PIC24FJ128 [MICROCHIP]

General Purpose, 16-Bit Flash Microcontrollers;
PIC24FJ128
型号: PIC24FJ128
厂家: MICROCHIP    MICROCHIP
描述:

General Purpose, 16-Bit Flash Microcontrollers

微控制器
文件: 总232页 (文件大小:3444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24FJ128GA Family  
Data Sheet  
General Purpose,  
16-Bit Flash Microcontrollers  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi,  
MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS39747C-page ii  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
General Purpose, 16-bit Flash Microcontrollers  
High-Performance CPU:  
Analog Features:  
• Modified Harvard Architecture  
• Up to 16 MIPS operation @ 32 MHz  
• 8 MHz internal oscillator:  
• 10-bit, up to 16-channel Analog-to-Digital Converter  
(A/D):  
- 500 ksps conversion rate  
- 4x PLL option  
- Multiple divide options  
• 17-bit x 17-bit Single-Cycle Hardware  
Fractional/Integer Multiplier  
- Conversion available during Sleep and Idle  
• Dual Analog Comparators with Programmable  
Input/Output Configuration  
• 32-bit by 16-bit Hardware Divider  
• 16 x 16-bit Working Register Array  
• C compiler Optimized Instruction Set Architecture:  
- 76 base instructions  
Peripheral Features:  
• Two 3-wire/4-wire SPI modules, supporting 4 Frame  
modes with 4-level FIFO Buffer  
2
• Two I C™ modules support Multi-Master/Slave  
- Flexible addressing modes  
mode and 7-bit/10-bit Addressing  
• Two UART modules:  
- Supports RS-232, RS-485 and LIN 1.2  
- Supports IrDA® with on-chip hardware endec  
- Auto-Wake-up on Start bit  
• Linear Program Memory Addressing up to 12 Mbytes  
• Linear Data Memory Addressing up to 64 Kbytes  
• Two Address Generation Units for separate Read  
and Write Addressing of Data Memory  
- Auto-Baud Detect  
- 4-level FIFO buffer  
Special Microcontroller Features:  
• Operating Voltage Range of 2.0V to 3.6V  
• Flash Program Memory:  
• Parallel Master Slave Port (PMP/PSP):  
- Supports 8-bit or 16-bit data  
- 1000 erase/write cycles, typical  
- Supports 16 address lines  
- Flash retention 20 years, typical  
• Hardware Real-Time Clock/Calendar (RTCC):  
- Provides clock, calendar and alarm functions  
• Five 16-bit Timers/Counters with Programmable  
prescaler  
• Self-Reprogrammable under Software Control  
• Selectable Power Management modes:  
- Sleep, Idle and Alternate Clock modes  
• Fail-Safe Clock Monitor operation:  
- Detects clock failure and switches to on-chip,  
low-power RC oscillator  
• Five 16-bit Capture Inputs  
• Five 16-bit Compare/PWM Outputs  
• High-Current Sink/Source on select I/O pins:  
18 mA/18 mA  
• On-Chip LDO Regulator  
• JTAG Boundary Scan and Programming Support  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Configurable Open-Drain Output on Digital I/O pins  
• Up to 5 External Interrupt Sources  
• Flexible Watchdog Timer (WDT) with On-Chip,  
Low-Power RC Oscillator for reliable operation  
• In-Circuit Serial Programming™ (ICSP™) and  
In-Circuit Emulation (ICE) via 2 pins  
Program  
Pins Memory  
(Bytes)  
SRAM  
(Bytes)  
Timers  
16-bit  
10-bit  
A/D (ch)  
Device  
SPI  
I2C™  
PIC24FJ64GA006  
PIC24FJ96GA006  
PIC24FJ128GA006  
PIC24FJ64GA008  
PIC24FJ96GA008  
PIC24FJ128GA008  
PIC24FJ64GA010  
PIC24FJ96GA010  
PIC24FJ128GA010  
64  
64  
64K  
96K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
16  
16  
16  
16  
16  
16  
16  
16  
16  
2
2
2
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
64  
128K  
64K  
80  
80  
96K  
80  
128K  
64K  
100  
100  
100  
96K  
128K  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 1  
PIC24FJ128GA FAMILY  
Pin Diagrams  
64-Pin TQFP  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
OC1/RD0  
1
PMD5/RE5  
PMD6/RE6  
2
PMD7/RE7  
3
IC4/PMCS1/INT4/RD11  
IC3/PMCS2/INT3/RD10  
IC2/U1CTS//INT2/RD9  
IC1/RTCC/INT1/RD8  
Vss  
PMA5/SCK2/CN8/RG6  
PMA4/SDI2/CN9/RG7  
PMA3/SDO2/CN10/RG8  
4
5
6
MCLR  
PMA2/SS2/CN11/RG9  
VSS  
7
PIC24FJXXGA006  
PIC24FJXXXGA006  
8
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
C1IN+/AN5/CN7/RB5  
C1IN-/AN4/CN6/RB4  
SCL1/RG2  
C2IN+/AN3/CN5/RB3  
SDA1/RG3  
U1RTS/BCLK1/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
C2IN-/AN2/SS1/CN4/RB2  
PGC1/EMUC1/VREF-/AN1/CN3/RB1  
PGD1/EMUD1/PMA6/VREF+/AN0/CN2/RB0  
DS39747C-page 2  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
Pin Diagrams (Continued)  
80-Pin TQFP  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
OC1/RD0  
1
PMD5/RE5  
PMD6/RE6  
2
PMD7/RE7  
3
IC4/PMCS1/RD11  
IC3/PMCS2/RD10  
IC2/RD9  
T2CK/RC1  
4
T4CK/RC3  
5
PMA5/SCK2/CN8/RG6  
PMA4/SDI2/CN9/RG7  
PMA3/SDO2/CN10/RG8  
MCLR  
6
IC1/RTCC/RD8  
SDA2/INT4/RA15  
SCL2/INT3/RA14  
7
8
9
VSS  
PMA2/SS2/CN11/RG9  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PIC24FJXXGA008  
PIC24FJXXXGA008  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
VDD  
TMS/INT1/RE8  
TDO/INT2/RE9  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
C1IN+/AN5/CN7/RB5  
C1IN-/AN4/CN6/RB4  
C2IN+/AN3/CN5/RB3  
C2IN-/AN2/SS1/CN4/RB2  
PGC1/EMUC1/AN1/CN3/RB1  
PGD1/EMUD1/AN0/CN2/RB0  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 3  
PIC24FJ128GA FAMILY  
Pin Diagrams (Continued))  
100-Pin TQFP  
VSS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
RG15  
VDD  
PMD5/RE5  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
OC1/RD0  
IC4/PMCS1/RD11  
IC3/PMCS2/RD10  
IC2/RD9  
IC1/RTCC/RD8  
INT4/RA15  
INT3/RA14  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PMD6/RE6  
PMD7/RE7  
T2CK/RC1  
T3CK/RC2  
T4CK/RC3  
T5CK/RC4  
PMA5/SCK2/CN8/RG6  
PMA4/SDI2/CN9/RG7  
PMA3/SDO2/CN10/RG8  
MCLR  
PMA2/SS2/CN11/RG9  
VSS  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
PIC24FJXXGA010  
PIC24FJXXXGA010  
TDO/RA5  
VDD  
TMS/RA0  
INT1/RE8  
INT2/RE9  
TDI/RA4  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
C1IN+/AN5/CN7/RB5  
C1IN-/AN4/CN6/RB4  
C2IN+/AN3/CN5/RB3  
C2IN-/AN2/SS1/CN4/RB2  
PGC1/EMUC1/AN1/CN3/RB1  
PGD1/EMUD1/AN0/CN2/RB0  
SDI1/RF7  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
DS39747C-page 4  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 CPU............................................................................................................................................................................................ 19  
3.0 Memory Organization................................................................................................................................................................. 25  
4.0 Flash Program Memory.............................................................................................................................................................. 45  
5.0 Resets ........................................................................................................................................................................................ 51  
6.0 Interrupt Controller ..................................................................................................................................................................... 57  
7.0 Oscillator Configuration.............................................................................................................................................................. 91  
8.0 Power-Saving Features.............................................................................................................................................................. 97  
9.0 I/O Ports ..................................................................................................................................................................................... 99  
10.0 Timer1 ...................................................................................................................................................................................... 101  
11.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 103  
12.0 Input Capture............................................................................................................................................................................ 109  
13.0 Output Compare....................................................................................................................................................................... 111  
14.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 115  
15.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................. 123  
16.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 131  
17.0 Parallel Master Port.................................................................................................................................................................. 139  
18.0 Real-Time Clock and Calendar ................................................................................................................................................ 149  
19.0 Programmable Cyclic Redundancy Check (CRC) Generator .................................................................................................. 161  
20.0 10-bit High-Speed A/D Converter............................................................................................................................................. 165  
21.0 Comparator Module.................................................................................................................................................................. 173  
22.0 Comparator Voltage Reference................................................................................................................................................ 177  
23.0 Special Features ...................................................................................................................................................................... 179  
24.0 Instruction Set Summary.......................................................................................................................................................... 189  
25.0 Development Support............................................................................................................................................................... 197  
26.0 Electrical Characteristics.......................................................................................................................................................... 201  
27.0 Packaging Information.............................................................................................................................................................. 213  
Appendix A: Revision History............................................................................................................................................................. 219  
Index ................................................................................................................................................................................................. 221  
The Microchip Web Site..................................................................................................................................................................... 225  
Customer Change Notification Service.............................................................................................................................................. 225  
Customer Support.............................................................................................................................................................................. 225  
Reader Response.............................................................................................................................................................................. 226  
Product Identification System ............................................................................................................................................................ 227  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 5  
PIC24FJ128GA FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39747C-page 6  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
1.1.2  
POWER-SAVING TECHNOLOGY  
1.0  
DEVICE OVERVIEW  
All of the devices in the PIC24FJ128GA family incorpo-  
rate a range of features that can significantly reduce  
power consumption during operation. Key items  
include:  
This document contains device specific information for  
the following devices:  
• PIC24FJ64GA006  
• PIC24FJ64GA008  
• PIC24FJ64GA010  
• PIC24FJ96GA006  
• PIC24FJ96GA008  
• PIC24FJ96GA010  
• PIC24FJ128GA006  
• PIC24FJ128GA008  
• PIC24FJ128GA010  
On-the-Fly Clock Switching: The device clock  
can be changed under software control to the  
Timer1 source or the internal low-power RC  
oscillator during operation, allowing the user to  
incorporate power-saving ideas into their software  
designs.  
Doze Mode Operation: When timing-sensitive  
applications, such as serial communications,  
require the uninterrupted operation of peripherals,  
the CPU clock speed can be selectively reduced,  
allowing incremental power savings without  
missing a beat.  
This family introduces a new line of Microchip devices:  
a 16-bit RISC microcontroller family with a broad  
peripheral feature set and enhanced computational  
performance. The PIC24FJ128GA family offers a new  
migration option for those high-performance applica-  
tions which may be outgrowing their 8-bit platforms, but  
don’t require the numerical processing power of a  
digital signal processor.  
Instruction-Based Power-Saving Modes: The  
microcontroller can suspend all operations, or  
selectively shut down its core while leaving its  
peripherals active, with a single instruction in  
software.  
1.1.3  
OSCILLATOR OPTIONS AND  
FEATURES  
1.1  
Core Features  
1.1.1  
16-BIT ARCHITECTURE  
All of the devices in the PIC24FJ128GA family offer five  
different oscillator options, allowing users a range of  
choices in developing application hardware. These  
include:  
Central to all PIC24 devices is the 16-bit modified  
Harvard architecture, first introduced with Microchip’s  
dsPIC® digital signal controllers. The PIC24 CPU core  
offers a wide range of enhancements, such as:  
• Two Crystal modes, using crystals or ceramic  
resonators.  
• 16-bit data and 24-bit address paths, with the  
ability to move information between data and  
memory spaces  
• Two External Clock modes, offering the option of  
a divide-by-2 clock output.  
• Linear addressing of up to 8 Mbytes (program  
space) and 64 Kbytes (data)  
• A Fast Internal Oscillator (FRC) with a nominal  
8 MHz output, which can also be divided under  
software control to provide clock speeds as low as  
31 kHz.  
• A 16-element working register array with built-in  
software stack support  
• A 17 x 17 hardware multiplier with support for  
integer math  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to the external oscillator modes and the  
FRC oscillator, which allows clock speeds of up to  
32 MHz.  
• Hardware support for 32 by 16-bit division  
• An instruction set that supports multiple  
addressing modes and is optimized for high-level  
languages such as ‘C’  
• A separate internal RC oscillator (LPRC) with a  
fixed 31 kHz output, which provides a low-power  
option for timing-insensitive applications.  
• Operational performance up to 16 MIPS  
The internal oscillator block also provides a stable ref-  
erence source for the Fail-Safe Clock Monitor. This  
option constantly monitors the main clock source  
against a reference signal provided by the internal  
oscillator and enables the controller to switch to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 7  
PIC24FJ128GA FAMILY  
1.1.4  
EASY MIGRATION  
1.3  
Details on Individual Family  
Members  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
Devices in the PIC24FJ128GA family are available in  
64-pin, 80-pin and 100-pin packages. The general  
block diagram for all devices is shown in Figure 1-1.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between devices with  
the same pin count, or even jumping from 64-pin to  
80-pin to 100-pin devices.  
The devices are differentiated from each other in two  
ways:  
1. Flash program memory (64 Kbytes for  
PIC24FJ64GA devices, 96 Kbytes for  
PIC24FJ96GA devices and 128 Kbytes for  
PIC24FJ128GA devices).  
The PIC24 family is pin-compatible with devices in the  
dsPIC33 family, and shares some compatibility with the  
pinout schema for PIC18 and dsPIC30. This extends  
the ability of applications to grow from the relatively  
simple to the powerful and complex, yet still select a  
Microchip device.  
2. Available I/O pins and ports (53 pins on 6 ports  
for 64-pin devices, 69 pins on 7 ports for 80-pin  
devices and 84 pins on 7 ports for 100-pin  
devices).  
All other features for devices in this family are identical.  
These are summarized in Table 1-1.  
1.2  
Other Special Features  
Communications: The PIC24FJ128GA family  
incorporates a range of serial communication  
peripherals to handle a range of application  
requirements. All devices are equipped with two  
independent UARTs with built-in IrDA  
encoder/decoders. There are also two indepen-  
dent SPI modules, and two independent I2C  
modules that support both Master and Slave  
modes of operation.  
A
list of the pin features available on the  
PIC24FJ128GA family devices, sorted by function, is  
shown in Table 1-2. Note that this table shows the pin  
location of individual peripheral features and not how  
they are multiplexed on the same pin. This information  
is provided in the pinout diagrams in the beginning of  
the data sheet. Multiplexed features are sorted by the  
priority given to a feature, with the highest priority  
peripheral being listed first.  
Parallel Master/Enhanced Parallel Slave Port:  
One of the general purpose I/O ports can be  
reconfigured for enhanced parallel data communi-  
cations. In this mode, the port can be configured  
for both master and slave operations, and  
supports 8-bit and 16-bit data transfers with up to  
16 external address lines in Master modes.  
Real-Time Clock/Calendar: This module  
implements a full-featured clock and calendar with  
alarm functions in hardware, freeing up timer  
resources and program memory space for use of  
the core application.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period, as  
well as faster sampling speeds.  
DS39747C-page 8  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC24FJ128GA FAMILY  
Features  
Operating Frequency  
DC – 32 MHz  
96K  
Program Memory (Bytes)  
64K  
96K  
128K  
64K  
128K  
64K  
96K  
128K  
Program Memory (Instructions) 22,016 32,768 44,032 22,016 32,768 44,032 22,016 32,768 44,032  
Data Memory (Bytes)  
8192  
Interrupt Sources  
43  
(Soft Vectors/NMI Traps)  
(39/4)  
I/O Ports  
Ports B, C, D, E, F, G  
53  
Ports A, B, C, D, E, F, G  
69  
Ports A, B, C, D, E, F, G  
84  
Total I/O Pins  
Timers:  
Total number (16-bit)  
32-bit (from paired 16-bit timers)  
Input Capture Channels  
5
2
5
5
Output Compare/PWM Chan-  
nels  
Input Change Notification  
Interrupt  
19  
22  
Serial Communications:  
Enhanced UART  
SPI (3-wire/4-wire)  
I2C™  
2
2
2
Parallel Communications  
(PMP/PSP)  
Yes  
JTAG Boundary Scan  
Yes  
16  
10-bit Analog-to-Digital Module  
(input channels)  
Analog Comparators  
Resets (and Delays)  
2
POR, BOR, RESETInstruction, MCLR, WDT; Illegal Opcode,  
Repeat Hardware Traps, (PWRT, OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
64-pin TQFP  
80-pin TQFP  
100-pin TQFP  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 9  
PIC24FJ128GA FAMILY  
FIGURE 1-1:  
PIC24FJ128GA FAMILY GENERAL BLOCK DIAGRAM  
Data Bus  
Interrupt  
(1)  
Controller  
PORTA  
RA0:RA7,  
RA9:RA10,  
RA14:15  
16  
16  
16  
8
Data Latch  
Data RAM  
PSV & Table  
Data Access  
Control Block  
PCU PCH PCL  
Program Counter  
PORTB  
23  
Address  
Latch  
Repeat  
Control  
Logic  
Stack  
Control  
Logic  
RB0:RB15  
16  
23  
16  
16  
(1)  
Read AGU  
Write AGU  
Address Latch  
Program Memory  
Data Latch  
PORTC  
RC1:RC4,  
RC12:RC15  
EA MUX  
(1)  
Address Bus  
24  
PORTD  
16  
16  
RD0:RD15  
Inst Latch  
Inst Register  
(1)  
PORTE  
Instruction  
RE0:RE9  
Decode &  
Control  
Divide  
Support  
Control Signals  
16 x 16  
W Reg Array  
17x17  
Multiplier  
(1)  
Power-up  
Timer  
PORTF  
Timing  
OSC2/CLKO  
OSC1/CLKI  
Generation  
RF0:RF8,  
RF12:RF13  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
16-bit ALU  
16  
Power-on  
Reset  
Precision  
Band Gap  
Reference  
(1)  
Watchdog  
Timer  
PORTG  
ENVREG  
Brown-out  
Reset  
RG0:RG9,  
RG12:RG15  
Voltage  
Regulator  
(2)  
VDDCORE/VCAP  
Timer1  
VDD,VSS  
MCLR  
10-bit  
ADC  
Timer2/3  
Comparators  
Timer4/5  
RTCC  
SPI1/2  
PMP/PSP  
PWM/  
OC1-5  
(1)  
IC1-5  
I2C1/2  
CN1-22  
UART1/2  
Note 1: Not all pins or features are implemented on all device pinout configurations. See Table 1-2 for I/O port pin descriptions.  
2: BOR functionality is provided when the on-board voltage regulator is enabled.  
DS39747C-page 10  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 1-2:  
PIC24FJ128GA FAMILY PINOUT DESCRIPTIONS  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-pin  
80-pin  
100-pin  
AN0  
AN1  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
19  
20  
35  
29  
12  
11  
21  
14  
13  
22  
39  
40  
48  
47  
16  
15  
14  
13  
12  
11  
4
20  
19  
18  
17  
16  
15  
21  
22  
27  
28  
29  
30  
33  
34  
35  
36  
25  
26  
38  
35  
16  
15  
27  
18  
17  
28  
49  
50  
60  
59  
20  
19  
18  
17  
16  
15  
6
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
30  
31  
48  
39  
21  
20  
32  
23  
22  
33  
63  
64  
74  
73  
25  
24  
23  
22  
21  
20  
10  
11  
12  
14  
44  
81  
82  
83  
84  
49  
I
I
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
A/D Analog Inputs.  
AN2  
I
AN3  
I
AN4  
I
AN5  
I
AN6  
I
AN7  
I
AN8  
I
AN9  
I
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AVDD  
AVSS  
BCLK1  
BCLK2  
C1IN-  
C1IN+  
C1OUT  
C2IN-  
C2IN+  
C2OUT  
CLKI  
CLKO  
CN0  
I
I
I
I
I
I
P
P
O
O
I
Positive Supply for Analog Modules.  
Ground Reference for Analog Modules.  
UART1 IrDA® Baud Clock.  
UART2 IrDA® Baud Clock.  
Comparator 1 Negative Input.  
Comparator 1 Positive Input.  
Comparator 1 Output.  
ANA  
ANA  
I
O
I
ANA  
ANA  
Comparator 2 Negative Input.  
Comparator 2 Positive Input.  
Comparator 2 Output.  
I
O
I
ANA  
Main Clock Input Connection.  
System Clock Output.  
O
I
ST  
Interrupt-on-Change Inputs.  
CN1  
I
ST  
CN2  
I
ST  
CN3  
I
ST  
CN4  
I
ST  
CN5  
I
ST  
CN6  
I
ST  
CN7  
I
ST  
CN8  
I
ST  
CN9  
5
7
I
ST  
CN10  
CN11  
CN12  
CN13  
CN14  
CN15  
CN16  
CN17  
6
8
I
ST  
8
10  
36  
66  
67  
68  
69  
39  
I
ST  
30  
52  
53  
54  
55  
31  
I
ST  
I
ST  
I
ST  
I
ST  
I
ST  
I
ST  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I2C™ = I2C/SMBus input buffer  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 11  
PIC24FJ128GA FAMILY  
TABLE 1-2:  
PIC24FJ128GA FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
Interrupt-on-Change Inputs.  
64-pin  
80-pin  
100-pin  
CN18  
CN19  
CN20  
CN21  
CVREF  
EMUC1  
EMUD1  
EMUC2  
EMUD2  
ENVREG  
IC1  
32  
23  
15  
16  
17  
18  
57  
42  
43  
44  
45  
52  
35  
42  
43  
44  
45  
7
40  
65  
37  
38  
29  
19  
20  
21  
22  
71  
54  
55  
56  
57  
64  
45  
13  
14  
52  
53  
9
50  
80  
47  
48  
34  
24  
25  
26  
27  
86  
68  
69  
70  
71  
79  
55  
18  
19  
66  
67  
13  
I
ST  
ST  
ST  
ST  
ANA  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
I
I
I
O
Comparator Voltage Reference Output.  
In-Circuit Emulator Clock Input/Output.  
In-Circuit Emulator Data Input/Output.  
In-Circuit Emulator Clock Input/Output.  
In-Circuit Emulator Data Input/Output.  
Enable for On-Chip Voltage Regulator.  
Input Capture Inputs.  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
IC2  
IC3  
IC4  
IC5  
INT0  
External Interrupt Inputs.  
INT1  
INT2  
INT3  
INT4  
MCLR  
Master Clear (Device Reset) Input. This line is brought  
low to cause a Reset.  
OC1  
OC2  
46  
49  
50  
51  
52  
17  
30  
39  
40  
15  
16  
17  
18  
58  
61  
62  
63  
66  
21  
36  
49  
50  
19  
20  
21  
22  
72  
76  
77  
78  
81  
26  
44  
63  
64  
24  
25  
26  
27  
O
O
Output Compare/PWM Outputs.  
OC3  
O
OC4  
O
OC5  
O
OCFA  
OCFB  
OSC1  
OSC2  
PGC1  
PGD1  
PGC2  
PGD2  
I
ST  
ST  
ANA  
ANA  
ST  
ST  
ST  
ST  
Output Compare Fault A Input.  
I
Output Compare Fault B Input.  
I
Main Oscillator Input Connection.  
O
Main Oscillator Output Connection.  
I/O  
I/O  
I/O  
I/O  
In-Circuit Debugger and ICSP™ Programming Clock  
In-Circuit Debugger and ICSP Programming Data.  
In-Circuit Debugger and ICSP™ Programming Clock.  
In-Circuit Debugger and ICSP Programming Data.  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I2C™ = I2C/SMBus input buffer  
DS39747C-page 12  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 1-2:  
PIC24FJ128GA FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
80-pin  
36  
Input  
Buffer  
Function  
I/O  
Description  
64-pin  
100-pin  
PMA0  
PMA1  
30  
44  
I/O  
I/O  
ST  
ST  
Parallel Master Port Address Bit 0 Input (Buffered Slave  
modes) and Output (Master modes).  
29  
35  
43  
Parallel Master Port Address Bit 1 Input (Buffered Slave  
modes) and Output (Master modes).  
PMA2  
PMA3  
PMA4  
PMA5  
PMA6  
PMA7  
PMA8  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMBE  
PMCS1  
PMCS2  
PMD0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMRD  
PMWR  
8
10  
8
14  
12  
11  
10  
29  
28  
50  
49  
42  
41  
35  
34  
78  
71  
70  
93  
94  
98  
99  
100  
3
O
O
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Parallel Master Port Address (Demultiplexed Master  
modes).  
6
5
7
O
4
6
O
16  
22  
32  
31  
28  
27  
24  
23  
51  
45  
44  
60  
61  
62  
63  
64  
1
24  
23  
40  
39  
34  
33  
30  
29  
63  
57  
56  
76  
77  
78  
79  
80  
1
O
O
O
O
O
O
O
O
O
Parallel Master Port Byte Enable Strobe.  
O
Parallel Master Port Chip Select 1 Strobe/Address bit 14.  
Parallel Master Port Chip Select 2 Strobe/Address bit 15.  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Parallel Master Port Data (Demultiplexed Master mode)  
or Address/Data (Multiplexed Master modes).  
2
2
4
3
3
5
53  
52  
67  
66  
82  
81  
Parallel Master Port Read Strobe.  
Parallel Master Port Write Strobe.  
O
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I2C™ = I2C/SMBus input buffer  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 13  
PIC24FJ128GA FAMILY  
TABLE 1-2:  
PIC24FJ128GA FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-pin  
80-pin  
100-pin  
RA0  
RA1  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
39  
47  
48  
40  
23  
24  
52  
53  
20  
19  
18  
17  
16  
15  
21  
22  
27  
28  
29  
30  
33  
34  
35  
36  
4
17  
38  
58  
59  
60  
61  
91  
92  
28  
29  
66  
67  
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTA Digital I/O.  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RA9  
RA10  
RA14  
RA15  
RB0  
PORTB Digital I/O.  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RB8  
RB9  
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
RC1  
RC2  
RC3  
RC4  
RC12  
RC13  
RC14  
RC15  
PORTC Digital I/O.  
5
7
8
49  
59  
60  
50  
9
63  
73  
74  
64  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I2C™ = I2C/SMBus input buffer  
DS39747C-page 14  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 1-2:  
PIC24FJ128GA FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-pin  
80-pin  
100-pin  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD8  
RD9  
RD10  
RD11  
RD12  
RD13  
RD14  
RD15  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
RE8  
RE9  
RF0  
RF1  
RF2  
RF3  
RF4  
RF5  
RF6  
RF7  
RF8  
RF12  
RF13  
46  
49  
50  
51  
52  
53  
54  
55  
42  
43  
44  
45  
60  
61  
62  
63  
64  
1
58  
61  
62  
63  
66  
67  
68  
69  
54  
55  
56  
57  
64  
65  
37  
38  
76  
77  
78  
79  
80  
1
72  
76  
77  
78  
81  
82  
83  
84  
68  
69  
70  
71  
79  
80  
47  
48  
93  
94  
98  
99  
100  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTD Digital I/O.  
PORTE Digital I/O.  
2
2
4
3
3
5
58  
59  
34  
33  
31  
32  
35  
13  
14  
72  
73  
42  
41  
39  
40  
45  
44  
43  
18  
19  
87  
88  
52  
51  
49  
50  
55  
54  
53  
40  
39  
PORTF Digital I/O.  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I2C™ = I2C/SMBus input buffer  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 15  
PIC24FJ128GA FAMILY  
TABLE 1-2:  
PIC24FJ128GA FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-pin  
80-pin  
100-pin  
RG0  
RG1  
37  
36  
4
75  
74  
47  
46  
6
90  
89  
57  
56  
10  
11  
12  
14  
96  
97  
95  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTG Digital I/O.  
RG2  
RG3  
RG6  
RG7  
5
7
RG8  
6
8
RG9  
8
10  
54  
45  
6
RG12  
RG13  
RG14  
RG15  
RTCC  
SCK1  
SCK2  
SCL1  
SCL2  
SDA1  
SDA2  
SDI1  
SDI2  
SDO1  
SDO2  
SOSCI  
SOSCO  
SS1  
42  
35  
4
68  
55  
10  
57  
58  
56  
59  
54  
11  
53  
12  
73  
74  
23  
14  
74  
6
Real-Time Clock Alarm Output.  
SPI1 Serial Clock Output.  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
I2C  
I2C  
I2C  
I2C  
ST  
ST  
SPI2 Serial Clock Output.  
37  
32  
36  
31  
34  
5
47  
52  
46  
53  
44  
7
I2C1 Synchronous Serial Clock Input/Output.  
I2C2 Synchronous Serial Clock Input/Output.  
I2C1 Data Input/Output.  
I2C2 Data Input/Output.  
SPI1 Serial Data Input.  
I
SPI2 Serial Data Input.  
33  
6
43  
8
O
SPI1 Serial Data Output.  
O
SPI2 Serial Data Output.  
47  
48  
14  
8
59  
60  
18  
10  
60  
4
I
ANA  
ANA  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Secondary Oscillator/Timer1 Clock Input.  
Secondary Oscillator/Timer1 Clock Output.  
Slave Select Input/Frame Select Output (SPI1).  
Slave Select Input/Frame Select Output (SPI2).  
Timer1 Clock.  
O
I/O  
I/O  
I
SS2  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
TCK  
48  
27  
28  
24  
23  
I
Timer2 External Clock Input.  
5
7
I
Timer3 External Clock Input.  
8
I
Timer4 External Clock Input.  
33  
34  
14  
13  
9
I
Timer5 External Clock Input.  
38  
60  
61  
17  
I
JTAG Test Clock/Programming Clock Input.  
JTAG Test Data/Programming Data Input.  
JTAG Test Data Output.  
TDI  
I
TDO  
O
TMS  
I
ST  
JTAG Test Mode Select Input.  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I2C™ = I2C/SMBus input buffer  
DS39747C-page 16  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 1-2:  
PIC24FJ128GA FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-pin  
80-pin  
100-pin  
U1CTS  
U1RTS  
U1RX  
U1TX  
43  
35  
34  
33  
21  
29  
31  
32  
37  
38  
42  
41  
27  
35  
39  
40  
47  
48  
52  
51  
40  
39  
49  
50  
I
O
I
ST  
UART1 Clear to Send Input.  
UART1 Request to Send Output.  
UART1 Receive.  
ST  
DIG  
ST  
O
I
UART1 Transmit Output.  
U2CTS  
U2RTS  
U2RX  
U2TX  
VDD  
UART2 Clear to Send Input.  
UART2 Request to Send Output.  
UART 2 Receive Input.  
O
I
ST  
O
P
UART2 Transmit Output.  
10, 26, 38 12, 32, 48 2, 16, 37,  
46, 62  
Positive Supply for Peripheral Digital Logic and I/O pins.  
VDDCAP  
56  
56  
70  
70  
85  
85  
External Filter Capacitor Connection (regulator enabled).  
P
P
VDDCORE  
Positive Supply for Microcontroller Core Logic (regulator  
disabled).  
VREF-  
VREF+  
VSS  
15  
16  
23  
24  
28  
29  
I
I
ANA  
ANA  
A/D and Comparator Reference Voltage (Low) Input.  
A/D and Comparator Reference Voltage (High) Input.  
Ground Reference for Logic and I/O pins.  
9, 25, 41  
11, 31, 51 15, 36, 45,  
65, 75  
P
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I2C™ = I2C/SMBus input buffer  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 17  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 18  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, three-parameter instructions can be supported,  
allowing trinary operations (that is, A + B = C) to be  
executed in a single cycle.  
2.0  
CPU  
The PIC24 CPU has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set, and a  
23-bit instruction word with a variable length opcode  
field. The Program Counter (PC) is 24 bits wide and  
addresses up to 4M instructions of user program  
memory space. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute  
in a single cycle, with the exception of instructions that  
change the program flow, the double-word move  
(MOV.D) instruction and the table instructions. Over-  
head-free program loop constructs are supported using  
the REPEATinstructions, which are interruptible at any  
point.  
A high-speed 17-bit by 17-bit multiplier has been  
included to significantly enhance the core arithmetic  
capability and throughput. The multiplier supports  
signed, unsigned and mixed mode 16-bit by 16-bit or  
8-bit by 8-bit integer multiplication. All multiply  
instructions execute in a single cycle.  
The 16-bit ALU has been enhanced with integer divide  
assist hardware that supports an iterative  
non-restoring divide algorithm. It operates in conjunc-  
tion with the REPEAT instruction looping mechanism,  
and a selection of iterative divide instructions, to  
support 32-bit (or 16-bit) divided by 16-bit integer  
signed and unsigned division. All divide operations  
require 19 cycles to complete but are interruptible at  
any cycle boundary.  
PIC24 devices have sixteen 16-bit working registers in  
the programmer’s model. Each of the working  
registers can act as a data, address or address offset  
register. The 16th working register (W15) operates as  
a software Stack Pointer for interrupts and calls.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K word boundary defined by the 8-bit Program  
Space Visibility Page (PSVPAG) register. The program  
to data space mapping feature lets any instruction  
access program space as if it were data space.  
The PIC24 has a vectored exception scheme with up  
to 8 sources of non-maskable traps and up to 118  
interrupt sources. Each interrupt source can be  
assigned to one of seven priority levels.  
A block diagram of the CPU is shown in Figure 2-1.  
The Instruction Set Architecture (ISA) has been signifi-  
cantly enhanced beyond that of the PIC18, but main-  
tains an acceptable level of backward compatibility. All  
PIC18 instructions and addressing modes are  
supported either directly or through simple macros.  
Many of the ISA enhancements have been driven by  
compiler efficiency needs.  
2.1  
Programmer’s Model  
The programmer’s model for the PIC24 is shown in  
Figure 2-2. All registers in the programmer’s model are  
memory mapped and can be manipulated directly by  
instructions. A description of each register is provided  
in Table 2-1. All registers associated with the  
programmer’s model are memory mapped.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct and three groups of addressing  
modes. All modes support Register Direct and various  
Register Indirect modes. Each group offers up to 7  
addressing modes. Instructions are associated with  
predefined addressing modes depending upon their  
functional requirements.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 19  
PIC24FJ128GA FAMILY  
FIGURE 2-1:  
PIC24 CPU CORE BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
Data RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
23  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
RAGU  
WAGU  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
16  
Address Bus  
ROM Latch  
24  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
Hardware  
Multiplier  
16 x 16  
W Register Array  
Divide  
16  
Support  
16-Bit ALU  
16  
To Peripheral Modules  
DS39747C-page 20  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 2-1:  
CPU CORE REGISTERS  
Register(s) Name  
Description  
W0 through W15  
PC  
Working register array  
23-bit Program Counter  
SR  
ALU STATUS register  
SPLIM  
Stack Pointer Limit Value register  
Table Memory Page Address register  
Program Space Visibility Page Address register  
Repeat Loop Counter register  
CPU Control Register  
TBLPAG  
PSVPAG  
RCOUNT  
CORCON  
FIGURE 2-2:  
PROGRAMMER’S MODEL  
15  
0
W0 (WREG)  
Divider Working Registers  
Multiplier Registers  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
Working/Address  
Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
Frame Pointer  
Stack Pointer  
0
Stack Pointer Limit  
Program Counter  
0
SPLIM  
22  
0
0
PC  
7
0
0
0
TBLPAG  
Data Table Page Address  
7
Program Space Visibility  
Page Address  
PSVPAG  
15  
15  
RCOUNT  
IPL  
REPEAT Loop Counter  
SRL  
0
C
SRH  
STATUS Register (SR)  
— — — — — — —  
DC  
RA N OV Z  
2 1 0  
15  
0
— — — — — — — — — — — — IPL3 PSV — —  
Core Control Register (CORCON)  
Registers or bits shadowed for PUSH.Sand POP.Sinstructions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 21  
PIC24FJ128GA FAMILY  
2.2  
CPU Control Registers  
REGISTER 2-1:  
Upper Byte:  
SR: CPU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U -0  
R/W-0  
DC  
bit 15  
bit 8  
Lower Byte:  
R/W-0(1)  
IPL2(2)  
R/W-0(1)  
IPL1(2)  
R/W-0(1)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
R/W-0  
C
Z
bit 7  
bit 0  
bit 15-9 Unimplemented: Read as ‘0’  
bit 8  
DC: ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data)  
of the result occurred  
0= No carry-out from the 4th or 8th low-order bit of the result has occurred  
bit 7-5  
IPL2:IPL0: CPU Interrupt Priority Level Status bits(2)  
111= CPU interrupt priority level is 7 (15). User interrupts disabled.  
110= CPU interrupt priority level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
Note 1: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority  
level. The value in parentheses indicates the IPL when IPL3 = 1.  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: ALU Overflow bit  
1= Overflow occurred for signed (2’s complement) arithmetic in this arithmetic operation  
0= No overflow has occurred  
Z: ALU Zero bit  
1= An operation which effects the Z bit has set it at some time in the past  
0= The most recent operation which effects the Z bit has cleared it (i.e., a non-zero result)  
C: ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 22  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 2-2:  
Upper Byte:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
bit 0  
bit 15-4 Unimplemented: Read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note: User interrupts are disabled when IPL3 = 1.  
bit 2  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
bit 1-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
The PIC24 CPU incorporates hardware support for  
both multiplication and division. This includes a dedi-  
cated hardware multiplier and support hardware for  
16-bit divisor division.  
2.3  
Arithmetic Logic Unit (ALU)  
The PIC24 ALU is 16 bits wide and is capable of addi-  
tion, subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU may affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC)  
Status bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
2.3.1  
MULTIPLIER  
The ALU contains a high-speed 17-bit x 17-bit  
multiplier. It supports unsigned, signed or mixed sign  
operation in several multiplication modes:  
1. 16-bit x 16-bit signed  
2. 16-bit x 16-bit unsigned  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array, or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
3. 16-bit signed x 5-bit (literal) unsigned  
4. 16-bit unsigned x 16-bit unsigned  
5. 16-bit unsigned x 5-bit (literal) unsigned  
6. 16-bit unsigned x 16-bit signed  
7. 8-bit unsigned x 8-bit unsigned  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 23  
PIC24FJ128GA FAMILY  
2.3.2  
DIVIDER  
2.3.3  
MULTI-BIT SHIFT SUPPORT  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operation with the  
following data sizes:  
The PIC24 ALU supports both single-bit and  
single-cycle, multi-bit arithmetic and logic shifts.  
Multi-bit shifts are implemented using a shifter block,  
capable of performing up to a 15-bit arithmetic right  
shift, or up to a 15-bit left shift, in a single cycle. All  
multi-bit shift instructions only support register direct  
addressing for both the operand source and result  
destination.  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIVinstructions can specify any W register for both the  
16-bit divisor (Wn) and any W register (aligned) pair  
(W(m+1):Wm) for the 32-bit dividend. The divide algo-  
rithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
A full summary of instructions that use the shift  
operation is provided below in Table 2-2.  
TABLE 2-2:  
Instruction  
INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION  
Description  
ASR  
ASRF  
ASRW  
Arithmetic shift right source register by one bit.  
Arithmetic shift right the content of the register by one bit.  
Arithmetic shift right source register by up to 15 bits, value held in the W register referenced  
within instruction.  
ASRK  
SL  
Arithmetic shift right source register up to 15 bits. Shift value is literal.  
Shift left source register by one bit.  
SLF  
SLW  
SLK  
LSR  
LSRF  
LSRW  
Shift left the content of the file register by one bit.  
Shift left source register by up to 15 bits, value held in the W register referenced instruction.  
Shift left source register up to 15 bits. Shift value is literal.  
Logical shift right source register by one bit.  
Logical shift right the content of the register by one bit.  
Logical shift right source register by up to 15 bits, value held in the W register referenced  
within instruction.  
LSRK  
Logical shift right source register up to 15 bits. Shift value is literal.  
DS39747C-page 24  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
either the 23-bit Program Counter (PC) during program  
execution, or from table operation or data space  
remapping, as described in Section 3.3 “Interfacing  
Program and Data Memory Spaces”.  
3.0  
MEMORY ORGANIZATION  
As Harvard architecture devices, PIC24 micro-  
controllers feature separate program and data memory  
spaces and busses. This architecture also allows the  
direct access of program memory from the data space  
during code execution.  
User access to the program memory space is restricted  
to the lower half of the address range (000000h to  
7FFFFFh). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space.  
3.1  
Program Address Space  
The  
program  
address  
memory  
space  
of  
PIC24FJ128GA family devices is 4M instructions. The  
space is addressable by a 24-bit value derived from  
Memory maps for the PIC24FJ128GA family of devices  
are shown in Figure 3-1.  
FIGURE 3-1:  
PROGRAM SPACE MEMORY MAP FOR PIC24FJ128GA FAMILY DEVICES  
PIC24FJ64GA  
PIC24FJ96GA  
PIC24FJ128GA  
000000h  
000002h  
000004h  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0000FEh  
000100h  
000104h  
0001FEh  
000200h  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
User Flash  
Program Memory  
(22K instructions)  
User Flash  
Program Memory  
(32K instructions)  
User Flash  
Program Memory  
(44K instructions)  
Flash Config Words  
00ABFEh  
00AC00h  
00FFFEh  
010000h  
Flash Config Words  
Flash Config Words  
0157FEh  
015800h  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
(Read ‘0’s)  
Unimplemented  
(Read ‘0’s)  
7FFFFEh  
800000h  
Reserved  
Reserved  
Reserved  
F7FFFEh  
F80000h  
Device Configuration  
Registers  
Device Configuration  
Registers  
Device Configuration  
Registers  
F8000Eh  
F80010h  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
FEFFFEh  
FF0000h  
DEVID (2)  
FFFFFEh  
Note:  
Memory areas are not shown to scale.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 25  
PIC24FJ128GA FAMILY  
3.1.1  
PROGRAM MEMORY  
ORGANIZATION  
3.1.3  
FLASH CONFIGURATION WORDS  
In PIC24FJ128GA family devices, the top two words of  
on-chip program memory are reserved for configura-  
tion information. On device Reset, the configuration  
information is copied into the appropriate Configuration  
registers. The addresses of the Flash Configuration  
Word for devices in the PIC24FJ128GA family are  
shown in Table 3-1. Their location in the memory map  
is shown with the other memory vectors in Figure 3-1.  
The program memory space is organized in word  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (Figure 3-2).  
The Configuration Words in program memory are a  
compact format. The actual Configuration bits are  
mapped in several different registers in the configura-  
tion memory space. Their order in the Flash Configura-  
tion Words do not reflect a corresponding arrangement  
in the configuration space. Additional details on the  
device Configuration Words are provided in  
Section 23.1 “Configuration Bits”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
3.1.2  
HARD MEMORY VECTORS  
All PIC24 devices reserve the addresses between  
00000h and 000200h for hard coded program execu-  
tion vectors. A hardware Reset vector is provided to  
redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 000000h, with  
the actual address for the start of code at 000002h.  
TABLE 3-1:  
FLASH CONFIGURATION  
WORDS FOR PIC24FJ128GA  
FAMILY DEVICES  
Program  
Memory  
Configuration  
Word  
Device  
(K words)  
Addresses  
PIC24 devices also have two interrupt vector tables,  
located from 000004h to 0000FFh and 000100h to  
0001FFh. These vector tables allow each of the many  
device interrupt sources to be handled by separate  
ISRs. A more detailed discussion of the interrupt vector  
tables is provided in Section 6.1 “Interrupt Vector  
Table”.  
PIC24FJ64GA  
PIC24FJ96GA  
PIC24FJ128GA  
22  
32  
44  
00ABFCh:  
00ABFEh  
00FFFCh:  
00FFFEh  
0157FCh:  
0157FEh  
FIGURE 3-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
8
msw  
Address  
PC Address  
(lsw Address)  
most significant word  
23  
16  
0
000000h  
000002h  
000004h  
000006h  
00000000  
000001h  
000003h  
000005h  
000007h  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS39747C-page 26  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
PIC24FJ128GA family devices implement a total of  
8 Kbytes of data memory. Should an EA point to a loca-  
tion outside of this area, an all zero word or byte will be  
returned.  
3.2  
Data Address Space  
The PIC24 core has a separate 16-bit wide data mem-  
ory space, addressable as a single linear range. The  
data space is accessed using two Address Generation  
Units (AGUs), one each for read and write operations.  
The data space memory map is shown in Figure 3-3.  
3.2.1  
DATA SPACE WIDTH  
The data memory space is organized in byte address-  
able, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes of each word have even addresses, while the  
Most Significant Bytes have odd addresses.  
All Effective Addresses (EAs) in the data memory  
space are 16 bits wide, and point to bytes within the  
data space. This gives a data space address range of  
64 Kbytes, or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space Visi-  
bility area (see Section 3.3.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
FIGURE 3-3:  
DATA SPACE MEMORY MAP FOR PIC24FJ128GA FAMILY DEVICES  
MSB  
Address  
LSB  
Address  
MSB  
LSB  
0000h  
SFR  
0001h  
SFR Space  
Data RAM  
Space  
07FFh  
0801h  
07FEh  
0800h  
Near  
Data Space  
Implemented  
Data RAM  
1FFFh  
2001h  
27FFh  
2801h  
1FFEh  
2000h  
07FEh  
0800h  
Unimplemented  
Read as ‘0’  
7FFFh  
8001h  
7FFFh  
8000h  
Program Space  
Visibility Area  
FFFFh  
FFFEh  
Note:  
Data memory areas are not shown to scale.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 27  
PIC24FJ128GA FAMILY  
A sign-extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
zero-extend (ZE) instruction on the appropriate  
address.  
3.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PICmicro®  
devices and improve data space memory usage effi-  
ciency, the PIC24 instruction set supports both word  
and byte operations. As a consequence of byte acces-  
sibility, all effective address calculations are internally  
scaled to step through word-aligned memory. For  
example, the core recognizes that Post-Modified  
Register Indirect Addressing mode [Ws++] will result in  
a value of Ws + 1 for byte operations and Ws + 2 for  
word operations.  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions operate only on words.  
3.2.3  
NEAR DATA SPACE  
The 8-Kbyte area between 0000h and 1FFFh is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions. The  
remainder of the data space is addressable indirectly.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing with a 16-bit address field.  
Data byte reads will read the complete word which con-  
tains the byte, using the LSb of any EA to determine  
which byte to select. The selected byte is placed onto  
the LSB of the data path. That is, data memory and reg-  
isters are organized as two parallel byte-wide entities  
with shared (word) address decode but separate write  
lines. Data byte writes only write to the corresponding  
side of the array or register which matches the byte  
address.  
3.2.4  
SFR SPACE  
The first 2 Kbytes of the near data space, from 0000h  
to 07FFh, are primarily occupied with Special Function  
Registers (SFRs). These are used by the PIC24 core  
and peripheral modules for controlling the operation of  
the device.  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word opera-  
tions, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap will be generated. If the error occurred on a read,  
the instruction underway is completed; if it occurred on  
a write, the instruction will be executed but the write will  
not occur. In either case, a trap is then executed, allow-  
ing the system and/or user to examine the machine  
state prior to execution of the address Fault.  
SFRs are distributed among the modules that they con-  
trol, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A diagram of the SFR space,  
showing where SFRs are actually implemented, is  
shown in Table 3-2. Each implemented area indicates  
a 32-byte region where at least one address is imple-  
mented as an SFR. A complete listing of implemented  
SFRs, including their addresses, is shown in Tables 3-3  
through 3-30.  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
TABLE 3-2:  
IMPLEMENTED REGIONS OF SFR DATA SPACE  
SFR Space Address  
xx00  
xx20  
xx40  
xx60  
xx80  
xxA0  
xxC0  
xxE0  
000h  
100h  
200h  
300h  
400h  
500h  
600h  
700h  
Core  
ICN  
Interrupts  
Timers  
A/D  
Capture  
Compare  
I2C™  
UART  
SPI  
I/O  
I/O  
PMP  
RTC/Comp  
CRC  
System  
I/O  
NVM/PMD  
Legend: — = No implemented SFRs in this block  
DS39747C-page 28  
Preliminary  
© 2006 Microchip Technology Inc.  
TABLE 3-3:  
CPU CORE REGISTERS MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
Stack Pointer Limit  
Program Counter, Low Word  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
0000  
0000  
xxxx  
PCL  
PCH  
Program Counter, High Byte  
Table Page Address Pointer  
TBLPAG  
PSVPAG  
RCOUNT  
SR  
Program Memory Visibility Page Address Pointer  
Repeat Loop Counter  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
Z
C
CORCON  
DISICNT  
Legend:  
IPL3  
PSV  
Disable Interrupts Counter  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-4:  
INTERRUPT CONTROLLER REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1  
INTCON2  
IFS0  
0080  
0082  
0084  
0086  
0088  
008A  
008C  
0094  
0096  
0098  
009A  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00BE  
00C2  
00C4  
NSTDIS  
ALTIVT  
DISI  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
4440  
4444  
0044  
4444  
0004  
4440  
4444  
0044  
4440  
0040  
0040  
0440  
0440  
0400  
4440  
INT4EP  
INT3EP  
T1IF  
CNIF  
INT2EP  
OC1IF  
CMIF  
INT1EP  
IC1IF  
INT0EP  
INT0IF  
AD1IF  
INT2IF  
PMPIF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
SPI1IF  
OC4IF  
SPF1IF  
OC3IF  
OC5IF  
T3IF  
T2IF  
OC2IF  
IC2IF  
IFS1  
U2TXIF  
U2RXIF  
INT1IF  
MI2C1IF SI2C1IF  
IFS2  
IC5IF  
IC4IF  
INT4IF  
IC3IF  
INT3IF  
SPI2IF  
SPF2IF  
IFS3  
RTCIF  
MI2C2IF SI2C2IF  
IFS4  
CRCIF  
T1IE  
CNIE  
U2ERIF  
OC1IE  
CMIE  
U1ERIF  
IC1IE  
IEC0  
AD1IE  
INT2IE  
PMPIE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPF1IE  
OC3IE  
OC5IE  
T3IE  
T2IE  
OC2IE  
IC2IE  
INT0IE  
IEC1  
U2TXIE  
U2RXIE  
INT1IE  
MI2C1IE SI2C1IE  
IEC2  
IC5IE  
IC4IE  
INT4IE  
IC3IE  
INT3IE  
SPI2IE  
SPF2IE  
IEC3  
RTCIE  
MI2C2IE SI2C2IE  
IEC4  
CRCIE  
U2ERIE  
INT0IP2  
U1ERIE  
INT0IP1  
IPC0  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
IC1IP1  
IC2IP1  
IC1IP0  
IC2IP0  
INT0IP0  
IPC1  
IPC2  
U1RXIP2 U1RXIP1 U1RXIP0  
SPF1IP2 SPF1IP1 SPF1IP0  
AD1IP2 AD1IP1 AD1IP0  
MI2C1P2 MI2C1P1 MI2C1P0  
T3IP2  
T3IP1  
T3IP0  
IPC3  
CNIP2  
CNIP1  
CNIP0  
U1TXIP2 U1TXIP1 U1TXIP0  
SI2C1P2 SI2C1P1 SI2C1P0  
IPC4  
CMIP2  
CMIP1  
CMIP0  
IPC5  
INT1IP2  
INT1IP1  
INT1IP0  
IPC6  
T4IP2  
T4IP1  
T4IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC5IP2  
PMPIP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
IPC7  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
T5IP2  
T5IP1  
T5IP0  
IPC8  
IC5IP2  
IC5IP1  
IC5IP0  
IC4IP2  
IC4IP1  
IC4IP0  
SPF2IP2 SPF2IP1 SPF2IP0  
IPC9  
IPC10  
IPC11  
IPC12  
IPC13  
IPC15  
IPC16  
Legend:  
OC5IP1  
PMPIP1  
OC5IP0  
PMPIP0  
MI2C2P2 MI2C2P1 MI2C2P0  
SI2C2P2 SI2C2P1 SI2C2P0  
INT4IP2  
RTCIP2  
INT4IP1  
RTCIP1  
INT4IP0  
RTCIP0  
INT3IP2  
INT3IP1  
INT3IP0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2 U2ERIP1 U2ERIP0  
U1ERIP2 U1ERIP1 U1ERIP0  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-5:  
ICN REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0000  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
006A  
CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-6:  
TIMER REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
0108  
010A  
010C  
010E  
0110  
0112  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer1 Register  
Period Register 1  
xxxx  
FFFF  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
T1CON  
TMR2  
TMR3HLD  
TMR3  
PR2  
TON  
TSIDL  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
TCS  
Timer2 Register  
Timer3 Holding Register (For 32-bit timer operations only)  
Timer3 Register  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TMR5HLD  
TMR5  
PR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS1  
TCKPS1  
TCKPS0  
TCKPS0  
T32  
TCS  
TCS  
Timer4 Register  
Timer5 Holding Register (For 32-bit operations only)  
Timer5 Register  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS1  
TCKPS1  
TCKPS0  
TCKPS0  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-7:  
INPUT CAPTURE REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
Legend:  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI1  
ICI1  
ICI1  
ICI1  
ICI1  
ICI0  
ICI0  
ICI0  
ICI0  
ICI0  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM2  
ICM2  
ICM2  
ICM2  
ICM2  
ICM1  
ICM1  
ICM1  
ICM1  
ICM1  
ICM0  
ICM0  
ICM0  
ICM0  
ICM0  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-8:  
OUTPUT COMPARE REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCM2  
OCM2  
OCM2  
OCM2  
OCM2  
OCM1  
OCM1  
OCM1  
OCM1  
OCM1  
OCM0  
OCM0  
OCM0  
OCM0  
OCM0  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON  
OC4RS  
OC4R  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
OC5CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-9:  
I2C1 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
ADD10  
IWCOL  
S
Address Register  
Address Mask  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-10: I2C2 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
0210  
0212  
0214  
0216  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
DISSLW  
SMEN  
GCEN  
STREN  
I2CPOV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
I2C2STAT  
I2C2ADD  
I2C2MSK  
Legend:  
0218  
021A  
021C  
ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
S
Address Register  
Address Mask  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-11: UART1 REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0222 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
URXISEL1 URXISEL0 ADDEN  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
0224  
0226  
0228  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-12: UART2 REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
ABAUD  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U2MODE  
U2STA  
0230  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0232 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
URXISEL1 URXISEL0 ADDEN  
FERR  
OERR  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
0234  
0236  
0238  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-13: SPI1 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SPIBEC2 SPIBEC1 SPIBEC0  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
SMP  
CKE  
FRMEN  
SPIFSD SPIFPOL  
SPI1 Transmit and Receive Buffer  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-14: SPI2 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI2STAT  
SPI2CON1  
SPI2CON2  
SPI2BUF  
Legend:  
0260  
0262  
0264  
0268  
SPIEN  
SPISIDL  
SPIBEC2 SPIBEC1 SPIBEC0  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
SMP  
CKE  
FRMEN  
SPIFSD SPIFPOL  
SPI2 Transmit and Receive Buffer  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-15: ADC REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
0300  
0302  
0304  
0306  
0308  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
ADC1BUF5 030A  
ADC1BUF6 030C  
ADC1BUF7 030E  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
0310  
0312  
0314  
ADC1BUFB 0316  
ADC1BUFC 0318  
ADC1BUFD 031A  
ADC1BUFE 031C  
ADC1BUFF 031E  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
0320  
0322  
0324  
0328  
032C  
0330  
ADON  
VCFG2  
ADRC  
VCFG1  
ADSIDL  
VCFG0  
OFFCAL  
SAMC4  
FORM1  
FORM0  
SSRC2  
BUFS  
SSRC1  
SSRC0  
SMPI3  
ADCS5  
ASAM  
SMPI0  
ADCS2  
SAMP  
BUFM  
ADCS1  
DONE  
ALTS  
CSCNA  
SAMC2  
SMPI2  
ADCS4  
SMPI1  
ADCS3  
SAMC3  
SAMC1  
SAMC0  
ADCS7  
CH0NA  
PCFG7  
CSSL7  
ADCS6  
ADCS0  
CH0NB  
CH0SB3 CH0SB2 CH0SB1 CH0SB0  
CH0SA3 CH0SA2 CH0SA1 CH0SA0  
AD1PCFG  
AD1CSSL  
Legend:  
PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10  
CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10  
PCFG9  
CSSL9  
PCFG8  
CSSL8  
PCFG6  
CSSL6  
PCFG5  
CSSL5  
PCFG4  
CSSL4  
PCFG3  
CSSL3  
PCFG2  
CSSL2  
PCFG1  
CSSL1  
PCFG0  
CSSL0  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-16: PORTA REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
(2)  
Bit 3  
(2)  
Bit 2  
(2)  
Bit 1  
(2)  
Bit 0  
(2)  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(2)  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
06C0  
TRISA15  
TRISA14  
TRISA10  
TRISA9  
TRISA7  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
C6FF  
xxxx  
xxxx  
0000  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(2)  
(2)  
RA4  
(2)  
LATA4  
(2)  
ODA4  
(2)  
RA3  
(2)  
LATA3  
(2)  
ODA3  
(2)  
RA2  
(2)  
LATA2  
(2)  
ODA2  
(2)  
RA1  
(2)  
LATA1  
(2)  
ODA1  
(2)  
RA0  
(2)  
LATA0  
(2)  
ODA0  
RA15  
RA14  
RA10  
RA9  
RA7  
RA6  
RA5  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(2)  
LATA15  
LATA14  
LATA10  
LATA9  
LATA7  
LATA6  
LATA5  
(1)  
(1)  
(1)  
(1)  
(2)  
ODA7  
(2)  
ODA6  
(2)  
ODA5  
ODCA  
ODA15  
ODA14  
ODA10  
ODA9  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Implemented in 80-pin and 100-pin devices only.  
Implemented in 100-pin devices only  
TABLE 3-17: PORTB REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C6  
02C8  
02CA  
06C6  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9  
TRISB8  
RB8  
TRISB7  
RB7  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB3  
RB3  
TRISB2  
RB2  
TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
0000  
RB15  
LATB15  
ODB15  
RB14  
LATB14  
ODB14  
RB13  
LATB13  
ODB13  
RB12  
LATB12  
ODB12  
RB11  
LATB11  
ODB11  
RB10  
LATB10  
ODB10  
RB9  
LATB9  
ODB9  
RB1  
LATB1  
ODB1  
RB0  
LATB0  
ODB0  
LATB8  
ODB8  
LATB7  
ODB7  
LATB6  
ODB6  
LATB5  
ODB5  
LATB4  
ODB4  
LATB3  
ODB3  
LATB2  
ODB2  
ODCB  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
TABLE 3-18: PORTC REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
(2)  
Bit 3  
Bit 2  
(2)  
Bit 1  
Bit 0  
(1)  
(1)  
TRISC  
PORTC  
LATTC  
ODCC  
02CC TRISC15 TRISC14 TRISC13 TRISC12  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
F01E  
xxxx  
xxxx  
0000  
(2)  
(1)  
(2)  
(1)  
02CE  
02D0  
06CC  
RC15  
LATC15  
ODC15  
RC14  
LATC14  
ODC14  
RC13  
LATC13  
ODC13  
RC12  
LATC12  
ODC12  
RC4  
RC3  
RC2  
RC1  
(2)  
LATC4  
(1)  
(2)  
LATC2  
(1)  
LATC3  
LATC1  
(2)  
(1)  
(2)  
(1)  
ODC  
4
ODC  
3
ODC  
2
ODC1  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Implemented in 80-pin and 100-pin devices only.  
Implemented in 100-pin devices only  
TABLE 3-19: PORTD REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
(1)  
(1)  
TRISD  
PORTD  
LATD  
02D2  
02D4  
02D6  
06D2  
TRISD15  
TRISD14  
TRISD13  
TRISD12  
TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
FFFF  
xxxx  
xxxx  
0000  
(1)  
(1)  
(1)  
(1)  
RD15  
RD14  
RD13  
RD12  
RD11  
LATD11  
ODD11  
RD10  
LATD10  
ODD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
(1)  
(1)  
(1)  
(1)  
LATD15  
LATD14  
LATD13  
LATD12  
LATD9  
LATD8  
LATD7  
LATD6  
LATD5  
LATD4  
LATD3  
LATD2  
LATD1  
LATD0  
(1)  
(1)  
(1)  
(1)  
ODCD  
ODD15  
ODD14  
ODD13  
ODD12  
ODD9  
ODD8  
ODD7  
ODD6  
ODD5  
ODD4  
ODD3  
ODD2  
ODD1  
ODD0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
Implemented in 80-pin and 100-pin devices only.  
TABLE 3-20: PORTE REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
TRISE  
PORTE  
LATE  
02D8  
02DA  
02DC  
06D8  
TRISE9(1) TRISE8  
TRISE7  
RE7  
TRISE6  
RE6  
TRISE5  
RE5  
TRISE4  
RE4  
TRISE3  
RE3  
TRISE2  
RE2  
TRISE1  
RE1  
TRISE0  
RE0  
03FF  
xxxx  
xxxx  
0000  
RE9(1)  
LATE9(1) LATE8  
RE8  
(1)  
(1)  
LATE7  
LATE6  
ODE6  
LATE5  
ODE5  
LATE4  
ODE4  
LATE3  
ODE3  
LATE2  
ODE2  
LATE1  
ODE1  
LATE0  
ODE0  
ODCE  
ODE9(1)  
ODE  
8
ODE7  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
Implemented in 80-pin and 100-pin devices only.  
TABLE 3-21: PORTF REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
(2)  
(2)  
TRISF  
PORTF  
LATF  
02DE  
02E0  
02E2  
06DE  
TRISF13  
TRISF12  
TRISF8  
TRISF7  
TRISF6  
RF6  
TRISF5  
RF5  
TRISF4  
RF4  
TRISF3  
RF3  
TRISF2  
RF2  
TRISF1  
RF1  
TRISF0  
RF0  
31FF  
xxxx  
xxxx  
0000  
(1)  
(1)  
RG13  
RG12  
RF8(2)  
LATF8(2) LATF7(2)  
ODF8(2) ODF7(2)  
RF7(2)  
(1)  
(1)  
LATF13  
LATF12  
LATF6  
ODF6  
LATF5  
ODF5  
LATF4  
ODF4  
LATF3  
ODF3  
LATF2  
ODF2  
LATF1  
ODF1  
LATF0  
ODF0  
(1)  
ODF13  
(1)  
ODF12  
ODCF  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Implemented in 100-pin devices only.  
Implemented in 80-pin and 100-pin devices only.  
TABLE 3-22: PORTG REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
(1)  
(1  
(2)  
(2)  
TRISG  
PORTG  
LATG  
02E4  
02E6  
02E8  
06E4  
TRISG15  
TRISG14  
TRISG13  
TRISG12  
TRISG9  
RG9  
TRISG8  
RG8  
TRISG7  
RG7  
TRISG6  
RG6  
TRISG3  
RG3  
TRISG2 TRISG1  
TRISG0  
F3CF  
xxxx  
xxxx  
0000  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
RG15  
RG14  
RG13  
RG12  
RG2  
LATG2  
ODG2  
RG1  
RG0  
(1)  
LATG15  
(1)  
LATG14  
(1)  
LATG13  
(1)  
LATG12  
(2)  
(2)  
LATG9  
ODG9  
LATG8  
ODG8  
LATG7  
ODG7  
LATG6  
ODG6  
LATG3  
ODG3  
LATG1  
LATG0  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
ODCG  
ODG15  
ODG14  
ODG13  
ODG12  
ODG1  
ODG0  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Implemented in 100-pin devices only  
Implemented in 80-pin and 100-pin devices only.  
TABLE 3-23: PAD CONFIGURATION MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PADCFG1  
02FC  
RTSECSEL PMPTTL  
0000  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
TABLE 3-24: PARALLEL MASTER/SLAVE PORT REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON  
0600  
0602  
PMPEN  
BUSY  
CS2  
PSIDL ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN  
CSF1  
CSF0  
ALP  
CS2P  
CS1P  
BEP  
WRSP  
RDSP  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
PMMODE  
IRQM1  
CS1  
IRQM0  
INCM1  
INCM0  
MODE16 MODE1  
MODE0 WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0  
(1)  
PMADDR  
Parallel Port Destination Address<13:0> (Master modes)  
Parallel Port Data Out Register 1 (Buffers 0 and 1)  
Parallel Port Data Out Register 2 (Buffers 2 and 3)  
Parallel Port Data In Register 1 (Buffers 0 and 1)  
Parallel Port Data In Register 2 (Buffers 2 and 3)  
0604  
(1)  
PMDOUT1  
PMDOUT2  
PMDIN1  
0606  
0608  
060A  
060C  
060E  
PMPDIN2  
PMPEN  
PTEN15 PTEN14 PTEN13  
IBF IBOV  
PTEN12  
PTEN11  
IB3F  
PTEN10  
IB2F  
PTEN9  
IB1F  
PTEN8  
IB0F  
PTEN7  
OBE  
PTEN6  
OBUF  
PTEN5  
PTEN4  
PTEN3  
OB3E  
PTEN2  
OB2E  
PTEN1  
OB1E  
PTEN0  
OB0E  
PMSTAT  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PMADDR and PMDOUT1 share the same physical register. The register functions as PMDOUT1 only in Slave modes, and as PMADDR only in Master modes.  
TABLE 3-25: REAL-TIME CLOCK AND CALENDAR REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
ALCFGRPT  
RTCVAL  
0620  
0622  
0624  
0626  
Alarm Value Register Window based on APTR<1:0>  
AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6  
RTCC Value Register Window based on RTCPTR<1:0>  
RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6  
xxxx  
0000  
xxxx  
0000  
ALRMEN CHIME  
AMASK3  
ARPT5 ARPT4  
ARPT3  
CAL3  
ARPT2  
CAL2  
ARPT1  
CAL1  
ARPT0  
CAL0  
(1)  
RCFGCAL  
RTCEN  
CAL5  
CAL4  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
RCFGCAL register Reset value dependent on type of Reset.  
TABLE 3-26: DUAL COMPARATOR REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON  
CVRCON  
Legend:  
0630  
0632  
CMIDL  
C2EVT  
C1EVT  
C2EN  
C1EN  
C2OUTEN C1OUTEN C2OUT  
CVREN  
C1OUT  
CVROE  
C2INV  
CVRR  
C1INV  
C2NEG  
CVR3  
C2POS  
CVR2  
C1NEG  
CVR1  
C1POS  
CVR0  
0000  
0000  
CVRSS  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-27: CRC REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CRCCON  
CRCXOR  
CRCDAT  
CRCWDAT  
Legend:  
0640  
0642  
0644  
0646  
CSIDL  
VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT  
CRC XOR Polynomial Register  
CRCGO  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
0000  
0000  
0000  
0000  
CRC Data Input Register  
CRC Result Register  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-28: SYSTEM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
RCON  
0740  
0742  
0744  
0748  
TRAPR IOPUWR  
CM  
NOSC1  
RCDIV1  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx  
(2)  
OSCCON  
CLKDIV  
OSCTUN  
ROI  
COSC2  
DOZE2  
COSC1  
DOZE1  
COSC0  
DOZE0  
NOSC2  
RCDIV2  
NOSC0 CLKLOCK  
LOCK  
SOSCEN OSWEN  
xxxx  
DOZEN  
RCDIV0  
0300  
0000  
TUN<5:0>  
Legend:  
Note 1:  
2:  
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values dependent on type of Reset.  
OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 3-29: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000  
NVMKEY<7:0>  
0000  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 3-30: PMD REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
Legend:  
0770  
0772  
0774  
T5MD  
T4MD  
T3MD  
T2MD  
IC5MD  
T1MD  
IC4MD  
I2C1MD  
U2MD  
U1MD  
SPI2MD SPI1MD  
ADCMD  
OC1MD  
0000  
0000  
0000  
IC3MD  
IC2MD  
IC1MD  
OC5MD  
OC4MD OC3MD  
OC2MD  
I2C2MD  
CMPMD RTCCMD PMPMD CRCPMD  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PIC24FJ128GA FAMILY  
3.2.5  
SOFTWARE STACK  
3.3  
Interfacing Program and Data  
Memory Spaces  
In addition to its use as a working register, the W15 reg-  
ister in PIC24 devices is also used as a software Stack  
Pointer. The pointer always points to the first available  
free word and grows from lower to higher addresses. It  
pre-decrements for stack pops and post-increments for  
stack pushes, as shown in Figure 3-4. Note that for a  
PC push during any CALLinstruction, the MSB of the  
PC is zero-extended before the push, ensuring that the  
MSB is always clear.  
The PIC24 architecture uses a 24-bit wide program  
space and 16-bit wide data space. The architecture is  
also a modified Harvard scheme, meaning that data  
can also be present in the program space. To use this  
data successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
Aside from normal execution, the PIC24 architecture  
provides two methods by which program space can be  
accessed during operation:  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is com-  
pared with the value in SPLIM. If the contents of the  
Stack Pointer (W15) and the SPLIM register are equal  
and a push operation is performed, a stack error trap  
will not occur. The stack error trap will occur on a  
subsequent push operation. Thus, for example, if it is  
desirable to cause a stack error trap when the stack  
grows beyond address 2000h in RAM, initialize the  
SPLIM with the value, 1FFEh.  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This makes the  
method ideal for accessing data tables that need to be  
updated from time to time. It also allows access to all  
bytes of the program word. The remapping method  
allows an application to access a large block of data on  
a read-only basis, which is ideal for look ups from a  
large table of static data. It can only access the least  
significant word of the program word.  
3.3.1  
ADDRESSING PROGRAM SPACE  
Since the address ranges for the data and program  
spaces are 16 and 24 bits respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0800h. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 3-4:  
CALL STACK FRAME  
0000h  
15  
0
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
Table 3-31 and Figure 3-5 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
POP : [--W15]  
PUSH: [W15++]  
DS39747C-page 40  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 3-31: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
PC<22:1>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Data EA<14:0>(1)  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
FIGURE 3-5:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
0
1
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The LSb of program space addresses is always fixed as ‘0’, in order to maintain word alignment of  
data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted in the  
configuration memory space.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 41  
PIC24FJ128GA FAMILY  
2. TBLRDH (Table Read High): In Word mode, it  
3.3.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
maps the entire upper word of a program address  
(P<23:16>) to  
a data address. Note that  
D<15:8>, the “phantom byte”, will always be ‘0’.  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space, without going  
through data space. The TBLRDHand TBLWTHinstruc-  
tions are the only method to read or write the upper 8 bits  
of a program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper “phantom” byte is  
selected (byte select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 4.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
word wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and config-  
uration spaces. When TBLPAG<7> = 0, the Table Page  
is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
Two table instructions are provided to move byte or  
word sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
Note:  
Only table read operations will execute in  
the configuration memory space and only  
then, in implemented areas such as the  
Device ID. Table write operations are not  
allowed.  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when byte select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 3-6:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
Data EA<15:0>  
23  
15  
0
000000h  
23  
16  
8
0
00000000  
00000000  
00000000  
00000000  
020000h  
030000h  
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
800000h  
DS39747C-page 42  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space locations used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
3.3.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM  
SPACE VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This provides transparent access of stored constant  
data from the data space without the need to use  
special instructions (i.e., TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG func-  
tions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. Note that by incrementing the PC by 2 for  
each program memory word, the lower 15 bits of data  
space addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEATloop, the MOV and MOV.Dinstructions will  
require one instruction cycle in addition to the specified  
execution time. All other instructions will require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Data reads to this area add an additional cycle to the  
instruction being executed, since two program memory  
fetches are required.  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
Although each data space address, 8000h and higher,  
maps directly into a corresponding program memory  
address (see Figure 3-7), only the lower 16 bits of the  
FIGURE 3-7:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
000000h  
0000h  
Data EA<14:0>  
010000h  
018000h  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space....  
8000h  
PSV Area  
...while the lower 15  
bits of the EA specify  
an exact address  
within the PSV area.  
This corresponds  
exactly to the same  
lower 15 bits of the  
actual program space  
address.  
FFFFh  
800000h  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 43  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 44  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
may write program memory data in blocks of 64 instruc-  
tions (192 bytes) at a time, and erase program memory  
in blocks of 512 instructions (1536 bytes) at a time.  
4.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
4.1  
Table Instructions and Flash  
Programming  
The PIC24FJ128GA family of devices contains internal  
Flash program memory for storing and executing appli-  
cation code. The memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits<7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 4-1.  
Flash memory can be programmed in two ways:  
1. In-Circuit Serial Programming (ICSP)  
2. Run-Time Self-Programming (RTSP)  
ICSP allows a PIC24FJ128GA family device to be seri-  
ally programmed while in the end application circuit.  
This is simply done with two lines for Programming  
Clock and Programming Data (which are named PGCx  
and PGDx, respectively), and three other lines for  
power (VDD), ground (VSS) and Master Clear (MCLR).  
This allows customers to manufacture boards with  
unprogrammed devices and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 4-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program  
Counter  
0
0
Working Reg EA  
Using  
Table  
Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 45  
PIC24FJ128GA FAMILY  
4.2  
RTSP Operation  
4.3  
Control Registers  
The PIC24 Flash program memory array is organized  
into rows of 64 instructions or 192 bytes. RTSP allows  
the user to erase blocks of eight rows (512 instructions)  
at a time, and to program one row at a time. The 8-row  
erase blocks and single-row write blocks are edge-  
aligned, from the beginning of program memory, on  
boundaries of 1536 bytes and 192 bytes, respectively.  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 4-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 4.4 “Programming  
Operations” for further details.  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers in sequential order. The  
instructions words loaded must always be from a group  
of 64 boundaries.  
4.4  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. A programming operation is nominally 4 ms in  
duration and the processor stalls (waits) until the oper-  
ation is finished. Setting the WR bit (NVMCON<15>)  
starts the operation, and the WR bit is automatically  
cleared when the operation is finished.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by set-  
ting the control bits in the NVMCON register. A total of  
64 TBLWTL and TBLWTH instructions are required to  
load the instructions.  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the buffers are writ-  
ten. A programming cycle is required for programming  
each row.  
DS39747C-page 46  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 4-1:  
NVMCOM: FLASH MEMORY CONTROL REGISTER  
Upper Byte:  
R/SO-0(1) R/W-0(1)  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
WR  
bit 15  
WREN  
bit 8  
Lower Byte:  
U-0  
R/W-0(1)  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
ERASE  
NVMOP3(2) NVMOP2(2) NVMOP1(2) NVMOP0(2)  
bit 7  
bit 0  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation  
The operation is self-timed and the bit is cleared by hardware once operation is complete.  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set automatically  
on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7 Unimplemented: Read as ‘0’  
bit 6  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP3:NVMOP0 on the next WR command  
0= Perform the program operation specified by NVMOP3:NVMOP0 on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP3:NVMOP0: NVM Operation Select bits(2)  
1111= Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)  
0010= Memory row erase operation (ERASE = 1) or no operation (ERASE = 0)  
0001= Memory row program operation (ERASE = 0) or no operation (ERASE = 1)  
Note 1: These bits can only be reset on POR.  
2: All other combinations of NVMOP3:NVMOP0 are unimplemented.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
SO = Settable-Only bit  
‘0’ = Bit is cleared  
U = Unimplemented bit  
x = Bit is unknown  
-n = Value at Reset  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 47  
PIC24FJ128GA FAMILY  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 4-2).  
4.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of program Flash memory  
at a time. To do this, it is necessary to erase the 8-row  
erase block containing the desired row. The general  
process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 55h to NVMKEY.  
c) Write AAh to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash mem-  
ory is done, the WR bit is cleared automati-  
cally.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 4-1):  
a) Set the NVMOP bits (NVMCOM<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCOM<6>) and WREN  
(NVMCOM<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash  
memory.  
b) Write the starting address of the block to be  
erased into the TBLPAG and W registers.  
c) Write 55h to NVMKEY.  
d) Write AAh to NVMKEY.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 4-3.  
e) Set the WR bit (NVMCOM<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 4-1:  
ERASING A PROGRAM MEMORY BLOCK  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
DS39747C-page 48  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
EXAMPLE 4-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
TBLWTL  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
W2, [W0]  
;
;
; Write PM low word into program latch  
; Write PM high byte into program latch  
TBLWTH  
W3, [W0++]  
; 1st_program_word  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
W2, [W0]  
;
;
MOV  
TBLWTL  
; Write PM low word into program latch  
; Write PM high byte into program latch  
TBLWTH  
W3, [W0++]  
;
2nd_program_word  
MOV  
MOV  
TBLWTL  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
W2, [W0]  
;
;
; Write PM low word into program latch  
; Write PM high byte into program latch  
TBLWTH  
W3, [W0++]  
; 63rd_program_word  
MOV  
#LOW_WORD_31, W2  
;
MOV  
TBLWTL  
TBLWTH  
#HIGH_BYTE_31, W3  
W2, [W0]  
W3, [W0++]  
;
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 4-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 49  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 50  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
5.0  
RESETS  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 5-1). A POR will clear all bits except for  
the BOR and POR bits (RCON<1:0>), which are set.  
The user may set or clear any bit at any time during  
code execution. The RCON bits only serve as status  
bits. Setting a particular Reset status bit in software will  
not cause a device Reset to occur.  
• POR: Power-on Reset  
• MCLR: Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• BOR: Brown-out Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode Reset  
• UWR: Uninitialized W Register Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
A simplified block diagram of the Reset module is  
shown in Figure 5-1.  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
Any active source of Reset will make the SYSRST sig-  
nal active. Many registers associated with the CPU and  
peripherals are forced to a known Reset state. Most  
registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
FIGURE 5-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
POR  
VDD Rise  
Detect  
SYSRST  
VDD  
Brown-out  
Reset  
BOR  
Enable Voltage Regulator  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 51  
PIC24FJ128GA FAMILY  
REGISTER 5-1:  
Upper Byte:  
RCON: RESET CONTROL REGISTER  
R/W-0  
R/W-0  
IOPUWR  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
TRAPR  
VREGS  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode, or uninitialized W register used as an Address  
Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10 Unimplemented: Read as ‘0’  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
CM: Configuration Word Mismatch Reset Flag bit  
1= A Configuration Word Mismatch Reset has occurred  
0= A Configuration Word Mismatch Reset has not occurred  
VREGS: Voltage Regulator Standby Enable bit  
1= Regulator remains active during Sleep  
0= Regulator goes to standby during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit  
1= WDT is enabled  
0= WDT is disabled  
Note: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless  
of the SWDTEN bit setting.  
bit 4  
bit 3  
bit 2  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake From Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up From Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
bit 1  
bit 0  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred. Note that BOR is also set after Power-on Reset.  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-up Reset has occurred  
0= A Power-up Reset has not occurred  
Note:  
All of the Reset status bits may be set or cleared in software. Setting one of these bits in software  
does not cause a device Reset.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 52  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 5-1:  
RESET FLAG BIT OPERATION  
Setting Event  
Flag Bit  
Clearing Event  
TRAPR (RCON<15>)  
IOPR (RCON<14>)  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
Trap conflict event  
POR  
POR  
POR  
POR  
Illegal opcode or uninitialized W register access  
MCLR Reset  
RESETinstruction  
WDT time-out  
PWRSAVinstruction, POR  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR  
POR  
POR  
Note: All Reset flag bits may be set or cleared by the user software.  
5.1  
Clock Source Selection at Reset  
5.2  
Device Reset Times  
If clock switching is enabled, the system clock source  
at device Reset is chosen as shown in Table 5-2. If  
clock switching is disabled, the system clock source is  
always selected according to the oscillator Configura-  
tion bits. Refer to 7.0 “Oscillator Configuration” for  
further details.  
The Reset times for various types of device Reset are  
summarized in Table 5-3. Note that the system Reset  
signal, SYSRST, is released after the POR and PWRT  
delay times expire.  
The time that the device actually begins to execute  
code will also depend on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable SYSRST delay times.  
TABLE 5-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The FSCM delay determines the time at which the  
FSCM begins to monitor the system clock source after  
the SYSRST signal is released.  
Reset Type  
Clock Source Determinant  
POR  
BOR  
Oscillator Configuration Bits  
(FNOSC2:FNOSC0)  
MCLR  
WDTR  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 53  
PIC24FJ128GA FAMILY  
TABLE 5-3:  
Reset Type  
POR  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
FSCM  
Delay  
Clock Source  
SYSRST Delay  
Notes  
1, 2, 3  
EC, FRC, FRCDIV, LPRC TPOR + TSTARTUP + TRST  
TFSCM  
TFSCM  
TFSCM  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
EC, FRC, FRCDIV, LPRC  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
Any Clock  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TLOCK  
TOST  
1, 2, 3, 5, 6  
1, 2, 3, 4, 6  
TPOR + TSTARTUP + TRST TOST + TLOCK  
1, 2, 3, 4, 5, 6  
BOR  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TRST  
2, 3  
TLOCK  
TFSCM  
TFSCM  
TFSCM  
2, 3, 5, 6  
TOST  
2, 3, 4, 6  
TOST + TLOCK  
2, 3, 4, 5, 6  
MCLR  
WDT  
3
3
3
3
3
3
Any Clock  
TRST  
Software  
Any clock  
TRST  
Illegal Opcode Any Clock  
Uninitialized W Any Clock  
TRST  
TRST  
Trap Conflict  
Any Clock  
TRST  
Note 1: TPOR = Power-on Reset delay (10 μs nominal).  
2: TSTARTUP = TVREG (10 μs nominal) if on-chip regulator enabled or TPWRT (64 ms nominal) if on-chip  
regulator disabled.  
3: TRST = Internal state Reset time (20 μs nominal).  
4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the  
oscillator clock to the system.  
5: TLOCK = PLL lock time (20 μs nominal).  
6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).  
5.2.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
5.2.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) will have a relatively long  
start-up time. Therefore, one or more of the following  
conditions is possible after SYSRST is released:  
If the FSCM is enabled, it will begin to monitor the sys-  
tem clock source when SYSRST is released. If a valid  
clock source is not available at this time, the device will  
automatically switch to the FRC oscillator and the user  
can switch to the desired crystal oscillator in the Trap  
Service Routine.  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has NOT expired (if  
a crystal oscillator is used).  
• The PLL has not achieved a LOCK (if PLL is used).  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
DS39747C-page 54  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
5.2.2.1  
FSCM Delay for Crystal and PLL  
Clock Sources  
5.3  
Special Function Register Reset  
States  
When the system clock source is provided by a crystal  
oscillator and/or the PLL, a small delay, TFSCM, will  
automatically be inserted after the POR and PWRT  
delay times. The FSCM will not begin to monitor the  
system clock source until this delay expires. The FSCM  
delay time is nominally 100 μs and provides additional  
time for the oscillator and/or PLL to stabilize. In most  
cases, the FSCM delay will prevent an oscillator failure  
trap at a device Reset when the PWRT is disabled.  
Most of the Special Function Registers (SFRs) associ-  
ated with the PIC24 CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this manual.  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of four registers. The  
Reset value for the Reset Control register, RCON, will  
depend on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, will  
depend on the type of Reset and the programmed val-  
ues of the oscillator Configuration bits in the FOSC  
Device Configuration register (see Table 5-2). The  
RCFGCAL and EECON1 registers are only affected by  
a POR.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 55  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 56  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
6.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
6.0  
INTERRUPT CONTROLLER  
The PIC24 interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the PIC24 CPU. It has the following  
features:  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT as shown in Figure 6-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes will use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
• Up to 8 processor exceptions and software traps  
• 7 user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
The AIVT supports emulation and debugging efforts by  
providing a means to switch between an application  
and a support environment without requiring the inter-  
rupt vectors to be reprogrammed. This feature also  
enables switching between applications for evaluation  
of different software algorithms at run time. If the AIVT  
is not needed, the AIVT should be programmed with  
the same addresses used in the IVT.  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
6.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 6-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors, consisting of 8  
non-maskable trap vectors, plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
6.2  
Reset Sequence  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24 device clears its registers in response to a  
Reset which forces the PC to zero. The microcontroller  
then begins program execution at location 000000h.  
The user programs a GOTO instruction at the Reset  
address, which redirects program execution to the  
appropriate start-up routine.  
Interrupt vectors are prioritized in terms of their natural  
priority; this is linked to their position in the vector table.  
All other things being equal, lower addresses have a  
higher natural priority. For example, the interrupt asso-  
ciated with vector 0 will take priority over interrupts at  
any other vector address.  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
PIC24FJ128GA family devices implement non-  
maskable traps and unique interrupts. These are  
summarized in Table 6-1 and Table 6-2.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 57  
PIC24FJ128GA FAMILY  
FIGURE 6-1:  
PIC24 INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
000000h  
000002h  
000004h  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000014h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00007Ch  
00007Eh  
000080h  
Interrupt Vector Table (IVT)(1)  
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0000FCh  
0000FEh  
000100h  
000102h  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000114h  
Alternate Interrupt Vector Table (AIVT)(1)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00017Ch  
00017Eh  
000180h  
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0001FEh  
000200h  
Note 1: See Table 6-2 for the Interrupt Vector list.  
TABLE 6-1:  
TRAP VECTOR DETAILS  
IVT Address  
Vector Number  
AIVT Address  
Trap Source  
0
1
2
3
4
5
6
7
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000104h  
000106h  
000108h  
00010Ah  
00010Ch  
00010Eh  
000110h  
0001172h  
Reserved  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
DS39747C-page 58  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 6-2:  
IMPLEMENTED INTERRUPT VECTORS  
Interrupt Bit Locations  
Enable  
Vector  
Number  
AIVT  
Address  
Interrupt Source  
IVT Address  
Flag  
Priority  
ADC1 Conversion Done  
Comparator Event  
CRC Generator  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
I2C1 Master Event  
I2C1 Slave Event  
I2C2 Master Event  
I2C2 Slave Event  
Input Capture 1  
Input Capture 2  
Input Capture 3  
Input Capture 4  
Input Capture 5  
Input Change Notification  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Parallel Master Port  
Real-Time Clock/Calendar  
SPI1 Error  
13  
18  
67  
0
00002Eh  
000038h  
00009Ah  
000014h  
00003Ch  
00004Eh  
00007Eh  
000080h  
000036h  
000034h  
000078h  
000076h  
000016h  
00001Eh  
00005Eh  
000060h  
000062h  
00003Ah  
000018h  
000020h  
000046h  
000048h  
000066h  
00006Eh  
000090h  
000026h  
000028h  
000054h  
000056h  
00001Ah  
000022h  
000024h  
00004Ah  
00004Ch  
000096h  
00002Ah  
00002Ch  
000098h  
000050h  
000052h  
00012Eh  
000138h  
00019Ah  
000114h  
00013Ch  
00014Eh  
00017Eh  
000180h  
000136h  
000034h  
000178h  
000176h  
000116h  
00011Eh  
00015Eh  
000160h  
000162h  
00013Ah  
000118h  
000120h  
000146h  
000148h  
000166h  
00016Eh  
000190h  
000126h  
000128h  
000154h  
000156h  
00011Ah  
000122h  
000124h  
00014Ah  
00014Ch  
000196h  
00012Ah  
00012Ch  
000198h  
000150h  
000152h  
IFS0<13>  
IFS1<2>  
IFS4<3>  
IFS0<0>  
IFS1<4>  
IFS1<13>  
IFS3<5>  
IFS3<6>  
IFS1<1>  
IFS1<0>  
IFS3<2>  
IFS3<1>  
IFS0<1>  
IFS0<5>  
IFS2<5>  
IFS2<6>  
IFS2<7>  
IFS1<3>  
IFS0<2>  
IFS0<6>  
IFS1<9>  
IFS1<10>  
IFS2<9>  
IFS2<13>  
IFS3<14>  
IFS0<9>  
IFS0<10>  
IFS2<0>  
IFS2<1>  
IFS0<3>  
IFS0<7>  
IFS0<8>  
IFS1<11>  
IFS1<12>  
IFS4<1>  
IFS0<11>  
IFS0<12>  
IFS4<2>  
IFS1<14>  
IFS1<15>  
IEC0<13>  
IEC1<2>  
IEC4<3>  
IEC0<0>  
IEC1<4>  
IEC1<13>  
IEC3<5>  
IEC3<6>  
IEC1<1>  
IEC1<0>  
IEC3<2>  
IEC3<1>  
IEC0<1>  
IEC0<5>  
IEC2<5>  
IEC2<6>  
IEC2<7>  
IEC1<3>  
IEC0<2>  
IEC0<6>  
IEC1<9>  
IEC1<10>  
IEC2<9>  
IEC2<13>  
IEC3<13>  
IEC0<9>  
IEC0<10>  
IEC0<0>  
IEC2<1>  
IEC0<3>  
IEC0<7>  
IEC0<8>  
IEC1<11>  
IEC1<12>  
IEC4<1>  
IEC0<11>  
IEC0<12>  
IEC4<2>  
IEC1<14>  
IEC1<15>  
IPC3<6:4>  
IPC4<10:8>  
IPC16<14:12>  
IPC0<2:0>  
20  
29  
53  
54  
17  
16  
50  
49  
1
IPC5<2:0>  
IPC7<6:4>  
IPC13<6:4>  
IPC13<10:8>  
IPC4<6:4>  
IPC4<2:0>  
IPC12<10:8>  
IPC12<6:4>  
IPC0<6:4>  
5
IPC1<6:4>  
37  
38  
39  
19  
2
IPC9<6:4>  
IPC9<10:8>  
IPC9<14:12>  
IPC4<14:12>  
IPC0<10:8>  
IPC1<10:8>  
IPC6<6:4>  
6
25  
26  
41  
45  
62  
9
IPC6<10:8>  
IPC10<6:4>  
IPC11<6:4>  
IPC15<10:8>  
IPC2<6:4>  
SPI1 Event  
10  
32  
33  
3
IPC2<10:8>  
IPC8<2:0>  
SPI2 Error  
SPI2 Event  
IPC8<6:4>  
Timer1  
IPC0<14:12>  
IPC1<14:12>  
IPC2<2:0>  
Timer2  
7
Timer3  
8
Timer4  
27  
28  
65  
11  
12  
66  
30  
31  
IPC6<14:12>  
IPC7<2:0>  
Timer5  
UART1 Error  
IPC16<6:4>  
IPC2<14:12>  
IPC3<2:0>  
UART1 Receiver  
UART1 Transmitter  
UART2 Error  
IPC16<10:8>  
IPC7<10:8>  
IPC7<14:12>  
UART2 Receiver  
UART2 Transmitter  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 59  
PIC24FJ128GA FAMILY  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 6-2. For example, the INT0 (External  
Interrupt 0) is shown as having a vector number and a  
natural order priority of 0. Thus, the INT0IF status bit is  
found in IFS0<0>, the enable bit in IEC0<0> and the  
priority bits in the first position of IPC0 (IPC0<2:0>).  
6.3  
Interrupt Control and Status  
Registers  
The PIC24FJ128GA family devices implement a total  
of 28 registers for the interrupt controller:  
• INTCON1  
• INTCON2  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU control registers con-  
tain bits that control interrupt functionality. The CPU  
STATUS register (SR) contains the IPL2:IPL0 bits  
(SR<7:5>). These indicate the current CPU interrupt  
priority level. The user may change the current CPU  
priority level by writing to the IPL bits.  
• IFS0 through IFS4  
• IEC0 through IEC4  
• IPC0 through IPC14, and IPC16  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the Inter-  
rupt Nesting Disable (NSTDIS) bit, as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
The CORCON register contains the IPL3 bit, which  
together with IPL2:IPL0, also indicates the current CPU  
priority level. IPL3 is a read-only bit so that trap events  
cannot be masked by the user software.  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit which is  
set by the respective peripherals, or external signal,  
and is cleared via software.  
All interrupt registers are described in Register 6-1  
through Register 6-30, in the following pages.  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
The IPC registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
DS39747C-page 60  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-1:  
Upper Byte:  
SR: STATUS REGISTER (IN CPU)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
DC  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
IPL2(1,2)  
R/W-0  
IPL1(1,2)  
R/W-0  
IPL0(1,2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
R/W-0  
C
Z
bit 7  
bit 0  
bit 7-5  
IPL2:IPL0: CPU Interrupt Priority Level Status bits(1,2)  
111= CPU interrupt priority level is 7 (15). User interrupts disabled.  
110= CPU interrupt priority level is 6 (14)  
101= CPU interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
Note 1: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority  
level. The value in parentheses indicates the IPL if IPL3 = 1.  
2: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 6-2:  
Upper Byte:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(1)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
bit 0  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU interrupt priority level is greater than 7; peripheral interrupts are disabled  
0= CPU interrupt priority level is 7 or less  
Note 1: The IPL3 bit is concatenated with the IPL2:IPL0 bits (SR<7:5>) to form the CPU interrupt priority  
level.  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 61  
PIC24FJ128GA FAMILY  
REGISTER 6-3:  
Upper Byte:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
MATHERR ADDRERR STKERR OSCFAIL  
bit 7  
bit 0  
bit 15  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
bit 14-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
MATHERR: Arithmetic Error Trap Status bit  
1= Overflow trap has occurred  
0= Overflow trap has not occurred  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
DS39747C-page 62  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-4:  
Upper Byte:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
R-0  
DISI  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ALTIVT  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT1EP  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT0EP  
bit 7  
bit 0  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIis not active  
bit 13-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 63  
PIC24FJ128GA FAMILY  
REGISTER 6-5:  
Upper Byte:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
U1TXIF  
U1RXIF  
SPF1IF  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
bit 7  
bit 0  
bit 15,14 Unimplemented: Read as ‘0’  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IF: A/D Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPF1IF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 64  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-6:  
Upper Byte:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
R/W-0  
U2RXIF  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
U-0  
U2TXIF  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
CMIF  
R/W-0  
MI2C1IF  
R/W-0  
SI2C1IF  
bit 7  
bit 0  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: Master I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 65  
PIC24FJ128GA FAMILY  
REGISTER 6-7:  
Upper Byte:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
U-0  
R/W-0  
PMPIF  
U-0  
U-0  
U-0  
R/W-0  
OC5IF  
U-0  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
IC5IF  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
U-0  
U-0  
U-0  
R/W-0  
SPI2IF  
R/W-0  
SPF2IF  
bit 7  
bit 0  
bit 15-14 Unimplemented: Read as ‘0’  
bit 13  
PMPIF: Parallel Master Port Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-10 Unimplemented: Read as ‘0’  
bit 9  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
bit 5  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SPI2IF: SPI2 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 66  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-8:  
Upper Byte:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
R/W-0  
RTCIF  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-0  
INT4IF  
R/W-0  
INT3IF  
U-0  
U-0  
R/W-0  
MI2C2IF  
R/W-0  
SI2C2IF  
U-0  
bit 7  
bit 0  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-7 Unimplemented: Read as ‘0’  
bit 6  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IF: Master I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 67  
PIC24FJ128GA FAMILY  
REGISTER 6-9:  
Upper Byte:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CRCIF  
R/W-0  
U2ERIF  
R/W-0  
U1ERIF  
U-0  
bit 7  
bit 0  
bit 15-4 Unimplemented: Read as ‘0’  
bit 3  
bit 2  
bit 1  
bit 0  
CRCIF: CRC Generator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2ERIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1ERIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 68  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
Upper Byte:  
U-0  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPF1IE  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE  
bit 7  
bit 0  
bit 15-14 Unimplemented: Read as ‘0’  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IE: A/D Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPF1IE: SPI1 Fault Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 69  
PIC24FJ128GA FAMILY  
REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
Upper Byte:  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
U-0  
U2TXIE  
U2RXIE  
INT2IE  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
R/W-0  
INT1IE  
R/W-0  
CNIE  
R/W-0  
CMIE  
R/W-0  
MI2C1IE  
R/W-0  
SI2C1IE  
bit 7  
bit 0  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
MI2C1IE: Master I2C1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SI2C1IE: Slave I2C1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 70  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
Upper Byte:  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
OC5IE  
U-0  
PMPIE  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
U-0  
U-0  
U-0  
R/W-0  
SPI2IE  
R/W-0  
SPF2IE  
bit 7  
bit 0  
bit 15-14 Unimplemented: Read as ‘0’  
bit 13  
PMPIE: Parallel Master Port Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12-10 Unimplemented: Read as ‘0’  
bit 9  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
bit 5  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
SPF2IE: SPI2 Fault Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 71  
PIC24FJ128GA FAMILY  
REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
Upper Byte:  
U-0  
R/W-0  
RTCIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
MI2C2IE  
R/W-0  
SI2C2IE  
U-0  
INT4IE  
INT3IE  
bit 7  
bit 0  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIE: Real-Time Clock/Calendar Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13-7 Unimplemented: Read as ‘0’  
bit 6  
INT4IE: External Interrupt 4 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
INT3IE: External Interrupt 3 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IE: Master I2C2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 1  
SI2C2IE: Slave I2C2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 72  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U2ERIE  
R/W-0  
U1ERIE  
U-0  
CRCIE  
bit 7  
bit 0  
bit 15-4 Unimplemented: Read as ‘0’  
bit 3  
bit 2  
CRCIE: CRC Generator Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2ERIE: UART2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 1  
bit 0  
U1ERIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 73  
PIC24FJ128GA FAMILY  
REGISTER 6-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
Upper Byte:  
U-0  
R/W-1  
T1IP2  
R/W-0  
T1IP1  
R/W-0  
T1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC1IP2  
OC1IP1  
OC1IP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
IC1IP2  
R/W-0  
IC1IP1  
R/W-0  
IC1IP0  
U-0  
R/W-1  
INT0IP2  
R/W-0  
INT0IP1  
R/W-0  
INT0IP0  
bit 7  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 T1IP2:T1IP0: Timer1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 OC1IP2:OC1IP0: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP2:IC1IP0: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP2:INT0IP0: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 74  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
Upper Byte:  
U-0  
R/W-1  
T2IP2  
R/W-0  
T2IP1  
R/W-0  
T2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC2IP2  
OC2IP1  
OC2IP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
IC2IP2  
R/W-0  
IC2IP1  
R/W-0  
IC2IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 T2IP2:T2IP0: Timer2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 OC2IP2:OC2IP0: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP2:IC2IP0: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 75  
PIC24FJ128GA FAMILY  
REGISTER 6-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
Upper Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1RXIP2 U1RXIP1 U1RXIP0  
SPI1IP2  
SPI1IP1  
SPI1IP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
SPF1IP0  
U-0  
R/W-1  
T3IP2  
R/W-0  
T3IP1  
R/W-0  
T3IP0  
SPF1IP2  
SPF1IP1  
bit 7  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 U1RXIP2:U1RXIP0: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 SPI1IP2:SPI1IP0: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPF1IP2:SPF1IP0: SPI1 Fault Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP2:T3IP0: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 76  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
U1TXIP2  
R/W-0  
U1TXIP1  
R/W-0  
U1TXIP0  
bit 0  
AD1IP2  
AD1IP1  
AD1IP0  
bit 7  
bit 15-7 Unimplemented: Read as ‘0’  
bit 6-4  
AD1IP2:AD1IP0: A/D Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP2:U1TXIP0: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 77  
PIC24FJ128GA FAMILY  
REGISTER 6-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
Upper Byte:  
U-0  
R/W-1  
CNIP2  
R/W-0  
CNIP1  
R/W-0  
CNIP0  
U-0  
R/W-1  
CMIP2  
R/W-0  
CMIP1  
R/W-0  
CMIP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
SI2C1P2  
R/W-0  
SI2C1P1  
R/W-0  
SI2C1P0  
bit 0  
MI2C1P2 MI2C1P1 MI2C1P0  
bit 7  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 CNIP2:CNIP0: Input Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 CMIP2:CMIP0: Comparator Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1P2:MI2C1P0: Master I2C1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1P2:SI2C1P0: Slave I2C1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 78  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
INT1IP2  
R/W-0  
INT1IP1  
R/W-0  
INT1IP0  
bit 7  
bit 0  
bit 15-3 Unimplemented: Read as ‘0’  
bit 2-0  
INT1IP2:INT1IP0: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 79  
PIC24FJ128GA FAMILY  
REGISTER 6-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
Upper Byte:  
U-0  
R/W-1  
T4IP2  
R/W-0  
T4IP1  
R/W-0  
T4IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC4IP2  
OC4IP1  
OC4IP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
OC3IP2  
R/W-0  
R/W-0  
OC3IP0  
U-0  
U-0  
U-0  
U-0  
OC3IP1  
bit 7  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 T4IP2:T4IP0: Timer4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 OC4IP2:OC4IP0: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP2:OC3IP0: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 80  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
Upper Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
bit 8  
bit 15  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT2IP0  
U-0  
R/W-1  
T5IP2  
R/W-0  
T5IP1  
R/W-0  
T51P0  
INT2IP2  
INT2IP1  
bit 7  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 U2TXIP2:U2TXIP0: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 U2RXIP2:U2RXIP0: UART2 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP2:INT2IP0: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP2:T5IP0: Timer5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 81  
PIC24FJ128GA FAMILY  
REGISTER 6-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
SPI2IP1  
R/W-0  
SPI2IP0  
U-0  
R/W-1  
SPF2IP2  
R/W-0  
SPF2IP1  
R/W-0  
SPF2IP0  
bit 0  
SPI2IP2  
bit 7  
bit 15-7 Unimplemented: Read as ‘0’  
bit 6-4  
SPI2IP2:SPI2IP0: SPI2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPF2IP2:SPF2IP0: SPI2 Fault Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 82  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
Upper Byte:  
U-0  
R/W-1  
IC5IP2  
R/W-0  
IC5IP1  
R/W-0  
IC5IP0  
U-0  
R/W-1  
IC4IP2  
R/W-0  
IC4IP1  
R/W-0  
IC4IP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
IC3IP2  
R/W-0  
IC3IP1  
R/W-0  
IC3IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 IC5IP2:IC5IP0: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 IC4IP2:IC4IP0: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP2:IC3IP0: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 83  
PIC24FJ128GA FAMILY  
REGISTER 6-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
OC5IP1  
R/W-0  
OC5IP0  
U-0  
U-0  
U-0  
U-0  
OC5IP2  
bit 7  
bit 0  
bit 15-7 Unimplemented: Read as ‘0’  
bit 6-4  
OC5IP2:OC5IP0: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 6-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
PMPIP1  
R/W-0  
PMPIP0  
U-0  
U-0  
U-0  
U-0  
PMPIP2  
bit 7  
bit 0  
bit 15-7 Unimplemented: Read as ‘0’  
bit 6-4  
PMPIP2:PMPIP0: Parallel Master Port Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 84  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C2P2 MI2C2P1 MI2C2P0  
bit 8  
bit 15  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
SI2C2P1  
R/W-0  
SI2C2P0  
U-0  
U-0  
U-0  
U-0  
SI2C2P2  
bit 7  
bit 0  
bit 15-11 Unimplemented: Read as ‘0’  
bit 10-8 MI2C2P2:MI2C2P0: Master I2C2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2P2:SI2C2P0: Slave I2C2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 85  
PIC24FJ128GA FAMILY  
REGISTER 6-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT4IP2  
INT4IP1  
INT4IP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
INT3IP1  
R/W-0  
INT3IP0  
U-0  
U-0  
U-0  
U-0  
INT3IP2  
bit 7  
bit 0  
bit 15-11 Unimplemented: Read as ‘0’  
bit 10-8 INT4IP2:INT4IP0: External Interrupt 4 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP2:INT3IP0: External Interrupt 3 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 86  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 6-29: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
RTCIP2  
RTCIP1  
RTCIP0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 15-11 Unimplemented: Read as ‘0’  
bit 10-8 RTCIP2:RTCIP0: Real-Time Clock/Calendar Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 87  
PIC24FJ128GA FAMILY  
REGISTER 6-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
Upper Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2 U2ERIP1 U2ERIP0  
bit 8  
bit 15  
Lower Byte:  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1ERIP2 U1ERIP1 U1ERIP0  
bit 7  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 CRCIP2:CRCIP0: CRC Generator Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 U2ERIP2:U2ERIP0: UART2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1ERIP2:U1ERIP0: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
.
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 88  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
6.4.3  
TRAP SERVICE ROUTINE  
6.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
6.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS Control bit (INTCON1<15>) if  
nested interrupts are not desired.  
6.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx Control register. The priority  
level will depend on the specific application and  
type of interrupt source. If multiple priority levels  
are not desired, the IPCx register control bits for  
all enabled interrupt sources may be  
programmed to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POPinstruction may be  
Note: At a device Reset, the IPC registers are  
initialized, such that all user interrupt  
sources are assigned to priority level 4.  
used to restore the previous SR value.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (level 8-15) cannot  
be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx Status  
register.  
The DISIinstruction provides a convenient way to dis-  
able interrupts of priority levels 1-6 for a fixed period of  
time. Level 7 interrupt sources are not disabled by the  
DISI instruction.  
4. Enable the interrupt source by setting the inter-  
rupt enable control bit associated with the  
source in the appropriate IECx Control register.  
6.4.2  
INTERRUPT SERVICE ROUTINE  
The method that is used to declare an ISR and initialize  
the IVT with the correct vector address will depend on  
the programming language (i.e., ‘C’ or assembler) and  
the language development toolsuite that is used to  
develop the application. In general, the user must clear  
the interrupt flag in the appropriate IFSx register for the  
source of interrupt that the ISR handles. Otherwise, the  
ISR will be re-entered immediately after exiting the rou-  
tine. If the ISR is coded in assembly language, it must  
be terminated using a RETFIE instruction to unstack  
the saved PC value, SRL value and old CPU priority  
level.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 89  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 90  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
• On-chip 4x PLL to boost internal operating frequency  
on select internal and external oscillator sources  
7.0  
OSCILLATOR  
CONFIGURATION  
• Software-controllable switching between various  
clock sources  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
• Software-controllable postscaler for selective  
clocking of CPU for system power savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and permits safe application recovery  
or shutdown  
The oscillator system for PIC24FJ128GA family  
devices has the following features:  
A simplified diagram of the oscillator system is shown  
in Figure 7-1.  
• A total of four external and internal oscillator options  
as clock sources, providing 11 different clock modes  
FIGURE 7-1:  
PIC24FJ128GA FAMILY CLOCK DIAGRAM  
PIC24FJ128GA Family  
Primary Oscillator  
CLKO  
XT, HS, EC  
CLKDIV<14:12>  
OSC1  
OSC2  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
CPU  
8 MHz  
4 MHz  
4 x PLL  
FRC  
Oscillator  
FRCDIV  
Peripherals  
8 MHz  
(Nominal)  
CLKDIV<10:8>  
FRC  
LPRC  
LPRC  
Oscillator  
31 kHz (Nominal)  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
SOSCEN  
Enable  
Oscillator  
Clock Control Logic  
Fail-Safe  
Clock  
Monitor  
WDT, PWRT  
Clock Source Option  
for other Modules  
The primary oscillator and FRC sources have the  
option of using the internal 4x PLL. The frequency of  
the FRC clock source can optionally be reduced by the  
programmable clock divider. The selected clock source  
generates the processor and peripheral clock sources.  
7.1  
CPU Clocking Scheme  
The system clock source can be provided by one of  
four sources:  
• Primary Oscillator (POSC) on the OSC1 and  
OSC2 pins  
The processor clock source is divided by two to pro-  
duce the internal instruction cycle clock, FCY. In this  
document, the instruction cycle clock is also denoted  
by FOSC/2. The internal instruction cycle clock, FOSC/2,  
can be provided on the OSC2 I/O pin for some  
operating modes of the primary oscillator.  
• Secondary Oscillator (SOSC) on the SOSCI and  
SOSCO pins  
• Fast Internal RC (FRC) Oscillator  
• Low-Power Internal RC (LPRC) Oscillator  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 91  
PIC24FJ128GA FAMILY  
The secondary oscillator, or one of the internal  
oscillators, may be chosen by programming these bit  
locations.  
7.2  
Oscillator Configuration  
The oscillator source (and operating mode) that is  
used at a device Power-on Reset event is selected  
using Configuration bit settings. The oscillator Config-  
uration bit settings are located in the Configuration  
registers in the program memory (refer to  
Section 23.1 “Configuration Bits” for further  
details.) The Primary Oscillator Configuration bits,  
POSCMD1:POSCMD0 (Configuration Word 2<1:0>),  
and the Initial Oscillator Select Configuration bits,  
The Configuration bits allow users to choose between  
the various clock modes, shown in Table 7-1.  
7.2.1  
CLOCK SWITCHING MODE  
CONFIGURATION BITS  
The FCKSM Configuration bits (Configuration Word 2<7:6>)  
are used to jointly configure device clock switching and  
the Fail-Safe Clock Monitor (FSCM). Clock switching is  
enabled only when FCKSM1 is programmed (‘0’). The  
FSCM is enabled only when FCKSM1:FCKSM0 are  
both programmed (‘00’).  
FNOSC2:FNOSC0  
(Configuration Word 2<10:8>),  
select the oscillator source that is used at a Power-on  
Reset. The FRC primary oscillator with postscaler  
(FRCDIV) is the default (unprogrammed) selection.  
TABLE 7-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
POSCMD1:  
POSCMD0  
FNOSC2:  
FNOSC0  
Oscillator Mode  
Oscillator Source  
Note  
1, 2  
Fast RC Oscillator with Postscaler  
(FRCDIV)  
Internal  
00  
111  
(Reserved)  
Internal  
Internal  
00  
00  
00  
110  
101  
100  
1
1
1
Low-Power RC Oscillator (LPRC)  
Secondary (Timer1) Oscillator  
(SOSC)  
Secondary  
Primary Oscillator (HS) with PLL  
Module (HSPLL)  
Primary  
Primary  
Primary  
10  
01  
00  
011  
011  
011  
Primary Oscillator (XT) with PLL  
Module (ECPLL)  
Primary Oscillator (EC) with PLL  
Module (XTPLL)  
Primary Oscillator (HS)  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Primary  
Primary  
Primary  
Internal  
10  
01  
00  
00  
010  
010  
010  
001  
Fast RC Oscillator with PLL Module  
(FRCPLL)  
1
1
Fast RC Oscillator (FRC)  
Internal  
00  
000  
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
The Clock Divider register (Register 7-2) controls the  
features associated with Doze mode, as well as the  
postscaler for the FRC oscillator.  
7.3  
Control Registers  
The operation of the oscillator is controlled by three  
Special Function Registers:  
The FRC Oscillator Tune register (Register 7-3) allows  
the user to fine tune the FRC oscillator over a range of  
approximately ±12%. Each bit increment or decrement  
changes the factory calibrated frequency of the FRC  
oscillator by a fixed amount.  
• OSCCON  
• CLKDIV  
• OSCTUN  
The OSCCON register (Register 7-1) is the main con-  
trol register for the oscillator. It controls clock source  
switching, and allows the monitoring of clock sources.  
DS39747C-page 92  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 7-1:  
Upper Byte:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
COSC2  
R-0  
R-0  
U-0  
R/W-x(1)  
NOSC2  
R/W-x(1)  
NOSC1  
R/W-x(1)  
NOSC0  
COSC1  
COSC0  
bit 15  
bit 8  
Lower Byte:  
R/SO-0  
CLKLOCK  
bit 7  
U-0  
R-0(2)  
LOCK  
U-0  
R/CO-0  
CF  
U-0  
R/W-0  
SOSCEN  
R/W-0  
OSWEN  
bit 0  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 COSC2:COSC0: Current Oscillator Selection bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 NOSC2:NOSC0: New Oscillator Selection bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7  
CLKLOCK: Clock Selection Lock Enabled bit  
If FSCM is enabled (FCKSM1 = 1):  
1= Clock and PLL selections are locked  
0= Clock and PLL selections are not locked and may be modified by setting the OSWEN bit  
If FSCM is disabled (FCKSM1 = 0):  
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LOCK: PLL Lock Status bit  
1= PLL module is in lock or PLL module start-up timer is satisfied  
0= PLL module is out of lock, PLL start-up timer is running or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit  
1= FSCM has detected a clock failure  
0= No clock failure has been detected  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Initiate an oscillator switch to clock source specified by NOSC2:NOSC0 bits  
0= Oscillator switch is complete  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: Also resets to ‘0’ during any valid clock switch, or whenever a non-PLL Clock mode is selected.  
Legend: U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
CO = Clear-Only bit  
‘0’ = Bit is cleared  
SO = Set-Only bit  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 93  
PIC24FJ128GA FAMILY  
REGISTER 7-2:  
Upper Byte:  
CLKDIV: CLOCK DIVIDER REGISTER  
R/W-0  
ROI  
R/W-0  
DOZE2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
DOZE1  
DOZE0  
DOZEN(1) RCDIV2  
RCDIV1  
RCDIV0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12 DOZE2:DOZE0: CPU Peripheral Clock Ratio Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 11  
DOZEN: DOZE Enable bit(1)  
1= DOZE2:DOZE0 bits specify the CPU peripheral clock ratio  
0= CPU peripheral clock ratio set to 1:1  
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.  
bit 10-8 RCDIV2:RCDIV0: FRC Postscaler Select bits  
111= 31.25 kHz (divide by 256)  
110= 125 kHz (divide by 64)  
101= 250 kHz (divide by 32)  
100= 500 kHz (divide by 16)  
011= 1 MHz (divide by 8)  
010= 2 MHz (divide by 4)  
001= 4 MHz (divide by 2)  
000= 8 MHz (divide by 1)  
bit 7-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 94  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 7-3:  
Upper Byte:  
OSCTUN: FRC OSCILLATOR TUNE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
bit 15-6 Unimplemented: Read as ‘0’  
bit 5-0  
TUN5:TUN0: FRC Oscillator Tuning bits  
011111= Maximum frequency deviation  
011110=  
000001=  
000000= Center frequency, oscillator is running at factory calibrated frequency  
111111=  
100001=  
100000= Minimum frequency deviation  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
7.4.1  
ENABLING CLOCK SWITCHING  
7.4  
Clock Switching Operation  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 23.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
With few limitations, applications are free to switch  
between any of the four clock sources (POSC, SOSC,  
FRC and LPRC) under software control and at any  
time. To limit the possible side effects that could result  
from this flexibility, PIC24 devices have a safeguard  
lock built into the switching process.  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is dis-  
abled. However, the COSC bits (OSCCON<14:12>)  
will reflect the clock source selected by the FNOSC  
Configuration bits.  
Note:  
Primary Oscillator mode has three  
different submodes (XT, HS and EC)  
which are determined by the POSCMD  
Configuration bits. While an application  
can switch to and from Primary Oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 95  
PIC24FJ128GA FAMILY  
A recommended code sequence for a clock switch  
includes the following:  
7.4.2  
OSCILLATOR SWITCHING  
SEQUENCE  
1. Disable interrupts during the OSCCON register  
unlock and write sequence.  
At a minimum, performing a clock switch requires this  
basic sequence:  
2. Execute the unlock sequence for the OSCCON  
high byte, by writing 78h and 9Ah to  
1. If  
desired,  
read  
the  
COSC  
bits  
(OSCCON<14:12>), to determine the current  
oscillator source.  
OSCCON<15:8>  
instructions.  
in  
two  
back-to-back  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write new oscillator source to the NOSC control  
bits in the instruction immediately following the  
unlock sequence.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Execute the unlock sequence for the OSCCON  
low byte by writing 46h and 57h to  
OSCCON<7:0> in two back-to-back instructions.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit in the instruction immediately  
following the unlock sequence.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
6. Continue to execute code that is not clock  
sensitive (optional).  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
7. Invoke an appropriate amount of software delay  
(cycle counting) to allow the selected oscillator  
and/or PLL to start and stabilize.  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, then the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
8. Check to see if OSWEN is ‘0’. If it is, the switch  
was successful. If OSWEN is still set, then  
check the LOCK bit to determine cause of  
failure.  
2. If a valid clock switch has been initiated, the  
LOCK (OSCCON<5>) and CF (OSCCON<3>)  
status bits are cleared.  
The core sequence for unlocking the OSCCON register  
and initiating a clock switch is shown in Example 7-1.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware will wait until  
the OST expires. If the new source is using the  
PLL, then the hardware waits until a PLL lock is  
detected (LOCK = 1).  
EXAMPLE 7-1:  
BASIC CODE SEQUENCE  
FOR CLOCK SWITCHING  
;Place the new oscillator selection in W0  
;OSCCONH (high byte) Unlock Sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONH, w1  
#0x78, w2  
#0x9A, w3  
w2, [w1]  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
w3, [w1]  
;Set new oscillator selection  
MOV.b WREG, OSCCONH  
;OSCCONL (low byte) unlock sequence  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
MOV  
MOV.b  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONL, w1  
#0x01, w0  
#0x46, w2  
#0x57, w3  
w2, [w1]  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or SOSC (if SOSCEN remains  
set).  
w3, [w1]  
Note 1: The processor will continue to execute  
code throughout the clock switching  
sequence. Timing sensitive code should  
not be executed during this time.  
;Start oscillator switch operation  
MOV.b w0, [w1]  
2: Direct clock switches between any  
Primary Oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL  
modes.  
DS39747C-page 96  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
8.0  
POWER-SAVING FEATURES  
Note: SLEEP_MODE and IDLE_MODE are con-  
stants defined in the assembler include  
file for the selected device.  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset.  
When the device exits these modes, it is said to  
“wake-up”.  
The PIC24FJ128GA family of devices provide the ability  
to manage power consumption by selectively managing  
clocking to the CPU and the peripherals. In general, a  
lower clock frequency and a reduction in the number of  
circuits being clocked constitutes lower consumed  
power. All PIC24F devices manage power consumption  
in four different ways:  
8.2.1  
SLEEP MODE  
Sleep mode has these features:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption will be reduced  
to a minimum provided that no I/O pin is sourcing  
current.  
• Clock frequency  
• Instruction-based Sleep and Idle modes  
• Software-controlled Doze mode  
• Selective peripheral control in software  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption, while  
still maintaining critical application features, such as  
timing sensitive communications.  
• The LPRC clock will continue to run in Sleep  
mode if the WDT is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
8.1  
Clock Frequency and Clock  
Switching  
• Some device features or peripherals may  
continue to operate in Sleep mode. This includes  
items such as the input change notification on the  
I/O ports, or peripherals that use an external clock  
input. Any peripheral that requires the system  
clock source for its operation will be disabled in  
Sleep mode.  
PIC24F devices allow for a wide range of clock  
frequencies to be selected under application control. If  
the system clock configuration is not locked, users can  
choose low-power or high-precision oscillators by simply  
changing the NOSC Configuration bits. The process of  
changing a system clock during operation, as well as  
limitations to the process, are discussed in more detail in  
Section 7.0 “Oscillator Configuration”.  
The device will wake-up from Sleep mode on any of the  
these events:  
• On any interrupt source that is individually  
enabled  
8.2  
Instruction-Based Power-Saving  
Modes  
• On any form of device Reset  
• On a WDT time-out  
On wake-up from Sleep, the processor will restart with  
the same clock source that was active when Sleep  
mode was entered.  
PIC24F devices have two special power-saving modes  
that are entered through the execution of a special  
PWRSAVinstruction. Sleep mode stops clock operation  
and halts all code execution; Idle mode halts the CPU  
and code execution, but allows peripheral modules to  
continue operation. The assembly syntax of the  
PWRSAVinstruction is shown in Example 8-1.  
EXAMPLE 8-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV  
PWRSAV  
#SLEEP_MODE  
#IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 97  
PIC24FJ128GA FAMILY  
It is also possible to use Doze mode to selectively  
reduce power consumption in event driven applica-  
tions. This allows clock sensitive functions, such as  
synchronous communications, to continue without  
interruption while the CPU idles, waiting for something  
to invoke an interrupt routine. Enabling the automatic  
return to full-speed CPU operation on interrupts is  
enabled by setting the ROI bit (CLKDIV<15>). By  
default, interrupt events have no effect on Doze mode  
operation.  
8.2.2  
IDLE MODE  
Idle mode has these features:  
• The CPU will stop executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 8.4  
“Selective Peripheral Module Control”).  
• If the WDT or FSCM is enabled, the LPRC will  
also remain active.  
8.4  
Selective Peripheral Module  
Control  
The device will wake from Idle mode on any of these  
events:  
Idle and Doze modes allow users to substantially  
reduce power consumption by slowing or stopping the  
CPU clock. Even so, peripheral modules still remain  
clocked and thus consume power. There may be cases  
where the application needs what these modes do not  
provide: the allocation of power resources to CPU  
processing with minimal power consumption from the  
peripherals.  
• Any interrupt that is individually enabled.  
• Any device Reset.  
• A WDT time-out.  
On wake-up from Idle, the clock is re-applied to the  
CPU and instruction execution begins immediately,  
starting with the instruction following the PWRSAV  
instruction, or the first instruction in the ISR.  
PIC24F devices address this requirement by allowing  
peripheral modules to be selectively disabled, reducing  
or eliminating their power consumption. This can be  
done with two control bits:  
8.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction will be held off until entry into Sleep  
or Idle mode has completed. The device will then  
wake-up from Sleep or Idle mode.  
• The Peripheral Enable bit, generically named  
“XXXEN”, located in the module’s main control  
SFR.  
• The Peripheral Module Disable (PMD) bit, generi-  
cally named “XXXMD”, located in one of the PMD  
control registers.  
8.3  
Doze Mode  
Generally, changing clock speed and invoking one of  
the power-saving modes are the preferred strategies  
for reducing power consumption. There may be cir-  
cumstances, however, where this is not practical. For  
example, it may be necessary for an application to  
maintain uninterrupted synchronous communication,  
even while it is doing nothing else. Reducing system  
clock speed may introduce communication errors,  
Both bits have similar functions in enabling or disabling  
its associated module. Setting the PMD bit for a module  
disables all clock sources to that module, reducing its  
power consumption to an absolute minimum. In this  
state, the control and status registers associated with the  
peripheral will also be disabled, so writes to those regis-  
ters will have no effect and read values will be invalid.  
Many peripheral modules have a corresponding PMD  
bit.  
while using  
a
power-saving mode may stop  
communications completely.  
In contrast, disabling a module by clearing its XXXEN  
bit disables its functionality, but leaves its registers  
available to be read and written to. Power consumption  
is reduced, but not by as much as the PMD bit does.  
Most peripheral modules have an enable bit;  
exceptions include Capture, Compare and RTCC.  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock contin-  
ues to operate from the same source and at the same  
speed. Peripheral modules continue to be clocked at the  
same speed, while the CPU clock speed is reduced.  
Synchronization between the two clock domains is  
maintained, allowing the peripherals to access the SFRs  
while the CPU executes code at a slower rate.  
To achieve more selective power savings, peripheral  
modules can also be selectively disabled when the  
device enters Idle mode. This is done through the  
control bit of the generic name format “XXXIDL”. By  
default, all modules that can operate during Idle mode  
will do so. Using the disable on Idle feature allows fur-  
ther reduction of power consumption during Idle mode,  
enhancing power savings for extremely critical power  
applications.  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE2:DOZE0 bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:256, with 1:1 being the  
default.  
DS39747C-page 98  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
may be read, but the output driver for the parallel port  
bit will be disabled. If a peripheral is enabled, but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
9.0  
I/O PORTS  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
Writes to the latch, write the latch. Reads from the port  
(PORTx), read the port pins, while writes to the port  
pins, write the latch.  
9.1  
Parallel I/O (PIO) Ports  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 9-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nevertheless  
regarded as a dedicated port because there is no  
other competing source of outputs. An example is the  
INT4 pin.  
FIGURE 9-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
Output Enable  
0
1
PIO Module  
Output Data  
0
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 99  
PIC24FJ128GA FAMILY  
9.1.1  
OPEN-DRAIN CONFIGURATION  
9.3  
Input Change Notification  
In addition to the PORT, LAT and TRIS registers for  
data control, each port pin can also be individually con-  
figured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
The input change notification function of the I/O ports  
allows the PIC24FJ128GA family of devices to gener-  
ate interrupt requests to the processor in response to a  
change-of-state on selected input pins. This feature is  
capable of detecting input change-of-states even in  
Sleep mode, when the clocks are disabled. Depending  
on the device pin count, there are up to 22 external sig-  
nals (CN0 through CN21) that may be selected  
(enabled) for generating an interrupt request on a  
change-of-state.  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired digi-  
tal-only pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
There are four control registers associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
9.2  
Configuring Analog Port Pins  
The use of the AD1PCFG and TRIS registers control  
the operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source that is connected  
to the pin, and eliminate the need for external resistors  
when push button or keypad devices are connected.  
The pull-ups are enabled separately using the CNPU1  
and CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
Pull-ups on change notification pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
9.2.1  
I/O PORT WRITE/READ TIMING  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be a NOP.  
EXAMPLE 9-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
btss PORTB, #13  
; Next Instruction  
DS39747C-page 100  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
Figure 10-1 presents a block diagram of the 16-bit  
timer module.  
10.0 TIMER1  
Note:  
This data sheet summarizes the features  
To configure Timer1 for operation:  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
1. Set the TON bit (= 1).  
2. Select the timer prescaler ratio using the  
TCKPS1:TCKPS0 bits.  
The Timer1 module is a 16-bit timer which can serve as  
the time counter for the Real-Time Clock, or operate as  
a free-running interval timer/counter. Timer1 can  
operate in three modes:  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Set or clear the TSYNC bit to configure  
synchronous or asynchronous operation.  
• 16-bit Timer  
5. Load the timer period value into the PR1  
register.  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP2:T1IP0, to  
set the interrupt priority.  
Timer1 also supports these features:  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit period register match or falling  
edge of external gate signal  
FIGURE 10-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS1:TCKPS0  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
Sync  
1
TSYNC  
Comparator  
PR1  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 101  
PIC24FJ128GA FAMILY  
REGISTER 10-1: T1CON: TIMER1 CONTROL REGISTER  
Upper Byte:  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-0  
R/W-0  
TCKPS1  
R/W-0  
TCKPS0  
U-0  
R/W-0  
TSYNC  
R/W-0  
TCS  
U-0  
TGATE  
bit 7  
bit 0  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7 Unimplemented: Read as ‘0’  
bit 6  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS1:TCKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin T1CK (on the rising edge)  
0= Internal clock (FOSC/2)  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 102  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
To configure Timer2/3 or Timer4/5 for 32-bit operation:  
11.0 TIMER2/3 AND TIMER4/5  
1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
2. Select the prescaler ratio for Timer2 or Timer4  
using the TCKPS1:TCKPS0 bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
The Timer2/3 and Timer4/5 modules are 32-bit timers,  
which can also be configured as four independent 16-bit  
timers with selectable operating modes.  
4. Load the timer period value. PR3 (or PR5) will  
contain the most significant word of the value,  
while PR2 (or PR4) contains the least significant  
word.  
As a 32-bit timer, Timer2/3 and Timer4/5 operate in  
three modes:  
5. If interrupts are required, set the interrupt enable  
bit T3IE or T5IE; use the priority bits,  
T3IP2:T3IP0 or T5IP2:T5IP0, to set the interrupt  
priority. Note that while Timer2 or Timer4 con-  
trols the timer, the interrupt appears as a Timer3  
or Timer5 interrupt.  
• Two independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
• Single 32-bit Timer  
• Single 32-bit Synchronous Counter  
6. Set the TON bit (= 1).  
They also support these features:  
The timer value at any point is stored in the register  
pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5)  
always contains the most significant word of the count,  
while TMR2 (TMR4) contains the least significant word.  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit period register match  
• ADC Event Trigger (Timer4/5 only)  
To configure any of the timers for individual 16-bit  
operation:  
1. Clear the T32 bit corresponding to that timer  
(T2CON<3> for Timer2 and Timer3 or  
T4CON<3> for Timer4 and Timer5).  
Individually, all four of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the ADC Event  
Trigger; this is implemented only with Timer5. The  
operating modes and enabled features are determined  
by setting the appropriate bit(s) in the T2CON, T3CON,  
T4CON and T5CON registers. T2CON and T4CON are  
shown in generic form in Register 11-1; T3CON and  
T5CON are shown in Register 11-2.  
2. Select the timer prescaler ratio using the  
TCKPS1:TCKPS0 bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE; use the priority bits, TxIP2:TxIP0, to  
set the interrupt priority.  
For 32-bit timer/counter operation, Timer2 and Timer4  
are the least significant word; Timer3 and Timer4 are  
the most significant word of the 32-bit timers.  
6. Set the TON bit (TxCON<15> = 1).  
Note:  
For 32-bit operation, T3CON and T5CON  
control bits are ignored. Only T2CON and  
T4CON control bits are used for setup and  
control. Timer2 and Timer4 clock and gate  
inputs are utilized for the 32-bit timer  
modules, but an interrupt is generated with  
the Timer3 or Timer5 interrupt flags.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 103  
PIC24FJ128GA FAMILY  
FIGURE 11-1:  
TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM  
TCKPS1:TCKPS0  
2
TON  
T2CK  
(T4CK)  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TCY  
TGATE  
TGATE  
TCS  
1
0
Q
D
Set T3IF (T5IF)  
Q
CK  
PR3  
PR2  
(PR5)  
(PR4)  
ADC Event Trigger*  
Equal  
MSB  
Comparator  
LSB  
TMR2  
(TMR4)  
TMR3  
(TMR5)  
Sync  
Reset  
16  
Read TMR2 (TMR4)  
Write TMR2 (TMR4)  
16  
16  
TMR3HLD  
(TMR5HLD)  
Data Bus<15:0>  
Note: The 32-bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are  
respective to the T2CON and T4CON registers.  
*
The ADC Event Trigger is available only on Timer4/5.  
DS39747C-page 104  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
FIGURE 11-2:  
TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS1:TCKPS0  
2
TON  
T2CK  
(T4CK)  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TGATE  
TCS  
TGATE  
TCY  
Q
D
1
0
Set T2IF (T4IF)  
Q
CK  
Reset  
Equal  
TMR2 (TMR4)  
Sync  
Comparator  
PR2 (PR4)  
FIGURE 11-3:  
TIMER3 AND TIMER5 (16-BIT ASYNCHRONOUS) BLOCK DIAGRAM  
TCKPS1:TCKPS0  
2
TON  
T3CK  
(T5CK)  
1x  
01  
00  
Sync  
Prescaler  
1, 8, 64, 256  
TGATE  
TCS  
TGATE  
TCY  
Q
Q
D
1
0
Set T3IF (T5IF)  
CK  
Reset  
Equal  
TMR3 (TMR5)  
ADC Event Trigger*  
Comparator  
PR3 (PR5)  
*
The ADC Event Trigger is available only on Timer4/5.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 105  
PIC24FJ128GA FAMILY  
REGISTER 11-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER  
Upper Byte:  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-0  
R/W-0  
TCKPS1  
R/W-0  
TCKPS0  
R/W-0  
T32  
U-0  
R/W-0  
U-0  
TGATE  
TCS  
bit 7  
bit 0  
bit 15  
TON: Timerx On bit  
When TxCON<3> = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When TxCON<3> = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7 Unimplemented: Read as ‘0’  
bit 6  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS1:TCKPS0: Timer2 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-bit Timer Mode Select bit  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
Note:  
In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from pin TxCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
DS39747C-page 106  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 11-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER  
Upper Byte:  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(1)  
U-0  
TGATE(1) TCKPS1(1) TCKPS0(1)  
bit 7  
bit 0  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7 Unimplemented: Read as ‘0’  
bit 6  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS1:TCKPS0: Timery Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1)  
1= External clock from pin TyCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery  
operation; all timer functions are set through T2CON.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 107  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 108  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
12.0 INPUT CAPTURE  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
FIGURE 12-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-bit Timers  
TMRx  
TMRy  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Prescaler  
Counter  
(1, 4, 16)  
FIFO  
R/W  
Logic  
Edge Detection Logic  
and  
Clock Synchronizer  
ICx pin  
ICM<2:0>(ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE(ICxCON<4:3>)  
ICxBUF  
ICI<1:0>  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSn Register)  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 109  
PIC24FJ128GA FAMILY  
12.1 Input Capture Registers  
REGISTER 12-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
Upper Byte:  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
ICI1  
R/W-0  
ICI0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
ICM2  
R/W-0  
ICM1  
R/W-0  
ICM0  
ICTMR  
bit 7  
bit 0  
bit 15-14 Unimplemented: Read as ‘0’  
bit 13  
ICSIDL: Input Capture x Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8 Unimplemented: Read as ‘0’  
bit 7  
ICTMR: Input Capture x Timer Select bit  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
Note:  
Timer selections may vary. Refer to the device data sheet for details.  
bit 6-5  
ICI1:ICI0: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture x Overflow Status Flag (Read-Only) bit  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture x Buffer Empty Status (Read-Only) bit  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM2:ICM0: Input Capture x Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(rising edge detect only, all other control bits are not applicable)  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling) – ICI<1:0> does not control interrupt generation  
for this mode  
000= Input capture module turned off  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in Hardware  
‘0’ = Bit is cleared  
HC = Cleared in Hardware  
x = Bit is unknown  
DS39747C-page 110  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
The output compare module does not have to be dis-  
abled after the falling edge of the output pulse. Another  
pulse can be initiated by rewriting the value of the  
OCxCON register.  
13.0 OUTPUT COMPARE  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
13.2 Setup for Continuous Output  
Pulse Generation  
13.1 Setup for Single Output Pulse  
Generation  
When the OCM control bits (OCxCON<2:0>) are set to  
101’, the selected output compare channel initializes  
the OCx pin to the low state and generates output  
pulses on each and every compare match event.  
When the OCM control bits (OCxCON<2:0>) are set to  
100’, the selected output compare channel initializes  
the OCx pin to the low state and generates a single out-  
put pulse.  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required (these steps assume the timer  
source is initially turned off, but this is not a requirement  
for the module operation):  
To generate a single output pulse, the following steps  
are required (these steps assume the timer source is  
initially turned off, but this is not a requirement for the  
module operation):  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse,  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
3. Calculate the time to the falling edge of the pulse  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in step 2 and 3  
above into the Compare register, OCxR, and the  
4. Write the values computed in steps 2 and 3  
above into the Compare register, OCxR, and the  
Secondary  
Compare  
register,  
OCxRS,  
Secondary  
Compare  
register,  
OCxRS,  
respectively.  
respectively.  
5. Set Timer Period register, PRy, to value equal to  
or greater than value in OCxRS, the Secondary  
Compare register.  
5. Set Timer Period register, PRy, to value equal to  
or greater than value in OCxRS, the Secondary  
Compare register.  
6. Set the OCM bits to ‘101’ and the OCTSEL bit to  
the desired timer source. The OCx pin state will  
now be driven low.  
6. Set the OCM bits to ‘100’ and the OCTSEL  
(OCxCON<3>) bit to the desired timer source.  
The OCx pin state will now be driven low.  
7. Enable the compare time base by setting the TON  
7. Set the TON (TyCON<15>) bit to ‘1’, which  
(TyCON<15>) bit to ‘1’.  
enables the compare time base to count.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
9. When the compare time base, TMRy, matches  
the Secondary Compare register, OCxRS, the  
second and trailing edge (high-to-low) of the pulse  
is driven onto the OCx pin.  
9. When the incrementing timer, TMRy, matches the  
Secondary Compare register, OCxRS, the  
second and trailing edge (high-to-low) of the pulse  
is driven onto the OCx pin. No additional pulses  
are driven onto the OCx pin and it remains at low.  
As a result of the second compare match event,  
the OCxIF interrupt flag bit is set, which will  
result in an interrupt if it is enabled, by setting  
the OCxIE bit. For further information on periph-  
eral interrupts, refer to Section 6.0 “Interrupt  
Controller”.  
10. As a result of the second compare match event,  
the OCxIF interrupt flag bit set.  
11. When the compare time base and the value in its  
respective Period register match, the TMRy  
register resets to 0x0000and resumes counting.  
12. Steps 8 through 11 are repeated and a continuous  
stream of pulses is generated, indefinitely. The  
OCxIF flag is set on each OCxRS-TMRy compare  
match event.  
10. To initiate another single pulse output, change the  
Timer and Compare register settings, if needed,  
and then issue a write to set the OCM bits to ‘100’.  
Disabling and re-enabling of the timer and clear-  
ing the TMRy register are not required, but may  
be advantageous for defining a pulse from a  
known event time boundary.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 111  
PIC24FJ128GA FAMILY  
EQUATION 13-1: CALCULATING THE PWM  
13.3 Pulse-Width Modulation Mode  
(1)  
PERIOD  
The following steps should be taken when configuring  
the output compare module for PWM operation:  
PWM Period = [(PRy) + 1] • TCY • (Timer Prescale Value)  
where:  
PWM Frequency = 1/[PWM Period]  
1. Set the PWM period by writing to the selected  
Timer Period register (PRy).  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
Note 1: Based on TCY = FOSC/2, Doze mode and  
PLL are disabled.  
3. Write the OCxR register with the initial duty  
cycle.  
Note: A PRy value of N will produce a PWM  
period of N + 1 time base count cycles. For  
example, a value of 7 written into the PRy  
register will yield a period consisting of  
8 time base cycles.  
4. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin utiliza-  
tion.  
5. Configure the output compare module for one of  
two PWM operation modes by writing to the Out-  
13.3.2  
PWM DUTY CYCLE  
put  
Compare  
mode  
bits  
OCM<2:0>  
The PWM duty cycle is specified by writing to the  
OCxRS register. The OCxRS register can be written to  
at any time, but the duty cycle value is not latched into  
OCxR until a match between PRy and TMRy occurs  
(i.e., the period is complete). This provides a double  
buffer for the PWM duty cycle and is essential for glitch-  
less PWM operation. In the PWM mode, OCxR is a  
read-only register.  
(OCxCON<2:0>).  
6. Set the TMRy prescale value and enable the  
time base by setting TON (TxCON<15>) = 1.  
Note: The OCxR register should be initialized  
before the output compare module is first  
enabled. The OCxR register becomes a  
Read-Only Duty Cycle register when the  
module is operated in the PWM modes.  
The value held in OCxR will become the  
PWM duty cycle for the first PWM period.  
The contents of the Duty Cycle Buffer  
register, OCxRS, will not be transferred  
into OCxR until a time base period match  
occurs.  
Some important boundary parameters of the PWM duty  
cycle include:  
• If the Duty Cycle register, OCxR, is loaded with  
0000h, the OCx pin will remain low (0% duty cycle).  
• If OCxR is greater than PRy (Timer Period register),  
the pin will remain high (100% duty cycle).  
• If OCxR is equal to PRy, the OCx pin will be low  
for one time base count value and high for all  
other count values.  
13.3.1  
PWM PERIOD  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 13-1.  
See Example 13-1 for PWM mode timing details.  
Table 13-1 shows example PWM frequencies and  
resolutions for a device operating at 10 MIPS.  
(1)  
EQUATION 13-2: CALCULATION FOR MAXIMUM PWM RESOLUTION  
FCY  
log10  
(
)
FPWM • (Timer Prescale Value)  
bits  
Maximum PWM Resolution (bits) =  
log10(2)  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
DS39747C-page 112  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
(1)  
EXAMPLE 13-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS  
1. Find the Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device  
clock rate) and a Timer2 prescaler setting of 1:1.  
TCY = 2/FOSC = 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μs  
PWM Period = (PR2 + 1) • TCY • (Timer 2 Prescale Value)  
19.2 μs  
PR2  
= (PR2 + 1) • 62.5 ns • 1  
= 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:  
PWM Resolution = log10(FCY/FPWM)/log102) bits  
= (log10(16 MHz/52.08 kHz)/log102) bits  
= 8.3 bits  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
(1)  
TABLE 13-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
FFFFh  
16  
1
FFFFh  
16  
1
7FFFh  
15  
1
0FFFh  
12  
1
1
007Fh  
7
1
001Fh  
5
03FFh  
10  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
(1)  
TABLE 13-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
FFFFh  
16  
1
FFFFh  
16  
1
7FFFh  
15  
1
0FFFh  
12  
1
1
007Fh  
7
1
001Fh  
5
03FFh  
10  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
FIGURE 13-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF(1)  
OCxRS(1)  
Output  
Logic  
OCxR(1)  
OCx(1)  
S
R
Q
Output Enable  
3
OCM2:OCM0  
Mode Select  
OCFA or OCFB(2)  
Comparator  
0
OCTSEL  
1
0
1
16  
16  
Period match signals  
from time bases  
(see Note 3).  
TMR register inputs  
from time bases  
(see Note 3).  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels 1 through 8.  
2: OCFA pin controls OC1-OC4 channels. OCFB pin controls OC5-OC8 channels.  
3: Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time  
bases associated with the module.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 113  
PIC24FJ128GA FAMILY  
13.4 Output Compare Register  
REGISTER 13-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
Upper Byte:  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
R-0 HC  
OCFLT  
R/W-0  
R/W-0  
OCM2  
R/W-0  
OCM1  
R/W-0  
OCM0  
OCTSEL  
bit 7  
bit 0  
bit 15-14 Unimplemented: Read as ‘0’  
bit 13  
OCSIDL: Stop Output Compare x in Idle Mode Control bit  
1= Output Compare x will halt in CPU Idle mode  
0= Output Compare x will continue to operate in CPU Idle mode  
bit 12-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in HW only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
OCTSEL: Output Compare x Timer Select bit  
1= Timer3 is the clock source for Output Compare x  
0= Timer2 is the clock source for Output Compare x  
Note: Refer to the device data sheet for specific time bases available to the output compare module.  
bit 2-0  
OCM2:OCM0: Output Compare x Mode Select bits  
111= PWM mode on OCx, Fault pin enabled  
110= PWM mode on OCx, Fault pin disabled  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in Hardware  
‘0’ = Bit is cleared  
HC = Cleared in Hardware  
x = Bit is unknown  
DS39747C-page 114  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
To set up the SPI module for the Standard Master mode  
of operation:  
14.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
1. If using interrupts:  
Note:  
This data sheet summarizes the features  
a) Clear the SPIxIF bit in the respective IFSn  
register.  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
b) Set the SPIxIE bit in the respective IECn  
register.  
The Serial Peripheral Interface (SPI) module is a syn-  
chronous serial interface useful for communicating with  
other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift reg-  
isters, display drivers, A/D converters, etc. The SPI  
module is compatible with Motorola’s SPI and SIOP  
interfaces.  
c) Write the SPIxIP bits in the respective IPCn  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON  
register with MSTEN (SPIxCON1<5>) = 1.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
4. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
The module supports operation in two buffer modes. In  
Standard mode, data is shifted through a single serial  
buffer. In Enhanced Buffer mode, data is shifted  
through an 8-level FIFO buffer.  
5. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
Note:  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register, in either Standard or  
Enhanced Buffer mode.  
To set up the SPI module for the Standard Slave mode  
of operation:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
The module also supports a basic framed SPI protocol  
while operating in either Master or Slave modes. A total  
of four framed SPI configurations are supported.  
a) Clear the SPIxIF bit in the respective IFSn  
register.  
b) Set the SPIxIE bit in the respective IECn  
register.  
The SPI serial interface consists of four pins:  
• SDIx: Serial Data Input  
c) Write the SPIxIP bits in the respective IPCn  
register to set the interrupt priority.  
• SDOx: Serial Data Output  
• SCKx: Shift Clock Input or Output  
3. Write the desired settings to the SPIxCON1 and  
SPIxCON2  
(SPIxCON1<5>) = 0.  
registers  
with  
MSTEN  
• SSx: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
4. Clear the SMP bit.  
The SPI module can be configured to operate using 2,  
3 or 4 pins. In the 3-pin mode, SSx is not used. In the  
2-pin mode, both SDOx and SSx are not used.  
5. If the CKE bit is set, then the SSEN bit  
(SPIxCON1<7>) must be set to enable the SSx  
pin.  
A block diagram of the module is shown in Figure 14-1.  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
Depending on the pin count, devices of the  
PIC24FJ128GA family offer one or two SPI modules on  
a single device.  
7. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
Note: In this section, the SPI modules are  
referred to together as SPIx or separately  
as SPI1 and SPI2. Special Function Reg-  
isters will follow a similar notation. For  
example, SPIxCON refers to the control  
register for the SPI1 or SPI2 module.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 115  
PIC24FJ128GA FAMILY  
To set up the SPI module for the Enhanced Buffer  
Master mode of operation:  
To set up the SPI module for the Enhanced Buffer  
Slave mode of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFSn  
register.  
• Clear the SPIxIF bit in the respective IFSn  
register.  
b) Set the SPIxIE bit in the respective IECn  
register.  
• Set the SPIxIE bit in the respective IECn  
register.  
c) Write the SPIxIP bits in the respective IPCn  
register.  
• Write the SPIxIP bits in the respective IPCn  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1 and  
SPIxCON2  
(SPIxCON1<5>) = 1.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
registers  
with  
MSTEN  
3. Write the desired settings to the SPIxCON1 and  
SPIxCON2  
registers  
with  
MSTEN  
(SPIxCON1<5>) = 0.  
4. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit must be  
set, thus enabling the SSx pin.  
5. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
6. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
7. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
8. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 14-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
1:1/4/16/64  
Primary  
Prescaler  
1:1 to 1:8  
Secondary  
Prescaler  
FCY  
SSx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Control  
Shift  
SDOx  
SDIx  
Enable  
Master Clock  
bit0  
SPIxSR  
Transfer  
Transfer  
8-Level FIFO Buffer  
(Enhanced Modes)  
SPIxBUF(1)  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
Note 1: In Standard modes, data is transferred directly between SPIxSR and SPIxBUF.  
DS39747C-page 116  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 14-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
Upper Byte:  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
R-0  
R-0  
R-0  
SPIEN  
SPISIDL  
SPIBEC2 SPIBEC1 SPIBEC0  
bit 8  
bit 15  
Lower Byte:  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 7  
bit 0  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11 Unimplemented: Read as ‘0’  
bit 10-8 SPIBEC2:SPIBEC0: SPIx Buffer Element Count bits  
Master mode:  
Number of SPI transfers pending.  
Slave mode:  
Number of SPI transfers unread.  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the previous  
data in the SPIxBUF register.  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
In Enhanced Buffer mode:  
Automatically set in hardware when CPU writes SPIxBUF location, loading the last available buffer location.  
Automatically cleared in hardware when a buffer location is available for a CPU write.  
SPIRBF: SPIx Receive Buffer Full Status bit  
bit 0  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
In Enhanced Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread buffer  
location.  
Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
S = Settable bit  
‘0’ = Bit is cleared  
C = Clearable bit  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 117  
PIC24FJ128GA FAMILY  
REGISTER 14-2: SPIXCON1: SPIx CONTROL REGISTER 1  
Upper Byte:  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
SSEN  
R/W-0  
CKP  
R/W-0  
MSTEN  
R/W-0  
SPRE2  
R/W-0  
R/W-0  
SPRE0  
R/W-0  
PPRE1  
R/W-0  
SPRE1  
PPRE0  
bit 7  
bit 0  
bit 15-13 Unimplemented: Read as ‘0’  
bit 12  
bit 11  
bit 10  
bit 9  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
CKE: SPIx Clock Edge Select bit  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
Note:  
The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the  
Framed SPI modes (FRMEN = 1).  
bit 7  
SSEN: Slave Select Enable (Slave mode) bit  
1= SSx pin used for Slave mode  
0= SSx pin not used by module. Pin controlled by port function.  
bit 6  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
bit 5  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
bit 4-2  
SPRE2:SPRE0: Secondary Prescale (Master mode) bits  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
...  
000= Secondary prescale 8:1  
bit 1-0  
PPRE1:PPRE0: Primary Prescale (Master mode) bits  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 118  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 14-3: SPIxCON2: SPIx CONTROL REGISTER 2  
Upper Byte:  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
bit 15  
SPIFSD  
SPIFPOL  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SPIFE  
R/W-0  
SPIBEN  
bit 7  
bit 0  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control on SSx pin bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2 Unimplemented: Read as ‘0’  
bit 1  
SPIFE: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
SPIBEN: Enhanced Buffer Enable bit  
bit 0  
1= Enhanced Buffer enabled  
0= Enhanced Buffer disabled (legacy mode)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 119  
PIC24FJ128GA FAMILY  
FIGURE 14-2:  
SPI MASTER/SLAVE CONNECTION (STANDARD MODE)  
PROCESSOR 1 (SPI Master)  
PROCESSOR 2 (SPI Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
(SPIxRXB)  
Serial Receive Buffer  
(SPIxRXB)  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Transmit Buffer  
Serial Transmit Buffer  
(SPIxTXB)  
(SPIxTXB)  
Serial Clock  
SCKx  
SSx  
SCKx  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
(SSEN (SPIxCON1<7>) = 1and MSTEN (SPIxCON1<5>) = 0)  
(MSTEN (SPIxCON1<5> = 1))  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
FIGURE 14-3:  
SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)  
PROCESSOR 1 (SPI Enhanced Buffer Master)  
PROCESSOR 2 (SPI Enhanced Buffer Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
8-Level FIFO Buffer  
8-level FIFO Buffer  
Serial Clock  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
SCKx  
SSx  
SCKx  
SSx  
MSTEN (SPIxCON1<5> = 1and  
SPIBEN (SPIxCON2<0>) = 1  
SSEN (SPIxCON1<7>) = 1and  
MSTEN (SPIxCON1<5>) = 0and  
SPIBEN (SPIxCON2<0>) = 1  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
DS39747C-page 120  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
FIGURE 14-4:  
FIGURE 14-5:  
FIGURE 14-6:  
FIGURE 14-7:  
SPI MASTER, FRAME MASTER CONNECTION DIAGRAM  
PIC24  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM  
PIC24  
PROCESSOR 2  
SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM  
PIC24  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync.  
Pulse  
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
PIC24  
PROCESSOR 2  
(SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 121  
PIC24FJ128GA FAMILY  
(1)  
EQUATION 14-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED  
FCY  
FSCK =  
Primary Prescaler * Secondary Prescaler  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
(1,2)  
TABLE 14-1: SAMPLE SCK FREQUENCIES  
Secondary Prescaler Settings  
FCY = 16 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
Primary Prescaler Settings  
1:1  
4:1  
16000  
4000  
1000  
250  
8000  
2000  
500  
4000  
1000  
250  
63  
2667  
667  
167  
42  
2000  
500  
125  
31  
16:1  
64:1  
125  
FCY = 5 MHz  
Primary Prescaler Settings  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
16:1  
64:1  
20  
13  
10  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
2: SCKx frequencies shown in kHz.  
DS39747C-page 122  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
15.1 Communicating as a Master in a  
Single Master Environment  
15.0 INTER-INTEGRATED CIRCUIT  
2
(I C™)  
The details of sending a message in Master mode  
depends on the communications protocol for the device  
being communicated with. Typically, the sequence of  
events is as follows:  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
1. Assert a Start condition on SDAx and SCLx.  
2. Send the I2C device address byte to the slave  
with a write indication.  
The Inter-Integrated Circuit (I2C) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, display drivers, A/D  
converters, etc.  
3. Wait for and verify an Acknowledge from the  
slave.  
4. Send the first data byte (sometimes known as  
the command) to the slave.  
The I2C module supports these features:  
• Independent master and slave logic  
• 7-bit and 10-bit device addresses  
5. Wait for and verify an Acknowledge from the  
slave.  
2
• General call address, as defined in the I C protocol  
6. Send the serial memory address low byte to the  
slave.  
• Clock stretching to provide delays for the  
processor to respond to a slave data request  
7. Repeat steps 4 and 5 until all data bytes are  
sent.  
• Both 100 kHz and 400 kHz bus specifications.  
• Configurable address masking  
8. Assert a Repeated Start condition on SDAx and  
SCLx.  
• Multi-Master modes to prevent loss of messages  
in arbitration  
9. Send the device address byte to the slave with  
a read indication.  
• Bus Repeater mode, allowing the acceptance of  
all messages as a slave regardless of the address  
10. Wait for and verify an Acknowledge from the  
slave.  
• Automatic SCL  
11. Enable master reception to receive serial  
memory data.  
A block diagram of the module is shown in Figure 15-1.  
12. Generate an ACK or NACK condition at the end  
of a received byte of data.  
13. Generate a Stop condition on SDAx and SCLx.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 123  
PIC24FJ128GA FAMILY  
2
FIGURE 15-1:  
I C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS39747C-page 124  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
15.2 Setting Baud Rate When  
Operating as a Bus Master  
15.3 Slave Address Masking  
The I2CxMSK register (Register 15-3) designates  
address bit positions as “don’t care” for both 7-bit and  
10-bit Address modes. Setting a particular bit location  
(= 1) in the I2CxMSK register causes the slave module  
to respond whether the corresponding address bit  
value is a ‘0’ or ‘1’. For example, when I2CxMSK is set  
to ‘00100000’, the slave module will detect both  
addresses ‘0000000’ and ‘00100000’.  
To compute the Baud Rate Generator reload value, use  
the following equation:  
(1)  
EQUATION 15-1:  
FCY  
FSCL = ---------------------------------------------  
2 ⋅ (I2CxBRG + 1)  
or  
To enable address masking, the IPMI (Intelligent  
Peripheral Management Interface) must be disabled by  
clearing the IPMIEN bit (I2CxCON<11>).  
FCY  
– 1  
-------------------  
I2CxBRG =  
2 FSCL  
Note 1: Based on TCY = FOSC/2, Doze mode and  
PLL are disabled.  
2
(1)  
TABLE 15-1: I C™ CLOCK RATES  
Required  
System  
FSCL  
I2CxBRG Value  
Actual  
FCY  
FSCL  
(Decimal)  
(Hexadecimal)  
100 kHz  
100 kHz  
100 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
1 MHz  
16 MHz  
8 MHz  
4 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
8 MHz  
4 MHz  
79  
39  
19  
19  
9
4F  
27  
13  
13  
9
100 kHz  
100 kHz  
100 kHz  
400 kHz  
400 kHz  
400 kHz  
333 kHz(2)  
1 MHz  
4
4
2
2
7
7
1 MHz  
3
3
1 MHz(3)  
1 MHz(4)  
1 MHz  
1
1
Legend: Shaded rows represent invalid reload values for a given FSCL and FCY.  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
2: This is closest value to 400 kHz for this value of FCY.  
3: FCY = 2 MHz is the minimum input clock frequency to have FSCL = 1 MHz.  
4: I2CxBRG cannot have a value of less than 2.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 125  
PIC24FJ128GA FAMILY  
REGISTER 15-1: I2CxCON: I2Cx CONTROL REGISTER  
Upper Byte:  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
GCEN  
R/W-0  
STREN  
R/W-0  
R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC  
ACKEN RCEN PEN RSEN SEN  
bit 0  
ACKDT  
bit 7  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables I2Cx module. All I2C pins are controlled by port functions.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C Slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock).  
Hardware clear at beginning of slave transmission.  
Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock).  
Hardware clear at beginning of slave transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI Support mode is enabled; all addresses Acknowledged  
0= IPMI mode disabled  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMBus specification  
0= Disable SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CRSR  
(module is enabled for reception)  
0= General call address disabled  
.
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in Hardware  
‘0’ = Bit is cleared  
HC = Cleared in Hardware  
x = Bit is unknown  
DS39747C-page 126  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 15-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
Upper Byte:  
R/W-0  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
GCEN  
R/W-0  
STREN  
R/W-0  
R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC  
ACKEN RCEN PEN RSEN SEN  
bit 0  
ACKDT  
bit 7  
bit 6  
bit 5  
bit 4  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
ACKDT: Acknowledge Data bit (When operating as I2C master. Applicable during master receive.)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit  
(When operating as I2C master. Applicable during master receive.)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit  
Hardware clear at end of master Acknowledge sequence.  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
bit 0  
.
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C  
Hardware clear at end of eighth bit of master receive data byte.  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins  
Hardware clear at end of master Stop sequence.  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enabled bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins  
Hardware clear at end of master Repeated Start sequence.  
0= Repeated Start condition not in progress  
SEN: Start Condition Enabled bit (when operating as I2C master)  
1= Initiate Start condition on SDA and SCL pins  
Hardware clear at end of master Start sequence.  
0= Start condition not in progress  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in Hardware  
‘0’ = Bit is cleared  
HC = Cleared in Hardware  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 127  
PIC24FJ128GA FAMILY  
REGISTER 15-2: I2CxSTAT: I2Cx STATUS REGISTER  
Upper Byte:  
R-0 HSC  
R-0 HSC  
U-0  
U-0  
U-0  
R/C-0 HS R-0 HSC  
BCL GCSTAT  
R-0 HSC  
ADD10  
bit 8  
ACKSTAT TRSTAT  
bit 15  
Lower Byte:  
R/C-0 HS R/C-0 HS R-0 HSC R/C-0 HSC R/C-0 HSC R-0 HSC  
IWCOL I2COV D/A R/W  
bit 7  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 0  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(When operating as I2C master. Applicable to master transmit operation.)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit  
(When operating as I2C master. Applicable to master transmit operation.)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission.  
Hardware clear at end of slave Acknowledge.  
bit 13-11 Unimplemented: Read as ‘0’  
bit 10  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address.  
Hardware clear at Stop detection.  
bit 8  
ADD10: 10-bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address.  
Hardware clear at Stop detection.  
bit 7  
bit 6  
.
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CRSR to I2CxRCV (cleared by software).  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
C = Clearable bit  
‘1’ = Bit is set  
HS = Set in Hardware  
‘0’ = Bit is cleared  
HSC = Hardware Set/Cleared  
x = Bit is unknown  
DS39747C-page 128  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 15-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
Upper Byte:  
R-0 HSC  
R-0 HSC  
U-0  
U-0  
U-0  
R/C-0 HS R-0 HSC  
BCL GCSTAT  
R-0 HSC  
ADD10  
bit 8  
ACKSTAT TRSTAT  
bit 15  
Lower Byte:  
R/C-0 HS R/C-0 HS R-0 HSC R/C-0 HSC R/C-0 HSC R-0 HSC  
IWCOL I2COV D/A R/W  
bit 7  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 0  
bit 5  
D/A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match.  
Hardware set by write to I2CxTRN or by reception of slave byte.  
bit 4  
bit 3  
bit 2  
bit 1  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R/W: Read/Write bit Information (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV written with received byte.  
Hardware clear when software reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN.  
Hardware clear at completion of data transmission.  
.
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
C = Clearable bit  
‘1’ = Bit is set  
HS = Set in Hardware  
‘0’ = Bit is cleared  
HSC = Hardware Set/Cleared  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 129  
PIC24FJ128GA FAMILY  
REGISTER 15-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK3  
R/W-0  
AMSK2  
R/W-0  
R/W-0  
AMSK7  
bit 7  
AMSK6  
AMSK5  
AMSK4  
AMSK1  
AMSK0  
bit 0  
bit 15-10 Unimplemented: Read as ‘0’  
bit 9-0 AMSKx: Mask for Address Bit x Select bit  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39747C-page 130  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
• Fully Integrated Baud Rate Generator with 16-bit  
Prescaler  
16.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Baud Rates Ranging from 1 Mbps to 15 bps at  
16 MIPS  
• 4-Deep First-In-First-Out (FIFO) Transmit Data  
Buffer  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules  
available in the PIC24 device family. The UART is a full-  
duplex asynchronous system that can communicate  
with peripheral devices, such as personal computers,  
LIN, RS-232 and RS-485 interfaces. The module also  
supports a hardware flow control option with the  
UxCTS and UxRTS pins and also includes an IrDA  
encoder and decoder.  
• Transmit and Receive Interrupts  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA Support  
A simplified block diagram of the UART is shown in  
Figure 16-1. The UART module consists of these key  
important hardware elements:  
The primary features of the UART module are:  
• Full-Duplex 8 or 9-bit Data Transmission through  
the UxTX and UxRX pins  
• Baud Rate Generator  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Hardware Flow Control Option with UxCTS and  
UxRTS pins  
FIGURE 16-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLKx  
UxRTS  
UxCTS  
Hardware Flow Control  
UARTx Receiver  
UxRX  
UxTX  
UARTx Transmitter  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 131  
PIC24FJ128GA FAMILY  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for BRGx = 0), and the minimum baud rate  
possible is FCY/(16 * 65536).  
16.1 UART Baud Rate Generator (BRG)  
The UART module includes a dedicated 16-bit Baud  
Rate Generator. The BRGx register controls the period  
of a free-running 16-bit timer. Equation 16-1 shows the  
formula for computation of the baud rate with  
BRGH = 0.  
Equation 16-2 shows the formula for computation of  
the baud rate with BRGH = 1.  
EQUATION 16-2: UART BAUD RATE WITH  
(1,2)  
BRGH = 1  
EQUATION 16-1: UART BAUD RATE WITH  
(1,2)  
BRGH = 0  
FCY  
Baud Rate =  
4 • (BRGx + 1)  
FCY  
Baud Rate =  
16 • (BRGx + 1)  
FCY  
4 • Baud Rate  
1  
BRGx =  
FCY  
16 • Baud Rate  
– 1  
BRGx =  
Note 1: FCY denotes the instruction cycle clock  
frequency.  
Note 1: FCY denotes the instruction cycle clock  
frequency (FOSC/2).  
2: Based on TCY = FOSC/2, Doze mode  
and PLL are disabled.  
2: Based on TCY = FOSC/2, Doze mode  
and PLL are disabled.  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for BRGx = 0) and the minimum baud rate possible is  
FCY/(4 * 65536).  
Example 16-1 shows the calculation of the baud rate  
error for the following conditions:  
Writing a new value to the BRGx register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
• FCY = 4 MHz  
• Desired Baud Rate = 9600  
(1)  
EXAMPLE 16-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)  
Desired Baud Rate  
=
FCY/(16 (BRGx + 1))  
Solving for BRGx value:  
BRGx  
BRGx  
BRGx  
=
=
=
((FCY/Desired Baud Rate)/16) – 1  
((4000000/9600)/16) – 1  
25  
Calculated Baud Rate  
=
=
4000000/(16 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 – 9600)/9600  
0.16%  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
DS39747C-page 132  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
16.2 Transmitting in 8-Bit Data Mode  
16.5 Receiving in 8-Bit or 9-Bit Data  
Mode  
1. Set up the UART:  
a) Write appropriate values for data, parity and  
Stop bits.  
1. Set up the UART (as described in Section 16.2  
“Transmitting in 8-Bit Data Mode”).  
b) Write appropriate baud rate value to the  
BRGx register.  
2. Enable the UART.  
3. A receive interrupt will be generated when one  
or more data characters have been received as  
per interrupt control bit, URXISELx.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UART.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write data byte to lower byte of TXxREG word.  
The value will be immediately transferred to the  
Transmit Shift Register (TSR), and the serial bit  
stream will start shifting out with next rising edge  
of the baud clock.  
5. Read RXxREG.  
The act of reading the RXxREG character will move the  
next character to the top of the receive FIFO, including  
a new set of PERR and FERR values.  
5. Alternately, the data byte may be transferred  
while UTXEN = 0, and then the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
16.6 Operation of UxCTS and UxRTS  
Control Pins  
UARTx Clear to Send (UxCTS) and Request to Send  
(UxRTS) are the two hardware controlled pins that are  
associated with the UART module. These two pins  
allow the UART to operate in Simplex and Flow Control  
mode. They are implemented to control the transmis-  
sion and reception between the Data Terminal  
Equipment (DTE). The UEN<1:0> bits in the UxMODE  
register configure these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bit, UTXISELx.  
16.3 Transmitting in 9-Bit Data Mode  
1. Set up the UART (as described in Section 16.2  
“Transmitting in 8-Bit Data Mode”).  
2. Enable the UART.  
16.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write TXxREG as a 16-bit value only.  
The UART module provides two types of infrared UART  
support: one is the IrDA clock output to support exter-  
nal IrDA encoder and decoder device (legacy module  
support) and the other is the full implementation of the  
IrDA encoder and decoder.  
5. A word write to TXxREG triggers the transfer of  
the 9-bit data to the TSR. Serial bit stream will  
start shifting out with the first rising edge of the  
baud clock.  
6. A transmit interrupt will be generated as per the  
setting of control bit, UTXISELx.  
16.8 External IrDA Support – IrDA  
Clock Output  
16.4 Break and Sync Transmit  
Sequence  
To support external IrDA encoder and decoder devices,  
the BCLKx pin (same as the UxRTS pin) can be  
configured to generate the 16x baud clock. With  
UEN<1:0> = 11, the BCLKx pin will output the 16x  
baud clock if the UART module is enabled. It can be  
used to support the IrDA codec chip.  
The following sequence will send a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UART for the desired mode.  
2. Set UTXEN and UTXBRK – sets up the Break  
character,  
16.9 Built-in IrDA Encoder and Decoder  
3. Load the TXxREG with a dummy character to  
initiate transmission (value is ignored).  
The UART has full implementation of the IrDA encoder  
and decoder as part of the UART module. The built-in  
IrDA encoder and decoder functionality is enabled  
using the IREN bit UxMODE<12>. When enabled  
(IREN = 1), the receive pin (UxRX) acts as the input  
from the infrared receiver. The transmit pin (UxTX) acts  
as the output to the infrared transmitter.  
4. Write ‘55h’ to TXxREG – loads Sync character  
into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 133  
PIC24FJ128GA FAMILY  
REGISTER 16-1: UxMODE: UARTx MODE REGISTER  
Upper Byte:  
R/W-0  
UARTEN  
bit 15  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN  
R/W-0  
U-0  
R/W-0(1)  
UEN1  
R/W-0(1)  
UEN0  
RTSMD  
bit 8  
Lower Byte:  
R/W-0 HC  
WAKE  
bit 7  
R/W-0  
LPBACK  
R/W-0 HC  
ABAUD  
R/W-0  
RXINV  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
PDSEL1  
PDSEL0  
STSEL  
bit 0  
bit 15  
UARTEN: UARTx Enable bit  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA Encoder and Decoder Enable bit  
1= IrDA encoder and decoder enabled  
0= IrDA encoder and decoder disabled  
Note: This feature is only available for the 16x BRG mode (BRGH = 0).  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN1:UEN0: UARTx Enable bits  
11= UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin controlled by PORT latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by PORT latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins controlled by PORT latches  
Note 1: Bit availability depends on pin availability.  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge, bit cleared in  
hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h); cleared  
in hardware upon completion  
0= Baud rate measurement disabled or completed  
bit 4  
RXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at Reset  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Cleared  
‘0’ = Bit is cleared  
HS = Hardware Set  
x = Bit is unknown  
DS39747C-page 134  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 16-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
Upper Byte:  
R/W-0  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN  
R/W-0  
U-0  
R/W-0(1)  
UEN1  
R/W-0(1)  
UEN0  
UARTEN  
bit 15  
RTSMD  
bit 8  
Lower Byte:  
R/W-0 HC  
WAKE  
bit 7  
R/W-0  
LPBACK  
R/W-0 HC  
ABAUD  
R/W-0  
RXINV  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
PDSEL1  
PDSEL0  
STSEL  
bit 0  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x Baud Clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x Baud Clock, Standard mode)  
bit 2-1  
PDSEL1:PDSEL0: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at Reset  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Cleared  
‘0’ = Bit is cleared  
HS = Hardware Set  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 135  
PIC24FJ128GA FAMILY  
REGISTER 16-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
Upper Byte:  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
R-0  
R-1  
UTXISEL1 UTXINV(1) UTXISEL0  
UTXEN  
UTXBF  
TRMT  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
PERR  
R-0  
FERR  
R/C-0  
OERR  
R-0  
URXISEL1 URXISEL0 ADDEN  
bit 7  
RIDLE  
URXDA  
bit 0  
bit 15,13 UTXISEL1:UTXISEL0: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register and as a result, the transmit  
buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations  
are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at  
least one character open in the transmit buffer)  
bit 14  
UTXINV: IrDA Encoder Transmit Polarity Inversion bit(1)  
1= IrDA encoded UxTX idle state is ‘1’  
0= IrDA encoded UxTX idle state is ‘0’  
Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled  
(IREN = 1).  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
bit 9  
UTXEN: Transmit Enable bit  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by PORT.  
UTXBF: Transmit Buffer Full Status bit (Read-Only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (Read-Only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL1:URXISEL0: Receive Interrupt Mode Selection bits  
11= Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the RSR to the receive buffer.  
Receive buffer has one or more characters.  
bit 5  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.  
0 = Address Detect mode disabled  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at Reset  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Set  
‘0’ = Bit is cleared  
HC = Hardware Cleared  
x = Bit is unknown  
DS39747C-page 136  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 16-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
Upper Byte:  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
R-0  
R-1  
UTXISEL1 UTXINV(1) UTXISEL0  
UTXEN  
UTXBF  
TRMT  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
PERR  
R-0  
FERR  
R/C-0  
OERR  
R-0  
URXISEL1 URXISEL0 ADDEN  
bit 7  
RIDLE  
URXDA  
bit 0  
bit 4  
bit 3  
bit 2  
bit 1  
RIDLE: Receiver Idle bit (Read-Only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (Read-Only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (Read-Only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (Read/Clear-Only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed (clearing a previously set OERR bit (10transition) will reset the  
receiver buffer and the RSR to the empty state)  
bit 0  
URXDA: Receive Buffer Data Available bit (Read-Only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at Reset  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Set  
‘0’ = Bit is cleared  
HC = Hardware Cleared  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 137  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 138  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
Key features of the PMP module include:  
17.0 PARALLEL MASTER PORT  
• Up to 16 Programmable Address Lines  
• Up to Two Chip Select Lines  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
• Programmable Strobe Options  
- Individual Read and Write Strobes or;  
- Read/Write Strobe with Enable Strobe  
• Address Auto-Increment/Auto-Decrement  
• Programmable Address/Data Multiplexing  
• Programmable Polarity on Control Signals  
• Legacy Parallel Slave Port Support  
• Enhanced Parallel Slave Support  
- Address Support  
The Parallel Master Port module (PMP) is a parallel  
8-bit I/O module, specifically designed to communicate  
with a wide variety of parallel devices, such as commu-  
nications peripherals, LCDs, external memory devices  
and microcontrollers. Because the interface to parallel  
peripherals varies significantly, the PMP is highly  
configurable.  
- 4-byte Deep Auto-Incrementing Buffer  
• Programmable Wait States  
• Selectable Input Voltage Levels  
FIGURE 17-1:  
PMP MODULE OVERVIEW  
Address Bus  
Data Bus  
Control Lines  
PMA<0>  
PMALL  
PIC24F  
Parallel Master Port  
PMA<1>  
PMALH  
Up to 16-bit Address  
EEPROM  
PMA<13:2>  
PMA<14>  
PMCS1  
PMA<15>  
PMCS2  
PMBE  
FIFO  
Buffer  
Microcontroller  
LCD  
PMRD  
PMRD/PMWR  
PMWR  
PMENB  
PMD<7:0>  
PMA<7:0>  
PMA<15:8>  
8-bit Data  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 139  
PIC24FJ128GA FAMILY  
REGISTER 17-1: PMCON: PARALLEL PORT CONTROL REGISTER  
Upper Byte:  
R/W-0  
U-0  
R/W-0  
PSIDL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMPEN  
ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN  
bit 8  
bit 15  
Lower Byte:  
R/W-0  
CSF1  
R/W-0  
CSF0  
R/W-0(1)  
ALP  
R/W-0(1)  
CS2P  
R/W-0(1)  
CS1P  
R/W-0  
BEP  
R/W-0  
WRSP  
R/W-0  
RDSP  
bit 7  
bit 0  
bit 15  
PMPEN: Parallel Master Port Enable bit  
1= PMP enabled  
0= PMP disabled, no off-chip access performed  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits  
11= Reserved  
10= All 16 bits of address are multiplexed on PMD<7:0> pins  
01= Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 8 bits are on PMA<15:8>  
00= Address and data appear on separate pins  
bit 10  
bit 9  
PTBEEN: Byte Enable Port Enable bit (16-bit Master mode)  
1= PMBE port enabled  
0= PMBE port disabled  
PTWREN: Write Enable Strobe Port Enable bit  
1= PMWR/PMENB port enabled  
0= PMWR/PMENB port disabled  
bit 8  
PTRDEN: Read/Write Strobe Port Enable bit  
1= PMRD/PMWR port enabled  
0= PMRD/PMWR port disabled  
bit 7-6  
CSF1:CSF0: Chip Select Function bits  
11= Reserved  
10= PMCS1 and PMCS2 function as chip select  
01= PMCS2 functions as chip select, PMCS1 functions as address bit 14  
00= PMCS1 and PMCS2 function as address bits 15 and 14  
bit 5  
ALP: Address Latch Polarity bit(1)  
1= Active-high (PMALL and PMALH)  
0= Active-low (PMALL and PMALH)  
Note 1: These bits have no effect when their corresponding pins are used as address lines.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = bit is unknown  
-n = Value at Reset  
DS39747C-page 140  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 17-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)  
Upper Byte:  
R/W-0  
U-0  
R/W-0  
PSIDL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMPEN  
bit 15  
ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN  
bit 8  
Lower Byte:  
R/W-0  
CSF1  
R/W-0  
CSF0  
R/W-0(1)  
ALP  
R/W-0(1)  
CS2P  
R/W-0(1)  
CS1P  
R/W-0  
BEP  
R/W-0  
WRSP  
R/W-0  
RDSP  
bit 7  
bit 0  
bit 4  
bit 3  
bit 2  
bit 1  
CS2P: Chip Select 2 Polarity bit(1)  
1= Active-high (PMCS2)  
0= Active-low (PMCS2)  
CS1P: Chip Select 1 Polarity bit(1)  
1= Active-high (PMCS1/PMCS)  
0= Active-low (PMCS1/PMCS)  
BEP: Byte Enable Polarity bit  
1= Byte enable active-high (PMBE)  
0= Byte enable active-low (PMBE)  
WRSP: Write Strobe Polarity bit  
For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Write strobe active-high (PMWR)  
0= Write strobe active-low (PMWR)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Enable strobe active-high (PMENB)  
0= Enable strobe active-low (PMENB)  
bit 0  
RDSP: Read Strobe Polarity bit  
For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Read strobe active-high (PMRD)  
0= Read strobe active-low (PMRD)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Read/write strobe active-high (PMRD/PMWR)  
0= Read/write strobe active-low (PMRD/PMWR)  
Note 1: These bits have no effect when their corresponding pins are used as address lines.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = bit is unknown  
-n = Value at Reset  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 141  
PIC24FJ128GA FAMILY  
REGISTER 17-2: PMMODE: PARALLEL PORT MODE REGISTER  
Upper Byte:  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUSY  
IRQM1  
IRQM0  
INCM1  
INCM0  
MODE16  
MODE1  
MODE0  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAITM2  
R/W-0  
WAITM1  
R/W-0  
R/W-0  
R/W-0  
WAITB1(1) WAITB0(1) WAITM3  
WAITM0 WAITE1(1) WAITE0(1)  
bit 7  
bit 0  
bit 15  
BUSY: Busy bit (Master mode only)  
1= Port is busy (not useful when the processor stall is active)  
0= Port is not busy  
bit 14-13 IRQM1:IRQM0: Interrupt Request Mode bits  
11= Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode)  
or on a read or write operation when PMA<1:0> = 11(Addressable PSP mode only)  
10= No interrupt generated, processor stall activated  
01= Interrupt generated at the end of the read/write cycle  
00= No interrupt generated  
bit 12-11 INCM1:INCM0: Increment Mode bits  
11= PSP read and write buffers auto-increment (Legacy PSP mode only)  
10= Decrement ADDR<15,13:0> by 1 every read/write cycle  
01= Increment ADDR<15,13:0> by 1 every read/write cycle  
00= No increment or decrement of address  
bit 10  
MODE16: 8/16-bit Mode bit  
1= 16-bit mode: data register is 16 bits, a read or write to the data register invokes two 8-bit transfers  
0= 8-bit mode: data register is 8 bits, a read or write to the data register invokes one 8-bit transfer  
bit 9-8  
MODE1:MODE0: Parallel Port Mode Select bits  
11= Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)  
10= Master mode 2 (PMCSx, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)  
01= Enhanced PSP, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)  
00= Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)  
bit 7-6  
bit 5-2  
bit 1-0  
WAITB1:WAITB0: Data Setup to Read/Write Wait State Configuration bits(1)  
11= Data wait of 4 TCY; multiplexed address phase of 4 TCY  
10= Data wait of 3 TCY; multiplexed address phase of 3 TCY  
01= Data wait of 2 TCY; multiplexed address phase of 2 TCY  
00= Data wait of 1 TCY; multiplexed address phase of 1 TCY  
WAITM3:WAITM0: Read to Byte Enable Strobe Wait State Configuration bits  
1111= Wait of additional 15 TCY  
...  
0001= Wait of additional 1 TCY  
0000= No additional wait cycles (operation forced into one TCY)  
WAITE1:WAITE0: Data Hold After Strobe Wait State Configuration bits(1)  
11= Wait of 4 TCY  
10= Wait of 3 TCY  
01= Wait of 2 TCY  
00= Wait of 1 TCY  
Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at Reset  
DS39747C-page 142  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 17-3: PMADDR: PARALLEL PORT ADDRESS REGISTER  
Upper Byte:  
R/W-0  
R/W-0  
CS1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
CS2  
ADDR<13:8>  
bit 15  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
ADDR<7:0>  
bit 7  
bit 15  
bit 14  
CS2: Chip Select 2 bit  
1= Chip select 2 is active  
0= Chip select 2 is inactive (pin functions as PMA<15>)  
CS1: Chip Select 1 bit  
1= Chip select 1 is active  
0= Chip select 1 is inactive (pin functions as PMA<14>)  
bit 13-0 ADDR13:ADDR0: Parallel Port Destination Address bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at Reset  
REGISTER 17-4: PMPEN: PARALLEL PORT ENABLE REGISTER  
Upper Byte:  
R/W-0  
PTEN15  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN14  
PTEN13  
PTEN12  
PTEN11  
PTEN10  
PTEN9  
PTEN8  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
PTEN6  
R/W-0  
PTEN5  
R/W-0  
PTEN4  
R/W-0  
R/W-0  
PTEN2  
R/W-0  
R/W-0  
PTEN7  
PTEN3  
PTEN1  
PTEN0  
bit 7  
bit 0  
bit 15-14 PTEN15:PTEN14: PMCSx Strobe Enable bits  
1= PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1  
0= PMA15 and PMA14 function as port I/O  
bit 13-2 PTEN13:PTEN2: PMP Address Port Enable bits  
1= PMA<13:2> function as PMP address lines  
0= PMA<13:2> function as port I/O  
bit 1-0  
PTEN1:PTEN0: PMALH/PMALL Strobe Enable bits  
1= PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL  
0= PMA1 and PMA0 pads functions as port I/O  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at Reset  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 143  
PIC24FJ128GA FAMILY  
REGISTER 17-5: PMSTAT: PARALLEL PORT STATUS REGISTER  
Upper Byte:  
R-0  
IBF  
R/W-0 HS  
IBOV  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
IB3F  
IB2F  
IB1F  
IB0F  
bit 15  
bit 8  
Lower Byte:  
R-1  
R/W-0 HS  
OBUF  
U-0  
U-0  
R-1  
R-1  
R-1  
OB1E  
R-1  
OBE  
OB3E  
OB2E  
OB0E  
bit 7  
bit 0  
bit 15  
bit 14  
IBF: Input Buffer Full Status bit  
1= All writable input buffer registers are full  
0= Some or all of the writable input buffer registers are empty  
IBOV: Input Buffer Overflow Status bit  
1= A write attempt to a full input byte register occurred (must be cleared in software)  
0= No overflow occurred  
bit 13-12 Unimplemented: Read as ‘0’  
bit 11-8 IBnF: Input Buffer n Status Full bit  
1= Input buffer contains data that has not been read (reading buffer will clear this bit)  
0= Input buffer does not contain any unread data  
bit 7  
bit 6  
OBE: Output buffer Empty Status bit  
1= All readable output buffer registers are empty  
0= Some or all of the readable output buffer registers are full  
OBUF: Output Buffer Underflow Status bit  
1= A read occurred from an empty output byte register (must be cleared in software)  
0= No underflow occurred  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
OBnE: Output Buffer n Status Empty bit  
1= Output buffer is empty (writing data to the buffer will clear this bit)  
0= Output buffer contains data that has not been transmitted  
Legend:  
HS = Hardware Set  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Cleared  
R = Readable bit  
-n = Value at Reset  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
DS39747C-page 144  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 17-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
RTSECSEL PMPTTL  
bit 0  
bit 7  
bit 15-2 Unimplemented: Read as ‘0’  
bit 1  
bit 0  
RTSECSEL: RTCC Seconds Clock Output Select bit  
1= RTCC Seconds Clock is selected for the RTCC pin  
0= RTCC Alarm Pulse is selected for the RTCC pin  
Note:  
To enable the actual RTCC output, the RTCCFG (RTCOE) bit needs to be set.  
PMPTTL: PMP Module TTL Input Buffer Select bit  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt input buffers  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at Reset  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 145  
PIC24FJ128GA FAMILY  
FIGURE 17-2:  
LEGACY PARALLEL SLAVE PORT EXAMPLE  
Address Bus  
Data Bus  
Master  
PMD<7:0>  
PIC24F Slave  
PMD<7:0>  
Control Lines  
PMCS  
PMRD  
PMWR  
PMCS  
PMRD  
PMWR  
FIGURE 17-3:  
ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE  
PIC24F Slave  
Master  
PMA<1:0>  
PMA<1:0>  
Write  
Address  
Decode  
Read  
Address  
Decode  
PMD<7:0>  
PMD<7:0>  
PMDOUT1L (0)  
PMDIN1L (0)  
PMDIN1H (1)  
PMDIN2L (2)  
PMDIN2H (3)  
PMCS  
PMCS  
PMRD  
PMWR  
PMDOUT1H (1)  
PMDOUT2L (2)  
PMDOUT2H (3)  
PMRD  
PMWR  
Address Bus  
Data Bus  
Control Lines  
TABLE 17-1: SLAVE MODE ADDRESS RESOLUTION  
PMA<1:0>  
Output Register (Buffer)  
Input Register (Buffer)  
00  
01  
10  
11  
PMDOUT1<7:0> (0)  
PMDOUT1<15:8> (1)  
PMDOUT2<7:0> (2)  
PMDOUT2<15:8> (3)  
PMDIN1<7:0> (0)  
PMDIN1<15:8> (1)  
PMDIN2<7:0> (2)  
PMDIN2<15:8> (3)  
FIGURE 17-4:  
MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND  
WRITE STROBES, TWO CHIP SELECTS)  
PIC24F  
PMA<13:0>  
PMD<7:0>  
PMCS1  
PMCS2  
PMRD  
Address Bus  
Data Bus  
Control Lines  
PMWR  
DS39747C-page 146  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
FIGURE 17-5:  
MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ  
AND WRITE STROBES, TWO CHIP SELECTS)  
PIC24F  
PMA<13:8>  
PMD<7:0>  
PMA<7:0>  
PMCS1  
PMCS2  
PMALL  
PMRD  
Address Bus  
Multiplexed  
Data and  
Address Bus  
Control Lines  
PMWR  
FIGURE 17-6:  
MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND  
WRITE STROBES, TWO CHIP SELECTS)  
PMD<7:0>  
PMA<13:8>  
PIC24F  
PMCS1  
PMCS2  
PMALL  
PMALH  
PMRD  
PMWR  
Multiplexed  
Data and  
Address Bus  
Control Lines  
FIGURE 17-7:  
EXAMPLE OF A MULTIPLEXED ADDRESSING APPLICATION  
PIC24F  
A<7:0>  
PMD<7:0>  
PMALL  
373  
A<15:0>  
D<7:0>  
D<7:0>  
CE  
A<15:8>  
373  
OE  
WR  
PMALH  
PMCS  
PMRD  
PMWR  
Address Bus  
Data Bus  
Control Lines  
FIGURE 17-8:  
EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION  
PIC24F  
A<7:0>  
373  
PMD<7:0>  
PMALL  
A<14:0>  
D<7:0>  
D<7:0>  
CE  
A<14:8>  
PMA<14:7>  
OE  
WR  
Address Bus  
Data Bus  
PMCS  
PMRD  
PMWR  
Control Lines  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 147  
PIC24FJ128GA FAMILY  
FIGURE 17-9:  
EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION  
PIC24F  
PMD<7:0>  
Parallel Peripheral  
AD<7:0>  
PMALL  
PMCS  
PMRD  
PMWR  
ALE  
CS  
Address Bus  
Data Bus  
RD  
WR  
Control Lines  
FIGURE 17-10:  
PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 8-BIT DATA)  
PIC24F  
Parallel EEPROM  
PMA<n:0>  
A<n:0>  
PMD<7:0>  
D<7:0>  
PMCS  
PMRD  
PMWR  
CE  
OE  
WR  
Address Bus  
Data Bus  
Control Lines  
FIGURE 17-11:  
PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 16-BIT DATA)  
PIC24F  
Parallel EEPROM  
A<n:1>  
D<7:0>  
PMA<n:0>  
PMD<7:0>  
PMBE  
PMCS  
PMRD  
PMWR  
A0  
CE  
OE  
WR  
Address Bus  
Data Bus  
Control Lines  
FIGURE 17-12:  
LCD CONTROL EXAMPLE (BYTE MODE OPERATION)  
PIC24F  
LCD Controller  
PM<7:0>  
PMA0  
D<7:0>  
RS  
PMRD/PMWR  
PMCS  
R/W  
E
Address Bus  
Data Bus  
Control Lines  
DS39747C-page 148  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
18.0 REAL-TIME CLOCK AND  
CALENDAR  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
FIGURE 18-1:  
RTCC BLOCK DIAGRAM  
CPU Clock Domain  
RTCC Clock Domain  
32.768 kHz Input  
from SOSC Oscillator  
RCFGCAL  
RTCC Prescalers  
0.5s  
ALCFGRPT  
YEAR  
MTHDAY  
RTCVAL  
RTCC Timer  
Alarm  
WKDYHR  
MINSEC  
Event  
Comparator  
ALMTHDY  
Compare Registers  
with Masks  
ALRMVAL  
ALWDHR  
ALMINSEC  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC Pin  
RTCOE  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 149  
PIC24FJ128GA FAMILY  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired alarm register  
pair (see Table 18-2).  
18.1 RTCC Module Registers  
The RTCC module registers are organized into three  
categories:  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
By writing the ALRMVALH byte, the alarm pointer value  
ALRMPTR<1:0> decrements by one until it reaches  
00’. Once it reaches ‘00’, the ALRMMIN and  
ALRMSEC value will be accessible through  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
18.1.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through corre-  
sponding register pointers. The RTCC Value register  
window (RTCVALH and RTCVALL) uses the RTCPTR  
bits (RCFGCAL<9:8>) to select the desired timer  
register pair (see Table 18-1).  
TABLE 18-2: ALRMVAL REGISTER  
MAPPING  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
ALRMVAL<15:8> ALRMVAL<7:0>  
By writing the RTCVALH byte, the RTCC pointer value  
RTCPTR<1:0> decrements by one until it reaches ‘00’.  
Once it reaches ‘00’, the MINUTES and SECONDS  
value will be accessible through RTCVALH and  
RTCVALL until the pointer value is manually changed.  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
TABLE 18-1: RTCVAL REGISTER MAPPING  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL bytes will decrement the ALRMPTR<1:0>  
value. The same applies to the RTCVALH or RTCVALL  
bytes with the RTCPTR<1:0> being decremented.  
RTCC Value Register Window  
RTCPTR  
<1:0>  
RTCVAL<15:8> RTCVAL<7:0>  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
Note:  
This only applies to read operations and  
not write operations.  
YEAR  
DS39747C-page 150  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
18.1.2  
RTCC CONTROL REGISTERS  
(1)  
REGISTER 18-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER  
Upper Byte:  
R/W-0  
RTCEN(2)  
bit 15  
U-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
RTCWREN RTCSYNC HALFSEC RTCOE  
RTCPTR1 RTCPTR0  
bit 8  
Lower Byte:  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple  
resulting in an invalid data read. If the register is read twice and results in the same data, the data can  
be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
HALFSEC: Half-Second Status bit  
1= Second half period of a second  
0= First half period of a second  
Note:  
This bit is read-only. It is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
RTCOE: RTCC Output Enable bit  
1= RTCC output enabled  
0= RTCC output disabled  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 151  
PIC24FJ128GA FAMILY  
(1)  
REGISTER 18-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER  
(CONTINUED)  
Upper Byte:  
R/W-0  
RTCEN(2)  
bit 15  
U-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
RTCWREN RTCSYNC HALFSEC RTCOE  
RTCPTR1 RTCPTR0  
bit 8  
Lower Byte:  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
RTCPTR1:RTCPTR0: RTCC Value Register Window Pointer bits  
bit 9-8  
Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers; the  
RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
00= MINUTES  
01= WEEKDAY  
10= MONTH  
11= Reserved  
RTCVAL<7:0>:  
00= SECONDS  
01= HOURS  
10= DAY  
11= YEAR  
bit 7-0  
CAL7:CAL0: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every one minute  
...  
01111111= Minimum positive adjustment; adds 4 RTC clock pulses every one minute  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute  
...  
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 152  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 18-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
RTSECSEL PMPTTL  
bit 0  
bit 7  
bit 15-2 Unimplemented: Read as ‘0’  
bit 1  
bit 0  
RTSECSEL: RTCC Seconds Clock Output Select bit  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
Note:  
To enable the actual RTCC output, the RTCCFG (RTCOE) bit needs to be set.  
PMPTTL: PMP Module TTL Input Buffer Select bit  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt input buffers  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at Reset  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 153  
PIC24FJ128GA FAMILY  
REGISTER 18-3: ALCFGRPT: ALARM CONFIGURATION REGISTER  
Upper Byte:  
R/W-0  
ALRMEN  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHIME  
AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ARPT7  
ARPT6  
ARPT5  
ARPT4  
ARPT3  
ARPT2  
ARPT1  
ARPT0  
bit 7  
bit 0  
bit 15  
bit 14  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00 and  
CHIME = 0)  
0= Alarm is disabled  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> is allowed to roll over from 00h to FFh  
0= Chime is disabled; ARPT<7:0> stops once it reaches 00h  
bit 13-10 AMASK3:AMASK0: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every 4 years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 9-8  
ALRMPTR1:ALRMPTR0: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers; the  
ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= Unimplemented  
ALRMVAL<7:0>:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= Unimplemented  
bit 7-0  
ARPT7:ARPT0: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
...  
00000000= Alarm will not repeat  
The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh  
unless CHIME = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 154  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
18.1.3  
RTCVAL REGISTER MAPPINGS  
(1)  
REGISTER 18-4: YEAR: YEAR VALUE REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
R/W-x  
YRTEN3  
bit 7  
R/W-x  
R/W-x  
YRTEN1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
YRTEN2  
YRTEN0 YRONE3 YRONE2 YRONE1 YRONE0  
bit 0  
bit 15-8 Unimplemented: Read as ‘0’  
bit 7-4  
bit 3-0  
YRTEN3:YRTEN0: Binary Coded Decimal Value of Year’s Tens Digit; Contains a value from 0 to 9  
YRONE3:YRONE0: Binary Coded Decimal Value of Year’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
REGISTER 18-5: MTHDY: MONTH AND DAY VALUE REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
MTHTEN0 MTHONE3 MTHONE2 MTHONE1 MTHONE0  
bit 8  
bit 15  
Lower Byte:  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1 DAYTEN0 DAYONE3 DAYONE2 DAYONE1 DAYONE0  
bit 0  
bit 7  
bit 15-13 Unimplemented: Read as ‘0’  
bit 12 MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; Contains a value of 0 or 1  
bit 11-8 MTHONE3:MTHONE0: Binary Coded Decimal Value of Month’s Ones Digit; Contains a value from 0 to 9  
bit 7-6  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
DAYTEN1:DAYTEN0: Binary Coded Decimal Value of Day’s Tens Digit; Contains a value from 0 to 3  
DAYONE3:DAYONE0: Binary Coded Decimal Value of Day’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 155  
PIC24FJ128GA FAMILY  
(1)  
REGISTER 18-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
Lower Byte:  
U-0  
U-0  
R/W-x  
HRTEN1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN0 HRONE3 HRONE2 HRONE1 HRONE0  
bit 0  
bit 7  
bit 15-11 Unimplemented: Read as ‘0’  
bit 10-8 WDAY2:WDAY0: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6  
bit 7-6  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
HRTEN1:HRTEN0: Binary Coded Decimal Value of Hour’s Tens Digit; Contains a value from 0 to 2  
HRONE3:HRONE0: Binary Coded Decimal Value of Hour’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 18-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER  
Upper Byte:  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2 MINTEN1 MINTEN0 MINONE3 MINONE2 MINONE1 MINONE0  
bit 8  
bit 15  
Lower Byte:  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 SECONE1 SECONE0  
bit 0  
bit 7  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 MINTEN2:MINTEN0: Binary Coded Decimal Value of Minute’s Tens Digit; Contains a value from 0 to 5  
bit 11-8 MINONE3:MINONE0: Binary Coded Decimal Value of Minute’s Ones Digit; Contains a value from 0 to 9  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN2:SECTEN0: Binary Coded Decimal Value of Second’s Tens Digit; Contains a value from 0 to 5  
SECONE3:SECONE0: Binary Coded Decimal Value of Second’s Ones Digit; Contains a value from 0 to 9  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 156  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
18.1.4  
ALRMVAL REGISTER MAPPINGS  
(1)  
REGISTER 18-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0 MTHONE3 MTHONE2 MTHONE1 MTHONE0  
bit 8  
bit 15  
Lower Byte:  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1 DAYTEN0 DAYONE3 DAYONE2 DAYONE1 DAYONE0  
bit 0  
bit 7  
bit 15-13 Unimplemented: Read as ‘0’  
bit 12 MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; Contains a value of 0 or 1  
bit 11-8 MTHONE3:MTHONE0: Binary Coded Decimal Value of Month’s Ones Digit; Contains a value from 0 to 9  
bit 7-6  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
DAYTEN1:DAYTEN0: Binary Coded Decimal Value of Day’s Tens Digit; Contains a value from 0 to 3  
DAYONE3:DAYONE0: Binary Coded Decimal Value of Day’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(1)  
REGISTER 18-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY0  
bit 8  
WDAY2  
WDAY1  
bit 15  
Lower Byte:  
U-0  
U-0  
R/W-x  
HRTEN1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN0 HRONE3 HRONE2 HRONE1 HRONE0  
bit 0  
bit 7  
bit 15-11 Unimplemented: Read as ‘0’  
bit 10-8 WDAY2:WDAY0: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6  
bit 7-6  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
HRTEN1:HRTEN0: Binary Coded Decimal Value of Hour’s Tens Digit; Contains a value from 0 to 2  
HRONE3:HRONE0: Binary Coded Decimal Value of Hour’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 157  
PIC24FJ128GA FAMILY  
REGISTER 18-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER  
Upper Byte:  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2 MINTEN1 MINTEN0 MINONE3 MINONE2 MINONE1 MINONE0  
bit 8  
bit 15  
Lower Byte:  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 SECONE1 SECONE0  
bit 0  
bit 7  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 MINTEN2:MINTEN0: Binary Coded Decimal Value of Minute’s Tens Digit; Contains a value from 0 to 5  
bit 11-8 MINONE3:MINONE0: Binary Coded Decimal Value of Minute’s Ones Digit; Contains a value from 0 to 9  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN2:SECTEN0: Binary Coded Decimal Value of Second’s Tens Digit; Contains a value from 0 to 5  
SECONE3:SECONE0: Binary Coded Decimal Value of Second’s Ones Digit; Contains a value from 0 to 9  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
3. a) If the oscillator is faster then ideal (negative  
result form step 2), the RCFGCAL register value  
needs to be negative. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter once every minute.  
18.2 Calibration  
The real-time crystal input can be calibrated using the  
periodic auto-adjust feature. When properly calibrated,  
the RTCC can provide an error of less than 3 seconds  
per month. This is accomplished by finding the number  
of error clock pulses and storing the value into the  
lower half of the RCFGCAL register. The 8-bit signed  
value loaded into the lower half of RCFGCAL is multi-  
plied by four and will be either added or subtracted from  
the RTCC timer, once every minute. Refer to the steps  
below for RTCC calibration:  
b) If the oscillator is slower then ideal (positive  
result from step 2) the RCFGCAL register value  
needs to be positive. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter once every minute.  
4. Load the RCFGCAL register with the correct  
value.  
1. Using another timer resource on the device, the  
user must find the error of the 32.768 kHz  
crystal.  
Writes to the lower half of the RCFGCAL register  
should only occur when the timer is turned off, or  
immediately after the rising edge of the seconds pulse.  
2. Once the error is known, it must be converted to  
the number of error clock pulses per minute.  
Note:  
It is up to the user to include in the error  
value the initial error of the crystal, drift  
due to temperature and drift due to crystal  
aging.  
Formula box:  
(Ideal frequency (32,768) – measured frequency)  
* 60 = clocks per minute  
DS39747C-page 158  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
After each alarm is issued, the ALCFGRPT register is  
decremented by one. Once the register has reached  
00’, the alarm will be issued one last time, after which  
the ALRMEN bit will be cleared automatically and the  
alarm will turn off. Indefinite repetition of the alarm can  
occur if the CHIME bit = 1. Instead of the alarm being  
disabled when the ALCFGRPT register reaches ‘00’, it  
will roll over to FF and continue counting indefinitely  
when CHIME = 1.  
18.3 Alarm  
• Configurable from half second to one year  
• Enabled using the ALRMEN bit (ALCFGRPT<7>,  
Register 18-3)  
• One-time alarm and repeat alarm options  
available  
18.3.1  
CONFIGURING THE ALARM  
The alarm feature is enabled using the ALRMEN bit.  
This bit is cleared when an alarm is issued. Writes to  
ALRMVALH:ALRMVALL should only take place when  
ALRMEN = 0.  
18.3.2  
ALARM INTERRUPT  
At every alarm event an interrupt is generated. In addi-  
tion, an alarm pulse output is provided that operates at  
half the frequency of the alarm. This output is  
completely synchronous to the RTCC clock and can be  
used as a trigger clock to other peripherals.  
As shown in Figure 18-2, the interval selection of the  
alarm is configured through the AMASK bits  
(ALCFGRPT<13:10>). These bits determine which and  
how many digits of the alarm must match the clock  
value for the alarm to occur. The alarm can also be con-  
figured to repeat based on a preconfigured interval.  
The amount of times this occurs once the alarm is  
enabled is stored in the lower half of the ALCFGRPT  
register.  
Note:  
Changing any of the registers, other then  
the RCFGCAL and ALCFGRPT registers  
and the CHIME bit while the alarm is  
enabled (ALRMEN = 1), can result in a  
false alarm event leading to a false alarm  
interrupt. To avoid a false alarm event, the  
timer and alarm values should only be  
changed while the alarm is disabled  
(ALRMEN = 0). It is recommended that the  
ALCFGRPT register and CHIME bit be  
changed when RTCSYNC = 0.  
When ALCFGRPT  
= 00 and CHIME bit = 0  
(ALCFGRPT<14>), the repeat function is disabled and  
only a single alarm will occur. The alarm can be  
repeated up to 255 times by loading the lower half of  
the ALCFGRPT register with FFh.  
FIGURE 18-2:  
ALARM MASK SETTINGS  
Day of  
the  
Week  
Alarm Mask Setting  
(AMASK3:AMASK0)  
Month  
Day  
Hours  
Minutes  
Seconds  
0000– Every half second  
0001– Every second  
0010– Every 10 seconds  
0011– Every minute  
0100– Every 10 minutes  
0101– Every hour  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
m
m
m
0110– Every day  
h
h
h
h
h
h
h
h
0111– Every week  
1000– Every month  
1001– Every year(1)  
d
d
d
d
m
m
d
Note 1: Annually, except when configured for February 29.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 159  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 160  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
19.1 Registers  
19.0 PROGRAMMABLE CYCLIC  
REDUNDANCY CHECK (CRC)  
GENERATOR  
There are four registers used to control programmable  
CRC operation:  
• CRCCON  
• CRCXOR  
• CRCDAT  
• CRCWDAT  
The programmable CRC generator offers the following  
features:  
• User-programmable polynomial CRC equation  
• Interrupt output  
• Data FIFO  
REGISTER 19-1: CRCCON: CRC CONTROL REGISTER  
Upper Byte:  
U-0  
U-0  
R/W-0  
CSIDL  
R-0  
R-0  
R-0  
R-0  
R-0  
VWORD4 VWORD3 VWORD2 VWORD1 VWORD0  
bit 8  
bit 15  
Lower Byte:  
R-0  
R-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CRCFUL CRCMPT  
bit 7  
CRCGO  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
bit 0  
bit 15-14 Unimplemented: Read as ‘0’  
bit 13 CSIDL: CRC Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8 VWORD4:VWORD0: Pointer Value bits  
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN3:PLEN0 > 7,  
or 16 when PLEN3:PLEN0 7.  
bit 7  
bit 6  
CRCFUL: FIFO Full bit  
1= FIFO is full  
0= FIFO is not full  
CRCMPT: FIFO Empty Bit  
1= FIFO is empty  
0= FIFO is not empty  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CRCGO: Start CRC bit  
1= Start CRC serial shifter  
0= CRC serial shifter turned off  
bit 3-0  
PLEN3:PLEN0: Polynomial Length bits  
Denotes the length of the polynomial to be generated minus 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 161  
PIC24FJ128GA FAMILY  
TABLE 19-1: EXAMPLE CRC SETUP  
19.2 Overview  
Bit Name  
Bit Value  
The module implements a software configurable CRC  
generator. The terms of the polynomial and its length  
can be programmed using the CRCXOR (X<15:1>) bits  
and the CRCCON (PLEN3:PLEN0) bits, respectively.  
PLEN3:PLEN0  
X<15:1>  
1111  
000100000010000  
Note that for the value of X<15:1>, the 12th bit and the  
5th bit are set to ‘1’, as required by the equation. The  
0th bit required by the equation is always XORed. For  
a 16-bit polynomial, the 16th bit is also always  
assumed to be XORed; therefore, the X<15:1> bits do  
not have the 0th bit or the 16th bit.  
Consider the CRC equation:  
x
16 + x12 + x5 + 1  
To program this polynomial into the CRC generator,  
the CRC register bits should be set as shown in  
Table 19-1.  
The topology of a standard CRC generator is shown in  
Figure 19-2.  
FIGURE 19-1:  
CRC SHIFTER DETAILS  
PLEN<3:0>  
0
1
2
15  
CRC Shift Register  
Hold  
Hold  
X2  
Hold  
Hold  
X1  
X3  
X15  
0
0
0
0
XOR  
OUT  
OUT  
OUT  
OUT  
IN  
BIT 0  
IN  
BIT 1  
IN  
BIT 2  
IN  
BIT 15  
DOUT  
1
1
1
1
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
DS39747C-page 162  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
16  
12  
5
FIGURE 19-2:  
CRC GENERATOR RECONFIGURED FOR x + x + x + 1  
XOR  
D
Q
D
Q
D
Q
D
Q
D
Q
SDOx  
BIT 0  
BIT 4  
BIT 5  
BIT 12  
BIT 15  
p_clk  
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
To empty words already written into a FIFO, the  
CRCGO bit must be set to ‘1’ and the CRC shifter  
allowed to run until the CRCMPT bit is set.  
19.3 User Interface  
19.3.1  
DATA INTERFACE  
Also, to get the correct CRC reading, it will be  
necessary to wait for the CRCMPT bit to go high before  
reading the CRCWDAT register.  
To start serial shifting, a ‘1’ must be written to the  
CRCGO bit.  
The module incorporates a FIFO that is 8 deep when  
PLEN (PLEN<3:0>) > 7, and 16 deep otherwise. The  
data for which the CRC is to be calculated must first be  
written into the FIFO. The smallest data element that  
can be written into the FIFO is one byte. For example,  
if PLEN = 5, then the size of the data is PLEN + 1 = 6.  
The data must be written as follows:  
If a word is written when the CRCFUL bit is set, the  
VWORD pointer will roll over to 0. The hardware will  
then behave as if the FIFO is empty. However, the con-  
dition to generate an interrupt will not be met; therefore,  
no interrupt will be generated (See Section 19.3.2  
“Interrupt Operation”).  
At least one instruction cycle must pass after a write to  
CRCWDAT before a read of the VWORD bits is done.  
data[5:0] = crc_input[5:0]  
data[7:6] = ‘bxx  
Once data is written into the CRCWDAT MSb (as  
defined by PLEN), the value of VWORD  
(VWORD<4:0>) increments by one. The serial shifter  
starts shifting data into the CRC engine when  
CRCGO = 1 and VWORD > 0. When the MSb is  
shifted out, VWORD decrements by one. The serial  
shifter continues shifting until the VWORD reaches 0.  
Therefore, for a given value of PLEN, it will take  
(PLEN + 1) * VWORD number of clock cycles to  
complete the CRC calculations.  
19.3.2  
INTERRUPT OPERATION  
When VWORD4:VWORD0 makes a transition from a  
value of ‘1’ to ‘0’, an interrupt will be generated.  
19.4 Operation in Power Save Modes  
19.4.1  
SLEEP MODE  
If Sleep mode is entered while the module is operating,  
the module will be suspended in its current state until  
clock execution resumes.  
When VWORD reaches 8 (or 16), the CRCFUL bit will  
be set. When VWORD reaches 0, the CRCMPT bit will  
be set.  
19.4.2  
IDLE MODE  
To continue full module operation in Idle mode, the  
CSIDL bit must be cleared prior to entry into the mode.  
To continually feed data into the CRC engine, the rec-  
ommended mode of operation is to initially “prime” the  
FIFO with a sufficient number of words so no interrupt  
is generated before the next word can be written. Once  
that is done, start the CRC by setting the CRCGO bit to  
1’. From that point onward, the VWORD bits should be  
polled. If they read less than 8 or 16, another word can  
be written into the FIFO.  
If CSIDL = 1, the module will behave the same way as  
it does in Sleep mode; pending interrupt events will be  
passed on, even though the module clocks are not  
available.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 163  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 164  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
To perform an A/D conversion:  
1. Configure the A/D module:  
20.0 10-BIT HIGH-SPEED A/D  
CONVERTER  
a) Select port pins as analog inputs  
(AD1PCFG<15:0>).  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
b) Select voltage reference source to match  
expected range on analog inputs  
(AD1CON2<15:13>).  
The 10-bit A/D converter has the following key  
features:  
c) Select the analog conversion clock to  
match desired data rate with processor  
clock (AD1CON3<7:0>).  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 500 ksps  
• Up to 16 analog input pins  
d) Select the appropriate sample/conversion  
sequence  
(AD1CON1<7:0>  
and  
AD1CON3<12:8>).  
• External voltage reference input pins  
• Automatic Channel Scan mode  
e) Select how conversion results are  
presented in the buffer (AD1CON1<9:8>).  
• Selectable conversion trigger source  
• 16-word conversion result buffer  
• Selectable Buffer Fill modes  
f) Select interrupt rate (AD1CON2<5:2>).  
g) Turn on A/D module (AD1CON1<15>).  
2. Configure A/D interrupt (if required):  
a) Clear the AD1IF bit.  
• Four result alignment options  
• Operation during CPU Sleep and Idle modes  
b) Select A/D interrupt priority.  
Depending on the particular device pinout, the 10-bit  
A/D converter can have up to 16 analog input pins, des-  
ignated AN0 through AN15. In addition, there are two  
analog input pins for external voltage reference con-  
nections. These voltage reference inputs may be  
shared with other analog input pins. The actual number  
of analog input pins and external voltage reference  
input configuration will depend on the specific device.  
Refer to the device data sheet for further details.  
A block diagram of the A/D converter is shown in  
Figure 20-1.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 165  
PIC24FJ128GA FAMILY  
Figure 20-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM  
Internal Data Bus  
16  
AVDD  
VR+  
AVSS  
VREF+  
VR-  
Comparator  
VREF-  
VINH  
VR- VR+  
S/H  
DAC  
VINL  
AN0  
AN1  
VINH  
10-Bit SAR  
Conversion Logic  
AN2  
AN3  
Data Formatting  
AN4  
AN5  
VINL  
AN6  
ADC1BUF0:  
ADC1BUFF  
AN7  
AN8  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
AN9  
VINH  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AD1PCFG  
AD1CSSL  
VINL  
Sample Control  
Control Logic  
Conversion Control  
Input MUX Control  
Pin Config. Control  
DS39747C-page 166  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 20-1: AD1CON1: A/D CONTROL REGISTER 1  
Upper Byte:  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADON  
ADSIDL  
FORM1  
FORM0  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
ASAM  
R/W-0 HCS R/C-0 HCS  
SAMP DONE  
bit 0  
SSRC2  
SSRC1  
SSRC0  
bit 7  
bit 15  
ADON: A/D Operating Mode bit  
1= A/D converter module is operating  
0= A/D converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-10 Unimplemented: Read as ‘0’  
bit 9-8  
FORM1:FORM0: Data Output Format bits  
11= Signed fractional (sddd dddd dd00 0000)  
10= Fractional (dddd dddd dd00 0000)  
01= Signed integer (ssss sssd dddd dddd)  
00= Integer (0000 00dd dddd dddd)  
bit 7-5  
SSRC2:SSRC0: Conversion Trigger Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
10x= Reserved  
011= Reserved  
010= Timer3 compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing SAMP bit ends sampling and starts conversion  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
ASAM: A/D Sample Auto-Start bit  
1= Sampling begins immediately after last conversion completes. SAMP bit is auto-set.  
0= Sampling begins when SAMP bit is set  
bit 1  
bit 0  
SAMP: A/D Sample Enable bit  
1= A/D sample/hold amplifier is sampling input  
0= A/D sample/hold amplifier is holding  
DONE: A/D Conversion Status bit  
1= A/D conversion is done  
0= A/D conversion is NOT done  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
C = Clear-Only bit  
‘0’ = Bit is cleared  
HCS = Hardware Cleared/Set  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 167  
PIC24FJ128GA FAMILY  
REGISTER 20-2: AD1CON2: A/D CONTROL REGISTER 2  
Upper Byte:  
R/W-0  
R/W-0  
R/W-0  
U-0  
r
U-0  
R/W-0  
U-0  
U-0  
VCFG2  
VCFG1  
VCFG0  
CSCNA  
bit 15  
bit 8  
Lower Byte:  
R-0  
U-0  
R/W-0  
SMPI3  
R/W-0  
SMPI2  
R/W-0  
SMPI1  
R/W-0  
SMPI0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
bit 7  
bit 0  
bit 15-13 VCFG2:VCFG0: Voltage Reference Configuration bits:  
VCFG2:VCFG0  
VR+  
VR-  
000  
001  
010  
011  
1xx  
AVDD  
External VREF+ pin  
AVDD  
AVSS  
AVSS  
External VREF- pin  
External VREF- pin  
AVSS  
External VREF+ pin  
AVDD  
bit 12  
bit 11  
bit 10  
Reserved: User should write ‘0’ to this location  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
BUFS: Buffer Fill Status bit (Valid only when BUFM = 1)  
1= A/D is currently filling buffer 08-0F, user should access data in 00-07  
0= A/D is currently filling buffer 00-07, user should access data in 08-0F  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI3:SMPI0: Sample/Convert Sequences Per Interrupt Selection bits  
1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence  
.....  
0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000 = Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: Buffer Mode Select bit  
1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)  
0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A  
input multiplexer settings for all subsequent samples  
0= Always use MUX A input multiplexer settings  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 168  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 20-3: AD1CON3: A/D CONTROL REGISTER 3  
Upper Byte:  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADRC  
SAMC4  
SAMC3  
SAMC2  
SAMC1  
SAMC0  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
ADCS6  
R/W-0  
ADCS5  
R/W-0  
ADCS4  
R/W-0  
ADCS3  
R/W-0  
R/W-0  
ADCS1  
R/W-0  
ADCS7  
ADCS2  
ADCS0  
bit 7  
bit 0  
bit 15  
ADRC: A/D Conversion Clock Source bit  
1= A/D internal RC clock  
0= Clock derived from system clock  
bit 14-13 Unimplemented: Read as ‘0’  
bit 12-8 SAMC4:SAMC0: Auto-Sample Time bits  
11111= 31 TAD  
·····  
00001= 1 TAD  
00000= 0 TAD (not recommended)  
bit 7-0  
ADCS7:ADCS0: A/D Conversion Clock Select bits  
11111111= 128 • TCY  
······  
00000001= TCY  
00000000= TCY/2  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 169  
PIC24FJ128GA FAMILY  
REGISTER 20-4: AD1CHS: A/D INPUT SELECT REGISTER  
Upper Byte:  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NB  
CH0SB3  
CH0SB2  
CH0SB1  
CH0SB0  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
CH0SA3  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA2  
CH0SA1  
CH0SA0  
bit 7  
bit 0  
bit 15  
CH0NB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 14-12 Unimplemented: Read as ‘0’  
bit 11-8 CH0SB3:CH0SB0: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits  
1111= Channel 0 positive input is AN15  
1110= Channel 0 positive input is AN14  
·····  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 6-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CH0SA3:CH0SA0: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits  
1111= Channel 0 positive input is AN15  
1110= Channel 0 positive input is AN14  
·····  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 170  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 20-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER  
Upper Byte:  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG15  
bit 15  
PCFG14  
PCFG13  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
PCFG6  
R/W-0  
PCFG5  
R/W-0  
PCFG4  
R/W-0  
PCFG3  
R/W-0  
R/W-0  
PCFG1  
R/W-0  
PCFG7  
PCFG2  
PCFG0  
bit 7  
bit 0  
bit 15-0 PCFG15:PCFG0: Analog Input Pin Configuration Control bits  
1= Pin for corresponding analog channel is configured in Digital mode; I/O port read enabled  
0= Pin configured in Analog mode; I/O port read disabled, A/D samples pin voltage  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 20-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER  
Upper Byte:  
R/W-0  
CSSL15  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL14  
CSSL13  
CSSL12  
CSS1L1  
CSSL10  
CSSL9  
CSSL8  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
CSSL6  
R/W-0  
CSSL5  
R/W-0  
CSSL4  
R/W-0  
CSSL3  
R/W-0  
R/W-0  
CSSL1  
R/W-0  
CSSL7  
CSSL2  
CSSL0  
bit 7  
bit 0  
bit 15-0 CSSL15:CSSL0: A/D Input Pin Scan Selection bits  
1= Corresponding analog channel selected for input scan  
0= Analog channel omitted from input scan  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
EQUATION 20-1: A/D CONVERSION CLOCK PERIOD  
TAD = TCY(ADCS + 1)  
TAD  
– 1  
ADCS =  
TCY  
Note 1: Based on TCY = FOSC/2, Doze mode and PLL are disabled.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 171  
PIC24FJ128GA FAMILY  
FIGURE 20-2:  
10-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250Ω  
RSS 5 kΩ (Typical)  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 4.4 pF (Typical)  
VA  
CPIN  
ILEAKAGE  
±500 nA  
6-11 pF  
(Typical)  
VSS  
Legend: CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
RIC  
= Interconnect Resistance  
RSS  
= Sampling Switch Resistance  
= Sample/Hold Capacitance (from DAC)  
CHOLD  
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 5 kΩ.  
FIGURE 20-3:  
A/D TRANSFER FUNCTION  
Output Code  
(Binary (Decimal))  
11 1111 1111(1023)  
11 1111 1110(1022)  
10 0000 0011(515)  
10 0000 0010(514)  
10 0000 0001(513)  
10 0000 0000(512)  
01 1111 1111(511)  
01 1111 1110(510)  
01 1111 1101(509)  
00 0000 0001(1)  
00 0000 0000(0)  
Voltage Level  
DS39747C-page 172  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
21.0 COMPARATOR MODULE  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
FIGURE 21-1:  
COMPARATOR I/O OPERATING MODES  
C1NEG  
CMCON<6>  
C1EN  
C1  
C1INV  
C1IN+  
C1IN-  
VIN-  
VIN+  
C1OUT  
C1POS  
C1IN+  
CVREF  
C1OUTEN  
C2NEG  
C2POS  
CMCON<7>  
C2EN  
C2  
C2INV  
C2IN+  
C2IN-  
VIN-  
VIN+  
C2OUT  
C2IN+  
CVREF  
C2OUTEN  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 173  
PIC24FJ128GA FAMILY  
REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER  
Upper Byte:  
R/W-0  
U-0  
R/C-0  
R/C-0  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
R/W-0  
CMIDL  
C2EVT  
C1EVT  
C2OUTEN C1OUTEN  
bit 8  
bit 15  
Lower Byte:  
R-0  
R-0  
C1OUT  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
C2NEG  
R/W-0  
R/W-0  
C1NEG  
R/W-0  
C2OUT  
C2POS  
C1POS  
bit 7  
bit 0  
bit 15  
CMIDL: Stop in Idle Mode  
1= When device enters Idle mode, module does not generate interrupts. Module is still enabled.  
0= Continue normal module operation in Idle mode  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
C2EVT: Comparator 2 Event  
1= Comparator output changed states  
0= Comparator output did not change states  
bit 12  
bit 11  
bit 10  
bit 9  
C1EVT: Comparator 1 Event  
1= Comparator output changed states  
0= Comparator output did not change states  
C2EN: Comparator 2 Enable  
1= Comparator is enabled  
0= Comparator is disabled  
C1EN: Comparator 1 Enable  
1= Comparator is enabled  
0= Comparator is disabled  
C2OUTEN: Comparator 2 Output Enable  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
bit 8  
C1OUTEN: Comparator 1 Output Enable  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 174  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)  
Upper Byte:  
R/W-0  
U-0  
R/C-0  
R/C-0  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
R/W-0  
CMIDL  
C2EVT  
C1EVT  
C2OUTEN C1OUTEN  
bit 8  
bit 15  
Lower Byte:  
R-0  
R-0  
C1OUT  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
C2NEG  
R/W-0  
R/W-0  
C1NEG  
R/W-0  
C2OUT  
C2POS  
C1POS  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
0= C2 VIN+ > C2 VIN-  
1= C2 VIN+ < C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
0= C1 VIN+ > C1 VIN-  
1= C1 VIN+ < C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
C2NEG: Comparator 2 Negative Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to VIN-  
See Figure 21-1 for the comparator modes.  
bit 2  
bit 1  
bit 0  
C2POS: Comparator 2 Positive Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to CVREF  
See Figure 21-1 for the comparator modes.  
C1NEG: Comparator 1 Negative Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to VIN-  
See Figure 21-1 for the comparator modes.  
C1POS: Comparator 1 Positive Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to CVREF  
See Figure 21-1 for the comparator modes.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 175  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 176  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
voltage, each with 16 distinct levels. The range to be  
used is selected by the CVRR bit (CVRCON<5>). The  
primary difference between the ranges is the size of the  
steps selected by the CVREF Selection bits  
(CVR3:CVR0), with one range offering finer resolution.  
22.0 COMPARATOR VOLTAGE  
REFERENCE  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF-. The voltage source is selected by the CVRSS  
bit (CVRCON<4>).  
22.1 Configuring the Comparator  
Voltage Reference  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output.  
The voltage reference module is controlled through the  
CVRCON register (Register 22-1). The comparator  
voltage reference provides two ranges of output  
FIGURE 22-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
VREF+  
AVDD  
8R  
CVR3:CVR0  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 177  
PIC24FJ128GA FAMILY  
REGISTER 22-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
Upper Byte:  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
Lower Byte:  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
CVRSS  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
bit 7  
bit 0  
bit 15-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on CVREF pin  
0= CVREF voltage level is disconnected from CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.67 CVRSRC, with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source CVRSRC = VREF+ – VREF-  
0= Comparator reference source CVRSRC = AVDD – AVSS  
CVR3:CVR0: Comparator VREF Value Selection 0 CVR3:CVR0 15 bits  
When CVRR = 1:  
CVREF = (CVR<3:0>/ 24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = bit is cleared x = bit is unknown  
-n = Value at Reset  
DS39747C-page 178  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 23-1: FLASH CONFIGURATION  
WORDS LOCATIONS FOR  
PIC24FJ128GA FAMILY  
DEVICES  
23.0 SPECIAL FEATURES  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be a comprehensive reference  
source.  
Configuration Word  
Addresses  
Device  
PIC24FJ128GA family devices include several  
features intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
1
2
PIC24FJ64GA  
PIC24FJ96GA  
PIC24FJ128GA  
00ABFEh  
00FFFEh  
0157FEh  
00ABFCh  
00FFFCh  
0157FCh  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming  
• In-Circuit Emulation  
The volatile memory cells used for the Configuration  
bits always reset to ‘1’ on Power-on Resets. For all  
other type of Reset events, the previously programmed  
values are maintained and used without reloading from  
program memory.  
23.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select vari-  
ous device configurations. These bits are mapped  
starting at program memory location F80000h. A com-  
plete list is shown in Table 23-1. A detailed explanation  
of the various bit functions is provided in Register 23-1  
through Register 23-4.  
The upper byte of both Flash Configuration Words in  
program memory should always be ‘1111 1111’. This  
makes them appear to be NOP instructions in the  
remote event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘1’s to these  
locations has no effect on device operation.  
Note that address F80000h is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (800000h-FFFFFFh) which can only be  
accessed using table reads and table writes.  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
23.1.1  
CONSIDERATIONS FOR  
CONFIGURING PIC24FJ128GA  
FAMILY DEVICES  
In PIC24FJ128GA family devices, the configuration  
bytes are implemented as volatile memory. This means  
that configuration data must be programmed each time  
the device is powered up. Configuration data is stored  
in the two words at the top of the on-chip program  
memory space, known as the Flash Configuration  
Words. Their specific locations are shown in  
Table 23-1. These are packed representations of the  
actual device Configuration bits, whose actual  
locations are distributed among five locations in config-  
uration space. The configuration data is automatically  
loaded from the Flash Configuration Words to the  
proper Configuration registers during device Resets.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 179  
PIC24FJ128GA FAMILY  
REGISTER 23-1: FLASH CONFIGURATION WORD 1  
Upper Third:  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
Middle Third:  
r-0  
R/PO-1  
R/PO-1  
GCP  
R/PO-1  
GWRP  
R/PO-1  
DEBUG  
R/PO-1  
COE  
U-1  
R/PO-1  
ICS  
bit 8  
r
JTAGEN  
bit 15  
Lower Third:  
R/PO-1  
R/PO-1  
WINDIS  
U-1  
R/PO-1  
FWPSA  
R/PO-1  
WDTPS3  
R/PO-1  
WDTPS2  
R/PO-1  
WDTPS1  
R/PO-1  
FWDTEN  
bit 7  
WDTPS0  
bit 0  
bit 23-16 Unimplemented: Read as ‘0’  
bit 15  
bit 14  
Reserved: Maintain as ‘1’  
JTAGEN: JTAG Port Enable bit  
1= JTAG port is enabled  
0= JTAG port is disabled  
bit 13  
bit 12  
bit 11  
bit 10  
GCP: General Segment Program Memory Code Protection bit  
1= Code protection is disabled  
0= Code protection is enabled for the entire program memory space  
GWRP: General Segment Code Flash Write Protection bit  
1= Writes to program memory are allowed  
0= Writes to program memory are disabled  
DEBUG: Background Debugger Enable bit  
1= Device resets into Operational mode  
0= Device resets into Debug mode  
COE: Set Clip On Emulation bit  
1= Device resets into Operational mode  
0= Device resets into Clip On Emulation mode  
bit 9  
bit 8  
Unimplemented: Read as ‘1’  
ICS: ICD Pin Placement Select bit  
1= ICD uses EMUC2/EMUD2  
0= ICD uses EMUC1/EMUD1  
bit 7  
bit 6  
bit 5  
FWDTEN: Watchdog Timer Enable bit  
1= Watchdog Timer is enabled  
0= Watchdog Timer is disabled  
WINDIS: Windowed Watchdog Timer Disable bit  
1= Standard Watchdog Timer enabled  
0= Windowed Watchdog Timer enabled; FWDTEN must be ‘1’  
Unimplemented: Read as ‘1’  
Legend:  
R = Readable bit  
PO = Program-Once bit  
‘1’ = Bit is set  
U = Unimplemented, read as ‘1’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value when unprogrammed  
DS39747C-page 180  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 23-1: FLASH CONFIGURATION WORD 1 (CONTINUED)  
Upper Third:  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
Middle Third:  
r-0  
R/PO-1  
R/PO-1  
GCP  
R/PO-1  
GWRP  
R/PO-1  
DEBUG  
R/PO-1  
COE  
U-1  
R/PO-1  
ICS  
bit 8  
r
JTAGEN  
bit 15  
Lower Third:  
R/PO-1  
R/PO-1  
WINDIS  
U-1  
R/PO-1  
FWPSA  
R/PO-1  
WDTPS3  
R/PO-1  
WDTPS2  
R/PO-1  
WDTPS1  
R/PO-1  
FWDTEN  
bit 7  
WDTPS0  
bit 0  
bit 4  
FWPSA: WDT Prescaler Ratio Select bit  
1= Prescaler ratio of 1:128  
0= Prescaler ratio of 1:32  
bit 3-0  
WDTPS3:WDTPS0: Watchdog Timer Postscaler Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
Legend:  
R = Readable bit  
PO = Program-Once bit  
‘1’ = Bit is set  
U = Unimplemented, read as ‘1’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value when unprogrammed  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 181  
PIC24FJ128GA FAMILY  
REGISTER 23-2: FLASH CONFIGURATION WORD 2  
Upper Third:  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
Middle Third:  
R/PO-1  
IESO  
U-1  
U-1  
U-1  
U-1  
R/PO-1  
R/PO-1  
R/PO-1  
FNOSC2 FNOSC1 FNOSC0  
bit 8  
bit 15  
Lower Third:  
R/PO-1  
R/PO-1  
R/PO-1  
U-1  
U-1  
U-1  
R/PO-1  
R/PO-1  
FCKSM1 FCKSM0 OSCIOFCN  
bit 7  
POSCMD1 POSCMD0  
bit 0  
bit 23-16 Unimplemented: Read as ‘1’  
bit 15 IESO: Internal External Switchover bit  
1= IESO mode (Two-Speed Start-up) enabled  
0= IESO mode (Two-Speed Start-up) disabled  
bit 14-11 Unimplemented: Read as ‘1’  
bit 10-8 FNOSC2:FNOSC0: Initial Oscillator Select bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7-6  
bit 5  
FCKSM1:FCKSM0: Clock Switching and Fail-Safe Clock Monitor Configuration bits  
1x= Clock switching and Fail-Safe Clock Monitor are disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFCN: OSC2 Pin Configuration bit  
If POSCMD1:POSCMD0 = 11 or 00:  
1= OSC2/CLKO/RC15 functions as CLKO (FOSC/2)  
0= OSC2/CLKO/RC15 functions as port I/O (RC15)  
If POSCMD1:POSCMD0 = 10 or 01:  
OSCIOFCN has no effect on OSC2/CLKO/RC15.  
bit 4-2  
bit 1-0  
Unimplemented: Read as ‘1’  
POSCMD1:POSCMD0: Primary Oscillator Configuration bits  
11= Primary oscillator disabled  
10= HS Oscillator mode selected  
01= XT Oscillator mode selected  
00= EC Oscillator mode selected  
.
Legend:  
R = Readable bit  
PO = Program-Once bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
-n = Value when unprogrammed  
‘0’ = Bit is cleared x = Bit is unknown  
DS39747C-page 182  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
REGISTER 23-3: DEVID: DEVICE ID REGISTER  
Upper Third:  
U
U
U
U
U
U
U
U
bit 23  
bit 16  
Middle Third:  
U
U
R
R
R
R
R
R
FAMID7  
FAMID6  
FAMID5  
FAMID4  
FAMID3  
FAMID2  
bit 15  
bit 8  
Lower Third:  
R
FAMID1  
bit 7  
R
R
R
R
R
R
R
FAMID0  
DEV5  
DEV4  
DEV3  
DEV2  
DEV1  
DEV0  
bit 0  
bit 23-14 Unimplemented: Read as ‘0’  
bit 13-6 FAMID7:FAMID0: Device Family Identifier bits  
00010000= PIC24FJ128GA family  
bit 5-0  
DEV5:DEV0: Individual Device Identifier bits  
000101= PIC24FJ64GA006  
000110= PIC24FJ96GA006  
000111= PIC24FJ128GA006  
001000= PIC24FJ64GA008  
001001= PIC24FJ96GA008  
001010= PIC24FJ128GA008  
001011= PIC24FJ64GA010  
001100= PIC24FJ96GA010  
001101= PIC24FJ128GA010  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 183  
PIC24FJ128GA FAMILY  
REGISTER 23-4: DEVREV: DEVICE REVISION REGISTER  
Upper Third:  
U
U
U
U
U
U
U
U
bit 23  
bit 16  
Middle Third:  
R
r
R
r
R
r
R
r
U
U
U
R
MAJRV2  
bit 15  
bit 8  
Lower Third:  
R
R
U
U
U
R
R
R
MAJRV1  
bit 7  
MAJRV0  
DOT2  
DOT1  
DOT0  
bit 0  
bit 23-16 Unimplemented: Read as ‘0’  
bit 15-12 Reserved: For factory use only  
bit 11-9 Unimplemented: Read as ‘0’  
bit 8-6  
bit 5-3  
bit 2-0  
MAJRV2:MAJRV0: Major Revision Identifier bits  
Unimplemented: Read as ‘0’  
DOT2:DOT0: Minor Revision Identifier bits  
Legend:  
R = Readable bit  
r = Reserved bit  
U = Unimplemented bit, read as ‘0’  
DS39747C-page 184  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
FIGURE 23-1:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
23.2 On-Chip Voltage Regulator  
All of the PIC24FJ128GA family devices power their  
core digital logic at a nominal 2.5V. This may create an  
issue for designs that are required to operate at a  
higher typical voltage, such as 3.3V. To simplify system  
design, all devices in the PIC24FJ128GA family incor-  
porate an on-chip regulator that allows the device to  
run its core logic from VDD.  
Regulator Enabled (ENVREG tied to VDD):  
3.3V  
PIC24FJ128GA  
VDD  
ENVREG  
The regulator is controlled by the ENVREG pin. Tying  
VDD to the pin enables the regulator, which in turn, pro-  
vides power to the core from the other VDD pins. When  
the regulator is enabled, a low ESR capacitor (such as  
tantalum) must be connected to the VDDCORE/VCAP pin  
(Figure 23-1). This helps to maintain the stability of the  
regulator. The recommended value for the filer capacitor  
is provided in Section 26.1 “DC Characteristics”.  
VDDCORE/VCAP  
VSS  
CEFC  
(10 μF typ)  
Regulator Disabled (ENVREG tied to ground):  
2.5V(1)  
If ENVREG is tied to VSS, the regulator is disabled. In  
this case, separate power for the core logic at a nomi-  
nal 2.5V must be supplied to the device on the  
VDDCORE/VCAP pin to run the I/O pins at higher voltage  
levels, typically 3.3V. Alternatively, the VDDCORE/VCAP  
and VDD pins can be tied together to operate at a lower  
nominal voltage. Refer to Figure 23-1 for possible  
configurations.  
3.3V(1)  
PIC24FJ128GA  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
23.2.1  
ON-CHIP REGULATOR AND POR  
When the voltage regulator is enabled, it takes approxi-  
mately 20 μs for it to generate output. During this time,  
designated as TSTARTUP, code execution is disabled.  
TSTARTUP is applied every time the device resumes  
operation after any power-down, including Sleep mode.  
Regulator Disabled (VDD tied to VDDCORE):  
2.5V(1)  
PIC24FJ128GA  
VDD  
If the regulator is disabled, a separate Power-up Timer  
(PWRT) is automatically enabled. The PWRT adds a  
fixed delay of 64 ms nominal delay at device start-up.  
ENVREG  
VDDCORE/VCAP  
VSS  
23.2.2  
When  
ON-CHIP REGULATOR AND BOR  
the on-chip regulator is enabled,  
PIC24FJ128GA family devices also have a simple  
brown-out capability. If the voltage supplied to the reg-  
ulator is inadequate to maintain a regulated level, the  
regulator Reset circuitry will generate a Brown-out  
Reset. This event is captured by the BOR flag bit  
(RCON<0>). The brown-out voltage levels are specific  
in Section 26.1 “DC Characteristics”.  
Note 1: These are typical operating voltages. Refer  
to Section 26.1 “DC Characteristics” for  
the full operating ranges of VDD and  
VDDCORE.  
23.2.3  
POWER-UP REQUIREMENTS  
The on-chip regulator is designed to meet the power-up  
requirements for the device. If the application does not  
use the regulator, then strict power-up conditions must  
be adhered to. While powering up, VDDCORE must  
never exceed VDD by 0.3 volts.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 185  
PIC24FJ128GA FAMILY  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAVinstruction was exe-  
cuted. The corresponding SLEEP or IDLE bits  
(RCON<3:2>) will need to be cleared in software after  
the device wakes up.  
23.3 Watchdog Timer (WDT)  
For PIC24FJ128GA family devices, the WDT is driven  
by the LPRC oscillator. When the WDT is enabled, the  
clock source is also enabled.  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the FWPSA Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
The WDT Flag bit, WDTO (RCON<4>), is not auto-  
matically cleared following a WDT time-out. To detect  
subsequent WDT events, the flag must be cleared in  
software.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPS3:WDTPS0  
Configuration bits (Flash Configuration Word 1<3:0>),  
which allow the selection of a total of 16 settings, from  
1:1 to 1:32,768. Using the prescaler and postscaler,  
time-out periods ranging from 1 ms to 131 seconds can  
be achieved.  
23.3.1  
CONTROL REGISTER  
The WDT is enabled or disabled by the FWDTEN  
device Configuration bit. When the FWDTEN  
Configuration bit is set, the WDT is always enabled.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN con-  
trol bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for crit-  
ical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits), or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed (i.e.,  
Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
FIGURE 23-2:  
WDT BLOCK DIAGRAM  
SWDTEN  
FWDTEN  
LPRC Control  
Wake from Sleep  
FWPSA  
WDTPS3:WDTPS0  
Prescaler  
(5-bit/7-bit)  
WDT  
Counter  
Postscaler  
WDT Overflow  
1:1 to 1:32.768  
LPRC Input  
Reset  
32 kHz  
1 ms/4 ms  
All Device Resets  
Transition to  
New Clock Source  
Exit Sleep or  
Idle Mode  
CLRWDTInstr.  
PWRSAVInstr.  
Sleep or Idle Mode  
DS39747C-page 186  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
23.4 JTAG Interface  
23.6  
In-Circuit Serial Programming  
PIC24FJ128GA family devices implement a JTAG  
interface, which supports boundary scan device testing  
as well as in-circuit programming.  
PIC24FJ128GA family microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock (PGCx) and data  
(PGDx) and three other lines for power, ground and the  
programming voltage. This allows customers to manu-  
facture boards with unprogrammed devices and then  
program the microcontroller just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware to be programmed.  
23.5 Program Verification and  
Code Protection  
For all devices in the PIC24FJ128GA family of devices,  
the on-chip program memory space is treated as a  
single block. Code protection for this block is controlled  
by one Configuration bit, GCP. This bit inhibits external  
reads and writes to the program memory space. It has  
no direct effect in normal execution mode.  
23.7 In-Circuit Debugger  
When MPLAB® ICD 2 is selected as a debugger, the  
In-Circuit Debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pins.  
23.5.1  
CONFIGURATION REGISTER  
PROTECTION  
The Configuration registers are protected against inad-  
vertent or unwanted changes or reads in two ways. The  
primary protection is the write-once feature of the  
Configuration bits which prevents reconfiguration once  
the bit has been programmed during a power cycle. To  
safeguard against unpredictable events, Configuration  
bit changes resulting from individual cell level disrup-  
tions (such as ESD events) will cause a parity error and  
trigger a device Reset.  
To use the In-Circuit Debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, PGCx, PGDx and the  
EMUDx/EMUCx pin pair. In addition, when the feature  
is enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of data RAM and two I/O pins.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory.  
When the GCP bit is set, the source data for device  
configuration is also protected as a consequence.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 187  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 188  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
The literal instructions that involve data movement may  
use some of the following operands:  
24.0 INSTRUCTION SET SUMMARY  
Note:  
This chapter is a brief summary of the  
PIC24 instruction set architecture, and is  
not intended to be a comprehensive refer-  
ence source. For detailed information on  
programming  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
The PIC24 instruction set adds many enhancements to  
the previous PICmicro® MCU instruction sets, while  
maintaining an easy migration from previous PICmicro  
MCU instruction sets. Most instructions are a single  
program memory word. Only three instructions require  
two program memory locations.  
• The first source operand which is a register ‘Wb’  
without any address modifier  
• The second source operand which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction. The instruction set is  
highly orthogonal and is grouped into four basic  
categories:  
The control instructions may use some of the following  
operands:  
• A program memory address  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The mode of the table read and table write  
instructions  
All instructions are a single word, except for certain  
double-word instructions, which were made double-  
word instructions so that all the required information is  
available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
• Control operations  
Table 24-1 shows the general symbols used in  
describing the instructions. The PIC24 instruction set  
summary in Table 24-2 lists all the instructions, along  
with the status flags affected by each instruction.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes, and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
However, word or byte-oriented file register instructions  
have two operands:  
Certain instructions that involve skipping over the sub-  
sequent instruction require either two or three cycles if  
the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles. The double-word instructions execute in two  
instruction cycles.  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 189  
PIC24FJ128GA FAMILY  
TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
<n:m>  
.b  
Register bit field  
Byte mode selection  
.d  
Double-Word mode selection  
.S  
Shadow register select  
.w  
Word mode selection (default)  
bit4  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0000h...1FFFh}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388608}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Wn  
Dividend, Divisor working register pair (direct addressing)  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
WREG  
Ws  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
DS39747C-page 190  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 24-2: INSTRUCTION SET OVERVIEW  
Assembly  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Mnemonic  
Description  
Words Cycles  
ADD  
ADDC  
AND  
ASR  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f + WREG  
1
1
Wd = lit10 + Wd  
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
f = f + WREG + (C)  
1
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
1
1
1
1
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N, Z  
1
N, Z  
1
N, Z  
Wd = Wb .AND. lit5  
1
N, Z  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
ASR  
ASR  
f,WREG  
Ws,Wd  
1
1
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
1
1
N, Z  
BCLR  
BRA  
1
None  
Ws,#bit4  
C,Expr  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater than or Equal  
Branch if Unsigned Greater than or Equal  
Branch if Greater than  
Branch if Unsigned Greater than  
Branch if Less than or Equal  
Branch if Unsigned Less than or Equal  
Branch if Less than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OV,Expr  
Expr  
Branch if Not Carry  
None  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Overflow  
None  
Branch Unconditionally  
Branch if Zero  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
BSET  
BSW  
BTG  
f,#bit4  
Bit Set f  
1
None  
Ws,#bit4  
Ws,Wb  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
f,#bit4  
1
None  
Ws,#bit4  
f,#bit4  
Bit Toggle Ws  
1
None  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
1
1
None  
(2 or 3)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 191  
PIC24FJ128GA FAMILY  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
f,#bit4  
Description  
Bit Test f, Skip if Set  
Words Cycles  
BTSS  
BTSS  
BTSS  
1
1
1
None  
(2 or 3)  
Ws,#bit4  
Bit Test Ws, Skip if Set  
1
None  
(2 or 3)  
BTST  
BTST  
f,#bit4  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Ws,Wb  
f,#bit4  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
C
Z
BTSTS  
Z
BTSTS.C Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
BTSTS.Z  
CALL  
CALL  
CLR  
Ws,#bit4  
lit23  
Wn  
Z
CALL  
CLR  
None  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
Ws  
WREG = 0x0000  
None  
CLR  
Ws = 0x0000  
None  
CLRWDT  
COM  
CLRWDT  
COM  
COM  
COM  
CP  
Clear Watchdog Timer  
f = f  
WDTO, Sleep  
N, Z  
f
f,WREG  
WREG = f  
N, Z  
Ws,Wd  
Wd = Ws  
N, Z  
CP  
f
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with 0xFFFF  
Compare Ws with 0xFFFF  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
CP  
Wb,#lit5  
CP  
Wb,Ws  
CP0  
CP1  
CPB  
CP0  
f
CP0  
Ws  
CP1  
f
CP1  
Ws  
CPB  
CPB  
CPB  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f –1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f –1  
1
DEC  
Wd = Ws – 1  
1
DEC2  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
1
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
1
Wd = Ws – 2  
1
DISI  
DIV  
Disable Interrupts for k Instruction Cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Swap Wns with Wnd  
1
DIV.SW  
DIV.SD  
DIV.UW  
DIV.UD  
EXCH  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
18  
18  
18  
18  
1
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
None  
EXCH  
DS39747C-page 192  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
FF1L  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Ws,Wnd  
Ws,Wnd  
Expr  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to Address  
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
C
C
FF1R  
GOTO  
None  
Wn  
Go to Indirect  
None  
INC  
f
f = f + 1  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
N, Z  
IOR  
N, Z  
IOR  
Wd = Wb .IOR. Ws  
N, Z  
IOR  
Wd = Wb .IOR. lit5  
N, Z  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f
f = Logical Right Shift f  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
LSR  
f,WREG  
Ws,Wd  
LSR  
LSR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
LSR  
N, Z  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV.b  
MOV  
MOV  
MOV  
MOV  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
MUL  
None  
[Wns+Slit10],Wnd  
f
Move [Wns+Slit10] to Wnd  
Move f to f  
None  
N, Z  
f,WREG  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move f to WREG  
N, Z  
Move 16-bit Literal to Wn  
Move 8-bit Literal to Wn  
Move Wn to f  
None  
None  
None  
Wns,[Wns+Slit10]  
Wso,Wdo  
WREG,f  
Wns,Wd  
Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
f
Move Wns to [Wns+Slit10]  
Move Ws to Wd  
None  
Move WREG to f  
N, Z  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)  
W3:W2 = f * WREG  
None  
None  
MUL  
None  
None  
None  
None  
None  
None  
None  
NEG  
NEG  
f
f = f + 1  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)  
Pop Shadow Registers  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
POP.S  
None  
All  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 193  
PIC24FJ128GA FAMILY  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
PUSH  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns+1) to Top-of-Stack (TOS)  
Push Shadow Registers  
Go into Sleep or Idle mode  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
PUSH  
Wso  
Wns  
None  
PUSH.D  
PUSH.S  
2
None  
1
None  
PWRSAV  
RCALL  
PWRSAV #lit1  
1
WDTO, Sleep  
None  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
Expr  
Wn  
2
Computed Call  
2
None  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
Return from Interrupt  
1
None  
1
None  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
3 (2)  
3 (2)  
3 (2)  
1
None  
#lit10,Wn  
Return with Literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = Sign-Extended Ws  
f = FFFFh  
None  
None  
f
C, N, Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RLC  
1
C, N, Z  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
N, Z  
f,WREG  
Ws,Wd  
f
1
N, Z  
1
N, Z  
1
C, N, Z  
RRC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RRC  
1
C, N, Z  
RRNC  
RRNC  
RRNC  
RRNC  
SE  
1
N, Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N, Z  
1
N, Z  
SE  
1
C, N, Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
Ws  
WREG = FFFFh  
1
None  
Ws = FFFFh  
1
None  
SL  
f
f = Left Shift f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N, Z  
SUB  
SUB  
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
1
SUB  
Wn = Wn – lit10  
1
SUB  
Wd = Wb – Ws  
1
SUB  
Wd = Wb – lit5  
1
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
f = f – WREG – (C)  
1
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
1
1
Wd = Wb – Ws – (C)  
1
Wd = Wb – lit5 – (C)  
1
SUBR  
f = WREG – f  
1
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
WREG = WREG – f  
1
Wd = Ws – Wb  
1
Wd = lit5 – Wb  
1
DS39747C-page 194  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
f
f = WREG – f – (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
Wd = lit5 – Wb – (C)  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
None  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
None  
None  
None  
None  
None  
XOR  
XOR  
f
N, Z  
XOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
N, Z  
XOR  
N, Z  
XOR  
Wd = Wb .XOR. Ws  
N, Z  
XOR  
Wd = Wb .XOR. lit5  
N, Z  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C, Z, N  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 195  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 196  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
25.1 MPLAB Integrated Development  
Environment Software  
25.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PICmicro MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 197  
PIC24FJ128GA FAMILY  
25.2 MPASM Assembler  
25.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
25.6 MPLAB SIM Software Simulator  
25.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PICmicro MCUs and dsPIC® DSCs on an  
instruction level. On any given instruction, the data  
areas can be examined or modified and stimuli can be  
applied from a comprehensive stimulus controller.  
Registers can be logged to files for further run-time  
analysis. The trace buffer and logic analyzer display  
extend the power of the simulator to record and track  
program execution, actions on I/O, most peripherals  
and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 family of microcontrollers and the  
dsPIC30, dsPIC33 and PIC24 family of digital signal  
controllers. These compilers provide powerful integra-  
tion capabilities, superior code optimization and ease  
of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
25.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS39747C-page 198  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
25.7 MPLAB ICE 2000  
High-Performance  
25.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PICmicro  
MCUs and can be used to develop for these and other  
PICmicro MCUs and dsPIC DSCs. The MPLAB ICD 2  
utilizes the in-circuit debugging capability built into  
the Flash devices. This feature, along with Microchip’s  
In-Circuit Serial ProgrammingTM (ICSPTM) protocol,  
offers cost-effective, in-circuit Flash debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by setting breakpoints,  
single stepping and watching variables, and CPU  
status and peripheral registers. Running at full speed  
enables testing hardware and applications in real  
time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
25.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PICmicro devices without a PC connection. It can also  
set code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
25.8 MPLAB ICE 4000  
High-Performance  
In-Circuit Emulator  
The MPLAB ICE 4000 In-Circuit Emulator is intended to  
provide the product development engineer with a  
complete microcontroller design tool set for high-end  
PICmicro MCUs and dsPIC DSCs. Software control of  
the MPLAB ICE 4000 In-Circuit Emulator is provided by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLAB ICE 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, and up to 2 Mb of emulation memory.  
The MPLAB ICE 4000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 199  
PIC24FJ128GA FAMILY  
25.11 PICSTART Plus Development  
Programmer  
25.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PICmicro devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PICmicro MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
25.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer with an easy-to-use interface for pro-  
gramming many of Microchip’s baseline, mid-range  
and PIC18F families of Flash memory microcontrollers.  
The PICkit 2 Starter Kit includes a prototyping develop-  
ment board, twelve sequential lessons, software and  
HI-TECH’s PICC Lite C compiler, and is designed to  
help get up to speed quickly using PIC® micro-  
controllers. The kit provides everything needed to  
program, evaluate and develop applications using  
Microchip’s powerful, mid-range Flash memory family  
of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS39747C-page 200  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
26.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC24FJ128GA family electrical characteristics. Additional information will be  
provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24FJ128GA family are listed below. Exposure to these maximum rating conditions  
for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions  
above the parameters indicated in the operation listings of this specification, is not implied.  
Absolute Maximum Ratings(†)  
Ambient temperature under bias...............................................................................................................-40°C to +85°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital-only pin with respect to VSS .................................................................................. -0.3V to +6.0V  
Voltage on VDDCORE with respect to VSS ................................................................................................. -0.3V to +2.8V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 1)................................................................................................................250 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 1)....................................................................................................200 mA  
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).  
†NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 201  
PIC24FJ128GA FAMILY  
26.1 DC Characteristics  
TABLE 26-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
PIC24FJ128GA  
16  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
2.0-3.6V  
-40°C to +85°C  
TABLE 26-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
PIC24FJ128GA:  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD Σ IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
PI/O = Σ ({VDD VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/θJA  
TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 14x14x1 mm TQFP  
Package Thermal Resistance, 12x12x1 mm TQFP  
Package Thermal Resistance, 10x10x1 mm TQFP  
θJA  
θJA  
θJA  
50  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
69.4  
76.6  
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.  
TABLE 26-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
2.7  
VDDCORE  
2.0  
3.6  
3.6  
2.75  
V
V
V
V
Regulator enabled  
Regulator disabled  
Regulator disabled  
VDD  
VDDCORE  
DC12 VDR  
RAM Data Retention  
Voltage(2)  
1.5  
DC16 VPOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
VSS  
V
DC17 SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms 0-3.3V in 0.1s  
0-2.5V in 60 ms  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
DS39747C-page 202  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 26-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(2)  
DC20  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
20  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC20a  
DC20b  
DC20d  
DC20e  
DC20f  
DC23  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
1 MIPS  
DC23a  
DC23b  
DC23d  
DC23e  
DC23f  
DC24  
12  
12  
4 MIPS  
12  
12  
12  
32  
DC24a  
DC24b  
DC24d  
DC24e  
DC24f  
DC31  
20  
32  
20  
32  
16 MIPS  
20  
32  
20  
32  
20  
32  
70  
150  
200  
400  
150  
200  
400  
DC31a  
DC31b  
DC31d  
DC31e  
DC31f  
100  
200  
70  
μA  
μA  
LPRC (31 kHz)  
μA  
100  
200  
μA  
μA  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD.  
MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are  
operational. No peripheral modules are operating.  
3: On-chip voltage regulator disabled (ENVREG tied to VSS).  
4: On-chip voltage regulator enabled (ENVREG tied to VDD).  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 203  
PIC24FJ128GA FAMILY  
TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core Off, Clock On Base Current(2)  
DC40  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
150  
150  
150  
150  
150  
150  
2
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC40a  
DC40b  
DC40d  
DC40e  
DC40f  
DC43  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2
1 MIPS  
2
2
2
4
DC43a  
DC43b  
DC43d  
DC43e  
DC43f  
DC47  
4
4
4 MIPS  
4
4
4
8
DC47a  
DC47b  
DC47c  
DC47d  
DC47e  
DC51  
8
8
16 MIPS  
8
8
8
500  
500  
500  
500  
500  
500  
DC51a  
DC51b  
DC51d  
DC51e  
DC51f  
μA  
μA  
LPRC (31 kHz)  
μA  
μA  
μA  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IIDLE current is measured with core off, clock on and all modules turned off.  
3: On-chip voltage regulator disabled (ENVREG tied to VSS).  
4: On-chip voltage regulator enabled (ENVREG tied to VDD).  
DS39747C-page 204  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 26-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)(2)  
DC60  
3
3
25  
45  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC60a  
DC60b  
DC60f  
DC60g  
DC60h  
2.0V(3)  
3.6V(4)  
100  
20  
27  
120  
600  
40  
Base Power-Down Current(5)  
60  
600  
Module Differential Current  
DC61  
10  
10  
10  
10  
10  
10  
8
25  
25  
25  
25  
25  
25  
15  
15  
15  
15  
15  
15  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC61a  
DC61b  
DC61f  
DC61g  
DC61h  
DC62  
2.0V(3)  
3.6V(4)  
2.0V(3)  
3.6V(4)  
(5)  
Watchdog Timer Current: ΔIWDT  
DC62a  
DC62b  
DC62f  
DC62g  
DC62h  
8
8
RTCC + Timer1 w/32 kHz Crystal:  
(5)  
ΔIRTCC  
8
8
8
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled high. WDT, etc., are all switched off.  
3: On-chip voltage regulator disabled (ENVREG tied to VSS).  
4: On-chip voltage regulator enabled (ENVREG tied to VDD).  
5: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 205  
PIC24FJ128GA FAMILY  
TABLE 26-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O pins  
DI10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
V
V
DI11  
DI15  
DI16  
DI17  
DI18  
DI19  
PMP pins  
PMPTTL = 1  
MCLR  
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
SDAx, SCLx  
Input High Voltage  
SMBus disabled  
SMBus enabled  
VIH  
DI20  
I/O pins:  
With Analog Functions  
Digital-Only  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
DI21  
DI25  
DI26  
DI27  
DI28  
DI29  
PMP pins  
0.25 VDD + 0.8  
0.8 VDD  
0.7 VDD  
0.7 VDD  
0.7 VDD  
2.1  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
PMPTTL = 1  
MCLR  
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
SDAx, SCLx  
SMBus disabled  
SMBus enabled,  
2.5V VPIN VDD  
DI30  
ICNPU CNxx Pull-up Current  
50  
250  
400  
μA  
VDD = 3.3V, VPIN = VSS  
IIL  
Input Leakage Current(2,3)  
DI50  
DI51  
I/O Ports  
+1  
+1  
μA  
μA  
VSS VPIN VDD,  
Pin at high-impedance  
Analog Input pins  
VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
+1  
+1  
μA  
μA  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39747C-page 206  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
TABLE 26-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1) Max  
Units  
Conditions  
VOL  
Output Low Voltage  
DO10  
DO16  
I/O Ports  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 8.5 mA, VDD = 3.6V  
IOL = 6.0 mA, VDD = 2.0V  
IOL = 8.5 mA, VDD = 3.6V  
IOL = 6.0 mA, VDD = 2.0V  
OSC2/CLKO  
VOH  
Output High Voltage  
DO20  
DO26  
I/O Ports  
2.4  
1.4  
2.4  
1.4  
V
V
V
V
IOH = -6.0 mA, VDD = 3.6V  
IOH = -3.0 mA, VDD = 2.0V  
IOH = -6.0 mA, VDD = 3.6V  
IOH = -3.0 mA, VDD = 2.0V  
OSC2/CLKO  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 26-10: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
VPR  
100  
1K  
E/W -40°C to +85°C  
VDD for Read  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW VDD for Self-Timed Write  
VMIN  
3
3.6  
V
VMIN = Minimum operating  
voltage  
D133A TIW  
Self-Timed Write Cycle  
Time  
ms  
D134  
D135  
TRETD Characteristic Retention  
20  
10  
Year Provided no other specifications are  
violated  
IDDP  
Supply Current during  
Programming  
mA  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
TABLE 26-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
VRGOUT Regulator Output Voltage  
2.5  
10  
V
CEFC  
External Filter Capacitor  
Value  
4.7  
μF  
Capacitor must be low  
series resistance  
TVREG  
TPWRT  
10  
64  
μs  
ENVREG = 1  
ENVREG = 0  
ms  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 207  
PIC24FJ128GA FAMILY  
26.2 AC Characteristics and Timing Parameters  
The information contained in this section defines the PIC24FJ128GA family AC characteristics and timing parameters.  
TABLE 26-12: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Operating voltage VDD range as described in Section 26.1 “DC Characteristics”.  
FIGURE 26-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 26-13: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
No.  
DO50 COSC2  
OSC2/CLKO pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1.  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS39747C-page 208  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
FIGURE 26-2:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
OSC1  
CLKO  
OS20  
OS25  
OS30 OS30  
OS31 OS31  
OS40  
OS41  
TABLE 26-14: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10 FOSC External CLKI Frequency  
(External clocks allowed  
DC  
3
32  
8
MHz EC  
MHz ECPLL  
only in EC mode)  
Oscillator Frequency  
3
3
10  
31  
10  
8
32  
33  
MHz XT  
MHz XTPLL  
MHz HS  
kHz  
SOSC  
OS20 TOSC TOSC = 1/FOSC  
See parameter OS10  
for FOSC value  
OS25 TCY  
Instruction Cycle Time(2)  
33  
DC  
ns  
ns  
OS30 TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.45 x TOSC  
EC  
EC  
OS31 TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
OS40 TckR CLKO Rise Time(3)  
OS41 TckF CLKO Fall Time(3)  
6
6
10  
10  
ns  
ns  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at “Min.” values with an  
external clock applied to the OSC1/CLKI pin. When an external clock input is used, the “Max.” cycle time  
limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. CLKO is low for the  
Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 209  
PIC24FJ128GA FAMILY  
TABLE 26-15: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50 FPLLI PLL Input Frequency  
Range(2)  
2
8
32  
2
MHz ECPLL, HSPLL, XTPLL  
modes  
OS51 FSYS On-Chip VCO System  
Frequency  
8
1
MHz  
ms  
%
OS52 TLOC PLL Start-up Time  
(Lock Time)  
OS53 DCLK CLKO Stability (Jitter)  
-2  
+2  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 26-16: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 8 MHz(1)  
F20  
FRC  
-2  
-5  
+2  
+5  
%
%
+25°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
-40°C TA +85°C  
Legend: TBD = To Be Determined  
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
TABLE 26-17: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 31 kHz(1)  
F21  
-15  
+15  
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
Note 1: Change of LPRC frequency as VDD changes.  
DS39747C-page 210  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
FIGURE 26-3:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-18: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31 TIOR Port Output Rise Time  
DO32 TIOF Port Output Fall Time  
20  
10  
10  
25  
25  
ns  
ns  
ns  
DI35  
TINP  
INTx pin High or Low  
Time (output)  
DI40  
TRBP CNx High or Low Time  
(input)  
2
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 211  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 212  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC24FJ128  
GA006-I/  
PT  
e
3
0510017  
80-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
008-I/PT  
0510017  
e
3
100-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
010-I/PT  
0510017  
e
3
100-Lead TQFP (14x14x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
010-I/PF  
0510017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
e
WW  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
3
NNN  
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 213  
PIC24FJ128GA FAMILY  
27.2 Package Details  
The following sections give the technical details of the packages.  
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45°  
α
A
c
L
A2  
φ
A1  
β
(F)  
Units  
Dimension Limits  
INCHES  
NOM  
64  
MILLIMETERS*  
NOM  
64  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
.020  
0.50  
16  
Pins per Side  
n1  
A
16  
.043  
.039  
.006  
.024  
.039  
3.5  
Overall Height  
.039  
.047  
1.00  
1.10  
1.00  
0.15  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.037  
.002  
.018  
.041  
.010  
.030  
0.95  
0.05  
0.45  
1.05  
0.25  
0.75  
Foot Length  
(F)  
φ
E
D
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.005  
.007  
.025  
5
7
.482  
.482  
.398  
.398  
.009  
.011  
.045  
15  
0
11.75  
11.75  
9.90  
9.90  
0.13  
0.17  
0.64  
5
7
12.25  
12.25  
10.10  
10.10  
0.23  
0.27  
1.14  
15  
Overall Width  
.472  
.472  
.394  
.394  
.007  
.009  
.035  
10  
12.00  
12.00  
10.00  
10.00  
0.18  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
5
10  
15  
5
10  
15  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-085  
DS39747C-page 214  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45°  
A
α
c
A2  
φ
β
L
A1  
(F)  
Units  
Dimension Limits  
INCHES  
NOM  
80  
MILLIMETERS*  
NOM  
80  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
.020  
0.50  
20  
Pins per Side  
n1  
A
20  
.043  
.039  
.004  
.024  
.039  
3.5  
Overall Height  
.039  
.037  
.002  
.018  
.047  
1.00  
1.10  
1.00  
0.10  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.041  
.006  
.030  
0.95  
0.05  
0.45  
1.05  
0.15  
0.75  
Foot Length  
(F)  
Footprint (Reference)  
Foot Angle  
φ
E
0
.541  
.541  
.463  
.463  
.004  
.007  
.025  
5
7
.561  
.561  
.482  
.482  
.008  
.011  
.045  
15  
0
13.75  
13.75  
11.75  
11.75  
0.09  
0.17  
0.64  
5
7
14.25  
14.25  
12.25  
12.25  
0.20  
0.27  
1.14  
15  
Overall Width  
.551  
.551  
.472  
.472  
.006  
.009  
.035  
10  
14.00  
14.00  
12.00  
12.00  
0.15  
0.22  
0.89  
10  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
5
10  
15  
5
10  
15  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-092  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 215  
PIC24FJ128GA FAMILY  
100-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads = n1  
p
D1  
D
2
1
B
c
n
CH x 45  
α
A
A1  
φ
β
A2  
L
F
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS  
NOM  
100  
0.40 BSC  
25  
*
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
100  
.016 BSC  
25  
Pins per Side  
n1  
A
Overall Height  
.039  
.043  
.047  
1.00  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.037  
.002  
.018  
.039  
.041  
.006  
.030  
0.95  
0.05  
0.45  
1.05  
0.15  
0.75  
.004  
Foot Length  
.024  
Footprint (Reference)  
Foot Angle  
F
φ
.039 REF.  
3.5°  
1.00 REF.  
3.5°  
14.00 BSC  
0°  
7°  
0°  
7°  
Overall Width  
E
D
.551 BSC  
.551 BSC  
.472 BSC  
.472 BSC  
.006  
Overall Length  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
.004  
.005  
.008  
.009  
15°  
0.09  
0.13  
0.15  
0.20  
0.23  
15°  
B
α
β
.007  
0.18  
10°  
10°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5°  
5°  
10°  
5°  
5°  
10°  
15°  
15°  
*
Controlling Parameter  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.10" (0.254 mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MS-026  
Revised 07-22-05  
Drawing No. C04-100  
DS39747C-page 216  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
100-Lead Plastic Thin Quad Flatpack (PF) 14x14x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D
D1  
B
2
1
n
A
α
c
A2  
φ
β
L
A1  
(F)  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
100  
0.50  
25  
MAX  
n
p
Number of Pins  
Pitch  
100  
.020  
Pins per Side  
n1  
A
25  
Overall Height  
Molded Package Thickness  
.047  
.041  
.006  
.030  
1.20  
A2  
A1  
L
.037  
.039  
0.95  
0.05  
0.45  
1.00  
1.05  
0.15  
0.75  
Standoff  
§
.002  
.018  
Foot Length  
.024  
.039  
0.60  
1.00  
(F)  
φ
Footprint (Reference)  
Foot Angle  
0
3.5  
7
0
3.5  
7
Overall Width  
E
D
.630 BSC  
.630 BSC  
.551 BSC  
.551 BSC  
16.00 BSC  
16.00 BSC  
14.00 BSC  
14.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
.004  
.007  
11  
.008  
.011  
13  
0.09  
0.17  
11  
0.20  
0.27  
13  
Lead Width  
B
.009  
12  
0.22  
12  
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
11  
12  
13  
11  
12  
13  
*Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-110  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 217  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 218  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
APPENDIX A: REVISION HISTORY  
Revision A (September 2005)  
Original data sheet for PIC24FJ128GA family devices.  
Revision B (March 2006)  
Update of electrical specifications.  
Revision C (June 2006)  
Update of electrical specifications.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 219  
PIC24FJ128GA FAMILY  
NOTES:  
DS39747C-page 220  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
INDEX  
A
C
A/D Converter ................................................................... 165  
AC  
C Compilers  
MPLAB C18.............................................................. 198  
MPLAB C30.............................................................. 198  
Clock Switching  
and Clock Frequency.................................................. 97  
Enabling...................................................................... 95  
Operation.................................................................... 95  
Oscillator Sequence ................................................... 96  
Code Examples  
Characteristics .......................................................... 208  
Internal RC Accuracy........................................ 210  
Load Conditions........................................................ 208  
Temperature and Voltage Specifications.................. 208  
Alternate Interrupt Vector Table (AIVT) .............................. 57  
Arithmetic Logic Unit (ALU)................................................. 23  
Assembler  
MPASM Assembler................................................... 198  
Basic Code Sequence for  
Clock Switching .................................................. 96  
Erasing a Program Memory Block.............................. 48  
Initiating a Programming Sequence ........................... 49  
Loading Write Buffers................................................. 49  
Port Write/Read........................................................ 100  
PWRSAV Instruction Syntax ...................................... 97  
Comparator Module.......................................................... 173  
Comparator Voltage Reference........................................ 177  
Configuring ............................................................... 177  
Configuration Bits ............................................................. 179  
Configuration Register Protection..................................... 187  
Configuring Analog Port Pins............................................ 100  
Core Features....................................................................... 7  
16-bit Architecture ........................................................ 7  
Easy Migration.............................................................. 8  
Oscillator Options, Features......................................... 7  
Power-Saving Technology............................................ 7  
CPU.................................................................................... 19  
Control Registers........................................................ 22  
Programmer’s Model .................................................. 21  
CRC  
B
Baud Rate Error Calculation (BRGH = 0) ......................... 132  
Block Diagrams  
10-bit High-Speed A/D Converter ............................. 166  
16-bit Timer1 Module................................................ 101  
8-bit Multiplexed Address and  
Data Application................................................ 148  
Accessing Program Memory with  
Table Instructions ............................................... 42  
Addressable Parallel Slave Port ............................... 146  
Comparator I/O Operating Modes............................. 173  
Comparator Voltage Reference ................................ 177  
Connections for On-Chip Voltage Regulator............. 185  
Device Clock............................................................... 91  
I2C............................................................................. 124  
Input Capture ............................................................ 109  
LCD Control .............................................................. 148  
Legacy Parallel Slave Port........................................ 146  
Master Mode, Demultiplexed Addressing ................. 146  
Master Mode, Fully Multiplexed Addressing ............. 147  
Master Mode, Partially Multiplexed Addressing........ 147  
Multiplexed Addressing Application .......................... 147  
Output Compare Module........................................... 113  
Parallel EEPROM (Up to 15-bit Address,  
Example Setup ......................................................... 162  
Operation in Power Save Modes.............................. 163  
Overview................................................................... 162  
Registers .................................................................. 161  
User Interface........................................................... 163  
Customer Change Notification Service............................. 225  
Customer Notification Service .......................................... 225  
Customer Support............................................................. 225  
16-bit Data)....................................................... 148  
Parallel EEPROM (Up to 15-bit Address,  
8-bit Data)......................................................... 148  
Partially Multiplexed Addressing Application ............ 147  
PIC24 CPU Core......................................................... 20  
PIC24FJ128GA Family (General)............................... 10  
PMP Module ............................................................. 139  
Program Space Visibility Operation ............................ 43  
Reset System.............................................................. 51  
RTCC........................................................................ 149  
Shared Port Structure ................................................. 99  
SPI ............................................................................ 116  
SPI Master, Frame Master Connection..................... 121  
SPI Master, Frame Slave Connection....................... 121  
SPI Master/Slave Connection  
D
Data Memory  
Address Space ........................................................... 27  
Width .................................................................. 27  
Memory Map for PIC24F128GA  
Family Devices ................................................... 27  
Near Data Space........................................................ 28  
Organization and Alignment ....................................... 28  
SFR Space ................................................................. 28  
Software Stack ........................................................... 40  
DC Characteristics............................................................ 202  
I/O Pin Input Specifications ...................................... 206  
I/O Pin Output Specifications.................................... 207  
Idle Current (IIDLE).................................................... 204  
Operating Current (IDD) ............................................ 203  
Power-Down Current (IPD)........................................ 205  
Program Memory...................................................... 207  
Temperature and Voltage Specifications.................. 202  
Development Support....................................................... 197  
(Enhanced Buffer Modes)................................. 120  
SPI Master/Slave Connection  
(Standard Mode)............................................... 120  
SPI Slave, Frame Master Connection....................... 121  
SPI Slave, Frame Slave Connection......................... 121  
Timer2 and Timer4 (16-bit Synchronous) ................. 105  
Timer2/3 and Timer4/5 (32-bit) ................................. 104  
Timer3 and Timer5 (16-bit Asynchronous) ............... 105  
UART ........................................................................ 131  
Watchdog Timer (WDT)............................................ 186  
Brown-out Reset (BOR)  
and On-Chip Voltage Regulator................................ 185  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 221  
PIC24FJ128GA FAMILY  
E
M
Electrical Characteristics...................................................201  
Absolute Maximum Ratings ......................................201  
ENVREG pin .....................................................................185  
Equations  
Memory Organization ......................................................... 25  
Microchip Internet Web Site.............................................. 225  
MPLAB ASM30 Assembler, Linker, Librarian................... 198  
MPLAB ICD 2 In-Circuit Debugger ................................... 199  
MPLAB ICE 2000 High-Performance  
Universal In-Circuit Emulator.................................... 199  
MPLAB ICE 4000 High-Performance  
Universal In-Circuit Emulator.................................... 199  
MPLAB Integrated Development  
A/D Conversion Clock Period ...................................171  
Calculating the PWM Period.....................................112  
Calculation for Maximum PWM Resolution...............112  
Relationship Between Device and  
SPI Clock Speed...............................................122  
UART Baud Rate with BRGH = 0 .............................132  
UART Baud Rate with BRGH = 1 .............................132  
Errata ....................................................................................6  
Environment Software .............................................. 197  
MPLAB PM3 Device Programmer .................................... 199  
MPLINK Object Linker/MPLIB Object Librarian................ 198  
F
O
Flash Configuration Words..........................................26, 179  
Flash Program Memory.......................................................45  
Control Registers ........................................................46  
Operations ..................................................................46  
Programming Algorithm ..............................................48  
RTSP Operation..........................................................46  
Table Instructions........................................................45  
FSCM  
Open-Drain Configuration................................................. 100  
Oscillator Configuration ...................................................... 91  
Clock Switching Mode Configuration Bits................... 92  
Control Registers........................................................ 92  
CLKDIV............................................................... 92  
OSCCON............................................................ 92  
OSCTUN ............................................................ 92  
Output Compare ............................................................... 111  
Registers .................................................................. 114  
and Device Resets......................................................54  
Delay for Crystal and PLL Clock Sources...................55  
P
I
Packaging......................................................................... 213  
Details....................................................................... 214  
Marking..................................................................... 213  
Pad Configuration Map....................................................... 37  
Parallel Master Port (PMP)............................................... 139  
PICSTART Plus Development Programmer..................... 200  
Pinout Descriptions  
I/O Ports..............................................................................99  
Parallel I/O (PIO).........................................................99  
Write/Read Timing ....................................................100  
I2C  
Clock Rates...............................................................125  
Communicating as Master in a  
Single Master Environment...............................123  
Setting Baud Rate When Operating  
PIC24FJ128GA Family............................................... 11  
POR and Long Oscillator Start-up Times ........................... 54  
Power-on Reset (POR)  
and On-Chip Voltage Regulator................................ 185  
Power-Saving Features ...................................................... 97  
Power-Saving Modes  
Doze ........................................................................... 98  
Instruction-Based........................................................ 97  
Idle...................................................................... 98  
Sleep .................................................................. 97  
Program Address Space..................................................... 25  
Memory Map for PIC24FJ128GA  
as Bus Master...................................................125  
Slave Address Masking ............................................125  
Implemented Interrupt Vectors (table).................................59  
In-Circuit Debugger...........................................................187  
In-Circuit Serial Programming (ICSP) ...............................187  
Input Capture ....................................................................109  
Registers...................................................................110  
Input Change Notification..................................................100  
Instruction Set  
Overview...................................................................191  
Summary...................................................................189  
Inter-Integrated Circuit (I2C) .............................................123  
Internal RC Oscillator  
Use with WDT...........................................................186  
Internet Address................................................................225  
Interrupt Control and Status Registers................................60  
IECx ............................................................................60  
IFSx.............................................................................60  
INTCON1, INTCON2 ..................................................60  
IPCx ............................................................................60  
Interrupt Controller ..............................................................57  
Interrupt Setup Procedures.................................................89  
Initialization .................................................................89  
Interrupt Disable..........................................................89  
Interrupt Service Routine (ISR)...................................89  
Trap Service Routine (TSR)........................................89  
Interrupt Vector Table (IVT) ................................................57  
Interrupts Coincident with  
Family Devices ................................................... 25  
Program and Data Memory Spaces  
Interfacing................................................................... 40  
Program Memory  
Data Access Using Table Instructions........................ 42  
Hard Memory Vectors................................................. 26  
Interrupt Vector........................................................... 26  
Organization ............................................................... 26  
Reading Data Using Program Space Visibility............ 43  
Reset Vector............................................................... 26  
Table Instructions  
TBLRDH ............................................................. 42  
TBLRDL.............................................................. 42  
Program Space  
Address Construction ................................................. 41  
Addressing.................................................................. 40  
Data Access from, Address Generation ..................... 41  
Program Verification and Code Protection ....................... 187  
Programmer’s Model .......................................................... 19  
Power Save Instructions .............................................98  
DS39747C-page 222  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
Pulse-Width Modulation Mode.......................................... 112  
Duty Cycle................................................................. 112  
Period........................................................................ 112  
IEC0 (Interrupt Enable Control 0)............................... 69  
IEC1 (Interrupt Enable Control 1)............................... 70  
IEC2 (Interrupt Enable Control 2)............................... 71  
IEC3 (Interrupt Enable Control 3)............................... 72  
IEC4 (Interrupt Enable Control 4)............................... 73  
IFS0 (Interrupt Flag Status 0)..................................... 64  
IFS1 (Interrupt Flag Status 1)..................................... 65  
IFS2 (Interrupt Flag Status 2)..................................... 66  
IFS3 (Interrupt Flag Status 3)..................................... 67  
IFS4 (Interrupt Flag Status 4)..................................... 68  
INTCON1 (Interrupt Control 1) ................................... 62  
INTCON2 (Interrupt Control 2) ................................... 63  
IPC0 (Interrupt Priority Control 0)............................... 74  
IPC1 (Interrupt Priority Control 1)............................... 75  
IPC10 (Interrupt Priority Control 10)........................... 84  
IPC11 (Interrupt Priority Control 11)........................... 84  
IPC12 (Interrupt Priority Control 12)........................... 85  
IPC13 (Interrupt Priority Control 13)........................... 86  
IPC15 (Interrupt Priority Control 15)........................... 87  
IPC16 (Interrupt Priority Control 16)........................... 88  
IPC2 (Interrupt Priority Control 2)............................... 76  
IPC3 (Interrupt Priority Control 3)............................... 77  
IPC4 (Interrupt Priority Control 4)............................... 78  
IPC5 (Interrupt Priority Control 5)............................... 79  
IPC6 (Interrupt Priority Control 6)............................... 80  
IPC7 (Interrupt Priority Control 7)............................... 81  
IPC8 (Interrupt Priority Control 8)............................... 82  
IPC9 (Interrupt Priority Control 9)............................... 83  
MINSEC (Minutes and Seconds Value) ................... 156  
MTHDY (Month and Day Value)............................... 155  
NVMCON (Flash Memory Control)............................. 47  
OCxCON (Output Compare x Control)..................... 114  
OSCCON (Oscillator Control)..................................... 93  
OSCTUN (FRC Oscillator Tune) ................................ 95  
PADCFG1 (Pad Configuration Control)............ 145, 153  
PMADDR (Parallel Port Address)............................. 143  
PMCON (Parallel Port Control)................................. 140  
PMMODE (Parallel Port Mode) ................................ 142  
PMPEN (Parallel Port Enable).................................. 143  
PMSTAT (Parallel Port Status)................................. 144  
RCFGCAL (RTCC Calibration  
R
Reader Response............................................................. 226  
Register Map  
ADC ............................................................................ 35  
CPU Core.................................................................... 29  
CRC ............................................................................ 39  
Dual Comparator......................................................... 38  
I2C1 ............................................................................ 33  
I2C2 ............................................................................ 33  
ICN.............................................................................. 31  
Input Capture .............................................................. 32  
Interrupt Controller...................................................... 30  
NVM............................................................................ 39  
Output Compare ......................................................... 32  
Parallel Master/Slave Port .......................................... 38  
PMD............................................................................ 39  
PORTA........................................................................ 35  
PORTB........................................................................ 36  
PORTC ....................................................................... 36  
PORTD ....................................................................... 36  
PORTE........................................................................ 37  
PORTF........................................................................ 37  
PORTG ....................................................................... 37  
Real-Time Clock and Calendar................................... 38  
SPI1 ............................................................................ 34  
SPI2 ............................................................................ 34  
System........................................................................ 39  
Timers......................................................................... 31  
UART1 ........................................................................ 34  
UART2 ........................................................................ 34  
Registers  
AD1CHS (A/D Input Select)...................................... 170  
AD1CON1 (A/D Control 1)........................................ 167  
AD1CON2 (A/D Control 2)........................................ 168  
AD1CON3 (A/D Control 3)........................................ 169  
AD1CSSL (A/D Input Scan Select)........................... 171  
AD1PCFG (A/D Port Configuration).......................... 171  
ALCFGRPT (Alarm Configuration)............................ 154  
ALMINSEC (Alarm Minutes and  
Seconds Value) ................................................ 158  
ALMTHDY (Alarm Month and Day Value) ................ 157  
ALWDHR (Alarm Weekday and  
Hours Value)..................................................... 157  
CLKDIV (Clock Divider) .............................................. 94  
CMCON (Comparator Control) ................................. 174  
CORCON (Core Control) ...................................... 23, 61  
CRCCON (CRC Control) .......................................... 161  
CVRCON (Comparator Voltage  
Reference Control) ........................................... 178  
DEVID (Device ID).................................................... 183  
DEVREV (Device Revision)...................................... 184  
Flash Configuration Word 1 ...................................... 180  
Flash Configuration Word 2 ...................................... 182  
I2CxCON (I2Cx Control)............................................ 126  
I2CxMSK (I2Cx Slave Mode  
Address Mask).................................................. 130  
I2CxSTAT (I2Cx Status)............................................ 128  
ICxCON (Input Capture x Control)............................ 110  
and Configuration)............................................ 151  
RCON (Reset Control)................................................ 52  
SPIxCON1 (SPIx Control 1) ..................................... 118  
SPIxCON2 (SPIx Control 2) ..................................... 119  
SPIxSTAT (SPIx Status and Control)....................... 117  
SR (CPU STATUS) .................................................... 22  
SR (STATUS in CPU)................................................. 61  
T1CON (Timer1 Control) .......................................... 102  
Timer3/5 Control)...................................................... 107  
TxCON (Timer2/4 Control) ....................................... 106  
UxMODE (UARTx Mode) ......................................... 134  
UxSTA (UARTx Status and Control) ........................ 136  
WKDYHR (Weekday and Hours Value) ................... 156  
YEAR (Year Value)................................................... 155  
Reset Sequence................................................................. 57  
Resets ................................................................................ 51  
Clock Source Selection .............................................. 53  
Device Times.............................................................. 53  
Revision History................................................................ 219  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 223  
PIC24FJ128GA FAMILY  
RTCC  
U
Alarm.........................................................................159  
Configuring........................................................159  
Interrupt.............................................................159  
ALRMVAL Register Mappings ..................................157  
Calibration.................................................................158  
Control Registers ......................................................151  
Module Registers......................................................150  
Mapping ............................................................150  
RTCVAL Register Mapping.......................................155  
UART  
Baud Rate Generator (BRG) .................................... 132  
Infrared Support........................................................ 133  
IrDA  
Built-in Encoder and Decoder........................... 133  
External Support, Clock Output........................ 133  
Operation of UxCTS and UxRTS  
Control Pins...................................................... 133  
Receiving  
8-bit or 9-bit Data Mode.................................... 133  
Transmitting  
8-bit Data Mode................................................ 133  
9-bit Data Mode................................................ 133  
Break and Sync Sequence............................... 133  
Universal Asynchronous Receiver  
S
Selective Peripheral Module Control...................................98  
Serial Peripheral Interface (SPI) .......................................115  
Setup for Continuous Output Pulse Generation................111  
Setup for Single Output Pulse Generation........................111  
Software Simulator (MPLAB SIM).....................................198  
Software Stack Pointer, Frame Pointer  
Transmitter (UART) .................................................. 131  
CALL Stack Frame......................................................40  
Special Features ...............................................................179  
Code Protection ........................................................179  
Flexible Configuration ...............................................179  
In-Circuit Emulation...................................................179  
In-Circuit Serial Programming (ICSP).......................179  
JTAG Boundary Scan Interface ................................179  
Watchdog Timer (WDT)............................................179  
Special Function Register Reset States..............................55  
Symbols Used in Opcode Descriptions.............................190  
V
VDDCORE/VCAP Pin ........................................................... 185  
Voltage Regulator (On-Chip) ............................................ 185  
W
Watchdog Timer (WDT).................................................... 186  
Control Register........................................................ 186  
Programming Considerations ................................... 186  
WWW Address ................................................................. 225  
WWW, On-Line Support ....................................................... 6  
T
Timer1 Module ..................................................................101  
Timer2/3 Module ...............................................................103  
Timer4/5 Module ...............................................................103  
Timing Diagrams  
CLKO and I/O ...........................................................211  
External Clock...........................................................209  
Timing Requirements  
Capacitive Loading on Output Pin ............................208  
CLKO and I/O ...........................................................211  
External Clock...........................................................209  
Timing Specifications  
PLL Clock..................................................................210  
DS39747C-page 224  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 225  
PIC24FJ128GA FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC24FJ128GA Family  
Questions:  
Literature Number: DS39747C  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39747C-page 226  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24FJ128GA FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PIC 24 FJ 128 GA0 10 T - I / PT - XXX  
a)  
b)  
PIC24FJ128GA008-I/PT 301:  
General purpose PIC24, 96 KB program  
memory, 80-pin, Industrial temp.,  
TQFP package, QTP pattern #301.  
Microchip Trademark  
Architecture  
PIC24FJ128GA010-I/PT:  
Flash Memory Family  
General purpose PIC24, 128 KB program  
memory, 100-pin, Industrial temp.,  
TQFP package.  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture  
24 = 16-bit modified Harvard without DSP  
Flash Memory Family FJ = Flash program memory  
Product Group  
Pin Count  
GA0 = General purpose microcontrollers  
06 = 64-pin  
08 = 80-pin  
10 = 100-pin  
Temperature Range  
Package  
I
= -40°C to +85°C (Industrial)  
PT = 64-Lead, 80-Lead, 100-Lead (12x12x1 mm)  
TQFP (Thin Quad Flatpack)  
PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack)  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES = Engineering Sample  
© 2006 Microchip Technology Inc.  
Preliminary  
DS39747C-page 227  
PIC24FJ128GA FAMILY  
DS39747C-page 228  
Preliminary  
© 2006 Microchip Technology Inc.  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-3910  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Atlanta  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Boston  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Detroit  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
06/08/06  
DS39747C-page 228  
Preliminary  
© 2006 Microchip Technology Inc.  
DSTEMP  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 CPU............................................................................................................................................................................................ 19  
3.0 Memory Organization................................................................................................................................................................. 25  
4.0 Flash Program Memory.............................................................................................................................................................. 45  
5.0 Resets ........................................................................................................................................................................................ 51  
6.0 Interrupt Controller ..................................................................................................................................................................... 57  
7.0 Oscillator Configuration.............................................................................................................................................................. 91  
8.0 Power-Saving Features.............................................................................................................................................................. 97  
9.0 I/O Ports ..................................................................................................................................................................................... 99  
10.0 Timer1 ...................................................................................................................................................................................... 101  
11.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 103  
12.0 Input Capture............................................................................................................................................................................ 109  
13.0 Output Compare....................................................................................................................................................................... 111  
14.0 Serial Peripheral Interface (SPI™)........................................................................................................................................... 115  
15.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................. 123  
16.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 131  
17.0 Parallel Master Port.................................................................................................................................................................. 139  
18.0 Real-Time Clock and Calendar ................................................................................................................................................ 149  
19.0 Programmable Cyclic Redundancy Check (CRC) Generator .................................................................................................. 161  
20.0 10-bit High-Speed A/D Converter............................................................................................................................................. 165  
21.0 Comparator Module.................................................................................................................................................................. 173  
22.0 Comparator Voltage Reference................................................................................................................................................ 177  
23.0 Special Features ...................................................................................................................................................................... 179  
24.0 Instruction Set Summary.......................................................................................................................................................... 189  
25.0 Development Support............................................................................................................................................................... 197  
26.0 Electrical Characteristics.......................................................................................................................................................... 201  
27.0 Packaging Information.............................................................................................................................................................. 213  
Appendix A: Revision History............................................................................................................................................................. 219  
Index ................................................................................................................................................................................................. 221  
The Microchip Web Site..................................................................................................................................................................... 225  
Customer Change Notification Service.............................................................................................................................................. 225  
Customer Support.............................................................................................................................................................................. 225  
Reader Response.............................................................................................................................................................................. 226  
Product Identification System ............................................................................................................................................................ 227  
© 2005 Microchip Technology Inc.  
Advance Information  
DS00000A-page 1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY