320  
This family offers the advantages of all PIC18 micro-  
controllers – namely, high computational performance  
at an economical price – with the addition of high  
endurance Enhanced FLASH program memory. On top  
of these features, the PIC18F1220/1320 family intro-  
duces design enhancements that make these micro-  
controllers a logical choice for many high performance,  
power sensitive applications.  
1.1  
New Core Features  
1.1.1  
NANOWATT TECHNOLOGY  
All of the devices in the PIC18F1220/1320 family incor-  
porate a range of features that can significantly reduce  
power consumption during operation. Key items include:  
1.2  
Other Special Features  
Alternate RUN Modes: By clocking the controller  
from the Timer1 source or the Internal Oscillator  
block, power consumption during code execution  
can be reduced by as much as 90%.  
Multiple IDLE Modes: The controller can also run  
with its CPU core disabled, but the peripherals still  
active. In these states, power consumption can be  
reduced even further, to as little as 4% of normal  
operation requirements.  
On-the-fly Mode Switching: The Power Managed  
modes are invoked by user code during operation,  
allowing the user to incorporate power saving ideas  
into their application’s software design.  
Memory Endurance: The Enhanced FLASH cells  
for both program memory and data EEPROM are  
rated to last for many thousands of erase/write  
cycles – up to 100,000 for program memory and  
1,000,000 for EEPROM. Data retention without  
refresh is conservatively estimated to be greater  
than 40 years.  
Self-programmability: These devices can write to  
their own program memory spaces under internal  
software control. By using a bootloader routine  
located in the protected Boot Block at the top of pro-  
gram memory, it becomes possible to create an  
application that can update itself in the field.  
Lower Consumption in Key Modules: The power  
requirements for both Timer1 and the Watchdog  
Timer have been reduced by up to 80%, with typical  
values of 1.1 and 2.1 µA, respectively.  
Enhanced CCP module: In PWM mode, this mod-  
ule provides 1, 2 or 4 modulated outputs for control-  
ling half-bridge and full-bridge drivers. Other  
features include Auto Shutdown, for disabling PWM  
outputs on interrupt or other select conditions, and  
Auto Restart, to re-activate outputs once the  
condition has cleared.  
1.1.2  
MULTIPLE OSCILLATOR OPTIONS  
AND FEATURES  
Enhanced USART: This serial communication mod-  
ule features automatic wake-up on START bit and  
automatic baud rate detection, and supports  
RS-232, RS-485, and LIN 1.2 protocols, making it  
ideally suited for use in Local Interconnect Network  
(LIN) bus applications.  
10-bit A/D Converter: This module incorporates  
Programmable Acquisition Time, allowing for a  
channel to be selected and a conversion to be initi-  
ated without waiting for a sampling period and thus,  
reduce code overhead.  
All of the devices in the PIC18F1220/1320 family offer  
nine different oscillator options, allowing the users a  
wide range of choices in developing application  
hardware. These include:  
• Four Crystal modes, using crystals or ceramic  
resonators.  
• Two External Clock modes, offering the option of  
using two pins (oscillator input and a divide-by-4  
clock output), or one pin (oscillator input, with the  
second pin re-assigned as general I/O).  
• Two external RC Oscillator modes, with the same  
Extended Watchdog Timer (WDT): This enhanced  
version incorporates a 16-bit prescaler, allowing a  
time-out range from 4 ms to over 2 minutes, that is  
stable across operating voltage and temperature.  
pin options as the External Clock modes.  
• An internal oscillator block which provides an 8 MHz  
clock (±2% accuracy) and an INTRC source  
(approximately 31 kHz, stable over temperature and  
VDD), as well as a range of 6 user selectable clock  
frequencies (from 125 kHz to 4 MHz) for a total of 8  
clock frequencies.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 5  
 
 
 
PIC18F1220/1320  
1.3  
Details on Individual Family  
Members  
Devices in the PIC18F1220/1320 family are available  
in 18-pin, 20-pin, and 28-pin packages. A block  
diagram for this device family is shown in Figure 1-1.  
The devices are differentiated from each other only in  
the amount of on-chip FLASH program memory (4  
Kbytes for the PIC18F1220 device, 8 Kbytes for  
PIC18F1320). These and other features are  
summarized in Table 1-1.  
A block diagram of the PIC18F1220/1320 device archi-  
tecture is provided in Figure 1-1. The pinouts for this  
device family are listed in Table 1-2.  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18F1220  
PIC18F1320  
Operating Frequency  
DC - 40 MHz  
DC - 40 MHz  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
4096  
2048  
256  
8192  
4096  
256  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
256  
15  
256  
15  
I/O Ports  
Ports A, B  
Ports A, B  
Timers  
4
4
Enhanced Capture/Compare/PWM Modules  
Serial Communications  
10-bit Analog-to-Digital Module  
1
1
Enhanced USART  
7 input channels  
Enhanced USART  
7 input channels  
POR, BOR,  
POR, BOR,  
RESETInstruction, Stack Full,  
RESETInstruction, Stack Full,  
RESETS (and Delays)  
Stack Underflow (PWRT, OST), Stack Underflow (PWRT, OST),  
MCLR (optional), WDT  
MCLR (optional), WDT  
Programmable Low Voltage Detect  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
75 Instructions  
Yes  
Yes  
75 Instructions  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
Packages  
DS39605B-page 6  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
FIGURE 1-1:  
PIC18F1220/1320 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Data Latch  
Table Pointer <2>  
inc/dec logic  
21  
8
8
8
8
RA0/AN0  
Data RAM  
21  
RA1/AN1/LVDIN  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
21  
Address Latch  
20  
PCLATU PCLATH  
PCU PCH PCL  
12(2)  
Address<12>  
Address Latch  
Program Memory  
(4 Kbytes)  
Program Counter  
4
12  
4
PIC18F1220  
RA4/T0CKI  
BSR  
Bank0, F  
(8 Kbytes)  
FSR0  
FSR1  
FSR2  
PIC18F1320  
MCLR/VPP/RA5(1)  
31 Level Stack  
Data Latch  
16  
12  
OSC2/CLKO/RA6(2)  
inc/dec  
logic  
OSC2/CLKI/RA7(2)  
Decode  
Table Latch  
8
ROM Latch  
PORTB  
RB0/AN4/INT0  
Instruction  
Register  
RB1/AN5/TX/CK/INT1  
RB2/P1B/INT2  
8
Instruction  
Decode &  
Control  
PRODH PRODL  
8 x 8 Multiply  
RB3/CCP1/P1A  
3
RB4/AN6/RX/DT/KBI0  
RB5/PGM/KBI1  
8
WREG  
8
BIT OP  
8
OSC1(2)  
OSC2(2)  
T1OSI  
Power-up  
Timer  
8
Timing  
RB6/PGC/T1OSO/  
T1CKI/P1C/KBI2  
Generation  
Oscillator  
8
Start-up Timer  
INT RC  
RB7/PGD/T1OSI/  
ALU<8>  
Power-on  
Reset  
Oscillator  
P1D/KBI3  
T1OSO  
8
Watchdog  
Timer  
Precision  
Voltage  
Brown-out  
Reset  
Low Voltage  
Programming  
MCLR(1)  
VDD, VSS  
Reference  
Fail-Safe  
In-Circuit  
Debugger  
Clock Monitor  
Timer1  
Timer2  
Timer3  
A/D Converter  
Timer0  
Enhanced  
USART  
Enhanced  
CCP  
Data EEPROM  
Note 1: RA5 is available only when the MCLR Resets are disabled.  
2: OSC1, OSC2, CLKI and CLKO are only available in select Oscillator modes and when these pins are not being used as digital  
I/O. Refer to Section 2.0 for additional information.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 7  
 
PIC18F1220/1320  
TABLE 1-2:  
PIC18F1220/1320 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
PDIP/  
SSOP QFN  
SOIC  
MCLR/VPP/RA5  
MCLR  
4
4
1
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active low  
RESET to the device.  
I
ST  
VPP  
P
I
ST  
Programming voltage input.  
RA5  
Digital input.  
OSC1/CLKI/RA7  
16  
15  
18  
21  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source  
input. ST buffer when configured in RC mode,  
CMOS otherwise.  
OSC1  
I
I
ST  
CMOS  
ST  
CLKI  
RA7  
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
I/O  
General purpose I/O pin.  
Oscillator crystal or clock output.  
OSC2/CLKO/RA6  
17  
20  
OSC2  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC, EC and INTRC modes, OSC2 pin outputs  
CLKO, which has 1/4 the frequency of OSC1 and  
denotes instruction cycle rate.  
CLKO  
RA6  
I/O  
ST  
General purpose I/O pin.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
1
2
1
2
26  
27  
I/O  
I
ST  
Digital I/O.  
AN0  
Analog  
Analog input 0.  
RA1/AN1/LVDIN  
RA1  
I/O  
I
I
ST  
Analog  
Analog  
Digital I/O.  
AN1  
Analog input 1.  
LVDIN  
Low Voltage Detect input.  
RA2/AN2/VREF-  
6
7
3
7
8
3
7
8
RA2  
I/O  
ST  
Digital I/O.  
AN2  
I
I
Analog  
Analog  
Analog input 2.  
VREF-  
A/D Reference Voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
I/O  
I
I
ST  
Analog  
Analog  
Digital I/O.  
AN3  
Analog input 3.  
VREF+  
A/D Reference Voltage (High) input.  
RA4/T0CKI  
28  
RA4  
I/O ST/OD  
ST  
Digital I/O. Open drain when configured as output.  
Timer0 external clock input.  
T0CKI  
I
RA5  
RA6  
RA7  
See the MCLR/VPP/RA5 pin.  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open Drain (no P diode to VDD)  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
DS39605B-page 8  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
TABLE 1-2:  
PIC18F1220/1320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
PDIP/  
SSOP QFN  
SOIC  
PORTB is a bi-directional I/O port. PORTB can be  
software programmed for internal weak pull-ups on all inputs.  
RB0/AN4/INT0  
RB0  
8
9
9
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
External interrupt 0.  
AN4  
INT0  
RB1/AN5/TX/CK/INT1  
9
10  
10  
RB1  
AN5  
TX  
I/O  
I
O
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 5.  
USART Asynchronous Transmit  
USART Synchronous Clock (see related RX/DT).  
External interrupt 1.  
CK  
INT1  
ST  
ST  
RB2/P1B/INT2  
17  
18  
19  
20  
11  
23  
24  
12  
RB2  
I/O  
O
I
TTL  
Digital I/O.  
P1B  
INT2  
Enhanced CCP1 output.  
External interrupt 2.  
ST  
RB3/CCP1/P1A  
RB3  
I/O  
I/O  
O
TTL  
ST  
Digital I/O.  
CCP1  
Capture1 input, Compare1 output, PWM1 output.  
Enhanced CCP1 output.  
P1A  
RB4/AN6/RX/DT/KBI0 10  
RB4  
AN6  
RX  
I/O  
TTL  
Analog  
ST  
ST  
TTL  
Digital I/O.  
Analog input 6.  
USART Asynchronous Receive.  
USART Synchronous Data (see related TX/CK).  
Interrupt-on-change pin.  
I
I
I/O  
I
DT  
KBI0  
RB5/PGM/KBI1  
11  
12  
12  
13  
13  
15  
RB5  
I/O  
I/O  
I
TTL  
ST  
Digital I/O.  
PGM  
KBI1  
Low Voltage ICSP programming enable pin.  
Interrupt-on-change pin.  
TTL  
RB6/PGC/T1OSO/  
T1CKI/P1C/KBI2  
RB6  
I/O  
I/O  
O
I
O
I
TTL  
ST  
Digital I/O.  
PGC  
In-Circuit Debugger and ICSP programming clock pin.  
Timer1 oscillator output.  
T1OSO  
T1CKI  
ST  
Timer1 external clock output.  
Enhanced CCP1 output.  
P1C  
KBI2  
TTL  
Interrupt-on-change pin.  
RB7/PGD/T1OSI/  
P1D/KBI3  
RB7  
13  
5
14  
16  
I/O  
I/O  
I
TTL  
ST  
Digital I/O.  
PGD  
In-Circuit Debugger and ICSP programming data pin.  
Timer1 oscillator input.  
T1OSI  
CMOS  
P1D  
O
Enhanced CCP1 output.  
Interrupt-on-change pin.  
KBI3  
I
P
P
TTL  
VSS  
VDD  
5, 6  
3, 5  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
CMOS = CMOS compatible input or output  
14 15, 16 17, 19  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
OD = Open Drain (no P diode to VDD)  
I
P
= Input  
= Power  
O
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 9  
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 10  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(XT, LP, HS OR HSPLL  
CONFIGURATION)  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
(1)  
The PIC18F1220 and PIC18F1320 devices can be  
operated in ten different Oscillator modes. The user  
can program the configuration bits FOSC3:FOSC0 in  
Configuration Register 1H to select one of these ten  
modes:  
1. LP  
2. XT  
C1  
C2  
OSC1  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
SLEEP  
(2)  
Low Power Crystal  
Crystal/Resonator  
High Speed Crystal/Resonator  
RS  
(1)  
PIC18FXXXX  
OSC2  
3. HS  
4. HSPLL  
High Speed Crystal/Resonator  
Note 1: See Table 2-1 and Table 2-2 for initial values of  
C1 and C2.  
with PLL enabled  
2: A series resistor (RS) may be required for AT  
5. RC  
External Resistor/Capacitor with  
FOSC/4 output on RA6  
External Resistor/Capacitor with  
I/O on RA6  
Internal Oscillator with FOSC/4  
output on RA6 and I/O on RA7  
Internal Oscillator with I/O on RA6  
and RA7  
strip cut crystals.  
3: RF varies with the Oscillator mode chosen.  
6. RCIO  
7. INTIO1  
8. INTIO2  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Typical Capacitor Values Used:  
9. EC  
10. ECIO  
External Clock with FOSC/4 output  
External Clock with I/O on RA6  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
16.0 MHz  
56 pF  
47 pF  
33 pF  
27 pF  
22 pF  
56 pF  
47 pF  
33 pF  
27 pF  
22 pF  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
In XT, LP, HS or HSPLL Oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections.  
HS  
Capacitor values are for design guidance only.  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values are not optimized.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
The oscillator design requires the use of a parallel cut  
crystal.  
Note: Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
See the notes on page 12 for additional information.  
Resonators Used:  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
16.0 MHz  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 11  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 2-2.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Typical Capacitor Values  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
Crystal  
Tested:  
Osc Type  
Freq  
C1  
C2  
LP  
XT  
HS  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
4 MHz  
8 MHz  
20 MHz  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
OSC1  
Clock from  
Ext. System  
PIC18FXXXX  
(HS Mode)  
OSC2  
Open  
2.3  
HSPLL  
Capacitor values are for design guidance only.  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who wish to use a lower frequency  
crystal oscillator circuit, or to clock the device up to its  
highest rated frequency from a crystal oscillator. This  
may be useful for customers who are concerned with  
EMI due to high frequency crystals.  
The HSPLL mode makes use of the HS mode oscillator  
for frequencies up to 10 MHz. A PLL then multiplies the  
oscillator output frequency by 4 to produce an internal  
clock frequency up to 40 MHz.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
are not optimized.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
See the notes following this table for additional  
information.  
The PLL is enabled only when the oscillator configura-  
tion bits are programmed for HSPLL mode. If  
programmed for any other mode, the PLL is not  
enabled.  
Crystals Used:  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
20 MHz  
FIGURE 2-3:  
PLL BLOCK DIAGRAM  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the  
start-up time.  
HS Osc Enable  
PLL Enable  
(from Configuration Register 1H)  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use the HS  
mode or switch to a crystal oscillator.  
OSC2  
OSC1  
Phase  
FIN  
FOUT  
Comparator  
Crystal  
Osc  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
Loop  
Filter  
appropriate  
values  
of  
external  
components.  
4: Rs may be required to avoid overdriving  
÷4  
VCO  
SYSCLK  
crystals with low drive level specification.  
5: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
DS39605B-page 12  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
2.4  
External Clock Input  
2.5  
RC Oscillator  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. There is  
no oscillator start-up time required after a Power-on  
Reset, or after an exit from SLEEP mode.  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes, or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
Oscillator mode.  
For timing insensitive applications, the “RC” and  
“RCIO” device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit due to  
normal manufacturing variation. Furthermore, the dif-  
ference in lead frame capacitance between package  
types will also affect the oscillation frequency, espe-  
cially for low CEXT values. The user also needs to take  
into account variation, due to tolerance of external R  
and C components used. Figure 2-6 shows how the  
R/C combination is connected.  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION  
(EC CONFIGURATION)  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes, or to synchronize other  
logic.  
OSC1/CLKI  
PIC18FXXXX  
OSC2/CLKO  
Clock from  
Ext. System  
FOSC/4  
FIGURE 2-6:  
RC OSCILLATOR MODE  
VDD  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO Oscillator mode.  
REXT  
Internal  
OSC1  
Clock  
CEXT  
VSS  
PIC18FXXXX  
FIGURE 2-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
OSC2/CLKO  
FOSC/4  
(ECIO CONFIGURATION)  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
OSC1/CLKI  
PIC18FXXXX  
I/O (OSC2)  
Clock from  
Ext. System  
The RCIO Oscillator mode (Figure 2-7) functions like  
the RC mode, except that the OSC2 pin becomes an  
additional general purpose I/O pin. The I/O pin  
becomes bit 6 of PORTA (RA6).  
RA6  
FIGURE 2-7:  
RCIO OSCILLATOR MODE  
VDD  
REXT  
Internal  
OSC1  
Clock  
CEXT  
PIC18FXXXX  
VSS  
I/O (OSC2)  
RA6  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 13  
 
 
 
 
 
 
 
PIC18F1220/1320  
2.6.2  
INTRC OUTPUT FREQUENCY  
2.6  
Internal Oscillator Block  
The internal oscillator block is calibrated at the factory  
to produce an INTOSC output frequency of 8.0 MHz  
(see Table 22.5). This changes the frequency of the  
INTRC source from its nominal 31.25 kHz. Peripherals  
and features that depend on the INTRC source will be  
affected by this shift in frequency.  
Once set during factory calibration, the INTRC fre-  
quency will remain within ±2% as temperature and VDD  
change across their full specified operating ranges.  
The PIC18F1220/1320 devices include an internal  
oscillator block, which generates two different clock  
signals; either can be used as the system’s clock  
source. This can eliminate the need for external  
oscillator circuits on the OSC1 and/or OSC2 pins.  
The main output (INTOSC) is an 8 MHz clock source,  
which can be used to directly drive the system clock. It  
also drives a postscaler, which can provide a range of  
clock frequencies from 125 kHz to 4 MHz. The  
INTOSC output is enabled when a system clock  
frequency from 125 kHz to 8 MHz is selected.  
2.6.3  
OSCTUNE REGISTER  
The other clock source is the internal RC oscillator  
(INTRC), which provides a 31 kHz output. The INTRC  
oscillator is enabled by selecting the internal oscillator  
block as the system clock source, or when any of the  
following are enabled:  
The internal oscillator’s output has been calibrated at  
the factory, but can be adjusted in the user's applica-  
tion. This is done by writing to the OSCTUNE register  
(Register 2-1). The tuning sensitivity is constant  
throughout the tuning range.  
• Power-up Timer  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
• Two-Speed Start-up  
These features are discussed in greater detail in  
Section 19.0 (“Special Features of the CPU”).  
The clock source frequency (INTOSC direct, INTRC  
direct or INTOSC postscaler) is selected by configuring  
the IRCF bits of the OSCCON register (Register 2-2).  
When the OSCTUNE register is modified, the INTOSC  
and INTRC frequencies will begin shifting to the new  
frequency. The INTRC clock will reach the new fre-  
quency within 8 clock cycles (approximately  
8 * 32 µs = 256 µs). The INTOSC clock will stabilize  
within 1 ms. Code execution continues during this shift.  
There is no indication that the shift has occurred. Oper-  
ation of features that depend on the INTRC clock  
source frequency, such as the WDT, Fail-Safe Clock  
Monitor and peripherals, will also be affected by the  
change in frequency.  
2.6.1  
INTIO MODES  
Using the internal oscillator as the clock source can  
eliminate the need for up to two external oscillator pins,  
which can then be used for digital I/O. Two distinct  
configurations are available:  
• In INTIO1 mode, the OSC2 pin outputs FOSC/4,  
while OSC1 functions as RA7 for digital input and  
output.  
• In INTIO2 mode, OSC1 functions as RA7 and  
OSC2 functions as RA6, both for digital input and  
output.  
DS39605B-page 14  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
PIC18F1220/1320  
REGISTER 2-1:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
011111= Maximum frequency  
000001  
000000= Center frequency. Oscillator module is running at the calibrated frequency.  
111111  
100000= Minimum frequency  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
PIC18F1220/1320 devices offer only the Timer1 oscil-  
lator as a secondary oscillator. This oscillator, in all  
Power Managed modes, is often the time-base for  
functions such as a real-time clock.  
Most often, a 32.768 kHz watch crystal is connected  
between the RC0/T1OSO and RC1/T1OSI pins. Like  
the LP mode oscillator circuit, loading capacitors are  
also connected from each pin to ground.  
2.7  
Clock Sources and Oscillator  
Switching  
Like previous PIC18 devices, the PIC18F1220/1320  
devices include a feature that allows the system clock  
source to be switched from the main oscillator to an  
alternate  
low  
frequency  
clock  
source.  
PIC18F1220/1320 devices offer two alternate clock  
sources. When enabled, these give additional options  
for switching to the various Power Managed Operating  
modes.  
The Timer1 oscillator is discussed in greater detail in  
Section 12.2.  
In addition to being a primary clock source, the internal  
oscillator block is available as a Power Managed  
mode clock source. The INTRC source is also used as  
the clock source for several special features, such as  
the WDT and Fail-Safe Clock Monitor.  
The clock sources for the PIC18F1220/1320 devices  
are shown in Figure 2-8. See Section 12.0 for further  
details of the Timer1 oscillator. See Section 19.1 for  
Configuration Register details.  
Essentially, there are three clock sources for these  
devices:  
• Primary oscillators  
• Secondary oscillators  
• Internal oscillator block  
The primary oscillators include the external Crystal  
and Resonator modes, the external RC modes, the  
external Clock modes and the internal oscillator block.  
The particular mode is defined on POR by the contents  
of Configuration Register 1H. The details of these  
modes are covered earlier in this chapter.  
The secondary oscillators are those external sources  
not connected to the OSC1 or OSC2 pins. These  
sources may continue to operate even after the  
controller is placed in a Power Managed mode.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 15  
 
 
 
 
PIC18F1220/1320  
when the internal oscillator block has stabilized, and is  
providing the system clock in RC clock modes. The  
T1RUN bit (T1CON<6>) indicates when the Timer1  
oscillator is providing the system clock in Secondary  
Clock modes. In Power Managed modes, only one of  
these three bits will be set at any time. If none of these  
bits are set, the INTRC is providing the system clock, or  
the internal oscillator block has just started and is not  
yet stable.  
The IDLEN bit controls the selective shutdown of the  
controller’s CPU in Power Managed modes. The uses  
of these bits are discussed in more detail in Section 3.0  
(“Power Managed Modes”).  
2.7.1  
OSCILLATOR CONTROL REGISTER  
The OSCCON register (Register 2-2) controls several  
aspects of the system clock’s operation, both in full  
power operation and in Power Managed modes.  
The System Clock Select bits, SCS1:SCS0, select the  
clock source that is used when the device is operating  
in Power Managed modes. The available clock sources  
are the primary clock (defined in Configuration Register  
1H), the secondary clock (Timer1 oscillator), and the  
internal oscillator block. The clock selection has no  
effect until a SLEEP instruction is executed and the  
device enters a Power Managed mode of operation.  
The SCS bits are cleared on all forms of RESET.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator  
is not enabled, then any attempt to select  
The Internal Oscillator Select bits, IRCF2:IRCF0, select  
the frequency output of the internal oscillator block that  
is used to drive the system clock. The choices are the  
INTRC source, the INTOSC source (8 MHz), or one of  
the six frequencies derived from the INTOSC  
postscaler (125 kHz to 4 MHz). If the internal oscillator  
block is supplying the system clock, changing the  
states of these bits will have an immediate change on  
the internal oscillator’s output.  
a
secondary clock source when  
executing a SLEEP instruction will be  
ignored.  
2: It is recommended that the Timer1 oscil-  
lator be operating and stable before exe-  
cuting the SLEEP instruction, or a very  
long delay may occur while the Timer1  
oscillator starts.  
The OSTS, IOFS and T1RUN bits indicate which clock  
source is currently providing the system clock. The  
OSTS indicates that the Oscillator Start-up Timer has  
timed out, and the primary clock is providing the system  
clock in Primary Clock modes. The IOFS bit indicates  
FIGURE 2-8:  
PIC18F1220/1320 CLOCK DIAGRAM  
Clock  
PIC18F1220/1320  
4 x PLL  
CONFIG1H<3:0>  
HSPLL  
OSCCON<1:0>  
Peripherals  
Primary Oscillator  
Control  
OSC2  
SLEEP  
LP, XT, HS, RC, EC  
OSC1  
Secondary Oscillator  
T1OSC  
T1OSO  
Clock Source Option  
for Other Modules  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
OSCCON<6:4>  
Internal Oscillator  
CPU  
8 MHz  
OSCCON<6:4>  
111  
110  
101  
4 MHz  
2 MHz  
Internal  
Oscillator  
Block  
IDLEN  
1 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
8 MHz  
(INTOSC)  
INTRC  
Source  
WDT, FSCM  
DS39605B-page 16  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
REGISTER 2-2:  
OSCCON REGISTER  
R/W-0  
IDLEN  
R/W-0  
IRCF2  
R/W-0  
IRCF1  
R/W-0  
IRCF0  
R(1)  
OSTS  
R-0  
IOFS  
R/W-0  
SCS1  
R/W-0  
SCS0  
bit 7  
bit 0  
bit 7  
IDLEN: IDLE Enable bits  
1= IDLE mode enabled; CPU core is not clocked in Power Managed modes  
0= RUN mode enabled; CPU core is clocked in Power Managed modes  
bit 6-4  
IRCF2:IRCF0: Internal Oscillator Frequency Select bits  
111= 8 MHz (8 MHz source drives clock directly)  
110= 4 MHz  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (INTRC source drives clock directly)  
bit 3  
OSTS: Oscillator Start-up Time-out Status bit  
1= Oscillator start-up time-out timer has expired; primary oscillator is running  
0= Oscillator start-up time-out timer is running; primary oscillator is not ready  
bit 2  
IOFS: INTOSC Frequency Stable bit  
1= INTOSC frequency is stable  
0= INTOSC frequency is not stable  
bit 1-0  
SCS1:SCS0: System Clock Select bits  
1x= Internal oscillator block (RC modes)  
01= Timer1 oscillator (Secondary modes)  
00= Primary oscillator (SLEEP and PRI_IDLE modes)  
Note 1: Depends on state of the IESO bit in Configuration Register 1H.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 17  
 
PIC18F1220/1320  
If the SLEEP mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, SLEEP mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
Enabling any on-chip feature that will operate during  
SLEEP will increase the current consumed during  
SLEEP. The INTRC is required to support WDT opera-  
tion. The Timer1 oscillator may be operating to support  
a real-time clock. Other features may be operating that  
do not require a system clock source (i.e., SSP slave,  
PSP, INTn pins, A/D conversions, and others).  
2.7.2  
OSCILLATOR TRANSITIONS  
The PIC18F1220/1320 devices contain circuitry to pre-  
vent clocking “glitches” when switching between clock  
sources. A short pause in the system clock occurs dur-  
ing the clock switch. The length of this pause is  
between 8 and 9 clock periods of the new clock source.  
This ensures that the new clock source is stable and  
that its pulse width will not be less than the shortest  
pulse width of the two clock sources.  
Clock transitions are discussed in greater detail in  
Section 3.1.2, “Entering Power Managed Modes”.  
2.8  
Effects of Power Managed Modes  
on the Various Clock Sources  
2.9  
Power-up Delays  
Power-up delays are controlled by two timers, so that  
no external RESET circuitry is required for most appli-  
cations. The delays ensure that the device is kept in  
RESET until the device power supply is stable under  
normal circumstances, and the primary clock is operat-  
ing and stable. For additional information on power-up  
delays, see Sections 4.1 through 4.5.  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 22-7), if enabled in Configuration Register 2L.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in RESET until the  
crystal oscillator is stable (LP, XT and HS modes). The  
OST does this by counting 1024 oscillator cycles  
before allowing the oscillator to clock the device.  
When the HSPLL Oscillator mode is selected, the  
device is kept in RESET for an additional 2 ms follow-  
ing the HS mode OST delay, so the PLL can lock to the  
incoming clock frequency.  
There is a delay of 5 to 10 µs following POR while the  
controller becomes ready to execute instructions. This  
delay runs concurrently with any other delays. This  
may be the only delay that occurs when any of the EC,  
RC, or INTIO modes are used as the primary clock  
source.  
When the device executes a SLEEP instruction, the  
system is switched to one of the Power Managed  
modes, depending on the state of the IDLEN and  
SCS1:SCS0 bits of the OSCCON register. See  
Section 3.0 (“Power Managed Modes”) for details.  
When PRI_IDLE mode is selected, the designated pri-  
mary oscillator continues to run without interruption.  
For all other Power Managed modes, the oscillator  
using the OSC1 pin is disabled. The OSC1 pin (and  
OSC2 pin, if used by the oscillator) will stop oscillating.  
In Secondary Clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and pro-  
viding the system clock. The Timer1 oscillator may also  
run in all Power Managed modes if required to clock  
Timer1 or Timer3.  
In Internal Oscillator modes (RC_RUN and RC_IDLE),  
the internal oscillator block provides the system clock  
source. The INTRC output can be used directly to pro-  
vide the system clock and may be enabled to support  
various special features, regardless of the Power Man-  
aged mode (see Sections 19.2 through 19.4). The  
INTOSC output at 8 MHz may be used directly to clock  
the system, or may be divided down first. The INTOSC  
output is disabled if the system clock is provided  
directly from the INTRC output.  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC Mode  
OSC1 Pin  
OSC2 Pin  
RC, INTIO1  
Floating, external resistor  
should pull high  
At logic low (clock/4 output)  
RCIO, INTIO2  
Floating, external resistor  
should pull high  
Configured as PORTA, bit 6  
ECIO  
EC  
Floating, pulled by external clock  
Floating, pulled by external clock  
Configured as PORTA, bit 6  
At logic low (clock/4 output)  
LP, XT, and HS  
Feedback inverter disabled at  
quiescent voltage level  
Feedback inverter disabled at  
quiescent voltage level  
Note: See Table 4-1 in Section 4.0, for time-outs due to SLEEP and MCLR Reset.  
DS39605B-page 18  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
PIC18F1220/1320  
3.1  
Selecting Power Managed Modes  
3.0  
POWER MANAGED MODES  
Selecting a Power Managed mode requires deciding if  
the CPU is to be clocked or not, and selecting a clock  
source. The IDLEN bit controls CPU clocking, while the  
SC1:SCS0 bits select a clock source. The individual  
modes, bit settings, clock sources, and affected  
modules are summarized in Table 3-1.  
The PIC18F1220/1320 devices offer a total of six Oper-  
ating modes for more efficient power management.  
These provide a variety of options for selective power  
conservation in applications where resources may be  
limited (i.e., battery powered devices).  
There are three categories of Power Managed modes:  
• SLEEP mode  
• IDLE modes  
• RUN modes  
These categories define which portions of the device  
are clocked and sometimes, what speed. The RUN and  
IDLE modes may use any of the three available clock  
sources (Primary, Secondary or INTOSC multiplexer);  
the SLEEP mode does not use a clock source.  
The clock switching feature offered in other PIC18  
devices (i.e., using the Timer1 oscillator in place of the  
primary oscillator), and the SLEEP mode offered by all  
PICmicro® devices (where all system clocks are  
stopped) are both offered in the PIC18F1220/1320  
devices (SEC_RUN and SLEEP modes, respectively).  
However, additional Power Managed modes are avail-  
able that allow the user greater flexibility in determining  
what portions of the device are operating. The Power  
Managed modes are event driven; that is, some spe-  
cific event must occur for the device to enter or (more  
particularly) exit these Operating modes.  
3.1.1  
CLOCK SOURCES  
The clock source is selected by setting the SCS bits of  
the OSCCON register (Register 2-2). Three clock  
sources are available for use in Power Managed IDLE  
modes: the primary clock (as configured in Configura-  
tion Register 1H), the secondary clock (Timer1 oscilla-  
tor), and the internal oscillator block. The secondary  
and internal oscillator block sources are available for  
the Power Managed modes (PRI_RUN mode is the  
normal Full Power Execution mode; the CPU and  
peripherals are clocked by the primary oscillator  
source).  
For PIC18F1220/1320 devices, the Power Managed  
modes are invoked by using the existing SLEEP  
instruction. All modes exit to PRI_RUN mode when trig-  
gered by an interrupt, a RESET, or a WDT time-out  
(PRI_RUN mode is the normal Full Power Execution  
mode; the CPU and peripherals are clocked by the pri-  
mary oscillator source). In addition, Power Managed  
RUN modes may also exit to SLEEP mode, or their  
corresponding IDLE mode.  
TABLE 3-1:  
Mode  
POWER MANAGED MODES  
OSCCON Bits  
Module Clocking  
Available Clock and Oscillator Source  
IDLEN SCS1:SCS0  
CPU  
Peripherals  
<7>  
<1:0>  
None - All clocks are disabled  
SLEEP  
PRI_RUN  
0
0
00  
00  
Off  
Clocked  
Off  
Clocked  
Primary - LP, XT, HS, HSPLL, RC, EC, INTRC(1)  
This is the normal Full Power Execution mode.  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
0
0
1
1
1
01  
1X  
00  
01  
1X  
Clocked  
Clocked  
Off  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Secondary - Timer1 Oscillator  
Internal Oscillator Block(1)  
Primary - LP, XT, HS, HSPLL, RC, EC  
Secondary - Timer1 Oscillator  
Internal Oscillator Block(1)  
Off  
Off  
Note 1: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 19  
 
 
 
 
PIC18F1220/1320  
3.1.2  
ENTERING POWER MANAGED  
MODES  
Note 1: Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
In general, entry, exit, and switching between Power  
Managed clock sources requires clock source  
switching. In each case, the sequence of events is the  
same.  
2: Executing a SLEEP instruction does not  
necessarily place the device into SLEEP  
mode; executing a SLEEP instruction is  
simply a trigger to place the controller into  
a Power Managed mode selected by the  
OSCCON register, one of which is  
SLEEP mode.  
Any change in the Power Managed mode begins with  
loading the OSCCON register and executing a SLEEP  
instruction. The SCS1:SCS0 bits select one of three  
power managed clock sources; the primary clock (as  
defined in Configuration Register 1H), the secondary  
clock (the Timer1 oscillator), and the internal oscillator  
block (used in RC modes). Modifying the SCS bits will  
have no effect until a SLEEP instruction is executed.  
Entry to the Power Managed mode is triggered by the  
execution of a SLEEPinstruction.  
Figure 3-5 shows how the system is clocked while  
switching from the primary clock to the Timer1 oscilla-  
tor. When the SLEEPinstruction is executed, clocks to  
the device are stopped at the beginning of the next  
instruction cycle. Eight clock cycles from the new clock  
source are counted to synchronize with the new clock  
source. After 8 clock pulses from the new clock source  
are counted, clocks from the new clock source resume  
clocking the system. The actual length of the pause is  
between 8 and 9 clock periods from the new clock  
source. This ensures that the new clock source is  
stable and that its pulse width will not be less than the  
shortest pulse width of the two clock sources.  
Three bits indicate the current clock source: OSTS and  
IOFS in the OSCCON register, and T1RUN in the  
T1CON register. Only one of these bits will be set while  
in a Power Managed mode. When the OSTS bit is set,  
the primary clock is providing the system clock. When  
the IOFS bit is set, the INTOSC output is providing a  
stable 8 MHz clock source and is providing the system  
clock. When the T1RUN bit is set, the Timer1 oscillator  
is providing the system clock. If none of these bits are  
set, then either the INTRC clock source is clocking the  
system, or the INTOSC source is not yet stable.  
3.1.3  
MULTIPLE SLEEP COMMANDS  
The Power Managed mode that is invoked with the  
SLEEPinstruction is determined by the settings of the  
IDLEN and SCS bits at the time the instruction is exe-  
cuted. If another SLEEP instruction is executed, the  
device will enter the Power Managed mode specified  
by these same bits at that time. If the bits have  
changed, the device will enter the new Power Managed  
mode specified by the new bit settings.  
3.1.4  
COMPARISONS BETWEEN RUN  
AND IDLE MODES  
Clock source selection for the RUN modes is identical  
to the corresponding IDLE modes. When a SLEEP  
instruction is executed, the SCS bits in the OSCCON  
register are used to switch to a different clock source.  
As a result, if there is a change of clock source at the  
time a SLEEPinstruction is executed, a clock switch will  
occur.  
In IDLE modes, the CPU is not clocked and is not run-  
ning. In RUN modes, the CPU is clocked and executing  
code. This difference modifies the operation of the  
WDT when it times out. In IDLE modes, a WDT time-  
out results in a wake from Power Managed modes. In  
RUN modes, a WDT time-out results in a WDT Reset  
(see Table 3-2).  
If the internal oscillator block is configured as the pri-  
mary clock source in Configuration Register 1H, then  
both the OSTS and IOFS bits may be set when in  
PRI_RUN or PRI_IDLE modes. This indicates that the  
primary clock (INTOSC output) is generating a stable  
8 MHz output. Entering an RC Power Managed mode  
(same frequency) would clear the OSTS bit.  
During a wake-up from an IDLE mode, the CPU starts  
executing code by entering the corresponding RUN  
mode, until the primary clock becomes ready. When  
the primary clock becomes ready, the clock source is  
automatically switched to the primary clock. The IDLEN  
and SCS bits are unchanged during and after the  
wake-up.  
Figure 3-2 shows how the system is clocked during the  
clock source switch. The example assumes the device  
was in SEC_IDLE or SEC_RUN mode when a wake is  
triggered (the primary clock was configured in HSPLL  
mode).  
DS39605B-page 20  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
TABLE 3-2:  
COMPARISON BETWEEN POWER MANAGED MODES  
Power  
Managed  
Mode  
Clock during Wake-up  
(while primary becomes  
ready)  
WDT time-out  
causes a ...  
Peripherals are  
clocked by ...  
CPU is clocked by ...  
SLEEP  
Not clocked (not running) Wake-up  
Not clocked  
None, or INTOSC multiplexer  
if Two-Speed Start-up or  
Fail-Safe Clock Monitor are  
enabled  
Any IDLE mode Not clocked (not running) Wake-up  
Primary, Secondary, or Unchanged from IDLE mode  
INTOSC multiplexer  
(CPU operates as in  
corresponding RUN mode)  
Any RUN mode Secondary, or INTOSC  
multiplexer  
RESET  
Secondary, or INTOSC Unchanged from RUN mode  
multiplexer  
3.2  
SLEEP Mode  
3.3  
IDLE Modes  
The Power Managed SLEEP mode in the PIC18F1220/  
1320 devices is identical to that offered in all other  
PICmicro microcontrollers. It is entered by clearing the  
IDLEN and SCS1:SCS0 bits (this is the RESET state),  
and executing the SLEEPinstruction. This shuts down  
the primary oscillator, and the OSTS bit is cleared (see  
Figure 3-1).  
The IDLEN bit allows the microcontroller’s CPU to be  
selectively shutdown while the peripherals continue to  
operate. Clearing IDLEN allows the CPU to be clocked.  
Setting IDLEN disables clocks to the CPU, effectively  
stopping program execution (see Register 2-2). The  
peripherals continue to be clocked regardless of the  
setting of the IDLEN bit.  
When a wake event occurs in SLEEP mode (by inter-  
rupt, RESET, or WDT time-out), the system will not be  
clocked until the primary clock source becomes ready  
(see Figure 3-2), or it will be clocked from the internal  
oscillator block if either the Two-Speed Start-up or the  
Fail-Safe Clock Monitor are enabled (see Section 19.0,  
“Special Features of the CPU”). In either case, the  
OSTS bit is set when the primary clock is providing the  
system clocks. The IDLEN and SCS bits are not  
affected by the wake-up.  
There is one exception to how the IDLEN bit functions.  
When all the low power OSCCON bits are cleared  
(IDLEN:SCS1:SCS0 = 000), the device enters SLEEP  
mode upon the execution of the SLEEPinstruction. This  
is both the RESET state of the OSCCON register, and  
the setting that selects SLEEP mode. This maintains  
compatibility with other PICmicro devices that do not  
offer Power Managed modes.  
If the IDLE Enable bit, IDLEN (OSCCON<7>), is set to  
a ‘1’ when a SLEEP instruction is executed, the  
peripherals will be clocked from the clock source  
selected using the SCS1:SCS0 bits; however, the CPU  
will not be clocked. Since the CPU is not executing  
instructions, the only exits from any of the IDLE modes  
are by interrupt, WDT time-out or a RESET.  
When a wake event occurs, CPU execution is delayed  
approximately 10 µs while it becomes ready to execute  
code. When the CPU begins executing code, it is  
clocked by the same clock source as was selected in  
the Power Managed mode (i.e., when waking from  
RC_IDLE mode, the internal oscillator block will clock  
the CPU and peripherals until the primary clock source  
becomes ready – this is essentially RC_RUN mode).  
This continues until the primary clock source becomes  
ready. When the primary clock becomes ready, the  
OSTS bit is set, and the system clock source is  
switched to the primary clock (see Figure 3-4). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any IDLE mode or the SLEEP mode, a WDT  
time-out will result in a WDT wake-up to full power  
operation.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 21  
 
 
 
 
PIC18F1220/1320  
FIGURE 3-1:  
TIMING TRANSITION FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
SLEEP  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-2:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2  
OSC1  
(1)  
(1)  
TPLL  
TOST  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
PC + 8  
Wake Event  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
DS39605B-page 22  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
When a wake event occurs, the CPU is clocked from  
the primary clock source. A delay of approximately  
10 µs is required between the wake event and code  
execution starts. This is required to allow the CPU to  
become ready to execute instructions. After the wake-  
up, the OSTS bit remains set. The IDLEN and SCS bits  
are not affected by the wake-up (see Figure 3-4).  
3.3.1  
PRI_IDLE MODE  
This mode is unique among the three Low Power IDLE  
modes, in that it does not disable the primary system  
clock. For timing sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm up” or transition from another  
oscillator.  
PRI_IDLE mode is entered by setting the IDLEN bit,  
clearing the SCS bits, and executing a SLEEPinstruc-  
tion. Although the CPU is disabled, the peripherals con-  
tinue to be clocked from the primary clock source  
specified in Configuration Register 1H. The OSTS bit  
remains set in PRI_IDLE mode (see Figure 3-3).  
FIGURE 3-3:  
TRANSITION TIMING TO PRI_IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-4:  
TRANSITION TIMING FOR WAKE FROM PRI_IDLE MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
CPU Start-up Delay  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC  
Wake Event  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 23  
 
 
 
 
PIC18F1220/1320  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After a 10 µs  
delay following the wake event, the CPU begins exe-  
cuting code, being clocked by the Timer1 oscillator. The  
microcontroller operates in SEC_RUN mode until the  
primary clock becomes ready. When the primary clock  
becomes ready, a clock switchback to the primary clock  
occurs (see Figure 3-6). When the clock switch is com-  
plete, the T1RUN bit is cleared, the OSTS bit is set, and  
the primary clock is providing the system clock. The  
IDLEN and SCS bits are not affected by the wake-up.  
The Timer1 oscillator continues to run.  
3.3.2  
SEC_IDLE MODE  
In SEC_IDLE mode, the CPU is disabled, but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered by setting the IDLE bit,  
modifying to SCS1:SCS0 = 01, and executing a SLEEP  
instruction. When the clock source is switched (see  
Figure 3-5) to the Timer1 oscillator, the primary oscilla-  
tor is shutdown, the OSTS bit is cleared, and the  
T1RUN bit is set.  
Note: The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_IDLE mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started; in such situ-  
ations, initial oscillator operation is far from  
stable and unpredictable operation may  
result.  
FIGURE 3-5:  
TIMING TRANSITION FOR ENTRY TO SEC_IDLE MODE  
Q1 Q2 Q3 Q4 Q1  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-6:  
TIMING TRANSITION FOR WAKE FROM SEC_RUN MODE (HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
T1OSI  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake from Interrupt Event  
DS39605B-page 24  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
ously at a non-zero value before the SLEEPinstruction  
was executed, and the INTOSC source was already  
stable, the IOFS bit will remain set. If the IRCF bits are  
all clear, the INTOSC output is not enabled, and the  
IOFS bit will remain clear; there will be no indication of  
the current clock source.  
3.3.3  
RC_IDLE MODE  
In RC_IDLE mode, the CPU is disabled, but the periph-  
erals continue to be clocked from the internal oscillator  
block using the INTOSC multiplexer. This mode allows  
for controllable power conservation during IDLE  
periods.  
When a wake event occurs, the peripherals continue to  
be clocked from the INTOSC multiplexer. After a 10 µs  
delay following the wake event, the CPU begins exe-  
cuting code, being clocked by the INTOSC multiplexer.  
The microcontroller operates in RC_RUN mode until  
the primary clock becomes ready. When the primary  
clock becomes ready, a clock switchback to the primary  
clock occurs (see Figure 3-8). When the clock switch is  
complete, the IOFS bit is cleared, the OSTS bit is set,  
and the primary clock is providing the system clock.  
The IDLEN and SCS bits are not affected by the wake-  
up. The INTRC source will continue to run if either the  
WDT or the Fail-Safe Clock Monitor is enabled.  
This mode is entered by setting the IDLEN bit, setting  
SCS1 (SCS0 is ignored), and executing a SLEEP  
instruction. The INTOSC multiplexer may be used to  
select a higher clock frequency by modifying the IRCF  
bits before executing the SLEEPinstruction. When the  
clock source is switched to the INTOSC multiplexer  
(see Figure 3-7), the primary oscillator is shutdown,  
and the OSTS bit is cleared.  
If the IRCF bits are set to a non-zero value (thus,  
enabling the INTOSC output), the IOFS bit becomes  
set after the INTOSC output becomes stable, in about  
1 ms. Clocks to the peripherals continue while the  
INTOSC source stabilizes. If the IRCF bits were previ-  
FIGURE 3-7: TIMING TRANSITION TO RC_IDLE MODE  
Q1 Q2 Q3 Q4 Q1  
1
2
3
4
5
6
7
8
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-8:  
TIMING TRANSITION FOR WAKE FROM RC_RUN MODE (RC_RUN TO PRI_RUN)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q4  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake from Interrupt Event  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 25  
 
 
 
 
PIC18F1220/1320  
SEC_RUN mode is entered by clearing the IDLEN bit,  
setting SCS1:SCS0 = 01, and executing a SLEEP  
instruction. The system clock source is switched to the  
Timer1 oscillator (see Figure 3-9), the primary oscilla-  
tor is shutdown, the T1RUN bit (T1CON<6>) is set, and  
the OSTS bit is cleared.  
3.4  
RUN Modes  
If the IDLEN bit is clear when a SLEEP instruction is  
executed, the CPU and peripherals are both clocked  
from the source selected using the SCS1:SCS0 bits.  
While these operating modes may not afford the power  
conservation of IDLE or SLEEP modes, they do allow  
the device to continue executing instructions by using  
a lower frequency clock source. RC_RUN mode also  
offers the possibility of executing code at a frequency  
greater than the primary clock.  
Wake-up from a Power Managed RUN mode can be  
triggered by an interrupt, or any RESET, to return to full  
power operation. As the CPU is executing code in RUN  
modes, several additional exits from RUN modes are  
possible. They include exit to SLEEP mode, exit to a  
corresponding IDLE mode, and exit by executing a  
RESET instruction. While the device is in any of the  
Power Managed RUN modes, a WDT time-out will  
result in a WDT Reset.  
Note: The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, system clocks will be delayed until  
the oscillator has started; in such situa-  
tions, initial oscillator operation is far from  
stable and unpredictable operation may  
result.  
When a wake event occurs, the peripherals and CPU  
continue to be clocked from the Timer1 oscillator while  
the primary clock is started. When the primary clock  
becomes ready, a clock switchback to the primary clock  
occurs (see Figure 3-6). When the clock switch is com-  
plete, the T1RUN bit is cleared, the OSTS bit is set, and  
the primary clock is providing the system clock. The  
IDLEN and SCS bits are not affected by the wake-up.  
The Timer1 oscillator continues to run.  
Firmware can force an exit from SEC_RUN mode. By  
clearing the T1OSCEN bit (T1CON<3>), an exit from  
SEC_RUN back to normal full power operation is trig-  
gered. The Timer1 oscillator will continue to run and  
provide the system clock, even though the T1OSCEN  
bit is cleared. The primary clock is started. When the  
primary clock becomes ready, a clock switchback to the  
primary clock occurs (see Figure 3-6). When the clock  
switch is complete, the Timer1 oscillator is disabled, the  
T1RUN bit is cleared, the OSTS bit is set, and the pri-  
mary clock is providing the system clock. The IDLEN  
and SCS bits are not affected by the wake-up.  
3.4.1  
PRI_RUN MODE  
The PRI_RUN mode is the normal Full Power Execu-  
tion mode. If the SLEEPinstruction is never executed,  
the microcontroller operates in this mode (a SLEEP  
instruction is executed to enter all other Power Man-  
aged modes). All other Power Managed modes exit to  
PRI_RUN mode when an interrupt or WDT time-out  
occur.  
There is no entry to PRI_RUN mode. The OSTS bit is  
set. The IOFS bit may be set if the internal oscillator  
block is the primary clock source (see Section 2.7.1,  
"Oscillator Control Register").  
3.4.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high accuracy clock source.  
FIGURE 3-9:  
TIMING TRANSITION FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 2  
DS39605B-page 26  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
3.4.3  
RC_RUN MODE  
Note: Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD. Improper  
device operation may result if the VDD/  
FOSC specifications are violated.  
If the IRCF bits are all clear, the INTOSC output is not  
enabled and the IOFS bit will remain clear; there will be  
no indication of the current clock source. The INTRC  
source is providing the system clocks.  
If the IRCF bits are changed from all clear (thus,  
enabling the INTOSC output), the IOFS bit becomes  
set after the INTOSC output becomes stable. Clocks to  
the system continue while the INTOSC source  
stabilizes, in approximately 1 ms.  
If the IRCF bits were previously at a non-zero value  
before the SLEEP instruction was executed, and the  
INTOSC source was already stable, the IOFS bit will  
remain set.  
When a wake event occurs, the system continues to be  
clocked from the INTOSC multiplexer while the primary  
clock is started. When the primary clock becomes  
ready, a clock switch to the primary clock occurs (see  
Figure 3-8). When the clock switch is complete, the  
IOFS bit is cleared, the OSTS bit is set, and the primary  
clock is providing the system clock. The IDLEN and  
SCS bits are not affected by the wake-up. The INTRC  
source will continue to run if either the WDT or the  
Fail-Safe Clock Monitor is enabled.  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator block using the  
INTOSC multiplexer, and the primary clock is shut-  
down. When using the INTRC source, this mode pro-  
vides the best power conservation of all the RUN  
modes, while still executing code. It works well for user  
applications which are not highly timing sensitive, or do  
not require high speed clocks at all times.  
If the primary clock source is the internal oscillator  
block (either of the INTIO1 or INTIO2 oscillators), there  
are no distinguishable differences between PRI_RUN  
and RC_RUN modes during execution. However, a  
clock switch delay will occur during entry to, and exit  
from RC_RUN mode. Therefore, if the primary clock  
source is the internal oscillator block, the use of  
RC_RUN mode is not recommended.  
This mode is entered by clearing the IDLEN bit, setting  
SCS1 (SCS0 is ignored), and executing a SLEEP  
instruction. The IRCF bits may select the clock  
frequency before the SLEEP instruction is executed.  
When the clock source is switched to the INTOSC  
multiplexer (see Figure 3-10), the primary oscillator is  
shutdown, and the OSTS bit is cleared.  
The IRCF bits may be modified at any time to immedi-  
ately change the system clock speed. Executing a  
SLEEPinstruction is not required to select a new clock  
frequency from the INTOSC multiplexer.  
FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE  
Q4 Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
4
5
6
7
8
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 27  
 
 
PIC18F1220/1320  
3.4.4  
EXIT TO IDLE MODE  
3.5  
Wake from Power Managed Modes  
An exit from a Power Managed RUN mode to its corre-  
sponding IDLE mode is executed by setting the IDLEN  
bit and executing a SLEEP instruction. The CPU is  
halted at the beginning of the instruction following the  
SLEEPinstruction. There are no changes to any of the  
clock source status bits (OSTS, IOFS, or T1RUN).  
While the CPU is halted, the peripherals continue to be  
clocked from the previously selected clock source.  
An exit from any of the Power Managed modes is trig-  
gered by an interrupt, a RESET, or a WDT time-out.  
This section discusses the triggers that cause exits  
from Power Managed modes. The clocking subsystem  
actions are discussed in each of the Power Managed  
modes (see Sections 3.2 through 3.4).  
Note: If application code is timing sensitive, it  
should wait for the OSTS bit to become set  
before continuing. Use the interval during  
the low power exit sequence (before OSTS  
is set) to perform timing insensitive  
“housekeeping” tasks.  
3.4.5  
EXIT TO SLEEP MODE  
An exit from a Power Managed RUN mode to SLEEP  
mode is executed by clearing the IDLEN and  
SCS1:SCS0 bits and executing a SLEEP instruction.  
The code is no different than the method used to invoke  
SLEEP mode from the normal Operating (Full Power)  
mode.  
The primary clock and internal oscillator block are dis-  
abled. The INTRC will continue to operate if the WDT  
is enabled. The Timer1 oscillator will continue to run, if  
enabled in the T1CON register (Register 12-1). All  
clock source status bits are cleared (OSTS, IOFS, and  
T1RUN).  
Device behavior during Low Power mode exits is  
summarized in Table 3-3.  
3.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit a Power Managed mode and resume full  
power operation. To enable this functionality, an inter-  
rupt source must be enabled by setting its enable bit in  
one of the INTCON or PIE registers. The exit sequence  
is initiated when the corresponding interrupt flag bit is  
set. On all exits from Lower Power mode by interrupt,  
code execution branches to the interrupt vector if the  
GIE/GIEH bit (INTCON<7>) is set. Otherwise, code  
execution continues or resumes without branching  
(see Section 9.0, "Interrupts").  
DS39605B-page 28  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
TABLE 3-3:  
ACTIVITY AND EXIT DELAY ON WAKE FROM SLEEP MODE OR ANY IDLE MODE  
(BY CLOCK SOURCES)  
Power  
Managed  
Mode Exit  
Delay  
Activity during Wake from  
Power Managed Mode  
ClockReady  
Status Bit  
Clock in Power Primary System  
Managed Mode  
Clock  
(OSCCON)  
Exit by Interrupt  
Exit by RESET  
LP, XT, HS  
HSPLL  
CPU and peripherals Not clocked, or  
OSTS  
Primary System  
Clock  
clocked by primary  
clock and executing  
instructions.  
Two-Speed Start-up  
5-10 µs(5)  
(if enabled)(3)  
.
EC, RC, INTRC(1)  
INTOSC(2)  
LP, XT, HS  
HSPLL  
IOFS  
(PRI_IDLE mode)  
OST  
OST + 2 ms  
5-10 µs(5)  
1 ms(4)  
CPU and peripherals  
clocked by selected  
Power Managed mode  
clock, and executing  
instructions until  
primary clock source  
becomes ready.  
OSTS  
T1OSC or  
INTRC(1)  
EC, RC, INTRC(1)  
INTOSC(2)  
LP, XT, HS  
HSPLL  
IOFS  
OST  
OSTS  
OST + 2 ms  
5-10 µs(5)  
None  
INTOSC(2)  
EC, RC, INTRC(1)  
INTOSC(2)  
LP, XT, HS  
HSPLL  
IOFS  
OST  
Not clocked, or  
OSTS  
Two-Speed Start-up (if  
enabled) until primary  
clock source becomes  
OST + 2 ms  
5-10 µs(5)  
1 ms(4)  
SLEEP mode  
EC, RC, INTRC(1)  
INTOSC(2)  
IOFS  
ready(3)  
.
Note 1: In this instance, refers specifically to the INTRC clock source.  
2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.  
3: Two-Speed Start-up is covered in greater detail in Section 19.3.  
4: Execution continues during the INTOSC stabilization period.  
5: Required delay when waking from SLEEP and all IDLE modes. This delay runs concurrently with any other  
required delays (see Section 3.3).  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 29  
PIC18F1220/1320  
3.5.2  
EXIT BY RESET  
3.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Normally, the device is held in RESET by the Oscillator  
Start-up Timer (OST) until the primary clock (defined in  
Configuration Register 1H) becomes ready. At that  
time, the OSTS bit is set, and the device begins  
executing code.  
Certain exits from Power Managed modes do not  
invoke the OST at all. These are:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; and  
Code execution can begin before the primary clock  
becomes ready. If either the Two-Speed Start-up (see  
Section 19.3), or Fail-Safe Clock Monitor (see  
Section 19.4) are enabled in Configuration Register  
1H, the device may begin execution as soon as the  
RESET source has cleared. Execution is clocked by  
the INTOSC multiplexer driven by the internal oscillator  
block. Since the OSCCON register is cleared following  
all RESETS, the INTRC clock source is selected. A  
higher speed clock may be selected by modifying the  
IRCF bits in the OSCCON register. Execution is  
clocked by the internal oscillator block until either the  
primary clock becomes ready, or a Power Managed  
mode is entered before the primary clock becomes  
ready; the primary clock is then shutdown.  
• the primary clock source is not any of LP, XT, HS  
or HSPLL modes.  
In these cases, the primary clock source either does  
not require an oscillator start-up delay, since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (RC, EC, and INTIO  
Oscillator modes).  
However, a fixed delay (approximately 10 µs) following  
the wake event is required when leaving SLEEP and  
IDLE modes. This delay is required for the CPU to pre-  
pare for execution. Instruction execution resumes on  
the first clock cycle following this delay.  
3.6  
INTOSC Frequency Drift  
3.5.3  
EXIT BY WDT TIME-OUT  
The factory calibrates the internal oscillator block  
output (INTOSC) for 8 MHz (see Table 22.5). However,  
this frequency may drift as VDD or temperature  
changes, which can affect the controller operation in a  
variety of ways.  
It is possible to adjust the INTOSC frequency by modify-  
ing the value in the OSCTUNE register (Register 2-1).  
This has the side effect that the INTRC clock source fre-  
quency is also affected. However, the features that use  
the INTRC source often do not require an exact fre-  
quency. These features include the Fail-Safe Clock  
Monitor, the Watchdog Timer, and the RC_RUN/  
RC_IDLE modes when the INTRC clock source is  
selected.  
A WDT time-out will cause different actions, depending  
on which Power Managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all IDLE modes and  
SLEEP mode), the time-out will result in a wake from the  
Power Managed mode (see Sections 3.2 through 3.4).  
If the device is executing code (all RUN modes), the  
time-out will result in a WDT Reset (see Section 19.2,  
"Watchdog Timer (WDT)").  
The WDT timer and postscaler are cleared by execut-  
ing a SLEEP or CLRWDTinstruction, the loss of a cur-  
rently selected clock source (if the Fail-Safe Clock  
Monitor is enabled), and modifying the IRCF bits in the  
OSCCON register if the internal oscillator block is the  
system clock source.  
Being able to adjust the INTOSC requires knowing  
when an adjustment is required, in which direction it  
should be made, and in some cases, how large a  
change is needed. Three examples are shown below,  
but other techniques may be used.  
DS39605B-page 30  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
3.6.1  
EXAMPLE - USART  
3.6.3  
EXAMPLE – CCP IN CAPTURE  
MODE  
An adjustment may be indicated when the USART  
begins to generate framing errors, or receives data with  
errors while in Asynchronous mode. Framing errors  
indicate that the system clock frequency is too high –  
try decrementing the value in the OSCTUNE register to  
reduce the system clock frequency. Errors in data may  
suggest that the system clock speed is too low –  
increment OSCTUNE.  
A CCP module can use free running Timer1 (or  
Timer3), clocked by the internal oscillator block and an  
external event with a known period (i.e., AC power fre-  
quency). The time of the first event is captured in the  
CCPRxH:CCPRxL registers, and is recorded for use  
later. When the second event causes a capture, the  
time of the first event is subtracted from the time of the  
second event. Since the period of the external event is  
known, the time difference between events can be  
calculated.  
If the measured time is much greater than the calcu-  
lated time, the internal oscillator block is running too  
fast – decrement OSCTUNE. If the measured time is  
much less than the calculated time, the internal  
oscillator block is running too slow – increment  
OSCTUNE.  
3.6.2  
EXAMPLE – TIMERS  
This technique compares system clock speed to some  
reference clock. Two timers may be used; one timer is  
clocked by the peripheral clock, while the other is  
clocked by a fixed reference source, such as the  
Timer1 oscillator.  
Both timers are cleared, but the timer clocked by the  
reference generates interrupts. When an interrupt  
occurs, the internally clocked timer is read and both  
timers are cleared. If the internally clocked timer value  
is greater than expected, then the internal oscillator  
block is running too fast – decrement OSCTUNE.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 31  
PIC18F1220/1320  
NOTES:  
DS39605B-page 32  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register  
(Register 4-1), RI, TO, PD, POR and BOR, are set or  
cleared differently in different RESET situations, as  
indicated in Table 4-2. These bits are used in software  
to determine the nature of the RESET. See Table 4-3  
for a full description of the RESET states of all  
registers.  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 4-1.  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses.  
4.0  
RESET  
The PIC18F1220/1320 devices differentiate between  
various kinds of RESET:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during SLEEP  
d) Watchdog Timer (WDT) Reset (during  
execution)  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
g) Stack Full Reset  
h) Stack Underflow Reset  
Most registers are unaffected by a RESET. Their status  
is unknown on POR and unchanged by all other  
RESETS. The other registers are forced to a “RESET  
state”, depending on the type of RESET that occurred.  
The MCLR pin is not driven low by any internal  
RESETS, including the WDT.  
The MCLR input provided by the MCLR pin can be dis-  
abled with the MCLRE bit in Configuration Register 3H  
(CONFIG3H<7>).  
FIGURE 4-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack  
Stack Full/Underflow Reset  
Pointer  
External Reset  
MCLRE  
( )_IDLE  
SLEEP  
MCLR  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
BOREN  
VDD  
Brown-out  
Reset  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
1024 Cycles  
Chip_Reset  
Q
R
OSC1  
32 µs  
INTRC(1)  
65.5 ms  
PWRT  
11-bit Ripple Counter  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 4-1 for time-out situations.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 33  
 
 
 
PIC18F1220/1320  
4.1  
Power-on Reset (POR)  
4.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, just tie the MCLR pin through a resistor (1k to  
10 k) to VDD. This will eliminate external RC compo-  
nents usually needed to create a Power-on Reset  
delay. A minimum rise rate for VDD is specified  
(parameter D004). For a slow rise time, see Figure 4-2.  
When the device starts normal operation (i.e., exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in RESET until the operating  
conditions are met.  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #33). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP, HS and  
HSPLL modes, and only on Power-on Reset, or on exit  
from most Low Power modes.  
4.4  
PLL Lock Time-out  
With the PLL enabled in its PLL mode, the time-out  
sequence following a Power-on Reset is slightly differ-  
ent from other Oscillator modes. A portion of the  
Power-up Timer is used to provide a fixed time-out that  
is sufficient for the PLL to lock to the main oscillator fre-  
quency. This PLL lock time-out (TPLL) is typically 2 ms  
and follows the Oscillator Start-up Time-out (OST).  
FIGURE 4-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
4.5  
A
Brown-out Reset (BOR)  
configuration bit, BOREN, can disable (if  
VDD  
VDD  
D
clear/programmed), or enable (if set) the Brown-out  
Reset circuitry. If VDD falls below VBOR (parameter  
D005) for greater than TBOR (parameter #35), the  
brown-out situation will reset the chip. A RESET may  
not occur if VDD falls below VBOR for less than TBOR.  
The chip will remain in Brown-out Reset until VDD rises  
above VBOR. If the Power-up Timer is enabled, it will be  
invoked after VDD rises above VBOR; it then will keep  
the chip in RESET for an additional time delay TPWRT  
(parameter #33). If VDD drops below VBOR while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be initial-  
ized. Once VDD rises above VBOR, the Power-up Timer  
will execute the additional time delay. Enabling BOR  
Reset does not automatically enable the PWRT.  
R
R1  
MCLR  
PIC18FXXXX  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 1 kwill limit any current flowing into  
MCLR from external capacitor C, in the event  
of MCLR/VPP pin breakdown due to Electro-  
static Discharge (ESD) or Electrical  
Overstress (EOS).  
4.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, after the POR pulse has cleared, PWRT time-out  
is invoked (if enabled). Then, the OST is activated. The  
total time-out will vary based on oscillator configuration  
and the status of the PWRT. For example, in RC mode  
with the PWRT disabled, there will be no time-out at all.  
Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and  
Figure 4-7 depict time-out sequences on power-up.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, all time-outs will expire. Bring-  
ing MCLR high will begin execution immediately  
(Figure 4-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXXXX device  
operating in parallel.  
4.2  
Power-up Timer (PWRT)  
The Power-up Timer (PWRT) of the PIC18F1220/1320  
is an 11-bit counter, which uses the INTRC source as  
the clock input. This yields a count of 2048 x  
32 µs = 65.6 ms. While the PWRT is counting, the  
device is held in RESET.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
The PWRT is enabled by clearing configuration bit  
PWRTEN.  
Table 4-2 shows the RESET conditions for some  
Special Function Registers, while Table 4-3 shows the  
RESET conditions for all the registers.  
DS39605B-page 34  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
PIC18F1220/1320  
TABLE 4-1:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2) and Brown-out  
PWRTEN = 0 PWRTEN = 1  
Exit from  
Configuration  
Low Power Mode  
HSPLL  
HS, XT, LP  
EC, ECIO  
RC, RCIO  
INTIO1, INTIO2  
66 ms(1) + 1024 TOSC + 2 ms(2)  
66 ms(1) + 1024 TOSC  
66 ms(1)  
1024 TOSC + 2 ms(2)  
1024 TOSC  
1024 TOSC + 2 ms(2)  
1024 TOSC  
5-10 µs(3)  
5-10 µs(3)  
66 ms(1)  
5-10 µs(3)  
5-10 µs(3)  
66 ms(1)  
5-10 µs(3)  
5-10 µs(3)  
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.  
2: 2 ms is the nominal time required for the 4x PLL to lock.  
3: The program memory bias start-up time is always invoked on POR, wake-up from SLEEP, or on any exit  
from Power Managed mode that disables the CPU and instruction execution.  
REGISTER 4-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-1  
POR  
R/W-1  
BOR  
bit 7  
Note: Refer to Section 5.14 (page 58) for bit definitions.  
bit 0  
TABLE 4-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
RCON  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Counter  
Register  
Power-on Reset  
RESETInstruction  
Brown-out  
MCLR during Power Managed  
RUN modes  
0000h  
0000h  
0000h  
0000h  
0--1 1100  
0--0 uuuu  
0--1 11u-  
0--u 1uuu  
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
MCLR during Power Managed  
0000h  
0000h  
0--u 10uu  
0--u 0uuu  
u
u
1
0
0
u
u
u
u
u
u
u
u
u
u
u
IDLE modes and SLEEP  
WDT Time-out during Full  
Power or Power Managed RUN  
MCLR during Full Power  
Execution  
0000h  
0--u uuuu  
u
u
u
u
u
Stack Full Reset (STVREN = 1)  
Stack Underflow RESET  
(STVREN = 1)  
1
u
u
1
Stack Underflow Error (not an  
actual RESET, STVREN = 0)  
WDT Time-out during Power  
Managed IDLE or SLEEP  
Interrupt Exit from Power  
Managed modes  
0000h  
PC + 2  
PC + 2  
u--u uuuu  
u--u 00uu  
u--u u0uu  
u
u
u
u
0
u
u
0
0
u
u
u
u
u
u
u
u
u
1
u
u
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as '0'  
Note:  
When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 35  
 
 
PIC18F1220/1320  
TABLE 4-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
RESET Instruction  
Stack Resets  
TOSU  
TOSH  
TOSL  
1220  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
N/A  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for RESET value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA, and TRISA are enabled, depending on the Oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 5 of PORTA is enabled if MCLR is disabled.  
DS39605B-page 36  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
TABLE 4-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
RESET Instruction  
Stack Resets  
FSR1H  
FSR1L  
BSR  
1220  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- 0000  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0000 q000  
--00 0101  
---- ---0  
0--1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0000 00q0  
--00 0101  
---- ---0  
0--q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuqu  
--uu uuuu  
---- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
PR2  
T2CON  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for RESET value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA, and TRISA are enabled, depending on the Oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 5 of PORTA is enabled if MCLR is disabled.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
TABLE 4-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
RESET Instruction  
Stack Resets  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
PWM1CON  
ECCPAS  
TMR3H  
TMR3L  
T3CON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
1220  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
xxxx xxxx  
xxxx xxxx  
00-0 0000  
-000 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
xx-0 x000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
00-0 0000  
-000 0000  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
uu-0 u000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uu-u uuuu  
-uuu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-u u-uu  
uuuu uuuu  
uuuu uuuu  
uu-0 u000  
0000 0000  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
TXSTA  
RCSTA  
BAUDCTL  
EEADR  
EEDATA  
EECON1  
EECON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for RESET value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA, and TRISA are enabled, depending on the Oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 5 of PORTA is enabled if MCLR is disabled.  
DS39605B-page 38  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
TABLE 4-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
RESET Instruction  
Stack Resets  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
1220  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1--1 -11-  
0--0 -00-  
0--0 -00-  
-111 -111  
-000 -000  
-000 -000  
--00 0000  
1111 1111  
11-1 1111(5)  
xxxx xxxx  
xx-x xxxx(5)  
xxxx xxxx  
xx0x 0000(5,6)  
1--1 -11-  
0--0 -00-  
0--0 -00-  
-111 -111  
-000 -000  
-000 -000  
--00 0000  
1111 1111  
11-1 1111(5)  
uuuu uuuu  
uu-u uuuu(5)  
uuuu uuuu  
uu0u 0000(5,6)  
u--u -uu-  
u--u -uu-(1)  
u--u -uu-  
-uuu -uuu  
-uuu -uuu(1)  
-uuu -uuu  
--uu uuuu  
uuuu uuuu  
uu-u uuuu(5)  
uuuu uuuu  
uu-u uuuu(5)  
uuuu uuuu  
uuuu uuuu(5,6)  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
OSCTUNE  
TRISB  
TRISA(5)  
LATB  
LATA(5)  
PORTB  
PORTA(5,6)  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as '0', q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for RESET value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA, and TRISA are enabled, depending on the Oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 5 of PORTA is enabled if MCLR is disabled.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 39  
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
FIGURE 4-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS39605B-page 40  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
FIGURE 4-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 4-7:  
TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note: TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 41  
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 42  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
5.1  
Program Memory Organization  
5.0  
MEMORY ORGANIZATION  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ‘0’s (a NOP  
instruction).  
The PIC18F1220 has 4 Kbytes of FLASH memory and  
can store up to 2,048 single word instructions.  
The PIC18F1320 has 8 Kbytes of FLASH memory and  
can store up to 4,096 single word instructions.  
The RESET vector address is at 0000h and the  
interrupt vector addresses are at 0008h and 0018h.  
There are three memory types in Enhanced MCU  
devices. These memory types are:  
• Program Memory  
• Data RAM  
• Data EEPROM  
Data and program memory use separate busses,  
which allows for concurrent access of these types.  
Additional detailed information for FLASH program  
memory and Data EEPROM is provided in Section 6.0  
and Section 7.0, respectively.  
The Program Memory Maps for the PIC18F1220 and  
PIC18F1320 devices are shown in Figure 5-1 and  
Figure 5-2, respectively.  
FIGURE 5-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F1320  
FIGURE 5-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F1220  
PC<20:0>  
CALL,RCALL,RETURN  
PC<20:0>  
CALL,RCALL,RETURN  
21  
21  
RETFIE,RETLW  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
RESET Vector  
Stack Level 31  
RESET Vector  
0000h  
0000h  
0008h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector 0018h  
On-Chip  
Program Memory  
On-Chip  
0FFFh  
Program Memory  
1000h  
1FFFh  
2000h  
Read ‘0’  
Read ‘0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 43  
 
 
 
 
 
 
 
 
PIC18F1220/1320  
5.2.2  
RETURN STACK POINTER  
(STKPTR)  
5.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed, or an interrupt  
is Acknowledged. The PC value is pulled off the stack  
on a RETURN, RETLW or a RETFIE instruction.  
PCLATU and PCLATH are not affected by any of the  
RETURNor CALLinstructions.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit stack pointer, with the stack pointer initialized to  
00000Bafter all RESETS. There is no RAM associated  
with stack pointer 00000B. This is only a RESET value.  
During a CALLtype instruction, causing a push onto the  
stack, the stack pointer is first incremented and the  
RAM location pointed to by the stack pointer is written  
with the contents of the PC (already pointing to the  
instruction following the call). During a RETURN type  
instruction, causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR are  
transferred to the PC and then the stack pointer is  
decremented.  
The STKPTR register (Register 5-1) contains the stack  
pointer value, the STKFUL (stack full) status bit, and  
the STKUNF (stack underflow) status bits. The value of  
the stack pointer can be 0 through 31. The stack pointer  
increments before values are pushed onto the stack  
and decrements after values are popped off the stack.  
At RESET, the stack pointer value will be zero. The  
user may read and write the stack pointer value. This  
feature can be used by a Real-Time Operating System  
for return stack maintenance.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) configuration bit. (Refer to  
Section 19.1 for a description of the device configura-  
tion bits.) If STVREN is set (default), the 31st push will  
push the (PC + 2) value onto the stack, set the STKFUL  
bit, and reset the device. The STKFUL bit will remain  
set and the stack pointer will be set to zero.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push,  
and STKPTR will remain at 31.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable, and  
the address on the top of the stack is readable and writ-  
able through the top-of-stack special file registers. Data  
can also be pushed to, or popped from, the stack using  
the top-of-stack SFRs. Status bits indicate if the stack  
is full, has overflowed or underflowed.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or a POR occurs.  
5.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL hold the  
contents of the stack location pointed to by the  
STKPTR register (Figure 5-3). This allows users to  
implement a software stack if necessary. After a CALL,  
RCALLor interrupt, the software can read the pushed  
value by reading the TOSU, TOSH and TOSL registers.  
These values can be placed on a user defined software  
stack. At return time, the software can replace the  
TOSU, TOSH and TOSL and do a return.  
Note: Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the RESET vector, where the  
stack conditions can be verified and appro-  
priate actions can be taken. This is not the  
same as a RESET, as the contents of the  
SFRs are not affected.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 5-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
001A34h 00010  
000D58h 00001  
00000  
Top-of-Stack  
DS39605B-page 44  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
PIC18F1220/1320  
REGISTER 5-1:  
STKPTR REGISTER  
R/C-0 R/C-0  
STKFUL STKUNF  
bit 7  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 0  
bit 7(1)  
bit 6(1)  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as '0'  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented  
‘0’ = Bit is cleared  
C = Clearable only bit  
x = Bit is unknown  
5.2.3  
PUSHAND POPINSTRUCTIONS  
5.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program execu-  
tion, is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place data or a return address  
on the stack.  
These RESETS are enabled by programming the  
STVREN bit in Configuration Register 4L. When the  
STVREN bit is cleared, a full or underflow condition will  
set the appropriate STKFUL or STKUNF bit, but not  
cause a device RESET. When the STVREN bit is set, a  
full or underflow condition will set the appropriate  
STKFUL or STKUNF bit and then cause a device  
RESET. The STKFUL or STKUNF bits are cleared by  
the user software or a POR Reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POPinstruction. The POPinstruc-  
tion discards the current TOS by decrementing the  
stack pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 45  
 
 
 
 
PIC18F1220/1320  
5.3  
Fast Register Stack  
5.4  
PCL, PCLATH and PCLATU  
A “fast return” option is available for interrupts. A Fast  
Register Stack is provided for the STATUS, WREG and  
BSR registers and is only one in depth. The stack is not  
readable or writable and is loaded with the current  
value of the corresponding register when the processor  
vectors for an interrupt. The values in the registers are  
then loaded back into the working registers, if the  
RETFIE, FASTinstruction is used to return from the  
interrupt.  
All interrupt sources will push values into the stack reg-  
isters. If both low and high priority interrupts are  
enabled, the stack registers cannot be used reliably to  
return from low priority interrupts. If a high priority inter-  
rupt occurs while servicing a low priority interrupt, the  
stack register values stored by the low priority interrupt  
will be overwritten. Users must save the key registers  
in software during a low priority interrupt.  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte, known as the PCL register, is both  
readable and writable. The high byte, or PCH register,  
contains the PC<15:8> bits and is not directly readable  
or writable. Updates to the PCH register may be per-  
formed through the PCLATH register. The upper byte is  
called PCU. This register contains the PC<20:16> bits  
and is not directly readable or writable. Updates to the  
PCU register may be performed through the PCLATU  
register.  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by any operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 5.8.1).  
If interrupt priority is not used, all interrupts may use the  
Fast Register Stack for returns from interrupt.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of PCL is fixed to a value of ‘0’.  
The PC increments by 2 to address sequential  
instructions in the program memory.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
If no interrupts are used, the Fast Register Stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the Fast Register  
Stack for a subroutine call, a CALL LABEL, FAST  
instruction must be executed to save the STATUS,  
WREG, and BSR registers to the Fast Register Stack.  
A RETURN, FAST instruction is then executed to  
restore these registers from the Fast Register Stack.  
Example 5-1 shows a source code example that uses  
the Fast Register Stack during a subroutine call and  
return.  
EXAMPLE 5-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
DS39605B-page 46  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
PIC18F1220/1320  
5.5  
Clocking Scheme/Instruction  
Cycle  
5.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 5-2).  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 5-4.  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 5-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC  
PC+2  
PC+4  
OSC2/CLKO  
(RC Mode)  
Execute INST (PC-2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+2)  
Fetch INST (PC+4)  
EXAMPLE 5-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 47  
 
 
 
 
 
 
PIC18F1220/1320  
The CALLand GOTOinstructions have the absolute pro-  
gram memory address embedded into the instruction.  
Since instructions are always stored on word bound-  
aries, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 5-5 shows how the  
instruction “GOTO 000006h’ is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner.  
The offset value stored in a branch instruction repre-  
sents the number of single word instructions that the  
PC will be offset by. Section 20.0 provides further  
details of the instruction set.  
5.7  
Instructions in Program Memory  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 5-5 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read ’0’ (see Section 5.4).  
FIGURE 5-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Byte Locations →  
Instruction 1:  
Instruction 2:  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
MOVLW  
GOTO  
055h  
000006h  
Instruction 3:  
MOVFF  
123h, 456h  
second word of the instruction is executed by itself (first  
word was skipped), it will execute as a NOP. This action  
is necessary when the two-word instruction is preceded  
by a conditional instruction that results in a skip opera-  
tion. A program example that demonstrates this con-  
cept is shown in Example 5-3. Refer to Section 20.0 for  
further details of the instruction set.  
5.7.1  
TWO-WORD INSTRUCTIONS  
PIC18F1220/1320 devices have four two-word instruc-  
tions: MOVFF, CALL, GOTOand LFSR. The second  
word of these instructions has the 4 MSBs set to ‘1’s  
and is decoded as a NOPinstruction. The lower 12 bits  
of the second word contain data to be used by the  
instruction. If the first word of the instruction is exe-  
cuted, the data in the second word is accessed. If the  
EXAMPLE 5-3:  
CASE 1:  
Object Code  
TWO-WORD INSTRUCTIONS  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
0010 0100 0000 0000 ADDWF  
REG3  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
0010 0100 0000 0000 ADDWF  
REG3  
; continue code  
DS39605B-page 48  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
PIC18F1220/1320  
5.8  
Lookup Tables  
5.9  
Data Memory Organization  
Lookup tables are implemented two ways:  
• Computed GOTO  
Table Reads  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 5-6  
shows the data memory organization for the  
PIC18F1220/1320 devices.  
The data memory map is divided into as many as 16  
banks that contain 256 bytes each. The lower 4 bits of  
the Bank Select Register (BSR<3:0>) select which  
bank will be accessed. The upper 4 bits for the BSR are  
not implemented.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(FFFh) and extend towards F80h. Any remaining space  
beyond the SFRs in the Bank may be implemented as  
GPRs. GPRs start at the first location of Bank 0 and  
grow upwards. Any read of an unimplemented location  
will read as ‘0’s.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSRn) and a corresponding Indi-  
rect File Operand (INDFn). Each FSR holds a 12-bit  
address value that can be used to access any location  
in the Data Memory map without banking. See  
Example 5.12 for indirect addressing details.  
5.8.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 5-4.  
A lookup table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions, that returns the value 0xnnto the calling  
function.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance, and  
should be multiples of 2 (LSB = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
EXAMPLE 5-4:  
COMPUTED GOTO USING  
AN OFFSET VALUE  
MOVFW  
CALL  
OFFSET  
TABLE  
ORG  
0xnn00  
TABLE ADDWF  
PCL  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 5.10  
provides a detailed description of the Access RAM.  
RETLW  
RETLW  
RETLW  
.
.
.
0xnn  
0xnn  
0xnn  
5.8.2  
TABLE READS/TABLE WRITES  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
Lookup table data may be stored two bytes per pro-  
gram word by using table reads and writes. The table  
pointer (TBLPTR) specifies the byte address and the  
table latch (TABLAT) contains the data that is read  
from, or written to program memory. Data is transferred  
to/from program memory, one byte at a time.  
5.9.1  
GENERAL PURPOSE  
REGISTER FILE  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other RESETS.  
Data RAM is available for use as GPR registers by all  
instructions. The second half of Bank 15 (F80h to  
FFFh) contains SFRs. All other banks of data memory  
contain GPRs, starting with Bank 0.  
The Table Read/Table Write operation is discussed  
further in Section 6.1.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 49  
 
 
 
 
 
 
PIC18F1220/1320  
FIGURE 5-6:  
DATA MEMORY MAP FOR PIC18F1220/1320 DEVICES  
BSR<3:0>  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
00h  
FFh  
Access RAM  
GPR  
= 0000  
Bank 0  
Access Bank  
00h  
Access RAM low  
7Fh  
= 0001  
= 1110  
80h  
Access RAM high  
(SFRs)  
Bank 1  
to  
Unused  
FFh  
Read ’00h’  
Bank 14  
When a = 0,  
The BSR is ignored and the  
Access Bank is used.  
The first 128 bytes are  
General Purpose RAM  
(from Bank 0).  
The second 128 bytes are  
Special Function Registers  
(from Bank 15).  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111  
Bank 15  
When a = 1,  
The BSR specifies the Bank  
used by the instruction.  
DS39605B-page 50  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
5.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and Peripheral Modules for control-  
ling the desired operation of the device. These regis-  
ters are implemented as static RAM. A list of these  
registers is given in Table 5-1 and Table 5-2.  
The SFRs are typically distributed among the peripherals  
whose functions they control.  
The unused SFR locations will be unimplemented and  
read as ‘0’s.  
TABLE 5-1:  
Address  
FFFh  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F1220/1320 DEVICES  
Name  
TOSU  
Address  
Name  
Address  
FBFh  
FBEh  
FBDh  
FBCh  
FBBh  
FBAh  
FB9h  
Name  
Address  
F9Fh  
F9Eh  
F9Dh  
F9Ch  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
Name  
IPR1  
PIR1  
PIE1  
FDFh  
INDF2(2)  
CCPR1H  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
TOSH  
FDEh POSTINC2(2)  
FDDh POSTDEC2(2)  
FDCh PREINC2(2)  
FDBh PLUSW2(2)  
CCPR1L  
TOSL  
CCP1CON  
STKPTR  
PCLATU  
PCLATH  
PCL  
OSCTUNE  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR1H  
TMR1L  
T1CON  
TMR2  
TRISB  
TRISA  
LATB  
LATA  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0(2)  
FB8h  
FB7h PWM1CON  
FB6h  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
ECCPAS  
TMR3H  
TMR3L  
T3CON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
BAUDCTL  
EEADR  
EEDATA  
EECON2  
EECON1  
FEEh POSTINC0(2)  
FEDh POSTDEC0(2)  
FECh PREINC0(2)  
FEBh PLUSW0(2)  
FEAh  
FE9h  
FE8h  
FE7h  
PR2  
T2CON  
FSR0H  
FSR0L  
WREG  
INDF1(2)  
FE6h POSTINC1(2)  
FE5h POSTDEC1(2)  
FE4h PREINC1(2)  
FE3h PLUSW1(2)  
FE2h  
FE1h  
FE0h  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
IPR2  
PIR2  
FSR1H  
FSR1L  
BSR  
PORTB  
PORTA  
PIE2  
Note 1: Unimplemented registers are read as ‘0’.  
2: This is not a physical register.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 51  
 
 
 
PIC18F1220/1320  
TABLE 5-2:  
File Name  
TOSU  
REGISTER FILE SUMMARY (PIC18F1220/1320)  
Value on  
Details on  
page:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
36, 44  
36, 44  
36, 44  
36, 45  
36, 46  
36, 46  
36, 46  
36, 62  
36, 62  
36, 62  
36, 62  
36, 73  
36, 73  
36, 77  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
bit21(3)  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
bit21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INT0E  
RBIE  
TMR0IF  
INT0F  
RBIF  
INTCON2  
INTCON3  
INDF0  
RBPU  
INT2P  
INTEDG0  
INT1P  
INTEDG1  
INTEDG2  
INT2E  
TMR0IP  
RBIP  
1111 -1-1  
11-0 0-00  
n/a  
36, 78  
36, 79  
36, 55  
36, 55  
36, 55  
36, 55  
36, 55  
36, 55  
36, 55  
36  
INT1E  
INT2F  
INT1F  
Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)  
POSTINC0  
n/a  
POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register)  
n/a  
PREINC0  
PLUSW0  
FSR0H  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 offset by W (not a physical register)  
n/a  
n/a  
Indirect Data Memory Address Pointer 0 High  
---- 0000  
xxxx xxxx  
xxxx xxxx  
n/a  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)  
36, 55  
36, 55  
36, 55  
36, 55  
36, 55  
37, 55  
37, 55  
37, 54  
37, 55  
37, 55  
37, 55  
37, 55  
37, 55  
37, 55  
37, 55  
37, 57  
37, 103  
37, 103  
37, 101  
37, 17  
37, 167  
37, 180  
POSTINC1  
n/a  
POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register)  
n/a  
PREINC1  
PLUSW1  
FSR1H  
FSR1L  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 offset by W (not a physical register)  
n/a  
n/a  
Indirect Data Memory Address Pointer 1 High  
---- 0000  
xxxx xxxx  
---- 0000  
n/a  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory - value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)  
POSTINC2  
n/a  
POSTDEC2 Uses contents of FSR2 to address data memory - value of FSR2 post-decremented (not a physical register)  
n/a  
PREINC2  
PLUSW2  
FSR2H  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 offset by W (not a physical register)  
n/a  
n/a  
Indirect Data Memory Address Pointer 2 High  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0000 q000  
--00 0101  
--- ---0  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
TMR0L  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR0ON  
IDLEN  
T08BIT  
IRCF2  
T0CS  
IRCF1  
IVRST  
T0SE  
IRCF0  
LVDEN  
PSA  
OSTS  
LVDL3  
T0PS2  
FLTS  
LVDL2  
T0PS1  
SCS1  
LVDL1  
T0PS0  
SCS0  
LVDL0  
SWDTEN  
BOR  
IPEN  
RI  
TO  
PD  
POR  
0--1 11q0 35, 58, 86  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO, and INTIO2 (with port function on RA6) Oscillator mode only, and read  
‘0’ in all other Oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only, and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’. Otherwise, RA5 reads ‘0’. This bit is read only.  
DS39605B-page 52  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
TABLE 5-2:  
REGISTER FILE SUMMARY (PIC18F1220/1320) (CONTINUED)  
Value on  
Details on  
page:  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
TMR1H  
TMR1L  
T1CON  
TMR2  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
37, 109  
37, 109  
37, 105  
37, 111  
37, 111  
37, 111  
38, 164  
38, 164  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON  
Timer2 Register  
PR2  
Timer2 Period Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
T2CON  
ADRESH  
ADRESL  
T2CKPS0 -000 0000  
xxxx xxxx  
A/D Result Register High Byte  
A/D Result Register Low Byte  
xxxx xxxx  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
PWM1CON  
ECCPAS  
TMR3H  
VCFG1  
VCFG0  
PCFG6  
CHS2  
PCFG4  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
00-0 0000  
--00 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
38, 155  
38, 156  
38, 157  
38. 118  
38, 118  
38, 117  
38, 128  
38, 129  
38, 116  
38, 116  
38, 113  
38  
PCFG5  
ACQT2  
ADFM  
ADCS1  
Capture/Compare/PWM Register1 High Byte  
Capture/Compare/PWM Register1 Low Byte  
P1M1  
P1M0  
PDC6  
DC1B1  
PDC5  
DC1B0  
PDC4  
CCP1M3  
PDC3  
CCP1M2  
PDC2  
CCP1M1  
PDC1  
CCP1M0  
PDC0  
PRSEN  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0  
Timer3 Register High Byte  
PSSAC1  
PSSAC0  
PSSBD1  
PSSBD0  
TMR3L  
Timer3 Register Low Byte  
T3CON  
RD16  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON  
SPBRGH  
SPBRG  
USART Baud Rate Generator High Byte  
USART Baud Rate Generator Low Byte  
USART Receive Register  
38, 137  
RCREG  
38, 145,  
144  
TXREG  
USART Transmit Register  
0000 0000  
38, 142,  
144  
TXSTA  
RCSTA  
BAUDCTL  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR2  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
W4E  
TX9D  
RX9D  
0000 0010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
38, 134  
38, 135  
38  
RCIDL  
ABDEN  
EEPROM Address Register  
EEPROM Data Register  
38, 69  
38, 72  
EEPROM Control Register2 (not a physical register)  
0000 0000 38, 60, 69  
xx-0 x000 38, 61, 70  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
TXIP  
TXIF  
TXIE  
TUN4  
WRERR  
WREN  
LVDIP  
WR  
RD  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
TUN1  
1--1 -11-  
0--0 -00-  
0--0 -00-  
-111 -111  
-000 -000  
-000 -000  
--00 0000  
1111 1111  
11-1 1111  
xxxx xxxx  
xx-x xxxx  
xxxx xxxx  
xx0x 0000  
39, 85  
39, 81  
39, 83  
39, 84  
39, 80  
39, 82  
39, 15  
39, 100  
39, 91  
39, 100  
39, 91  
39, 100  
39, 91  
PIR2  
LVDIF  
PIE2  
LVDIE  
IPR1  
ADIP  
ADIF  
ADIE  
RCIP  
RCIF  
RCIE  
TUN5  
CCP1IP  
CCP1IF  
CCP1IE  
TUN2  
TMR1IP  
TMR1IF  
TMR1IE  
TUN0  
PIR1  
PIE1  
OSCTUNE  
TRISB  
TRISA  
LATB  
TUN3  
Data Direction Control Register for PORTB  
TRISA7(2)  
TRISA6(1)  
Data Direction Control Register for PORTA  
Read/Write PORTB Data Latch  
LATA<7>(2) LATA<6>(1)  
LATA  
Read/Write PORTA Data Latch  
PORTB  
PORTA  
Legend:  
Read PORTB pins, Write PORTB Data Latch  
RA7(2) RA6(1) RA5(4)  
Read PORTA pins, Write PORTA Data Latch  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO, and INTIO2 (with port function on RA6) Oscillator mode only, and read  
‘0’ in all other Oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only, and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’. Otherwise, RA5 reads ‘0’. This bit is read only.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 53  
PIC18F1220/1320  
5.10  
Access Bank  
5.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
This data memory region can be used for:  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
• Faster evaluation/control of SFRs (no banking)  
The Access Bank is comprised of the last 128 bytes in  
Bank 15 (SFRs) and the first 128 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 5-6  
indicates the Access RAM areas.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted as the ‘a’ bit (for  
access bit).  
When forced in the Access Bank (a = 0), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function registers, so these registers can  
be accessed without any software overhead. This is  
useful for testing status flags and modifying control bits.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into as many as sixteen banks. When using  
direct addressing, the BSR should be configured for the  
desired bank.  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ‘0’s, and  
writes will have no effect (see Figure 5-7).  
A MOVLBinstruction has been provided in the instruction  
set to assist in selecting banks.  
If the currently selected bank is not implemented, any  
read will return all '0's and all writes are ignored. The  
STATUS register bits will be set/cleared as appropriate  
for the instruction performed.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A MOVFFinstruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
Section 5.12 provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
FIGURE 5-7:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<7:4>  
BSR<3:0>  
7
0
0
0
0
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
000h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 5-1.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS39605B-page 54  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all ‘0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
STATUS bits are not affected.  
5.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. An FSR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 5-8  
shows how the fetched instruction is modified prior to  
being executed.  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction, using the INDF regis-  
ter, actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself,  
indirectly (FSR = 0), will read 00h. Writing to the INDF  
register indirectly, results in a no operation. The FSR  
register contains a 12-bit address, which is shown in  
Figure 5-9.  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer). This is indirect addressing.  
Example 5-5 shows a simple use of indirect addressing  
to clear the RAM in Bank1 (locations 100h-1FFh) in a  
minimum number of instructions.  
5.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated  
with it, plus four additional register addresses. Perform-  
ing an operation using one of these five registers deter-  
mines how the FSR will be modified during indirect  
addressing.  
When data access is performed using one of the five  
INDFn locations, the address selected will configure  
the FSRn register to:  
• Do nothing to FSRn after an indirect access (no  
change) - INDFn  
• Auto-decrement FSRn after an indirect access  
(post-decrement) - POSTDECn  
• Auto-increment FSRn after an indirect access  
(post-increment) - POSTINCn  
• Auto-increment FSRn before an indirect access  
(pre-increment) - PREINCn  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) - PLUSWn  
When using the auto-increment or auto-decrement fea-  
tures, the effect on the FSR is not reflected in the  
STATUS register. For example, if the indirect address  
causes the FSR to equal ‘0’, the Z bit will not be set.  
Auto-incrementing or auto-decrementing an FSR affects  
all 12 bits. That is, when FSRnL overflows from an  
increment, FSRnH will be incremented automatically.  
EXAMPLE 5-5:  
HOW TO CLEAR RAM  
(BANK1) USING INDIRECT  
ADDRESSING  
LFSR FSR0 ,0x100  
CLRF POSTINC0  
;
NEXT  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
BTFSS FSR0H, 1  
GOTO NEXT  
; NO, clear next  
; YES, continue  
Adding these features allows the FSRn to be used as a  
stack pointer, in addition to its uses for table operations  
in data memory.  
CONTINUE  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bit wide. To store the 12 bits of  
addressing information, two 8-bit registers are required:  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data. If an instruction writes a  
value to INDF0, the value will be written to the address  
pointed to by FSR0H:FSR0L. A read from INDF1 reads  
the data from the address pointed to by  
FSR1H:FSR1L. INDFn can be used in code anywhere  
an operand can be used.  
Each FSR has an address associated with it that per-  
forms an indexed indirect access. When a data access  
to this INDFn location (PLUSWn) occurs, the FSRn is  
configured to add the signed value in the WREG regis-  
ter and the value in FSR to form the address before an  
indirect access. The FSR value is not changed. The  
WREG offset range is -128 to +127.  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(STATUS bits are not affected).  
If an indirect addressing write is performed when the  
target address is an FSRnH or FSRnL register, the data  
is written to the FSR register, but no pre- or  
post-increment/decrement is performed.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 55  
 
 
 
 
 
PIC18F1220/1320  
FIGURE 5-8:  
INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
FFFh  
File Address = Access of an Indirect Addressing Register  
BSR<3:0>  
12  
12  
Instruction  
Fetched  
4
8
Opcode  
File  
FSR  
FIGURE 5-9:  
INDIRECT ADDRESSING  
Indirect Addressing  
FSRnH:FSRnL  
7
3
0
0
0
11  
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 5-1.  
DS39605B-page 56  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the STATUS register, because these instructions  
do not affect the Z, C, DC, OV, or N bits in the STATUS  
register. For other instructions not affecting any status  
bits, see Table 20-2.  
5.13 STATUS Register  
The STATUS register, shown in Register 5-2, contains  
the arithmetic status of the ALU. The STATUS register  
can be the operand for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV, or N bits,  
then the write to these five bits is disabled. These bits  
are set or cleared according to the device logic. There-  
fore, the result of an instruction with the STATUS  
register as destination may be different than intended.  
Note: The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
REGISTER 5-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7-5  
bit 4  
Unimplemented: Read as '0'  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the  
7-bit magnitude, which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLW, and SUBWFinstructions  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLW, AND SUBWFinstructions  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 57  
 
 
PIC18F1220/1320  
5.14 RCON Register  
Note 1: If the BOREN configuration bit is set  
(Brown-out Reset enabled), the BOR bit is  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device RESET. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
‘1’ on  
a Power-on Reset. After a  
Brown-out Reset has occurred, the BOR  
bit will be cleared, and must be set by firm-  
ware to indicate the occurrence of the next  
Brown-out Reset.  
2: It is recommended that the POR bit be set  
after  
a Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
REGISTER 5-3:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
Unimplemented: Read as '0'  
bit 6-5  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESETinstruction was executed causing a device RESET  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Cleared by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred  
(must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 58  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
The program memory space is 16-bits wide, while the  
data RAM space is 8-bits wide. Table Reads and Table  
Writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Table Read operations retrieve data from program  
memory and place it into TABLAT in the data RAM  
space. Figure 6-1 shows the operation of a Table Read  
with program memory and data RAM.  
Table Write operations store data from TABLAT in the  
data memory space into holding registers in program  
memory. The procedure to write the contents of the  
holding registers into program memory is detailed in  
Section 6.5, “Writing to FLASH Program Memory”.  
Figure 6-2 shows the operation of a Table Write with  
program memory and data RAM.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block  
can start and end at any byte address. If a Table Write  
is being used to write executable code into program  
memory, program instructions will need to be word  
aligned (TBLPTRL<0> = 0).  
6.0  
FLASH PROGRAM MEMORY  
The FLASH Program Memory is readable, writable,  
and erasable during normal operation over the entire  
VDD range.  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
may not be issued from user code.  
While writing or erasing program memory, instruction  
fetches cease until the operation is complete. The pro-  
gram memory cannot be accessed during the write or  
erase, therefore, code cannot execute. An internal pro-  
gramming timer terminates program memory writes  
and erases.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
6.1  
Table Reads and Table Writes  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data  
RAM:  
Table Read (TBLRD)  
Table Write (TBLWT)  
The EEPROM on-chip timer controls the write and  
erase times. The write and erase voltages are gener-  
ated by an on-chip charge pump rated to operate over  
the voltage range of the device for byte or word  
operations.  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 59  
 
 
 
 
 
 
PIC18F1220/1320  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
TBLPTRU TBLPTRH TBLPTRL  
Table Latch (8-bit)  
TABLAT  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of eight holding registers, the address of which is determined by  
TBLPTRL<2:0>. The process for physically writing data to the Program Memory Array is discussed  
in Section 6.5.  
The WREN bit enables and disables erase and write  
6.2  
Control Registers  
operations. When set, erase and write operations are  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
allowed. When clear, erase and write operations are  
disabled – the WR bit cannot be set while the WREN bit  
is clear. This process helps to prevent accidental writes  
to memory due to errant (unexpected) code execution.  
Firmware should keep the WREN bit clear at all times,  
except when starting erase or write operations. Once  
firmware has set the WR bit, the WREN bit may be  
cleared. Clearing the WREN bit will not affect the  
operation in progress.  
The WRERR bit is set when a write operation is inter-  
rupted by a RESET. In these situations, the user can  
check the WRERR bit and rewrite the location. It will be  
necessary to reload the data and address registers  
(EEDATA and EEADR) as these registers have cleared  
as a result of the RESET.  
Control bits RD and WR start read and erase/write  
operations, respectively. These bits are set by firm-  
ware, and cleared by hardware at the completion of the  
operation.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bit EEPGD determines if the access will be to  
program or data EEPROM memory. When clear, oper-  
ations will access the data EEPROM memory. When  
set, program memory is accessed.  
Control bit CFGS determines if the access will be to the  
configuration registers, or to program memory/data  
EEPROM memory. When set, subsequent operations  
access configuration registers. When CFGS is clear,  
the EEPGD bit selects either program FLASH or Data  
EEPROM memory.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
Table Read instructions. See Section 6.3 regarding  
Table Reads.  
The FREE bit controls program memory erase opera-  
tions. When the FREE bit is set, the erase operation is  
initiated on the next WR command. When FREE is  
clear, only writes are enabled.  
Note: Interrupt flag bit EEIF, in the PIR2 register,  
is set when the write is complete. It must  
be cleared in software.  
DS39605B-page 60  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
REGISTER 6-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
WRERR  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: FLASH Program or Data EEPROM Memory Select bit  
1= Access program FLASH memory  
0= Access data EEPROM memory  
CFGS: FLASH Program/Data EE or Configuration Select bit  
1= Access configuration registers  
0= Access program FLASH or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as '0'  
FREE: FLASH Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation — TBLPTR<5:0> are ignored)  
0= Perform write only  
bit 3  
WRERR: EEPROM Error Flag bit  
1= A write operation was prematurely terminated  
(any RESET during self-timed programming)  
0= The write operation completed normally  
Note: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Write Enable bit  
1= Allows erase or write cycles  
0= Inhibits erase or write cycles  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle completed  
bit 0  
RD: Read Control bit  
1= Initiates a memory read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Read completed  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
S = Settable only  
- n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 61  
 
PIC18F1220/1320  
6.2.2  
TABLAT - TABLE LATCH REGISTER  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes, and erases of the  
FLASH program memory.  
When a TBLRD is executed, all 22 bits of the Table  
Pointer determine which byte is read from program or  
configuration memory into TABLAT.  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the Table Pointer, TBLPTR  
(TBLPTR<21:3>), will determine which program mem-  
ory block of 8 bytes is written to (TBLPTR<2:0> are  
ignored). For more detail, see Section 6.5 (“Writing to  
FLASH Program Memory”).  
When an erase of program memory is executed, the 16  
MSbs of the Table Pointer (TBLPTR<21:6>) point to the  
64-byte block that will be erased. The Least Significant  
bits (TBLPTR<5:0>) are ignored.  
6.2.3  
TBLPTR - TABLE POINTER  
REGISTER  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. Setting the 22nd bit allows  
access to the Device ID, the User ID and the  
Configuration bits.  
The Table Pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways, based on the table oper-  
ation. These operations are shown in Table 6-1. These  
operations on the TBLPTR only affect the low order  
21 bits.  
Figure 6-3 describes the relevant boundaries of  
TBLPTR based on FLASH program memory  
operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE - TBLPTR<21:6>  
LONG WRITE - TBLPTR<21:3>  
READ or WRITE - TBLPTR<21:0>  
DS39605B-page 62  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
PIC18F1220/1320  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
6.3  
Reading the FLASH Program  
Memory  
The TBLRDinstruction is used to retrieve data from pro-  
gram memory and place into data RAM. Table Reads  
from program memory are performed one byte at a  
time.  
TBLPTR points to a byte address in program space.  
Executing a TBLRDinstruction places the byte pointed  
to into TABLAT. In addition, TBLPTR can be modified  
automatically for the next Table Read operation.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
Odd (High) Byte  
Even (Low) Byte  
TBLPTR  
LSB = 0  
TBLPTR  
LSB = 1  
Instruction Register  
(IR)  
TABLAT  
Read Register  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
READ_WORD  
TBLRD*+  
MOVFW  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT  
MOVWF  
WORD_EVEN  
TBLRD*+  
MOVFW  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT  
MOVWF  
WORD_ODD  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 63  
 
 
 
 
PIC18F1220/1320  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing FLASH Program Memory  
The minimum erase block size is 32 words or 64 bytes  
under firmware control. Only through the use of an  
external programmer, or through ICSP control, can  
larger blocks of program memory be bulk erased. Word  
erase in FLASH memory is not supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load table pointer with address of row being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the FLASH pro-  
gram memory. The CFGS bit must be clear to access  
program FLASH and data EEPROM memory. The  
WREN bit must be set to enable write operations. The  
FREE bit is set to select an erase operation. The WR  
bit is set as part of the required instruction sequence  
(as shown in Example 6-2), and starts the actual erase  
operation. It is not necessary to load the TABLAT  
register with any data as it is ignored.  
2. Set the EECON1 register for the erase operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program  
memory;  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
4. Write 55h to EECON2.  
5. Write AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
8. Execute a NOP.  
For protection, the write initiate sequence using  
EECON2 must be used.  
9. Re-enable interrupts.  
A long write is necessary for erasing the internal  
FLASH. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1,EEPGD  
EECON1,WREN  
EECON1,FREE  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
; point to FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
; write 55H  
Required  
Sequence  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON,GIE  
; re-enable interrupts  
DS39605B-page 64  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
PIC18F1220/1320  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the Table Write  
operations will essentially be short writes, because only  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
The long write is necessary for programming the inter-  
nal FLASH. Instruction execution is halted while in a  
long write cycle. The long write will be terminated by  
the internal programming timer.  
6.5  
Writing to FLASH Program  
Memory  
The programming block size is 4 words or 8 bytes.  
Word or byte programming is not supported.  
Table Writes are used internally to load the holding reg-  
isters needed to program the FLASH memory. There  
are 8 holding registers used by the Table Writes for  
programming.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
TBLPTR = xxxxx7  
Holding Register  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
9. Write 55h to EECON2.  
10. Write AAh to EECON2.  
11. Set the WR bit. This will begin the write cycle.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
The sequence of events for programming an internal  
program memory location should be:  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer with address being erased.  
4. Do the row erase procedure (see Section 6.4.1).  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
13. Execute a NOP.  
14. Re-enable interrupts.  
15. Repeat steps 6-14 seven times, to write  
5. Load Table Pointer with address of first byte  
64 bytes.  
being written.  
16. Verify the memory (Table Read).  
6. Write the first 8 bytes into the holding registers  
with auto-increment.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program memory;  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 6-3.  
• clear the CFGS bit to access program  
memory;  
• set WREN bit to enable byte writes.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 65  
 
 
 
 
PIC18F1220/1320  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
D'64  
; number of bytes in erase block  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data and increment FSR0  
; done?  
TABLAT, W  
POSTINC0  
DECFSZ COUNTER  
GOTO  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word and increment FSR0  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1,CFGS  
EECON1,EEPGD  
EECON1,WREN  
EECON1,FREE  
INTCON,GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
; point to PROG/EEPROM memory  
; point to FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
; Required sequence  
; write 55H  
EECON2  
AAh  
EECON2  
EECON1,WR  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON,GIE  
; re-enable interrupts  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
BUFFER_ADDR_HIGH  
FSR0H  
MOVLW  
MOVWF  
BUFFER_ADDR_LOW  
FSR0L  
PROGRAM_LOOP  
MOVLW  
8
; number of bytes in holding register  
MOVWF  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVF  
POSTINC0, W  
TABLAT  
; get low byte of buffer data and increment FSR0  
; present data to table latch  
; short write  
MOVWF  
TBLWT+*  
; to internal TBLWT holding register, increment  
TBLPTR  
DECFSZ COUNTER  
; loop until buffers are full  
GOTO  
WRITE_WORD_TO_HREGS  
DS39605B-page 66  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
PROGRAM_MEMORY  
BCF  
INTCON,GIE  
55h  
EECON2  
AAh  
; disable interrupts  
; required sequence  
; write 55H  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON2  
EECON1,WR  
; write AAH  
; start program (CPU stall)  
NOP  
BSF  
INTCON,GIE  
; re-enable interrupts  
; loop until done  
DECFSZ COUNTER_HI  
GOTO PROGRAM_LOOP  
BCF  
EECON1,WREN  
; disable write to memory  
6.5.2  
WRITE VERIFY  
6.6  
FLASH Program Operation During  
Code Protection  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
See “Special Features of the CPU(Section 19.0) for  
details on code protection of FLASH program memory.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected RESET, the memory  
location just programmed should be verified and repro-  
grammed if needed.The WRERR bit is set when a write  
operation is interrupted by a MCLR Reset, or a WDT  
Time-out Reset during normal operation. In these situ-  
ations, users can check the WRERR bit and rewrite the  
location.  
TABLE 6-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
Value on:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
POR, BOR  
TBLPTRU  
bit21 Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
--00 0000 --00 0000  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
TABLAT  
INTCON  
EECON2  
EECON1  
IPR2  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
EEPROM Control Register2 (not a physical register)  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
1--1 1111 1--1 1111  
0--0 0000 0--0 0000  
0--0 0000 0--0 0000  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
PIR2  
PIE2  
Legend: x= unknown, u= unchanged, r = reserved, - = unimplemented, read as '0'.  
Shaded cells are not used during FLASH/EEPROM access.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 67  
 
 
 
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 68  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
Control bit CFGS determines if the access will be to the  
configuration registers or to program memory/data  
EEPROM memory. When set, subsequent operations  
access configuration registers. When CFGS is clear,  
the EEPGD bit selects either program FLASH, or Data  
EEPROM memory.  
The WREN bit enables and disables erase and write  
operations. When set, erase and write operations are  
allowed. When clear, erase and write operations are  
disabled – the WR bit cannot be set while the WREN bit  
is clear. This mechanism helps to prevent accidental  
writes to memory due to errant (unexpected) code  
execution.  
Firmware should keep the WREN bit clear at all times,  
except when starting erase or write operations. Once  
firmware has set the WR bit, the WREN bit may be  
cleared. Clearing the WREN bit will not affect the  
operation in progress.  
The WRERR bit is set when a write operation is inter-  
rupted by a RESET. In these situations, the user can  
check the WRERR bit and rewrite the location. It is nec-  
essary to reload the data and address registers  
(EEDATA and EEADR), as these registers have  
cleared as a result of the RESET.  
7.0  
DATA EEPROM MEMORY  
The Data EEPROM is readable and writable during  
normal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
There are four SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed.  
These devices have 256 bytes of data EEPROM with  
an address range from 00h to FFh.  
The EEPROM data memory is rated for high erase/write  
cycle endurance. A byte write automatically erases the  
location and writes the new data (erase-before-write).  
The write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature, as well as  
from chip to chip. Please refer to parameter D122  
(Table 22-1 in the "Electrical Characteristics" section) for  
exact limits.  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firm-  
ware, and cleared by hardware at the completion of the  
operation.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
Table Read instructions. See Section 6.1 regarding  
Table Reads.  
7.1  
EEADR  
The address register can address 256 bytes of data  
EEPROM.  
7.2  
EECON1 and EECON2 Registers  
Note: Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bit EEPGD determines if the access will be to  
program or data EEPROM memory. When clear, oper-  
ations will access the data EEPROM memory. When  
set, program memory is accessed.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 69  
 
 
 
 
PIC18F1220/1320  
REGISTER 7-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
WRERR  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: FLASH Program or Data EEPROM Memory Select bit  
1= Access program FLASH memory  
0= Access data EEPROM memory  
CFGS: FLASH Program/Data EE or Configuration Select bit  
1= Access configuration or calibration registers  
0= Access program FLASH or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: FLASH Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: EEPROM Error Flag bit  
1= A write operation was prematurely terminated  
(MCLR or WDT Reset during self-timed erase or program operation)  
0= The write operation completed normally  
Note: When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows tracing  
of the error condition.  
bit 2  
bit 1  
WREN: Erase/Write Enable bit  
1= Allows erase/write cycles  
0= Inhibits erase/write cycles  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle, or a program memory erase cycle, or write  
cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle is completed  
bit 0  
RD: Read Control bit  
1= Initiates a memory read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Read completed  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
S = Settable only  
- n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
DS39605B-page 70  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
After a write sequence has been initiated, EECON1,  
EEADR and EEDATA cannot be modified. The WR bit  
will be inhibited from being set unless the WREN bit is  
set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Interrupt Flag bit  
(EEIF) is set. The user may either enable this interrupt,  
or poll this bit. EEIF must be cleared by software.  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD con-  
trol bit (EECON1<7>) and then set control bit RD  
(EECON1<0>). The data is available for the very next  
instruction cycle; therefore, the EEDATA register can  
be read by the next instruction. EEDATA will hold this  
value until another read operation, or until it is written to  
by the user (during a write operation).  
7.5  
Write Verify  
7.4  
Writing to the Data EEPROM  
Memory  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data writ-  
ten to the EEDATA register. The sequence in  
Example 7-2 must be followed to initiate the write cycle.  
7.6  
Protection Against Spurious Write  
The write will not begin if this sequence is not exactly  
followed (write 55h to EECON2, write AAh to EECON2,  
then set WR bit) for each byte. It is strongly recom-  
mended that interrupts be disabled during this  
code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times, except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
BCF  
DATA_EE_ADDR  
EEADR  
EECON1, EEPGD ; Point to DATA memory  
;
; Data Memory Address to read  
BSF  
MOVF  
EECON1, RD  
EEDATA, W  
; EEPROM Read  
; W = EEDATA  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
DATA_EE_ADDR  
EEADR  
;
MOVWF  
MOVLW  
MOVWF  
BCF  
; Data Memory Address to write  
DATA_EE_DATA  
EEDATA  
;
; Data Memory Value to write  
EECON1, EEPGD ; Point to DATA memory  
BSF  
BCF  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; Enable writes  
; Disable Interrupts  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Enable Interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
BSF  
SLEEP  
BCF  
; Wait for interrupt to signal write complete  
; Disable writes  
EECON1, WREN  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 71  
 
 
 
 
 
 
 
PIC18F1220/1320  
7.7  
Operation During Code Protect  
7.8  
Using the Data EEPROM  
Data EEPROM memory has its own code protect bits in  
configuration words. External Read and Write opera-  
tions are disabled if either of these mechanisms are  
enabled.  
The microcontroller itself can both read and write to the  
internal Data EEPROM, regardless of the state of the  
code protect configuration bit. Refer to “Special  
Features of the CPU” (Section 19.0) for additional  
information.  
The Data EEPROM is a high endurance, byte addres-  
sable array that has been optimized for the storage of  
frequently changing information (e.g., program vari-  
ables or other data that are updated often). Frequently  
changing values will typically be updated more often  
than specification D124 or D124A. If this is not the  
case, an array refresh must be performed. For this rea-  
son, variables that change infrequently (such as con-  
stants, IDs, calibration, etc.) should be stored in FLASH  
program memory.  
A simple data EEPROM refresh routine is shown in  
Example 7-3.  
Note: If data EEPROM is only used to store con-  
stants and/or data that changes rarely, an  
array refresh is likely not required. See  
specification D124 or D124A.  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
clrf  
bcf  
EEADR  
; Start at address 0  
EECON1,CFGS  
EECON1,EEPGD  
INTCON,GIE  
EECON1,WREN  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
bcf  
bcf  
bsf  
Loop  
bsf  
EECON1,RD  
55h  
movlw  
movwf  
movlw  
movwf  
bsf  
EECON2  
AAh  
; Write 55h  
;
EECON2  
EECON1,WR  
EECON1,WR  
$-2  
; Write AAh  
; Set WR bit to begin write  
; Wait for write to complete  
btfsc  
bra  
incfsz EEADR,F  
; Increment address  
bra  
Loop  
; Not zero, do it again  
bcf  
bsf  
EECON1,WREN  
INTCON,GIE  
; Disable writes  
; Enable interrupts  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
all other  
RESETS  
Value on:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
EEADR  
EEDATA  
GIE/GIEH PEIE/GIEL TMR0IE  
EEPROM Address Register  
EEPROM Data Register  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
EECON2 EEPROM Control Register2 (not a physical register)  
EECON1  
IPR2  
PIR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP CCP2IP 1--1 1111 1--1 1111  
TMR3IF CCP2IF 0--0 0000 0--0 0000  
TMR3IE CCP2IE 0--0 0000 0--0 0000  
PIE2  
Legend: x= unknown, u= unchanged, r= reserved, - = unimplemented, read as '0'.  
Shaded cells are not used during FLASH/EEPROM access.  
DS39605B-page 72  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
PIC18F1220/1320  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
• Higher computational throughput  
• Reduces code size requirements for multiply  
algorithms  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
Table 8-1 shows a performance comparison between  
enhanced devices using the single cycle hardware mul-  
tiply, and performing the same function without the  
hardware multiply.  
8.0  
8.1  
8 X 8 HARDWARE MULTIPLIER  
Introduction  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18F1220/1320 devices. By making the multiply  
a hardware operation, it completes in a single instruc-  
tion cycle. This is an unsigned multiply that gives a  
16-bit result. The result is stored into the 16-bit product  
register pair (PRODH:PRODL). The multiplier does not  
affect any flags in the STATUS register.  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
Cycles  
Multiply Method  
Memory  
(Words)  
(Max)  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
Without hardware multiply  
Hardware multiply  
Without hardware multiply  
Hardware multiply  
Without hardware multiply  
Hardware multiply  
13  
1
33  
6
21  
24  
52  
36  
69  
1
91  
6
242  
24  
254  
36  
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.4 µs  
25.4 µs  
3.6 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
96.8 µs  
9.6 µs  
69 µs  
1 µs  
91 µs  
6 µs  
242 µs  
24 µs  
254 µs  
36 µs  
8 x 8 unsigned  
8 x 8 signed  
16 x 16 unsigned  
16 x 16 signed  
102.6 µs  
14.4 µs  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
8.2  
Operation  
MULTIPLY ROUTINE  
Example 8-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
MOVF  
ARG1, W  
ARG2  
;
MULWF  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG1  
MOVF  
ARG2, W  
ARG1, SB  
PRODH, F  
BTFSC  
SUBWF  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 73  
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 8-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
= ARG1H:ARG1L ARG2H:ARG2L  
= (ARG1H ARG2H 216) +  
(ARG1H ARG2L 28) +  
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L) +  
RES3:RES0 = ARG1H:ARG1L ARG2H:ARG2L  
= (ARG1H ARG2H 216)+  
(ARG1H ARG2L 28) +  
(-1 ARG2H<7> ARG1H:ARG1L 216) +  
(-1 ARG1H<7> ARG2H:ARG2L 216)  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L)  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MOVF  
MULWF  
ARG1L,  
ARG2L  
W
MULTIPLY ROUTINE  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
MOVF  
ARG1L, W  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MULWF  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
;
;
MOVF  
MULWF  
ARG1H,  
ARG2H  
W
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H,  
ARG2H  
W
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1L,  
ARG2H  
W
; ARG1L * ARG2H ->  
; PRODH:PRODL  
MOVF  
MULWF  
ARG1L,  
ARG2H  
W
MOVF  
ADDWF  
MOVF  
PRODL,  
RES1,  
PRODH,  
W
F
W
F
;
; ARG1L * ARG2H ->  
; PRODH:PRODL  
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2,  
CLRF WREG  
ADDWFC RES3,  
PRODL,  
RES1,  
PRODH,  
W
F
W
F
;
ADDWFC RES2,  
CLRF WREG  
ADDWFC RES3,  
; Add cross  
; products  
;
;
;
F
W
;
MOVF  
MULWF  
ARG1H,  
ARG2L  
;
F
W
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
MOVF  
MULWF  
ARG1H,  
ARG2L  
;
MOVF  
ADDWF  
MOVF  
PRODL,  
RES1,  
PRODH,  
W
F
W
F
;
; ARG1H * ARG2L ->  
; Add cross  
; products  
;
;
;
; PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
ADDWFC RES2,  
CLRF WREG  
ADDWFC RES3,  
PRODL,  
RES1,  
PRODH,  
W
F
W
F
;
ADDWFC RES2,  
CLRF WREG  
ADDWFC RES3,  
; Add cross  
; products  
;
;
;
F
7
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H,  
SIGN_ARG1  
ARG1L,  
RES2  
ARG1H,  
; ARG2H:ARG2L neg?  
F
; no, check ARG1  
W
;
;
;
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs’ Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
W
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H,  
CONT_CODE  
7
; ARG1H:ARG1L neg?  
; no, done  
MOVF  
SUBWF  
MOVF  
ARG2L,  
RES2  
ARG2H,  
W
W
;
;
;
SUBWFB RES3  
;
CONT_CODE  
:
DS39605B-page 74  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
PIC18F1220/1320  
When the IPEN bit is cleared (default state), the inter-  
rupt priority feature is disabled and interrupts are com-  
patible with PICmicro® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit,  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit, which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
When an interrupt is responded to, the Global Interrupt  
Enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt. Low priority interrupts are not  
processed while high priority interrupts are in progress.  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or  
GIEL, if priority levels are used), which re-enables  
interrupts.  
9.0  
INTERRUPTS  
The PIC18F1220/1320 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level or a low priority level. The high priority interrupt  
vector is at 000008h and the low priority interrupt vector  
is at 000018h. High priority interrupt events will  
interrupt any low priority interrupts that may be in  
progress.  
There are ten registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
• PIR1, PIR2  
• PIE1, PIE2  
• IPR1, IPR2  
It is recommended that the Microchip header files sup-  
plied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
Each interrupt source has three bits to control its  
operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit, or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts glo-  
bally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all inter-  
rupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate glo-  
bal interrupt enable bit are set, the interrupt will vector  
immediately to address 000008h or 000018h, depend-  
ing on the priority bit setting. Individual interrupts can  
be disabled through their corresponding enable bits.  
Note: Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 75  
 
 
PIC18F1220/1320  
FIGURE 9-1:  
INTERRUPT LOGIC  
Wake-up if in Low Power Mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT0IF  
INT0IE  
INT0IP  
GIEH/GIE  
ADIF  
ADIE  
ADIP  
IPE  
IPEN  
GIEL/PEIE  
RCIF  
RCIE  
RCIP  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
INT0IF  
INT0IE  
INT0IP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
ADIF  
ADIE  
ADIP  
RBIF  
RBIE  
RBIP  
GIEL\PEIE  
GIE\GIEH  
RCIF  
RCIE  
RCIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39605B-page 76  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
9.1  
INTCON Registers  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
The INTCON Registers are readable and writable reg-  
isters, which contain various enable, priority and flag  
bits.  
REGISTER 9-1:  
INTCON REGISTER  
R/W-0 R/W-0  
GIE/GIEH PEIE/GIEL  
bit 7  
R/W-0  
TMR0IE  
R/W-0  
INT0IE  
R/W-0  
RBIE  
R/W-0  
TMR0IF  
R/W-0  
INT0IF  
R/W-x  
RBIF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
bit 2  
bit 1  
bit 0  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note: A mismatch condition will continue to set this bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 77  
 
 
PIC18F1220/1320  
REGISTER 9-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
TMR0IP  
U-0  
R/W-1  
RBIP  
INTEDG0 INTEDG1 INTEDG2  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as '0'  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as '0'  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
DS39605B-page 78  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
REGISTER 9-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
U-0  
R/W-0  
INT2IE  
R/W-0  
INT1IE  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as '0'  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as '0'  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 79  
 
PIC18F1220/1320  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Flag Registers (PIR1, PIR2).  
2: User software should ensure the appropriate  
interrupt flag bits are cleared prior to enabling  
an interrupt, and after servicing that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
U-0  
R/W-0  
ADIF  
R-0  
RCIF  
R-0  
TXIF  
U-0  
R/W-0  
CCP1IF  
R/W-0  
TMR2IF  
R/W-0  
TMR1IF  
bit 0  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5  
bit 4  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART transmit buffer is full  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 80  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
OSCFIF  
bit 7  
U-0  
U-0  
R/W-0  
EEIF  
U-0  
R/W-0  
LVDIF  
R/W-0  
TMR3IF  
U-0  
bit 0  
bit 7  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
bit 6-5  
bit 4  
Unimplemented: Read as '0'  
EEIF: Data EEPROM/FLASH Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete, or has not been started  
bit 3  
bit 2  
Unimplemented: Read as '0'  
LVDIF: Low Voltage Detect Interrupt Flag bit  
1= A low voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low Voltage Detect trip point  
bit 1  
bit 0  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
Unimplemented: Read as '0'  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 81  
 
PIC18F1220/1320  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two Peripheral Inter-  
rupt Enable Registers (PIE1, PIE2). When IPEN = 0,  
the PEIE bit must be set to enable any of these  
peripheral interrupts.  
REGISTER 9-6:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
U-0  
R/W-0  
R/W-0  
TMR2IE  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5  
bit 4  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
bit 3  
bit 2  
Unimplemented: Read as '0'  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
bit 1  
bit 0  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 82  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
REGISTER 9-7:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSCFIE  
bit 7  
U-0  
U-0  
R/W-0  
EEIE  
U-0  
R/W-0  
LVDIE  
R/W-0  
TMR3IE  
U-0  
bit 0  
bit 7  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Data EEPROM/FLASH Write Operation Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIE: Low Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 1  
bit 0  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
Unimplemented: Read as '0'  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 83  
 
PIC18F1220/1320  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of periph-  
eral interrupt sources, there are two peripheral Interrupt  
Priority Registers (IPR1, IPR2). Using the priority bits  
requires that the Interrupt Priority Enable (IPEN) bit be  
set.  
REGISTER 9-8:  
IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
U-0  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
U-0  
R/W-1  
R/W-1  
TMR2IP  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
Unimplemented: Read as '0'  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 84  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
REGISTER 9-9:  
IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
OSCFIP  
bit 7  
U-0  
U-0  
R/W-1  
EEIP  
U-0  
R/W-1  
LVDIP  
R/W-1  
TMR3IP  
U-0  
bit 0  
bit 7  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 6-5  
bit 4  
Unimplemented: Read as '0'  
EEIP: Data EEPROM/FLASH Write Operation Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
Unimplemented: Read as '0'  
LVDIP: Low Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Unimplemented: Read as '0'  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 85  
 
PIC18F1220/1320  
9.5  
RCON Register  
The RCON register contains bits used to determine the  
cause of the last RESET or wake-up from Low Power  
mode. RCON also contains the bit that enables  
interrupt priorities (IPEN).  
REGISTER 9-10: RCON REGISTER  
R/W-0  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
IPEN  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
bit 6-5  
bit 4  
For details of bit operation, see Register 5-3  
TO: Watchdog Time-out Flag bit  
For details of bit operation, see Register 5-3  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 5-3  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 5-3  
BOR: Brown-out Reset Status bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 5-3  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 86  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
9.6  
INTn Pin Interrupts  
9.7  
TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge triggered: either rising, if the  
corresponding INTEDGx bit is set in the INTCON2 reg-  
ister, or falling, if the INTEDGx bit is clear. When a valid  
edge appears on the RBx/INTx pin, the corresponding  
flag bit INTxF is set. This interrupt can be disabled by  
clearing the corresponding enable bit INTxE. Flag bit  
INTxF must be cleared in software in the Interrupt Ser-  
vice Routine before re-enabling the interrupt. All exter-  
nal interrupts (INT0, INT1 and INT2) can wake-up the  
processor from Low Power modes, if bit INTxE was set  
prior to going into Low Power modes. If the global inter-  
rupt enable bit GIE is set, the processor will branch to  
the interrupt vector following wake-up.  
In 8-bit mode (which is the default), an overflow (FFh →  
00h) in the TMR0 register will set flag bit TMR0IF. In  
16-bit mode, an overflow (FFFFh 0000h) in the  
TMR0H:TMR0L registers will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit TMR0IE (INTCON<5>). Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit TMR0IP (INTCON2<2>). See  
Section 11.0 for further details on the Timer0 module.  
9.8  
PORTB Interrupt-on-Change  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits, INT1IP  
(INTCON3<6>) and INT2IP (INTCON3<7>). There is  
no priority bit associated with INT0. It is always a high  
priority interrupt source.  
9.9  
Context Saving During Interrupts  
During interrupts, the return PC address is saved on the  
stack. Additionally, the WREG, STATUS and BSR regis-  
ters are saved on the fast return stack. If a fast return  
from interrupt is not used (see Section 5.3), the user  
may need to save the WREG, STATUS and BSR regis-  
ters on entry to the Interrupt Service Routine. Depending  
on the user’s application, other registers may also need  
to be saved. Example 9-1 saves and restores the  
WREG, STATUS and BSR registers during an Interrupt  
Service Routine.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS,STATUS_TEMP  
BSR,  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
BSR_TEMP  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP,  
STATUS_TEMP,STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
W
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 87  
 
 
 
 
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 88  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register reads and writes the latched output value for  
PORTA.  
The RA4 pin is multiplexed with the Timer0 module  
clock input and one of the comparator outputs to  
become the RA4/T0CKI/C1OUT pin.  
10.0 I/O PORTS  
Depending on the device selected and features  
enabled, there are up to five ports available. Some pins  
of the I/O ports are multiplexed with an alternate func-  
tion from the peripheral features on the device. In gen-  
eral, when a peripheral is enabled, that pin may not be  
used as a general purpose I/O pin.  
The fourth pin of PORTA (RA5/MCLR/VPP) is an input  
only pin. Its operation is controlled by the MCLRE con-  
figuration bit in Configuration Register 3H  
(CONFIG3H<7>). When selected as a port pin  
(MCLRE = 0), it functions as a digital input only pin; as  
such, it does not have TRIS or LAT bits associated with  
its operation. Otherwise, it functions as the device’s  
Master Clear input. In either configuration, RA5 also  
functions as the programming voltage input during  
programming.  
Each port has three registers for its operation. These  
registers are:  
• TRIS register (data direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The data latch (LAT register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
A simplified model of a generic I/O port without the  
interfaces to other peripherals is shown in Figure 10-1.  
Note: On a Power-on Reset, RA5 is enabled as a  
digital input only if Master Clear functionality  
is disabled.  
Pins RA6 and RA7 are multiplexed with the main oscil-  
lator pins; they are enabled as oscillator or I/O pins by  
the selection of the main oscillator in Configuration  
Register 1H (see Section 19.1 for details). When they  
are not used as port pins, RA6 and RA7 and their  
associated TRIS and LAT bits are read as ‘0’.  
The other PORTA pins are multiplexed with analog  
inputs, the analog VREF+ and VREF- inputs and the LVD  
input. The operation of pins RA3:RA0 as A/D converter  
inputs is selected by clearing/setting the control bits in  
the ADCON1 register (A/D Control Register1).  
FIGURE 10-1:  
GENERIC I/O PORT  
OPERATION  
RD LAT  
Data  
Bus  
D
Q
I/O pin(1)  
WR LAT  
or Port  
CK  
Data Latch  
D
Q
Note: On a Power-on Reset, RA3:RA0 are con-  
figured as analog inputs and read as ‘0’.  
RA4 is configured as a digital input.  
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
Input  
Buffer  
The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input  
and an open drain output. All other PORTA pins have  
TTL input levels and full CMOS output drivers.  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Q
D
EN  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
EXAMPLE 10-1:  
INITIALIZING PORTA  
CLRF PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
10.1 PORTA, TRISA and LATA  
Registers  
CLRF LATA  
; Alternate method  
; to clear output  
; data latches  
; Configure A/D  
; for digital inputs  
Value used to  
; initialize data  
; direction  
; Set RA<3:0> as outputs  
; RA<7:4> as inputs  
PORTA is a 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
MOVLW 0x7F  
MOVWF ADCON1  
MOVLW 0XD0  
;
MOVWF TRISA  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 89  
 
 
 
 
 
 
 
PIC18F1220/1320  
FIGURE 10-2:  
BLOCK DIAGRAM OF  
FIGURE 10-4:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
RA3:RA0 PINS  
RD LATA  
RD LATA  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
WR LATA  
WR LATA  
VDD  
or  
or  
PORTA  
Q
I/O pin(1)  
PORTA  
Q
CK  
Data Latch  
CK  
P
N
Data Latch  
I/O pin(1)  
N
D
Q
Q
VSS  
D
Q
WR TRISA  
RD TRISA  
Schmitt  
Trigger  
Input  
WR TRISA  
CK  
VSS  
Q
CK  
Analog  
TRIS Latch  
Input  
TRIS Latch  
Buffer  
Mode  
RD TRISA  
Schmitt  
Trigger  
Input  
Q
D
Q
D
Buffer  
EN  
EN  
RD PORTA  
RD PORTA  
TMR0 Clock Input  
Note 1: I/O pins have protection diodes to VDD and VSS.  
To A/D Converter and LVD Modules  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 10-5:  
BLOCK DIAGRAM OF  
OSC1/CLKI/RA7 PIN  
FIGURE 10-3:  
BLOCK DIAGRAM OF  
OSC2/CLKO/RA6 PIN  
RA7 Enable  
RA6 Enable  
To Oscillator  
Data  
Data  
Bus  
Bus  
RD LATA  
RD LATA  
D
Q
Q
D
Q
Q
VDD  
P
VDD  
P
WR LATA  
WR LATA  
or  
or  
PORTA  
CK  
PORTA  
CK  
Data Latch  
Data Latch  
I/O pin(1)  
N
N
I/O pin(1)  
D
Q
D
Q
WR  
WR  
TRISA  
TRISA  
VSS  
VSS  
CK  
Q
CK  
Q
TRIS Latch  
TRIS Latch  
Schmitt  
Trigger  
Input  
RD  
RD  
Buffer  
TRISA  
TRISA  
Schmitt  
Trigger  
Input  
ECIO or  
RA7  
RCIO  
Enable  
Buffer  
Enable  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39605B-page 90  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
FIGURE 10-6:  
MCLR/RA5 PIN BLOCK DIAGRAM  
MCLRE  
Data Bus  
MCLR/RA5  
RD TRISA  
Schmitt  
Trigger  
RD LATA  
Latch  
Q
D
EN  
RD PORTA  
High Voltage Detect  
HV  
Internal MCLR  
Filter  
Low Level  
MCLR Detect  
TABLE 10-1: PORTA FUNCTIONS  
Name  
RA0/AN0  
RA1/AN1/LVDIN  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Bit#  
Buffer  
Function  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output or analog input.  
Input/output or analog input.  
Input/output, analog input or VREF-.  
Input/output, analog input or VREF+.  
Input/output, external clock input for Timer0. Output is open drain type.  
Master Clear input or programming voltage input (if MCLR is enabled);  
input only port pin or programming voltage input (if MCLR is disabled).  
MCLR/VPP/RA5  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
bit6  
bit7  
ST  
ST  
OSC2, clock output or I/O pin.  
OSC1, clock input or I/O pin.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
(1)  
(1)  
(2)  
PORTA  
LATA  
TRISA  
ADCON1  
RA7  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
xx0x 0000 uu0u 0000  
xx-x xxxx uu-u uuuu  
11-1 1111 11-1 1111  
(1)  
(1)  
LATA7  
LATA6  
LATA Data Output Register  
PORTA Data Direction Register  
PCFG4  
(1)  
(1)  
TRISA7  
TRISA6  
PCFG6  
PCFG5  
PCFG3  
PCFG2  
PCFG1  
PCFG0 -000 0000 -000 0000  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration;  
otherwise, they are read as ‘0’.  
2: RA5 is an input only if MCLR is enabled or disabled.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 91  
 
 
 
PIC18F1220/1320  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
10.2 PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISB bit (= 0) will  
make the corresponding PORTB pin an output (i.e., put  
the contents of the output latch on the selected pin).  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register reads and writes the latched output value for  
PORTB.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
CLRF  
PORTB ; Initialize PORTB by  
; clearing output  
FIGURE 10-7:  
BLOCK DIAGRAM OF  
RB0/AN4/INT0 PIN  
; data latches  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Analog Input Mode  
Data Bus  
MOVLW  
MOVWF  
MOVLW  
0x70  
; Set RB0, RB1, RB4 as  
ADCON1 ; digital I/O pins  
0xCF  
D
Q
; Value used to  
WR LATB  
or PORTB  
I/O  
pin(1)  
; initialize data  
; direction  
CK  
Data Latch  
MOVWF  
TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
D
Q
WR TRISB  
CK  
TRIS Latch  
TTL  
Pins RB0 - RB2 are multiplexed with INT0 - INT2; pins  
RB0, RB1, and RB4 are multiplexed with A/D inputs;  
pins RB1 and RB4 are multiplexed with USART; and  
pins RB2, RB3, RB6, and RB7 are multiplexed with  
ECCP.  
Input  
Buffer  
RD TRISB  
RD LATB  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
Q
D
EN  
RD PORTB  
Schmitt Trigger  
Buffer  
INTx  
To A/D Converter  
Note: On a Power-on Reset, RB4:RB0 are con-  
figured as analog inputs by default, and  
read as ‘0’; RB7:RB5 are configured as  
digital inputs.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2<7>).  
Four of the PORTB pins (RB7:RB4) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The “mismatch” outputs of  
RB7:RB4 are ORed together to generate the RB Port  
Change Interrupt with flag bit, RBIF (INTCON<0>).  
DS39605B-page 92  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
PIC18F1220/1320  
FIGURE 10-8:  
BLOCK DIAGRAM OF RB1/AN5/TX/CK/INT1 PIN  
USART Enable  
1
0
TX/CK Data  
TX/CK TRIS  
RBPU(2)  
VDD  
Weak  
P
Analog Input Mode  
Pull-up  
Data Latch  
Data Bus  
D
Q
RB1 pin(1)  
WR LATB  
or  
CK  
PORTB  
TRIS Latch  
D
Q
WR TRISB  
CK  
TTL  
RD TRISB  
Input  
Buffer  
RD LATB  
Q
D
RD PORTB  
EN  
RD PORTB  
Schmitt  
Trigger  
Input  
Buffer  
INT1/CK Input  
Analog Input  
Mode  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 93  
 
PIC18F1220/1320  
FIGURE 10-9:  
BLOCK DIAGRAM OF RB2/P1B/INT2 PIN  
VDD  
Weak  
RBPU(2)  
P
Pull-up  
P1B Enable  
P1B Data  
1
0
P1B/D Tri-state  
Auto Shutdown  
Data Latch  
Data Bus  
D
Q
RB2 pin(1)  
WR LATB  
or  
CK  
PORTB  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRISB  
CK  
RD TRISB  
RD LATB  
D
Q
RD PORTB  
EN  
Schmitt  
Trigger  
RD PORTB  
INT2 Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
DS39605B-page 94  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
FIGURE 10-10:  
BLOCK DIAGRAM OF RB3/CCP1/P1A PIN  
ECCP1(3) pin Output Enable  
ECCP1(4) pin Input Enable  
RBPU(2)  
VDD  
Weak  
P
Pull-up  
P1A/C Tri-state Auto Shutdown  
ECCP1/P1A Data Out  
VDD  
P
1
0
RD LATB  
Data Bus  
D
Q
RB3 pin  
WR LATB  
or  
Q
CK  
PORTB  
Data Latch  
N
D
Q
Q
VSS  
WR TRISB  
CK  
TTL Input  
Buffer  
TRIS Latch  
RD TRISB  
Q
D
EN  
RD PORTB  
ECCP1 Input  
Schmitt  
Trigger  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
3: ECCP1 pin Output Enable active for any PWM mode and Compare mode, where CCP1M<3:0> = 1000or 1001.  
4: ECCP1 pin Input Enable active for Capture mode only.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 95  
 
PIC18F1220/1320  
FIGURE 10-11:  
BLOCK DIAGRAM OF RB4/AN6/RX/DT/KBI0 PIN  
USART Enabled  
RBPU(2)  
Analog Input Mode  
DT TRIS  
Weak  
P
Pull-up  
DT Data  
1
0
RD LATB  
Data Bus  
D
Q
Q
RB4 pin  
WR LATB  
or  
CK  
PORTB  
Data Latch  
D
Q
Q
WR TRISB  
CK  
TRIS Latch  
TTL  
Input  
Buffer  
RD TRISB  
Q
D
Q1  
EN  
RD PORTB  
Set RBIF  
Q
D
From other  
RD PORTB  
Q3  
RB7:RB4 pins  
EN  
Schmitt  
Trigger  
RX/DT Input  
Analog Input  
Mode  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
DS39605B-page 96  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
FIGURE 10-12:  
BLOCK DIAGRAM OF RB5/PGM/KBI1 PIN  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
D
Q
WR LATB  
or PORTB  
I/O pin(1)  
CK  
TRIS Latch  
D
Q
WR TRISB  
TTL  
CK  
Input  
Buffer  
ST  
Buffer  
RD TRISB  
RD LATB  
Latch  
Q
D
RD PORTB  
Set RBIF  
EN  
Q1  
Q
D
RD PORTB  
Q3  
From Other  
EN  
RB7:RB5 and  
RB4 pins  
RB7:RB5 in Serial Programming Mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit  
(INTCON2<7>).  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 97  
 
PIC18F1220/1320  
FIGURE 10-13:  
BLOCK DIAGRAM OF RB6/PGC/T1OSO/T1CKI/P1C/KBI2 PIN  
ECCP1 P1C/D Enable  
RBPU(2)  
Weak  
P
Pull-up  
P1B/D Tri-state Auto Shutdown  
P1C Data  
1
0
RD LATB  
Data Bus  
D
Q
Q
RB6 pin  
WR LATB  
or  
CK  
PORTB  
Data Latch  
D
Q
Q
WR TRISB  
CK  
Timer1  
Oscillator  
TRIS Latch  
ST  
Schmitt  
Trigger  
RD TRISB  
Input  
Buffer  
T1OSCEN  
From RB7 pin  
Q
D
Q1  
EN  
RD PORTB  
Set RBIF  
Q
D
From Other  
RD PORTB  
Q3  
RB7:RB4 pins  
EN  
PGC  
T1CKI  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
DS39605B-page 98  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
FIGURE 10-14:  
BLOCK DIAGRAM OF RB7/PGD/T1OSI/P1D/KBI3 PIN  
ECCP1 P1C/D Enable  
RBPU(2)  
Weak  
P
Pull-up  
P1B/D Tri-state Auto Shutdown  
P1D Data  
To RB6 pin  
1
0
RD LATB  
Data Bus  
D
Q
Q
RB7 pin  
WR LATB  
or  
CK  
PORTB  
Data Latch  
D
Q
Q
WR TRISB  
T1OSCEN  
CK  
TRIS Latch  
TTL  
Schmitt  
Trigger  
RD TRISB  
Input  
Buffer  
Q
D
Q1  
EN  
RD PORTB  
Set RBIF  
Q
D
From Other  
RD PORTB  
Q3  
RB7:RB4 pins  
EN  
PGD  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 99  
 
PIC18F1220/1320  
TABLE 10-3: PORTB FUNCTIONS  
Name  
RB0/AN4/INT0  
Bit#  
Buffer  
TTL(1)/ST(2)  
Function  
Input/output port pin or Timer1 oscillator output/Timer1  
clock input.  
bit0  
RB1/AN5/TX/CK/INT1  
RB2/P1B/INT2  
bit1  
bit2  
bit3  
TTL(1)/ST(2) Input/output port pin, Enhanced USART Asynchronous  
Transmit, or Addressable USART Synchronous Clock.  
TTL(1)/ST(2) Input/output pin, external interrupt input2 or analog input.  
Internal software programmable weak pull-up.  
RB3/CCP1/P1A  
TTL(1)/ST(3) Input/output pin or analog input.  
Capture1 input/Compare1 output/PWM output.  
Internal software programmable weak pull-up.  
RB4/AN6/RX/DT  
RB5/PGM  
bit4  
bit5  
TTL/ST(4)  
Input/output port pin, Enhanced USART Asynchronous  
Receive, or Addressable USART Synchronous Data.  
TTL/ST(5)  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Low voltage ICSP enable pin.  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Serial programming clock.  
RB6/PGC/T1OSO/T1CKI/P1C  
RB7/PGD/T1OSI/P1D  
bit6  
bit7  
TTL/ST(5)  
TTL/ST(5)  
Input/output pin (with interrupt-on-change) Timer1  
oscillator input.  
Internal software programmable weak pull-up.  
Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a TTL input when configured as an analog input.  
2: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
3: This buffer is a Schmitt Trigger input when configured as the CCP2 input.  
4: This buffer is a Schmitt Trigger input when used as USART receive input.  
5: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
PORTB  
LATB  
TRISB  
INTCON  
INTCON2  
INTCON3  
ADCON1  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxq qqqq  
xxxx xxxx  
1111 1111  
0000 000x  
1111 -1-1  
uuuu uuuu  
uuuu uuuu  
1111 1111  
0000 000u  
1111 -1-1  
11-0 0-00  
-000 0000  
LATB Data Output Register  
PORTB Data Direction Register  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
INT1IE  
TMR0IF INT0IF  
RBIF  
RBIP  
RBPU  
INT2IP  
INTEDG0 INTEDG1 INTEDG2  
INT1IP  
PCFG6  
TMR0IP  
INT2IF  
PCFG5  
INT2IE  
PCFG4  
INT1IF 11-0 0-00  
PCFG3 PCFG2 PCFG1 PCFG0 -000 0000  
Legend: x= unknown, u= unchanged, q= value depends on condition. Shaded cells are not used by PORTB.  
DS39605B-page 100  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
Figure 11-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
The T0CON register (Register 11-1) is a readable and  
writable register that controls all the aspects of Timer0,  
including the prescale selection.  
11.0 TIMER0 MODULE  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or 16-bit timer/  
counter  
• Readable and writable  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
bit 0  
T08BIT  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS2:T0PS0: Timer0 Prescaler Select bits  
111=1:256 prescale value  
110=1:128 prescale value  
101=1:64 prescale value  
100=1:32 prescale value  
011=1:16 prescale value  
010=1:8 prescale value  
001=1:4 prescale value  
000=1:2 prescale value  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 101  
 
 
 
PIC18F1220/1320  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
TMR0  
FOSC/4  
0
1
RA4/T0CKI/C1OUT  
pin  
8
0
Sync with  
Internal  
Clocks  
Programmable  
Prescaler  
1
(2 TCY Delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
RA4/T0CKI/  
C1OUT pin  
FOSC/4  
0
0
Sync with  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
Internal  
Clocks  
1
TMR0L  
High Byte  
Programmable  
Prescaler  
1
8
(2 TCY Delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
DS39605B-page 102  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed “on-the-fly” during program  
execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment, either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the  
rising edge.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode, or FFFFh  
to 0000h in 16-bit mode. This overflow sets the TMR0IF  
bit. The interrupt can be masked by clearing the  
TMR0IE bit. The TMR0IE bit must be cleared in soft-  
ware by the Timer0 module Interrupt Service Routine  
before re-enabling this interrupt. The TMR0 interrupt  
cannot awaken the processor from Low Power SLEEP  
mode, since the timer requires clock cycles, even when  
T0CS is set.  
11.4 16-Bit Mode Timer Reads and  
Writes  
11.2 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not readable or writable.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4,..., 1:256 are  
selectable.  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16-bits of Timer0, without  
having to verify that the read of the high and low byte  
were valid due to a rollover between successive reads  
of the high and low byte.  
A write to the high byte of Timer0 must also take place  
through the TMR0H buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16-bits of Timer0 to be  
updated at once.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, X....etc.) will clear the prescaler  
count.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
TMR0L  
TMR0H  
INTCON  
T0CON  
TRISA  
Timer0 Module Low Byte Register  
Timer0 Module High Byte Register  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
11-1 1111 11-1 1111  
RBIE  
PSA  
TMR0IF INT0IF  
T0PS2 T0PS1  
RBIF  
T0PS0  
TMR0ON  
RA7  
T08BIT  
RA6  
T0CS  
T0SE  
(1)  
(1)  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by Timer0.  
Note 1: RA6 and RA7 are enabled as I/O pins, depending on the Oscillator mode selected in Configuration Word 1H.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 103  
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 104  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
Register 12-1 details the Timer1 control register. This  
register controls the Operating mode of the Timer1  
module, and contains the Timer1 oscillator enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by  
setting or clearing control bit TMR1ON (T1CON<0>).  
The Timer1 oscillator can be used as a secondary clock  
source in Power Managed modes. When the T1RUN  
bit is set, the Timer1 oscillator is providing the system  
clock. If the Fail-Safe Clock Monitor is enabled and the  
Timer1 oscillator fails while providing the system clock,  
polling the T1RUN bit will indicate whether the clock is  
being provided by the Timer1 oscillator or another  
source.  
12.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
• 16-bit timer/counter  
(two 8-bit registers: TMR1H and TMR1L)  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• RESET from CCP module special event trigger  
• Status of system clock operation  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications, with only a minimal  
addition of external components and code overhead.  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of TImer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= System clock is derived from Timer1 oscillator  
0= System clock is derived from another source  
bit 5-4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut-off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 105  
 
 
 
 
 
 
 
PIC18F1220/1320  
When TMR1CS = 0, Timer1 increments every instruc-  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input or the  
Timer1 oscillator, if enabled.  
12.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
The Operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC1:TRISC0 value  
is ignored, and the pins are read as ‘0’.  
Timer1 also has an internal “RESET input”. This  
RESET can be generated by the CCP module (see  
Section 15.4.4,"Special Event Trigger").  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag Bit  
Synchronized  
Clock Input  
TMR1  
CLR  
0
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
On/Off  
1
T1SYNC  
T1CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
(1)  
Oscillator  
0
2
Peripheral Clocks  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
CCP Special Event Trigger  
0
TMR1IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
TMR1  
8
CLR  
Timer 1  
TMR1L  
Flag bit  
High Byte  
1
TMR1ON  
T1SYNC  
on/off  
T1OSC  
T13CKI/T1OSO  
1
Synchronize  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
det  
FOSC/4  
Internal  
Enable  
0
(1)  
T1OSI  
Oscillator  
Clock  
2
Peripheral Clocks  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39605B-page 106  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
12.2 Timer1 Oscillator  
12.3 Timer1 Oscillator Layout  
Considerations  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated for 32 kHz crystals. It  
will continue to run during all Power Managed modes.  
The circuit for a typical LP oscillator is shown in  
Figure 12-3. Table 12-1 shows the capacitor selection  
for the Timer1 oscillator.  
The Timer1 oscillator circuit draws very little power dur-  
ing operation. Due to the low power nature of the oscil-  
lator, it may also be sensitive to rapidly changing  
signals in close proximity.  
The oscillator circuit shown in Figure 12-3 should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
If a high speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in output compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 12-4, may be helpful when used on a  
single sided PCB, or in addition to a ground plane.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 12-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
C1  
PIC18FXXXX  
33 pF  
T1OSI  
FIGURE 12-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
XTAL  
32.768 kHz  
VDD  
T1OSO  
VSS  
C2  
33 pF  
OSC1  
OSC2  
Note:  
See the Notes with Table 12-1 for additional  
information about capacitor selection.  
TABLE 12-1: CAPACITOR SELECTION FOR  
THE TIMER OSCILLATOR  
RC0  
RC1  
Osc Type  
Freq  
C1  
27 pF(1)  
C2  
27 pF(1)  
LP  
32 kHz  
RC2  
Note 1: Microchip suggests this value as a starting  
point in validating the oscillator circuit.  
Note: Not drawn to scale.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
12.4 Timer1 Interrupt  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing Timer1 interrupt enable bit, TMR1IE  
(PIE1<0>).  
appropriate  
values  
of  
external  
components.  
4: Capacitor values are for design guidance  
only.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 107  
 
 
 
 
 
 
 
PIC18F1220/1320  
12.5 Resetting Timer1 Using a CCP  
12.7 Using Timer1 as a Real-Time  
Clock  
Trigger Output  
If the CCP module is configured in Compare mode to  
generate a “special event trigger” (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1 and start an A/D  
conversion, if the A/D module is enabled (see  
Section 15.4.4 for more information.).  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.2, above), gives users the  
option to include RTC functionality to their applications.  
This is accomplished with an inexpensive watch crystal  
to provide an accurate time-base, and several lines of  
application code to calculate the time. When operating  
in SLEEP mode and using a battery or super capacitor  
as a power source, it can completely eliminate the need  
for a separate RTC device and battery backup.  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit,  
TMR1IF (PIR1<0>).  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1, the write will take  
precedence.  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively becomes the period register for  
Timer1.  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to incre-  
ment a counter at one-second intervals using an Inter-  
rupt Service Routine. Incrementing the TMR1 register  
pair to overflow triggers the interrupt and calls the rou-  
tine, which increments the seconds counter by one;  
additional counters for minutes and hours are  
incremented as the previous counter overflow.  
Since the register pair is 16-bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it; the simplest method is to set the MSbit of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
12.6 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, is  
valid, due to a rollover between reads.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode, and the Timer1 Overflow Inter-  
rupt must be enabled (PIE1<0> = 1), as shown in the  
routine RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
A write to the high byte of Timer1 must also take place  
through the TMR1H buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 high byte buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
DS39605B-page 108  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
0x80  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1OSC  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H,7  
PIR1,TMR1IF  
secs,F  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
.59  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins,F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours,F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
MOVLW  
MOVWF  
RETURN  
.01  
hours  
; Reset hours to 1  
; Done  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON RD16  
xxxx xxxx uuuu uuuu  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 u0uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F1220/1320 devices; always maintain these bits clear.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 109  
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 110  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time-base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
RESET. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• A write to the TMR2 register  
• A write to the T2CON register  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match with PR2  
Timer2 has a control register shown in Register 13-1.  
TMR2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. Register 13-1 shows the Timer2 control regis-  
ter. The prescaler and postscaler selection of Timer2  
are controlled by this register.  
• Any device RESET (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 postscale  
0001= 1:2 postscale  
1111= 1:16 postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1X= Prescaler is 16  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 111  
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
1:1, 1:4, 1:16  
RESET  
EQ  
TMR2  
FOSC/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS1:T2CKPS0  
4
TOUTPS3:TOUTPS0  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
TXIE  
TXIP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
INT0IF  
TMR2IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
IPR1  
TMR2  
T2CON  
PR2  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF -000 -000 0000 0000  
TMR1IE -000 -000 0000 0000  
TMR1IP -000 -000 0000 0000  
0000 0000 0000 0000  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.  
DS39605B-page 112  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
Register 14-1 shows the Timer3 control register. This  
register controls the Operating mode of the Timer3  
module and sets the CCP clock source.  
Register 12-1 shows the Timer1 control register. This  
register controls the Operating mode of the Timer1  
module, as well as contains the Timer1 oscillator  
enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
• 16-bit timer/counter  
(two 8-bit registers; TMR3H and TMR3L)  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• RESET from CCP module trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register Read/Write of Timer3 in one 16-bit operation  
0= Enables register Read/Write of Timer3 in two 8-bit operations  
bit 6, 3  
bit 5-4  
T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1X= Timer3 is the clock source for compare/capture CCP modules  
0X= Timer1 is the clock source for compare/capture CCP modules  
T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 prescale value  
10= 1:4 prescale value  
01= 1:2 prescale value  
00= 1:1 prescale value  
bit 2  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T1CKI  
(on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 113  
 
 
 
 
 
 
 
PIC18F1220/1320  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
The Operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RB7/PGD/T1OSI/P1D/KBI3 and RB6/PGC/  
T1OSO/T1CKI/P1C/KBI2 pins become inputs. That is,  
the TRISB7:TRISB6 value is ignored, and the pins are  
read as ‘0’.  
Timer3 also has an internal “RESET input”. This RESET  
can be generated by the CCP module (see  
Section 15.4.4, "Special Event Trigger").  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Event Trigger  
T3CCPx  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
0
Flag bit  
Clock Input  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
T3SYNC  
On/Off  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
Oscillator  
2
Peripheral Clocks  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39605B-page 114  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Event Trigger  
T3CCPx  
Synchronized  
Clock Input  
8
TMR3  
Set TMR3IF Flag bit  
0
on Overflow  
CLR  
Timer3  
TMR3L  
High Byte  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
1
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
T1OSI  
2
Peripheral Clocks  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 115  
 
PIC18F1220/1320  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low  
power oscillator rated for 32 kHz crystals. See  
Section 12.2 for further details.  
If the CCP module is configured in Compare mode  
to  
generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer3. See Section 15.4.4 for more information.  
Note: The special event triggers from the CCP  
module will not set interrupt flag bit,  
TMR3IF (PIR1<0>).  
14.3 Timer3 Interrupt  
The TMR3 Register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 Interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit, TMR3IF  
(PIR2<1>). This interrupt can be enabled/disabled by  
setting/clearing TMR3 interrupt enable bit, TMR3IE  
(PIE2<1>).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer3 is running in Asynchronous Counter mode,  
this RESET operation may not work. In the event that a  
write to Timer3 coincides with a special event trigger  
from CCP1, the write will take precedence. In this mode  
of operation, the CCPR1H:CCPR1L registers pair  
effectively becomes the period register for Timer3.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
OSCIF  
OSCIE  
OSCIP  
EEIF  
EEIE  
EEIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
0--0 -00- 0--0 -00-  
0--0 -00- 0--0 -00-  
1--1 -11- 1--1 -11-  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 u0uu uuuu  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.  
DS39605B-page 116  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
The control register for CCP1 is shown in  
Register 15-1.  
In addition to the expanded functions of the CCP1CON  
register, the ECCP module has two additional registers  
associated with enhanced PWM operation and auto  
shutdown features:  
15.0 ENHANCED  
CAPTURE/COMPARE/PWM  
(ECCP) MODULE  
The enhanced CCP module is implemented as a  
standard CCP module with enhanced PWM  
capabilities. These capabilities allow for 2 or 4 output  
channels, user selectable polarity, deadband control,  
and automatic shutdown and restart, and are  
discussed in detail in Section 15.5.  
• PWM1CON  
• ECCPAS  
REGISTER 15-1: CCP1CON REGISTER FOR ENHANCED CCP OPERATION  
R/W-0  
P1M1  
bit 7  
R/W-0  
P1M0  
R/W-0  
DC1B1  
R/W-0  
DC1B0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7-6  
P1M1:P1M0: PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with deadband control; P1C, P1D assigned as  
port pins  
11= Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
DC1B1:DC1B0: PWM Duty Cycle Least Significant bits  
bit 5-4  
bit 3-0  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
CCP1M3:CCP1M0: ECCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (ECCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (ECCP1IF bit is set)  
1001= Compare mode, clear output on match (ECCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (ECCP1IF bit is set, ECCP1 pin  
is unaffected)  
1011= Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1 or  
TMR2 and starts an A/D conversion, if the A/D module is enabled)  
1100= PWM mode; P1A, P1C active high; P1B, P1D active high  
1101= PWM mode; P1A, P1C active high; P1B, P1D active low  
1110= PWM mode; P1A, P1C active low; P1B, P1D active high  
1111= PWM mode; P1A, P1C active low; P1B, P1D active low  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 117  
 
 
 
PIC18F1220/1320  
To configure I/O pins as PWM outputs, the proper PWM  
mode must be selected by setting the P1Mn and  
15.1 ECCP Outputs  
The enhanced CCP module may have up to four  
outputs, depending on the selected operating mode.  
These outputs, designated P1A through P1D, are  
multiplexed with I/O pins on PORTB. The pin  
assignments are summarized in Table 15-1.  
CCP1Mn  
bits  
(CCP1CON<7:6>  
and  
<3:0>,  
respectively). The appropriate TRISB direction bits for  
the port pins must also be set as outputs.  
TABLE 15-1: PIN ASSIGNMENTS FOR VARIOUS ECCP MODES  
CCP1CON  
ECCP Mode  
RB3  
RB2  
RB6  
RB7  
Configuration  
Compatible CCP  
Dual PWM  
00xx11xx  
10xx11xx  
x1xx11xx  
CCP1  
P1A  
RB2/INT2 RB6/PGC/T1OSO/T1CKI/KBI2  
RB7/PGD/T1OSI/KBI3  
RB7/PGD/T1OSI/KBI3  
P1D  
P1B  
P1B  
RB6/PGC/T1OSO/T1CKI/KBI2  
P1C  
Quad PWM  
P1A  
Legend: x= Don’t care. Shaded cells indicate pin assignments not used by ECCP in a given mode.  
Note 1: TRIS register values must be configured appropriately.  
15.3.1  
CCP PIN CONFIGURATION  
15.2 CCP Module  
In Capture mode, the RB3/CCP1 pin should be  
configured as an input by setting the TRISB<3> bit.  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Note: If the RB3/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
TABLE 15-2: CCP MODE - TIMER  
RESOURCE  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
CCP Mode  
Timer Resource  
The timers that are to be used with the capture feature  
(either Timer1 and/or Timer3) must be running in Timer  
mode or Synchronized Counter mode. In Asynchro-  
nous Counter mode, the capture operation may not  
work. The timer to be used with each CCP module is  
selected in the T3CON register.  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
15.3 Capture Mode  
15.3.3  
SOFTWARE INTERRUPT  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 or TMR3 registers when an  
event occurs on pin RC2/CCP1. An event is defined as  
one of the following:  
• every falling edge  
• every rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit, CCP1IF, following any such  
change in Operating mode.  
• every 4th rising edge  
• every 16th rising edge  
The event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set; it must be  
cleared in software. If another capture occurs before the  
value in register CCPR1 is read, the old captured value  
is overwritten by the new captured value.  
DS39605B-page 118  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
15.3.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a non-zero prescaler. Example 15-1 shows the recom-  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
CCP1CON, F  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVLW  
NEW_CAPT_PS  
CCP1CON  
MOVWF  
FIGURE 15-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
Set Flag bit CCP1IF  
T3CCP2  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
Enable  
and  
Edge Detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
15.4.2  
TIMER1/TIMER3 MODE SELECTION  
15.4 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against either the TMR1 register  
pair value, or the TMR3 register pair value. When a  
match occurs, the RC2/CCP1 pin:  
• Is driven High  
• Is driven Low  
Toggles output (High to Low or Low to High)  
• Remains unchanged (interrupt only)  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the  
same time, interrupt flag bit CCP1IF (CCP2IF) is set.  
15.4.3  
SOFTWARE INTERRUPT MODE  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
15.4.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
15.4.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRISB bit.  
Note: Clearing the CCP1CON register will force  
the RB3/CCP1/P1A compare output latch  
to the default low level. This is not the  
PORTB I/O data latch.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 119  
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
FIGURE 15-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3, but do not set Timer1 or Timer3 interrupt flag bit,  
and set bit GO/DONE (ADCON0<2>), which starts an A/D conversion.  
Special Event Trigger  
Set Flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RB3/CCP1/P1A pin  
TRISB<3>  
Output Enable  
1
CCP1CON<3:0>  
Mode Select  
0
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
FIGURE 15-3:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
POR, BOR  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
TXIE  
TXIP  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -000 -000 -000 -000  
1111 1111 1111 1111  
IPR1  
TRISB  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTB Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
Capture/Compare/PWM Register1 (LSB)  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
CCP1CON  
TMR3L  
TMR3H  
T3CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
RD16  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
DS39605B-page 120  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
15.5.2  
PWM DUTY CYCLE  
15.5 Enhanced PWM Mode  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is  
calculated by the equation:  
The Enhanced PWM Mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is an upwardly compatible version of  
the standard CCP module, and offers up to four out-  
puts, designated P1A through P1D. Users are also able  
to select the polarity of the signal (either active high or  
active low). The module’s Output mode and polarity are  
configured by setting the P1M1:P1M0 and  
CCP1M3CCP1M0 bits of the CCP1CON register  
(CCP1CON<7:6> and CCP1CON<3:0>, respectively).  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read only register.  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock or two bits of  
the TMR2 prescaler, the CCP1 pin is cleared. The max-  
imum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
Figure 15-4 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered, and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when Timer2 resets), in order to pre-  
vent glitches on any of the outputs. The exception is the  
PWM delay register ECCP1DEL, which is loaded at  
either the duty cycle boundary, or the boundary period  
(whichever comes first). Because of the buffering, the  
module waits until the assigned timer resets, instead of  
starting immediately. This means that enhanced PWM  
waveforms do not exactly match the standard PWM  
waveforms, but are instead offset by one full instruction  
cycle (4 TOSC).  
As before, the user must manually configure the  
appropriate TRIS bits for output.  
FOSC  
log  
(
)
FPWM  
bits  
PWM Resolution (max) =  
log(2)  
15.5.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the  
equation:  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
15.5.3  
PWM OUTPUT CONFIGURATIONS  
PWM frequency is defined as 1 / [PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
• TMR2 is cleared  
• The CCP1 pin is set (if PWM duty cycle = 0%, the  
CCP1 pin will not be set)  
The P1M1:P1M0 bits in the CCP1CON register allow  
one of four configurations:  
• Single Output  
• Half-Bridge Output  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
The Single Output mode is the Standard PWM mode  
discussed in Section 15.5. The Half-Bridge and  
Full-Bridge Output modes are covered in detail in the  
sections that follow.  
The general relationship of the outputs in all  
configurations is summarized in Figure 15-5.  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 13.0)  
is not used in the determination of the  
PWM frequency. The postscaler could be  
used to have a servo update rate at a  
different frequency than the PWM output.  
TABLE 15-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
Maximum Resolution (bits)  
16  
FFh  
10  
4
FFh  
10  
1
FFh  
10  
1
3Fh  
8
1
1Fh  
7
1
17h  
6.58  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 121  
 
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
FIGURE 15-4:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
CCP1CON<5:4>  
P1M1<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
RB3/CCP1/P1A  
RB2/P1B/INT2  
TRISB<3>  
TRISB<2>  
TRISB<6>  
TRISB<7>  
CCPR1H (Slave)  
Comparator  
P1B  
Output  
Controller  
R
Q
RB6/PGC/T1OSO/T1CKI/  
P1C/KBI2  
P1C  
(Note 1)  
TMR2  
S
P1D  
RB7/PGD/T1OSI/P1D/KBI3  
Comparator  
PR2  
Clear Timer,  
set CCP1 pin and  
latch D.C.  
CCP1DEL  
Note: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time-base.  
FIGURE 15-5:  
PWM OUTPUT RELATIONSHIPS (ACTIVE HIGH STATE)  
0
PR2+1  
Duty  
Cycle  
SIGNAL  
CCP1CON  
<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
(Half-Bridge)  
00  
10  
(1)  
(1)  
Delay  
Delay  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
11  
(Full-Bridge,  
Reverse)  
P1D Inactive  
DS39605B-page 122  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
FIGURE 15-6:  
PWM OUTPUT RELATIONSHIPS (ACTIVE LOW STATE)  
0
PR2+1  
Duty  
Cycle  
SIGNAL  
CCP1CON  
<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
(1)  
(1)  
Delay  
Delay  
(Half-Bridge)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
11  
(Full-Bridge,  
Reverse)  
P1D Inactive  
Relationships:  
• Period = 4 * TOSC * (PR2 + 1) * (TMR2 prescale value)  
• Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 prescale value)  
• Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Deadband delay is programmed using the PWM1CON register (Section 15.5.6).  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 123  
 
PIC18F1220/1320  
15.5.4  
HALF-BRIDGE MODE  
FIGURE 15-7:  
HALF-BRIDGE PWM  
OUTPUT  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The PWM output signal  
is output on the RB3/CCP1/P1A pin, while the comple-  
mentary PWM output signal is output on the  
RB2/P1B/INT2 pin (Figure 15-7). This mode can be used  
for half-bridge applications, as shown in Figure 15-8, or  
for full-bridge applications, where four power switches  
are being modulated with two PWM signals.  
Period  
Period  
Duty Cycle  
(2)  
(2)  
P1A  
td  
td  
P1B  
In Half-Bridge Output mode, the programmable dead-  
band delay can be used to prevent shoot-through  
current in half-bridge power devices. The value of bits  
PDC6:PDC0 sets the number of instruction cycles  
before the output is driven active. If the value is greater  
than the duty cycle, the corresponding output remains  
inactive during the entire cycle. See Section 15.5.6 for  
more details of the deadband delay operations.  
(1)  
(1)  
(1)  
td = Deadband Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active high.  
Since the P1A and P1B outputs are multiplexed with  
the PORTB<3> and PORTB<2> data latches, the  
TRISB<3> and TRISB<2> bits must be cleared to  
configure P1A and P1B as outputs.  
FIGURE 15-8:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
PIC18F1220/1320  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F1220/1320  
FET  
FET  
Driver  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
V-  
DS39605B-page 124  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORTB<3:2> and PORTB<7:6> data latches. The  
TRISB<3:2> and TRISB<7:6> bits must be cleared to  
make the P1A, P1B, P1C, and P1D pins output.  
15.5.5  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as  
outputs; however, only two outputs are active at a time.  
In the Forward mode, pin RB3/CCP1/P1A is continu-  
ously active, and pin RB7/PGD/T1OSI/P1D/KBI3 is  
modulated.  
In  
the  
Reverse  
mode,  
pin  
RB6/PGC/T1OSO/T1CKI/P1C/KBI2 is continuously  
active, and pin RB2/P1B/INT2 is modulated. These are  
illustrated in Figure 15-9.  
FIGURE 15-9:  
FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Duty Cycle  
(2)  
(2)  
P1B  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: Output signal is shown as active high.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 125  
 
 
PIC18F1220/1320  
FIGURE 15-10:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F1220/1320  
QC  
QA  
FET  
FET  
Driver  
Driver  
P1A  
Load  
P1B  
FET  
FET  
Driver  
Driver  
P1C  
P1D  
QD  
QB  
V-  
Figure 15-12 shows an example where the PWM direc-  
tion changes from forward to reverse, at a near 100%  
duty cycle. At time t1, the output P1A and P1D become  
inactive, while output P1C becomes active. In this  
example, since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
may flow through power devices QC and QD (see  
Figure 15-10) for the duration of ‘t’. The same phenom-  
enon will occur to power devices QA and QB for PWM  
direction change from reverse to forward.  
15.5.5.1  
Direction Change in Full-Bridge Mode  
In the Full-Bridge Output mode, the P1M1 bit in the  
CCP1CON register allows user to control the  
Forward/Reverse direction. When the application firm-  
ware changes this direction control bit, the module will  
assume the new direction on the next PWM cycle.  
Just before the end of the current PWM period, the  
modulated outputs (P1B and P1D) are placed in their  
inactive state, while the unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite direction.  
This occurs in a time interval of (4 TOSC * (Timer2 Pres-  
cale value) before the next PWM period begins. The  
Timer2 prescaler will be either 1,4 or 16, depending on  
the value of the T2CKPS bit (T2CON<1:0>). During the  
interval from the switch of the unmodulated outputs to  
the beginning of the next period, the modulated outputs  
(P1B and P1D) remain inactive. This relationship is  
shown in Figure 15-11.  
Note that in the Full-Bridge Output mode, the ECCP  
module does not provide any deadband delay. In gen-  
eral, since only one output is modulated at all times,  
deadband delay is not required. However, there is a sit-  
uation where a deadband delay might be required. This  
situation occurs when both of the following conditions  
are true:  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Reduce PWM for  
a PWM period before  
changing directions.  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
DS39605B-page 126  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
FIGURE 15-11:  
PWM DIRECTION CHANGE  
(1)  
Period  
Period  
SIGNAL  
P1A (Active High)  
P1B (Active High)  
DC  
P1C (Active High)  
P1D (Active High)  
(Note 2)  
DC  
Note 1: The direction bit in the CCP1 Control Register (CCP1CON<7>) is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle at intervals  
of 4 TOSC, 16 TOSC or 64 TOSC, depending on the Timer2 prescaler value. The modulated P1B and P1D signals  
are inactive at this time.  
FIGURE 15-12:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
DC  
P1C  
P1D  
DC  
t
ON  
External Switch C  
t
OFF  
External Switch D  
Potential  
Shoot-Through  
Current  
t = t  
– t  
ON  
OFF  
Note 1: All signals are shown as active high.  
2: t is the turn on delay of power switch QC and its driver.  
ON  
3: t  
is the turn off delay of power switch QD and its driver.  
OFF  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 127  
 
 
PIC18F1220/1320  
A shutdown event can be caused by either of the two  
comparator modules, or the INT0 pin (or any combina-  
tion of these three sources). The comparators may be  
used to monitor a voltage input proportional to a current  
being monitored in the bridge circuit. If the voltage  
exceeds a threshold, the comparator switches state  
and triggers a shutdown. Alternatively, a digital signal  
on the INT0 pin can also trigger a shutdown. The auto  
shutdown feature can be disabled by not selecting any  
auto shutdown sources. The auto shutdown sources to  
be used are selected using the ECCPAS2:ECCPAS0  
bits (bits <6:4> of the ECCPAS register).  
When a shutdown occurs, the output pins are asyn-  
chronously placed in their shutdown states, specified  
by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits  
(ECCPAS<3:0>). Each pin pair (P1A/P1C and  
P1B/P1D) may be set to drive high, drive low, or be  
tri-stated (not driving). The ECCPASE bit  
(ECCPAS<7>) is also set to hold the enhanced PWM  
outputs in their shutdown states.  
15.5.6  
PROGRAMMABLE DEADBAND  
DELAY  
In half-bridge applications where all power switches are  
modulated at the PWM frequency at all times, the  
power switches normally require more time to turn off  
than to turn on. If both the upper and lower power  
switches are switched at the same time (one turned on,  
and the other turned off), both switches may be on for  
a short period of time until one switch completely turns  
off. During this brief interval, a very high current  
(shoot-through current) may flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
In the Half-Bridge Output mode, a digitally program-  
mable deadband delay is available to avoid  
shoot-through current from destroying the bridge  
power switches. The delay occurs at the signal transi-  
tion from the non-active state to the active state. See  
Figure 15-7 for illustration. The lower seven bits of the  
PWM1CON register (Register 15-2) sets the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
The ECCPASE bit is set by hardware when a shutdown  
event occurs. If automatic restarts are not enabled, the  
ECCPASE bit is cleared by firmware when the cause of  
the shutdown clears. If automatic restarts are enabled,  
the ECCPASE bit is automatically cleared when the  
cause of the auto shutdown has cleared.  
15.5.7  
ENHANCED PWM  
AUTO SHUTDOWN  
If the ECCPASE bit is set when a PWM period begins,  
the PWM outputs remain in their shutdown state for that  
entire PWM period. When the ECCPASE bit is cleared,  
the PWM outputs will return to normal operation at the  
beginning of the next PWM period.  
When the ECCP is programmed for any of the  
enhanced PWM modes, the active output pins may be  
configured for Auto Shutdown. Auto shutdown immedi-  
ately places the enhanced PWM output pins into a  
defined shutdown state, when a shutdown event  
occurs.  
Note: Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
REGISTER 15-2: PWM1CON: PWM CONFIGURATION REGISTER  
R/W-0  
PRSEN  
bit 7  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
bit 0  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto shutdown, the ECCPASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
Number of FOSC/4 (4*TOSC) cycles between the scheduled time when a PWM signal should  
transition active, and the actual time it transitions active.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 128  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
REGISTER 15-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM/AUTO SHUTDOWN  
CONTROL REGISTER  
R/W-0 R/W-0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 7  
bit 0  
bit 7  
ECCPASE: ECCP Auto Shutdown Event Status bit  
0= ECCP outputs are operating  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
bit 6-4  
ECCPAS<2:0>: ECCP Auto Shutdown Source Select bits  
000= Auto shutdown is disabled  
001= Comparator 1 output  
010= Comparator 2 output  
011= Either Comparator 1 or 2  
100= INT0  
101= INT0 or Comparator 1  
110= INT0 or Comparator 2  
111= INT0 or Comparator 1 or Comparator 2  
bit 3-2  
bit 1-0  
PSSACn: Pin A and C Shutdown State Control bits  
00= Drive Pins A and C to ‘0’  
01= Drive Pins A and C to ‘1’  
1x= Pins A and C tri-state  
PSSBDn: Pin B and D Shutdown State Control bits  
00= Drive Pins B and D to ‘0’  
01= Drive Pins B and D to ‘1’  
1x= Pins B and D tri-state  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 129  
 
PIC18F1220/1320  
15.5.7.1  
Auto Shutdown and Automatic  
15.5.8  
START-UP CONSIDERATIONS  
Restart  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external  
pull-up and/or pull-down resistors on the PWM output  
pins. When the microcontroller is released from  
RESET, all of the I/O pins are in the high-impedance  
state. The external circuits must keep the power switch  
devices in the off state, until the microcontroller drives  
the I/O pins with the proper signal levels, or activates  
the PWM output(s).  
The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow  
the user to choose whether the PWM output signals are  
active high or active low for each pair of PWM output  
pins (P1A/P1C and P1B/P1D). The PWM output polar-  
ities must be selected before the PWM pins are config-  
ured as outputs. Changing the polarity configuration  
while the PWM pins are configured as outputs is not  
recommended, since it may result in damage to the  
application circuits.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is initialized.  
Enabling the PWM pins for output at the same time as  
the ECCP module may cause damage to the applica-  
tion circuit. The ECCP module must be enabled in the  
proper Output mode and complete a full PWM cycle,  
before configuring the PWM pins as outputs. The com-  
pletion of a full PWM cycle is indicated by the TMR2IF  
bit being set as the second PWM period begins.  
The auto shutdown feature can be configured to allow  
automatic restarts of the module, following a shutdown  
event. This is enabled by setting the PRSEN bit of the  
PWM1CON register (PWM1CON<7>).  
In Shutdown mode with PRSEN = 1 (Figure 15-13), the  
ECCPASE bit will remain set for as long as the cause  
of the shutdown continues. When the shutdown condi-  
tion clears, the ECCPASE bit is cleared. If PRSEN = 0  
(Figure 15-14), once a shutdown condition occurs, the  
ECCPASE bit will remain set until it is cleared by firm-  
ware. Once ECCPASE is cleared, the enhanced PWM  
will resume at the beginning of the next PWM period.  
Note: Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
Independent of the PRSEN bit setting, if the auto shut-  
down source is one of the comparators, the shutdown  
condition is a level. The ECCPASE bit cannot be  
cleared as long as the cause of the shutdown persists.  
The Auto Shutdown mode can be forced by writing a '1'  
to the ECCPASE bit.  
FIGURE 15-13:  
PWM AUTO SHUTDOWN (PRSEN = 1, AUTO RESTART ENABLED)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Shutdown  
PWM  
Event Occurs Event Clears  
Resumes  
FIGURE 15-14:  
PWM AUTO SHUTDOWN (PRSEN = 0, AUTO RESTART DISABLED)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
ECCPASE  
Cleared by  
Firmware  
Start of  
PWM Period  
Shutdown  
Shutdown  
PWM  
Event Occurs Event Clears  
Resumes  
DS39605B-page 130  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
PIC18F1220/1320  
15.5.9  
SETUP FOR PWM OPERATION  
15.5.10 OPERATION IN LOW POWER  
MODES  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation:  
1. Configure the PWM pins P1A and P1B (and  
P1C and P1D, if used) as inputs by setting the  
corresponding TRISB bits.  
In the low power SLEEP mode, all clock sources are  
disabled. Timer2 will not increment and the state of the  
module will not change. If the ECCP pin is driving a  
value, it will continue to drive that value. When the  
device wakes up, it will continue from this state. If  
Two-Speed Start-ups are enabled, the initial start-up  
frequency may not be stable if the INTOSC is being  
used.  
In PRI_IDLE mode, the primary clock will continue to  
clock the ECCP module without change.  
In all other Low Power modes, the selected Low Power  
mode clock will clock Timer2. Other Low Power mode  
clocks will most likely be different than the primary  
clock frequency.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the ECCP module for the desired  
PWM mode and configuration by loading the  
CCP1CON register with the appropriate values:  
• Select one of the available output  
configurations and direction with the  
P1M1:P1M0 bits.  
• Select the polarities of the PWM output  
signals with the CCP1M3:CCP1M0 bits.  
4. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1CON<5:4> bits.  
5. For Half-Bridge Output mode, set the deadband  
delay by loading PWM1CON<6:0> with the  
appropriate value.  
15.5.10.1 Operation with Fail-Safe  
Clock Monitor  
If the Fail-Safe Clock Monitor is enabled  
(CONFIG1H<6> is programmed), a clock failure will  
force the device into the RC_RUN Low Power mode,  
and the OSCFIF bit (PIR2<7>) will be set. The ECCP  
will then be clocked from the INTRC clock source,  
which may have a different clock frequency than the  
primary clock. By loading the IRCF2:IRCF0 bits on  
RESETS, the user can enable the INTOSC at a high  
clock speed in the event of a clock failure.  
6. If auto shutdown operation is required, load the  
ECCPAS register:  
• Select the auto shutdown sources using the  
ECCPAS<2:0> bits.  
• Select the shutdown states of the PWM  
output pins using PSSAC1:PSSAC0 and  
PSSBD1:PSSBD0 bits.  
• Set the ECCPASE bit (ECCPAS<7>).  
• Configure the comparators using the CMCON  
register.  
See the previous section for additional details.  
15.5.11 EFFECTS OF A RESET  
• Configure the comparator inputs as analog  
inputs.  
Both power-on and subsequent RESETS will force all  
ports to Input mode and the CCP registers to their  
RESET states.  
This forces the Enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
7. If auto restart operation is required, set the  
PRSEN bit (PWM1CON<7>).  
8. Configure and start TMR2:  
• Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit (PIR1<1>).  
• Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
• Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>).  
9. Enable PWM outputs after a new PWM cycle  
has started:  
• Wait until TMR2 overflows (TMR2IF bit is set).  
• Enable the CCP1/P1A, P1B, P1C and/or P1D  
pin outputs by clearing the respective TRISB  
bits.  
• Clear the ECCPASE bit (ECCPAS<7>).  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 131  
 
 
 
PIC18F1220/1320  
TABLE 15-4: REGISTERS ASSOCIATED WITH ENHANCED PWM AND TIMER2  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
RCON  
PIR1  
PIE1  
IPR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
TXIF  
TXIE  
TXIP  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 11qq 0--q qquu  
IPEN  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111 -111 -111  
0000 0000 0000 0000  
TMR2  
PR2  
Timer2 Module Register  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
TRISB  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
PORTB Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Enhanced Capture/Compare/PWM Register1 High Byte  
CCPR1L  
CCP1CON  
ECCPAS  
Enhanced Capture/Compare/PWM Register1 Low Byte  
P1M1 P1M0 DC1B1 DC1B0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
PWM1CON PRSEN  
OSCCON IDLEN  
PDC6  
IRCF2  
PDC5  
IRCF1  
PDC4  
IRCF0  
PDC3  
OSTS  
PDC2  
FLTS  
PDC1  
SCS1  
PDC0 0000 0000 uuuu uuuu  
SCS0 0000 q000 uuuu uuqu  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'.  
Shaded cells are not used by the ECCP module in enhanced PWM mode.  
DS39605B-page 132  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
In order to configure pins RB1/AN5/TX/CK/INT1 and  
RB4/AN6/RX/DT as the Universal Synchronous  
Asynchronous Receiver Transmitter:  
• SPEN (RCSTA<7>) bit must be set (= 1),  
• PCFG6:PCFG5 (ADCON1<5:6>) must be set (= 1),  
• TRISB<4> bit must be set (= 1), and  
• TRISB<1> bit must be set (= 1).  
Note: The USART control will automatically  
reconfigure the pin from input to output as  
needed.  
The operation of the Enhanced USART module is  
controlled through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCTL)  
These are detailed in on the following pages in  
Register 16-1, Register 16-2 and Register 16-3,  
respectively.  
16.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial  
Communications Interface or SCI.) The USART can be  
configured as a full-duplex asynchronous system that  
can communicate with peripheral devices, such as  
CRT terminals and personal computers. It can also be  
configured as a half-duplex synchronous system that  
can communicate with peripheral devices, such as A/D  
or D/A integrated circuits, serial EEPROMs, etc.  
The Enhanced USART module implements additional  
features, including automatic baud rate detection and  
calibration, automatic wake-up on Sync Break  
reception and 12-bit Break character transmit. These  
make it ideally suited for use in Local Interconnect  
Network bus (LIN bus) systems.  
16.1 Asynchronous Operation in Power  
Managed Modes  
The USART may operate in Asynchronous mode while  
the peripheral clocks are being provided by the internal  
oscillator block. This makes it possible to remove the  
crystal or resonator that is commonly connected as the  
primary clock on the OSC1 and OSC2 pins.  
The factory calibrates the internal oscillator block out-  
put (INTOSC) for 8 MHz (see Table 22.5). However,  
this frequency may drift as VDD or temperature  
changes, and this directly affects the asynchronous  
baud rate. Two methods may be used to adjust the  
baud rate clock, but both require a reference clock  
source of some kind.  
The USART can be configured in the following modes:  
• Asynchronous (full-duplex) with:  
- Auto wake-up on character reception  
- Auto baud calibration  
- 12-bit Break character transmission  
• Synchronous - Master (half-duplex) with  
selectable clock polarity  
• Synchronous - Slave (half-duplex) with selectable  
clock polarity  
The first (preferred) method uses the OSCTUNE regis-  
ter to adjust the INTOSC output back to 8 MHz. Adjust-  
ing the value in the OSCTUNE register allows for fine  
resolution changes to the system clock source (see  
Section 3.6 for more information).  
The other method adjusts the value in the baud rate  
generator. There may not be fine enough resolution  
when adjusting the Baud Rate Generator to compen-  
sate for a gradual change in the peripheral clock  
frequency.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 133  
 
 
PIC18F1220/1320  
REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
SENDB  
R/W-0  
BRGH  
R-1  
TRMT  
R/W-0  
TX9D  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
bit 3  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 134  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
ADDEN  
R-0  
FERR  
R-0  
OERR  
R-x  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in RESET)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode - Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - Slave:  
Don’t care  
bit 4  
bit 3  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is  
set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 9-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 135  
 
PIC18F1220/1320  
REGISTER 16-3: BAUDCTL: BAUD RATE CONTROL REGISTER  
U-0  
R-1  
RCIDL  
U-0  
R/W-0  
SCKP  
R/W-0  
BRG16  
U-0  
R/W-0  
WUE  
R/W-0  
ABDEN  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as '0'  
RCIDL: Receive Operation IDLE Status bit  
1= Receive operation is IDLE  
0= Receive operation is active  
bit 5  
bit 4  
Unimplemented: Read as '0'  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode  
Synchronous mode:  
1= IDLE state for clock (CK) is a high level  
0= IDLE state for clock (CK) is a low level  
bit 3  
BRG16: 16-bit Baud Rate Register Enable bit  
1= 16-bit baud rate generator - SPBRGH and SPBRG  
0= 8-bit baud rate generator - SPBRG only (Compatible mode), SPBRGH value ignored  
bit 2  
bit 1  
Unimplemented: Read as '0'  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= USART will continue to sample the RX pin - interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= RX pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode  
bit 0  
ABDEN: Auto Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character - requires reception of a Sync field  
(55h); cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 136  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
16.2.1  
POWER MANAGED MODE  
OPERATION  
16.2 USART Baud Rate Generator (BRG)  
The BRG is a dedicated 8-bit or 16-bit generator, that  
supports both the Asynchronous and Synchronous  
modes of the USART. By default, the BRG operates in  
8-bit mode; setting the BRG16 bit (BAUDCTL<3>)  
selects 16-bit mode.  
The SPBRGH:SPBRG register pair controls the period  
of a free running timer. In Asynchronous mode, bits  
BRGH (TXSTA<2>) and BRG16 also control the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 16-1 shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in Master mode (internally generated clock).  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGH:SPBRG registers can be  
calculated using the formulas in Table 16-1. From this,  
the error in baud rate can be determined. An example  
calculation is shown in Example 16-1. Typical baud  
rates and error values for the various asynchronous  
modes are shown in Table 16-2. It may be advanta-  
geous to use the high baud rate (BRGH = 1), or the  
16-bit BRG to reduce the baud rate error, or achieve a  
slow baud rate for a fast oscillator frequency.  
The system clock is used to generate the desired baud  
rate; however, when a Power Managed mode is  
entered, the clock source may be operating at a differ-  
ent frequency than in PRI_RUN mode. In SLEEP  
mode, no clocks are present and in PRI_IDLE, the pri-  
mary clock source continues to provide clocks to the  
baud rate generator; however, in other Power Managed  
modes, the clock frequency will probably change. This  
may require the value in SPBRG to be adjusted.  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit  
and make sure that the receive operation is IDLE  
before changing the system clock.  
16.2.2  
SAMPLING  
The data on the RB4/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Writing a new value to the SPBRGH:SPBRG registers  
causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
TABLE 16-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/USART Mode  
Baud Rate Formula  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC / [64 (n+1)]  
FOSC / [16 (n+1)]  
FOSC / [4 (n+1)]  
Legend: x= Don’t care, n = value of SPBRGH:SPBRG register pair  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 137  
 
 
 
 
 
 
PIC18F1220/1320  
EXAMPLE 16-1:  
CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate = FOSC / (64 ([SPBRGH:SPBRG] + 1))  
Solving for SPBRGH:SPBRG:  
X
= ((FOSC / Desired Baud Rate)/64) – 1  
= ((16000000 / 9600) / 64) – 1  
= [25.042] = 25  
Calculated Baud Rate= 16000000 / (64 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate) / Desired Baud Rate  
= (9615 – 9600) / 9600 = 0.16%  
TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
other RESETS  
TXSTA  
RCSTA  
BAUDCTL  
CSRC  
SPEN  
TX9  
RX9  
RCIDL  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
ABDEN -1-1 0-00  
0000 0000  
0000 -010  
0000 -00x  
0000 -010  
0000 -00x  
-1-1 0-00  
0000 0000  
0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG Baud Rate Generator Register, Low Byte  
0000 0000  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.  
TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
RATE  
(K)  
Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
%
%
%
%
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
Error  
Error  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
1.221  
2.404  
9.766  
19.531  
62.500  
104.167  
255  
129  
31  
15  
4
129  
64  
15  
7
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
9.6  
19.2  
57.6  
115.2  
2
1
2
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 2.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
Actual  
SPBRG Actual  
SPBRG Actual  
value  
SPBRG  
%
%
%
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
value  
Error  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
0.300  
1.202  
2.404  
0.16  
0.16  
0.16  
-6.99  
8.51  
8.51  
207  
51  
25  
6
2
0
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
300  
1201  
-0.16  
-0.16  
51  
12  
9.6  
8.929  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
-45.75  
0
DS39605B-page 138  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
%
%
Error  
%
Error  
%
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
2.4  
9.6  
19.2  
57.6  
115.2  
9.766  
19.231  
58.140  
113.636  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
129  
64  
21  
10  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2403  
9615  
19230  
55555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
1.73  
0.16  
0.94  
-1.36  
0.16  
0.16  
-1.36  
-1.36  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 2.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
%
%
%
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Error  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
1.202  
2.404  
9.615  
19.231  
62.500  
125.000  
207  
103  
25  
12  
3
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
9.6  
19.2  
57.6  
115.2  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
SPBRG Actual  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
%
%
%
%
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
Error  
Error  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
0.300  
1.200  
2.402  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
2.399  
0.02  
-0.03  
-0.03  
0.16  
0.16  
-1.36  
-1.36  
4165  
1041  
520  
129  
64  
0.300  
1.200  
2.404  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
31  
10  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
25  
8
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
19.531  
56.818  
125.000  
21  
10  
21  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 2.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
%
%
%
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Error  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
0.300  
1.202  
2.404  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
300  
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 139  
PIC18F1220/1320  
TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
%
%
Error  
%
Error  
%
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
0.300  
1.200  
2.400  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
2.400  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
2.402  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
300  
1200  
2400  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
9.6  
9.606  
9.596  
9.615  
9615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19230  
57142  
117647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
%
%
%
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Error  
Error  
Error  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
2.4  
0.300  
1.200  
2.404  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
25  
8
300  
1201  
2403  
9615  
19230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
12  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
16  
8
DS39605B-page 140  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
carry occurred for 8-bit modes, by checking for 00h in  
the SPBRGH register. Refer to Table 16-4 for counter  
clock rates to the BRG.  
While the ABD sequence takes place, the USART state  
machine is held in IDLE. The RCIF interrupt is set once  
the fifth rising edge on RX is detected. The value in the  
RCREG needs to be read to clear the RCIF interrupt.  
RCREG content should be discarded.  
16.2.3  
AUTO BAUD RATE DETECT  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
The automatic baud rate measurement sequence  
(Figure 16-1) begins whenever a START bit is received  
and the ABDEN bit is set. The calculation is  
self-averaging.  
In the Auto Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG. In  
ABD mode, the internal Baud Rate Generator is used  
as a counter to time the bit period of the incoming serial  
byte stream.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a START bit. The Auto Baud  
Detect must receive a byte with the value 55h (ASCII  
“U”, which is also the LIN bus Sync character), in order  
to calculate the proper bit rate. The measurement is  
taken over both a low and a high bit time in order to  
minimize any effects caused by asymmetry of the  
incoming signal. After a START bit, the SPBRG begins  
counting up using the preselected clock source on the  
first rising edge of RX. After eight bits on the RX pin, or  
the fifth rising edge, an accumulated value totalling the  
proper BRG period is left in the SPBRGH:SPBRG reg-  
isters. Once the 5th edge is seen (should correspond to  
the STOP bit), the ABDEN bit is automatically cleared.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto baud rate detection will occur on the  
byte following the Break character (see  
Section 16.3.4).  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator fre-  
quency and USART baud rates are not  
possible due to bit error rates. Overall  
system timing and communication baud  
rates must be taken into consideration  
when using the Auto Baud Rate Detection  
feature.  
TABLE 16-4: BRG COUNTER CLOCK  
RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
0
1
FOSC/512  
FOSC/128  
While calibrating the baud rate period, the BRG regis-  
ters are clocked at 1/8th the pre-configured clock rate.  
Note that the BRG clock will be configured by the  
BRG16 and BRGH bits. Independent of the BRG16 bit  
setting, both the SPBRG and SPBRGH will be used as  
a 16-bit counter. This allows the user to verify that no  
1
1
0
1
FOSC/128  
FOSC/32  
Note: During the ABD sequence, SPBRG and  
SPBRGH are both used as a 16-bit counter,  
independent of BRG16 setting.  
FIGURE 16-1:  
AUTOMATIC BAUD RATE CALCULATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #2  
Bit 3  
Edge #3  
Bit 5  
Bit 4  
Edge #4  
Bit 7  
Edge #5  
STOP Bit  
Edge #1  
Bit 0  
RX pin  
Bit 1  
START  
Bit 2  
Bit 6  
BRG Clock  
Auto Cleared  
Set by User  
ABDEN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the USART module to be configured in Asynchronous mode and WUE = 0.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 141  
 
 
 
PIC18F1220/1320  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
empty and flag bit TXIF (PIR1<4>) is set. This interrupt  
can be enabled/disabled by setting/clearing enable bit  
TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of  
the state of enable bit TXIE and cannot be cleared in  
software. Flag bit TXIF is not cleared immediately upon  
loading the transmit buffer register TXREG. TXIF  
becomes valid in the second instruction cycle following  
the load instruction. Polling TXIF immediately following  
a load of TXREG will return invalid results.  
While flag bit TXIF indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. Status bit TRMT is a read  
only bit, which is set when the TSR register is empty.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit in order to determine if the TSR register is  
empty.  
16.3 USART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA<4>). In this mode, the  
USART uses standard non-return-to-zero (NRZ) format  
(one START bit, eight or nine data bits and one STOP  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit baud rate generator can be used  
to derive standard baud rate frequencies from the  
oscillator.  
The USART transmits and receives the LSb first. The  
USART’s transmitter and receiver are functionally inde-  
pendent, but use the same data format and baud rate.  
The baud rate generator produces a clock, either x16  
or x64 of the bit shift rate, depending on the BRGH and  
BRG16 bits (TXSTA<2> and BAUDCTL<3>). Parity is  
not supported by the hardware, but can be  
implemented in software and stored as the 9th data bit.  
Asynchronous mode is available in all Low Power  
modes; it is available in SLEEP mode only when Auto  
Wake-up on Sync Break is enabled. When in PRI_IDLE  
mode, no changes to the baud rate generator values  
are required; however, other Low Power mode clocks  
may operate at another frequency than the primary  
clock. Therefore, the baud rate generator values may  
need to be adjusted.  
When operating in Asynchronous mode, the USART  
module consists of the following important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Auto Wake-up on Sync Break Character  
• 12-bit Break Character Transmit  
• Auto Baud Rate Detection  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
To set up an Asynchronous Transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
16.3.1  
USART ASYNCHRONOUS  
TRANSMITTER  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
The USART transmitter block diagram is shown in  
Figure 16-2. The heart of the transmitter is the Transmit  
(serial) Shift Register (TSR). The shift register obtains  
its data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available).  
DS39605B-page 142  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
FIGURE 16-2:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG Register  
8
TXIE  
RB1/AN5/TX/CK/INT1 pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
• •  
and Control  
TSR Register  
Interrupt  
Baud Rate CLK  
SPBRG  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGH  
TX9  
TX9D  
Baud Rate Generator  
FIGURE 16-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RB1/AN5/TX/  
CK/INT1 (pin)  
START bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
STOP bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 16-4:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG Output  
(Shift Clock)  
RB1/AN5/TX/  
START bit  
START bit  
Word 2  
bit 0  
bit 1  
Word 1  
bit 7/8  
bit 0  
CK/INT1 (pin)  
STOP bit  
1 TCY  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 143  
 
 
 
 
PIC18F1220/1320  
TABLE 16-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
-000 -000 -000 -000  
-000 -000 -000 -000  
-000 -000 -000 -000  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
USART Transmit Register  
CSRC  
TX9  
RCIDL  
TXEN  
SYNC SENDB BRGH  
SCKP BRG16  
TRMT  
WUE  
TX9D  
ABDEN  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG Baud Rate Generator Register, Low Byte  
Legend: x= unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.  
DS39605B-page 144  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
16.3.2  
USART ASYNCHRONOUS  
RECEIVER  
16.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 16-5.  
The data is received on the RB4/AN6/RX/DT/KBI0 pin  
and drives the data recovery block. The data recovery  
block is actually a high speed shifter operating at x16  
times the baud rate, whereas the main receive serial  
shifter operates at the bit rate or at FOSC. This mode  
would typically be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be Acknowledged if the  
RCIE and GIE bits are set.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
7. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
9. Read RCREG to determine if the device is being  
addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 16-5:  
USART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
0
x64 Baud Rate CLK  
SPBRGH  
SPBRG  
÷ 64  
or  
RSR Register  
• • •  
LSb  
MSb  
BRG16  
÷ 16  
or  
STOP (8)  
7
1
START  
Baud Rate Generator  
÷ 4  
RX9  
RB4/AN6/RX/DT/KBI0  
Pin Buffer  
Data  
and Control  
Recovery  
Interrupt  
RX9D  
RCREG Register  
FIFO  
SPEN  
8
RCIF  
RCIE  
Data Bus  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 145  
 
 
 
 
PIC18F1220/1320  
To set up an Asynchronous Transmission:  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (see Section 16.2).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit TXIE.  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
FIGURE 16-6:  
ASYNCHRONOUS RECEPTION  
START  
START  
START  
bit  
RX (pin)  
bit  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit7/8 STOP bit  
bit  
bit0  
bit7/8  
bit7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
Word 1  
RCREG  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 16-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
INTCON  
PIR1  
PIE1  
IPR1  
RCSTA  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x  
0000 000u  
-000 -000  
-000 -000  
-000 -000  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000  
CCP1IP TMR2IP TMR1IP -000 -000  
SPEN  
CREN ADDEN FERR  
OERR  
RX9D  
0000 -00x  
0000 -00x  
RCREG  
USART Receive Register  
0000 0000  
0000 0010  
0000 0000  
0000 0010  
-1-1 0-00  
0000 0000  
0000 0000  
TXSTA  
BAUDCTL  
CSRC  
TX9  
RCIDL  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
SCKP BRG16  
ABDEN -1-1 0-00  
0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG Baud Rate Generator Register, Low Byte  
0000 0000  
Legend: x= unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
DS39605B-page 146  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
and cause data or framing errors. To work properly,  
therefore, the initial character in the transmission must  
be all ‘0’s. This can be 00h (8 bytes) for standard RS-232  
devices, or 000h (12 bits) for LIN bus.  
Oscillator start-up time must also be considered, espe-  
cially in applications using oscillators with longer  
start-up intervals (i.e., XT or HS mode). The Sync  
Break (or Wake-up Signal) character must be of suffi-  
cient length, and be followed by a sufficient interval, to  
allow enough time for the selected oscillator to start  
and provide proper initialization of the USART.  
16.3.4  
AUTO WAKE-UP ON SYNC BREAK  
CHARACTER  
During SLEEP mode, all clocks to the USART are sus-  
pended. Because of this, the baud rate generator is  
inactive and a proper byte reception cannot be per-  
formed. The Auto Wake-up feature allows the controller  
to wake-up due to activity on the RX/DT line, while the  
USART is operating in Asynchronous mode.  
The Auto Wake-up feature is enabled by setting the  
WUE bit (BAUDCTL<1>). Once set, the typical receive  
sequence on RX/DT is disabled, and the USART  
remains in an IDLE state, monitoring for a wake-up  
event independent of the CPU mode. A wake-up event  
consists of a high-to-low transition on the RX/DT line.  
(This coincides with the start of a Sync Break or a  
Wake-up Signal character for the LIN protocol.)  
Following a wake-up event, the module generates an  
RCIF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal Operating modes  
(Figure 16-7), and asynchronously if the device is in  
SLEEP mode (Figure 16-8). The interrupt condition is  
cleared by reading the RCREG register.  
16.3.4.2  
Special Considerations Using the  
WUE Bit  
The timing of WUE and RCIF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
USART in an IDLE mode. The wake-up event causes a  
receive interrupt by setting the RCIF bit. The WUE bit  
is cleared after this when a rising edge is seen on  
RX/DT. The interrupt condition is then cleared by read-  
ing the RCREG register. Ordinarily, the data in RCREG  
will be dummy data and should be discarded.  
The WUE bit is automatically cleared once a low-to-high  
transition is observed on the RX line, following the  
wake-up event. At this point, the USART module is in  
IDLE mode and returns to normal operation. This signals  
to the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set) and the RCIF flag is set should not be used as an  
indicator of the integrity of the data in RCREG. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the SLEEP mode.  
16.3.4.1  
Special Considerations Using Auto  
Wake-up  
Since Auto Wake-up functions by sensing rising edge  
transitions on RX/DT, information with any state changes  
before the STOP bit may signal a false end-of-character  
FIGURE 16-7:  
AUTO WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit  
Auto Cleared  
Bit Set by User  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The USART remains in IDLE while the WUE bit is set.  
FIGURE 16-8:  
AUTO WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit  
Auto Cleared  
Bit Set by User  
RX/DT Line  
RCIF  
Note 1  
Cleared due to User Read of RCREG  
SLEEP Ends  
SLEEP Command Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto clear of the WUE bit can occur while the stposc signal is still active.  
This sequence should not depend on the presence of Q clocks.  
2: The USART remains in IDLE while the WUE bit is set.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 147  
 
 
 
 
 
 
PIC18F1220/1320  
16.3.5  
BREAK CHARACTER SEQUENCE  
16.3.5.1  
Break and Sync Transmit Sequence  
The following sequence will send a message frame  
header made up of a Break, followed by an auto baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
The Enhanced USART module has the capability of  
sending the special Break character sequences that  
are required by the LIN bus standard. The Break char-  
acter transmit consists of a START bit, followed by 12  
‘0’ bits and a STOP bit. The frame Break character is  
sent whenever the SENDB and TXEN bits (TXSTA<3>  
and TXSTA<5>) are set, while the transmit shift register  
is loaded with data. Note that the value of data written  
to TXREG will be ignored and all ‘0’s will be  
transmitted.  
The SENDB bit is automatically reset by hardware after  
the corresponding STOP bit is sent. This allows the  
user to preload the transmit FIFO with the next transmit  
byte following the Break character (typically, the Sync  
character in the LIN specification).  
Note that the data value written to the TXREG for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The TRMT bit indicates when the transmit operation is  
active or IDLE, just as it does during normal transmis-  
sion. See Figure 16-9 for the timing of the Break  
character sequence.  
1. Configure the USART for the desired mode.  
2. Set the TXEN and SENDB bits to setup the  
Break character.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the Pre-Configured mode.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
16.3.6  
RECEIVING A BREAK CHARACTER  
The Enhanced USART module can receive a Break  
character in two ways.  
The first method forces to configure the baud rate at a  
frequency of 9/13 the typical speed. This allows for the  
STOP bit transition to be at the correct sampling loca-  
tion (13 bits for Break versus START bit and 8 data bits  
for typical data).  
The second method uses the Auto Wake-up feature  
described in Section 16.3.4. By enabling this feature,  
the USART will sample the next two transitions on  
RX/DT, cause an RCIF interrupt, and receive the next  
data byte followed by another interrupt.  
Note that following a Break character, the user will typ-  
ically want to enable the Auto Baud Rate detect fea-  
ture. For both methods, the user can set the ABD bit  
once the TXIF interrupt is observed.  
FIGURE 16-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
START Bit  
Bit 0  
Bit 1  
Break  
Bit 11  
STOP Bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
DS39605B-page 148  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCYCLE), the TXREG is empty  
and interrupt bit TXIF (PIR1<4>) is set. The interrupt  
can be enabled/disabled by setting/clearing enable bit  
TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of  
the state of enable bit TXIE, and cannot be cleared in  
software. It will reset only when new data is loaded into  
the TXREG register.  
While flag bit TXIF indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. TRMT is a read only bit,  
which is set when the TSR is empty. No interrupt logic  
is tied to this bit, so the user has to poll this bit in order  
to determine if the TSR register is empty. The TSR is  
not mapped in data memory, so it is not available to the  
user.  
16.4 USART Synchronous Master  
Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit  
SYNC (TXSTA<4>). In addition, enable bit SPEN  
(RCSTA<7>) is set in order to configure the  
RB1/AN5/TX/CK/INT1 and RB4/AN6/RX/DT/KBI0 I/O  
pins to CK (clock) and DT (data) lines, respectively.  
The Master mode indicates that the processor trans-  
mits the master clock on the CK line. Clock polarity is  
selected with the SCKP bit (BAUDCTL<5>); setting  
SCKP sets the IDLE state on CK as high, while clearing  
the bit sets the IDLE state is low. This option is provided  
to support Microwire® devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
16.4.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
The USART transmitter block diagram is shown in  
Figure 16-2. The heart of the transmitter is the Transmit  
(serial) Shift Register (TSR). The shift register obtains  
its data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available).  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 16-10:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RB4/AN6/RX/  
DT/KBI0 pin  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 0)  
bit 0  
bit 1  
Word 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
TXEN bit  
'1'  
'1'  
Note: Sync Master mode, SPBRG = '0', continuous transmission of two 8-bit words.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 149  
 
 
 
PIC18F1220/1320  
FIGURE 16-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RB4/AN6/RX/DT/KBI0 pin  
bit0  
bit2  
bit1  
bit6  
bit7  
RB1/AN5/TX/CK/INT1 pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
-000 -000  
-000 -000  
-000 -000  
0000 -00x  
0000 0000  
0000 0010  
-1-1 0-00  
0000 0000  
0000 0000  
0000 000u  
-000 -000  
-000 -000  
-000 -000  
0000 -00x  
0000 0000  
0000 0010  
-1-1 0-00  
0000 0000  
0000 0000  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
USART Transmit Register  
CSRC  
TX9  
RCIDL  
TXEN  
SYNC SENDB  
SCKP BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDEN  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG Baud Rate Generator Register, Low Byte  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
DS39605B-page 150  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
16.4.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit  
SREN (RCSTA<5>), or the Continuous Receive  
Enable bit CREN (RCSTA<4>). Data is sampled on the  
RB4/AN6/RX/DT/KBI0 pin on the falling edge of the  
clock.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
If enable bit SREN is set, only a single word is received.  
If enable bit CREN is set, the reception is continuous  
until CREN is cleared. If both bits are set, then CREN  
takes precedence.  
9. Read the 8-bit received data by reading the  
RCREG register.  
To set up a Synchronous Master Reception:  
10. If any error occurred, clear the error by clearing  
bit CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
FIGURE 16-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RB4/AN6/RX/  
DT/KBI0 pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 0)  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 151  
 
 
PIC18F1220/1320  
TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -000 -000 -000 -000  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
USART Receive Register  
CSRC  
TX9  
RCIDL  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDEN  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG Baud Rate Generator Register, Low Byte  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception.  
DS39605B-page 152  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
To set up a Synchronous Slave Transmission:  
16.5 USART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
Synchronous Slave mode is entered by clearing bit  
CSRC (TXSTA<7>). This mode differs from the Syn-  
chronous Master mode in that the shift clock is supplied  
externally at the RB1/AN5/TX/CK/INT1 pin (instead of  
being supplied internally in Master mode). This allows  
the device to transfer or receive data while in any Low  
Power mode.  
5. Enable the transmission by setting enable bit  
TXEN.  
16.5.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the SLEEP  
mode.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -000 -000 -000 -000  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
USART Transmit Register  
CSRC  
TX9  
RCIDL  
TXEN  
SYNC SENDB  
SCKP BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDEN -1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG Baud Rate Generator Register, Low Byte  
0000 0000 0000 0000  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 153  
 
 
 
PIC18F1220/1320  
To set up a Synchronous Slave Reception:  
16.5.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
5. Flag bit RCIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCIE was set.  
6. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of SLEEP, or any  
IDLE mode and bit SREN, which is a “don't care” in  
Slave mode.  
If receive is enabled by setting the CREN bit prior to  
entering SLEEP or any IDLE mode, then a word may  
be received while in this Low Power mode. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register; if the RCIE enable bit is set, the  
interrupt generated will wake the chip from Low Power  
mode. If the global interrupt is enabled, the program will  
branch to the interrupt vector.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
RESETS  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
USART Receive Register  
CSRC  
TX9  
RCIDL  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDEN -1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG Baud Rate Generator Register, Low Byte  
0000 0000 0000 0000  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
DS39605B-page 154  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
The module has five registers:  
17.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) converter module has 7  
inputs for the PIC18F1220/1320 devices. This module  
allows conversion of an analog input signal to a  
corresponding 10-bit digital number.  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
A new feature for the A/D converter is the addition of  
programmable acquisition time. This feature allows the  
user to select a new channel for conversion and setting  
the GO/DONE bit immediately. When the GO/DONE bit  
is set, the selected channel is sampled for the pro-  
grammed acquisition time before a conversion is actu-  
ally started. This removes the firmware overhead that  
may have been required to allow for an acquisition  
The ADCON0 register, shown in Register 17-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 17-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 17-3, configures the A/D clock  
source, programmed acquisition time and justification.  
(sampling)  
period  
(see  
Register 17-3  
and  
Section 17.3).  
REGISTER 17-1: ADCON0 REGISTER  
R/W-0  
VCFG1  
bit 7  
R/W-0  
U-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
GO/DONE  
R/W-0  
ADON  
VCFG0  
bit 0  
bit 7-6 VCFG<1:0>: Voltage Reference Configuration bits  
A/D VREF+  
AVDD  
A/D VREF-  
AVSS  
00  
01  
10  
11  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 5  
Unimplemented: Read as '0'  
bit 4-3  
CHS2:CHS0: Analog Channel Select bits  
000= Channel 0 (AN0)  
001= Channel 1 (AN1)  
010= Channel 2 (AN2)  
011= Channel 3 (AN3)  
100= Channel 4 (AN4)  
101= Channel 5 (AN5)  
110= Channel 6 (AN6)  
111= Unimplemented(1)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D IDLE  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
Note 1: Performing a conversion on unimplemented channels returns full scale results.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 155  
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
REGISTER 17-2: ADCON1 – A/D CONTROL REGISTER 1  
U-0  
bit 7  
R/W-0  
PCFG6  
R/W-0  
PCFG5  
R/W-0  
PCFG4  
R/W-0  
PCFG3  
R/W-0  
PCFG2 PCFG1  
R/W-0  
R/W-0  
PCFG0  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
PCFG6: A/D Port Configuration bit - AN6  
1= Pin configured as a digital port  
0= Pin configured as an analog channel - digital input disabled and reads ‘0’  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PCFG5: A/D Port Configuration bit - AN5  
1= Pin configured as a digital port  
0= Pin configured as an analog channel - digital input disabled and reads ‘0’  
PCFG4: A/D Port Configuration bit - AN4  
1= Pin configured as a digital port  
0= Pin configured as an analog channel - digital input disabled and reads ‘0’  
PCFG3: A/D Port Configuration bit - AN3  
1= Pin configured as a digital port  
0= Pin configured as an analog channel - digital input disabled and reads ‘0’  
PCFG2: A/D Port Configuration bit - AN2  
1= Pin configured as a digital port  
0= Pin configured as an analog channel - digital input disabled and reads ‘0’  
PCFG1: A/D Port Configuration bit - AN1  
1= Pin configured as a digital port  
0= Pin configured as an analog channel - digital input disabled and reads ‘0’  
PCFG0: A/D Port Configuration bit - AN0  
1= Pin configured as a digital port  
0= Pin configured as an analog channel - digital input disabled and reads ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605B-page 156  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
REGISTER 17-3: ADCON2 REGISTER  
R/W-0  
ADFM  
U-0  
R/W-0  
ACQT2  
R/W-0  
ACQT1  
R/W-0  
ACQT0  
R/W-0  
ADCS2  
R/W-0  
ADCS1  
R/W-0  
ADCS0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as '0'  
bit 5-3  
ACQT2:ACQT0: A/D Acquisition Time Select bits  
000= 0 TAD  
(1)  
001= 2 TAD  
010= 4 TAD  
011= 6 TAD  
100= 8 TAD  
101= 12 TAD  
110= 16 TAD  
111= 20 TAD  
bit 2-0  
ADCS2:ADCS0: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from A/D RC oscillator)(1)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from A/D RC oscillator)(1)  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is  
added before the A/D clock starts. This allows the SLEEPinstruction to be executed  
before starting a conversion.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 157  
 
PIC18F1220/1320  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(AVDD and AVSS), or the voltage level on the  
RA3/AN3/VREF+ and RA2/AN2/VREF- pins.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off and  
any conversion in progress is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input, or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH/ADRESL  
registers, the GO/DONE bit (ADCON0 register) is  
cleared, and A/D interrupt flag bit ADIF is set. The block  
diagram of the A/D module is shown in Figure 17-1.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
FIGURE 17-1:  
A/D BLOCK DIAGRAM  
AVDD  
CHS2:CHS0  
111  
110  
AN6(1)  
101  
AN5  
100  
AN4  
VAIN  
(Input Voltage)  
011  
10-bit  
AN3/VREF+  
Converter  
A/D  
010  
AN2/VREF-  
001  
VCFG1:VCFG0  
AN1  
000  
AVDD  
AN0  
x0  
x1  
1x  
VREFH  
VREFL  
Reference  
Voltage  
0x  
AVSS  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39605B-page 158  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
The value in the ADRESH/ADRESL registers is not  
The following steps should be followed to do an A/D  
Conversion:  
1. Configure the A/D module:  
modified  
for  
a
Power-on  
Reset.  
The  
ADRESH/ADRESL registers will contain unknown data  
after a Power-on Reset.  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 17.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. An acquisition time can be pro-  
grammed to occur between setting the GO/DONE bit  
and the actual start of the conversion.  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF, if required.  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
FIGURE 17-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
5 pF  
VAIN  
I leakage  
± 500 nA  
CHOLD = 120 pF  
VT = 0.6V  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I LEAKAGE = leakage current at the pin due to  
VDD 4V  
3V  
various junctions  
= interconnect resistance  
= sampling switch  
RIC  
SS  
2V  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch (k)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 159  
 
 
 
 
PIC18F1220/1320  
17.1 A/D Acquisition Requirements  
Example 17-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system  
assumptions:  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 17-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5k. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
CHOLD  
=
=
=
=
=
120 pF  
Rs  
2.5 kΩ  
Conversion Error  
VDD  
Temperature  
VHOLD  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
17.2 A/D VREF+ and VREF- References  
If external voltage references are used instead of the  
internal AVDD and AVSS sources, the source imped-  
ance of the VREF+ and VREF- voltage sources must be  
considered. During acquisition, currents supplied by  
these sources are insignificant. However, during con-  
version, the A/D module sinks and sources current  
through the reference sources.  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
In order to maintain the A/D accuracy, the voltage ref-  
erence source impedances should be kept low to  
reduce voltage changes. These voltage changes occur  
as reference currents flow through the reference  
source impedance. The maximum recommended  
impedance of the VREF+ and VREF- external  
reference voltage sources is 250.  
To calculate the minimum acquisition time,  
Equation 17-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
EQUATION 17-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 17-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
(VREF – (VREF/2048)) • (1 – e(-Tc/CHOLD(RIC + RSS + RS))  
)
=
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EXAMPLE 17-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
5 µs  
(Temp – 25°C)(0.05 µs/°C)  
(50°C – 25°C)(0.05 µs/°C)  
1.25 µs  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 µs.  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2047) µs  
-(120 pF) (1 k+ 7 k+ 2.5 k) ln(0.0004883) µs  
9.61 µs  
TACQ  
=
5 µs + 1.25 µs + 9.61 µs  
12.86 µs  
DS39605B-page 160  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
PIC18F1220/1320  
17.3 Selecting and Configuring  
Automatic Acquisition Time  
17.4 Selecting the A/D Conversion  
Clock  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensur-  
ing the required acquisition time has passed between  
selecting the desired input channel and setting the  
GO/DONE bit. This occurs when the ACQT2:ACQT0  
bits (ADCON2<5:3>) remain in their RESET state  
(‘000’), and is compatible with devices that do not offer  
programmable acquisition times.  
If desired, the ACQT bits can be set to select a pro-  
grammable acquisition time for the A/D module. When  
the GO/DONE bit is set, the A/D module continues to  
sample the input for the selected acquisition time, then  
automatically begins a conversion. Since the acquisi-  
tion time is programmed, there may be no need to wait  
for an acquisition time between selecting a channel and  
setting the GO/DONE bit.  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible, but greater than the  
minimum TAD (approximately 2 µs, see parameter 130  
for more information).  
Table 17-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set, and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended, or  
if the conversion has begun.  
TABLE 17-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS2:ADCS0  
PIC18F1X20  
PIC18LF1X20(4)  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(3)  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
40.0 MHz  
1.00 MHz(1)  
666 kHz  
1.33 MHz  
2.66 MHz  
5.33 MHz  
10.65 MHz  
21.33 MHz  
1.00 MHz(2)  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: The RC source has a typical TAD time of 6 µs.  
3: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D  
accuracy may be out of specification.  
4: Low power devices only.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 161  
 
 
 
PIC18F1220/1320  
17.5 Operation in Low Power Modes  
17.6 Configuring Analog Port Pins  
The selection of the automatic acquisition time and A/D  
conversion clock is determined, in part, by the Low  
Power mode clock source and frequency while in a Low  
Power mode.  
The ADCON1, TRISA, and TRISB registers all config-  
ure the A/D port pins. The port pins needed as analog  
inputs must have their corresponding TRIS bits set  
(input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
If the A/D is expected to operate while the device is in  
a
Low Power mode, the ACQT2:ACQT0 and  
ADCS2:ADCS0 bits in ADCON2 should be updated in  
accordance with the Low Power mode clock that will be  
used. After the Low Power mode is entered (either of  
the RUN modes), an A/D acquisition or conversion may  
be started. Once an acquisition or conversion is  
started, the device should continue to be clocked by the  
same Low Power mode clock source until the conver-  
sion has been completed. If desired, the device may be  
placed into the corresponding Low Power (ANY)_IDLE  
mode during the conversion.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will be accurately  
converted.  
2: Analog levels on any pin defined as a dig-  
ital input may cause the digital input buffer  
to consume current out of the device’s  
specification limits.  
If the Low Power mode clock frequency is less than  
1 MHz, the A/D RC clock source should be selected.  
Operation in the Low Power SLEEP mode requires the  
A/D RC clock to be selected. If bits ACQT2:ACQT0 are  
set to ‘000’, and a conversion is started, the conversion  
will be delayed one instruction cycle to allow execution  
of the SLEEP instruction and entry to Low Power  
SLEEP mode. The IDLEN and SCS bits in the  
OSCCON register must have already been cleared  
prior to starting the conversion.  
DS39605B-page 162  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D result register  
pair will NOT be updated with the partially completed  
17.7 A/D Conversions  
Figure 17-3 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT2:ACQT0  
bits are cleared. A conversion is started after the follow-  
ing instruction to allow entry into Low Power SLEEP  
mode before the conversion begins.  
A/D  
conversion  
sample.  
This  
means  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers).  
Figure 17-4 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT2:ACQT0  
bits are set to ‘010’, and selecting a 4 TAD acquisition  
time before the conversion starts.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can  
be started. After this wait, acquisition on the selected  
channel is automatically started.  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 17-3:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b7  
b6  
b4  
b1  
b0  
b2  
b9  
b8  
b5  
b3  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 17-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
b4  
8
b3  
9
b2  
10  
b1  
11  
b0  
1
2
3
4
1
2
b9  
3
b8  
4
b7  
5
b6  
6
b5  
Automatic  
Acquisition  
Time  
Conversion Starts  
(Holding capacitor is disconnected)  
Set GO bit  
(Holding capacitor continues  
acquiring input)  
Next Q4: ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is reconnected to analog input.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 163  
 
 
 
PIC18F1220/1320  
desired location). The appropriate analog input chan-  
nel must be selected and the minimum acquisition  
period is either timed by the user, or an appropriate  
TACQ time selected before the “special event trigger”  
sets the GO/DONE bit (starts a conversion).  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D  
module, but will still reset the Timer1 (or Timer3)  
counter.  
17.8 Use of the CCP1 Trigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP1 module. This requires that the  
CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D acquisition  
and conversion, and the Timer1 (or Timer3) counter will  
be reset to zero. Timer1 (or Timer3) is reset to automat-  
ically repeat the A/D acquisition period with minimal  
software overhead (moving ADRESH/ADRESL to the  
TABLE 17-2: SUMMARY OF A/D REGISTERS  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
POR, BOR  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
CCP1IF  
CCP1IE  
CCP1IP  
LVDIF  
LVDIE  
LVDIP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TMR1IF -000 -000 -000 -000  
TMR1IE -000 -000 -000 -000  
TMR1IP -111 -111 -111 -111  
OSCFIF  
OSCFIE  
OSCFIP  
0--0 -00- 0--0 -00-  
0--0 -00- 0--0 -00-  
1--1 -11- 1--1 -11-  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
PORTB  
TRISB  
LATB  
VCFG1  
ADFM  
RA7  
VCFG0  
PCFG6  
RA6  
TRISA6  
CHS2  
PCFG4  
ACQT1  
RA4  
CHS1  
PCFG3 PCFG2  
ACQT0 ADCS2  
CHS0 GO/DONE ADON  
00-0 0000 00-0 0000  
PCFG5  
ACQT2  
PCFG1  
ADCS1  
RA1  
PCFG0 -000 0000 -000 0000  
ADCS0 0-00 0000 0-00 0000  
RA0  
(1)  
RA5  
RA3  
RA2  
--0x 0000 --0u 0000  
11-1 1111 11-1 1111  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
TRISA7  
PORTA Data Direction Register  
Read PORTB pins, Write LATB Latch  
PORTB Data Direction Register  
PORTB Output Data Latch  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0', q = value depends on condition.  
Shaded cells are not used for A/D conversion.  
Note 1: RA5 port bit is available only as an input pin when MCLRE bit in configuration register is ‘0’.  
DS39605B-page 164  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
Figure 18-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shutdown the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference TB TA is the total  
time for shutdown.  
The block diagram for the LVD module is shown in  
Figure 18-2 (following page). A comparator uses an  
internally generated reference voltage as the set point.  
When the selected tap output of the device voltage  
crosses the set point (is lower than), the LVDIF bit is set.  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the 1.2V  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal setting the LVDIF bit. This voltage is  
software programmable to any one of 16 values (see  
Figure 18-2). The trip point is selected by  
programming the LVDL3:LVDL0 bits (LVDCON<3:0>).  
18.0 LOW VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do “housekeeping tasks”, before the device  
voltage exits the valid operating range. This can be  
done using the Low Voltage Detect module.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
The Low Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be turned  
off by the software, which minimizes the current  
consumption for the device.  
FIGURE 18-1:  
TYPICAL LOW VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 165  
 
 
PIC18F1220/1320  
FIGURE 18-2:  
LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD Control  
Register  
LVDIF  
Internally Generated  
Reference Voltage  
1.2V  
LVDEN  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when bits  
LVDL3:LVDL0 are set to ‘1111’. In this state, the com-  
parator input is multiplexed from the external input pin,  
LVDIN (Figure 18-3). This gives users flexibility,  
because it allows them to configure the Low Voltage  
Detect interrupt to occur at any voltage in the valid  
operating range.  
FIGURE 18-3:  
LOW VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVD Control  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS39605B-page 166  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
18.1 Control Register  
The Low Voltage Detect Control register controls the  
operation of the Low Voltage Detect circuitry.  
REGISTER 18-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
IRVST  
R/W-0  
LVDEN  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as '0'  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low Voltage Detect logic will generate the interrupt flag at the  
specified voltage range  
0= Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0  
LVDL3:LVDL0: Low Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.50V - 4.78V  
1101= 4.20V - 4.46V  
1100= 4.00V - 4.26V  
1011= 3.80V - 4.04V  
1010= 3.60V - 3.84V  
1001= 3.50V - 3.72V  
1000= 3.30V - 3.52V  
0111= 3.00V - 3.20V  
0110= 2.80V - 2.98V  
0101= 2.70V - 2.86V  
0100= 2.50V - 2.66V  
0011= 2.40V - 2.55V  
0010= 2.20V - 2.34V  
0001= 2.00V - 2.12V  
0000= Reserved  
Note:  
LVDL3:LVDL0 modes, which result in a trip point below the valid operating voltage  
of the device, are not tested.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 167  
 
PIC18F1220/1320  
The following steps are needed to set up the LVD  
module:  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register), which selects the desired  
LVD Trip Point.  
18.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be con-  
stantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods, where the voltage is checked. After  
doing the check, the LVD module may be disabled.  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 18-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 18-4:  
LOW VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set.  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIVRST  
LVDIF cleared in software.  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIVRST  
Internally Generated  
Reference Stable  
LVDIF cleared in software.  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists.  
DS39605B-page 168  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
18.2.1  
REFERENCE VOLTAGE SET POINT  
18.3 Operation During SLEEP  
The Internal Reference Voltage of the LVD module may  
be used by other internal circuitry (the Programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter 36. The low voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 18-4.  
When enabled, the LVD circuitry continues to operate  
during SLEEP. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from SLEEP. Device execution will continue from  
the interrupt vector address, if interrupts have been  
globally enabled.  
18.4 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the LVD module to be turned off.  
18.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 169  
 
 
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 170  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure.  
Two-Speed Start-up enables code to be executed  
almost immediately on start-up, while the primary clock  
source completes its start-up delays.  
19.0 SPECIAL FEATURES OF THE  
CPU  
PIC18F1220/1320 devices include several features  
intended to maximize system reliability, minimize cost  
through elimination of external components and offer  
code protection. These are:  
• Oscillator Selection  
• RESETS:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming  
All of these features are enabled and configured by  
setting the appropriate configuration register bits.  
19.1 Configuration Bits  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h - 3FFFFFh),  
which can only be accessed using Table Reads and  
Table Writes.  
Programming the configuration registers is done in a  
manner similar to programming the FLASH memory.  
The EECON1 register WR bit starts a self-timed write  
to the configuration register. In normal Operation mode,  
a TBLWT instruction, with the TBLPTR pointing to the  
configuration register, sets up the address and the data  
for the configuration register write. Setting the WR bit  
starts a long write to the configuration register. The con-  
figuration registers are written a byte at a time. To write  
or erase a configuration cell, a TBLWT instruction can  
write a ‘1’ or a ‘0’ into the cell. For additional details on  
FLASH programming, refer to Section 6.5.  
Several oscillator options are available to allow the part  
to fit the application. The RC oscillator option saves  
system cost, while the LP crystal option saves power.  
These are discussed in detail in Section 2.0.  
A complete discussion of device RESETS and inter-  
rupts is available in previous sections of this data sheet.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for RESETS, PIC18F1220/1320  
devices have a Watchdog Timer, which is either perma-  
nently enabled via the configuration bits, or software  
controlled (if configured as disabled).  
TABLE 19-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
300005h CONFIG3H MCLRE  
300006h CONFIG4L DEBUG  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
IESO  
FCMEN  
WRTC  
FOSC3  
BORV1  
FOSC2  
BORV0  
FOSC1  
BODEN PWRTEN  
FOSC0  
11-- 1111  
---- 1111  
---1 1111  
1--- ----  
1--- -1-1  
---- --11  
11-- ----  
---- --11  
111- ----  
---- --11  
-1-- ----  
CPB  
WRTB  
EBTRB  
DEV1  
DEV9  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
REV4  
DEV7  
REV3  
DEV6  
LVP  
REV2  
DEV5  
CP1  
WRT1  
EBTR1  
STVREN  
CP0  
WRT0  
EBTR0  
REV0  
DEV3  
CPD  
30000Bh CONFIG6H WRTD  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
DEV2  
DEV10  
DEV0  
DEV8  
(1)  
(1)  
3FFFFEh DEVID1  
REV1  
DEV4  
xxxx xxxx  
(1)  
3FFFFFh DEVID2  
0000 0111  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition.  
Shaded cells are unimplemented, read as ‘0’.  
Note 1: See Register 19-14 for DEVID1 values. DEVID registers are read only and cannot be programmed by the user.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 171  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PIC18F1220/1320  
REGISTER 19-1: CONFIGURATIONREGISTER1HIGH(CONFIG1H:BYTEADDRESS300001h)  
R/P-1  
IESO  
bit 7  
R/P-1  
FCMEN  
U-0  
U-0  
R/P-1  
FOSC3  
R/P-1  
FOSC2  
R/P-1  
FOSC1  
R/P-1  
FOSC0  
bit 0  
bit 7  
bit 6  
IESO: Internal External Switch Over bit  
1= Internal External Switch Over mode enabled  
0= Internal External Switch Over mode disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5:4  
bit 3-0  
Unimplemented: Read as ‘0’  
FOSC<3:0>: Oscillator Selection bits  
11xx= External RC oscillator, CLKO function on RA6  
1001= Internal RC oscillator, CLKO function on RA6, and port function on RA7  
1000= Internal RC oscillator, port function on RA6, and port function on RA7  
0111= External RC oscillator, port function on RA6  
0110= HS oscillator, PLL enabled (clock frequency = 4 x FOSC1)  
0101= EC oscillator, port function on RA6  
0100= EC oscillator, CLKO function on RA6  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39605B-page 172  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
REGISTER 19-2: CONFIGURATION REGISTER 2 LOW (CONFIG2L:BYTE ADDRESS300002h)  
U-0  
bit 7  
U-0  
U-0  
U-0  
R/P-1  
BORV1  
R/P-1  
BORV0  
R/P-1  
BOREN PWRTEN  
bit 0  
R/P-1  
bit 7-4  
bit 3-2  
Unimplemented: Read as ‘0’  
BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.0V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit(1)  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit(1)  
1= PWRT disabled  
0= PWRT enabled  
Note  
1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features  
to be independently controlled.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 173  
 
PIC18F1220/1320  
REGISTER 19-3: CONFIGURATION REGISTER 2 HIGH (CONFIG2H:BYTE ADDRESS 300003h)  
U-0  
bit 7  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39605B-page 174  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
REGISTER 19-4: CONFIGURATIONREGISTER3HIGH(CONFIG3H:BYTEADDRESS300005h)  
R/P-1  
MCLRE  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 0  
bit 7  
MCLRE: MCLR Pin Enable bit  
1= MCLR pin enabled, RA5 input pin disabled  
0= RA5 input pin enabled, MCLR disabled  
bit 6-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 19-5: CONFIGURATION REGISTER 4 LOW (CONFIG4L:BYTE ADDRESS300006h)  
R/P-1  
DEBUG  
bit 7  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVREN  
bit 0  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background Debugger disabled, RB6 and RB7 configured as general purpose I/O pins  
0= Background Debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
LVP: Low Voltage ICSP Enable bit  
1= Low Voltage ICSP enabled  
0= Low Voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack Full/Underflow will cause RESET  
0= Stack Full/Underflow will not cause RESET  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 175  
 
 
PIC18F1220/1320  
REGISTER 19-6: CONFIGURATION REGISTER 5 LOW (CONFIG5L:BYTE ADDRESS300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
R/C-1  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
CP1: Code Protection bit (PIC18F1320)  
1= Block 1 (001000-001FFFh) not code protected  
0= Block 1 (001000-001FFFh) code protected  
bit 0  
bit 1  
bit 0  
CP0: Code Protection bit (PIC18F1320)  
1= Block 0 (00200-000FFFh) not code protected  
0= Block 0 (00200-000FFFh) code protected  
CP1: Code Protection bit (PIC18F1220)  
1= Block 1 (000800-000FFFh) not code protected  
0= Block 1 (000800-000FFFh) code protected  
CP0: Code Protection bit (PIC18F1220)  
1= Block 0 (000200-0007FFh) not code protected  
0= Block 0 (000200-0007FFh) code protected  
Legend:  
R = Readable bit  
- n = Value when device is unprogrammed  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 19-7: CONFIGURATIONREGISTER5HIGH(CONFIG5H:BYTEADDRESS300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code protected  
0= Data EEPROM code protected  
bit 6  
CPB: Boot Block Code Protection bit  
1= Boot Block (000000-0001FFh) not code protected  
0= Boot Block (000000-0001FFh) code protected  
bit 5-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39605B-page 176  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
REGISTER 19-8: CONFIGURATIONREGISTER6LOW(CONFIG6L:BYTE ADDRESS30000Ah)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
WRT1  
R/P-1  
WRT0  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
WRT1: Write Protection bit (PIC18F1320)  
1= Block 1 (001000-001FFFh) not write protected  
0= Block 1 (001000-001FFFh) write protected  
bit 0  
bit 1  
bit 0  
WRT0: Write Protection bit (PIC18F1320)  
1= Block 0 (00200-000FFFh) not write protected  
0= Block 0 (00200-000FFFh) write protected  
WRT1: Write Protection bit (PIC18F1220)  
1= Block 1 (000800-000FFFh) not write protected  
0= Block 1 (000800-000FFFh) write protected  
WRT0: Write Protection bit (PIC18F1220)  
1= Block 0 (000200-0007FFh) not write protected  
0= Block 0 (000200-0007FFh) write protected  
Legend:  
R = Readable bit  
- n = Value when device is unprogrammed  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 19-9: CONFIGURATIONREGISTER 6HIGH (CONFIG6H:BYTE ADDRESS30000Bh)  
R/P-1  
WRTD  
R/P-1  
WRTB  
R-1  
WRTC  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write protected  
0= Data EEPROM write protected  
WRTB: Boot Block Write Protection bit  
1= Boot Block (000000-0001FFh) not write protected  
0= Boot Block (000000-0001FFh) write protected  
WRTC: Configuration Register Write Protection bit  
1= Configuration registers (300000-3000FFh) not write protected  
0= Configuration registers (300000-3000FFh) write protected  
Note:  
This bit is read only in normal Execution mode; it can be written only in Program  
mode.  
bit 4-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 177  
 
 
PIC18F1220/1320  
REGISTER 19-10: CONFIGURATIONREGISTER7LOW(CONFIG7L:BYTE ADDRESS30000Ch)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
EBTR1  
R/P-1  
EBTR0  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
EBTR1: Table Read Protection bit (PIC18F1320)  
1= Block 1 (001000-001FFFh) not protected from Table Reads executed in other blocks  
0= Block 1 (001000-001FFFh) protected from Table Reads executed in other blocks  
bit 0  
bit 1  
bit 0  
EBTR0: Table Read Protection bit (PIC18F1320)  
1= Block 0 (00200-000FFFh) not protected from Table Reads executed in other blocks  
0= Block 0 (00200-000FFFh) protected from Table Reads executed in other blocks  
EBTR1: Table Read Protection bit (PIC18F1220)  
1= Block 1 (000800-000FFFh) not protected from Table Reads executed in other blocks  
0= Block 1 (000800-000FFFh) protected from Table Reads executed in other blocks  
EBTR0: Table Read Protection bit (PIC18F1220)  
1= Block 0 (000200-0007FFh) not protected from Table Reads executed in other blocks  
0= Block 0 (000200-0007FFh) protected from Table Reads executed in other blocks  
Legend:  
R = Readable bit  
- n = Value when device is unprogrammed  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 19-11: CONFIGURATIONREGISTER 7HIGH (CONFIG7H:BYTE ADDRESS30000Dh)  
U-0  
R/P-1  
EBTRB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot Block (000000-0001FFh) not protected from Table Reads executed in other blocks  
0= Boot Block (000000-0001FFh) protected from Table Reads executed in other blocks  
bit 5-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39605B-page 178  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
REGISTER 19-12: DEVICE ID REGISTER 1 FOR PIC18F1220/1320 DEVICES  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5  
bit 4-0  
DEV2:DEV0: Device ID bits  
111= PIC18F1220  
110= PIC18F1320  
REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision  
Legend:  
R = Read only bit  
- n = Value when device is unprogrammed  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 19-13: DEVICE ID REGISTER 2 FOR PIC18F1220/1320 DEVICES  
R
R
R
R
R
R
R
R
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
bit 7  
bit 0  
bit 7-0  
DEV10:DEV3: Device ID bits  
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the  
part number  
0000 0111= PIC18F1220/1320 devices  
Note:  
These values for DEV10:DEV3 may be shared with other devices. The specific  
device is always identified by using the entire DEV10:DEV0 bit sequence.  
Legend:  
R = Read only bit  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 179  
 
 
PIC18F1220/1320  
19.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F1220/1320 devices, the WDT is driven by  
the INTRC source. When the WDT is enabled, the  
clock source is also enabled. The nominal WDT period  
is 4 ms, and has the same stability as the INTRC  
oscillator.  
2: Changing the setting of the IRCF bits  
(OSCCON<6:4> clears the WDT and  
postscaler counts.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
selected by a multiplexer, controlled by bits in Configu-  
ration Register 2H. Available periods range from 4 ms  
to 131.072 seconds (2.18 minutes). The WDT and  
postscaler are cleared when any of the following events  
occur: execute a SLEEP or CLRWDT instruction, the  
IRCF bits (OSCCON<6:4>) are changed, or a clock  
failure has occurred.  
Adjustments to the internal oscillator clock period using  
the OSCTUNE register also affect the period of the  
WDT by the same factor. For example, if the INTRC  
period is increased by 3%, then the WDT period is  
increased by 3%.  
3: When a CLRWDT instruction is executed  
the postscaler count will be cleared.  
19.2.1  
CONTROL REGISTER  
Register 19-14 shows the WDTCON register. This is a  
readable and writable register, which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only if the configuration bit has  
disabled the WDT.  
FIGURE 19-1: WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
WDTEN  
INTRC Control  
WDT Counter  
÷125  
Wake-up  
INTRC Oscillator  
(31 kHz)  
from SLEEP  
CLRWDT  
WDT  
RESET  
Programmable Postscaler  
All Device  
Reset  
RESETS  
1:1 to 1:32,768  
WDT  
4
WDTPS<3:0>  
SLEEP  
REGISTER 19-14: WDTCON REGISTER  
U-0  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7-1  
bit 0  
Unimplemented: Read as ’0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note:  
This bit has no effect if the configuration bit WDTEN (CONFIG2H<0>) is enabled.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
DS39605B-page 180  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
 
PIC18F1220/1320  
TABLE 19-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
WDTCON  
IPEN  
WDTPS3  
WDTPS2  
WDTPS2  
PD  
WDTPS0  
POR  
WDTEN  
BOR  
SWDTEN  
RI  
TO  
Legend: Shaded cells are not used by the Watchdog Timer.  
In all other Power Managed modes, Two-Speed  
Start-up is not used. The device will be clocked by the  
currently selected clock source until the primary clock  
source becomes available. The setting of the IESO bit  
is ignored.  
19.3 Two-Speed Start-up  
The Two-Speed Start-up feature helps to minimize the  
latency period from oscillator start-up to code execu-  
tion, by allowing the microcontroller to use the INTRC  
oscillator as a clock source until the primary clock  
source is available. It is enabled by setting the IESO bit  
in Configuration Register 1H (CONFIG1H<7>).  
19.3.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
Two-Speed Start-up is available only if the primary  
Oscillator mode is LP, XT, HS, or HSPLL (Crystal Based  
modes). Other sources do not require a OST start-up  
delay; for these, Two-Speed Start-up is disabled.  
When enabled, RESETS and wake-ups from SLEEP  
mode cause the device to configure itself to run from  
the internal oscillator block as the clock source, follow-  
ing the time-out of the Power-up Timer after a POR  
RESET is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
Because the OSCCON register is cleared on RESET  
events, the INTOSC (or postscaler) clock source is not  
initially available after a RESET event; the INTRC clock  
is used directly at its base frequency. To use a higher  
clock speed on wake-up, the INTOSC or postscaler  
clock sources can be selected to provide a higher clock  
speed by setting bits IFRC2:IFRC0 immediately after  
RESET. For wake-ups from SLEEP, the INTOSC or  
postscaler clock sources can be selected by setting  
IFRC2:IFRC0 prior to entering SLEEP mode.  
While using the INTRC oscillator in Two-Speed  
Start-up, the device still obeys the normal command  
sequences for entering Power Managed modes,  
including serial SLEEP instructions (refer to “Multiple  
SLEEP Commands” in Section 3.1.3). In practice, this  
means that user code can change the SCS1:SCS0 bit  
settings and issue SLEEPcommands before the OST  
times out. This would allow an application to briefly  
wake-up, perform routine “housekeeping” tasks and  
return to SLEEP before the device starts to operate  
from the primary oscillator.  
User code can also check if the primary clock source is  
currently providing the system clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the system clock.  
Otherwise, the internal oscillator block is providing the  
clock during wake-up from RESET or SLEEP mode.  
FIGURE 19-2:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC  
PC + 2  
PC + 6  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake from Interrupt Event  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 181  
 
 
 
 
PIC18F1220/1320  
Since the postscaler frequency from the internal oscil-  
lator block may not be sufficiently stable, it may be  
desirable to select another clock configuration and  
enter an alternate Power Managed mode (see  
Sections 19.3.1 and 3.1.3 for more details). This can  
be done to attempt a partial recovery, or execute a  
controlled shutdown.  
To use a higher clock speed on wake-up, the INTOSC  
or postscaler clock sources can be selected to provide  
a higher clock speed by setting bits IFRC2:IFRC0  
immediately after RESET. For wake-ups from SLEEP,  
the INTOSC or postscaler clock sources can be  
selected by setting IFRC2:IFRC0 prior to entering  
SLEEP mode.  
19.4 Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) allows the micro-  
controller to continue operation in the event of an exter-  
nal oscillator failure, by automatically switching the  
system clock to the internal oscillator block. The FSCM  
function is enabled by setting the Fail-Safe Clock  
Monitor Enable bit, FCMEN (CONFIG1H<6>).  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provide  
an instant backup clock in the event of a clock failure.  
Clock monitoring (shown in Figure 19-1) is accom-  
plished by creating a sample clock signal, which is the  
INTRC output divided by 64. This allows ample time  
between FSCM sample clocks for a peripheral clock  
edge to occur. The peripheral system clock and the  
sample clock are presented as inputs to the Clock Mon-  
itor latch (CM). The CM is set on the falling edge of the  
system clock source, but cleared on the rising edge of  
the sample clock.  
Adjustments to the internal oscillator block using the  
OSCTUNE register also affect the period of the FSCM  
by the same factor. This can usually be neglected, as  
the clock frequency being monitored is generally much  
higher than the sample clock frequency.  
The FSCM will detect failures of the primary or second-  
ary clock sources only. If the internal oscillator block  
fails, no failure would be detected, nor would any action  
be possible.  
FIGURE 19-1:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
19.4.1  
FSCM AND THE WATCHDOG TIMER  
Peripheral  
Clock  
S
Q
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a sep-  
arate divider and counter, disabling the WDT has no  
effect on the operation of the INTRC oscillator when the  
FSCM is enabled.  
As already noted, the clock source is switched to the  
INTOSC clock when a clock failure is detected.  
Depending on the frequency selected by the  
IRCF2:IRCF0 bits, this may mean a substantial change  
in the speed of code execution. If the WDT is enabled  
with a small prescale value, a decrease in clock speed  
allows a WDT time-out to occur, and a subsequent  
device RESET. For this reason, fail-safe clock events  
also reset the WDT and postscaler, allowing it to start  
timing from when execution speed was changed and  
decreasing the likelihood of an erroneous time-out.  
INTRC  
C
Q
÷ 64  
Source  
(32 µs)  
488 Hz  
(2.048 ms)  
Clock  
Failure  
Detected  
Clock failure is tested for on the falling edge of the sam-  
ple clock. If a sample clock falling edge occurs while  
CM is still set, a clock failure has been detected  
(Figure 19-2). This causes the following:  
• the FSCM generates an oscillator fail interrupt by  
setting bit OSCFIF (PIR2<7>);  
• the system clock source is switched to the internal  
oscillator block (OSCCON is not updated to show  
the current clock source – this is the fail-safe  
condition); and  
• the WDT is reset.  
DS39605B-page 182  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
19.4.2  
EXITING FAIL-SAFE OPERATION  
19.4.3  
FSCM INTERRUPTS IN POWER  
MANAGED MODES  
The fail-safe condition is terminated by either a device  
RESET, or by entering a Power Managed mode. On  
RESET, the controller starts the primary clock source  
specified in Configuration Register 1H (with any  
required start-up delays that are required for the  
Oscillator mode, such as OST or PLL timer). The  
INTOSC multiplexer provides the system clock until the  
primary clock source becomes ready (similar to a  
Two-Speed Start-up). The clock system source is then  
switched to the primary clock (indicated by the OSTS  
bit in the OSCCON register becoming set). The  
Fail-Safe Clock Monitor then resumes monitoring the  
peripheral clock.  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTOSC multiplexer. The OSCCON register will remain  
in its RESET state until a Power Managed mode is  
entered.  
Entering a Power Managed mode by loading the  
OSCCON register and executing a SLEEP instruction  
will clear the fail-safe condition. When the fail-safe  
condition is cleared, the clock monitor will resume  
monitoring the peripheral clock.  
As previously mentioned, entering a Power Managed  
mode clears the fail-safe condition. By entering a  
Power Managed mode, the clock multiplexer selects  
the clock source selected by the OSCCON register.  
Fail-safe monitoring of the Power Managed clock  
source resumes in the Power Managed mode.  
If an oscillator failure occurs during Power Managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTOSC multiplexer. An automatic transition  
back to the failed clock source will not occur.  
If the interrupt is disabled, the device will not exit the  
Power Managed mode on oscillator failure. Instead, the  
device will continue to operate as before, but clocked  
by the INTOSC multiplexer. While in IDLE mode, sub-  
sequent interrupts will cause the CPU to begin execut-  
ing instructions while being clocked by the INTOSC  
multiplexer. The device will not transition to a different  
clock source until the fail-safe condition is cleared.  
FIGURE 19-2:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 183  
 
 
 
PIC18F1220/1320  
19.4.4  
POR OR WAKE FROM SLEEP  
Note: The same logic that prevents false oscilla-  
tor failure interrupts on POR or wake from  
SLEEP, will also prevent the detection of  
the oscillator’s failure to start at all follow-  
ing these events. This can be avoided by  
monitoring the OSTS bit and using a timing  
routine to determine if the oscillator is tak-  
ing too long to start. Even so, no oscillator  
failure interrupt will be flagged.  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or Low Power SLEEP mode. When the primary  
system clock is EC, RC or INTRC modes, monitoring  
can begin immediately following these events.  
For Oscillator modes involving a crystal or resonator  
(HS, HSPLL, LP or XT), the situation is somewhat dif-  
ferent. Since the oscillator may require a start-up time  
considerably longer than the FCSM sample clock time,  
a false clock failure may be detected. To prevent this,  
the internal oscillator block is automatically configured  
as the system clock, and functions until the primary  
clock is stable (the OST and PLL timers have timed  
out). This is identical to Two-Speed Start-up mode.  
Once the primary clock is stable, the INTRC returns to  
its role as the FSCM source  
As noted in Section 19.3.1, it is also possible to select  
another clock configuration and enter an alternate  
Power Managed mode while waiting for the primary  
system clock to become stable. When the new Pow-  
ered Managed mode is selected, the primary clock is  
disabled.  
DS39605B-page 184  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
Each of the three blocks has three protection bits  
associated with them. They are:  
• Code Protect bit (CPn)  
• Write Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
19.5 Program Verification and  
Code Protection  
The overall structure of the code protection on the  
PIC18 FLASH devices differs significantly from other  
PICmicro® devices.  
Figure 19-3 shows the program memory organization  
for 4- and 8-Kbyte devices, and the specific code pro-  
tection bit associated with each block. The actual  
locations of the bits are summarized in Table 19-3.  
The user program memory is divided into three blocks.  
One of these is a boot block of 512 bytes. The remain-  
der of the memory is divided into two blocks on binary  
boundaries.  
FIGURE 19-3:  
CODE PROTECTED PROGRAM MEMORY FOR PIC18F1220/1320  
MEMORY SIZE / DEVICE  
Block Code  
Block Code  
Protection  
Protection  
Address  
Range  
4 Kbytes 8 Kbytes  
Address  
Range  
Controlled By:  
Controlled By:  
(PIC18F1220) (PIC18F1320)  
000000h  
0001FFh  
000000h  
0001FFh  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
Boot Block  
Block 0  
Boot Block  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000200h  
000200h  
0007FFh  
000800h  
Block 0  
CP1, WRT1, EBTR1  
Block 1  
000FFFh  
001000h  
000FFFh  
001000h  
Block 1  
CP1, WRT1, EBTR1  
(Unimplemented  
Memory Space)  
Unimplemented  
Read 0’s  
001FFFh  
002000h  
Unimplemented  
Read 0’s  
(Unimplemented  
Memory Space)  
1FFFFFh  
1FFFFFh  
TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CONFIG6H WRTD  
CONFIG7L  
CONFIG7H  
CPD  
CPB  
WRTB  
WRTC  
CP1  
WRT1  
EBTR1  
CP0  
WRT0  
EBTR0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
EBTRB  
Legend: Shaded cells are unimplemented.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 185  
 
 
 
 
PIC18F1220/1320  
A Table Read instruction that executes from a location  
outside of that block is not allowed to read, and will  
result in reading ‘0’s. Figures 19-4 through 19-6  
illustrate Table Write and Table Read protection.  
19.5.1  
PROGRAM MEMORY  
CODE PROTECTION  
The program memory may be read to, or written from,  
any location using the Table Read and Table Write  
instructions. The device ID may be read with Table  
Reads. The configuration registers may be read and  
written with the Table Read and Table Write  
instructions.  
In normal Execution mode, the CPn bits have no direct  
effect. CPn bits inhibit external reads and writes. A  
block of user memory may be protected from Table  
Writes if the WRTn configuration bit is ‘0’. The EBTRn  
bits control Table Reads. For a block of user memory  
with the EBTRn bit set to ‘0’, a Table Read instruction  
that executes from within that block is allowed to read.  
Note: Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code pro-  
tection bits are only set to ‘1’ by a full chip  
erase or block erase function. The full chip  
erase and block erase functions can only  
be initiated via ICSP or an external  
programmer.  
FIGURE 19-4:  
TABLE WRITE (WRTn) DISALLOWED PIC18F1320  
Program Memory  
Register Values  
Configuration Bit Settings  
000000h  
WRTB,EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 0007FEh  
WRT0,EBTR0 = 01  
TBLWT *  
TBLWT *  
000FFFh  
001000h  
PC = 0017FEh  
WRT1,EBTR1 = 11  
001FFFh  
Results: All Table Writes disabled to Blockn whenever WRTn = ‘0’.  
DS39605B-page 186  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
FIGURE 19-5:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED PIC18F1320  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB,EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
WRT0,EBTR0 = 10  
000FFFh  
001000h  
PC = 001FFEh  
TBLRD *  
WRT1,EBTR1 = 11  
001FFFh  
Results: All Table Reads from external blocks to Blockn are disabled whenever EBTRn = ‘0’.  
TABLAT register returns a value of ‘0’.  
FIGURE 19-6:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED PIC18F1320  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB,EBTRB = 11  
WRT0,EBTR0 = 10  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 0007FEh  
TBLRD *  
000FFFh  
001000h  
WRT1,EBTR1 = 11  
001FFFh  
Results: Table Reads permitted within Blockn, even when EBTRBn = ‘0’.  
TABLAT register returns the value of the data at the location TBLPTR.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 187  
PIC18F1220/1320  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, VSS,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip, or one of  
the third party development tool companies.  
19.5.2  
DATA EEPROM  
CODE PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of Data EEPROM.  
WRTD inhibits external writes to Data EEPROM. The  
CPU can continue to read and write Data EEPROM,  
regardless of the protection bit settings.  
19.9 Low Voltage ICSP Programming  
The LVP bit in configuration register CONFIG4L  
enables Low Voltage Programming (LVP). When LVP is  
enabled, the microcontroller can be programmed with-  
out requiring high voltage being applied to the  
MCLR/VPP pin, but the RB5/PGM pin is then dedicated  
to controlling Program mode entry and is not available  
as a general purpose I/O pin.  
19.5.3  
CONFIGURATION REGISTER  
PROTECTION  
The configuration registers can be write protected. The  
WRTC bit controls protection of the configuration regis-  
ters. In normal Execution mode, the WRTC bit is read-  
able only. WRTC can only be written via ICSP or an  
external programmer.  
LVP is enabled in erased devices.  
While programming using LVP, VDD is applied to the  
MCLR/VPP pin as in normal Execution mode. To enter  
Programming mode, VDD is applied to the PGM pin.  
19.6 ID Locations  
Eight memory locations (200000h - 200007h) are des-  
ignated as ID locations, where the user can store  
checksum, or other code identification numbers. These  
locations are both readable and writable during normal  
execution through the TBLRDand TBLWTinstructions,  
or during program/verify. The ID locations can be read  
when the device is code protected.  
Note 1: High voltage programming is always  
available, regardless of the state of the  
LVP bit or the PGM pin, by applying VIHH  
to the MCLR pin.  
2: When Low Voltage Programming is  
enabled, the RB5 pin can no longer be  
used as a general purpose I/O pin.  
3: When LVP is enabled, externally pull the  
PGM pin to VSS to allow normal program  
execution.  
19.7  
In-Circuit Serial Programming  
PIC18F1220/1320 microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
If Low Voltage Programming mode will not be used, the  
LVP bit can be cleared and RB5/PGM becomes avail-  
able as the digital I/O pin RB5. The LVP bit may be set  
or cleared only when using standard high voltage pro-  
gramming (VIHH applied to the MCLR/VPP pin). Once  
LVP has been disabled, only the standard high voltage  
programming is available and must be used to program  
the device.  
19.8 In-Circuit Debugger  
Memory that is not code protected can be erased,  
using either a block erase, or erased row by row, then  
written at any specified VDD. If code protected memory  
is to be erased, a block erase is required. If a block  
erase is to be performed when using low voltage pro-  
gramming, the device must be supplied with VDD of  
4.5V to 5.5V.  
When the DEBUG bit in configuration register  
CONFIG4L is programmed to a '0', the In-Circuit  
Debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB®  
IDE. When the microcontroller has this feature  
enabled, some resources are not available for general  
use. Table 19-4 shows which resources are required by  
the background debugger.  
TABLE 19-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
Stack:  
Program Memory:  
Data Memory:  
2 levels  
512 bytes  
10 bytes  
DS39605B-page 188  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
 
PIC18F1220/1320  
The control instructions may use some of the following  
20.0 INSTRUCTION SET SUMMARY  
operands:  
The PIC18 instruction set adds many enhancements to  
the previous PICmicro instruction sets, while maintain-  
ing an easy migration from these PICmicro instruction  
sets.  
Most instructions are a single program memory word  
(16 bits), but there are three instructions that require  
two program memory locations.  
Each single word instruction is a 16-bit word divided  
into an OPCODE, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
• The mode of the Table Read and Table Write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
All instructions are a single word, except for three dou-  
ble-word instructions. These three instructions were  
made double-word instructions, so that all the required  
information is available in these 32 bits. In the second  
word, the 4 MSbs are 1’s. If this second word is exe-  
cuted as an instruction (by itself), it will execute as a  
NOP.  
All single word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
Control operations  
The PIC18 instruction set summary in Table 20-2 lists  
byte-oriented, bit-oriented, literal and control oper-  
ations. Table 20-1 shows the opcode field descriptions.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
The double-word instructions execute in two instruction  
cycles.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 µs.  
Two-word branch instructions (if true) would take 3 µs.  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator 'f' specifies which file  
register is to be used by the instruction.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If 'd' is zero, the  
result is placed in the WREG register. If 'd' is one, the  
result is placed in the file register specified in the  
instruction.  
Figure 20-1 shows the general formats that the  
instructions can have.  
All examples use the format ‘nnh’ to represent a  
hexadecimal number, where ‘h’ signifies  
hexadecimal digit.  
a
The Instruction Set Summary, shown in Table 20-2,  
lists the instructions recognized by the Microchip  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Assembler (MPASMTM). Section 20.2 provides  
description of each instruction.  
a
2. The bit in the file register  
(specified by ‘b’)  
20.1 READ-MODIFY-WRITE  
OPERATIONS  
3. The accessed memory  
(specified by ‘a’)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
For example, a "BCF PORTB,1" instruction will read  
PORTB, clear bit 1 of the data, then write the result  
back to PORTB. The read operation would have the  
unintended result that any condition that sets the RBIF  
flag would be cleared. The R-M-W operation may also  
copy the level of an input pin to its corresponding output  
latch.  
The bit field designator 'b' selects the number of the bit  
affected by the operation, while the file register desig-  
nator 'f' represents the number of the file in which the  
bit is located.  
The literal instructions may use some of the following  
operands:  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 189  
 
PIC18F1220/1320  
TABLE 20-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7)  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit;  
d = 0: store result in WREG,  
d = 1: store result in file register f.  
dest  
f
Destination either the WREG register or the specified register file location  
8-bit Register file address (0x00 to 0xFF)  
fs  
12-bit Register file address (0x000 to 0xFFF). This is the source address.  
12-bit Register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)  
Label name  
The mode of the TBLPTR register for the Table Read and Table Write instructions.  
Only used with Table Read and Table Write instructions:  
fd  
k
label  
mm  
*
No Change to register (such as TBLPTR with Table reads and writes)  
Post-Increment register (such as TBLPTR with Table reads and writes)  
Post-Decrement register (such as TBLPTR with Table reads and writes)  
Pre-Increment register (such as TBLPTR with Table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for  
Call/Branch and Return instructions  
PRODH  
PRODL  
s
Product of Multiply high byte  
Product of Multiply low byte  
Fast Call/Return mode select bit  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged  
WREG  
x
Working register (accumulator)  
Don't care (0 or 1)  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
21-bit Table Pointer (points to a Program Memory location)  
8-bit Table Latch  
TABLAT  
TOS  
Top-of-Stack  
PC  
Program Counter  
PCL  
Program Counter Low Byte  
Program Counter High Byte  
Program Counter High Byte Latch  
Program Counter Upper Byte Latch  
Global Interrupt Enable bit  
Watchdog Timer  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit  
PD  
Power-down bit  
C, DC, Z, OV, N  
ALU status bits Carry, Digit Carry, Zero, Overflow, Negative  
Optional  
Contents  
[
]
)
(
< >  
Assigned to  
Register bit field  
In the set of  
italics  
User defined term (font is Courier)  
DS39605B-page 190  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
FIGURE 20-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
OPCODE  
9
8
a
7
0
ADDWF MYREG, W, B  
d
f (FILE #)  
d = 0 for result destination to be WREG register  
d = 1 for result destination to be file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
OPCODE  
12 11  
0
0
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 191  
 
PIC18F1220/1320  
TABLE 20-2: PIC18FXXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Status  
Description  
Cycles  
Notes  
Operands  
Affected  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
ADDWFC f, d, a Add WREG and Carry bit to f  
ANDWF  
CLRF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
COMF  
1, 2  
4
CPFSEQ f, a  
CPFSGT f, a  
CPFSLT f, a  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
DECF  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ f, d, a Decrement f, Skip if 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
DCFSNZ f, d, a Decrement f, Skip if Not 0  
INCF  
f, d, a Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
fs, fd Move fs (source) to 1st word  
fd (destination)2nd word  
MOVWF f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
MULWF  
NEGF  
RLCF  
f, a  
f, a  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
RLNCF  
RRCF  
RRNCF  
SETF  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
1, 2  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
f, d, a Swap nibbles in f  
1
0011 10da ffff ffff None  
4
1, 2  
TSTFSZ f, a  
Test f, skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
XORWF f, d, a Exclusive OR WREG with f  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
f, b, a Bit Clear f  
f, b, a Bit Set f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is  
driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.  
DS39605B-page 192  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
TABLE 20-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
LSb  
Mnemonic,  
Status  
Description  
Cycles  
Notes  
Operands  
Affected  
MSb  
CONTROL OPERATIONS  
BC  
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
BN  
n
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n
n
n
n
n
n
CALL  
n, s  
Call subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
n
No Operation  
No Operation  
1
1
1
1
2
1
2
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
NOP  
4
POP  
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
PUSH  
RCALL  
RESET  
RETFIE  
Software device RESET  
Return from interrupt enable  
s
RETLW  
RETURN  
SLEEP  
k
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
s
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is  
driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 193  
PIC18F1220/1320  
TABLE 20-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Description  
Cycles  
Notes  
Affected  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
Add literal and WREG  
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
k
AND literal with WREG  
1
1
2
k
f, k  
Inclusive OR literal with WREG  
Move literal (12-bit)2nd word  
kkkk Z, N  
kkkk None  
kkkk  
to FSRx  
1st word  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move literal to BSR<3:0>  
Move literal to WREG  
1
1
1
2
1
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
2 (5)  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is  
driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.  
DS39605B-page 194  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
20.2 Instruction Set  
ADDLW  
ADD literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
(W) + k W  
N, OV, C, DC, Z  
k
Syntax:  
Operands:  
[ label ] ADDWF  
f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + (f) dest  
N, OV, C, DC, Z  
Operation:  
Status Affected:  
Encoding:  
0000  
1111  
kkkk  
kkkk  
Description:  
The contents of W are added to the  
8-bit literal 'k' and the result is  
placed in W.  
1
1
0010  
01da  
ffff  
ffff  
Description:  
Add W to register 'f'. If 'd' is 0, the  
result is stored in W. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected. If ‘a’ is 1, the  
BSR is used.  
1
1
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write to W  
Decode  
Read  
Process  
Words:  
Cycles:  
literal 'k'  
Data  
Q Cycle Activity:  
Q1  
ADDLW  
0x15  
Example:  
Q2  
Q3  
Process  
Data  
Q4  
Before Instruction  
Decode  
Read  
Write to  
W
=
0x10  
register 'f'  
destination  
After Instruction  
W
=
0x25  
ADDWF  
REG, W  
Example:  
Before Instruction  
W
=
0x17  
0xC2  
REG  
=
After Instruction  
W
=
0xD9  
0xC2  
REG  
=
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 195  
 
 
PIC18F1220/1320  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND literal with W  
Syntax:  
Operands:  
[ label ] ADDWFC  
f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
(W) .AND. k W  
N,Z  
k
0 f 255  
d [0,1]  
a [0,1]  
(W) + (f) + (C) dest  
N,OV, C, DC, Z  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
Status Affected:  
Encoding:  
0000  
1011  
kkkk  
kkkk  
Description:  
The contents of W are ANDed with  
the 8-bit literal 'k'. The result is  
placed in W.  
1
1
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry Flag and data  
memory location 'f'. If 'd' is 0, the  
result is placed in W. If 'd' is 1, the  
result is placed in data memory loca-  
tion 'f'. If ‘a’ is 0, the Access Bank  
will be selected. If ‘a’ is 1, the BSR  
will not be overridden.  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Read literal  
'k'  
Q3  
Process  
Data  
Q4  
Write to W  
Decode  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Process  
Data  
Q4  
W
=
0xA3  
0x03  
Decode  
Read  
Write to  
register 'f'  
destination  
After Instruction  
W
=
ADDWFC  
REG, W  
Example:  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
REG  
W
=
=
0x02  
0x50  
DS39605B-page 196  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
ANDWF  
AND W with f  
BC  
Branch if Carry  
Syntax:  
[ label ] ANDWF  
f [,d [,a]]  
Syntax:  
[ label ] BC  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) .AND. (f) dest  
N,Z  
Operands:  
Operation:  
-128 n 127  
if carry bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Description:  
None  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
If the Carry bit is ‘1’, then the  
program will branch.  
Description:  
The contents of W are AND’ed with  
register 'f'. If 'd' is 0, the result is  
stored in W. If 'd' is 1, the result is  
stored back in register 'f' (default). If  
‘a’ is 0, the Access Bank will be  
selected. If ‘a’ is 1, the BSR will not  
be overridden (default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Process  
Data  
Q4  
Q1  
Decode  
Q2  
Q3  
Q4  
Write to PC  
Decode  
Read  
Write to  
register 'f'  
destination  
Read literal  
Process  
'n'  
Data  
No  
No  
No  
No  
ANDWF  
REG, W  
Example:  
operation  
operation  
operation  
operation  
Before Instruction  
If No Jump:  
Q1  
W
=
0x17  
0xC2  
Q2  
Read literal  
'n'  
Q3  
Process  
Data  
Q4  
No  
operation  
REG  
=
Decode  
After Instruction  
W
=
0x02  
0xC2  
REG  
=
HERE  
BC JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
PC  
=
=
=
=
1;  
address (JUMP)  
If Carry  
PC  
0;  
address (HERE+2)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 197  
 
 
PIC18F1220/1320  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
0 f<b>  
None  
Operands:  
Operation:  
-128 n 127  
if negative bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Description:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
If the Negative bit is ’1’, then the  
program will branch.  
Description:  
Bit 'b' in register 'f' is cleared. If ‘a’  
is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
1
1
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q2  
Q3  
Q4  
Write  
If Jump:  
Decode  
Read  
Process  
Q1  
Q2  
Q3  
Q4  
register 'f'  
Data  
register 'f'  
Decode  
Read literal  
Process  
Data  
Write to PC  
'n'  
BCF  
FLAG_REG,  
7
Example:  
No  
operation  
No  
operation  
No  
No  
operation  
Before Instruction  
operation  
FLAG_REG = 0xC7  
If No Jump:  
Q1  
After Instruction  
Q2  
Read literal  
'n'  
Q3  
Q4  
No  
operation  
FLAG_REG = 0x47  
Decode  
Process  
Data  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
If Negative  
PC  
0;  
address (HERE+2)  
DS39605B-page 198  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
Operands:  
Operation:  
[ label ] BNC  
-128 n 127  
if carry bit is ’0’  
n
Syntax:  
Operands:  
Operation:  
[ label ] BNN  
-128 n 127  
if negative bit is ’0’  
(PC) + 2 + 2n PC  
n
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
1110  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ’0’, then the  
program will branch.  
Description:  
If the Negative bit is ’0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Decode  
Q2  
Q3  
Q4  
Write to PC  
Q1  
Decode  
Q2  
Q3  
Q4  
Write to PC  
Read literal  
Process  
Read literal  
Process  
'n'  
Data  
'n'  
Data  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Read literal  
'n'  
Q3  
Process  
Data  
Q4  
Q2  
Read literal  
'n'  
Q3  
Process  
Data  
Q4  
Decode  
No  
Decode  
No  
operation  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
=
=
=
=
0;  
If Negative  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
If Carry  
PC  
1;  
If Negative  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 199  
 
 
PIC18F1220/1320  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
Operands:  
Operation:  
[ label ] BNOV  
-128 n 127  
if overflow bit is ’0’  
(PC) + 2 + 2n PC  
n
Syntax:  
Operands:  
Operation:  
[ label ] BNZ  
-128 n 127  
if zero bit is ’0’  
n
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
1110  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Decode  
Q2  
Q3  
Q4  
Write to PC  
Q1  
Decode  
Q2  
Q3  
Q4  
Write to PC  
Read literal  
Process  
Read literal  
Process  
'n'  
Data  
'n'  
Data  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Read literal  
'n'  
Q3  
Process  
Data  
Q4  
Q2  
Read literal  
'n'  
Q3  
Process  
Data  
Q4  
Decode  
No  
Decode  
No  
operation  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
If Overflow  
PC  
1;  
If Zero  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
DS39605B-page 200  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
1 f<b>  
None  
Operation:  
Status Affected:  
Encoding:  
1101  
0nnn  
nnnn  
nnnn  
Description:  
Add the 2’s complement number  
‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a  
two-cycle instruction.  
1
2
1000  
bbba  
ffff  
ffff  
Description:  
Bit 'b' in register 'f' is set. If ‘a’ is 0,  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
1
1
Words:  
Cycles:  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write to PC  
Q2  
Q3  
Q4  
Write  
Decode  
Read literal  
Process  
'n'  
Data  
Decode  
Read  
Process  
register 'f'  
Data  
register 'f'  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
BSF  
FLAG_REG, 7  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0x0A  
0x8A  
Before Instruction  
After Instruction  
PC  
=
=
address (HERE)  
address (Jump)  
FLAG_REG  
After Instruction  
PC  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 201  
 
 
PIC18F1220/1320  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
Status Affected:  
Encoding:  
skip if (f<b>) = 0  
None  
Operation:  
Status Affected:  
Encoding:  
skip if (f<b>) = 1  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit 'b' in register ’f' is 0, then the  
next instruction is skipped.  
Description:  
If bit 'b' in register 'f' is 1, then the  
next instruction is skipped.  
If bit 'b' is 0, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
If bit 'b' is 1, then the next instruction  
fetched during the current instruc-  
tion execution, is discarded and a  
NOPis executed instead, making this  
a two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Process Data  
Q4  
Q2  
Q3  
Process Data  
Q4  
Decode  
Read  
No  
Decode  
Read  
No  
register 'f'  
operation  
register 'f'  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
No  
operation  
No  
operation  
operation  
operation  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1  
Example:  
Example:  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
address (FALSE)  
address (TRUE)  
DS39605B-page 202  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
Operands:  
[ label ] BTG f,b[,a]  
Syntax:  
Operands:  
Operation:  
[ label ] BOV  
-128 n 127  
if overflow bit is ’1’  
(PC) + 2 + 2n PC  
n
0 f 255  
0 b < 7  
a [0,1]  
(f<b>) f<b>  
None  
Operation:  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Description:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
If the Overflow bit is ‘1’, then the  
program will branch.  
Description:  
Bit 'b' in data memory location 'f' is  
inverted. If ‘a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
1
1
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
Words:  
Cycles:  
Q Cycle Activity:  
If Jump:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write  
Decode  
Read  
Process  
Q1  
Q2  
Q3  
Q4  
register 'f'  
Data  
register 'f'  
Decode  
Read literal  
Process  
Data  
Write to PC  
'n'  
BTG  
PORTB,  
4
Example:  
No  
No  
operation  
No  
No  
operation  
Before Instruction:  
operation  
operation  
PORTB  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Read literal  
'n'  
Q3  
Q4  
No  
operation  
PORTB  
=
0110 0101 [0x65]  
Decode  
Process  
Data  
HERE  
BOV JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
=
=
=
=
1;  
address (JUMP)  
If Overflow  
PC  
0;  
address (HERE+2)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 203  
 
 
PIC18F1220/1320  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
if Zero bit is ’1’  
(PC) + 2 + 2n PC  
Operands:  
0 k 1048575  
s [0,1]  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
Description:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
If the Zero bit is ‘1’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
1
1(2)  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2 Mbyte  
memory range. First, return  
address (PC+ 4) is pushed onto the  
return stack. If ‘s’ = 1, the W,  
Words:  
Cycles:  
STATUS and BSR registers are  
also pushed into their respective  
shadow registers, WS, STATUSS  
and BSRS. If 's' = 0, no update  
occurs (default). Then, the 20-bit  
value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q Cycle Activity:  
If Jump:  
Q1  
Decode  
Q2  
Q3  
Q4  
Read literal  
Process  
Write to PC  
'n'  
No  
operation  
Data  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Read literal  
'n'  
Q3  
Process  
Data  
Q4  
Decode  
No  
Q Cycle Activity:  
Q1  
operation  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
'k'<7:0>,  
HERE  
BZ Jump  
Example:  
stack  
’k’<19:8>,  
Write to PC  
No  
operation  
Before Instruction  
PC  
=
address (HERE)  
No  
No  
No  
operation  
operation  
operation  
After Instruction  
If Zero  
PC  
=
=
=
=
1;  
address (Jump)  
HERE  
CALL THERE,FAST  
Example:  
If Zero  
PC  
0;  
address (HERE+2)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
PC  
=
=
=
=
address (THERE)  
TOS  
WS  
address (HERE + 4)  
W
BSRS  
BSR  
STATUSS=  
STATUS  
DS39605B-page 204  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
000h f  
1 Z  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
1 PD  
TO, PD  
Operation:  
Status Affected:  
Encoding:  
Description:  
Z
Status Affected:  
Encoding:  
Description:  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Clears the contents of the specified  
register. If ‘a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
1
1
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
1
1
Words:  
Cycles:  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Write  
Decode  
No  
Process  
No  
operation  
Data  
operation  
Decode  
Read  
Process  
register 'f'  
Data  
register 'f'  
CLRWDT  
Example:  
CLRF  
FLAG_REG  
Example:  
Before Instruction  
WDT Counter  
=
?
Before Instruction  
FLAG_REG  
=
=
0x5A  
0x00  
After Instruction  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
=
=
=
0x00  
0
1
1
FLAG_REG  
PD  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 205  
 
 
PIC18F1220/1320  
COMF  
Complement f  
CPFSEQ  
Compare f with W, skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(f) dest  
N, Z  
Operands:  
0 f 255  
a [0,1]  
(f) – (W),  
skip if (f) = (W)  
(unsigned comparison)  
Operation:  
Operation:  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Description:  
None  
0110  
0001  
11da  
ffff  
ffff  
001a  
ffff  
ffff  
Description:  
The contents of register 'f' are com-  
plemented. If 'd' is 0, the result is  
stored in W. If 'd' is 1, the result is  
stored back in register 'f' (default). If  
‘a’ is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Compares the contents of data  
memory location 'f' to the contents  
of W by performing an unsigned  
subtraction.  
If 'f' = W, then the fetched instruc-  
tion is discarded and a NOPis exe-  
cuted instead, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write to  
Words:  
Cycles:  
1
1(2)  
Decode  
Read  
Process  
register 'f'  
Data  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
COMF  
REG, W  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
Process  
No  
REG  
W
=
=
0x13  
0xEC  
register 'f'  
Data  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
No  
No  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
HERE  
NEQUAL  
EQUAL  
CPFSEQ REG  
:
:
Example:  
Before Instruction  
PC Address  
=
HERE  
W
=
?
?
REG  
=
After Instruction  
If REG  
=
=
W;  
PC  
Address (EQUAL)  
If REG  
PC  
W;  
=
Address (NEQUAL)  
DS39605B-page 206  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
CPFSGT  
Compare f with W, skip if f > W  
CPFSLT  
Compare f with W, skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (W),  
skip if (f) > (W)  
(unsigned comparison)  
Operation:  
(f) – (W),  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
0110  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of the W by performing an  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of W by performing an unsigned  
subtraction.  
unsigned subtraction.  
If the contents of 'f' are greater than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
If the contents of 'f' are less than  
the contents of W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected. If ‘a’  
is 1, the BSR will not be overridden  
(default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
Process  
No  
Q2  
Q3  
Q4  
register 'f'  
Data  
operation  
Decode  
Read  
Process  
No  
If skip:  
Q1  
register 'f'  
Data  
operation  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
No  
No  
No  
Q2  
Q3  
Q4  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
If skip and followed by 2-word instruction:  
operation  
operation  
operation  
operation  
Q1  
No  
Q2  
Q3  
No  
Q4  
If skip and followed by 2-word instruction:  
No  
operation  
No  
Q1  
No  
Q2  
Q3  
No  
Q4  
operation  
operation  
operation  
No  
operation  
No  
No  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
NGREATER  
GREATER  
CPFSGT REG  
:
:
Example:  
Before Instruction  
PC  
=
=
Address (HERE)  
W
?
Before Instruction  
After Instruction  
PC  
W
=
=
Address (HERE)  
?
If REG  
<
=
W;  
PC  
Address (LESS)  
After Instruction  
If REG  
PC  
W;  
If REG  
>
W;  
=
Address (NLESS)  
PC  
=
=
Address (GREATER)  
If REG  
PC  
W;  
Address (NGREATER)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 207  
 
 
PIC18F1220/1320  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
Syntax:  
[ label ] DECF f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(f) – 1 dest  
C, DC, N, OV, Z  
If [W<3:0> >9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
(W<3:0>) W<3:0>;  
Operation:  
Status Affected:  
Encoding:  
0000  
01da  
ffff  
ffff  
If [W<7:4> >9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
(W<7:4>) W<7:4>;  
C
Description:  
Decrement register 'f'. If 'd' is 0, the  
result is stored in W. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Status Affected:  
Encoding:  
Description:  
0000  
0000  
0000  
0111  
DAW adjusts the eight-bit value in  
W, resulting from the earlier addi-  
tion of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to  
Q Cycle Activity:  
Q1  
register 'f'  
Data  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Write  
DECF  
CNT,  
Example:  
Data  
W
Before Instruction  
DAW  
Example1:  
CNT  
=
0x01  
0
Z
=
Before Instruction  
After Instruction  
W
=
0xA5  
CNT  
Z
=
=
0x00  
1
C
=
0
0
DC  
=
After Instruction  
W
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
W
=
0xCE  
C
=
0
0
DC  
=
After Instruction  
W
=
0x34  
C
=
=
1
0
DC  
DS39605B-page 208  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
0010  
Status Affected:  
Encoding:  
None  
0100  
11da  
ffff  
ffff  
11da  
ffff  
ffff  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded, and a NOPis  
executed instead, making it a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Process  
Data  
Q4  
Q2  
Q3  
Process  
Data  
Q4  
Decode  
Read  
Write to  
Decode  
Read  
Write to  
register 'f'  
destination  
register 'f'  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
No  
operation  
No  
operation  
operation  
operation  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
CNT  
=
=
=
=
CNT - 1  
0;  
TEMP  
If TEMP  
PC  
=
=
=
=
TEMP - 1,  
0;  
If CNT  
PC  
Address (CONTINUE)  
0;  
Address (ZERO)  
0;  
If CNT  
PC  
If TEMP  
PC  
Address (HERE+2)  
Address (NZERO)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 209  
 
 
PIC18F1220/1320  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
Operands:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
0 f 255  
d [0,1]  
a [0,1]  
(f) + 1 dest  
C, DC, N, OV, Z  
Operation:  
Status Affected:  
Encoding:  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If ‘a’ is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
branch anywhere within entire  
2 Mbyte memory range. The 20-bit  
value ‘k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
2
2
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
No  
Read literal  
Q Cycle Activity:  
Q1  
'k'<7:0>,  
operation  
’k’<19:8>,  
Write to PC  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register 'f'  
Process  
Write to  
Data  
destination  
GOTO THERE  
Example:  
INCF  
CNT,  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
Z
=
0xFF  
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
Z
=
=
=
=
0x00  
1
1
1
C
DC  
DS39605B-page 210  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
INCFSZ  
Increment f, skip if 0  
INFSNZ  
Increment f, skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]]  
Syntax:  
[ label ] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
0011  
Status Affected:  
Encoding:  
None  
0100  
11da  
ffff  
ffff  
10da  
ffff  
ffff  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded and a NOPis  
executed instead, making it a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Process  
Data  
Q4  
Q2  
Q3  
Process  
Data  
Q4  
Decode  
Read  
Write to  
Decode  
Read  
Write to  
register 'f'  
destination  
register 'f'  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
No  
operation  
No  
operation  
operation  
operation  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
=
=
=
=
CNT + 1  
REG  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
0;  
If CNT  
PC  
If REG  
PC  
Address (NZERO)  
Address (ZERO)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 211  
 
 
PIC18F1220/1320  
IORLW  
Inclusive OR literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
(W) .OR. k W  
N, Z  
Syntax:  
Operands:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0 f 255  
d [0,1]  
a [0,1]  
(W) .OR. (f) dest  
N, Z  
Operation:  
Status Affected:  
Encoding:  
0000  
1001  
kkkk  
kkkk  
Description:  
The contents of W are OR’ed with  
the eight-bit literal 'k'. The result is  
placed in W.  
1
1
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register 'f'. If 'd'  
is 0, the result is placed in W. If 'd'  
is 1, the result is placed back in  
register 'f' (default). If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Process  
Data  
Q4  
Write to W  
Decode  
Read  
literal 'k'  
Words:  
Cycles:  
1
1
IORLW  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
W
=
0x9A  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to  
After Instruction  
register 'f'  
Data  
destination  
W
=
0xBF  
IORWF RESULT, W  
Example:  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS39605B-page 212  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]]  
Operands:  
0 f 2  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
f dest  
N, Z  
0 k 4095  
Operation:  
Status Affected:  
Encoding:  
k FSRf  
None  
1110  
1111  
Operation:  
Status Affected:  
Encoding:  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal 'k' is loaded into  
the file select register pointed to  
by 'f'.  
2
2
Description:  
The contents of register 'f' are  
moved to a destination dependent  
upon the status of ’d’. If 'd' is 0, the  
result is placed in W. If 'd' is 1, the  
result is placed back in register 'f'  
(default). Location 'f' can be any-  
where in the 256-byte bank. If ‘a’ is  
0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
Process  
Write  
literal 'k'  
MSB to  
FSRfH  
'k' MSB  
Data  
Decode  
Read literal  
'k' LSB  
Process  
Data  
Write literal  
'k' to FSRfL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
LFSR 2, 0x3AB  
Example:  
Q2  
Q3  
Q4  
Write W  
After Instruction  
Decode  
Read  
Process  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
register 'f'  
Data  
MOVF  
REG, W  
Example:  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 213  
 
 
PIC18F1220/1320  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
Operands:  
[ label ] MOVFF fs,fd  
0 fs 4095  
0 fd 4095  
(fs) fd  
None  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
Status Affected:  
Encoding:  
1st word (source)  
2nd word (destin.)  
None  
0000  
0001  
kkkk  
kkkk  
Description:  
The 8-bit literal 'k' is loaded into  
the Bank Select Register (BSR).  
1
1
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
Description:  
The contents of source register 'fs'  
are moved to destination register  
'fd'. Location of source 'fs' can be  
anywhere in the 4096 byte data  
space (000h to FFFh) and location  
of destination 'fd' can also be any-  
where from 000h to FFFh.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write  
literal 'k' to  
BSR  
Decode  
Read literal  
Process  
'k'  
Data  
Either source or destination can be  
W (a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
MOVLB  
5
Example:  
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
The MOVFFinstruction should not  
be used to modify interrupt settings  
while any interrupt is enabled (see  
Page 75).  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Read  
register 'f'  
(src)  
Q3  
Process  
Data  
Q4  
Decode  
No  
operation  
Decode  
No  
No  
operation  
Write  
register 'f'  
(dest)  
operation  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
=
=
0x33  
REG2  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS39605B-page 214  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
MOVLW  
Move literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k W  
Syntax:  
Operands:  
[ label ] MOVWF f [,a]  
0 f 255  
a [0,1]  
(W) f  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight-bit literal 'k' is loaded  
into W.  
1
1
Description:  
Move data from W to register 'f'.  
Location 'f' can be anywhere in the  
256 byte bank. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write to W  
Decode  
Read  
Process  
literal 'k'  
Data  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
Write  
W
=
0x5A  
Decode  
Read  
Process  
register 'f'  
Data  
register 'f'  
MOVWF  
REG  
Example:  
Before Instruction  
W
=
0x4F  
0xFF  
REG  
=
After Instruction  
W
=
0x4F  
0x4F  
REG  
=
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 215  
 
 
PIC18F1220/1320  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
(W) x k PRODH:PRODL  
k
Syntax:  
Operands:  
[ label ] MULWF f [,a]  
0 f 255  
a [0,1]  
(W) x (f) PRODH:PRODL  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
W and the 8-bit literal 'k'. The  
16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
W is unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected.  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
W and the register file location 'f'.  
The 16-bit result is stored in the  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
Both W and 'f' are unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible, but  
not detected. If ‘a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If  
‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write  
registers  
PRODH:  
PRODL  
Decode  
Read  
Process  
literal 'k'  
Data  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
MULLW  
0xC4  
Example:  
Decode  
Read  
Process  
Write  
Before Instruction  
register 'f'  
Data  
registers  
PRODH:  
PRODL  
W
=
0xE2  
PRODH  
=
=
?
?
PRODL  
After Instruction  
W
MULWF  
REG  
Example:  
=
0xE2  
PRODH  
PRODL  
=
=
0xAD  
0x08  
Before Instruction  
W
=
0xC4  
REG  
=
=
=
0xB5  
PRODH  
?
?
PRODL  
After Instruction  
W
=
0xC4  
REG  
=
=
=
0xB5  
0x8A  
0x94  
PRODH  
PRODL  
DS39605B-page 216  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
Operands:  
0 f 255  
a [0,1]  
( f ) + 1 f  
N, OV, C, DC, Z  
0110  
Operands:  
Operation:  
Status Affected:  
Encoding:  
None  
No operation  
None  
0000  
1111  
Operation:  
Status Affected:  
Encoding:  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
110a  
ffff  
ffff  
Description:  
Words:  
Cycles:  
No operation.  
1
1
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in  
the data memory location 'f'. If ‘a’ is  
0, the Access Bank will be  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Q2  
No  
operation  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write  
register 'f'  
Data  
register 'f'  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 217  
 
 
PIC18F1220/1320  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
(TOS) bit bucket  
None  
Syntax:  
[ label ] PUSH  
None  
(PC+2) TOS  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
Description:  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the previ-  
ous value that was pushed onto the  
return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Description:  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implement-  
ing a software stack by modifying  
TOS, and then pushing it onto the  
return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
PUSH PC+2  
onto return  
stack  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
No  
Q2  
Q3  
Q4  
operation  
operation  
Decode  
No  
POP TOS  
No  
operation  
value  
operation  
PUSH  
Example:  
POP  
Example:  
Before Instruction  
GOTO  
NEW  
TOS  
PC  
=
=
0x00345A  
0x000124  
Before Instruction  
TOS  
Stack (1 level down)  
=
=
0x0031A2  
0x014332  
After Instruction  
PC  
=
=
=
0x000126  
0x000126  
0x00345A  
TOS  
After Instruction  
Stack (1 level down)  
TOS  
PC  
=
=
0x014332  
NEW  
DS39605B-page 218  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
Operands:  
Operation:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
Operands:  
Operation:  
[ label ] RESET  
None  
Reset all registers and flags that  
are affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
1101  
Status Affected:  
Encoding:  
All  
0000  
1nnn  
nnnn  
nnnn  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ‘2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n.  
This instruction is a two-cycle  
instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
1
1
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Start  
reset  
Q3  
Q4  
Decode  
No  
No  
operation  
operation  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Reset Value  
Reset Value  
Q Cycle Activity:  
Q1  
Flags*  
=
Q2  
Q3  
Q4  
Write to PC  
Decode  
Read literal  
Process  
'n'  
Data  
Push PC to  
stack  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
=
Address (Jump)  
TOS =  
Address (HERE+2)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 219  
 
 
PIC18F1220/1320  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
Operands:  
Operation:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
Operands:  
Operation:  
[ label ] RETLW k  
0 k 255  
(TOS) PC,  
k W,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
Status Affected:  
Encoding:  
Description:  
None  
(STATUSS) STATUS,  
(BSRS) BSR,  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
W is loaded with the eight-bit literal  
‘k’. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
1
2
Status Affected:  
Encoding:  
Description:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Return from interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting either the high  
or low priority global interrupt  
enable bit. If ‘s’ = 1, the contents of  
the shadow registers WS,  
STATUSS and BSRS are loaded  
into their corresponding registers,  
W, STATUS and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
pop PC from  
stack, Write  
to W  
No  
operation  
Decode  
Read  
Process  
literal 'k'  
Data  
No  
No  
operation  
No  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; W contains table  
; offset value  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
; W now has  
; table value  
Decode  
No  
No  
pop PC from  
:
operation  
operation  
stack  
Set GIEH or  
GIEL  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
No  
No  
No  
operation  
operation  
operation  
:
RETLW kn  
; End of table  
RETFIE  
1
Example:  
After Interrupt  
Before Instruction  
PC  
=
=
=
=
=
TOS  
WS  
W
W
=
0x07  
BSR  
STATUS  
BSRS  
STATUSS  
1
After Instruction  
GIE/GIEH, PEIE/GIEL  
W
=
value of kn  
DS39605B-page 220  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
Operands:  
Operation:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
Operands:  
[ label ] RLCF f [,d [,a]]  
0 f 255  
d [0,1]  
a [0,1]  
(f<n>) dest<n+1>,  
(f<7>) C,  
(C) dest<0>  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
Description:  
C, N, Z  
Status Affected:  
Encoding:  
Description:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
The contents of register 'f' are  
rotated one bit to the left through  
the Carry Flag. If 'd' is 0, the result  
is placed in W. If 'd' is 1, the result  
is stored back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Return from subroutine. The stack  
is popped and the top of the stack  
(TOS) is loaded into the program  
counter. If ‘s’= 1, the contents of the  
shadow registers, WS, STATUSS  
and BSRS are loaded into their cor-  
responding registers, W, STATUS  
and BSR. If ‘s’ = 0, no update of  
these registers occurs (default).  
Words:  
Cycles:  
1
2
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
Process  
pop PC from  
operation  
Data  
No  
operation  
stack  
No  
operation  
Q2  
Q3  
Process  
Data  
Q4  
No  
No  
Decode  
Read  
Write to  
operation  
operation  
register 'f'  
destination  
RLCF  
REG, W  
Example:  
RETURN  
Example:  
Before Instruction  
REG  
=
1110 0110  
0
After Interrupt  
C
=
PC = TOS  
After Instruction  
REG  
=
1110 0110  
W
=
1100 1100  
1
C
=
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 221  
 
 
PIC18F1220/1320  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]]  
Syntax:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
N, Z  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
Description:  
Status Affected:  
Encoding:  
Description:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
The contents of register ‘f’ are  
rotated one bit to the left. If ‘d’ is 0,  
the result is placed in W. If ‘d’ is 1,  
the result is stored back in register  
‘f’ (default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry Flag. If ‘d’ is 0, the result  
is placed in W. If ‘d’ is 1, the result  
is placed back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register 'f'  
Process  
Write to  
Data  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
Write to  
Data  
destination  
RLNCF  
REG  
Example:  
Before Instruction  
RRCF  
REG, W  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
=
1110 0110  
C
=
0
After Instruction  
REG  
=
1110 0110  
W
=
0111 0011  
0
C
=
DS39605B-page 222  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Operands:  
0 f 255  
a [0,1]  
FFh f  
None  
Operation:  
Status Affected:  
Encoding:  
Operation:  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
Description:  
N, Z  
0100  
Description:  
The contents of the specified regis-  
ter are set to FFh. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is 1, then  
the bank will be selected as per the  
BSR value (default).  
1
1
00da  
ffff  
ffff  
The contents of register ‘f’ are  
rotated one bit to the right. If ‘d’ is 0,  
the result is placed in W. If ‘d’ is 1,  
the result is placed back in register  
‘f’ (default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write  
register f  
Decode  
Read  
Process  
register 'f'  
Data  
register 'f'  
Words:  
Cycles:  
1
1
SETF  
REG  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register 'f'  
Process  
Write to  
REG  
=
Data  
destination  
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, W  
After Instruction  
REG  
=
Example 2:  
Before Instruction  
W
=
?
REG  
=
1101 0111  
After Instruction  
W
=
1110 1011  
1101 0111  
REG  
=
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 223  
 
 
PIC18F1220/1320  
SLEEP  
Enter SLEEP mode  
SUBFWB  
Subtract f from W with borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) – (f) – (C) dest  
N, OV, C, DC, Z  
00h WDT,  
0 WDT postscaler,  
1 TO,  
0 PD  
TO, PD  
Operation:  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Description:  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register 'f' and carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is 0, the result is  
stored in W. If ‘d’ is 1, the result is  
stored in register ‘f’ (default). If ‘a’ is  
0, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
The power-down status bit (PD) is  
cleared. The time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
1
1
Words:  
Cycles:  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
No  
operation  
Q3  
Process  
Data  
Q4  
Go to  
sleep  
Q Cycle Activity:  
Q1  
Decode  
Q2  
Q3  
Q4  
Write to  
Decode  
Read  
Process  
register 'f'  
Data  
destination  
SLEEP  
Example:  
SUBFWB REG  
Example 1:  
Before Instruction  
TO  
=
?
Before Instruction  
PD  
=
?
REG  
=
0x03  
After Instruction  
W
=
0x02  
TO  
PD  
=
=
1 †  
0
C
=
0x01  
After Instruction  
REG  
W
=
=
0xFF  
0x02  
† If WDT causes wake-up, this bit is cleared.  
C
Z
=
=
=
0x00  
0x00  
N
0x01 ; result is negative  
SUBFWB  
REG, 0, 0  
Example 2:  
Before Instruction  
REG  
=
2
W
=
5
C
=
1
After Instruction  
REG  
W
=
=
2
3
C
Z
=
=
=
1
0
0
N
; result is positive  
SUBFWB  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
1
W
=
2
C
=
0
After Instruction  
REG  
W
=
=
0
2
C
Z
=
=
=
1
1
0
; result is zero  
N
DS39605B-page 224  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
SUBWF  
Subtract W from f  
SUBLW  
Subtract W from literal  
Syntax:  
[ label ] SUBWF f [,d [,a]]  
Syntax:  
[ label ] SUBLW k  
0 k 255  
k – (W) W  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(f) – (W) dest  
N, OV, C, DC, Z  
Operands:  
Operation:  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Operation:  
Status Affected:  
Encoding:  
0000  
1000  
kkkk  
kkkk  
Description:  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed  
in W.  
1
1
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is 0,  
the result is stored in W. If ‘d’ is 1,  
the result is stored back in regis-  
ter ‘f’ (default). If ‘a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Write to W  
Decode  
Read  
Process  
literal 'k'  
Data  
SUBLW 0x02  
Example 1:  
Words:  
Cycles:  
1
1
Before Instruction  
W
=
1
?
Q Cycle Activity:  
Q1  
C
=
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
Process  
Write to  
W
=
1
register 'f'  
Data  
destination  
C
Z
=
=
=
1
0
0
; result is positive  
SUBWF REG  
Example 1:  
N
Before Instruction  
SUBLW 0x02  
Example 2:  
REG  
=
3
Before Instruction  
W
=
2
W
=
2
?
C
=
?
C
=
After Instruction  
REG  
W
=
=
1
2
After Instruction  
W
=
0
C
Z
=
=
=
1
0
0
; result is positive  
C
Z
=
=
=
1
1
0
; result is zero  
N
N
SUBWF REG, W  
Example 2:  
SUBLW 0x02  
Example 3:  
Before Instruction  
Before Instruction  
REG  
=
2
W
=
3
?
W
=
2
C
=
C
=
?
After Instruction  
After Instruction  
W
=
FF ; (2’s complement)  
REG  
W
=
=
2
0
C
Z
=
=
=
0
0
1
; result is negative  
C
Z
=
=
=
1
1
0
; result is zero  
N
N
SUBWF REG  
Example 3:  
Before Instruction  
REG  
=
0x01  
W
=
0x02  
C
=
?
After Instruction  
REG  
W
=
=
0xFFh ;(2’s complement)  
0x02  
C
Z
=
=
=
0x00 ; result is negative  
0x00  
0x01  
N
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 225  
 
 
PIC18F1220/1320  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
[ label ] SUBWFB f [,d [,a]]  
Syntax:  
[ label ] SWAPF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
Status Affected: N, OV, C, DC, Z  
Encoding:  
Description:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
None  
Status Affected:  
Encoding:  
Description:  
0101  
10da  
ffff  
ffff  
0011  
10da  
ffff  
ffff  
Subtract W and the carry flag (bor-  
row) from register ‘f’ (2’s complement  
method). If ‘d’ is 0, the result is stored  
in W. If ‘d’ is 1, the result is stored  
back in register ‘f’ (default). If ‘a’ is 0,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is 1,  
then the bank will be selected as per  
the BSR value (default).  
The upper and lower nibbles of reg-  
ister 'f' are exchanged. If ‘d’ is 0, the  
result is placed in W. If ‘d’ is 1, the  
result is placed in register ‘f’  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Process  
Data  
Q4  
Decode  
Read  
Process  
Write to  
register 'f'  
Data  
destination  
Decode  
Read  
Write to  
register 'f'  
destination  
SUBWFB REG, 1, 0  
Example 1:  
SWAPF  
REG  
Example:  
Before Instruction  
REG  
=
0x19  
(0001 1001)  
(0000 1101)  
Before Instruction  
W
=
0x0D  
REG  
=
0x53  
0x35  
C
=
0x01  
After Instruction  
After Instruction  
REG  
=
REG  
W
=
=
0x0C  
0x0D  
(0000 1011)  
(0000 1101)  
C
Z
=
=
=
0x01  
0x00  
0x00  
N
; result is positive  
SUBWFB REG, 0, 0  
Example 2:  
Before Instruction  
REG  
=
0x1B  
(0001 1011)  
(0001 1010)  
W
=
0x1A  
C
=
0x00  
After Instruction  
REG  
W
=
=
0x1B  
0x00  
(0001 1011)  
C
Z
=
=
=
0x01  
0x01  
0x00  
; result is zero  
N
SUBWFB REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
0x03  
(0000 0011)  
(0000 1101)  
W
=
0x0E  
C
=
0x01  
After Instruction  
REG  
=
0xF5  
0x0E  
(1111 0100)  
; [2’s comp]  
(0000 1101)  
W
=
C
Z
=
=
=
0x00  
0x00  
0x01  
N
; result is negative  
DS39605B-page 226  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
TBLRD  
Table Read  
TBLRD  
Example1:  
Table Read (Continued)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Operands:  
Operation:  
None  
if TBLRD *,  
Before Instruction  
TABLAT  
=
=
=
0x55  
TBLPTR  
0x00A356  
0x34  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR - No Change;  
if TBLRD *+,  
MEMORY(0x00A356)  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) +1 TBLPTR;  
if TBLRD *-,  
0x00A357  
TBLRD +* ;  
Example2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) -1 TBLPTR;  
if TBLRD +*,  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
(TBLPTR) +1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
MEMORY(0x01A358)  
0x34  
After Instruction  
Status Affected:None  
Encoding:  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the con-  
tents of Program Memory (P.M.). To  
address the program memory, a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 Mbyte address range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
operation (Read Program operation (Write TABLAT)  
Memory)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 227  
 
PIC18F1220/1320  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
Operands:  
Operation:  
[ label ]  
None  
if TBLWT*,  
TBLWT ( *; *+; *-; +*)  
Words: 1  
Cycles: 2  
Q Cycle Activity:  
Q1  
(TABLAT) Holding Register;  
TBLPTR - No Change;  
if TBLWT*+,  
Q2  
Q3  
Q4  
Decode  
No  
operation  
No  
operation  
No  
operation  
(TABLAT) Holding Register;  
(TBLPTR) +1 TBLPTR;  
if TBLWT*-,  
No  
operation  
No  
No  
operation  
No  
operation  
(Read  
operation  
(Write to  
Holding  
Register )  
(TABLAT) Holding Register;  
(TBLPTR) -1 TBLPTR;  
if TBLWT+*,  
TABLAT)  
(TBLPTR) +1 TBLPTR;  
(TABLAT) Holding Register;  
Example1:  
TBLWT *+;  
Before Instruction  
Status Affected: None  
TABLAT  
TBLPTR  
=
=
0x55  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
0x00A356  
HOLDING REGISTER  
(0x00A356)  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
=
=
0x55  
TBLPTR  
0x00A357  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the 8  
holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program  
Memory (P.M.). (Refer to Section 6.0  
for additional details on programming  
FLASH memory.)  
HOLDING REGISTER  
(0x00A356)  
=
0x55  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
=
=
0x34  
TBLPTR  
0x01389A  
HOLDING REGISTER  
(0x01389A)  
=
0xFF  
0xFF  
HOLDING REGISTER  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 MBtye address  
range. The LSb of the TBLPTR selects  
which byte of the program memory  
location to access.  
(0x01389B)  
=
After Instruction (table write completion)  
TABLAT  
=
=
0x34  
TBLPTR  
0x01389B  
HOLDING REGISTER  
(0x01389A)  
=
=
0xFF  
0x34  
HOLDING REGISTER  
(0x01389B)  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
DS39605B-page 228  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW k  
Operands:  
0 f 255  
a [0,1]  
skip if f = 0  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .XOR. k W  
N, Z  
Operation:  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed  
with the 8-bit literal 'k'. The result  
is placed in W.  
1
1
Description:  
If ‘f’ = 0, the next instruction,  
fetched during the current instruc-  
tion execution is discarded and a  
NOPis executed, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to W  
literal 'k'  
Data  
Words:  
Cycles:  
1
1(2)  
Example:  
XORLW 0xAF  
= 0xB5  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Before Instruction  
W
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Process  
Data  
Q4  
No  
operation  
W
=
0x1A  
Decode  
Read  
register 'f'  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
Example:  
:
Before Instruction  
PC = Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
PC  
Address (ZERO)  
0x00,  
If CNT  
PC  
Address (NZERO)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 229  
 
 
PIC18F1220/1320  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W  
with register ‘f’. If ‘d’ is 0, the result  
is stored in W. If ‘d’ is 1, the result is  
stored back in the register ‘f’  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to  
register 'f'  
Data  
destination  
XORWF  
REG  
Example:  
Before Instruction  
REG  
W
=
0xAF  
0xB5  
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS39605B-page 230  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
• Debug using:  
- source files  
- absolute listing file  
- machine code  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
21.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPIC™ In-Circuit Emulator  
• In-Circuit Debugger  
21.2 MPASM Assembler  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCU’s.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects.  
• User-defined macros to streamline assembly  
code.  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
21.1 MPLAB Integrated Development  
Environment Software  
• Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
• An interface to debugging tools  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor  
• Directives that allow complete control over the  
assembly process.  
21.3 MPLAB C17 and MPLAB C18  
C Compilers  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI ‘C’ compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
• A project manager  
• Customizable toolbar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 231  
 
 
 
 
PIC18F1220/1320  
21.4 MPLINK Object Linker/  
21.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
MPLIB Object Librarian  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLINK object linker features include:  
• Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
• Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
• Easier linking because single libraries can be  
included instead of many smaller files.  
• Helps keep code maintainable by grouping  
related modules together.  
21.7 ICEPIC In-Circuit Emulator  
• Allows libraries to be created and modules to be  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
added, listed, replaced, deleted or extracted.  
21.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS39605B-page 232  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
21.8 MPLAB ICD In-Circuit Debugger  
21.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchip's In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchip's In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchip’s microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
21.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
21.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
21.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 233  
 
 
 
 
 
PIC18F1220/1320  
21.13 PICDEM 3 Low Cost PIC16CXXX  
21.14 PICDEM 17 Demonstration Board  
Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
21.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchip’s HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS39605B-page 234  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
PIC18F1220/1320  
TABLE 21-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X X F 8 C 1 P I  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
8 X 6 1 F C I P  
/ X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m r e g g u b D e s r e m m a o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 235  
PIC18F1220/1320  
NOTES:  
DS39605B-page 236  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
22.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latchup.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 237  
 
 
 
PIC18F1220/1320  
FIGURE 22-1:  
PIC18F1220/1320 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F1X20  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
Frequency  
FIGURE 22-2:  
PIC18LF1220/1320 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LF1X20  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
4 MHz  
Frequency  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
DS39605B-page 238  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
22.1 DC Characteristics: Supply Voltage  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Symbol  
No.  
Characteristic  
Supply Voltage  
Min  
Typ  
Max Units  
Conditions  
VDD  
D001  
PIC18LF1220/1320 2.0  
PIC18F1220/1320 4.2  
5.5  
5.5  
V
V
V
HS, XT, RC and LP Osc mode  
D002  
D003  
VDR  
RAM Data Retention  
1.5  
(1)  
Voltage  
VPOR  
VDD Start Voltage  
0.7  
V
See Section 4.1, "Power-on Reset (POR)" for  
details.  
to ensure internal  
Power-on Reset signal  
D004  
SVDD  
VBOR  
VDD Rise Rate  
0.05  
V/ms See Section 4.1, "Power-on Reset (POR)" for  
details.  
to ensure internal  
Power-on Reset signal  
Brown-out Reset Voltage  
PIC18LF1220/1320  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
PIC18F1220/1320  
D005  
D005  
2.00  
2.70  
4.20  
4.50  
2.16  
2.86  
4.46  
4.78  
V
V
V
V
BORV1:BORV0 = 1x  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
NA  
4.20  
4.50  
NA  
4.46  
4.78  
V
V
V
Not in operating voltage range of device  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 239  
 
 
 
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Device  
Power-down Current (IPD)  
Typ Max Units  
Conditions  
No.  
(1)  
PIC18LF1220/1320 0.1  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
VDD = 2.0V,  
0.1  
(SLEEP mode)  
0.2  
PIC18LF1220/1320 0.1  
VDD = 3.0V,  
(SLEEP mode)  
0.1  
0.3  
All devices 0.1  
VDD = 5.0V,  
(SLEEP mode)  
0.1  
0.4  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605B-page 240  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
No.  
(2,3)  
PIC18LF1220/1320  
PIC18LF1220/1320  
All devices  
11  
13  
14  
34  
28  
25  
77  
62  
53  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
FOSC = 31 kHz  
(RC_RUN mode,  
Internal oscillator source)  
PIC18LF1220/1320 100  
110  
120  
PIC18LF1220/1320 180  
FOSC = 1 MHz  
(RC_RUN mode,  
180  
Internal oscillator source)  
170  
All devices 340  
330  
310  
PIC18LF1220/1320 350  
360  
370  
PIC18LF1220/1320 580  
FOSC = 4 MHz  
(RC_RUN mode,  
580  
Internal oscillator source)  
560  
All devices 1.1  
1.1  
1.0  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 241  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Device  
Supply Current (IDD)  
Typ Max Units  
Conditions  
No.  
(2,3)  
PIC18LF1220/1320 4.7  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
4.6  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
5.1  
PIC18LF1220/1320 6.9  
FOSC = 31 kHz  
(RC_IDLE mode,  
6.3  
6.8  
Internal oscillator source)  
All devices  
PIC18LF1220/1320  
PIC18LF1220/1320  
12  
10  
10  
49  
52  
56  
73  
77  
77  
FOSC = 1 MHz  
(RC_IDLE mode,  
Internal oscillator source)  
All devices 130  
130  
130  
PIC18LF1220/1320 140  
140  
150  
PIC18LF1220/1320 220  
FOSC = 4 MHz  
(RC_IDLE mode,  
220  
Internal oscillator source)  
210  
All devices 390  
400  
380  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605B-page 242  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Device  
Supply Current (IDD)  
Typ Max Units  
Conditions  
No.  
(2,3)  
PIC18LF1220/1320 150  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
150  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
160  
PIC18LF1220/1320 340  
FOSC = 1 MHZ  
(PRI_RUN,  
300  
EC oscillator)  
280  
All devices 720  
630  
570  
PIC18LF1220/1320 440  
450  
460  
PIC18LF1220/1320 800  
FOSC = 4 MHz  
(PRI_RUN,  
780  
EC oscillator)  
770  
All devices 1.6  
1.5  
1.5  
All devices 9.5  
9.7  
FOSC = 40 MHZ  
(PRI_RUN,  
9.9  
All devices 11.9  
12.1  
EC oscillator)  
12.3  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 243  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
No.  
(2,3)  
PIC18LF1220/1320  
37  
37  
38  
58  
59  
60  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 4.2 V  
PIC18LF1220/1320  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
All devices 110  
110  
110  
PIC18LF1220/1320 140  
140  
140  
PIC18LF1220/1320 220  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
230  
230  
All devices 410  
420  
430  
All devices 3.1  
3.2  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
3.3  
All devices 4.4  
4.6  
4.6  
VDD = 5.0V  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605B-page 244  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
No.  
(2,3)  
PIC18LF1220/1320  
13  
14  
16  
34  
31  
28  
72  
65  
59  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-10°C  
25°C  
70°C  
-10°C  
25°C  
70°C  
-10°C  
25°C  
70°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
PIC18LF1220/1320  
(4)  
FOSC = 32 kHz  
(SEC_RUN mode,  
Timer1 as clock)  
All devices  
(2,3)  
Supply Current (IDD)  
PIC18LF1220/1320 5.5  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-10°C  
25°C  
70°C  
-10°C  
25°C  
70°C  
-10°C  
25°C  
70°C  
5.8  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
6.1  
PIC18LF1220/1320 8.2  
(4)  
FOSC = 32 kHz  
8.6  
8.8  
(SEC_IDLE mode,  
Timer1 as clock)  
All devices  
13  
13  
13  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 245  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial, Extended)  
Operating temperature  
Typ Max Units  
Module Differential Currents (IWDT, IBOR, ILVD, IOSCB, IAD)  
-40°C TA +85°C for industrial  
Param  
Device  
Conditions  
No.  
D022  
Watchdog Timer 1.7  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40ºC  
25ºC  
(IWDT)  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
2.1  
2.6  
2.2  
2.4  
2.8  
2.9  
3.1  
3.3  
85ºC  
-40ºC  
25ºC  
85ºC  
-40ºC  
25ºC  
85ºC  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
D022A  
(IBOR)  
D022B  
(ILVD)  
Brown-out Reset  
17  
47  
14  
18  
21  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-10ºC  
Low Voltage Detect  
D025  
Timer1 Oscillator 1.0  
(4)  
(4)  
(4)  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
32 kHz on Timer1  
32 kHz on Timer1  
32 kHz on Timer1  
(IOSCB)  
1.1  
25ºC  
1.1  
70ºC  
1.2  
-10ºC  
1.3  
25ºC  
1.2  
70ºC  
1.8  
-10ºC  
1.9  
25ºC  
1.9  
70ºC  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
D026  
(IAD)  
A/D Converter 1.0  
A/D on, not converting  
1.0  
1.0  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: Standard low cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605B-page 246  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
22.3 DC Characteristics: PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Input Low Voltage  
Min  
Max  
Units  
Conditions  
VIL  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15 VDD  
0.8  
0.2 VDD  
0.3 VDD  
V
V
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
D032  
D032A  
MCLR  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
OSC1 (in RC and EC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2 VDD  
V
VIH  
D040  
with TTL buffer  
0.25 VDD +  
0.8V  
VDD  
VDD  
V
V
VDD < 4.5V  
D040A  
2.0  
4.5V VDD 5.5V  
D041  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
D042A  
MCLR, OSC1 (EC mode)  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D043  
D060  
OSC1 (RC mode)(1)  
Input Leakage Current(2,3)  
I/O ports  
0.9 VDD  
VDD  
V
IIL  
±1  
µA VSS VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR  
OSC1  
Weak Pull-up Current  
±5  
±5  
µA VSS VPIN VDD  
µA VSS VPIN VDD  
IPU  
D070  
IPURB  
PORTB weak pull-up current  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 247  
 
 
PIC18F1220/1320  
22.3 DC Characteristics: PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Output Low Voltage  
Min  
Max  
Units  
Conditions  
VOL  
VOH  
VOD  
D080  
D083  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
(RC mode)  
Output High Voltage(3)  
D090  
D092  
D150  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
(RC mode)  
Open Drain High Voltage  
8.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
COSC2 OSC2 pin  
D100(4)  
15  
pF In XT, HS and LP modes  
when external clock is used  
to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
50  
pF To meet the AC Timing  
(in RC mode)  
SCL, SDA  
Specifications  
400  
pF In I2C mode  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS39605B-page 248  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 22-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
DC Characteristics  
Operating temperature -40°C TA +85°C for industrial  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Internal Program Memory  
Programming Specifications(1)  
VPP  
IPP  
9.00  
13.25  
5
V
(Note 2)  
D110  
D112  
D113  
Voltage on MCLR/VPP pin  
Current into MCLR/VPP pin  
µA  
mA  
IDDP  
10  
Supply current during  
programming  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
100K  
VMIN  
1M  
5.5  
E/W -40°C to +85°C  
D121 VDRW VDD for read/write  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write cycle time  
D123 TRETD Characteristic Retention  
40  
4
ms  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of total erase/write  
cycles before refresh(3)  
1M  
10M  
E/W -40°C to +85°C  
Program FLASH Memory  
Cell Endurance  
VDD for read  
D130  
D131  
EP  
VPR  
10K  
VMIN  
100K  
E/W -40°C to +85°C  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D132A VIW  
VIE  
VDD for Block Erase  
VDD for externally timed erase or  
write  
4.5  
4.5  
5.5  
5.5  
V
V
Using ICSP port  
Using ICSP port  
D132B VPEW VDD for self-timed write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
1
D133  
D133A TIW  
TIE  
ICSP Block Erase cycle time  
ICSP Erase or Write cycle time  
(externally timed)  
4
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
D134 TRETD Characteristic Retention  
Self-timed Write cycle time  
2
ms  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: These specifications are for programming the on-chip program memory through the use of Table Write  
instructions.  
2: The pin may be kept in this range at times other than programming, but it is not recommended.  
3: Refer to Section 7.8 for a more detailed discussion on data EEPROM endurance.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 249  
 
PIC18F1220/1320  
FIGURE 22-1:  
LOW VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 22-2: LOW VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ† Max  
Units  
Conditions  
D420  
LVD Voltage on  
VDD transition high  
to low  
LVV = 0000  
LVV = 0001  
LVV = 0010  
LVV = 0011  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
1.80  
2.00  
2.20  
2.40  
2.50  
2.70  
2.80  
3.00  
3.30  
3.50  
3.60  
3.80  
4.00  
4.20  
4.50  
1.86  
2.06  
2.27  
2.47  
2.58  
2.78  
2.89  
3.10  
3.41  
3.61  
3.72  
3.92  
4.13  
4.33  
4.64  
1.91  
2.12  
2.34  
2.55  
2.66  
2.86  
2.98  
3.20  
3.52  
3.72  
3.84  
4.04  
4.26  
4.46  
4.78  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Production tested at TAMB = 25°C. Specifications over temp. limits ensured by characterization.  
DS39605B-page 250  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
22.4 AC (Timing) Characteristics  
22.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
do  
dt  
CCP1  
CLKO  
CS  
SDI  
SDO  
Data in  
I/O port  
MCLR  
osc  
rd  
rw  
sc  
ss  
t0  
OSC1  
RD  
RD or WR  
SCK  
SS  
T0CKI  
T1CKI  
WR  
io  
mc  
t1  
wr  
Uppercase letters and their meanings:  
S
F
H
I
L
Fall  
High  
P
R
V
Z
Period  
Rise  
Valid  
Hi-Impedance  
Invalid (Hi-Impedance)  
Low  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
START condition  
STO  
STOP condition  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 251  
 
 
PIC18F1220/1320  
22.4.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 22-3  
apply to all timing specifications unless otherwise  
noted. Figure 22-2 specifies the load conditions for the  
timing specifications.  
TABLE 22-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 22.1 and  
Section 22.3.  
LC parts operate for industrial temperatures only.  
FIGURE 22-2:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
VSS  
DS39605B-page 252  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
 
PIC18F1220/1320  
22.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 22-3:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
1
3
4
3
4
2
TABLE 22-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
Oscillator Frequency(1)  
DC  
DC  
0.1  
4
4
5
40  
4
4
25  
10  
200  
MHz EC, ECIO  
MHz RC osc  
MHz XT osc  
MHz HS osc  
MHz HS + PLL osc  
kHz LP osc mode  
1
TOSC  
TCY  
External CLKI Period(1)  
Oscillator Period(1)  
25  
ns  
EC, ECIO  
250  
250  
25  
100  
10,000  
250  
250  
ns  
ns  
ns  
ns  
RC osc  
XT osc  
HS osc  
HS + PLL osc  
5
µs  
LP osc  
2
3
Instruction Cycle Time(1)  
External Clock in (OSC1)  
High or Low Time  
100  
30  
2.5  
10  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
TCY = 4/FOSC  
XT osc  
LP osc  
HS osc  
XT osc  
LP osc  
TosL,  
TosH  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
HS osc  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions, with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 253  
 
 
 
PIC18F1220/1320  
TABLE 22-5: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2 TO 5.5V)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
FSYS On-Chip VCO System Frequency  
tRC  
4
10  
40  
2
MHz HS mode only  
MHz HS mode only  
ms  
%
F11  
F12  
F13  
16  
-2  
PLL Start-up Time (Lock Time)  
CLK CLKO Stability (Jitter)  
+2  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
22.5 DC Characteristics: Internal RC Accuracy  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Min  
Typ  
Max  
Units  
Conditions  
(1)  
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz  
F1  
F2  
F3  
PIC18LF1220/1320  
All devices  
INTRC Accuracy @ Freq = 31.25 kHz  
PIC18LF1220/1320 28.125  
28.125  
TBD  
TBD  
TBD  
+/-1  
+/-1  
+/-1  
TBD  
TBD  
TBD  
%
%
%
25°C  
25°C  
25°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
(2)  
F4  
F5  
F6  
34.375  
34.375  
34.375  
kHz  
kHz  
kHz  
25°C  
25°C  
25°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
All devices 28.125  
(3)  
INTRC Stability  
F7  
F8  
F9  
PIC18LF1220/1320  
TBD  
TBD  
TBD  
1
1
1
TBD  
TBD  
TBD  
%
%
%
25°C  
25°C  
25°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
All devices  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.  
2: INTRC frequency after calibration.  
3: Change of INTRC frequency as VDD changes.  
DS39605B-page 254  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
FIGURE 22-4:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
19  
18  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
New Value  
Old Value  
(Output)  
20, 21  
Refer to Figure 22-2 for load conditions.  
Note:  
TABLE 22-6: CLKO AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
19  
20  
20A  
21  
21A  
22††  
23††  
24††  
TosH2ckL OSC1to CLKO↓  
TosH2ckH OSC1to CLKO↑  
75  
75  
35  
35  
50  
10  
10  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
TckR  
TckF  
CLKO rise time  
CLKO fall time  
TckL2ioV CLKOto Port out valid  
0.5 TCY + 20 ns  
TioV2ckH Port in valid before CLKO↑  
TckH2ioI Port in hold after CLKO↑  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
0.25 TCY + 25  
150  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
100  
200  
0
TosH2ioI OSC1(Q2 cycle) to Port  
PIC18FXX20  
PIC18LFXX20  
input invalid (I/O in hold time)  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
TioF  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 change INT high or low time  
RC7:RC4 change INT high or low time  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 255  
 
 
PIC18F1220/1320  
FIGURE 22-5:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note:  
Refer to Figure 22-2 for load conditions.  
FIGURE 22-6:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
DS39605B-page 256  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
TABLE 22-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
30  
31  
TmcL  
TWDT  
MCLR Pulse Width (low)  
Watchdog Timer Time-out Period  
(No Postscaler)  
2
4.0  
TBD  
µs  
ms  
32  
33  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power up Timer Period  
I/O Hi-Impedance from MCLR Low  
or Watchdog Timer Reset  
1024 TOSC  
65.5  
2
1024 TOSC  
ms  
µs  
TOSC = OSC1 period  
132  
35  
36  
TBOR  
TIVRST  
Brown-out Reset Pulse Width  
Time for Internal Reference  
Voltage to become stable  
200  
20  
50  
µs VDD BVDD (see D005)  
µs  
37  
TLVD  
Low Voltage Detect Pulse Width  
200  
µs  
VDD VLVD  
FIGURE 22-7:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
46  
40  
45  
42  
47  
T1OSO/T1CKI  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 22-2 for load conditions.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 257  
 
 
PIC18F1220/1320  
TABLE 22-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI High Time Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous, PIC18FXX20  
10  
25  
30  
with prescaler  
PIC18LFXX20  
Asynchro-  
nous  
PIC18FXX20  
PIC18LFXX20  
50  
0.5 TCY + 5  
10  
T1CKI Low Time Synchronous, no prescaler  
Synchronous, PIC18FXX20  
with prescaler  
PIC18LFXX20  
25  
30  
TBD  
Asynchronous PIC18FXX20  
PIC18LFXX20  
TBD  
47  
48  
Tt1P  
Ft1  
T1CKI Input  
Period  
Synchronous  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
T1CKI Oscillator Input Frequency Range  
60  
DC  
2 TOSC  
50  
7 TOSC  
ns  
kHz  
Tcke2tmrI Delay from External T1CKI Clock Edge to Timer  
Increment  
DS39605B-page 258  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
FIGURE 22-8:  
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note:  
Refer to Figure 22-2 for load conditions.  
TABLE 22-9: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx input low No Prescaler  
time  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
With  
PIC18FXX20  
10  
20  
Prescaler  
PIC18LFXX20  
51  
TccH  
CCPx input high No Prescaler  
0.5 TCY + 20  
time  
With  
PIC18FXX20  
PIC18LFXX20  
10  
20  
Prescaler  
52  
53  
TccP  
TccR  
CCPx input period  
3 TCY + 40  
N = prescale  
value (1,4 or 16)  
N
CCPx output fall time  
CCPx output fall time  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 259  
 
 
PIC18F1220/1320  
FIGURE 22-9:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RB1/AN5/TX/  
CK/INT1 pin  
121  
121  
RB4/AN6/RX/  
DT/KBI0 pin  
120  
Refer to Figure 22-2 for load conditions.  
122  
Note:  
TABLE 22-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock high to data out valid  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
40  
100  
20  
50  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time  
(Master mode)  
Data out rise time and fall time  
50  
FIGURE 22-10:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RB1/AN5/TX/  
CK/INT1 pin  
125  
RB4/AN6/RX/  
DT/KBI0 pin  
126  
Note:  
Refer to Figure 22-2 for load conditions.  
TABLE 22-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (MASTER & SLAVE)  
Data hold before CK(DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
Data hold after CK(DT hold time)  
DS39605B-page 260  
Preliminary  
2002 Microchip Technology Inc.  
 
 
 
 
PIC18F1220/1320  
TABLE 22-12: A/D CONVERTER CHARACTERISTICS: PIC18F1220/1320 (INDUSTRIAL)  
PIC18LF1220/1320 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Integral linearity error  
Differential linearity error  
Offset error  
Min  
Typ  
Max  
Units  
Conditions  
A01  
A03  
A04  
A06  
A07  
NR  
EIL  
EDL  
EOFF  
EGN  
10  
bit VREF 3.0V  
<±1  
<±1  
<±1  
<±1  
LSb VREF 3.0V  
LSb VREF 3.0V  
LSb VREF 3.0V  
LSb VREF 3.0V  
Gain error  
A10  
A20  
Monotonicity  
guaranteed(2)  
V
VREF Reference voltage range  
3
AVDD - AVSS  
For 10-bit resolution  
(VREFH - VREFL)  
A21  
A22  
A25  
A28  
A29  
A30  
VREFH Reference voltage High  
VREFL Reference voltage Low  
AVSS + 3.0V  
AVSS – 0.3V  
VREFL  
VDD – 0.3  
VSS – 0.3  
AVDD + 0.3V  
AVDD - 3.0V  
VREFH  
VDD + 0.3  
VSS + 0.3  
2.5  
V
V
V
V
V
For 10-bit resolution  
For 10-bit resolution  
VAIN  
Analog input voltage  
Analog supply voltage  
Analog supply voltage  
AVDD  
AVSS  
ZAIN  
Recommended impedance of  
kΩ  
analog voltage source  
A40  
IAD  
A/D conversion PIC18FXX20  
180  
90  
µA Average current  
current (VDD)  
consumption when  
PIC18LFXX2  
µA  
A/D is on (Note 1)  
0
A50  
IREF  
VREF input current (Note 3)  
±5  
±150  
µA During VAIN acquisition.  
µA During A/D conversion  
cycle.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
2: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.  
3: VREFH current is from RA3/AN3/VREF+ pin or AVDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or AVSS, whichever is selected as the VREFL source.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 261  
 
PIC18F1220/1320  
FIGURE 22-11:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 22-13: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
PIC18FXX20  
1.6  
3.0  
2.0  
3.0  
11  
20(5)  
20(5)  
6.0  
9.0  
12  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC mode  
µs A/D RC mode  
TAD  
PIC18LFXX20  
PIC18FXX20  
PIC18LFXX20  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including acquisition time) (Note 1)  
Acquisition Time (Note 3)  
15  
10  
µs -40°C Temp +125°C  
µs 0°C Temp +125°C  
135  
136  
TSWC  
TAMP  
Switching Time from convert sample  
Amplifier Settling Time (Note 2)  
1
(Note 4)  
µs This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 17.0 for minimum conditions, when input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage, when the voltage changes full scale after  
the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is 50.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
DS39605B-page 262  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
23.0 PRELIMINARY DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean - 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 23-1:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
16  
14  
12  
10  
8
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
6
4
2
2.0V  
0
0
5
10  
15  
20  
25  
30  
35  
40  
F O S C (M H z)  
FIGURE 23-2:  
TYPICAL TOTAL IPD vs. VDD (SLEEP MODE, WDT ENABLED)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Typ (25°C)  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V D D (V )  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 263  
 
PIC18F1220/1320  
FIGURE 23-3:  
TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
1
0.1  
°C)  
Typ (25C)  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39605B-page 264  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-4:  
TYPICAL TOTAL IDD vs. VDD OVER TEMPERATURE  
(-40°C TO +85°C, INTOSC AT 2 MHz, BOR ENABLED AT 2.70 - 2.86V)  
0.35  
0.30  
Held in  
RESET  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Typ  
SLEEP Mode  
Typ  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 265  
PIC18F1220/1320  
FIGURE 23-5:  
TYPICAL TOTAL IPD vs. VDD (-10°C TO +70°C, SLEEP MODE,  
TIMER1 OSCILLATOR ENABLED)  
10  
Typ (25°C)  
Typ (25C)  
1
0.1  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-6:  
TYPICAL TOTAL IPD vs. VDD (SLEEP MODE, TIMER1 AND OSCILLATOR ENABLED)  
10  
Typ (25°C)  
Typ (25C)  
1
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39605B-page 266  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
24.0 PACKAGING INFORMATION  
24.1 Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18F1320-I/SP  
0217017  
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC18F1220-  
E/SO  
YYWWNNN  
0210017  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC18F1220-  
E/SS  
YYWWNNN  
0210017  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
PIC18F13  
20-I/ML  
0210017  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 267  
 
 
PIC18F1220/1320  
24.2 Package Details  
The following sections give the technical details of the  
packages.  
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
L
A
c
A1  
B1  
β
p
B
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
18  
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
2.92  
4.32  
3.68  
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
DS39605B-page 268  
Preliminary  
2002 Microchip Technology Inc.  
 
PIC18F1220/1320  
18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
p
E1  
D
2
1
B
n
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
2.64  
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Molded Package Thickness  
Standoff  
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
§
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
h
L
φ
c
B
α
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 269  
PIC18F1220/1320  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
c
A2  
A
φ
L
A1  
β
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.65  
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Molded Package Thickness  
Standoff  
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
§
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Lead Thickness  
Foot Angle  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L
c
φ
B
α
β
.010  
0
.013  
5
.015  
10  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
DS39605B-page 270  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body (QFN)  
EXPOSED  
METAL  
PADS  
E
E1  
Q
D1  
D
D2  
p
2
1
B
n
R
E2  
BOTTOM VIEW  
CH x 45  
L
TOP VIEW  
α
A2  
A
A1  
A3  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Base Thickness  
Overall Width  
Molded Package Width  
Exposed Pad Width  
Overall Length  
Molded Package Length  
Exposed Pad Length  
Lead Width  
Lead Length  
Tie Bar Width  
Tie Bar Length  
Chamfer  
Mold Draft Angle Top  
*Controlling Parameter  
Notes:  
28  
28  
.026 BSC  
.033  
0.65 BSC  
0.85  
0.65  
0.01  
0.20 REF.  
6.00 BSC  
5.75 BSC  
3.70  
6.00 BSC  
5.75 BSC  
A
A2  
A1  
A3  
E
E1  
E2  
D
D1  
D2  
B
L
R
.039  
.031  
.002  
1.00  
0.80  
0.05  
.026  
.0004  
.008 REF.  
.236 BSC  
.226 BSC  
.146  
.236 BSC  
.226 BSC  
.000  
.140  
0.00  
.152  
3.55  
3.85  
.140  
.009  
.020  
.005  
.012  
.009  
.146  
.152  
.014  
.030  
.010  
.026  
.024  
12  
3.55  
0.23  
0.50  
0.13  
0.30  
0.24  
3.70  
3.85  
0.35  
0.75  
0.23  
0.65  
0.60  
12  
.011  
.024  
.007  
.016  
.017  
0.28  
0.60  
0.17  
0.40  
0.42  
Q
CH  
α
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC equivalent: M0-220  
Drawing No. C04-114  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 271  
PIC18F1220/1320  
28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body (QFN)  
Land Pattern and Solder Mask  
M
B
L
M
p
PACKAGE  
EDGE  
SOLDER  
MASK  
Units  
Dimension Limits  
p
INCHES  
NOM  
.026 BSC  
.011  
MILLIMETERS*  
MIN  
.009  
MAX  
.014  
MIN  
NOM  
0.65 BSC  
0.28  
MAX  
0.35  
Pitch  
Pad Width  
B
L
M
0.23  
Pad Length  
Pad to Solder Mask  
.020  
.005  
.024  
.030  
.006  
0.50  
0.13  
0.60  
0.75  
0.15  
*Controlling Parameter  
Drawing No. C04-2114  
DS39605B-page 272  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision A (August 2002)  
Original data sheet for PIC18F1220/1320 devices.  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Revision B (November 2002)  
This revision includes significant changes to  
Section 2.0, Section 3.0, and Section 19.0, as well as  
updates to the Electrical Specifications in Section 22.0,  
and includes minor corrections to the data sheet text.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F1220  
PIC18F1320  
Program Memory (Bytes)  
Program Memory (Instructions)  
Interrupt Sources  
4096  
2048  
15  
Ports A, B  
1
8192  
4096  
15  
Ports A, B  
1
I/O Ports  
Enhanced Capture/Compare/PWM Modules  
10-bit Analog-to-Digital Module  
7 input channels  
7 input channels  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
Packages  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 273  
 
 
 
PIC18F1220/1320  
APPENDIX C: CONVERSION  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
CONSIDERATIONS  
ENHANCED DEVICES  
This appendix discusses the considerations for con-  
verting from previous versions of a device to the ones  
listed in this data sheet. Typically, these changes are  
due to the differences in the process technology used.  
An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
This section discusses how to migrate from a Baseline  
device (i.e., PIC16C5X) to an Enhanced MCU device  
(i.e., PIC18FXXX).  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
DS39605B-page 274  
Preliminary  
2002 Microchip Technology Inc.  
 
 
PIC18F1220/1320  
APPENDIX E: MIGRATION FROM  
MID-RANGE TO  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18F442”. The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
A detailed discussion of the migration pathway and dif-  
ferences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXX) is provided in AN726, “PIC17CXXX to  
PIC18FXXX Migration”.  
This Application Note is available as Literature Number  
DS00726.  
This Application Note is available as Literature Number  
DS00716.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 275  
 
 
PIC18F1220/1320  
NOTES:  
DS39605B-page 276  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
INDEX  
PIC18F1220/1320 ....................................................... 7  
PLL ............................................................................ 12  
PORTA  
MCLR/RA5 Pin .................................................. 91  
OSC1/CLKI/RA7 Pin .......................................... 90  
OSC2/CLKO/RA6 Pin ........................................ 90  
RA3:RA0 Port Pins ............................................ 90  
RA4/T0CKI Pin .................................................. 90  
PORTB  
A
A/D ................................................................................... 155  
A/D Converter Interrupt, Configuring ....................... 159  
Acquisition Requirements ........................................ 160  
ADCON0 Register .................................................... 155  
ADCON1 Register .................................................... 155  
ADCON2 Register .................................................... 155  
ADRESH Register .................................................... 155  
ADRESH/ADRESL Registers .................................. 158  
ADRESL Register .................................................... 155  
Analog Port Pins, Configuring .................................. 162  
Configuring the Module ............................................ 159  
Conversion Clock (TAD) ........................................... 161  
Conversion Requirements ....................................... 262  
Conversion Status (GO/DONE Bit) .......................... 158  
Conversions ............................................................. 163  
Converter Characteristics ........................................ 261  
Operation in Low Power Modes ............................... 162  
Registers Summary ................................................. 164  
Selecting, Configuring Automatic  
RB0/AN4/INT0 Pin ............................................. 92  
RB1/AN5/INT1/TX/CK Pin ................................. 93  
RB2/P1B/INT2 Pin ............................................. 94  
RB3/CCP1/P1A Pin ........................................... 95  
RB4/AN6/RX/DT/KBI0 Pin ................................. 96  
RB5/PGM/KBI1 Pin ........................................... 97  
RB6/PGC/T1OSO/T1CKI/P1C/KBI2 Pin ........... 98  
RB7/PGD/T1OSI/P1D/KBI3 Pin ........................ 99  
Reads from FLASH Program Memory ....................... 63  
System Clock ............................................................. 16  
Table Read Operation ............................................... 59  
Table Write Operation ................................................ 60  
Table Writes to FLASH Program Memory ................. 65  
Timer0 in 16-bit Mode .............................................. 102  
Timer0 in 8-bit Mode ................................................ 102  
Timer1 ..................................................................... 106  
Timer1 (16-bit Read/Write Mode) ............................ 106  
Timer2 ..................................................................... 112  
Timer3 ..................................................................... 114  
Timer3 (16-bit R/W Mode) ....................................... 115  
USART Receive ....................................................... 145  
USART Transmit ...................................................... 143  
WDT ........................................................................ 180  
BN .................................................................................... 198  
BNC ................................................................................. 199  
BNN ................................................................................. 199  
BNOV ............................................................................... 200  
BNZ .................................................................................. 200  
BOR. See Brown-out Reset  
Acquisition Time ............................................... 161  
Special Event Trigger (CCP) .................................... 119  
Special Event Trigger (CCP1) .................................. 164  
Use of the CCP1 Trigger .......................................... 164  
VREF+ and VREF- References .................................. 160  
Absolute Maximum Ratings ............................................. 237  
AC (Timing) Characteristics ............................................. 251  
Conditions ................................................................ 252  
Load Conditions for Device Timing  
Specifications ................................................... 252  
Parameter Symbology ............................................. 251  
Temperature and Voltage Specifications ................. 252  
ADCON0 Register ............................................................ 155  
GO/DONE Bit ........................................................... 158  
ADCON1 Register ............................................................ 155  
ADCON2 Register ............................................................ 155  
ADDLW ............................................................................ 195  
ADDWF ............................................................................ 195  
ADDWFC ......................................................................... 196  
ADRESH Register ............................................................ 155  
ADRESH/ADRESL Registers ........................................... 158  
ADRESL Register ............................................................ 155  
Analog-to-Digital Converter. See A/D  
BOV ................................................................................. 203  
BRA ................................................................................. 201  
Break Character (12-bit) Transmit and Receive .............. 148  
Brown-out Reset (BOR) ..............................................34, 171  
BSF .................................................................................. 201  
BTFSC ............................................................................. 202  
BTFSS ............................................................................. 202  
BTG ................................................................................. 203  
BZ .................................................................................... 204  
ANDLW ............................................................................ 196  
ANDWF ............................................................................ 197  
Assembler  
MPASM Assembler .................................................. 231  
Auto Wake-up on Sync Break Character ......................... 147  
C
CALL ................................................................................ 204  
Capture (CCP Module) .................................................... 118  
CCP Pin Configuration ............................................. 118  
CCPR1H:CCPR1L Registers ................................... 118  
Software Interrupt .................................................... 118  
Timer1/Timer3 Mode Selection ................................ 118  
Capture, Compare, Timer1 and Timer3  
B
BC .................................................................................... 197  
BCF .................................................................................. 198  
Block Diagrams  
A/D ........................................................................... 158  
Analog Input Model .................................................. 159  
Capture Mode Operation ......................................... 119  
Compare Mode Operation ....................................... 120  
Enhanced PWM ....................................................... 122  
Fail-Safe Clock Monitor ............................................ 182  
Generic I/O Port Operation ........................................ 89  
Low Voltage Detect (LVD) ....................................... 166  
Low Voltage Detect (LVD) with External Input ......... 166  
On-Chip Reset Circuit ................................................ 33  
Associated Registers ............................................... 120  
Capture/Compare/PWM (CCP)  
Capture Mode. See Capture  
CCP1 ....................................................................... 118  
CCPR1H Register ........................................... 118  
CCPR1L Register ............................................ 118  
Compare Mode. See Compare  
Timer Resources ..................................................... 118  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 277  
PIC18F1220/1320  
Clock Sources ....................................................................15  
Selection Using OSCCON Register ...........................16  
Clocking Scheme ...............................................................47  
CLRF ................................................................................205  
CLRWDT ..........................................................................205  
Code Examples  
DC Characteristics ........................................................... 247  
Power-Down and Supply Current ............................ 240  
Supply Voltage ......................................................... 239  
DCFSNZ .......................................................................... 209  
DECF ............................................................................... 208  
DECFSZ .......................................................................... 209  
Details on Individual Family Members ................................. 6  
Development Support ...................................................... 231  
Device Differences ........................................................... 273  
Direct Addressing ............................................................... 56  
16 x 16 Signed Multiply Routine .................................74  
16 x 16 Unsigned Multiply Routine .............................74  
8 x 8 Signed Multiply Routine .....................................73  
8 x 8 Unsigned Multiply Routine .................................73  
Changing Between Capture Prescalers ...................119  
Computed GOTO Using an Offset Value ...................49  
Data EEPROM Read .................................................71  
Data EEPROM Refresh Routine ................................72  
Data EEPROM Write ..................................................71  
Erasing a FLASH Program Memory Row ..................64  
Fast Register Stack ....................................................46  
How to Clear RAM (Bank1) Using  
Indirect Addressing ............................................55  
Implementing a Real-Time Clock Using a  
Timer1 Interrupt Service ..................................109  
Initializing PORTA ......................................................89  
Initializing PORTB ......................................................92  
Reading a FLASH Program Memory Word ................63  
Saving STATUS, WREG and BSR Registers  
E
Effects of Power Managed Modes on  
Various Clock Sources .............................................. 18  
Electrical Characteristics .................................................. 237  
Enhanced Capture/Compare/PWM (ECCP) .................... 117  
Outputs .................................................................... 118  
PWM Mode. See PWM (ECCP Module)  
Enhanced PWM Mode. See PWM (ECCP Module) ......... 121  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (USART) ................................ 133  
Equations  
16 x 16 Signed Multiplication Algorithm ..................... 74  
16 x 16 Unsigned Multiplication Algorithm ................. 74  
A/D Minimum Charging Time ................................... 160  
Acquisition Time ...................................................... 160  
Errata ................................................................................... 4  
in RAM ...............................................................87  
Writing to FLASH Program Memory ..................... 6667  
Code Protection ...............................................................171  
COMF ...............................................................................206  
Compare (CCP Module) ...................................................119  
CCP Pin Configuration .............................................119  
CCPR1 Register .......................................................119  
Software Interrupt .....................................................119  
Special Event Trigger ....................................... 116, 119  
Timer1/Timer3 Mode Selection ................................119  
Compare (CCP1 Module)  
Special Event Trigger ...............................................164  
Computed GOTO ...............................................................49  
Configuration Bits .............................................................171  
Context Saving During Interrupts .......................................87  
Conversion Considerations ..............................................274  
CPFSEQ ..........................................................................206  
CPFSGT ...........................................................................207  
CPFSLT ...........................................................................207  
F
Fail-Safe Clock Monitor .................................................... 171  
Exiting Operation ..................................................... 183  
Interrupts in Power Managed Modes ....................... 183  
POR or Wake from SLEEP ...................................... 184  
WDT During Oscillator Failure ................................. 182  
Fail-Safe Clock Monitor (FSCM) ...................................... 182  
Fast Register Stack ............................................................ 46  
Firmware Instructions ....................................................... 189  
FLASH Program Memory ................................................... 59  
Associated Registers ................................................. 67  
Control Registers ....................................................... 60  
Erase Sequence ........................................................ 64  
Erasing ....................................................................... 64  
Operation During Code Protect ................................. 67  
Reading ..................................................................... 63  
TABLAT Register ....................................................... 62  
Table Pointer ............................................................. 62  
Boundaries Based on Operation ........................ 62  
D
Data EEPROM Memory .....................................................69  
Associated Registers .................................................72  
EEADR Register ........................................................69  
EECON1 Register ......................................................69  
EECON2 Register ......................................................69  
Operation During Code Protect ..................................72  
Protection Against Spurious Write .............................71  
Reading ......................................................................71  
Using ..........................................................................72  
Write Verify .................................................................71  
Writing ........................................................................71  
Data Memory ......................................................................49  
General Purpose Registers ........................................49  
Map for PIC18F1220/1320 Devices ...........................50  
Special Function Registers ........................................51  
DAW .................................................................................208  
DC and AC Characteristics  
Table Pointer Boundaries .......................................... 62  
Table Reads and Table Writes .................................. 59  
Write Sequence ......................................................... 65  
Writing to .................................................................... 65  
Unexpected Termination .................................... 67  
Write Verify ........................................................ 67  
G
GOTO .............................................................................. 210  
H
Hardware Multiplier ............................................................ 73  
Introduction ................................................................ 73  
Operation ................................................................... 73  
Performance Comparison .......................................... 73  
Graphs and Tables (Preliminary) .............................263  
DS39605B-page 278  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
POP ......................................................................... 218  
PUSH ....................................................................... 218  
RCALL ..................................................................... 219  
RESET ..................................................................... 219  
RETFIE .................................................................... 220  
RETLW .................................................................... 220  
RETURN .................................................................. 221  
RLCF ....................................................................... 221  
RLNCF ..................................................................... 222  
RRCF ....................................................................... 222  
RRNCF .................................................................... 223  
SETF ....................................................................... 223  
SLEEP ..................................................................... 224  
SUBFWB ................................................................. 224  
SUBLW .................................................................... 225  
SUBWF .................................................................... 225  
SUBWFB ................................................................. 226  
SWAPF .................................................................... 226  
TBLRD ..................................................................... 227  
TBLWT .................................................................... 228  
TSTFSZ ................................................................... 229  
XORLW ................................................................... 229  
XORWF ................................................................... 230  
Summary Table ....................................................... 192  
I
I/O Ports ............................................................................. 89  
ICEPIC In-Circuit Emulator .............................................. 232  
ID Locations ............................................................. 171, 188  
INCF ................................................................................. 210  
INCFSZ ............................................................................ 211  
In-Circuit Debugger .......................................................... 188  
In-Circuit Serial Programming (ICSP) ...................... 171, 188  
Indirect Addressing ............................................................ 56  
INDF and FSR Registers ........................................... 55  
Operation ................................................................... 55  
Indirect Addressing Operation ............................................ 56  
Indirect File Operand .......................................................... 49  
INFSNZ ............................................................................ 211  
Initialization Conditions for All Registers ............................ 36  
Instruction Cycle ................................................................. 47  
Instruction Flow/Pipelining ................................................. 47  
Instruction Format ............................................................ 191  
Instruction Set .................................................................. 189  
ADDLW .................................................................... 195  
ADDWF .................................................................... 195  
ADDWFC ................................................................. 196  
ANDLW .................................................................... 196  
ANDWF .................................................................... 197  
BC ............................................................................ 197  
BCF .......................................................................... 198  
BN ............................................................................ 198  
BNC ......................................................................... 199  
BNN ......................................................................... 199  
BNOV ....................................................................... 200  
BNZ .......................................................................... 200  
BOV ......................................................................... 203  
BRA .......................................................................... 201  
BSF .......................................................................... 201  
BTFSC ..................................................................... 202  
BTFSS ..................................................................... 202  
BTG .......................................................................... 203  
BZ ............................................................................ 204  
CALL ........................................................................ 204  
CLRF ........................................................................ 205  
CLRWDT .................................................................. 205  
COMF ...................................................................... 206  
CPFSEQ .................................................................. 206  
CPFSGT .................................................................. 207  
CPFSLT ................................................................... 207  
DAW ......................................................................... 208  
DCFSNZ .................................................................. 209  
DECF ....................................................................... 208  
DECFSZ ................................................................... 209  
GOTO ...................................................................... 210  
INCF ......................................................................... 210  
INCFSZ .................................................................... 211  
INFSNZ .................................................................... 211  
IORLW ..................................................................... 212  
IORWF ..................................................................... 212  
LFSR ........................................................................ 213  
MOVF ....................................................................... 213  
MOVFF .................................................................... 214  
MOVLB .................................................................... 214  
MOVLW ................................................................... 215  
MOVWF ................................................................... 215  
MULLW .................................................................... 216  
MULWF .................................................................... 216  
NEGF ....................................................................... 217  
NOP ......................................................................... 217  
INTCON Register  
RBIF Bit ..................................................................... 92  
INTCON Registers ............................................................. 77  
Internal Oscillator Block ..................................................... 14  
Adjustment ................................................................. 14  
INTIO Modes ............................................................. 14  
INTRC Output Frequency .......................................... 14  
OSCTUNE Register ................................................... 14  
Internal RC Oscillator  
Use with WDT .......................................................... 180  
Interrupt Sources ............................................................. 171  
A/D Conversion Complete ....................................... 159  
Capture Complete (CCP) ......................................... 118  
Compare Complete (CCP) ....................................... 119  
Interrupt-on-Change (RB7:RB4) ................................ 92  
INTn Pin ..................................................................... 87  
PORTB, Interrupt-on-Change .................................... 87  
TMR0 ......................................................................... 87  
TMR0 Overflow ........................................................ 103  
TMR1 Overflow ........................................................ 105  
TMR2 to PR2 Match ................................................ 112  
TMR2 to PR2 Match (PWM) .............................111, 121  
TMR3 Overflow .................................................113, 116  
Interrupts ............................................................................ 75  
Enable Bits  
(CCP1IE Bit) .................................................... 118  
Flag Bits  
CCP1 Flag (CCP1IF Bit) .................................. 118  
CCP1IF Flag (CCP1IF Bit) .............................. 119  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) ................................................... 92  
Logic .......................................................................... 76  
INTOSC Frequency Drift .................................................... 30  
IORLW ............................................................................. 212  
IORWF ............................................................................. 212  
IPR Registers ..................................................................... 84  
K
KEELOQ Evaluation and Programming Tools ................... 234  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 279  
PIC18F1220/1320  
Oscillator Switching ............................................................ 15  
Oscillator Transitions ......................................................... 18  
Oscillator, Timer1 ......................................................105, 116  
Oscillator, Timer3 ............................................................. 113  
Other Special Features ........................................................ 5  
L
LFSR ................................................................................213  
Low Voltage Detect ..........................................................165  
Characteristics .........................................................250  
Effects of a RESET ..................................................169  
Operation .................................................................168  
Current Consumption .......................................169  
P
Packaging ........................................................................ 267  
Details ...................................................................... 268  
Marking Information ................................................. 267  
PICDEM 1 Low Cost PICmicro  
Reference Voltage Set Point ............................169  
Operation During SLEEP .........................................169  
LVD. See Low Voltage Detect. .........................................165  
Demonstration Board ............................................... 233  
PICDEM 17 Demonstration Board ................................... 234  
PICDEM 2 Low Cost PIC16CXX  
M
Memory Organization .........................................................43  
Data Memory ..............................................................49  
Program Memory .......................................................43  
Memory Programming Requirements ..............................249  
Migration from Baseline to Enhanced Devices ................274  
Migration from High-End to Enhanced Devices ...............275  
Migration from Mid-Range to Enhanced Devices .............275  
MOVF ...............................................................................213  
MOVFF .............................................................................214  
MOVLB .............................................................................214  
MOVLW ............................................................................215  
MOVWF ...........................................................................215  
MPLAB C17 and MPLAB C18 C Compilers .....................231  
MPLAB ICD In-Circuit Debugger ......................................233  
MPLAB ICE High Performance Universal  
Demonstration Board ............................................... 233  
PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board ............................................... 234  
PICSTART Plus Entry Level  
Development Programmer ....................................... 233  
PIE Registers ..................................................................... 82  
Pin Functions  
MCLR/VPP/RA5 ........................................................... 8  
OSC1/CLKI/RA7 .......................................................... 8  
OSC2/CLKO/RA6 ........................................................ 8  
RA0/AN0 ...................................................................... 8  
RA1/AN1/LVDIN .......................................................... 8  
RA2/AN2/VREF- ........................................................... 8  
RA3/AN3/VREF+ ........................................................... 8  
RA4/T0CKI ................................................................... 8  
RB0/AN4/INT0 ............................................................. 9  
RB1/AN5/TX/CK/INT1 ................................................. 9  
RB2/P1B/INT2 ............................................................. 9  
RB3/CCP1/P1A ........................................................... 9  
RB4/AN6/RX/DT/KBI0 ................................................. 9  
RB5/PGM/KBI1 ............................................................ 9  
RB6/PGC/T1OSO/T1CKI/P1C/KBI2 ............................ 9  
RB7/PGD/T1OSI/P1D/KBI3 ......................................... 9  
VDD .............................................................................. 9  
VSS ............................................................................... 9  
Pinout I/O Descriptions  
In-Circuit Emulator with MPLAB IDE ........................232  
MPLAB Integrated Development  
Environment Software ..............................................231  
MPLINK Object Linker/MPLIB Object Librarian ...............232  
MULLW ............................................................................216  
MULWF ............................................................................216  
N
NEGF ...............................................................................217  
New Core Features  
Multiple Oscillator Options and Features .....................5  
Nanowatt Technology ..................................................5  
NOP .................................................................................217  
PIC18F1220/1320 ........................................................ 8  
PIR Registers ..................................................................... 80  
PLL Lock Time-out ............................................................. 34  
Pointer, FSR ...................................................................... 55  
POP ................................................................................. 218  
POR. See Power-on Reset  
O
OPCODE Field Descriptions ............................................190  
OPTION_REG Register  
PSA Bit .....................................................................103  
T0CS Bit ...................................................................103  
T0PS2:T0PS0 Bits ...................................................103  
T0SE Bit ...................................................................103  
Oscillator Configuration ......................................................11  
Crystal/Ceramic Resonator ........................................11  
EC ..............................................................................11  
ECIO ..........................................................................11  
External Clock Input ...................................................13  
HS ..............................................................................11  
HSPLL .................................................................. 11, 12  
INTIO1 ........................................................................11  
INTIO2 ........................................................................11  
LP ...............................................................................11  
RC ........................................................................ 11, 13  
RCIO ..........................................................................11  
XT ...............................................................................11  
Oscillator Selection ..........................................................171  
Oscillator Start-up Timer (OST) ........................... 18, 34, 171  
PORTA  
Associated Registers ................................................. 91  
Functions ................................................................... 91  
LATA Register ........................................................... 89  
PORTA Register ........................................................ 89  
TRISA Register .......................................................... 89  
PORTB  
Associated Registers ............................................... 100  
Functions ................................................................. 100  
LATB Register ........................................................... 92  
PORTB Register ........................................................ 92  
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) .......... 92  
TRISB Register .......................................................... 92  
Postscaler  
Timer2 ...................................................................... 111  
WDT  
Assignment (PSA Bit) ...................................... 103  
Rate Select (T0PS2:T0PS0 Bits) ..................... 103  
DS39605B-page 280  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
Power Managed Modes ..................................................... 19  
Entering ...................................................................... 20  
IDLE Modes ............................................................... 21  
RUN Modes ............................................................... 26  
Selecting .................................................................... 19  
SLEEP Mode ............................................................. 21  
Summary (table) ........................................................ 19  
Wake from .................................................................. 28  
Power-on Reset (POR) .............................................. 34, 171  
Power-up Delays ................................................................ 18  
Power-up Timer (PWRT) .......................................18, 34, 171  
Prescaler  
Capture .................................................................... 119  
Timer0 ...................................................................... 103  
Assignment (PSA Bit) ...................................... 103  
Rate Select (T0PS2:T0PS0 Bits) ..................... 103  
Timer2 ...................................................................... 121  
PRO MATE II Universal Device Programmer .................. 233  
Product Identification System ........................................... 287  
Program Counter  
Q
Q Clock ............................................................................ 121  
R
RAM. See Data Memory  
RCALL ............................................................................. 219  
RCIO Oscillator .................................................................. 13  
RCON Register  
Bit Status During Initialization .................................... 35  
RCSTA Register  
SPEN Bit .................................................................. 133  
Register File ....................................................................... 49  
Register File Summary ...................................................... 52  
Registers  
ADCON0 (A/D Control 0) ......................................... 155  
ADCON1 (A/D Control 1) ......................................... 156  
ADCON2 (A/D Control 2) ......................................... 157  
BAUDCTL (Baud Rate Control) ............................... 136  
CCP1CON (Enhanced CCP1 Control) .................... 117  
CONFIG1H (Configuration 1 High) .......................... 172  
CONFIG2H (Configuration 2 High) .......................... 174  
CONFIG2L (Configuration 2 Low) ........................... 173  
CONFIG3H (Configuration 3 High) .......................... 175  
CONFIG4L (Configuration 4 Low) ........................... 175  
CONFIG5H (Configuration 5 High) .......................... 176  
CONFIG5L (Configuration 5 Low) ........................... 176  
CONFIG6H (Configuration 6 High) .......................... 177  
CONFIG6L (Configuration 6 Low) ........................... 177  
CONFIG7H (Configuration 7 High) .......................... 178  
CONFIG7L (Configuration 7 Low) ........................... 178  
DEVID1 (Device ID 1) .............................................. 179  
DEVID2 (Device ID 2) .............................................. 179  
ECCPAS (ECCP Auto Shutdown Control) ............... 129  
EECON1 (Data EEPROM Control 1) ....................61, 70  
INTCON (Interrupt Control) ........................................ 77  
INTCON2 (Interrupt Control 2) ................................... 78  
INTCON3 (Interrupt Control 3) ................................... 79  
IPR1 (Peripheral Interrupt Priority 1) ......................... 84  
IPR2 (Peripheral Interrupt Priority 2) ......................... 85  
LVDCON (LVD Control) ........................................... 167  
OSCCON (Oscillator Control) .................................... 17  
OSCTUNE (Oscillator Tuning) ................................... 15  
PIE1 (Peripheral Interrupt Enable 1) .......................... 82  
PIE2 (Peripheral Interrupt Enable 2) .......................... 83  
PIR1 (Peripheral Interrupt Request (Flag) 1) ............. 80  
PIR2 (Peripheral Interrupt Request (Flag) 2) ............. 81  
PWM1CON (PWM Configuration) ........................... 128  
RCON (Register Control) ........................................... 86  
RCON (RESET Control) ............................................ 58  
RCSTA (Receive Status and Control) ..................... 135  
STATUS .................................................................... 57  
STKPTR (Stack Pointer) ............................................ 45  
T0CON (Timer0 Control) ......................................... 101  
T1CON (Timer 1 Control) ........................................ 105  
T2CON (Timer 2 Control) ........................................ 111  
T3CON (Timer3 Control) ......................................... 113  
TXSTA (Transmit Status and Control) ..................... 134  
WDTCON (Watchdog Timer Control) ...................... 180  
RESET ................................................................33, 171, 219  
RETFIE ............................................................................ 220  
RETLW ............................................................................ 220  
RETURN .......................................................................... 221  
PCL Register .............................................................. 46  
PCLATH Register ...................................................... 46  
PCLATU Register ...................................................... 46  
Program Memory  
Instructions in ............................................................. 48  
Interrupt Vector .......................................................... 43  
Map and Stack for PIC18F1220 ................................. 43  
Map and Stack for PIC18F1320 ................................. 43  
RESET Vector ............................................................ 43  
Program Verification and Code Protection ....................... 185  
Associated Registers ............................................... 185  
Configuration Register ............................................. 188  
Data EEPROM ......................................................... 188  
Program Memory ..................................................... 186  
Programming, Device Instructions ................................... 189  
PUSH ............................................................................... 218  
PUSH and POP Instructions .............................................. 45  
PWM (CCP Module)  
CCPR1H:CCPR1L Registers ................................... 121  
Duty Cycle ................................................................ 121  
Example Frequencies/Resolutions .......................... 121  
Period ....................................................................... 121  
TMR2 to PR2 Match ........................................ 111, 121  
PWM (ECCP Module) ...................................................... 121  
Associated Registers ............................................... 132  
Direction Change in Full-Bridge  
Output Mode .................................................... 126  
Effects of a RESET .................................................. 131  
Enhanced PWM Auto Shutdown .............................. 128  
Full-Bridge Application Example .............................. 126  
Full-Bridge PWM Output Diagram ........................... 125  
Half-Bridge Output Diagram ..................................... 124  
Half-Bridge Output Mode  
Applications Example ....................................... 124  
Operation in Low Power Modes ............................... 131  
Output Configurations .............................................. 121  
Output Relationships (Active High) .......................... 122  
Output Relationships (Active Low) ........................... 123  
Programmable Deadband Delay .............................. 128  
PWM Direction Change at Near 100%  
Duty Cycle Diagram ......................................... 127  
PWM Direction Change Diagram ............................. 127  
Setup for PWM Operation ........................................ 131  
Start-up Considerations ........................................... 130  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 281  
PIC18F1220/1320  
Return Address Stack ........................................................44  
and Associated Registers ..........................................44  
Return Stack Pointer (STKPTR) ........................................44  
Revision History ...............................................................273  
RLCF ................................................................................221  
RLNCF .............................................................................222  
RRCF ...............................................................................222  
RRNCF .............................................................................223  
Timer2 .............................................................................. 111  
Associated Registers ............................................... 112  
Operation ................................................................. 111  
Postscaler. See Postscaler, Timer2  
PR2 Register ....................................................111, 121  
Prescaler. See Prescaler, Timer2  
SSP Clock Shift ....................................................... 112  
TMR2 Register ......................................................... 111  
TMR2 to PR2 Match Interrupt ...................111, 112, 121  
Timer3 .............................................................................. 113  
Associated Registers ............................................... 116  
Operation ................................................................. 114  
Oscillator ...........................................................113, 116  
Overflow Interrupt .............................................113, 116  
Special Event Trigger (CCP) ................................... 116  
TMR3H Register ...................................................... 113  
TMR3L Register ....................................................... 113  
Timing Diagrams  
S
SETF ................................................................................223  
SLEEP ..............................................................................224  
OSC1 and OSC2 Pin States ......................................18  
Software Simulator (MPLAB SIM) ....................................232  
Special Event Trigger. See Compare  
Special Features of the CPU ............................................171  
Configuration Registers .................................... 172178  
Special Function Registers ................................................51  
Map ............................................................................51  
SSP  
TMR2 Output for Clock Shift ....................................112  
Stack Full/Underflow Resets ..............................................45  
SUBFWB ..........................................................................224  
SUBLW ............................................................................225  
SUBWF ............................................................................225  
SUBWFB ..........................................................................226  
SWAPF ............................................................................226  
A/D Conversion ........................................................ 262  
Asynchronous Reception ......................................... 146  
Asynchronous Transmission .................................... 143  
Asynchronous Transmission (Back to Back) ........... 143  
Auto Wake-up Bit (WUE) During Normal Operation 147  
Auto Wake-up Bit (WUE) During SLEEP ................. 147  
Brown-out Reset (BOR) ........................................... 256  
Capture/Compare/PWM (All CCP Modules) ............ 259  
CLKO and I/O .......................................................... 255  
Clock/Instruction Cycle .............................................. 47  
External Clock (All Modes except PLL) ................... 253  
Fail-Safe Clock Monitor ........................................... 183  
Low Voltage Detect .................................................. 168  
PWM Auto Shutdown (PRSEN = 0,  
T
TABLAT Register ...............................................................62  
Table Pointer Operations (table) ........................................62  
TBLPTR Register ...............................................................62  
TBLRD .............................................................................227  
TBLWT .............................................................................228  
Time-out Sequence ............................................................34  
Timer0 ..............................................................................101  
16-bit Mode Timer Reads and Writes ......................103  
Associated Registers ...............................................103  
Clock Source Edge Select (T0SE Bit) ......................103  
Clock Source Select (T0CS Bit) ...............................103  
Operation .................................................................103  
Overflow Interrupt .....................................................103  
Prescaler. See Prescaler, Timer0  
Auto Restart Disabled) ..................................... 130  
PWM Auto Shutdown (PRSEN = 1,  
Auto Restart Enabled) ..................................... 130  
RESET, Watchdog Timer (WDT),  
Oscillator Start-up Timer (OST) and  
Power-up Timer (PWRT) ................................. 256  
Send Break Character Sequence ............................ 148  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................ 41  
Synchronous Reception (Master Mode, SREN) ...... 151  
Synchronous Transmission ..................................... 149  
Synchronous Transmission (Through TXEN) .......... 150  
Time-out Sequence on POR w/ PLL Enabled  
Switching Prescaler Assignment ..............................103  
Timer1 ..............................................................................105  
16-bit Read/Write Mode ...........................................108  
Associated Registers ...............................................109  
Interrupt ....................................................................107  
Operation .................................................................106  
Oscillator .......................................................... 105, 107  
Oscillator Layout Considerations .............................107  
Overflow Interrupt .....................................................105  
Resetting, Using a Special Event  
(MCLR Tied to VDD) ........................................... 41  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD) Case 1 ........................ 40  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD) Case 2 ........................ 40  
Time-out Sequence on Power-up  
(MCLR Tied to VDD, VDD Rise TPWRT) .............. 40  
Timer0 and Timer1 External Clock .......................... 257  
Transition for Entry to SEC_IDLE Mode .................... 24  
Transition for Entry to SEC_RUN Mode .................... 26  
Transition for Entry to SLEEP Mode .......................... 22  
Transition for Two-Speed Start-up  
Trigger Output (CCP) .......................................108  
Special Event Trigger (CCP) ....................................119  
TMR1H Register ......................................................105  
TMR1L Register .......................................................105  
Use as a Real-Time Clock .......................................108  
(INTOSC to HSPLL) ........................................ 181  
Transition for Wake from RC_RUN Mode  
(RC_RUN to PRI_RUN) ..................................... 25  
DS39605B-page 282  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
Transition for Wake from SEC_RUN Mode  
(Secondary Clock to HSPLL) ............................. 24  
Transition for Wake from SLEEP (HSPLL) ................ 22  
Transition Timing For Wake from  
PRI_IDLE Mode ................................................. 23  
Transition Timing to PRI_IDLE Mode ........................ 23  
Transition to RC_IDLE Mode ..................................... 25  
Transition to RC_RUN Mode ..................................... 27  
USART Synchronous Receive  
(Master/Slave) .................................................. 260  
USART SynchronousTransmission  
U
USART  
Asynchronous Mode ................................................ 142  
12-bit Break Transmit and Receive ................. 148  
Associated Registers, Receive ........................ 146  
Associated Registers, Transmit ....................... 144  
Auto Wake-up on Sync Break ......................... 147  
Receiver .......................................................... 145  
Setting up 9-bit Mode with Address Detect ..... 145  
Transmitter ...................................................... 142  
Baud Rate Generator (BRG) ................................... 137  
Associated Registers ....................................... 138  
Auto Baud Rate Detect .................................... 141  
Baud Rate Error, Calculating ........................... 138  
Baud Rates, Asynchronous Modes ................. 138  
High Baud Rate Select (BRGH Bit) ................. 137  
Power Managed Mode Operation .................... 137  
Sampling .......................................................... 137  
Serial Port Enable (SPEN Bit) ................................. 133  
Synchronous Master Mode ...................................... 149  
Associated Registers, Reception ..................... 152  
Associated Registers, Transmit ....................... 150  
Reception ........................................................ 151  
Transmission ................................................... 149  
Synchronous Slave Mode ........................................ 153  
Associated Registers, Receive ........................ 154  
Associated Registers, Transmit ....................... 153  
Reception ........................................................ 154  
Transmission ................................................... 153  
(Master/Slave) .................................................. 260  
Timing Diagrams and Specifications ................................ 253  
Capture/Compare/PWM Requirements  
(All CCP Modules) ........................................... 259  
CLKO and I/O Requirements ................................... 255  
DC Characteristics - Internal RC Accuracy .............. 254  
External Clock Requirements .................................. 253  
PLL Clock (VDD = 4.2 to 5.5V) ................................. 254  
RESET, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and  
Brown-out Reset Requirements ....................... 257  
Timer0 and Timer1 External Clock  
Requirements ................................................... 258  
USART Synchronous Receive Requirements ......... 260  
USART Synchronous Transmission  
Requirements ................................................... 260  
Top-of-Stack Access .......................................................... 44  
TSTFSZ ............................................................................ 229  
Two-Speed Start-up ................................................. 171, 181  
Two-Word Instructions ....................................................... 48  
Example Cases .......................................................... 48  
TXSTA Register  
W
Watchdog Timer (WDT) ............................................171, 180  
Associated Registers ............................................... 181  
Control Register ....................................................... 180  
During Oscillator Failure .......................................... 182  
Programming Considerations .................................. 180  
WWW, On-Line Support ...................................................... 4  
BRGH Bit ................................................................. 137  
X
XORLW ............................................................................ 229  
XORWF ........................................................................... 230  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 283  
PIC18F1220/1320  
NOTES:  
DS39605B-page 284  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
ON-LINE SUPPORT  
Microchip provides on-line support on the Microchip  
World Wide Web site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape® or Microsoft®  
Internet Explorer. Files are also available for FTP  
download from our FTP site.  
SYSTEMS INFORMATION AND  
UPGRADE HOT LINE  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive the most current upgrade kits.The Hot Line  
Numbers are:  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available at the following  
URL:  
092002  
www.microchip.com  
The file transfer site is available by using an FTP  
service to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 285  
PIC18F1220/1320  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS39605B  
Device:  
PIC18F1220/1320  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39605B-page 286  
Preliminary  
2002 Microchip Technology Inc.  
PIC18F1220/1320  
PIC18F1220/1320 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Examples:  
Device  
Temperature Package  
Range  
Pattern  
a) PIC18LF1320 - I/P 301 = Industrial  
temp., PDIP package, Extended  
VDD limits, QTP pattern #301.  
b) PIC18LF1220 - I/SO = Industrial  
temp., SOIC package, Extended  
VDD limits.  
Device  
PIC18F1220/1320(1)  
PIC18F1220/1320(2)  
,
;
VDD range 4.2V to 5.5V  
PIC18LF1220/1320(1)  
,
;
PIC18LF1220/1320(2)  
VDD range 2.5V to 5.5V  
Note 1: F = Standard Voltage range  
Temperature  
Range  
I
=
-40°C to +85°C (Industrial)  
LF = Wide Voltage Range  
2:  
T
= in tape and reel - SOIC  
package only  
Package  
Pattern  
SO = SOIC  
PDIP  
SS = SSOP  
ML = QFN  
P
=
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS39605B-page 287  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
China - Beijing  
Rocky Mountain  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
#07-02 Prime Centre  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Singapore, 188980  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Ming Xing Financial Tower  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
No. 88 TIDU Street  
Chicago  
Chengdu 610016, China  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
11F-3, No. 207  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
China - Fuzhou  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Austria  
No. 71 Wusi Road  
Tel: 972-818-7423 Fax: 972-818-2924  
Fuzhou 350001, China  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
Detroit  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Tri-Atria Office Building  
China - Shanghai  
A-4600 Wels  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Kokomo  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Los Angeles  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
France  
Tel: 949-263-1888 Fax: 949-263-1338  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
San Jose  
Shenzhen 518001, China  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 86-755-82350361 Fax: 86-755-82366086  
Batiment A - ler Etage  
China - Hong Kong SAR  
91300 Massy, France  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Tel: 408-436-7950 Fax: 408-436-7955  
Germany  
Toronto  
Microchip Technology GmbH  
Steinheilstrasse 10  
Kwai Fong, N.T., Hong Kong  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Tel: 852-2401-1200 Fax: 852-2401-3431  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
India  
Microchip Technology Inc.  
India Liaison Office  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
10/18/02  
DS39605B-page 288  
Preliminary  
2002 Microchip Technology Inc.  

相关型号:

PIC18LF1320-I/SSG

RISC MICROCONTROLLER
MICROCHIP

PIC18LF1320E/PQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320E/PSQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320E/SOQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320E/SOSQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320E/SSQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320E/SSSQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320I/PQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320I/PSQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320I/SOQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320I/SOSQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP

PIC18LF1320I/SSQTP

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers
MICROCHIP