PIC24H [MICROCHIP]

High-Performance, 16-bit Microcontrollers;
PIC24H
型号: PIC24H
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-bit Microcontrollers

微控制器
文件: 总290页 (文件大小:4590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24H Family  
Data Sheet  
High-Performance, 16-bit  
Microcontrollers  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS70175D-page ii  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
High-Performance, 16-bit Microcontrollers  
• 4 mA sink on all I/O pins  
Operating Range:  
• DC – 40 MIPS (40 MIPS @ 3.0-3.6V,  
-40°C to +85°C)  
On-Chip Flash and SRAM:  
• Flash program memory, up to 256 Kbytes  
• Industrial temperature range (-40°C to +85°C)  
• Data SRAM, up to 16 Kbytes (includes 2 Kbytes  
of DMA RAM)  
High-Performance DSC CPU:  
• Modified Harvard architecture  
• C compiler optimized instruction set  
• 16-bit wide data path  
System Management:  
• Flexible clock options:  
- External, crystal, resonator, internal RC  
- Fully integrated PLL  
• 24-bit wide instructions  
• Linear program memory addressing up to 4M  
instruction words  
- Extremely low jitter PLL  
• Power-up Timer  
• Linear data memory addressing up to 64 Kbytes  
• 71 base instructions: mostly 1 word/1 cycle  
• Sixteen 16-bit General Purpose Registers  
• Flexible and powerful Indirect Addressing modes  
• Software stack  
• Oscillator Start-up Timer/Stabilizer  
• Watchdog Timer with its own RC oscillator  
• Fail-Safe Clock Monitor  
• Reset by multiple sources  
• 16 x 16 multiply operations  
Power Management:  
• 32/16 and 16/16 divide operations  
• Up to ±16-bit data shifts  
• On-chip 2.5V voltage regulator  
• Switch between clock sources in real time  
• Idle, Sleep and Doze modes with fast wake-up  
Direct Memory Access (DMA):  
• 8-channel hardware DMA  
Timers/Capture/Compare/PWM:  
• 2 Kbytes dual ported DMA buffer area  
(DMA RAM) to store data transferred via DMA:  
• Timer/Counters, up to nine 16-bit timers:  
- Can pair up to make four 32-bit timers  
- Allows data transfer between RAM and a  
peripheral while CPU is executing code  
(no cycle stealing)  
- 1 timer runs as Real-Time Clock with external  
32.768 kHz oscillator  
• Most peripherals support DMA  
- Programmable prescaler  
• Input Capture (up to 8 channels):  
- Capture on up, down or both edges  
- 16-bit capture input functions  
- 4-deep FIFO on each capture  
• Output Compare (up to 8 channels):  
- Single or Dual 16-Bit Compare mode  
- 16-bit Glitchless PWM mode  
Interrupt Controller:  
• 5-cycle latency  
• 118 interrupt vectors  
• Up to 61 available interrupt sources  
• Up to 5 external interrupts  
• 7 programmable priority levels  
• 5 processor exceptions  
Digital I/O:  
• Up to 85 programmable digital I/O pins  
• Wake-up/Interrupt-on-Change on up to 24 pins  
• Output pins can drive from 3.0V to 3.6V  
• All digital input pins are 5V tolerant  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 1  
PIC24H  
Communication Modules:  
Analog-to-Digital Converters:  
• 3-wire SPI (up to 2 modules):  
• Up to two A/D modules in a device  
- Framing supports I/O interface to simple  
codecs  
• 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:  
- 2, 4 or 8 simultaneous samples  
- Supports 8-bit and 16-bit data  
- Up to 32 input channels with auto-scanning  
- Supports all serial clock formats and  
sampling modes  
- Conversion start can be manual or  
synchronized with 1 of 4 trigger sources  
• I2C™ (up to 2 modules):  
- Conversion possible in Sleep mode  
- ±2 LSb max integral nonlinearity  
- ±1 LSb max differential nonlinearity  
- Full Multi-Master Slave mode support  
- 7-bit and 10-bit addressing  
- Bus collision detection and arbitration  
- Integrated signal conditioning  
- Slave address masking  
CMOS Flash Technology:  
• Low-power, high-speed Flash technology  
• Fully static design  
• UART (up to 2 modules):  
- Interrupt on address bit detect  
- Interrupt on UART error  
• 3.3V (±10%) operating voltage  
• Industrial temperature  
- Wake-up on Start bit from Sleep mode  
- 4-character TX and RX FIFO buffers  
- LIN bus support  
• Low-power consumption  
Packaging:  
- IrDA® encoding and decoding in hardware  
• 100-pin TQFP (14x14x1 mm and 12x12x1 mm)  
• 64-pin TQFP (10x10x1 mm)  
- High-Speed Baud mode  
- Hardware Flow Control with CTS and RTS  
• Enhanced CAN (ECAN™ module) 2.0B active  
(up to 2 modules):  
Note:  
See the device variant tables for exact  
peripheral features per device.  
- Up to 8 transmit and up to 32 receive buffers  
- 16 receive filters and 3 masks  
- Loopback, Listen Only and Listen All  
Messages modes for diagnostics and bus  
monitoring  
- Wake-up on CAN message  
- Automatic processing of Remote  
Transmission Requests  
- FIFO mode using DMA  
- DeviceNet™ addressing support  
DS70175D-page 2  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
PIC24H PRODUCT FAMILIES  
The PIC24H General Purpose Family is ideal for a wide  
variety of 16-bit MCU embedded applications. The  
device names, pin counts, memory sizes and periph-  
eral availability of each family are listed below, followed  
by their pinout diagrams.  
PIC24H General Purpose Family Variants  
Program  
Device  
Pins  
Flash  
Packages  
Memory (KB)  
PIC24HJ64GP206  
PIC24HJ64GP210  
PIC24HJ64GP506  
PIC24HJ64GP510  
64  
100  
64  
64  
64  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
0
0
0
0
0
0
0
0
0
0
0
0
0
1 ADC,  
18 ch  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
0
0
1
1
0
0
1
1
0
0
0
0
2
53  
85  
53  
85  
53  
85  
53  
85  
53  
85  
53  
85  
85  
PT  
PF, PT  
PT  
1 ADC,  
32 ch  
64  
8
1 ADC,  
18 ch  
100  
64  
8
1 ADC,  
32 ch  
PF, PT  
PT  
PIC24HJ128GP206 64  
PIC24HJ128GP210 100  
PIC24HJ128GP506 64  
PIC24HJ128GP510 100  
PIC24HJ128GP306 64  
PIC24HJ128GP310 100  
PIC24HJ256GP206 64  
PIC24HJ256GP210 100  
PIC24HJ256GP610 100  
128  
128  
128  
128  
128  
128  
256  
256  
256  
8
1 ADC,  
18 ch  
8
1 ADC,  
32 ch  
PF, PT  
PT  
8
1 ADC,  
18 ch  
8
1 ADC,  
32 ch  
PF, PT  
PT  
16  
16  
16  
16  
16  
1 ADC,  
18 ch  
1 ADC,  
32 ch  
PF, PT  
PT  
1 ADC,  
18 ch  
1 ADC,  
32 ch  
PF, PT  
PF, PT  
2 ADC,  
32 ch  
Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.  
2: Maximum I/O pin count includes pins shared by the peripheral functions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 3  
PIC24H  
Pin Diagrams  
64-Pin TQFP  
RG15  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
2
3
4
IC4/INT4/RD11  
SDI2/CN9/RG7  
5
IC3/INT3/RD10  
SDO2/CN10/RG8  
MCLR  
6
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
7
SS2/T5CK/CN11/RG9  
VSS  
8
VSS  
PIC24HJ64GP206  
PIC24HJ128GP206  
PIC24HJ256GP206  
9
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
SCL1/RG2  
SDA1/RG3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/VREF-/CN3/RB1  
PGD3/EMUD3/AN0/VREF+/CN2/RB0  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
Note:  
The PIC24HJ64GP206 device does not have the SCL2 and SDA2 pins.  
DS70175D-page 4  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Pin Diagrams (Continued)  
64-Pin TQFP  
RG15  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
2
3
4
IC4/INT4/RD11  
SDI2/CN9/RG7  
5
IC3/INT3/RD10  
SDO2/CN10/RG8  
MCLR  
6
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
7
PIC24HJ128GP306  
SS2/T5CK/CN11/RG9  
VSS  
8
VSS  
9
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
SCL1/RG2  
SDA1/RG3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/VREF-/CN3/RB1  
PGD3/EMUD3/AN0/VREF+/CN2/RB0  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 5  
PIC24H  
Pin Diagrams (Continued)  
64-Pin TQFP  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
COFS/RG15  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
1
2
3
4
IC4/INT4/RD11  
SDI2/CN9/RG7  
5
IC3/INT3/RD10  
SDO2/CN10/RG8  
MCLR  
6
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
7
SS2/T5CK/CN11/RG9  
VSS  
8
VSS  
PIC24HJ64GP506  
PIC24HJ128GP506  
9
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
SCL1/RG2  
SDA1/RG3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/VREF-/CN3/RB1  
PGD3/EMUD3/AN0/VREF+/CN2/RB0  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
DS70175D-page 6  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Pin Diagrams (Continued)  
100-Pin TQFP  
V
SS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
RG15  
1
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
VDD  
2
PGD2/EMUD2/SOSCI/CN1/RC13  
OC1/RD0  
AN29/RE5  
AN30/RE6  
3
4
IC4/RD11  
AN31/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
SDO2/CN10/RG8  
MCLR  
PIC24HJ64GP210  
PIC24HJ128GP210  
PIC24HJ128GP310  
PIC24HJ256GP210  
SS2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/INT1/RA12  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN21/INT2/RA13  
AN5/CN7/RB5  
AN4/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 7  
PIC24H  
Pin Diagrams (Continued)  
100-Pin TQFP  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
SS  
1
RG15  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
VDD  
2
PGD2/EMUD2/SOSCI/CN1/RC13  
OC1/RD0  
3
AN29/RE5  
AN30/RE6  
4
IC4/RD11  
AN31/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
PIC24HJ64GP510  
PIC24HJ128GP510  
SS2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/INT1/RA12  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN21/INT2/RA13  
AN5/CN7/RB5  
AN4/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
DS70175D-page 8  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Pin Diagrams (Continued)  
100-Pin TQFP  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VSS  
1
RG15  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
VDD  
2
PGD2/EMUD2/SOSCI/CN1/RC13  
AN29/RE5  
AN30/RE6  
3
OC1/RD0  
IC4/RD11  
IC3/RD10  
IC2/RD9  
4
AN31/RE7  
5
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
SCK2/CN8/RG6  
6
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
10  
11  
12  
VSS  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
PIC24HJ256GP610  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SS2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/INT1/RA12  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN21/INT2/RA13  
AN5/CN7/RB5  
AN4/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 9  
PIC24H  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 13  
2.0 CPU............................................................................................................................................................................................ 17  
3.0 Memory Organization................................................................................................................................................................. 25  
4.0 Flash Program Memory.............................................................................................................................................................. 55  
5.0 Resets ....................................................................................................................................................................................... 61  
6.0 Interrupt Controller ..................................................................................................................................................................... 67  
7.0 Direct Memory Access (DMA) .................................................................................................................................................. 113  
8.0 Oscillator Configuration ............................................................................................................................................................ 127  
9.0 Power-Saving Features............................................................................................................................................................ 135  
10.0 I/O Ports ................................................................................................................................................................................... 137  
11.0 Timer1 ...................................................................................................................................................................................... 139  
12.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 141  
13.0 Input Capture............................................................................................................................................................................ 147  
14.0 Output Compare....................................................................................................................................................................... 149  
15.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 153  
2
16.0 Inter-Integrated Circuit (I C)..................................................................................................................................................... 161  
17.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 171  
18.0 Enhanced CAN Module............................................................................................................................................................ 179  
19.0 10-bit/12-bit A/D Converter....................................................................................................................................................... 209  
20.0 Special Features ...................................................................................................................................................................... 223  
21.0 Instruction Set Summary.......................................................................................................................................................... 231  
22.0 Development Support............................................................................................................................................................... 239  
23.0 Electrical Characteristics.......................................................................................................................................................... 243  
24.0 Packaging Information.............................................................................................................................................................. 277  
Appendix A: Revision History............................................................................................................................................................. 281  
Index ................................................................................................................................................................................................. 283  
The Microchip Web Site..................................................................................................................................................................... 287  
Customer Change Notification Service .............................................................................................................................................. 287  
Customer Support.............................................................................................................................................................................. 287  
Reader Response .............................................................................................................................................................................. 288  
Product Identification System............................................................................................................................................................. 289  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS70175D-page 10  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
control applications. Further, Direct Memory Access  
(DMA) enables overhead-free transfer of data between  
several peripherals and a dedicated DMA RAM.  
Reliable, field programmable Flash program memory  
ensures scalability of applications that use PIC24H  
devices.  
1.0  
DEVICE OVERVIEW  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
Figure 1-1 shows a general block diagram of the  
various core and peripheral modules in the PIC24H  
family of devices, while Table 1-1 lists the functions of  
the various pins shown in the pinout diagrams.  
This document contains device specific information for  
the following devices:  
• PIC24HJ64GP206  
• PIC24HJ64GP210  
• PIC24HJ64GP506  
• PIC24HJ64GP510  
• PIC24HJ128GP206  
• PIC24HJ128GP210  
• PIC24HJ128GP506  
• PIC24HJ128GP510  
• PIC24HJ128GP306  
• PIC24HJ128GP310  
• PIC24HJ256GP206  
• PIC24HJ256GP210  
• PIC24HJ256GP610  
The PIC24H device family includes devices with differ-  
ent pin counts (64 and 100 pins), different program  
memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes)  
and different RAM sizes (8 Kbytes and 16 Kbytes).  
This makes these families suitable for a wide variety of  
high-performance digital signal control applications.  
The devices are pin compatible with the dsPIC33F fam-  
ily of devices, and also share a very high degree of  
compatibility with the dsPIC30F family devices. This  
allows easy migration between device families as may  
be necessitated by the specific functionality, computa-  
tional resource and system cost requirements of the  
application.  
The PIC24H device family employs a powerful 16-bit  
architecture, ideal for applications that rely on  
high-speed, repetitive computations, as well as control.  
The 17 x 17 multiplier, hardware support for division  
operations, multi-bit data shifter, a large array of 16-bit  
working registers and a wide variety of data addressing  
modes, together provide the PIC24H Central  
Processing Unit (CPU) with extensive mathematical  
processing capability. Flexible and deterministic  
interrupt handling, coupled with a powerful array of  
peripherals, renders the PIC24H devices suitable for  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 13  
PIC24H  
FIGURE 1-1:  
PIC24H GENERAL BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
DMA  
RAM  
Data Latch  
X RAM  
23  
PCH PCL  
Program Counter  
PCU  
23  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
DMA  
16  
Controller  
23  
16  
PORTC  
PORTD  
PORTE  
PORTF  
PORTG  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
Address Bus  
ROM Latch  
24  
16  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
17 x 17 Multiplier  
Divide Support  
16 x 16  
W Register Array  
Power-up  
Timer  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VDDCORE/VCAP  
VDD, VSS  
MCLR  
Timers  
1-9  
ADC1,2  
ECAN1,2  
UART1,2  
OC/  
IC1-8  
CN1-23  
SPI1,2  
I2C1,2  
PWM1-8  
Note:  
Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins  
and features present on each device.  
DS70175D-page 14  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
AN0-AN31  
AVDD  
I
Analog  
Analog input channels.  
P
P
P
P
Positive supply for analog modules.  
AVSS  
Ground reference for analog modules.  
CLKI  
I
ST/CMOS External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.  
Optionally functions as CLKO in RC and EC modes. Always associated with OSC2  
pin function.  
CN0-CN23  
I
ST  
Input change notification inputs.  
Can be software programmed for internal weak pull-ups on all inputs.  
C1RX  
C1TX  
C2RX  
C2TX  
I
O
I
ST  
ST  
ECAN1 bus receive pin.  
ECAN1 bus transmit pin.  
ECAN2 bus receive pin.  
ECAN2 bus transmit pin.  
O
PGD1/EMUD1  
PGC1/EMUC1  
PGD2/EMUD2  
PGC2/EMUC2  
PGD3/EMUD3  
PGC3/EMUC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
Data I/O pin for programming/debugging communication channel 1.  
Clock input pin for programming/debugging communication channel 1.  
Data I/O pin for programming/debugging communication channel 2.  
Clock input pin for programming/debugging communication channel 2.  
Data I/O pin for programming/debugging communication channel 3.  
Clock input pin for programming/debugging communication channel 3.  
I
I/O  
I
I/O  
I
IC1-IC8  
I
ST  
Capture inputs 1 through 8.  
INT0  
INT1  
INT2  
INT3  
INT4  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
External interrupt 0.  
External interrupt 1.  
External interrupt 2.  
External interrupt 3.  
External interrupt 4.  
MCLR  
I/P  
ST  
Master Clear (Reset) input. This pin is an active-low Reset to the device.  
OCFA  
OCFB  
OC1-OC8  
I
I
O
ST  
ST  
Compare Fault A input (for Compare Channels 1, 2, 3 and 4).  
Compare Fault B input (for Compare Channels 5, 6, 7 and 8).  
Compare outputs 1 through 8.  
OSC1  
OSC2  
I
ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.  
I/O  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.  
Optionally functions as CLKO in RC and EC modes.  
RA0-RA7  
RA9-RA10  
RA12-RA15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTA is a bidirectional I/O port.  
RB0-RB15  
I/O  
ST  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
RC1-RC4  
RC12-RC15  
I/O  
I/O  
ST  
ST  
RD0-RD15  
RE0-RE7  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTD is a bidirectional I/O port.  
PORTE is a bidirectional I/O port.  
PORTF is a bidirectional I/O port.  
RF0-RF8  
RF12-RF13  
RG0-RG3  
RG6-RG9  
RG12-RG15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTG is a bidirectional I/O port.  
Legend: CMOS = CMOS compatible input or output; Analog = Analog input  
ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = Power  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 15  
PIC24H  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
SCK1  
SDI1  
SDO1  
SS1  
SCK2  
SDI2  
SDO2  
SS2  
I/O  
I
O
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 data in.  
SPI1 data out.  
SPI1 slave synchronization or frame pulse I/O.  
Synchronous serial clock input/output for SPI2.  
SPI2 data in.  
O
I/O  
SPI2 data out.  
SPI2 slave synchronization or frame pulse I/O.  
ST  
SCL1  
SDA1  
SCL2  
SDA2  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for I2C1.  
Synchronous serial data input/output for I2C1.  
Synchronous serial clock input/output for I2C2.  
Synchronous serial data input/output for I2C2.  
SOSCI  
I
ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
SOSCO  
O
32.768 kHz low-power oscillator crystal output.  
TMS  
TCK  
TDI  
I
I
I
ST  
ST  
ST  
JTAG Test mode select pin.  
JTAG test clock input pin.  
JTAG test data input pin.  
JTAG test data output pin.  
TDO  
O
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
T6CK  
T7CK  
T8CK  
T9CK  
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
Timer3 external clock input.  
Timer4 external clock input.  
Timer5 external clock input.  
Timer6 external clock input.  
Timer7 external clock input.  
Timer8 external clock input.  
Timer9 external clock input.  
U1CTS  
U1RTS  
U1RX  
U1TX  
U2CTS  
U2RTS  
U2RX  
U2TX  
I
O
I
O
I
O
I
O
ST  
ST  
ST  
ST  
UART1 clear to send.  
UART1 ready to send.  
UART1 receive.  
UART1 transmit.  
UART2 clear to send.  
UART2 ready to send.  
UART2 receive.  
UART2 transmit.  
VDD  
P
P
P
I
Positive supply for peripheral logic and I/O pins.  
CPU logic filter capacitor connection.  
Ground reference for logic and I/O pins.  
Analog voltage reference (high) input.  
Analog voltage reference (low) input.  
VDDCORE  
VSS  
VREF+  
VREF-  
Analog  
Analog  
I
Legend: CMOS = CMOS compatible input or output; Analog = Analog input  
ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = Power  
DS70175D-page 16  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
2.2  
Special MCU Features  
2.0  
CPU  
The PIC24H features a 17-bit by 17-bit, single-cycle  
multiplier. The multiplier can perform signed, unsigned  
and mixed-sign multiplication. Using a 17-bit by 17-bit  
multiplier for 16-bit by 16-bit multiplication makes  
mixed-sign multiplication possible.  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
The PIC24H supports 16/16 and 32/16 integer divide  
operations. All divide instructions are iterative  
operations. They must be executed within a REPEAT  
loop, resulting in a total execution time of 19 instruction  
cycles. The divide operation can be interrupted during  
any of those 19 cycles without loss of data.  
The PIC24H CPU module has a 16-bit (data) modified  
Harvard architecture with an enhanced instruction set  
and addressing modes. The CPU has a 24-bit instruction  
word with a variable length opcode field. The Program  
Counter (PC) is 23 bits wide and addresses up to 4M x  
24 bits of user program memory space. The actual  
amount of program memory implemented varies by  
device. A single-cycle instruction prefetch mechanism is  
used to help maintain throughput and provides  
predictable execution. All instructions execute in a single  
cycle, with the exception of instructions that change the  
program flow, the double word move (MOV.D) instruction  
and the table instructions. Overhead-free, single-cycle  
program loop constructs are supported using the  
REPEATinstruction, which is interruptible at any point.  
A multi-bit data shifter is used to perform up to a 16-bit,  
left or right shift in a single cycle.  
The PIC24H devices have sixteen, 16-bit working  
registers in the programmer’s model. Each of the working  
registers can serve as a data, address or address offset  
register. The 16th working register (W15) operates as a  
software Stack Pointer (SP) for interrupts and calls.  
The PIC24H instruction set includes many addressing  
modes and is designed for optimum C compiler  
efficiency. For most instructions, the PIC24H is capable  
of executing a data (or program data) memory read, a  
working register (data) read, a data memory write and  
a program (instruction) memory read per instruction  
cycle. As a result, three parameter instructions can be  
supported, allowing A + B = C operations to be  
executed in a single cycle.  
A block diagram of the CPU is shown in Figure 2-1,  
and the programmer’s model for the PIC24H is shown  
in Figure 2-2.  
2.1  
Data Addressing Overview  
The data space can be linearly addressed as 32K words  
or 64 Kbytes using an Address Generation Unit (AGU).  
The upper 32 Kbytes of the data space memory map can  
optionally be mapped into program space at any 16K  
program word boundary defined by the 8-bit Program  
Space Visibility Page (PSVPAG) register. The program  
to data space mapping feature lets any instruction  
access program space as if it were data space.  
The data space also includes 2 Kbytes of DMA RAM,  
which is primarily used for DMA data transfers, but may  
be used as general purpose RAM.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 17  
PIC24H  
FIGURE 2-1:  
PIC24H CPU CORE BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
X RAM  
DMA  
RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
23  
Address  
Latch  
Stack  
Control  
Logic  
Loop  
Control  
Logic  
23  
16  
DMA  
Controller  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
Address Bus  
ROM Latch  
24  
16  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
16  
17 x 17  
Multiplier  
Control Signals  
to Various Blocks  
16 x 16  
W Register Array  
Divide Support  
16  
16-bit ALU  
16  
To Peripheral Modules  
DS70175D-page 18  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 2-2:  
PIC24H PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.S Shadow  
DO Shadow  
W2  
W3  
Legend  
W4  
W5  
W6  
W7  
Working Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
Program Counter  
PC22  
PC0  
0
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEAT Loop Counter  
15  
Core Configuration Register  
CORCON  
DC  
N
Z
C
IPL2 IPL1 IPL0 RA  
SRL  
OV  
STATUS Register  
SRH  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 19  
PIC24H  
2.3  
CPU Control Registers  
REGISTER 2-1:  
SR: CPU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(1)  
R/W-0(2)  
IPL<2:0>(2)  
R/W-0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized  
data) of the result occurred  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEAT Loop Active bit  
1= REPEAT loop in progress  
0= REPEAT loop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude which  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
Z: MCU ALU Zero bit  
1= An operation which affects the Z bit has set it at some time in the past  
0= The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)  
Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
2: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
DS70175D-page 20  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 2-1:  
bit 0  
SR: CPU STATUS REGISTER (CONTINUED)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit (MSb) of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
2: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 21  
PIC24H  
REGISTER 2-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(1)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit 3(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
DS70175D-page 22  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
2.4.3  
MULTI-BIT DATA SHIFTER  
2.4  
Arithmetic Logic Unit (ALU)  
The multi-bit data shifter is capable of performing up to  
16-bit arithmetic or logic right shifts, or up to 16-bit left  
shifts in a single cycle. The source can be either a  
working register or a memory location.  
The PIC24H ALU is 16 bits wide and is capable of addi-  
tion, subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU may affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC) Sta-  
tus bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W reg-  
ister array, or data memory, depending on the address-  
ing mode of the instruction. Likewise, output data from  
the ALU can be written to the W register array or a data  
memory location.  
Refer to the “dsPIC30F/33F Programmer’s Reference  
Manual” (DS70157) for information on the SR bits  
affected by each instruction.  
The PIC24H CPU incorporates hardware support for  
both multiplication and division. This includes a dedi-  
cated hardware multiplier and support hardware for  
16-bit divisor division.  
2.4.1  
MULTIPLIER  
Using the high-speed 17-bit x 17-bit multiplier, the ALU  
supports unsigned, signed or mixed-sign operation in  
several multiplication modes:  
1. 16-bit x 16-bit signed  
2. 16-bit x 16-bit unsigned  
3. 16-bit signed x 5-bit (literal) unsigned  
4. 16-bit unsigned x 16-bit unsigned  
5. 16-bit unsigned x 5-bit (literal) unsigned  
6. 16-bit unsigned x 16-bit signed  
7. 8-bit unsigned x 8-bit unsigned  
2.4.2  
DIVIDER  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. Sixteen-bit signed and  
unsigned DIV instructions can specify any W register  
for both the 16-bit divisor (Wn) and any W register  
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.  
The divide algorithm takes one cycle per bit of divisor,  
so both 32-bit/16-bit and 16-bit/16-bit instructions take  
the same number of cycles to execute.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 23  
PIC24H  
NOTES:  
DS70175D-page 24  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
3.1  
Program Address Space  
3.0  
MEMORY ORGANIZATION  
The program address memory space of the PIC24H  
devices is 4M instructions. The space is addressable by a  
24-bit value derived from either the 23-bit Program Counter  
(PC) during program execution, or from table operation  
or data space remapping as described in Section 3.4  
“Interfacing Program and Data Memory Spaces”.  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
User access to the program memory space is restricted  
to the lower half of the address range (0x000000 to  
0x7FFFFF). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space.  
The PIC24H architecture features separate program  
and data memory spaces and buses. This architecture  
also allows the direct access of program memory from  
the data space during code execution.  
Memory maps for the PIC24H family of devices are  
shown in Figure 3-1.  
FIGURE 3-1:  
PROGRAM MEMORY MAP FOR PIC24H FAMILY DEVICES  
PIC24HJ64XXXXX  
PIC24HJ128XXXXX  
PIC24HJ256XXXXX  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
(22K instructions)  
User Program  
Flash Memory  
(44K instructions)  
User Program  
Flash Memory  
(88K instructions)  
0x00ABFE  
0x00AC00  
0x0157FE  
0x015800  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
0x02ABFE  
0x02AC00  
(Read ‘0’s)  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
Device Configuration  
Registers  
Device Configuration  
Registers  
Device Configuration  
Registers  
0xF80017  
0xF80010  
Reserved  
DEVID (2)  
Reserved  
Reserved  
DEVID (2)  
0xFEFFFE  
0xFF0000  
DEVID (2)  
0xFFFFFE  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 25  
PIC24H  
3.1.1  
PROGRAM MEMORY  
ORGANIZATION  
3.1.2  
INTERRUPT AND TRAP VECTORS  
All PIC24H devices reserve the addresses between  
0x00000 and 0x000200 for hard-coded program exe-  
cution vectors. A hardware Reset vector is provided to  
redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 0x000000,  
with the actual address for the start of code at  
0x000002.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (Figure 3-2).  
PIC24H devices also have two interrupt vector tables,  
located from 0x000004 to 0x0000FF and 0x000100 to  
0x0001FF. These vector tables allow each of the many  
device interrupt sources to be handled by separate  
Interrupt Service Routines (ISRs). A more detailed dis-  
cussion of the interrupt vector tables is provided in  
Section 6.1 “Interrupt Vector Table”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
FIGURE 3-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS70175D-page 26  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word opera-  
tions, or translating from 8-bit MCU code. If a mis-  
aligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed; if it occurred on a  
write, the instruction will be executed but the write does  
not occur. In either case, a trap is then executed, allow-  
ing the system and/or user to examine the machine  
state prior to execution of the address Fault.  
3.2  
Data Address Space  
The PIC24H CPU has a separate 16-bit wide data  
memory space. The data space is accessed using sep-  
arate Address Generation Units (AGUs) for read and  
write operations. Data memory maps of devices with  
different RAM sizes are shown in Figure 3-3 and  
Figure 3-4.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 3.4.3 “Reading Data From  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte  
(MSB) is not modified.  
A sign-extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the Most Significant Byte of any W register by  
executing a zero-extend (ZE) instruction on the  
appropriate address.  
PIC24H devices implement up to 16 Kbytes of data  
memory. Should an EA point to a location outside of  
this area, an all-zero word or byte will be returned.  
3.2.1  
DATA SPACE WIDTH  
3.2.3  
SFR SPACE  
The data memory space is organized in byte address-  
able, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes of each word have even addresses, while the  
Most Significant Bytes have odd addresses.  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the PIC24H core  
and peripheral modules for controlling the operation of  
the device.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A complete listing of implemented  
SFRs, including their addresses, is shown in Table 3-1  
through Table 3-31.  
3.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PICmicro®  
MCU devices and improve data space memory usage  
efficiency, the PIC24H instruction set supports both  
word and byte operations. As a consequence of byte  
accessibility, all effective address calculations are inter-  
nally scaled to step through word-aligned memory. For  
example, the core recognizes that Post-Modified  
Register Indirect Addressing mode [Ws++] will result in  
a value of Ws + 1 for byte operations and Ws + 2 for  
word operations.  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Please  
refer to the corresponding device tables  
and pinout diagrams for device-specific  
information.  
3.2.4  
NEAR DATA SPACE  
The 8-Kbyte area between 0x0000 and 0x1FFF is  
referred to as the Near Data Space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an Address Pointer.  
Data byte reads will read the complete word that  
contains the byte, using the Least Significant bit (LSb)  
of any EA to determine which byte to select. The  
selected byte is placed onto the Least Significant Byte  
(LSB) of the data path. That is, data memory and reg-  
isters are organized as two parallel byte-wide entities  
with shared (word) address decode but separate write  
lines. Data byte writes only write to the corresponding  
side of the array or register which matches the byte  
address.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 27  
PIC24H  
FIGURE 3-3:  
DATA MEMORY MAP FOR PIC24H DEVICES WITH 8 KBYTES RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8-Kbyte  
Near  
Data  
Space  
X Data RAM (X)  
8-Kbyte  
SRAM Space  
0x1FFF  
0x2001  
0x1FFE  
0x2000  
DMA RAM  
0x27FF  
0x2801  
0x27FE  
0x2800  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70175D-page 28  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 3-4:  
DATA MEMORY MAP FOR PIC24H DEVICES WITH 16 KBYTES RAM  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
8-Kbyte  
Near  
Data  
0x07FE  
0x0800  
0x07FF  
0x0801  
Space  
0x1FFF  
0x1FFE  
X Data RAM (X)  
16-Kbyte  
SRAM Space  
0x3FFF  
0x4001  
0x3FFE  
0x4000  
DMA RAM  
0x47FF  
0x4801  
0x47FE  
0x4800  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
peripherals using DMA. The DMA RAM can be  
accessed by the DMA controller without having to steal  
cycles from the CPU.  
3.2.5  
DMA RAM  
Every PIC24H device contains 2 Kbytes of dual ported  
DMA RAM located at the end of data space. Memory  
locations in the DMA RAM space are accessible  
simultaneously by the CPU and the DMA controller  
module. DMA RAM is utilized by the DMA controller to  
store data to be transferred to various peripherals using  
DMA, as well as data transferred from various  
When the CPU and the DMA controller attempt to  
concurrently write to the same DMA RAM location, the  
hardware ensures that the CPU is given precedence in  
accessing the DMA RAM location. Therefore, the DMA  
RAM provides a reliable means of transferring DMA  
data without ever having to stall the CPU.  
Note:  
DMA RAM can be used for general  
purpose data storage if the DMA function  
is not required in an application.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 29  
TABLE 3-1:  
CPU CORE REGISTERS MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
0750  
0752  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
0000  
0000  
xxxx  
0000  
0000  
Stack Pointer Limit Register  
Program Counter Low Word Register  
PCL  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
SR  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DC  
IPL<2:0>  
RA  
N
OV  
Z
C
CORCON  
DISICNT  
BSRAM  
SSRAM  
IPL3  
PSV  
Disable Interrupts Counter Register  
IW_BSR IR_BSR RL_BSR  
IW_SSR IR_SSR RL_SSR  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-2:  
CHANGE NOTIFICATION REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0000  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
006A  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
TABLE 3-3:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL  
0000  
INTCON2 0082 ALTIVT  
DISI  
AD1IF  
U1TXIF  
T5IF  
OC8IF  
U1RXIF  
T4IF  
OC7IF  
T2IF  
IC8IF  
IC5IF  
C2RXIF  
C2TXIF  
T2IE  
IC8IE  
IC5IE  
C2RXIE  
C2TXIE  
INT4EP  
DMA0IF  
INT1IF  
DMA3IF  
T9IF  
INT3EP  
T1IF  
CNIF  
C1IF  
T8IF  
INT2EP  
OC1IF  
INT1EP INT0EP 0000  
IC1IF INT0IF 0000  
IFS0  
0084  
DMA1IF  
SPI1IF SPI1EIF  
T3IF  
OC2IF  
IC7IF  
IC2IF  
IFS1  
0086 U2TXIF U2RXIF  
INT2IF  
OC4IF OC3IF DMA2IF  
AD2IF  
MI2C1IF SI2C1IF 0000  
SPI2IF SPI2EIF 0000  
IFS2  
0088  
008A  
008C  
0094  
T6IF  
DMA4IF  
OC6IF OC5IF  
IC6IF  
C2IF  
IC4IF  
IC3IF  
C1RXIF  
IFS3  
DMA5IF  
INT4IF  
C1TXIF  
OC2IE  
IC7IE  
INT3IF  
MI2C2IF SI2C2IF  
T7IF  
0000  
0000  
0000  
IFS4  
DMA7IF  
DMA6IF  
DMA0IE  
INT1IE  
DMA3IE  
T9IE  
U2EIF  
OC1IE  
U1EIF  
IC1IE  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
IPC12  
IPC13  
IPC14  
IPC15  
IPC16  
IPC17  
Legend:  
DMA1IE  
AD1IE  
U1TXIE  
T5IE  
OC8IE  
U1RXIE  
T4IE  
OC7IE  
SPI1IE SPI1EIE  
T3IE  
IC2IE  
T1IE  
CNIE  
C1IE  
T8IE  
INT0IE  
0096 U2TXIE U2RXIE  
INT2IE  
OC4IE OC3IE DMA2IE  
AD2IE  
MI2C1IE SI2C1IE 0000  
SPI2IE SPI2EIE 0000  
0098  
009A  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00BE  
00C0  
00C2  
00C4  
00C6  
T6IE  
DMA4IE  
OC6IE OC5IE  
IC6IE  
C2IE  
IC4IE  
IC3IE  
C1RXIE  
DMA5IE  
INT4IE  
C1TXIE  
INT3IE  
MI2C2IE SI2C2IE  
T7IE  
0000  
0000  
4444  
4444  
4444  
0444  
0044  
4444  
4444  
4444  
4444  
4444  
4444  
4404  
4444  
4444  
0004  
0040  
4440  
4444  
DMA7IE  
DMA6IE  
U2EIE  
U1EIE  
INT0IP<2:0>  
DMA0IP<2:0>  
T3IP<2:0>  
U1TXIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
DMA2IP<2:0>  
T5IP<2:0>  
SPI2EIP<2:0>  
DMA3IP<2:0>  
IC6IP<2:0>  
OC8IP<2:0>  
T7IP<2:0>  
T9IP<2:0>  
C2IP<2:0>  
T1IP<2:0>  
T2IP<2:0>  
U1RXIP<2:0>  
OC1IP<2:0>  
OC2IP<2:0>  
SPI1IP<2:0>  
DMA1IP<2:0>  
IC1IP<2:0>  
IC2IP<2:0>  
SPI1EIP<2:0>  
AD1IP<2:0>  
MI2C1IP<2:0>  
AD2IP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
SPI2IP<2:0>  
IC3IP<2:0>  
OC5IP<2:0>  
CNIP<2:0>  
IC8IP<2:0>  
T4IP<2:0>  
U2TXIP<2:0>  
C1IP<2:0>  
IC5IP<2:0>  
OC7IP<2:0>  
T6IP<2:0>  
T8IP<2:0>  
C2RXIP<2:0>  
IC7IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
C1RXIP<2:0>  
IC4IP<2:0>  
OC6IP<2:0>  
DMA4IP<2:0>  
MI2C2IP<2:0>  
INT4IP<2:0>  
SI2C2IP<2:0>  
INT3IP<2:0>  
DMA5IP<2:0>  
U1EIP<2:0>  
DMA7IP<2:0>  
U2EIP<2:0>  
C1TXIP<2:0>  
C2TXIP<2:0>  
DMA6IP<2:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-4:  
TIMER REGISTER MAP  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
xxxx  
FFFF  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
0114  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer4 Register  
TMR5HLD 0116  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
TMR5  
PR4  
0118  
011A  
011C  
011E  
0120  
0122  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TMR6  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer6 Register  
TMR7HLD 0124  
Timer7 Holding Register (for 32-bit operations only)  
Timer7 Register  
TMR7  
PR6  
0126  
0128  
012A  
012C  
012E  
0130  
Period Register 6  
PR7  
Period Register 7  
T6CON  
T7CON  
TMR8  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer8 Register  
TMR9HLD 0132  
Timer9 Holding Register (for 32-bit operations only)  
Timer9 Register  
TMR9  
PR8  
0134  
0136  
0138  
013A  
013C  
Period Register 8  
PR9  
Period Register 9  
T8CON  
T9CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-5:  
INPUT CAPTURE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
IC6BUF  
IC6CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
Legend:  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
0154  
0156  
0158  
015A  
015C  
015E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
Input 6 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
TABLE 3-6:  
OUTPUT COMPARE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
019E  
01A0  
01A2  
01A4  
01A6  
01A8  
01AA  
01AC  
01AE  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON  
OC4RS  
OC4R  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
OC5CON  
OC6RS  
OC6R  
Output Compare 6 Secondary Register  
Output Compare 6 Register  
OC6CON  
OC7RS  
OC7R  
Output Compare 7 Secondary Register  
Output Compare 7 Register  
OC7CON  
OC8RS  
OC8R  
Output Compare 8 Secondary Register  
Output Compare 8 Register  
OC8CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-7:  
I2C1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1ON  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-8:  
I2C2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
I2C2STAT  
I2C2ADD  
I2C2MSK  
Legend:  
0210  
0212  
0214  
0216  
0218  
021A  
021C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-9:  
UART1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-10: UART2 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U2MODE  
U2STA  
0230  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0232 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
0234  
0236  
0238  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-11: SPI1 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI1 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-12: SPI2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI2STAT  
0260  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
SPI2CON1 0262  
DISSCK DISSDO MODE16  
PPRE<1:0>  
SPI2CON2 0264 FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI2BUF  
0268  
SPI2 Transmit and Receive Buffer Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-13: ADC1 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
AD1CON1  
0300  
0320  
ADC Data Buffer 0  
FORM<1:0>  
xxxx  
0000  
ADON  
ADSIDL ADDMAB  
M
AD12B  
SSRC<2:0>  
SIMSA  
M
ASAM  
SAMP  
BUFM  
DONE  
ALTS  
AD1CON2  
AD1CON3  
0322  
0324  
0326  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
BUFS  
SMPI<3:0>  
ADCS<5:0>  
CH123NA<1:0>  
0000  
0000  
0000  
ADRC  
SAMC<4:0>  
AD1CHS12  
3
CH123NB<1:0>  
CH123S  
B
CH123S  
A
AD1CHS0  
AD1PCFGH  
AD1PCFGL  
AD1CSSH  
AD1CSSL  
AD1CON4  
Reserved  
0328  
CH0NB  
CH0SB<4:0>  
CH0NA  
CH0SA<4:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
032A PCFG31 PCFG30 PCFG29 PCFG28 PCFG27 PCFG26 PCFG25 PCFG24 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16  
032C PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9  
PCFG8  
CSS24  
CSS8  
PCFG7  
CSS23  
CSS7  
PCFG6  
CSS22  
CSS6  
PCFG5  
CSS21  
CSS5  
PCFG4  
CSS20  
CSS4  
PCFG3 PCFG2 PCFG1  
PCFG0  
CSS16  
CSS0  
032E  
0330  
0332  
CSS31  
CSS15  
CSS30  
CSS14  
CSS29  
CSS13  
CSS28  
CSS12  
CSS27  
CSS11  
CSS26  
CSS10  
CSS25  
CSS9  
CSS19  
CSS3  
CSS18  
CSS2  
CSS17  
CSS1  
DMABL<2:0>  
0334-  
033E  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-14: ADC2 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC2BUF0  
AD2CON1  
0340  
0360  
ADC Data Buffer 0  
FORM<1:0>  
xxxx  
0000  
ADON  
ADSIDL  
ADDMAB  
M
AD12B  
SSRC<2:0>  
SIMSA  
M
ASAM  
SAMP  
BUFM  
DONE  
ALTS  
AD2CON2  
AD2CON3  
0362  
0364  
0366  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
BUFS  
SMPI<3:0>  
ADCS<5:0>  
0000  
0000  
0000  
ADRC  
SAMC<4:0>  
AD2CHS12  
3
CH123NB<1:0>  
CH123S  
B
CH123NA<1:0>  
CH123SA  
AD2CHS0  
Reserved  
AD2PCFGL  
Reserved  
AD2CSSL  
AD2CON4  
Reserved  
0368  
036A  
CH0NB  
CH0SB<3:0>  
CH0NA  
CH0SA<3:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
PCFG8  
PCFG0  
036C PCFG15 PCFG14 PCFG13  
PCFG12  
PCFG11 PCFG10 PCFG9  
PCFG7 PCFG6 PCFG5  
PCFG4  
PCFG3 PCFG2 PCFG1  
036E  
0370  
0372  
CSS15  
CSS14  
CSS13  
CSS11  
CSS10  
CSS9  
CSS7  
CSS6  
CSS5  
CSS3  
CSS12  
CSS8  
CSS4  
CSS2  
CSS1  
CSS0  
DMABL<2:0>  
0374-  
037E  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-15: DMA REGISTER MAP  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA0CON 0380 CHEN  
DMA0REQ 0382 FORCE  
DMA0STA 0384  
SIZE  
DIR  
HALF  
NULLW  
AMODE<1:0>  
MODE<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA0STB 0386  
DMA0PAD 0388  
DMA0CNT 038A  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA1CON 038C CHEN  
DMA1REQ 038E FORCE  
DMA1STA 0390  
AMODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA1STB 0392  
DMA1PAD 0394  
DMA1CNT 0396  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA2CON 0398 CHEN  
DMA2REQ 039A FORCE  
DMA2STA 039C  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA2STB 039E  
DMA2PAD 03A0  
DMA2CNT 03A2  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA3CON 03A4 CHEN  
DMA3REQ 03A6 FORCE  
DMA3STA 03A8  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA3STB 03AA  
DMA3PAD 03AC  
DMA3CNT 03AE  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA4CON 03B0 CHEN  
DMA4REQ 03B2 FORCE  
DMA4STA 03B4  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA4STB 03B6  
DMA4PAD 03B8  
DMA4CNT 03BA  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA5CON 03BC CHEN  
DMA5REQ 03BE FORCE  
DMA5STA 03C0  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
DMA5STB 03C2  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-15: DMA REGISTER MAP (CONTINUED)  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA5PAD 03C4  
PAD<15:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DMA5CNT 03C6  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA6CON 03C8 CHEN  
DMA6REQ 03CA FORCE  
DMA6STA 03CC  
AMODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA6STB 03CE  
DMA6PAD 03D0  
DMA6CNT 03D2  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA7CON 03D4 CHEN  
DMA7REQ 03D6 FORCE  
DMA7STA 03D8  
AMODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA7STB 03DA  
DMA7PAD 03DC  
DMA7CNT 03DE  
CNT<9:0>  
DMACS0  
DMACS1  
DSADR  
03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000  
03E2  
03E4  
LSTCH<3:0>  
PPST7  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
0000  
0000  
DSADR<15:0>  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-16: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0OR 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1CTRL1  
C1CTRL2  
C1VEC  
0400  
0402  
0404  
0406  
0408  
040A  
040C  
040E  
0410  
0412  
CSIDL  
ABAT  
CANCKS  
REQOP<2:0>  
OPMODE<2:0>  
CANCAP  
DNCNT<4:0>  
ICODE<6:0>  
FSA<4:0>  
FNRB<5:0>  
FIFOIF RBOVIF  
FIFOIE RBOVIE  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
FILHIT<4:0>  
C1FCTRL  
C1FIFO  
C1INTF  
C1INTE  
C1EC  
DMABS<2:0>  
FBP<5:0>  
TXBO  
TXBP  
RXBP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF  
WAKIE  
ERRIF  
ERRIE  
RBIF  
RBIE  
TBIF  
TBIE  
TERRCNT<7:0>  
RERRCNT<7:0>  
BRP<5:0>  
C1CFG1  
C1CFG2  
C1FEN1  
SJW<1:0>  
WAKFIL  
SEG2PH<2:0>  
SEG2PHTS  
FLTEN7  
SAM  
SEG1PH<2:0>  
PRSEG<2:0>  
0414 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8  
FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 0000  
C1FMSKSEL1 0418  
C1FMSKSEL2 041A  
F7MSK<1:0>  
F15MSK<1:0>  
F6MSK<1:0>  
F14MSK<1:0>  
F5MSK<1:0>  
F13MSK<1:0>  
F4MSK<1:0>  
F12MSK<1:0>  
F3MSK<1:0>  
F11MSK<1:0>  
F2MSK<1:0>  
F10MSK<1:0>  
F1MSK<1:0>  
F9MSK<1:0>  
F0MSK<1:0>  
F8MSK<1:0>  
0000  
0000  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-17: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
See definition when WIN = x  
C1RXFUL1 0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000  
C1RXFUL2 0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000  
C1RXOVF1 0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
C1RXOVF2 042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
C1TR01CON 0430 TXEN1  
C1TR23CON 0432 TXEN3  
C1TR45CON 0434 TXEN5  
C1TR67CON 0436 TXEN7  
TX  
ABT1  
TX  
LARB1  
TX  
ERR1  
TX  
REQ1  
RTREN1  
RTREN3  
RTREN5  
RTREN7  
TX1PRI<1:0>  
TX3PRI<1:0>  
TX5PRI<1:0>  
TX7PRI<1:0>  
TXEN0  
TXEN2  
TXEN4  
TXEN6  
TX  
ABAT0  
TX  
LARB0  
TX  
ERR0  
TX  
REQ0  
RTREN0  
RTREN2  
RTREN4  
RTREN6  
TX0PRI<1:0>  
TX2PRI<1:0>  
TX4PRI<1:0>  
TX6PRI<1:0>  
0000  
0000  
0000  
xxxx  
TX  
ABT3  
TX  
LARB3  
TX  
ERR3  
TX  
REQ3  
TX  
ABAT2  
TX  
LARB2  
TX  
ERR2  
TX  
REQ2  
TX  
ABT5  
TX  
LARB5  
TX  
ERR5  
TX  
REQ5  
TX  
ABAT4  
TX  
LARB4  
TX  
ERR4  
TX  
REQ4  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
ABT7  
LARB7  
ERR7  
REQ7  
ABAT6  
LARB6  
ERR6  
REQ6  
C1RXD  
C1TXD  
Legend:  
0440  
0442  
Recieved Data Word  
Transmit Data Word  
xxxx  
xxxx  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See definition when WIN = x  
F1BP<3:0>  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
C1BUFPNT1  
C1BUFPNT2  
C1BUFPNT3  
C1BUFPNT4  
C1RXM0SID  
C1RXM0EID  
C1RXM1SID  
C1RXM1EID  
C1RXM2SID  
C1RXM2EID  
C1RXF0SID  
C1RXF0EID  
C1RXF1SID  
C1RXF1EID  
Legend:  
0420  
0422  
0424  
0426  
0430  
0432  
0434  
0436  
0438  
043A  
0440  
0442  
0444  
0446  
F3BP<3:0>  
F2BP<3:0>  
F6BP<3:0>  
F10BP<3:0>  
F14BP<3:0>  
F0BP<3:0>  
F4BP<3:0>  
F8BP<3:0>  
F12BP<3:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
F7BP<3:0>  
F11BP<3:0>  
F15BP<3:0>  
F5BP<3:0>  
F9BP<3:0>  
F13BP<3:0>  
SID<10:3>  
SID<2:0>  
MIDE  
MIDE  
EID<17:16>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EID<17:16>  
EID<7:0>  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1RXF2SID  
C1RXF2EID  
C1RXF3SID  
C1RXF3EID  
C1RXF4SID  
C1RXF4EID  
C1RXF5SID  
C1RXF5EID  
C1RXF6SID  
C1RXF6EID  
C1RXF7SID  
C1RXF7EID  
C1RXF8SID  
C1RXF8EID  
C1RXF9SID  
C1RXF9EID  
C1RXF10SID  
C1RXF10EID  
C1RXF11SID  
C1RXF11EID  
C1RXF12SID  
C1RXF12EID  
C1RXF13SID  
C1RXF13EID  
C1RXF14SID  
C1RXF14EID  
C1RXF15SID  
C1RXF15EID  
Legend:  
0448  
044A  
044C  
044E  
0450  
0452  
0454  
0456  
0458  
045A  
045C  
045E  
0460  
0462  
0464  
0466  
0468  
046A  
046C  
046E  
0470  
0472  
0474  
0476  
0478  
047A  
047C  
047E  
SID<10:3>  
SID<2:0>  
EXIDE  
EID<17:16>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EXIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-19: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0OR 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C2CTRL1  
C2CTRL2  
C2VEC  
0500  
0502  
0504  
0506  
0508  
050A  
050C  
050E  
0510  
0512  
CSIDL  
ABAT  
CANCKS  
REQOP<2:0>  
OPMODE<2:0>  
CANCAP  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DNCNT<4:0>  
FILHIT<4:0>  
ICODE<6:0>  
FSA<4:0>  
FNRB<5:0>  
C2FCTRL  
C2FIFO  
C2INTF  
C2INTE  
C2EC  
DMABS<2:0>  
FBP<5:0>  
TXBO  
TXBP  
RXBP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF ERRIF  
WAKIE ERRIE  
FIFOIF RBOVIF  
FIFOIE RBOVIE  
RBIF  
RBIE  
TBIF  
TBIE  
TERRCNT<7:0>  
RERRCNT<7:0>  
BRP<5:0>  
C2CFG1  
C2CFG2  
C2FEN1  
SJW<1:0>  
SEG2PHTS SAM  
FLTEN7  
F3MSK<1:0>  
WAKFIL  
SEG2PH<2:0>  
SEG1PH<2:0>  
PRSEG<2:0>  
0514 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8  
FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 0000  
C2FMSKSEL1 0518  
C2FMSKSEL2 051A  
F7MSK<1:0>  
F15MSK<1:0>  
F6MSK<1:0>  
F14MSK<1:0>  
F5MSK<1:0>  
F13MSK<1:0>  
F4MSK<1:0>  
F12MSK<1:0>  
F2MSK<1:0>  
F10MSK<1:0>  
F1MSK<1:0>  
F9MSK<1:0>  
F0MSK<1:0>  
F8MSK<1:0>  
0000  
0000  
F11MSK<1:0>  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-20: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0500-  
051E  
See definition when WIN = x  
C2RXFUL1  
C2RXFUL2  
0520 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000  
0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000  
C2RXOVF1 0528 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
C2RXOVF2 052A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
C2TR01CON 0530  
C2TR23CON 0532  
C2TR45CON 0534  
C2TR67CON 0536  
TXEN1  
TXEN3  
TXEN5  
TXEN7  
TX  
ABAT1  
TX  
LARB1  
TX  
ERR1  
TX  
REQ1  
RTREN1  
RTREN3  
RTREN5  
RTREN7  
TX1PRI<1:0>  
TX3PRI<1:0>  
TX5PRI<1:0>  
TX7PRI<1:0>  
TXEN0  
TXEN2  
TXEN4  
TXEN6  
TX  
ABAT0  
TX  
LARB0  
TX  
ERR0  
TX  
REQ0  
RTREN0  
RTREN2  
RTREN4  
RTREN6  
TX0PRI<1:0>  
TX2PRI<1:0>  
TX4PRI<1:0>  
TX6PRI<1:0>  
0000  
0000  
0000  
xxxx  
TX  
ABAT3  
TX  
LARB3  
TX  
ERR3  
TX  
REQ3  
TX  
ABAT2  
TX  
LARB2  
TX  
ERR2  
TX  
REQ2  
TX  
ABAT5  
TX  
LARB5  
TX  
ERR5  
TX  
REQ5  
TX  
ABAT4  
TX  
LARB4  
TX  
ERR4  
TX  
REQ4  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
ABAT7  
LARB7  
ERR7  
REQ7  
ABAT6  
LARB6  
ERR6  
REQ6  
C2RXD  
C2TXD  
Legend:  
0540  
0542  
Recieved Data Word  
Transmit Data Word  
xxxx  
xxxx  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See definition when WIN = x  
F1BP<3:0>  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0500-  
051E  
C2BUFPNT1  
C2BUFPNT2  
C2BUFPNT3  
C2BUFPNT4  
C2RXM0SID  
C2RXM0EID  
C2RXM1SID  
C2RXM1EID  
C2RXM2SID  
C2RXM2EID  
C2RXF0SID  
C2RXF0EID  
C2RXF1SID  
C2RXF1EID  
C2RXF2SID  
C2RXF2EID  
C2RXF3SID  
C2RXF3EID  
C2RXF4SID  
C2RXF4EID  
C2RXF5SID  
C2RXF5EID  
C2RXF6SID  
C2RXF6EID  
C2RXF7SID  
C2RXF7EID  
C2RXF8SID  
C2RXF8EID  
C2RXF9SID  
C2RXF9EID  
C2RXF10SID  
C2RXF10EID  
C2RXF11SID  
Legend:  
0520  
0522  
0524  
0526  
0530  
0532  
0534  
0536  
0538  
053A  
0540  
0542  
0544  
0546  
0548  
054A  
054C  
054E  
0550  
0552  
0554  
0556  
0558  
055A  
055C  
055E  
0560  
0562  
0564  
0566  
0568  
056A  
056C  
F3BP<3:0>  
F2BP<3:0>  
F6BP<3:0>  
F10BP<3:0>  
F14BP<3:0>  
F0BP<3:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
F7BP<3:0>  
F12BP<3:0>  
F15BP<3:0>  
F5BP<3:0>  
F9BP<3:0>  
F4BP<3:0>  
F8BP<3:0>  
F12BP<3:0>  
F13BP<3:0>  
SID<2:0>  
SID<10:3>  
MIDE  
MIDE  
EID<17:16>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EID<17:16>  
EID<7:0>  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1(CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C2RXF11EID  
C2RXF12SID  
C2RXF12EID  
C2RXF13SID  
C2RXF13EID  
C2RXF14SID  
C2RXF14EID  
C2RXF15SID  
C2RXF15EID  
Legend:  
056E  
0570  
0572  
0574  
0576  
0578  
057A  
057C  
057E  
EID<15:8>  
EID<7:0>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EXIDE  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-22: PORTA REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
06C0  
TRISA15  
RA15  
TRISA14  
RA14  
TRISA13  
RA13  
TRISA12  
RA12  
TRISA10  
RA10  
LATA10  
TRISA9  
RA9  
TRISA7  
RA7  
TRISA6  
RA6  
TRISA5  
RA5  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
D6C0  
xxxx  
xxxx  
xxxx  
LATA15  
ODCA15  
LATA14  
ODCA14  
LATA13  
ODCA13  
LATA12  
ODCA12  
LATA9  
LATA7  
LATA6  
LATA5  
ODCA5  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
ODCA1  
LATA0  
ODCA0  
ODCA(2)  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-23: PORTB REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C6  
02C8  
02CA  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8  
TRISB7  
RB7  
TRISB6 TRISB5 TRISB4  
TRISB3 TRISB2 TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB11  
LATB10  
LATB9  
LATB8  
LATB7  
LATB6  
LATB5  
LATB4  
LATB3  
LATB2  
LATB1  
LATB0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-24: PORTC REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02CC TRISC15 TRISC14 TRISC13 TRISC12  
TRISC4  
RC4  
TRISC3  
RC3  
TRISC2  
RC2  
TRISC1  
RC1  
F01E  
xxxx  
xxxx  
02CE  
02D0  
RC15  
RC14  
RC13  
RC12  
LATC15 LATC14 LATC13 LATC12  
LATC4  
LATC3  
LATC2  
LATC1  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-25: PORTD REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D2  
02D4  
02D6  
06D2  
TRISD15  
RD15  
TRISD14  
RD14  
TRISD13  
RD13  
TRISD12  
RD12  
TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
FFFF  
xxxx  
xxxx  
xxxx  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
LATD15  
ODCD15  
LATD14  
ODCD14  
LATD13  
ODCD13  
LATD12  
ODCD12  
LATD11  
ODCD11  
LATD10  
ODCD10  
LATD9  
ODCD9  
LATD8  
ODCD8  
LATD7  
ODCD7  
LATD6  
ODCD6  
LATD5  
ODCD5  
LATD4  
ODCD4  
LATD3  
ODCD3  
LATD2  
ODCD2  
LATD1  
ODCD1  
LATD0  
ODCD0  
ODCD(2)  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-26: PORTE REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
PORTE  
LATE  
02D8  
02DA  
02DC  
TRISE7  
RE7  
TRISE6  
RE6  
TRISE5  
RE5  
TRISE4  
RE4  
TRISE3  
RE3  
TRISE2  
RE2  
TRISE1  
RE1  
TRISE0  
RE0  
03FF  
xxxx  
xxxx  
LATE7  
LATE6  
LATE5  
LATE4  
LATE3  
LATE2  
LATE1  
LATE0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-27: PORTF REGISTER MAP(1)  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
TRISF  
PORTF  
LATF  
02DE  
02E0  
02E2  
06DE  
TRISF13  
RF13  
TRISF12  
RF12  
TRISF8  
RF8  
TRISF7  
RF7  
TRISF6  
RF6  
TRISF5  
RF5  
TRISF4  
RF4  
TRISF3  
RF3  
TRISF2  
RF2  
TRISF1  
RF1  
TRISF0  
RF0  
31FF  
xxxx  
xxxx  
xxxx  
LATF13  
ODCF13  
LATF12  
ODCF12  
LATF8  
ODCF8  
LATF7  
ODCF7  
LATF6  
ODCF6  
LATF5  
ODCF5  
LATF4  
ODCF4  
LATF3  
ODCF3  
LATF2  
ODCF2  
LATF1  
ODCF1  
LATF0  
ODCF0  
ODCF(2)  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-28: PORTG REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISG  
PORTG  
LATG  
02E4  
02E6  
02E8  
06E4  
TRISG15  
RG15  
TRISG14  
RG14  
TRISG13  
RG13  
TRISG12  
RG12  
TRISG9  
RG9  
TRISG8  
RG8  
TRISG7  
RG7  
TRISG6  
RG6  
TRISG3  
RG3  
TRISG2  
RG2  
TRISG1  
RG1  
TRISG0  
RG0  
F3CF  
xxxx  
xxxx  
xxxx  
LATG15  
ODCG15  
LATG14  
ODCG14  
LATG13  
ODCG13  
LATG12  
ODCG12  
LATG9  
ODCG9  
LATG8  
ODCG8  
LATG7  
ODCG7  
LATG6  
ODCG6  
LATG3  
ODCG3  
LATG2  
ODCG2  
LATG1  
ODCG1  
LATG0  
ODCG0  
ODCG(2)  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-29: SYSTEM CONTROL REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740  
0742  
0744  
0746  
0748  
TRAPR IOPUWR  
COSC<2:0>  
DOZE<2:0>  
NOSC<2:0>  
FRCDIV<2:0>  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx(1)  
0300(2)  
0040  
OSCCON  
CLKDIV  
PLLFBD  
OSCTUN  
CLKLOCK  
LOCK  
LPOSCEN OSWEN  
ROI  
DOZEN  
PLLPOST<1:0>  
PLLPRE<4::0>  
PLLDIV<8:0>  
0030  
TUN<5:0>  
0000  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values dependent on type of Reset.  
OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 3-30: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
ERASE  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
NVMOP<3:0>  
0000(1)  
0000  
NVMKEY<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 3-31: PMD REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
0770  
0772  
0774  
T5MD  
IC8MD  
T9MD  
T4MD  
IC7MD  
T8MD  
T3MD  
IC6MD  
T7MD  
T2MD  
IC5MD  
T6MD  
T1MD  
IC4MD  
IC3MD  
IC2MD  
IC1MD  
I2C1MD  
OC8MD  
U2MD  
OC7MD  
U1MD  
OC6MD  
SPI2MD SPI1MD  
C2MD  
C1MD  
OC2MD  
I2C2MD  
AD1MD  
OC1MD  
AD2MD  
0000  
0000  
0000  
OC5MD OC4MD OC3MD  
PMD3  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PIC24H  
3.2.6  
SOFTWARE STACK  
3.2.7  
DATA RAM PROTECTION FEATURE  
The PIC24H product family supports Data RAM protec-  
tion features that enable segments of RAM to be  
protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
segment for BS) is accessible only from the Boot Seg-  
ment Flash code, when enabled. SSRAM (Secure  
RAM segment for RAM) is accessible only from the  
Secure Segment Flash code, when enabled. See  
Table 3-1 for an overview of the BSRAM and SSRAM  
SFRs.  
In addition to its use as a working register, the W15  
register in the PIC24H devices is also used as a soft-  
ware Stack Pointer. The Stack Pointer always points to  
the first available free word and grows from lower to  
higher addresses. It pre-decrements for stack pops and  
post-increments for stack pushes, as shown in  
Figure 3-5. For a PC push during any CALLinstruction,  
the MSB of the PC is zero-extended before the push,  
ensuring that the MSB is always clear.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSB  
of the PC prior to the push.  
3.3  
Instruction Addressing Modes  
The addressing modes in Table 3-32 form the basis of  
the addressing modes optimized to support the specific  
features of individual instructions. The addressing  
modes provided in the MAC class of instructions are  
somewhat different from those in the other instruction  
types.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. The stack error trap will occur on a  
subsequent push operation. Thus, for example, if it is  
desirable to cause a stack error trap when the stack  
grows beyond address 0x2000 in RAM, initialize the  
SPLIM with the value 0x1FFE.  
3.3.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (Near Data Space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
3.3.2  
MCU INSTRUCTIONS  
The 3-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
where Operand 1 is always a working register (i.e., the  
addressing mode can only be Register Direct) which is  
referred to as Wb. Operand 2 can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
FIGURE 3-5:  
CALLSTACK FRAME  
0x0000  
15  
0
• Register Direct  
PC<15:0>  
000000000  
W15 (before CALL)  
• Register Indirect  
PC<22:16>  
<Free Word>  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
DS70175D-page 48  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 3-32: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode Description  
File Register Direct  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the EA.  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
Register Indirect with Literal Offset The sum of Wn and a literal forms the EA.  
3.3.3  
MOVE INSTRUCTIONS  
3.4  
Interfacing Program and Data  
Memory Spaces  
Move instructions provide a greater degree of address-  
ing flexibility than other instructions. In addition to the  
Addressing modes supported by most MCU instruc-  
tions, move instructions also support Register Indirect  
with Register Offset Addressing mode, also referred to  
as Register Indexed mode.  
The PIC24H architecture uses a 24-bit wide program  
space and a 16-bit wide data space. The architecture is  
also a modified Harvard scheme, meaning that data  
can also be present in the program space. To use this  
data successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
Note:  
For the MOV instructions, the Addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (Register Offset)  
field is shared between both source and  
destination (but typically only used by  
one).  
Aside from normal execution, the PIC24H architecture  
provides two methods by which program space can be  
accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
In summary, the following Addressing modes are  
supported by move instructions:  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated from time to time. It also allows  
access to all bytes of the program word. The remap-  
ping method allows an application to access a large  
block of data on a read-only basis, which is ideal for  
look ups from a large table of static data. It can only  
access the least significant word of the program word.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
• 16-bit Literal  
3.4.1  
ADDRESSING PROGRAM SPACE  
Note:  
Not all instructions support all the  
Addressing modes given above. Individual  
instructions may support different subsets  
of these Addressing modes.  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
3.3.4  
OTHER INSTRUCTIONS  
Besides the various addressing modes outlined above,  
some instructions use literal constants of various sizes.  
For example, BRA (branch) instructions use 16-bit  
signed literals to specify the branch destination directly,  
whereas the DISI instruction uses a 14-bit unsigned  
literal field. In some instructions, the source of an oper-  
and or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 49  
PIC24H  
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
Table 3-33 and Figure 3-6 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
TABLE 3-33: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
DS70175D-page 50  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 3-6:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word  
alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted  
in the configuration memory space.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 51  
PIC24H  
2. TBLRDH (Table Read High): In Word mode, it  
maps the entire upper word of a program address  
(P<23:16>) to a data address. Note that  
D<15:8>, the ‘phantom byte’, will always be ‘0’.  
3.4.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDHand TBLWTHinstruc-  
tions are the only method to read or write the upper  
8 bits of a program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper ‘phantom’ byte is  
selected (Byte Select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 4.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit,  
word wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and config-  
uration spaces. When TBLPAG<7> = 0, the table page  
is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
Two table instructions are provided to move byte or  
word sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when Byte Select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 3-7:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
DS70175D-page 52  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
3.4.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access of stored con-  
stant data from the data space without the need to use  
special instructions (i.e., TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG func-  
tions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. Note that by incrementing the PC by 2 for  
each program memory word, the lower 15 bits of data  
space addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions  
require one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Data reads to this area add an additional cycle to the  
instruction being executed, since two program memory  
fetches are required.  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
Although each data space address, 8000h and higher,  
maps directly into a corresponding program memory  
address (see Figure 3-8), only the lower 16 bits of the  
FIGURE 3-8:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...while the lower15 bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 53  
PIC24H  
NOTES:  
DS70175D-page 54  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
can write program memory data either in blocks or  
‘rows’ of 64 instructions (192 bytes) at a time, or single  
instructions and erase program memory in blocks or  
‘pages’ of 512 instructions (1536 bytes) at a time.  
4.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
4.1  
Table Instructions and Flash  
Programming  
The PIC24H devices contain internal Flash program  
memory for storing and executing application code.  
The memory is readable, writable and erasable during  
normal operation over the entire VDD range.  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits<7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 4-1.  
Flash memory can be programmed in two ways:  
1. In-Circuit Serial Programming™ (ICSP™)  
programming capability  
2. Run-Time Self-Programming (RTSP)  
ICSP programming capability allows a PIC24H device  
to be serially programmed while in the end application  
circuit. This is simply done with two lines for program-  
ming clock and programming data (one of the alternate  
programming pin pairs: PGC1/PGD1, PGC2/PGD2 or  
PGC3/PGD3, and three other lines for power (VDD),  
ground (VSS) and Master Clear (MCLR). This allows  
customers to manufacture boards with unprogrammed  
devices and then program the digital signal controller  
just before shipping the product. This also allows the  
most recent firmware or a custom firmware to be  
programmed.  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 4-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 55  
PIC24H  
4.2  
RTSP Operation  
4.3  
Control Registers  
The PIC24H Flash program memory array is organized  
into rows of 64 instructions or 192 bytes. RTSP allows  
the user to erase a page of memory, which consists of  
eight rows (512 instructions) at a time, and to program  
one row or one word at a time. TABLE 23-11: “DC  
Characteristics: Program Memory” displays typical  
erase and programming times. The 8-row erase pages  
and single row write rows are edge-aligned, from the  
beginning of program memory, on boundaries of 1536  
bytes and 192 bytes, respectively.  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 4-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 4.4 “Programming  
Operations” for further details.  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers in sequential order. The  
instruction words loaded must always be from a group  
of 64 boundary.  
4.4  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. A programming operation is nominally 4 ms in  
duration and the processor stalls (waits) until the oper-  
ation is finished. Setting the WR bit (NVMCON<15>)  
starts the operation, and the WR bit is automatically  
cleared when the operation is finished.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by set-  
ting the control bits in the NVMCON register. A total of  
64 TBLWTL and TBLWTH instructions are required to  
load the instructions.  
All of the table write operations are single-word writes  
(two instruction cycles) because only the buffers are  
written.  
A
programming cycle is required for  
programming each row.  
DS70175D-page 56  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 4-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
bit 0  
Legend:  
SO = Satiable only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete.  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)  
1110 = Reserved  
1101 = Erase General Segment and FGS Configuration Register  
(ERASE = 1) or no operation (ERASE = 0)  
1100 = Erase Secure Segment and FSS Configuration Register  
(ERASE = 1) or no operation (ERASE = 0)  
1011-0100 = Reserved  
0011= Memory word program operation (ERASE = 0) or no operation (ERASE = 1)  
0010= Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)  
0001= Memory row program operation (ERASE = 0) or no operation (ERASE = 1)  
0000= Program or erase a single Configuration register byte  
Note 1: These bits can only be reset on POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 57  
PIC24H  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 4-2).  
4.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of program Flash  
memory at a time. To do this, it is necessary to erase  
the 8-row erase page that contains the desired row.  
The general process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash mem-  
ory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the page (see Example 4-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash mem-  
ory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
c) Perform a dummy table write operation  
(TBLWTL) to any address within the page  
that needs to be erased.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 4-3.  
d) Write 0x55 to NVMKEY.  
e) Write 0xAA to NVMKEY.  
f) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 4-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA<15:0> pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
Note:  
A program memory page erase operation  
is set up by performing a dummy table  
write (TBLWTL) operation to any address  
within the page. This methodology is dif-  
ferent from the page erase operation on  
dsPIC30F devices in which the erase  
page was selected using a dedicated pair  
of registers (NVMADRU and NVMADR).  
DS70175D-page 58  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
EXAMPLE 4-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 4-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 59  
PIC24H  
NOTES:  
DS70175D-page 60  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
5.0  
RESETS  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 5-1). A POR will clear all bits, except for  
the POR bit (RCON<0>), that are set. The user can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
• POR: Power-on Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• BOR: Brown-out Reset  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• TRAPR: Trap Conflict Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
• IOPUWR: Illegal Opcode and Uninitialized W  
Register Reset  
A simplified block diagram of the Reset module is  
shown in Figure 5-1.  
Any active source of Reset will make the SYSRST sig-  
nal active. Many registers associated with the CPU and  
peripherals are forced to a known Reset state. Most  
registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
FIGURE 5-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
POR  
BOR  
VDD Rise  
Detect  
SYSRST  
VDD  
Internal  
Regulator  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 61  
PIC24H  
REGISTER 5-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
TRAPR  
bit 15  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-9  
bit 8  
Unimplemented: Read as ‘0’  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator goes into Standby mode during Sleep  
0= Voltage regulator is active during Sleep  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS70175D-page 62  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 5-1:  
bit 0  
RCON: RESET CONTROL REGISTER(1)  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 63  
PIC24H  
TABLE 5-1:  
RESET FLAG BIT OPERATION  
Flag Bit Setting Event  
Trap conflict event  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
POR  
POR  
Illegal opcode or uninitialized  
W register access  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
MCLR Reset  
POR  
POR  
RESETinstruction  
WDT time-out  
PWRSAVinstruction, POR  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
BOR  
POR  
POR  
POR  
Note: All Reset flag bits may be set or cleared by the user software.  
5.1  
Clock Source Selection at Reset  
5.2  
Device Reset Times  
If clock switching is enabled, the system clock source at  
device Reset is chosen, as shown in Table 5-2. If clock  
switching is disabled, the system clock source is always  
selected according to the oscillator Configuration bits.  
Refer to Section 8.0 “Oscillator Configuration” for  
further details.  
The Reset times for various types of device Reset are  
summarized in Table 5-3. The system Reset signal is  
released after the POR and PWRT delay times expire.  
The time at which the device actually begins to execute  
code also depends on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable reset delay times.  
TABLE 5-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The FSCM delay determines the time at which the  
FSCM begins to monitor the system clock source after  
the reset signal is released.  
Reset Type  
Clock Source Determinant  
POR  
BOR  
Oscillator Configuration bits  
(FNOSC<2:0>)  
MCLR  
WDTR  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
DS70175D-page 64  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 5-3:  
Reset Type  
POR  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
FSCM  
Delay  
Clock Source  
SYSRST Delay  
Notes  
1, 2, 3  
EC, FRC, LPRC  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
Any Clock  
TPOR + TSTARTUP + TRST  
TFSCM  
TFSCM  
TFSCM  
TPOR + TSTARTUP + TRST  
TLOCK  
1, 2, 3, 5, 6  
TPOR + TSTARTUP + TRST  
TOST  
1, 2, 3, 4, 6  
TPOR + TSTARTUP + TRST  
TOST + TLOCK  
1, 2, 3, 4, 5, 6  
MCLR  
TRST  
TRST  
TRST  
TRST  
TRST  
TRST  
3
3
3
3
3
3
WDT  
Any Clock  
Software  
Any clock  
Illegal Opcode  
Uninitialized W  
Trap Conflict  
Any Clock  
Any Clock  
Any Clock  
Note 1: TPOR = Power-on Reset delay (10 μs nominal).  
2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal  
Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down  
states, including waking from Sleep mode, only if the regulator is enabled.  
3: TRST = Internal state Reset time (20 μs nominal).  
4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the  
oscillator clock to the system.  
5: TLOCK = PLL lock time (20 μs nominal).  
6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).  
5.2.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
5.2.2.1  
FSCM Delay for Crystal and PLL  
Clock Sources  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) have a relatively long start-up  
time. Therefore, one or more of the following conditions  
is possible after the Reset signal is released:  
When the system clock source is provided by a crystal  
oscillator and/or the PLL, a small delay, TFSCM, is auto-  
matically inserted after the POR and PWRT delay  
times. The FSCM does not begin to monitor the system  
clock source until this delay expires. The FSCM delay  
time is nominally 100 μs and provides additional time  
for the oscillator and/or PLL to stabilize. In most cases,  
the FSCM delay prevents an oscillator failure trap at a  
device Reset when the PWRT is disabled.  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
• The PLL has not achieved a lock (if PLL is used).  
5.3  
Special Function Register Reset  
States  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
Most of the Special Function Registers (SFRs) associ-  
ated with the CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this  
manual.  
5.2.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
If the FSCM is enabled, it begins to monitor the system  
clock source when the Reset signal is released. If a  
valid clock source is not available at this time, the  
device automatically switches to the FRC oscillator and  
the user can switch to the desired crystal oscillator in  
the Trap Service Routine.  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of two registers. The  
Reset value for the Reset Control register, RCON,  
depends on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, depends  
on the type of Reset and the programmed values of the  
oscillator Configuration bits in the FOSC Configuration  
register.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 65  
PIC24H  
NOTES:  
DS70175D-page 66  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
6.1.1  
ALTERNATE VECTOR TABLE  
6.0  
INTERRUPT CONTROLLER  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 6-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
The PIC24H interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the PIC24H CPU. It has the following  
features:  
The AIVT supports debugging by providing a means to  
switch between an application and a support environ-  
ment without requiring the interrupt vectors to be  
reprogrammed. This feature also enables switching  
between applications for evaluation of different soft-  
ware algorithms at run time. If the AIVT is not needed,  
the AIVT should be programmed with the same  
addresses used in the IVT.  
• Up to 8 processor exceptions and software traps  
• 7 user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
6.2  
Reset Sequence  
• Fixed priority within a specified user priority level  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24H device clears its registers in response to a  
Reset which forces the PC to zero. The digital signal  
controller then begins program execution at location  
0x000000. The user programs a GOTOinstruction at the  
Reset address which redirects program execution to  
the appropriate start-up routine.  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
6.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 6-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors consisting of  
8 nonmaskable trap vectors plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
Interrupt vectors are prioritized in terms of their natural  
priority; this priority is linked to their position in the  
vector table. All other things being equal, lower  
addresses have a higher natural priority. For example,  
the interrupt associated with vector 0 will take priority  
over interrupts at any other vector address.  
PIC24H devices implement up to 61 unique interrupts  
and 5 nonmaskable traps. These are summarized in  
Table 6-1 and Table 6-2.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 67  
PIC24H  
FIGURE 6-1:  
PIC24H INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
(1)  
Interrupt Vector Table (IVT)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 6-1 for the list of implemented interrupt vectors.  
DS70175D-page 68  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 6-1:  
INTERRUPT VECTORS  
Interrupt  
Vector  
Number  
Request(IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
INT0 – External Interrupt 0  
8
0
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x00003E  
0x000040  
0x000042  
0x000044  
0x000046  
0x000048  
0x00004A  
0x00004C  
0x00004E  
0x000050  
0x000052  
0x000054  
0x000056  
0x000058  
0x00005A  
0x00005C  
0x00005E  
0x000060  
0x000062  
0x000064  
0x000066  
0x000068  
0x00006A  
0x00006C  
0x00006E  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
0x000150  
0x000152  
0x000154  
0x000156  
0x000158  
0x00015A  
0x00015C  
0x00015E  
0x000160  
0x000162  
0x000164  
0x000166  
0x000168  
0x00016A  
0x00016C  
0x00016E  
9
1
IC1 – Input Compare 1  
OC1 – Output Compare 1  
T1 – Timer1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
2
3
4
DMA0 – DMA Channel 0  
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
5
6
7
8
T3 – Timer3  
9
SPI1E – SPI1 Error  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC1 – A/D Converter 1  
DMA1 – DMA Channel 1  
Reserved  
SI2C1 – I2C1 Slave Events  
MI2C1 – I2C1 Master Events  
Reserved  
CN - Change Notification Interrupt  
INT1 – External Interrupt 1  
ADC2 – A/D Converter 2  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
DMA2 – DMA Channel 2  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer4  
T5 – Timer5  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2E – SPI2 Error  
SPI1 – SPI1 Transfer Done  
C1RX – ECAN1 Receive Data Ready  
C1 – ECAN1 Event  
DMA3 – DMA Channel 3  
IC3 – Input Capture 3  
IC4 – Input Capture 4  
IC5 – Input Capture 5  
IC6 – Input Capture 6  
OC5 – Output Compare 5  
OC6 – Output Compare 6  
OC7 – Output Compare 7  
OC8 – Output Compare 8  
Reserved  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 69  
PIC24H  
TABLE 6-1:  
INTERRUPT VECTORS (CONTINUED)  
Interrupt  
Request(IRQ)  
Number  
Vector  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
DMA4 – DMA Channel 4  
54  
55  
46  
47  
0x000070  
0x000072  
0x000074  
0x000076  
0x000078  
0x00007A  
0x00007C  
0x00007E  
0x000080  
0x000082  
0x000084  
0x000170  
0x000172  
0x000174  
0x000176  
0x000178  
0x00017A  
0x00017C  
0x00017E  
0x000180  
0x000182  
0x000184  
T6 – Timer6  
56  
48  
T7 – Timer7  
57  
49  
SI2C2 – I2C2 Slave Events  
MI2C2 – I2C2 Master Events  
T8 – Timer8  
58  
50  
59  
51  
60  
52  
T9 – Timer9  
61  
53  
INT3 – External Interrupt 3  
INT4 – External Interrupt 4  
C2RX – ECAN2 Receive Data Ready  
C2 – ECAN2 Event  
Reserved  
62  
54  
63  
55  
64  
56  
65-68  
57-60  
0x000086-  
0x00008C  
0x000186-  
0x00018C  
69  
61  
0x00008E  
0x00018E  
DMA5 – DMA Channel 5  
Reserved  
70-72  
62-64  
0x000090-  
0x000094  
0x000190-  
0x000194  
73  
74  
65  
66  
0x000096  
0x000098  
0x00009A  
0x00009C  
0x00009E  
0x0000A0  
0x0000A2  
0x000196  
0x000198  
0x00019A  
0x00019C  
0x00019E  
0x0001A0  
0x0001A2  
U1E – UART1 Error  
U2E – UART2 Error  
75  
67  
Reserved  
76  
68  
DMA6 – DMA Channel 6  
DMA7 – DMA Channel 7  
C1TX – ECAN1 Transmit Data Request  
C2TX – ECAN2 Transmit Data Request  
Reserved  
77  
69  
78  
70  
79  
71  
80-125  
72-117  
0x0000A4-  
0x0000FE  
0x0001A4-  
0x0001FE  
TABLE 6-2:  
TRAP VECTORS  
Vector Number  
IVT Address  
AIVT Address  
Trap Source  
Reserved  
0
1
2
3
4
5
6
7
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000084  
0x000086  
0x000088  
0x00008A  
0x00008C  
0x00008E  
0x000090  
0x000092  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
DMA Error Trap  
Reserved  
Reserved  
DS70175D-page 70  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
The IPC registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
6.3  
Interrupt Control and Status  
Registers  
PIC24H devices implement a total of 30 registers for  
the interrupt controller:  
The INTTREG register contains the associated inter-  
rupt vector number and the new CPU interrupt priority  
level, which are latched into vector number (VEC-  
NUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in  
the INTTREG register. The new interrupt priority level  
is the priority of the pending interrupt.  
• INTCON1  
• INTCON2  
• IFS0 through IFS4  
• IEC0 through IEC4  
• IPC0 through IPC17  
• INTTREG  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 6-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP  
bits in the first position of IPC0 (IPC0<2:0>).  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the Inter-  
rupt Nesting Disable (NSTDIS) bit as well as the control  
and status flags for the processor trap sources. The  
INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers con-  
tain bits that control interrupt functionality. The CPU  
STATUS register, SR, contains the IPL<2:0> bits  
(SR<7:5>). These bits indicate the current CPU inter-  
rupt priority level. The user can change the current  
CPU priority level by writing to the IPL bits.  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a Status bit, which  
is set by the respective peripherals or external signal  
and is cleared via software.  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
The CORCON register contains the IPL3 bit which,  
together with IPL<2:0>, also indicates the current CPU  
priority level. IPL3 is a read-only bit so that trap events  
cannot be masked by the user software.  
All Interrupt registers are described in Register 6-1,  
SR: CPU STATUS Register(1) through Register 6-32,  
IPC17: Interrupt Priority Control Register 17, in the  
following pages.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 71  
PIC24H  
REGISTER 6-1:  
SR: CPU STATUS REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 2-1, SR: CPU STATUS Register.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
REGISTER 6-2:  
CORCON: CORE CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note 1: For complete register details, see Register 2-2, CORCON: CORE Control Register.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70175D-page 72  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
DMACERR MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Enable bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Enable bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B enabled  
0= Trap disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide by zero  
0= Math error trap was not caused by a divide by zero  
bit 5  
DMACERR: DMA Controller Error Status bit  
1= DMA controller error trap has occurred  
0= DMA controller error trap has not occurred  
bit 4  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 73  
PIC24H  
REGISTER 6-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
DS70175D-page 74  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 75  
PIC24H  
REGISTER 6-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
DMA1IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
R/W-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
DMA01IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70175D-page 76  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 77  
PIC24H  
REGISTER 6-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
R/W-0  
U2RXIF  
DMA21IF  
bit 8  
R/W-0  
IC8IF  
R/W-0  
IC7IF  
R/W-0  
AD2IF  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
IC8IF: Input Capture Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
AD2IF: ADC2 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70175D-page 78  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)  
bit 3  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 79  
PIC24H  
REGISTER 6-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
R/W-0  
T6IF  
R/W-0  
U-0  
R/W-0  
OC8IF  
R/W-0  
OC7IF  
R/W-0  
OC6IF  
R/W-0  
OC5IF  
R/W-0  
IC6IF  
DMA4IF  
bit 15  
bit 8  
R/W-0  
IC5IF  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
R/W-0  
R/W-0  
C1IF  
R/W-0  
R/W-0  
SPI2IF  
R/W-0  
DMA3IF  
C1RXIF  
SPI2EIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
T6IF: Timer6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
Unimplemented: Read as ‘0’  
OC8IF: Output Compare Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
OC7IF: Output Compare Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC6IF: Output Compare Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC6IF: Input Capture Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C1IF: ECAN1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70175D-page 80  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)  
bit 2  
bit 1  
bit 0  
C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2EIF: SPI2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 81  
PIC24H  
REGISTER 6-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
C2IF  
DMA5IF  
bit 15  
bit 8  
R/W-0  
C2RXIF  
bit 7  
R/W-0  
INT4IF  
R/W-0  
INT3IF  
R/W-0  
T9IF  
R/W-0  
T8IF  
R/W-0  
R/W-0  
R/W-0  
T7IF  
MI2C2IF  
SI2C2IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
C2IF: ECAN2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T9IF: Timer9 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T8IF: Timer8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C2IF: I2C2 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T7IF: Timer7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70175D-page 82  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
C2TXIF  
bit 7  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U2EIF  
R/W-0  
U1EIF  
U-0  
C1TXIF  
DMA7IF  
DMA6IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
bit 5  
bit 4  
C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 83  
PIC24H  
REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
DMA1IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
R/W-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
DMA0IE  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1EIE: SPI1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70175D-page 84  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 85  
PIC24H  
REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
R/W-0  
U2TXIE  
U2RXIE  
INT2IE  
DMA2IE  
bit 15  
bit 8  
R/W-0  
IC8IE  
R/W-0  
IC7IE  
R/W-0  
AD2IE  
R/W-0  
R/W-0  
CNIE  
U-0  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
IC8IE: Input Capture Channel 8 Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
AD2IE: ADC2 Conversion Complete Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70175D-page 86  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)  
bit 3  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 87  
PIC24H  
REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
R/W-0  
T6IE  
R/W-0  
U-0  
R/W-0  
OC8IE  
R/W-0  
OC7IE  
R/W-0  
OC6IE  
R/W-0  
OC5IE  
R/W-0  
IC6IE  
DMA4IE  
bit 15  
bit 8  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
R/W-0  
R/W-0  
C1IE  
R/W-0  
R/W-0  
R/W-0  
DMA3IE  
C1RXIE  
SPI2IE  
SPI2EIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
T6IE: Timer6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
Unimplemented: Read as ‘0’  
OC8IE: Output Compare Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
OC7IE: Output Compare Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC6IE: Output Compare Channel 6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC6IE: Input Capture Channel 6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C1IE: ECAN1 Event Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70175D-page 88  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)  
bit 2  
bit 1  
bit 0  
C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI2EIE: SPI2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 89  
PIC24H  
REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
C2IE  
DMA5IE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T9IE  
R/W-0  
T8IE  
R/W-0  
R/W-0  
R/W-0  
T7IE  
C2RXIE  
INT4IE  
INT3IE  
MI2C2IE  
SI2C2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
C2IE: ECAN2 Event Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT4IE: External Interrupt 4 Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT3IE: External Interrupt 3 Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T9IE: Timer9 Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T8IE: Timer8 Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C2IE: I2C2 Master Events Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C2IE: I2C2 Slave Events Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T7IE: Timer7 Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70175D-page 90  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U2EIE  
R/W-0  
U1EIE  
U-0  
C2TXIE  
C1TXIE  
DMA7IE  
DMA6IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
bit 5  
bit 4  
C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIE: UART2 Error Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 91  
PIC24H  
REGISTER 6-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC1IP<2:0>  
INT0IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 92  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T2IP<2:0>  
OC2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC2IP<2:0>  
DMA0IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 93  
PIC24H  
REGISTER 6-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI1EIP<2:0>  
T3IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 94  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DMA1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD1IP<2:0>  
U1TXIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 95  
PIC24H  
REGISTER 6-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CNIP<2:0>  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 96  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IC8IP<2:0>  
IC7IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD2IP<2:0>  
INT1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 97  
PIC24H  
REGISTER 6-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
T4IP<2:0>  
OC4IP<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
OC3IP<2:0>  
DMA2IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 98  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U2TXIP<2:0>  
U2RXIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
INT2IP<2:0>  
T5IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 99  
PIC24H  
REGISTER 6-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
C1IP<2:0>  
C1RXIP<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI2IP<2:0>  
SPI2EIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C1IP<2:0>: ECAN1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 100  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IC5IP<2:0>  
IC4IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC3IP<2:0>  
DMA3IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 101  
PIC24H  
REGISTER 6-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC7IP<2:0>  
OC6IP<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
OC5IP<2:0>  
IC6IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 102  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T6IP<2:0>  
DMA4IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
OC8IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T6IP<2:0>: Timer6 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 103  
PIC24H  
REGISTER 6-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T8IP<2:0>  
MI2C2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SI2C2IP<2:0>  
T7IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T8IP<2:0>: Timer8 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T7IP<2:0>: Timer7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 104  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C2RXIP<2:0>  
INT4IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
INT3IP<2:0>  
T9IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C2RXIP<2:0>: ECAN2 Receive Data Ready Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
INT4IP<2:0>: External Interrupt 4 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T9IP<2:0>: Timer9 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 105  
PIC24H  
REGISTER 6-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
C2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
C2IP<2:0>: ECAN2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70175D-page 106  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
DMA5IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 107  
PIC24H  
REGISTER 6-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
U2EIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1EIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
U2EIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70175D-page 108  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 6-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C2TXIP<2:0>  
C1TXIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
DMA7IP<2:0>  
DMA6IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 109  
PIC24H  
REGISTER 6-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
R-0  
R/W-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001 = CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
1111111= Interrupt Vector pending is number 135  
0000001= Interrupt Vector pending is number 9  
0000000= Interrupt Vector pending is number 8  
DS70175D-page 110  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
6.4.3  
TRAP SERVICE ROUTINE  
6.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
6.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
6.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources may be programmed  
to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value 0x0E with SRL.  
To enable user interrupts, the POPinstruction may be  
Note: At a device Reset, the IPCx registers are  
initialized, such that all user interrupt  
sources are assigned to priority level 4.  
used to restore the previous SR value.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (level 8-level 15)  
cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISIinstruction provides a convenient way to dis-  
able interrupts of priority levels 1-6 for a fixed period of  
time. Level 7 interrupt sources are not disabled by the  
DISI instruction.  
4. Enable the interrupt source by setting the inter-  
rupt enable control bit associated with the  
source in the appropriate IECx register.  
6.4.2  
INTERRUPT SERVICE ROUTINE  
The method that is used to declare an ISR and initialize  
the IVT with the correct vector address will depend on  
the programming language (i.e., C or assembler) and  
the language development toolsuite that is used to  
develop the application. In general, the user must clear  
the interrupt flag in the appropriate IFSx register for the  
source of interrupt that the ISR handles. Otherwise, the  
ISR will be re-entered immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and old CPU  
priority level.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 111  
PIC24H  
NOTES:  
DS70175D-page 112  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Each channel has its own set of control and status  
registers. Each DMA channel can be configured to  
copy data either from buffers stored in dual port DMA  
RAM to peripheral SFRs, or from peripheral SFRs to  
buffers in DMA RAM.  
7.0  
DIRECT MEMORY ACCESS  
(DMA)  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
The DMA controller supports the following features:  
• Word or byte sized data transfers.  
• Transfers from peripheral to DMA RAM or DMA  
RAM to peripheral.  
Direct Memory Access (DMA) is a very efficient  
mechanism of copying data between peripheral SFRs  
(e.g., UART Receive register, Input Capture 1 buffer),  
and buffers or variables stored in RAM, with minimal  
CPU intervention. The DMA controller can  
automatically copy entire blocks of data without  
requiring the user software to read or write the  
peripheral Special Function Registers (SFRs) every  
time a peripheral interrupt occurs. The DMA controller  
uses a dedicated bus for data transfers and, therefore,  
does not steal cycles from the code execution flow of  
the CPU. To exploit the DMA capability, the  
corresponding user buffers or variables must be  
located in DMA RAM.  
• Indirect Addressing of DMA RAM locations with or  
without automatic post-increment.  
• Peripheral Indirect Addressing – In some periph-  
erals, the DMA RAM read/write addresses may  
be partially derived from the peripheral.  
• One-Shot Block Transfers – Terminating DMA  
transfer after one block transfer.  
• Continuous Block Transfers – Reloading DMA  
RAM buffer start address after every block  
transfer is complete.  
• Ping-Pong Mode – Switching between two DMA  
RAM start addresses between successive block  
transfers, thereby filling two buffers alternately.  
• Automatic or manual initiation of block transfers  
The PIC24H peripherals that can utilize DMA are listed  
in Table 7-1 along with their associated Interrupt  
Request (IRQ) numbers.  
• Each channel can select from 19 possible  
sources of data sources or destinations.  
For each DMA channel, a DMA interrupt request is  
TABLE 7-1:  
PERIPHERALS WITH DMA  
SUPPORT  
generated when  
a
block transfer is complete.  
Alternatively, an interrupt can be generated when half of  
the block has been filled.  
Peripheral  
IRQ Number  
INT0  
0
Input Capture 1  
Input Capture 2  
Output Compare 1  
Output Compare 2  
Timer2  
1
5
2
6
7
Timer3  
8
SPI1  
10  
33  
11  
12  
30  
31  
13  
21  
34  
70  
55  
71  
SPI2  
UART1 Reception  
UART1 Transmission  
UART2 Reception  
UART2 Transmission  
ADC1  
ADC2  
ECAN1 Reception  
ECAN1 Transmission  
ECAN2 Reception  
ECAN2 Transmission  
The DMA controller features eight identical data  
transfer channels.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 113  
PIC24H  
FIGURE 7-1:  
TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS  
Peripheral Indirect Address  
DMA Controller  
DMA  
Ready  
Peripheral 3  
DMA  
Channels  
DMA RAM  
SRAM  
PORT 1 PORT 2  
CPU  
DMA  
SRAM X-Bus  
DMA DS Bus  
CPU Peripheral DS Bus  
CPU  
DMA  
CPU  
DMA  
Non-DMA  
Ready  
Peripheral  
DMA  
Ready  
Peripheral 2  
DMA  
Ready  
Peripheral 1  
CPU  
Note: CPU and DMA address buses are not shown for clarity.  
an IECx register in the interrupt controller, and the cor-  
responding interrupt priority control bits (DMAxIP) are  
located in an IPCx register in the interrupt controller.  
7.1  
DMAC Registers  
Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7)  
contains the following registers:  
• A 16-bit DMA Channel Control register  
(DMAxCON)  
7.2  
DMAC Operating Modes  
Each DMA channel has its own status and control reg-  
ister (DMAxCON) that is used to configure the channel  
to support the following operating modes:  
• A 16-bit DMA Channel IRQ Select register  
(DMAxREQ)  
• A 16-bit DMA RAM Primary Start Address register  
(DMAxSTA)  
• Word or byte size data transfers  
• Peripheral to DMA RAM or DMA RAM to  
peripheral transfers  
• A 16-bit DMA RAM Secondary Start Address  
register (DMAxSTB)  
• Post-increment or static DMA RAM address  
• One-shot or continuous block transfers  
• A 16-bit DMA Peripheral Address register  
(DMAxPAD)  
• Auto-switch between two start addresses after  
each transfer complete (Ping-Pong mode)  
• A 10-bit DMA Transfer Count register (DMAx-  
CNT)  
• Force a single DMA transfer (Manual mode)  
An additional status register, DMACS, is common to  
all DMAC channels. It contains the DMA RAM and  
SFR write collision flags, XWCOLx and PWCOLx,  
respectively.  
Each DMA channel can be independently configured  
to:  
• Select from one of 19 DMA request sources  
• Manually enable or disable the DMA channel  
The DMAxCON, DMAxREQ, DMAxPAD and  
DMAxCNT are all conventional read/write registers.  
Reads of DMAxSTA or DMAxSTB will read the con-  
tents of the DMA RAM Address register. Writes to  
DMAxSTA or DMAxSTB write to the registers. This  
allows the user to determine the DMA buffer pointer  
value (address) at any time.  
• Interrupt the CPU when the transfer is half or fully  
complete  
DMA channel interrupts are routed to the interrupt con-  
troller module and enabled through associated enable  
flags.  
The channel DMA RAM and peripheral write collision  
Faults are combined into a single DMAC error trap  
(Level 10) and are not maskable. Each channel has  
DMA RAM write collision (XWCOLx) and peripheral  
The interrupt flags (DMAxIF) are located in an IFSx  
register in the interrupt controller. The corresponding  
interrupt enable control bits (DMAxIE) are located in  
DS70175D-page 114  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
write collision (PWCOLx) status bits in the DMAC Sta-  
tus register (DMACS) to allow the DMAC error trap  
handler to determine the source of the Fault condition.  
Any DMA channel can be configured to operate in  
Peripheral Indirect Addressing mode by setting the  
AMODE<1:0> bits to ‘10’. In this mode, the DMA RAM  
source or destination address is partially derived from  
the peripheral as well as the DMA Address registers.  
Each peripheral module has a pre-assigned peripheral  
indirect address which is logically ORed with the DMA  
Start Address register to obtain the effective DMA RAM  
address. The DMA RAM Start Address register value  
must be aligned to a power-of-two boundary.  
7.2.1  
BYTE OR WORD TRANSFER  
Each DMA channel can be configured to transfer  
words or bytes. As usual, words can only be moved to  
and from aligned (even) addresses. Bytes can be  
moved to or from any (legal) address.  
If the SIZE bit (DMAxCON<14>) is clear, word sized  
data is transferred. The LSb of the DMA RAM Address  
register (DMAxSTA or DMAxSTB) is ignored. If  
Post-Increment Addressing mode is enabled, the DMA  
RAM Address register is incremented by 2 after every  
word transfer.  
Note:  
Only the ECAN and A/D modules can  
utilize Peripheral Indirect Addressing.  
7.2.3  
DMA TRANSFER DIRECTION  
Each DMA channel can be configured to transfer data  
from a peripheral to DMA RAM, or from DMA RAM to a  
peripheral.  
If the SIZE bit is set, byte sized data is transferred. If  
Post-Increment Addressing is enabled, the DMA RAM  
Address register is incremented by 1 after every byte  
transfer.  
If the DIR bit (DMAxCON<13>) is clear, the reads  
occur from a peripheral SFR (using the DMA Periph-  
eral Address register, DMAxPAD) and the writes are  
directed to the DMA RAM (using the DMA RAM  
Address register).  
Note:  
DMAxCNT value is independent of data  
transfer size (byte/word). If an address off-  
set is required, a 1-bit left shift of the  
counter is required to generate the correct  
offset for (aligned) word transfers.  
If the DIR bit (DMAxCON<13>) is set, the reads occur  
from the DMA RAM (using the DMA RAM Address  
register) and the writes are directed to the peripheral  
(using the DMA Peripheral Address register,  
DMAxPAD).  
7.2.2  
ADDRESSING MODES  
The DMAC supports Register Indirect and Register  
Indirect Post-Increment Addressing modes for DMA  
RAM addresses (source or destination). Each channel  
can select the DMA RAM Addressing mode indepen-  
dently. The Peripheral SFR is always accessed using  
Register Indirect Addressing.  
7.2.4  
NULL DATA PERIPHERAL WRITE  
MODE  
If the NULLW bit (DMAxCON<11>) is set, a null data  
write to the peripheral SFR is performed in addition to  
a data transfer from the peripheral SFR to DMA RAM  
(assuming the DIR bit is clear). This mode is most use-  
ful in applications in which sequential reception of data  
is required without any data transmission.  
If the AMODE<1:0> bits (DMAxCON<5:4>) are set to  
01’,  
Register  
Indirect  
Addressing  
without  
Post-Increment is used, which implies that the DMA  
RAM address remains constant.  
If the AMODE<1:0> bits are clear, DMA RAM is  
accessed using Register Indirect Addressing with  
Post-Increment, which means the DMA RAM address  
will be incremented after every access.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 115  
PIC24H  
serial peripheral allows subsequent data within the  
buffer to be moved automatically by the DMAC using a  
‘transmit buffer empty’ DMA request.  
7.2.5  
CONTINUOUS OR ONE-SHOT  
OPERATION  
Each DMA channel can be configured for One-Shot or  
Continuous mode operation.  
7.2.8  
DMA REQUEST SOURCE  
SELECTION  
If MODE<0> (DMAxCON<0>) is clear, the channel  
operates in Continuous mode.  
Each DMA channel can select between one of 128  
interrupt sources to be a DMA request for that chan-  
nel, based on the contents of the IRQSEL<6:0> bits  
(DMAxREQ<6:0>. The available interrupt sources are  
device dependent. Please refer to Table 7-1 for IRQ  
numbers associated with each of the interrupt sources  
that can generate a DMA transfer.  
When all data has been moved (i.e., buffer end has  
been detected), the channel is automatically reconfig-  
ured for subsequent use. During the last data transfer,  
the next Effective Address generated will be the origi-  
nal start address (from the selected DMAxSTA or  
DMAxSTB register). If the HALF bit (DMAxCON<12>)  
is clear, the transfer complete interrupt flag (DMAxIF)  
is set. If the HALF bit is set, DMAxIF will not be set at  
this time and the channel will remain enabled.  
7.3  
DMA Interrupts and Traps  
Each DMA channel can generate an independent  
‘block transfer complete’ (HALF = 0) or ‘half block  
transfer complete’ (HALF = 1) interrupt. Every DMA  
channel has its own interrupt vector and therefore,  
does not use the interrupt vector of the peripheral to  
which it is assigned. If a peripheral contains multi-word  
buffers, the buffering function must be disabled in the  
peripheral in order to use DMA. DMA interrupt  
requests are only generated by data transfers and not  
by peripheral error conditions.  
If MODE<0> is set, the channel operates in One-Shot  
mode. When all data has been moved (i.e., buffer end  
has been detected), the channel is automatically dis-  
abled. During the last data transfer, no new Effective  
Address is generated and the DMA RAM Address  
register retains the last DMA RAM address that was  
accessed. If the HALF bit is clear, the DMAxIF bit is  
set. If the HALF bit is set, the DMAxIF will not be set at  
this time and the channel is automatically disabled.  
7.2.6  
PING-PONG MODE  
The DMA controller can also react to peripheral and  
DMA RAM write collision error conditions through a  
nonmaskable CPU trap event. A DMA error trap is  
generated in either of the following Fault conditions:  
When the MODE<1> bit (DMAxCON<1>) is set by the  
user, Ping-Pong mode is enabled.  
In this mode, successive block transfers alternately  
select DMAxSTA and DMAxSTB as the DMA RAM  
start address. In this way, a single DMA channel can  
be used to support two buffers of the same length in  
DMA RAM. Using this technique maximizes data  
throughput by allowing the CPU time to process one  
buffer while the other is being loaded.  
• DMA RAM data write collision between the CPU  
and a peripheral  
- This condition occurs when the CPU and a  
peripheral attempt to write to the same DMA  
RAM address simultaneously  
• Peripheral SFR data write collision between the  
CPU and the DMA controller  
7.2.7  
MANUAL TRANSFER MODE  
- This condition occurs when the CPU and the  
DMA controller attempt to write to the same  
peripheral SFR simultaneously  
A manual DMA request can be created by setting the  
FORCE bit (DMAxREQ<15>) in software. If already  
enabled, the corresponding DMA channel executes a  
single data element transfer rather than a block trans-  
fer.  
The channel DMA RAM and peripheral write collision  
Faults are combined into a single DMAC error trap  
(Level 10) and are nonmaskable. Each channel has  
DMA RAM Write Collision (XWCOLx) and Peripheral  
Write Collision (PWCOLx) status bits in the DMAC  
Status register (DMACS) to allow the DMAC error trap  
handler to determine the source of the Fault condition.  
The FORCE bit is cleared by hardware when the  
forced DMA transfer is complete and cannot be  
cleared by the user. Any attempt to set this bit prior to  
completion of a DMA request that is underway will  
have no effect.  
The manual DMA transfer function is a one-time event.  
The DMA channel always reverts to normal operation  
(i.e., based on hardware DMA requests) after a forced  
(manual) transfer.  
This mode provides the user a straightforward method  
of initiating a block transfer. For example, using  
Manual mode to transfer the first data element into a  
DS70175D-page 116  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
7.4  
DMA Initialization Example  
The following is a DMA initialization example:  
EXAMPLE 7-1:  
DMA SAMPLE INITIALIZATION METHOD  
// Clear all DMA controller status bits to a known state  
DMACS0 = 0;  
// Set up DMA Channel 0: Word mode, Read from Peripheral & Write to DMA; Interrupt when all the  
data has been moved; Indirect with post-increment; Continuous mode with Ping-Pong Disabled  
DMA0CON = 0x000D;  
//Automatic DMA transfer initiation by DMA request; DMA Peripheral IRQ Number set up for ADC1  
DMA0REQ = 0x0000;  
// Set up offset into DMA RAM so that the buffer that collects A/D result data starts at the base  
of DMA RAM  
DMA0STA = 0x0000;  
// DMA0PAD should be loaded with the address of the A/D conversion result register  
DMA0PAD = (volatile unsigned int) &ADC1BUF0;  
// DMA transfer of 256 words of data  
DMA0CNT = 0x0100 ;  
//Clear the DMA0 Interrupt Flag  
IFS0bits.DMA0IF = 0;  
//Enable DMA0 Interrupts  
IEC0bits.DMA0IE = 1;  
//Enable the DMA0 Channel  
DMA0CONbits.CHEN = 1;  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 117  
PIC24H  
REGISTER 7-1:  
DMAxCON: DMA CHANNEL x CONTROL REGISTER  
R/W-0  
CHEN  
R/W-0  
SIZE  
R/W-0  
DIR  
R/W-0  
HALF  
R/W-0  
U-0  
U-0  
U-0  
NULLW  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMODE<1:0>  
MODE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
CHEN: Channel Enable bit  
1= Channel enabled  
0= Channel disabled  
SIZE: Data Transfer Size bit  
1= Byte  
0= Word  
DIR: Transfer Direction bit (source/destination bus select)  
1= Read from DMA RAM address, write to peripheral address  
0= Read from peripheral address, write to DMA RAM address  
HALF: Early Block Transfer Complete Interrupt Select bit  
1= Initiate block transfer complete interrupt when half of the data has been moved  
0= Initiate block transfer complete interrupt when all of the data has been moved  
NULLW: Null Data Peripheral Write Mode Select bit  
1= Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)  
0= Normal operation  
bit 10-6  
bit 5-4  
Unimplemented: Read as ‘0’  
AMODE<1:0>: DMA Channel Operating Mode Select bits  
11= Reserved (will act as Peripheral Indirect Addressing mode)  
10= Peripheral Indirect Addressing mode  
01= Register Indirect without Post-Increment mode  
00= Register Indirect with Post-Increment mode  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
MODE<1:0>: DMA Channel Operating Mode Select bits  
11= One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)  
10= Continuous, Ping-Pong modes enabled  
01= One-Shot, Ping-Pong modes disabled  
00= Continuous, Ping-Pong modes disabled  
DS70175D-page 118  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 7-2:  
DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER  
R/W-0  
FORCE(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
IRQSEL6(2) IRQSEL5(2) IRQSEL4(2) IRQSEL3(2) IRQSEL2(2)  
IRQSEL1(2) IRQSEL0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FORCE: Force DMA Transfer bit(1)  
1= Force a single DMA transfer (Manual mode)  
0= Automatic DMA transfer initiation by DMA request  
bit 14-7  
bit 6-0  
Unimplemented: Read as ‘0’  
IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits(2)  
0000000-1111111= DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ  
Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced  
DMA transfer is complete.  
2: Please see Table 6-1 for a complete listing of IRQ numbers for all interrupt sources.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 119  
PIC24H  
REGISTER 7-3:  
DMAxSTA: DMA CHANNEL x RAM START ADDRESS REGISTER A(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
STA<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
STA<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STA<15:0>: Primary DMA RAM Start Address bits (source or destination)  
Note 1: A read of this address register will return the current contents of the DMA RAM Address register, not the  
contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in  
unpredictable behavior of the DMA channel and should be avoided.  
REGISTER 7-4:  
DMAxSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
STB<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
STB<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)  
Note 1: A read of this address register will return the current contents of the DMA RAM Address register, not the  
contents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in  
unpredictable behavior of the DMA channel and should be avoided.  
DS70175D-page 120  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 7-5:  
DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PAD<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
PAD<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PAD<15:0>: Peripheral Address Register bits  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
REGISTER 7-6:  
DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CNT<9:8>(2)  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
CNT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CNT<9:0>: DMA Transfer Count Register bits(2)  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
2: Number of DMA transfers = CNT<9:0> + 1.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 121  
PIC24H  
REGISTER 7-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
PWCOL7  
bit 15  
PWCOL6  
PWCOL5  
PWCOL4  
PWCOL3  
PWCOL2  
PWCOL1  
PWCOL0  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
XWCOL7  
XWCOL6  
XWCOL5  
XWCOL4  
XWCOL3  
XWCOL2  
XWCOL1  
XWCOL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
PWCOL7: Channel 7 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL6: Channel 6 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL5: Channel 5 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL4: Channel 4 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL3: Channel 3 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL2: Channel 2 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL1: Channel 1 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 8  
PWCOL0: Channel 0 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 7  
XWCOL7: Channel 7 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 6  
XWCOL6: Channel 6 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 5  
XWCOL5: Channel 5 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 4  
XWCOL4: Channel 4 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
DS70175D-page 122  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 7-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
XWCOL3: Channel 3 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL2: Channel 2 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL1: Channel 1 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL0: Channel 0 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 123  
PIC24H  
REGISTER 7-8:  
DMACS1: DMA CONTROLLER STATUS REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
R-0  
LSTCH<3:0>  
bit 15  
bit 8  
R-0  
PPST7  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
LSTCH<3:0>: Last DMA Channel Active bits  
1111= No DMA transfer has occurred since system Reset  
1110-1000= Reserved  
0111= Last data transfer was by DMA Channel 7  
0110= Last data transfer was by DMA Channel 6  
0101= Last data transfer was by DMA Channel 5  
0100= Last data transfer was by DMA Channel 4  
0011= Last data transfer was by DMA Channel 3  
0010= Last data transfer was by DMA Channel 2  
0001= Last data transfer was by DMA Channel 1  
0000= Last data transfer was by DMA Channel 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PPST7: Channel 7 Ping-Pong Mode Status Flag bit  
1= DMA7STB register selected  
0= DMA7STA register selected  
PPST6: Channel 6 Ping-Pong Mode Status Flag bit  
1= DMA6STB register selected  
0= DMA6STA register selected  
PPST5: Channel 5 Ping-Pong Mode Status Flag bit  
1= DMA5STB register selected  
0= DMA5STA register selected  
PPST4: Channel 4 Ping-Pong Mode Status Flag bit  
1= DMA4STB register selected  
0= DMA4STA register selected  
PPST3: Channel 3 Ping-Pong Mode Status Flag bit  
1= DMA3STB register selected  
0= DMA3STA register selected  
PPST2: Channel 2 Ping-Pong Mode Status Flag bit  
1= DMA2STB register selected  
0= DMA2STA register selected  
PPST1: Channel 1 Ping-Pong Mode Status Flag bit  
1= DMA1STB register selected  
0= DMA1STA register selected  
PPST0: Channel 0 Ping-Pong Mode Status Flag bit  
1= DMA0STB register selected  
0= DMA0STA register selected  
DS70175D-page 124  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 7-9:  
DSADR: MOST RECENT DMA RAM ADDRESS  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
bit 8  
R-0  
bit 0  
DSADR<15:8>  
bit 15  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 125  
PIC24H  
NOTES:  
DS70175D-page 126  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
• The internal FRC oscillator can also be used with  
the PLL, thereby allowing full-speed operation  
without any external clock generation hardware  
8.0  
OSCILLATOR  
CONFIGURATION  
• Clock switching between various clock sources  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
• Programmable clock postscaler for system power  
savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
• A Clock Control register (OSCCON)  
The PIC24H oscillator system provides:  
• Nonvolatile Configuration bits for main oscillator  
selection.  
• Various external and internal oscillator options as  
clock sources  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
• An on-chip PLL to scale the internal operating  
frequency to the required system clock frequency  
FIGURE 8-1:  
PIC24H OSCILLATOR SYSTEM DIAGRAM  
PIC24H  
Primary Oscillator  
XT, HS, EC  
DOZE<2:0>  
OSC2  
OSC1  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
CPU  
PLL  
FRC, FRCDIVN  
Peripherals  
FRC  
Oscillator  
FRCDIV<2:0>  
, FRCDIV16  
LPRC  
Divide  
by 16  
LPRC  
Oscillator  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
SOSCEN  
Enable  
Oscillator  
Clock Control Logic  
Fail-Safe  
Clock  
Monitor  
WDT, PWRT  
Clock Source Option  
for other Modules  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 127  
PIC24H  
(FOSC<1:0>), select the oscillator source that is used at  
a Power-on Reset. The FRC primary oscillator is the  
default (unprogrammed) selection.  
8.1  
CPU Clocking System  
There are seven system clock options provided by the  
PIC24H:  
The Configuration bits allow users to choose between  
twelve different clock modes, shown in Table 8-1.  
• FRC Oscillator  
• FRC Oscillator with PLL  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
• Secondary (LP) Oscillator  
• LPRC Oscillator  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected) FOSC is divided by 2 to  
generate the device instruction clock (FCY). FCY  
defines the operating speed of the device, and speeds  
up to 40 MHz are supported by the PIC24H  
architecture.  
• FRC Oscillator with postscaler  
Instruction execution speed or device operating  
frequency, FCY, is given by:  
8.1.1  
SYSTEM CLOCK SOURCES  
The FRC (Fast RC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. The user software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
EQUATION 8-1:  
DEVICE OPERATING  
FREQUENCY  
FCY = FOSC/2  
8.1.3  
PLL CONFIGURATION  
The primary oscillator can use one of the following as  
its clock source:  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides a significant amount of  
flexibility in selecting the device operating speed. A  
block diagram of the PLL is shown in Figure 8-2.  
1. XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
2. HS (High-Speed Crystal): Crystals in the range  
of 10 MHz to 40 MHz. The crystal is connected  
to the OSC1 and OSC2 pins.  
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,  
... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected to be in the range of 0.8 MHz to 8 MHz.  
Since the minimum prescale factor is 2, this implies that  
FIN must be chosen to be in the range of 1.6 MHz to 16  
MHz. The prescale factor ‘N1’ is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
3. EC (External Clock): External clock signal in the  
range of 0.8 MHz to 64 MHz. The external clock  
signal is directly applied to the OSC1 pin.  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
The LPRC (Low-Power RC) internal oscIllator runs at a  
nominal frequency of 32.768 kHz. It is also used as a  
reference clock by the Watchdog Timer (WDT) and  
Fail-Safe Clock Monitor (FSCM).  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip  
Phase Locked Loop (PLL) to provide a wide range of  
output frequencies for device operation. PLL  
configuration is described in Section 8.1.3 “PLL  
Configuration”.  
The VCO output is further divided by a postscale factor  
‘N2’. This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
8.1.2  
SYSTEM CLOCK SELECTION  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
the PLL output ‘FOSC’ is given by:  
The oscillator source that is used at a device Power-on  
Reset event is selected using Configuration bit settings.  
The oscillator Configuration bit settings are located in the  
Configuration registers in the program memory. (Refer to  
Section 20.1 “Configuration Bits” for further details.)  
The Initial Oscillator Selection Configuration bits,  
FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscil-  
lator Mode Select Configuration bits, POSCMD<1:0>  
EQUATION 8-2:  
FOSC CALCULATION  
M
N1*N2  
FOSC = FIN*  
(
)
DS70175D-page 128  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
For example, suppose a 10 MHz crystal is being used,  
with “XT with PLL” being the selected oscillator mode.  
If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO  
input of 10/2 = 5 MHz, which is within the acceptable  
range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then  
M = 32. This yields a VCO output of 5 x 32 = 160 MHz,  
which is within the 100-200 MHz ranged needed.  
EQUATION 8-3:  
XT WITH PLL MODE  
EXAMPLE  
FOSC  
2
1
10000000*32  
FCY =  
=
(
)
= 40 MIPS  
2
2*2  
If PLLPOST<1:0> = 0, then N2 = 2. This provides a  
Fosc of 160/2 = 80 MHz. The resultant device operating  
speed is 80/2 = 40 MIPS.  
FIGURE 8-2:  
PIC24H PLL BLOCK DIAGRAM  
0.8-8.0 MHz  
Here  
100-200 MHz  
Here  
12.5-80 MHz  
Here  
Source (Crystal, External  
Clock or Internal RC)  
FOSC  
PLLPRE  
VCO  
PLLPOST  
X
PLLDIV  
1.6-16.0 MHz  
Here  
Divide by  
2-33  
Divide by  
2, 4, 8  
Divide by  
2-513  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
Note  
1, 2  
Fast RC Oscillator with Divide-by-N  
(FRCDIVN)  
Internal  
11  
111  
Internal  
11  
110  
1
Fast RC Oscillator with Divide-by-16  
(FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Internal  
Secondary  
Primary  
11  
11  
10  
101  
100  
011  
1
1
Secondary (Timer1) Oscillator (SOSC)  
Primary Oscillator (HS) with PLL  
(HSPLL)  
Primary Oscillator (XT) with PLL  
(XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
Primary Oscillator (EC) with PLL  
(ECPLL)  
1
Primary Oscillator (HS)  
Primary  
Primary  
Primary  
Internal  
Internal  
10  
01  
00  
11  
11  
010  
010  
010  
001  
000  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
1
1
1
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 129  
PIC24H  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
R/W-y  
bit 8  
COSC<2:0>  
NOSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
U-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
R/W-0  
R/W-0  
LOCK  
LPOSCEN  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Secondary oscillator (SOSC)  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with Divide-by-16  
111= Fast RC oscillator (FRC) with Divide-by-n  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Secondary oscillator (SOSC)  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with Divide-by-16  
111= Fast RC oscillator (FRC) with Divide-by-n  
bit 7  
CLKLOCK: Clock Lock Enable bit  
1= If (FCKSM1 = 1), then clock and PLL configurations are locked.  
If (FCKSM1 = 0), then clock and PLL configurations may be modified.  
0= Clock and PLL selections are not locked, configurations may be modified  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock, or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
LPOSCEN: Secondary (LP) Oscillator Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
DS70175D-page 130  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DOZEN(1)  
R/W-1  
R/W-0  
R/W-0  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
000= FCY/1 (default)  
001= FCY/2  
010= FCY/4  
011= FCY/8  
100= FCY/16  
101= FCY/32  
110= FCY/64  
111= FCY/128  
bit 11  
DOZEN: DOZE Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
000= FRC divide by 1  
001= FRC divide by 2  
010= FRC divide by 4  
011= FRC divide by 8 (default)  
100= FRC divide by 16  
101= FRC divide by 32  
110= FRC divide by 64  
111= FRC divide by 256  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
00= Output/2  
01= Output/4  
10= Reserved (defaults to output/4)  
11= Output/8  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
00000= Input/2  
00001= Input/3  
• • •  
11111= Input/33  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 131  
PIC24H  
REGISTER 8-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV<8>  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
000000000= 2  
000000001= 3  
000000010= 4  
111111111= 513  
DS70175D-page 132  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 8-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits  
011111= Center frequency + 11.625% (8.23 MHz)  
011110= Center frequency + 11.25% (8.20 MHz)  
000001= Center frequency + 0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency – 0.375% (7.345 MHz)  
100001= Center frequency – 11.625% (6.52 MHz)  
100000= Center frequency – 12% (6.49 MHz)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 133  
PIC24H  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
8.2  
Clock Switching Operation  
Applications are free to switch between any of the four  
clock sources (Primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects that could result from this flexibility, PIC24H  
devices have a safeguard lock built into the switch  
process.  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, then the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
Note:  
Primary Oscillator mode has three different  
submodes (XT, HS and EC) which are  
determined by the POSCMD<1:0> Config-  
uration bits. While an application can  
switch to and from Primary Oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
2. If a valid clock switch has been initiated, the  
LOCK  
(OSCCON<5>)  
and  
the  
CF  
(OSCCON<3>) status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
8.2.1  
ENABLING CLOCK SWITCHING  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 20.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or LP (if LPOSCEN remains set).  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC  
Configuration bits.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing sensitive code should not be  
executed during this time.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
2: Direct clock switches between any primary  
oscillator mode with PLL and FRCPLL  
mode are not permitted. This applies to  
clock switches in either direction. In these  
instances, the application must switch to  
FRC mode as a transition clock source  
between the two PLL modes.  
8.2.2  
OSCILLATOR SWITCHING  
SEQUENCE  
At a minimum, performing a clock switch requires this  
basic sequence:  
1. If  
desired,  
read  
the  
COSC  
bits  
8.3  
Fail-Safe Clock Monitor (FSCM)  
(OSCCON<14:12>) to determine the current  
oscillator source.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
If an oscillator failure occurs, the FSCM generates a  
clock failure trap event and switches the system clock  
over to the FRC oscillator. Then the application  
program can either attempt to restart the oscillator or  
execute a controlled shutdown. The trap can be treated  
as a warm Reset by simply loading the Reset address  
into the oscillator fail trap vector.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
DS70175D-page 134  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
and halts all code execution. Idle mode halts the CPU  
and code execution, but allows peripheral modules to  
continue operation. The assembly syntax of the  
PWRSAVinstruction is shown in Example 9-1.  
9.0  
POWER-SAVING FEATURES  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to “wake-up”.  
The PIC24H devices provide the ability to manage  
power consumption by selectively managing clocking  
to the CPU and the peripherals. In general, a lower  
clock frequency and a reduction in the number of cir-  
cuits being clocked constitutes lower consumed power.  
PIC24H devices can manage power consumption in  
four different ways:  
9.2.1  
SLEEP MODE  
Sleep mode has these features:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• Clock frequency  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
• Instruction-based Sleep and Idle modes  
• Software-controlled Doze mode  
• Selective peripheral control in software  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
9.1  
Clock Frequency and Clock  
Switching  
• Some device features or peripherals may continue  
to operate in Sleep mode. This includes items such  
as the input change notification on the I/O ports, or  
peripherals that use an external clock input. Any  
peripheral that requires the system clock source for  
its operation is disabled in Sleep mode.  
PIC24H devices allow a wide range of clock frequen-  
cies to be selected under application control. If the  
system clock configuration is not locked, users can  
choose low-power or high-precision oscillators by  
simply changing the NOSC bits (OSCCON<10:8>).  
The process of changing a system clock during  
operation, as well as limitations to the process, are  
discussed in more detail in Section 8.0 “Oscillator  
Configuration”.  
The device will wake-up from Sleep mode on any of the  
these events:  
• Any interrupt source that is individually enabled.  
• Any form of device Reset.  
• A WDT time-out.  
9.2  
Instruction-Based Power-Saving  
Modes  
On wake-up from Sleep, the processor restarts with the  
same clock source that was active when Sleep mode  
was entered.  
PIC24H devices have two special power-saving modes  
that are entered through the execution of a special  
PWRSAVinstruction. Sleep mode stops clock operation  
EXAMPLE 9-1:  
PWRSAVINSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 135  
PIC24H  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
9.2.2  
IDLE MODE  
Idle mode has these features:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Peripheral Module Disable”).  
It is also possible to use Doze mode to selectively  
reduce power consumption in event-driven applica-  
tions. This allows clock-sensitive functions, such as  
synchronous communications, to continue without  
interruption while the CPU idles, waiting for something  
to invoke an interrupt routine. Enabling the automatic  
return to full-speed CPU operation on interrupts is  
enabled by setting the ROI bit (CLKDIV<15>). By  
default, interrupt events have no effect on Doze mode  
operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled.  
• Any device Reset.  
For example, suppose the device is operating at  
20 MIPS and the CAN module has been configured for  
500 kbps based on this device operating speed. If the  
device is now placed in Doze mode with a clock  
frequency ratio of 1:4, the CAN module continues to  
communicate at the required bit rate of 500 kbps, but  
the CPU now starts executing instructions at a  
frequency of 5 MIPS.  
• A WDT time-out.  
On wake-up from Idle, the clock is reapplied to the CPU  
and instruction execution begins immediately, starting  
with the instruction following the PWRSAVinstruction, or  
the first instruction in the ISR.  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
9.4  
Peripheral Module Disable  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled via the appropriate PMD  
control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
9.3  
Doze Mode  
Generally, changing clock speed and invoking one of the  
power-saving modes are the preferred strategies for  
reducing power consumption. There may be cir-  
cumstances, however, where this is not practical. For  
example, it may be necessary for an application to main-  
tain uninterrupted synchronous communication, even  
while it is doing nothing else. Reducing system clock  
speed may introduce communication errors, while using  
a power-saving mode may stop communications  
completely.  
A peripheral module is only enabled if both the associ-  
ated bit in the PMD register is cleared and the peripheral  
is supported by the specific dsPIC® DSC variant. If the  
peripheral is present in the device, it is enabled in the  
PMD register by default.  
Note:  
If a PMD bit is set, the corresponding mod-  
ule is disabled after a delay of 1 instruction  
cycle. Similarly, if a PMD bit is cleared, the  
corresponding module is enabled after a  
delay of 1 instruction cycle (assuming the  
module control registers are already  
configured to enable module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock contin-  
ues to operate from the same source and at the same  
speed. Peripheral modules continue to be clocked at  
the same speed, while the CPU clock speed is  
reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70175D-page 136  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
When a peripheral is enabled and actively driving an  
associated pin, the use of the pin as a general purpose  
output pin is disabled. The I/O pin may be read, but the  
output driver for the parallel port bit will be disabled. If  
a peripheral is enabled, but the peripheral is not  
actively driving a pin, that pin may be driven by a port.  
10.0 I/O PORTS  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
Writes to the latch, write the latch. Reads from the port  
(PORTx), read the port pins, while writes to the port  
pins, write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKIN) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
10.1 Parallel I/O (PIO) Ports  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pins will read as zeros.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nevertheless  
regarded as a dedicated port because there is no  
other competing source of outputs. An example is the  
INT4 pin.  
Note:  
The voltage on a digital input pin can be  
between -0.3V to 5.6V.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
Output Enable  
0
1
0
PIO Module  
Output Data  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 137  
PIC24H  
10.2 Open-Drain Configuration  
10.4 I/O Port Write/Read Timing  
In addition to the PORT, LAT and TRIS registers for  
data control, each port pin can also be individually  
configured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically, this instruction  
would be a NOP.  
10.5 Input Change Notification  
The input change notification function of the I/O ports  
allows the PIC24H devices to generate interrupt  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired digi-  
tal only pins by using external pull-up resistors. (The  
open-drain I/O feature is not supported on pins that  
have analog functionality multiplexed on the pin.) The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification. The open-drain output  
feature is supported for both port pin and peripheral  
configurations.  
requests to the processor in response to  
a
change-of-state on selected input pins. This feature is  
capable of detecting input change-of-states even in  
Sleep mode, when the clocks are disabled. Depending  
on the device pin count, there are up to 24 external sig-  
nals (CN0 through CN23) that can be selected  
(enabled) for generating an interrupt request on a  
change-of-state.  
There are four control registers associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
CN interrupt enable (CNxIE) control bits for each of the  
CN input pins. Setting any of these bits enables a CN  
interrupt for the corresponding pins.  
10.3 Configuring Analog Port Pins  
The use of the ADxPCFGH, ADxPCFGL and TRIS  
registers control the operation of the A/D port pins. The  
port pins that are desired as analog inputs must have  
their corresponding TRIS bit set (input). If the TRIS bit  
is cleared (output), the digital output level (VOH or VOL)  
is converted.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source that is connected  
to the pin and eliminate the need for external resistors  
when push button or keypad devices are connected.  
The pull-ups are enabled separately using the CNPU1  
and CNPU2 registers, which contain the weak pull-up  
enable (CNxPUE) bits for each of the CN pins. Setting  
any of the control bits enables the weak pull-ups for the  
corresponding pins.  
Clearing any bit in the ADxPCFGH or ADxPCFGL reg-  
ister configures the corresponding bit to be an analog  
pin. This is also the Reset state of any I/O pin that has  
an analog (ANx) function associated with it.  
Note:  
In devices with two A/D modules, if the  
corresponding PCFG bit in either  
AD1PCFGH(L) and AD2PCFGH(L) is  
cleared, the pin is configured as an analog  
input.  
Note:  
Pull-ups on change notification pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
The voltage on an analog input pin can be  
between -0.3V to (VDD + 0.3 V).  
EXAMPLE 10-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
btss PORTB, #13  
; Next Instruction  
DS70175D-page 138  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Figure 11-1 presents a block diagram of the 16-bit  
timer module.  
11.0 TIMER1  
Note:  
This data sheet summarizes the features  
To configure Timer1 for operation:  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
1. Set the TON bit (= 1) in the T1CON register.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits in the T1CON register.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits in the T1CON register.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the real-time clock, or operate  
as a free-running interval timer/counter. Timer1 can  
operate in three modes:  
4. Set or clear the TSYNC bit in T1CON to select  
synchronous or asynchronous operation.  
5. Load the timer period value into the PR1  
register.  
• 16-bit Timer  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
Timer1 also supports these features:  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
1
Sync  
TSYNC  
Comparator  
PR1  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 139  
PIC24H  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When T1CS = 1:  
This bit is ignored.  
When T1CS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin T1CK (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS70175D-page 140  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9  
for 32-bit operation:  
12.0 TIMER2/3, TIMER4/5, TIMER6/7  
AND TIMER8/9  
1. Set the corresponding T32 control bit.  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
2. Select the prescaler ratio for Timer2, Timer4,  
Timer6 or Timer8 using the TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
4. Load the timer period value. PR3, PR5, PR7 or  
PR9 contains the most significant word of the  
value, while PR2, PR4, PR6 or PR8 contains the  
least significant word.  
The Timer2/3, Timer4/5, Timer6/7 and Timer8/9  
modules are 32-bit timers, which can also be config-  
ured as four independent 16-bit timers with selectable  
operating modes.  
5. If interrupts are required, set the interrupt enable  
bit, T3IE, T5IE, T7IE or T9IE. Use the priority  
bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or  
T9IP<2:0>, to set the interrupt priority. While  
Timer2, Timer4, Timer6 or Timer8 control the  
timer, the interrupt appears as a Timer3, Timer5,  
Timer7 or Timer9 interrupt.  
As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and  
Timer8/9 operate in three modes:  
• Two Independent 16-bit Timers (e.g., Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
6. Set the corresponding TON bit.  
• Single 32-bit Timer  
The timer value at any point is stored in the register  
pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or  
TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always  
contains the most significant word of the count, while  
TMR2, TMR4, TMR6 or TMR8 contains the least  
significant word.  
• Single 32-bit Synchronous Counter  
They also support these features:  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period Register Match  
To configure any of the timers for individual 16-bit  
operation:  
• Time Base for Input Capture and Output Compare  
Modules (Timer2 and Timer3 only)  
1. Clear the T32 bit corresponding to that timer.  
• ADC1 Event Trigger (Timer2/3 only)  
• ADC2 Event Trigger (Timer4/5 only)  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
Individually, all eight of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the event trigger; this  
is implemented only with Timer2/3. The operating  
modes and enabled features are determined by setting  
the appropriate bit(s) in the T2CON, T3CON, T4CON,  
T5CON, T6CON, T7CON, T8CON and T9CON regis-  
ters. T2CON, T4CON, T6CON and T8CON are shown  
in generic form in Register 12-1. T3CON, T5CON,  
T7CON and T9CON are shown in Register 12-2.  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
6. Set the TON bit.  
A block diagram for a 32-bit timer pair (Timer4/5)  
example is shown in Figure 12-1 and a timer (Timer4)  
operating in 16-bit mode example is shown in  
Figure 12-2.  
For 32-bit timer/counter operation, Timer2, Timer4,  
Timer6 or Timer8 is the least significant word; Timer3,  
Timer5, Timer7 or Timer9 is the most significant word  
of the 32-bit timers.  
Note:  
Only Timer2 and Timer3 can trigger a  
DMA data transfer.  
Note:  
For 32-bit operation, T3CON, T5CON,  
T7CON and T9CON control bits are  
ignored. Only T2CON, T4CON, T6CON  
and T8CON control bits are used for setup  
and control. Timer2, Timer4, Timer6 and  
Timer8 clock and gate inputs are utilized  
for the 32-bit timer modules, but an inter-  
rupt is generated with the Timer3, Timer5,  
Ttimer7 and Timer9 interrupt flags.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 141  
PIC24H  
FIGURE 12-1:  
TIMER2/3 (32-BIT) BLOCK DIAGRAM(1)  
TCKPS<1:0>  
2
TON  
1x  
01  
00  
T2CK  
Gate  
Sync  
Prescaler  
1, 8, 64, 256  
TCY  
TGATE  
TCS  
TGATE  
1
Q
Q
D
Set T3IF  
CK  
0
PR2  
PR3  
(2)  
ADC Event Trigger  
Equal  
Reset  
Comparator  
MSB  
LSB  
TMR3  
TMR2  
Sync  
16  
Read TMR2  
Write TMR2  
16  
16  
TMR3HLD  
16  
Data Bus<15:0>  
Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective  
to the T2CON register.  
2: The ADC event trigger is available only on Timer2/3.  
DS70175D-page 142  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 12-2:  
TIMER2 (16-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TGATE  
TCS  
TGATE  
TCY  
1
0
Q
Q
D
Set T2IF  
CK  
Reset  
Equal  
TMR2  
Sync  
Comparator  
PR2  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 143  
PIC24H  
REGISTER 12-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When T32 = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When T32 = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-bit Timer Mode Select bit(1)  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from pin TxCK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.  
DS70175D-page 144  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 12-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS<1:0>(1)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1)  
1= External clock from pin TyCK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer  
functions are set through T2CON.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 145  
PIC24H  
NOTES:  
DS70175D-page 146  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Each input capture channel can select between one of  
two 16-bit timers (Timer2 or Timer3) for the time base.  
The selected timer can use either an internal or  
external clock.  
13.0 INPUT CAPTURE  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
Other operational features include:  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
The PIC24H devices support up to eight input capture  
channels.  
• 4-word FIFO buffer for capture values  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
• Input capture can also be used to provide  
additional sources of external interrupts  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
Note:  
Only IC1 and IC2 can trigger a DMA data  
transfer. If DMA data transfers are  
required, the FIFO buffer size must be set  
to 1 (ICI<1:0> = 00).  
1. Simple Capture Event modes  
-Capture timer value on every falling edge of  
input at ICx pin  
-Capture timer value on every rising edge of  
input at ICx pin  
2. Capture timer value on every edge (rising and  
falling)  
3. Prescaler Capture Event modes  
-Capture timer value on every 4th rising edge  
of input at ICx pin  
-Capture timer value on every 16th rising  
edge of input at ICx pin  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-bit Timers  
TMRy TMRz  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Edge Detection Logic  
and  
Clock Synchronizer  
FIFO  
R/W  
Logic  
Prescaler  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE (ICxCON<4:3>)  
ICxBUF  
ICxI<1:0>  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSn Register)  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 147  
PIC24H  
13.1 Input Capture Registers  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
ICTMR(1)  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits(1)  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111=Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(Rising edge detect only, all other control bits are not applicable.)  
110=Unused (module disabled)  
101=Capture mode, every 16th rising edge  
100=Capture mode, every 4th rising edge  
011=Capture mode, every rising edge  
010=Capture mode, every falling edge  
001=Capture mode, every edge (rising and falling)  
(ICI<1:0> bits do not control interrupt generation for this mode.)  
000=Input capture module turned off  
Note 1: Timer selections may vary. Refer to the device data sheet for details.  
DS70175D-page 148  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
The output compare module does not have to be dis-  
abled after the falling edge of the output pulse. Another  
pulse can be initiated by rewriting the value of the  
OCxCON register.  
14.0 OUTPUT COMPARE  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
14.2 Setup for Continuous Output  
Pulse Generation  
When the OCM control bits (OCxCON<2:0>) are set to  
101’, the selected output compare channel initializes  
the OCx pin to the low state and generates output  
pulses on each and every compare match event.  
14.1 Setup for Single Output Pulse  
Generation  
When the OCM control bits (OCxCON<2:0>) are set to  
100’, the selected output compare channel initializes  
the OCx pin to the low state and generates a single  
output pulse.  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required (these steps assume timer source is  
initially turned off but this is not a requirement for the  
module operation):  
To generate a single output pulse, the following steps  
are required (these steps assume timer source is  
initially turned off but this is not a requirement for the  
module operation):  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in steps 2 and 3 above  
into the Output Compare register, OCxR, and the  
Output Compare Secondary register, OCxRS,  
respectively.  
5. Set Timer Period register, PRy, to value equal to  
or greater than value in OCxRS, the Output  
Compare Secondary register.  
3. Calculate the time to the falling edge of the pulse,  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in step 2 and 3 above  
into the Output Compare register, OCxR, and the  
Output Compare Secondary register, OCxRS,  
respectively.  
5. Set Timer Period register, PRy, to value equal to  
or greater than value in OCxRS, the Output  
Compare Secondary register.  
6. Set the OCM bits to ‘101’ and the OCTSEL bit to  
the desired timer source. The OCx pin state will  
now be driven low.  
6. Set the OCM bits to ‘100’ and the OCTSEL  
(OCxCON<3>) bit to the desired timer source.  
The OCx pin state will now be driven low.  
7. Enable the compare time base by setting the TON  
(TyCON<15>) bit to ‘1’.  
7. Set the TON (TyCON<15>) bit to ‘1’, which  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
enables the compare time base to count.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
9. When the compare time base, TMRy, matches  
the Output Compare Secondary register, OCxRS,  
the second and trailing edge (high-to-low) of the  
pulse is driven onto the OCx pin.  
9. When the incrementing timer, TMRy, matches  
the Output Compare Secondary register,  
OCxRS, the second and trailing edge (high-to-  
low) of the pulse is driven onto the OCx pin. No  
additional pulses are driven onto the OCx pin  
and it remains at low. As a result of the second  
compare match event, the OCxIF interrupt flag  
bit is set, which will result in an interrupt if it is  
enabled, by setting the OCxIE bit. For further  
information on peripheral interrupts, refer to  
Section 6.0 “Interrupt Controller”.  
10. As a result of the second compare match event,  
the OCxIF interrupt flag bit set.  
11. When the compare time base and the value in its  
respective Timer Period register match, the TMRy  
register resets to 0x0000 and resumes counting.  
12. Steps 8 through 11 are repeated and a continu-  
ous stream of pulses is generated, indefinitely.  
The OCxIF flag is set on each OCxRS-TMRy  
compare match event.  
10. To initiate another single pulse output, change the  
Timer and Compare register settings, if needed,  
and then issue a write to set the OCM bits to ‘100’.  
Disabling and re-enabling of the timer, and clear-  
ing the TMRy register, are not required but may  
be advantageous for defining a pulse from a  
known event time boundary.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 149  
PIC24H  
EQUATION 14-1: CALCULATING THE PWM  
PERIOD  
14.3 Pulse-Width Modulation Mode  
The following steps should be taken when configuring  
the output compare module for PWM operation:  
PWM Period = [(PRy) + 1] • TCY • (Timer Prescale Value)  
where:  
1. Set the PWM period by writing to the selected  
Timer Period register (PRy).  
PWM Frequency = 1/[PWM Period]  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
Note: A PRy value of N will produce a PWM  
period of N + 1 time base count cycles. For  
example, a value of 7 written into the PRy  
register will yield a period consisting of  
eight time base cycles.  
3. Write the OxCR register with the initial duty cycle.  
4. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin utilization.  
5. Configure the output compare module for one of  
two PWM operation modes by writing to the Out-  
14.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the OCxRS  
register. The OCxRS register can be written to at any time,  
but the duty cycle value is not latched into OCxR until a  
match between PRy and TMRy occurs (i.e., the period is  
complete). This provides a double buffer for the PWM duty  
cycle and is essential for glitchless PWM operation. In the  
PWM mode, OCxR is a read-only register.  
put  
Compare  
Mode  
bits,  
OCM<2:0>  
(OCxCON<2:0>).  
6. Set the TMRy prescale value and enable the  
time base by setting TON = 1(TxCON<15>).  
Note: The OCxR register should be initialized  
before the output compare module is first  
enabled. The OCxR register becomes a  
read-only duty cycle register when the  
module is operated in the PWM modes.  
The value held in OCxR will become the  
PWM duty cycle for the first PWM period.  
The contents of the Output Compare  
Secondary register, OCxRS, will not be  
transferred into OCxR until a time base  
period match occurs.  
Some important boundary parameters of the PWM duty  
cycle include:  
• If the Output Compare register, OCxR, is loaded  
with 0000h, the OCx pin will remain low (0% duty  
cycle).  
• If OCxR is greater than PRy (Timer Period register),  
the pin will remain high (100% duty cycle).  
• If OCxR is equal to PRy, the OCx pin will be low  
for one time base count value and high for all  
other count values.  
14.3.1  
PWM PERIOD  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 14-1:  
See Example 14-1 for PWM mode timing details.  
Table 14-1 shows example PWM frequencies and  
resolutions for a device operating at 10 MIPS.  
EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION  
FCY  
FPWM  
log10  
(
)
bits  
Maximum PWM Resolution (bits) =  
log10(2)  
EXAMPLE 14-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS  
1. Find the Timer Period register value for a desired PWM frequency that is 52.08 kHz, where FCY = 16 MHz and a Timer2  
prescaler setting of 1:1.  
TCY  
= 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μs  
PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value)  
19.2 μs  
PR2  
= (PR2 + 1) • 62.5 ns • 1  
= 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:  
PWM Resolution  
=
=
=
log10(FCY/FPWM)/log102) bits  
(log10(16 MHz/52.08 kHz)/log102) bits  
8.3 bits  
DS70175D-page 150  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
TABLE 14-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MIPS (FCY = 40 MHz)  
PWM Frequency  
76 Hz  
610 Hz  
1.22 Hz  
9.77 kHz  
39 kHz  
313 kHz 1.25 MHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
(1)  
OCxIF  
(1)  
OCxRS  
S
R
Q
Output  
Logic  
(1)  
(1)  
OCxR  
OCx  
Output Enable  
3
OCM2:OCM0  
Mode Select  
(2)  
OCFA or OCFB  
Comparator  
0
OCTSEL  
1
0
1
16  
16  
TMR register inputs  
from time bases  
Period match signals  
from time bases  
(3)  
(3)  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels  
1 through 8.  
2: OCFA pin controls OC1-OC4 channels. OCFB pin controls OC5-OC8 channels.  
3: Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the  
time bases associated with the module.  
Note:  
Only OC1 and OC2 can trigger a DMA data transfer.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 151  
PIC24H  
14.4 Output Compare Register  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R-0 HC  
OCFLT  
R/W-0  
OCTSEL(1)  
R/W-0  
R/W-0  
OCM<2:0>  
bit 7  
Legend:  
HC = Cleared in Hardware  
W = Writable bit  
HS = Set in Hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x will halt in CPU Idle mode  
0= Output Compare x will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in HW only)  
0= No PWM Fault condition has occurred  
(This bit is only used when OCM<2:0> = 111.)  
bit 3  
OCTSEL: Output Compare Timer Select bit(1)  
1= Timer3 is the clock source for Compare x  
0= Timer2 is the clock source for Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx, Fault pin enabled  
110= PWM mode on OCx, Fault pin disabled  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
Note 1: Refer to the device data sheet for specific time bases available to the output compare module.  
DS70175D-page 152  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
are moved to the receive buffer. If any transmit data  
has been written to the buffer register, the contents of  
the transmit buffer are moved to SPIxSR. The received  
data is thus placed in SPIxBUF and the transmit data in  
SPIxSR is ready for the next transfer.  
15.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
Note:  
Both the transmit buffer (SPIxTXB) and  
the receive buffer (SPIxRXB) are mapped  
to the same register address, SPIxBUF.  
The Serial Peripheral Interface (SPI) module is a syn-  
chronous serial interface useful for communicating with  
other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift regis-  
ters, display drivers, A/D converters, etc. The SPI module  
is compatible with SPI and SIOP from Motorola®.  
Note:  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register.  
The module supports a basic framed SPI protocol while  
operating in either Master or Slave mode. A total of four  
framed SPI configurations are supported.  
Note: In this section, the SPI modules are  
referred to together as SPIx, or separately  
as SPI1 and SPI2. Special Function Reg-  
isters will follow a similar notation. For  
example, SPIxCON refers to the control  
register for the SPI1 or SPI2 module.  
The SPI serial interface consists of four pins:  
• SDIx: Serial Data Input  
• SDOx: Serial Data Output  
• SCKx: Shift Clock Input or Output  
• SSx: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
15.1 Operating Function Description  
The SPI module can be configured to operate using 2,  
3 or 4 pins. In the 3-pin mode, SSx is not used. In the  
2-pin mode, both SDOx and SSx are not used.  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a sta-  
tus register, SPIxSTAT, indicates various status condi-  
tions.  
A block diagram of an SPI module is shown in  
Figure 15-1. All PIC24H devices contain two SPI  
modules on a single device.  
The SPI module contains an 8-word deep FIFO buffer;  
the top of the buffer is denoted as SPIxBUF. If DMA  
transfers are enabled, the FIFO buffer must be  
disabled by clearing the ENHBUF bit (SPIxCON2<0>).  
The serial interface consists of 4 pins: SDIx (serial data  
input), SDOx (serial data output), SCKx (shift clock  
input or output), and SSx (active low slave select).  
In Master mode operation, SCK is a clock output but in  
Slave mode, it is a clock input.  
To set up the SPI module for the Master mode of  
operation:  
A series of eight (8) or sixteen (16) clock pulses shift  
out bits from the SPIxSR to SDOx pin and simulta-  
neously shift in data from SDIx pin. An interrupt is gen-  
erated when the transfer is complete and the  
corresponding interrupt flag bit (SPI1IF or SPI2IF) is  
set. This interrupt can be disabled through an interrupt  
enable bit (SPI1IE or SPI2IE).  
1. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFSn  
register.  
b) Set the SPIxIE bit in the respective IECn  
register.  
c) Write the SPIxIP bits in the respective IPCn  
register to set the interrupt priority.  
The receive operation is double-buffered. When a com-  
plete byte is received, it is transferred from SPIxSR to  
SPIxBUF.  
2. Write the desired settings to the SPIxCON  
register with MSTEN (SPIxCON1<5>) = 1.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
If the receive buffer is full when new data is being trans-  
ferred from SPIxSR to SPIxBUF, the module will set the  
SPIROV bit indicating an overflow condition. The trans-  
fer of the data from SPIxSR to SPIxBUF will not be  
completed and the new data will be lost. The module  
will not respond to SCL transitions while SPIROV is ‘1’,  
effectively disabling the module until SPIxBUF is read  
by user software.  
4. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
5. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start as  
soon as data is written to the SPIxBUF register.  
Transmit writes are also double-buffered. The user  
writes to SPIxBUF. When the master or slave transfer  
is completed, the contents of the shift register (SPIxSR)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 153  
PIC24H  
To set up the SPI module for the Slave mode of operation:  
5. If the CKE bit is set, then the SSEN bit  
(SPIxCON1<7>) must be set to enable the SSx  
pin.  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
a) Clear the SPIxIF bit in the respective IFSn  
register.  
7. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
b) Set the SPIxIE bit in the respective IECn  
register.  
The SPI module generates an interrupt indicating com-  
pletion of a byte or word transfer, as well as a separate  
interrupt for all SPI error conditions.  
c) Write the SPIxIP bits in the respective IPCn  
register to set the interrupt priority.  
3. Write the desired settings to the SPIxCON1 and  
Note:  
Both SPI1 and SPI2 can trigger a DMA  
data transfer. If SPI1 or SPI2 is selected  
as the DMA IRQ source, a DMA transfer  
occurs when the SPI1IF or SPI2IF bit gets  
set as a result of an SPI1 or SPI2 byte or  
word transfer.  
SPIxCON2  
registers  
with  
MSTEN  
(SPIxCON1<5>) = 0.  
4. Clear the SMP bit.  
FIGURE 15-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
DS70175D-page 154  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 15-2:  
SPI MASTER/SLAVE CONNECTION  
PROCESSOR 1 (SPI Master)  
PROCESSOR 2 (SPI Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
(SPIxRXB)  
Serial Receive Buffer  
(SPIxRXB)  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Transmit Buffer  
(SPIxTXB)  
Serial Transmit Buffer  
(SPIxTXB)  
Serial Clock  
SCKx  
SCKx  
SSx(1)  
SPI Buffer  
SPI Buffer  
(SPIxBUF)(2)  
(SPIxBUF)(2)  
(MSTEN (SPIxCON1<5>) = 1)  
(SSEN (SPIxCON1<7>) = 1and MSTEN (SPIxCON1<5>) = 0)  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to/read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
FIGURE 15-3:  
SPI MASTER, FRAME MASTER CONNECTION DIAGRAM  
PIC24H  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDIx  
SDOx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
FIGURE 15-4:  
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM  
PIC24H  
PROCESSOR 2  
(SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 155  
PIC24H  
FIGURE 15-5:  
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM  
PIC24H  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
FIGURE 15-6:  
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
PIC24H  
PROCESSOR 2  
(SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED  
FCY  
FSCK =  
Primary Prescaler * Secondary Prescaler  
TABLE 15-1: SAMPLE SCKx FREQUENCIES  
Secondary Prescaler Settings  
FCY = 40 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
Primary Prescaler Settings  
1:1  
4:1  
Invalid  
10000  
2500  
625  
Invalid  
5000  
10000  
2500  
6666.67  
1666.67  
416.67  
104.17  
5000  
1250  
16:1  
64:1  
1250  
625  
312.50  
78.125  
312.5  
156.25  
FCY = 5 MHz  
Primary Prescaler Settings  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
16:1  
64:1  
20  
13  
10  
Note: SCKx frequencies shown in kHz.  
DS70175D-page 156  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the  
previous data in the SPIxBUF register.  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 157  
PIC24H  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
SPRE<2:0>  
PPRE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4-2  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module. Pin controlled by port function.  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
SPRE<2:0>: Secondary Prescale bits (Master mode)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
...  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
DS70175D-page 158  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
Unimplemented: Read as ‘0’  
This bit must not be set to ‘1’ by the user application.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 159  
PIC24H  
NOTES:  
DS70175D-page 160  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
2
16.2 I C Registers  
16.0 INTER-INTEGRATED CIRCUIT  
2
(I C)  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write.  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
I2CxRSR is the shift register used for shifting data,  
whereas I2CxRCV is the buffer register to which data  
bytes are written, or from which data bytes are read.  
I2CxRCV is the receive buffer. I2CxTRN is the transmit  
register to which bytes are written during a transmit  
operation.  
The Inter-Integrated Circuit (I2C) module provides  
complete hardware support for both Slave and Multi-  
Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
The PIC24H devices have up to two I2C interface mod-  
ules, denoted as I2C1 and I2C2. Each I2C module has  
a 2-pin interface: the SCLx pin is clock and the SDAx  
pin is data.  
Each I2C module ‘x’ (x = 1 or 2) offers the following key  
features:  
• I2C interface supporting both master and slave  
operation.  
• I2C Slave mode supports 7 and 10-bit address.  
• I2C Master mode supports 7 and 10-bit address.  
• I2C port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control).  
• I2C supports multi-master operation; detects bus  
collision and will arbitrate accordingly.  
The I2CxADD register holds the slave address. A  
status bit, ADD10, indicates 10-bit Address mode. The  
I2CxBRG acts as the Baud Rate Generator (BRG)  
reload value.  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV  
and an interrupt pulse is generated.  
2
16.3 I C Interrupts  
The I2C module generates two interrupt flags, MI2CxIF  
(I2C Master Events Interrupt Flag) and SI2CxIF (I2C  
Slave Events Interrupt Flag). A separate interrupt is  
generated for all I2C error conditions.  
16.4 Baud Rate Generator  
In I2C Master mode, the reload value for the BRG is  
located in the I2CxBRG register. When the BRG is  
loaded with this value, the BRG counts down to ‘0’ and  
stops until another reload has taken place. If clock arbi-  
tration is taking place, for instance, the BRG is reloaded  
when the SCLx pin is sampled high.  
As per the I2C standard, FSCL may be 100 kHz or  
400 kHz. However, the user can specify any baud rate  
up to 1 MHz. I2CxBRG values of ‘0’ or ‘1’ are illegal.  
16.1 Operating Modes  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
The following types of I2C operation are supported:  
EQUATION 16-1: SERIAL CLOCK RATE  
• I2C slave operation with 7-bit address  
• I2C slave operation with 10-bit address  
• I2C master operation with 7 or 10-bit address  
FCY  
FCY  
1,111,111  
– 1  
I2CxBRG =  
)
(
FSCL  
For details about the communication sequence in each  
of these modes, please refer to the “dsPIC30F Family  
Reference Manual” (DS70046).  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 161  
PIC24H  
FIGURE 16-1:  
I2C™ BLOCK DIAGRAM (X = 1 OR 2)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Match Detect  
Write  
Read  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70175D-page 162  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
2
16.5 I C Module Addresses  
16.8 General Call Address Support  
The I2CxADD register contains the Slave mode  
addresses. The register is a 10-bit register.  
The general call address can address all devices.  
When this address is used, all devices should, in  
theory, respond with an Acknowledgement.  
If the A10M bit (I2CxCON<10>) is ‘0’, the address is  
interpreted by the module as a 7-bit address. When an  
address is received, it is compared to the 7 Least  
Significant bits of the I2CxADD register.  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R_W = 0.  
If the A10M bit is ‘1’, the address is assumed to be a  
10-bit address. When an address is received, it will be  
compared with the binary value, ‘11110 A9 A8’  
(where A9 and A8 are two Most Significant bits of  
I2CxADD). If that value matches, the next address will  
be compared with the Least Significant 8 bits of  
I2CxADD, as specified in the 10-bit addressing  
protocol.  
The general call address is recognized when the General  
Call Enable (GCEN) bit is set (I2CxCON<7> = 1). When  
the interrupt is serviced, the source for the interrupt can  
be checked by reading the contents of the I2CxRCV to  
determine if the address was device-specific or a general  
call address.  
16.9 Automatic Clock Stretch  
TABLE 16-1: 7-BIT I2C™ SLAVE  
ADDRESSES SUPPORTED BY  
PIC24H  
In Slave modes, the module can synchronize buffer  
reads and writes to the master device by clock  
stretching.  
0x00  
General call address or Start byte  
Reserved  
16.9.1  
TRANSMIT CLOCK STRETCHING  
0x01-0x03  
0x04-0x07  
0x08-0x77  
0x78-0x7b  
Both 10-bit and 7-bit Transmit modes implement clock  
stretching by asserting the SCLREL bit after the falling  
edge of the ninth clock, if the TBF bit is cleared,  
indicating the buffer is empty.  
Hs mode Master codes  
Valid 7-bit addresses  
Valid 10-bit addresses  
(lower 7 bits)  
In Slave Transmit modes, clock stretching is always  
performed, irrespective of the STREN bit. The user’s  
ISR must set the SCLREL bit before transmission is  
allowed to continue. By holding the SCLx line low, the  
user has time to service the ISR and load the contents  
of the I2CxTRN before the master device can initiate  
another transmit sequence.  
0x7c-0x7f  
Reserved  
16.6 Slave Address Masking  
The I2CxMSK register (Register 16-3) designates  
address bit positions as “don’t care” for both 7-bit and  
10-bit Address modes. Setting a particular bit location  
(= 1) in the I2CxMSK register, causes the slave module  
to respond, whether the corresponding address bit  
value is a ‘0’ or ‘1’. For example, when I2CxMSK is set  
to ‘00100000’, the slave module will detect both  
addresses, ‘0000000’ and ‘00100000’.  
16.9.2  
RECEIVE CLOCK STRETCHING  
The STREN bit in the I2CxCON register can be used to  
enable clock stretching in Slave Receive mode. When  
the STREN bit is set, the SCLx pin will be held low at  
the end of each data receive sequence.  
The user’s ISR must set the SCLREL bit before recep-  
tion is allowed to continue. By holding the SCLx line  
low, the user has time to service the ISR and read the  
contents of the I2CxRCV before the master device can  
initiate another receive sequence. This will prevent  
buffer overruns from occurring.  
To enable address masking, the Intelligent Peripheral  
Management Interface (IPMI) must be disabled by  
clearing the IPMIEN bit (I2CxCON<11>).  
16.7 IPMI Support  
The control bit, IPMIEN, enables the module to support  
the Intelligent Peripheral Management Interface (IPMI).  
When this bit is set, the module accepts and acts upon  
all addresses.  
16.10 Software Controlled Clock  
Stretching (STREN = 1)  
When the STREN bit is ‘1’, the SCLREL bit may be  
cleared by software to allow software to control the  
clock stretching.  
If the STREN bit is ‘0’, a software write to the SCLREL  
bit will be disregarded and have no effect on the  
SCLREL bit.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 163  
PIC24H  
16.11 Slope Control  
16.13 Multi-Master Communication, Bus  
Collision and Bus Arbitration  
The I2C standard requires slope control on the SDAx  
and SCLx signals for Fast mode (400 kHz). The control  
bit, DISSLW, enables the user to disable slew rate con-  
trol if desired. It is necessary to disable the slew rate  
control for 1 MHz mode.  
Multi-Master mode support is achieved by bus  
arbitration. When the master outputs address/data bits  
onto the SDAx pin, arbitration takes place when the  
master outputs a ‘1’ on SDAx by letting SDAx float high  
while another master asserts a ‘0’. When the SCLx pin  
floats high, data should be stable. If the expected data  
on SDAx is a ‘1’ and the data sampled on the  
SDAx pin = 0, then a bus collision has taken place. The  
master will set the I2C master events interrupt flag and  
reset the master portion of the I2C port to its Idle state.  
16.12 Clock Arbitration  
Clock arbitration occurs when the master deasserts the  
SCLx pin (SCLx allowed to float high) during any  
receive, transmit or Restart/Stop condition. When the  
SCLx pin is allowed to float high, the Baud Rate Gen-  
erator (BRG) is suspended from counting until the  
SCLx pin is actually sampled high. When the SCLx pin  
is sampled high, the Baud Rate Generator is reloaded  
with the contents of I2CxBRG and begins counting.  
This ensures that the SCLx high time will always be at  
least one BRG rollover count in the event that the clock  
is held low by an external device.  
DS70175D-page 164  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0 HC  
ACKEN  
R/W-0 HC  
RCEN  
R/W-0 HC  
PEN  
R/W-0 HC  
RSEN  
R/W-0 HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HC = Cleared in hardware  
x = Bit is unknown  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C pins are controlled by port functions.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear  
at beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode disabled  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMBus specification  
0= Disable SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 165  
PIC24H  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Hardware clear at end of master Acknowledge sequence.  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of  
master Repeated Start sequence.  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.  
0= Start condition not in progress  
DS70175D-page 166  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0 HSC  
R-0 HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0 HS  
BCL  
R-0 HSC  
R-0 HSC  
ADD10  
ACKSTAT  
GCSTAT  
bit 15  
bit 8  
R/C-0 HS  
IWCOL  
R/C-0 HS  
I2COV  
R-0 HSC  
D_A  
R/C-0 HSC R/C-0 HSC  
R-0 HSC  
R_W  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HSC = Hardware set/cleared  
x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 167  
PIC24H  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
DS70175D-page 168  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSKx: Mask for Address bit x Select bit  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 169  
PIC24H  
NOTES:  
DS70175D-page 170  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
• Fully Integrated Baud Rate Generator with 16-bit  
Prescaler  
17.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Baud Rates Ranging from 1 Mbps to 15 bps at  
16 MIPS  
• 4-deep First-In-First-Out (FIFO) Transmit Data  
Buffer  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules avail-  
able in the PIC24H device family. The UART is a full-  
duplex asynchronous system that can communicate  
with peripheral devices, such as personal computers,  
LIN, RS-232 and RS-485 interfaces. The module also  
supports a hardware flow control option with the  
UxCTS and UxRTS pins and also includes an IrDA®  
encoder and decoder.  
• A Separate Interrupt for all UART Error Conditions  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA Support  
A simplified block diagram of the UART is shown in  
Figure 17-1. The UART module consists of the key  
important hardware elements:  
The primary features of the UART module are:  
• Full-Duplex, 8 or 9-bit Data Transmission through  
the UxTX and UxRX pins  
• Baud Rate Generator  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Hardware Flow Control Option with UxCTS and  
UxRTS pins  
FIGURE 17-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLK  
Hardware Flow Control  
UART Receiver  
UxRTS  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
Note 1: Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as  
a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as  
a result of a UART1 or UART2 transmission or reception.  
2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word  
(i.e., UTXISEL<1:0> = 00and URXISEL<1:0> = 00).  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 171  
PIC24H  
Equation 17-2 shows the formula for computation of  
the baud rate with BRGH = 1.  
17.1 UART Baud Rate Generator (BRG)  
The UART module includes a dedicated 16-bit Baud  
Rate Generator. The BRGx register controls the period  
of a free-running 16-bit timer. Equation 17-1 shows the  
formula for computation of the baud rate with  
BRGH = 0.  
EQUATION 17-2: UART BAUD RATE WITH  
BRGH = 1  
FCY  
Baud Rate =  
4 • (BRGx + 1)  
EQUATION 17-1: UART BAUD RATE WITH  
BRGH = 0  
FCY  
4 • Baud Rate  
– 1  
BRGx =  
FCY  
Baud Rate =  
16 • (BRGx + 1)  
Note: FCY denotes the instruction cycle clock  
frequency (FOSC/2).  
FCY  
16 • Baud Rate  
– 1  
BRGx =  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for BRGx = 0), and the minimum baud rate possible is  
FCY/(4 * 65536).  
Note: FCY denotes the instruction cycle clock  
frequency (FOSC/2).  
Writing a new value to the BRGx register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
Example 17-1 shows the calculation of the baud rate  
error for the following conditions:  
• FCY = 4 MHz  
• Desired Baud Rate = 9600  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for BRGx = 0), and the minimum baud rate  
possible is FCY/(16 * 65536).  
EXAMPLE 17-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)  
Desired Baud Rate  
=
FCY/(16 (BRGx + 1))  
Solving for BRGx Value:  
BRGx  
BRGx  
BRGx  
=
=
=
((FCY/Desired Baud Rate)/16) – 1  
((4000000/9600)/16) – 1  
25  
Calculated Baud Rate  
=
=
4000000/(16 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 – 9600)/9600  
0.16%  
DS70175D-page 172  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
17.2 Transmitting in 8-bit Data Mode  
17.5 Receiving in 8-bit or 9-bit Data  
Mode  
1. Set up the UART:  
a) Write appropriate values for data, parity  
and Stop bits.  
1. Set up the UART (as described in Section 17.2  
“Transmitting in 8-bit Data Mode”).  
b) Write appropriate baud rate value to the  
BRGx register.  
2. Enable the UART.  
3. A receive interrupt will be generated when one  
or more data characters have been received as  
per interrupt control bits, URXISEL<1:0>.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UART.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write data byte to lower byte of UxTXREG word.  
The value will be immediately transferred to the  
Transmit Shift Register (TSR) and the serial bit  
stream will start shifting out with the next rising  
edge of the baud clock.  
5. Read UxRXREG.  
The act of reading the UxRXREG character will move  
the next character to the top of the receive FIFO,  
including a new set of PERR and FERR values.  
5. Alternately, the data byte may be transferred  
while UTXEN = 0, and then the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
17.6 Flow Control Using UxCTS and  
UxRTS Pins  
UARTx Clear to Send (UxCTS) and Request to Send  
(UxRTS) are the two hardware controlled active-low  
pins that are associated with the UART module. These  
two pins allow the UART to operate in Simplex and  
Flow Control modes. They are implemented to control  
the transmission and the reception between the Data  
Terminal Equipment (DTE). The UEN<1:0> bits in the  
UxMODE register configures these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bits, UTXISEL<1:0>.  
17.3 Transmitting in 9-bit Data Mode  
1. Set up the UART (as described in Section 17.2  
“Transmitting in 8-bit Data Mode”).  
2. Enable the UART.  
17.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write UxTXREG as a 16-bit value only.  
The UART module provides two types of infrared  
UART support:  
5. A word write to UxTXREG triggers the transfer  
of the 9-bit data to the TSR. Serial bit stream will  
start shifting out with the first rising edge of the  
baud clock.  
• IrDA clock output to support external IrDA  
encoder and decoder device (legacy module  
support)  
6. A transmit interrupt will be generated as per the  
setting of control bits, UTXISEL<1:0>.  
• Full implementation of the IrDA encoder and  
decoder.  
17.4 Break and Sync Transmit  
Sequence  
17.7.1  
EXTERNAL IrDA SUPPORT – IrDA  
CLOCK OUTPUT  
To support external IrDA encoder and decoder  
devices, the BCLK pin (same as the UxRTS pin) can be  
configured to generate the 16x baud clock. With  
UEN<1:0> = 11, the BCLK pin will output the 16x baud  
clock if the UART module is enabled; it can be used to  
support the IrDA codec chip.  
The following sequence will send a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UART for the desired mode.  
2. Set UTXEN and UTXBRK – sets up the Break  
character.  
17.7.2  
BUILT-IN IrDA ENCODER AND  
DECODER  
3. Load the UxTXREG register with a dummy  
character to initiate transmission (value is  
ignored).  
The UART has full implementation of the IrDA encoder  
and decoder as part of the UART module. The built-in  
IrDA encoder and decoder functionality is enabled  
using the IREN bit (UxMODE<12>). When enabled  
(IREN = 1), the receive pin (UxRX) acts as the input  
from the infrared receiver. The transmit pin (UxTX) acts  
as the output to the infrared transmitter.  
4. Write 0x55 to UxTXREG – loads Sync character  
into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 173  
PIC24H  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(1)  
R/W-0  
U-0  
R/W-0(2)  
R/W-0(2)  
UARTEN  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0 HC  
WAKE  
R/W-0  
R/W-0 HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode.  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA Encoder and Decoder Enable bit(1)  
1= IrDA encoder and decoder enabled  
0= IrDA encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11=UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches  
10=UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01=UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches  
00=UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h);  
cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
2: Bit availability depends on pin availability.  
DS70175D-page 174  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
2: Bit availability depends on pin availability.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 175  
PIC24H  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
UTXINV(1)  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
R-0  
R-1  
UTXISEL1  
UTXISEL0  
UTXEN  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15,13  
‘1’ = Bit is set  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11=Reserved; do not use  
10=Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the  
transmit buffer becomes empty  
01=Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00=Interrupt when a character is transferred to the Transmit Shift Register (this implies there is  
at least one character open in the transmit buffer)  
bit 14  
UTXINV: IrDA Encoder Transmit Polarity Inversion bit(1)  
1= IrDA encoded, UxTX Idle state is ‘1’  
0= IrDA encoded, UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled  
by port.  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11=Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)  
10=Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x=Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer. Receive buffer has one or more characters.  
bit 5  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.  
0= Address Detect mode disabled  
Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled  
(IREN = 1).  
DS70175D-page 176  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 4  
bit 3  
bit 2  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (read/clear only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state.  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled  
(IREN = 1).  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 177  
PIC24H  
NOTES:  
DS70175D-page 178  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
18.0 ENHANCED CAN MODULE  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
18.1 Overview  
The Enhanced Controller Area Network (ECAN) mod-  
ule is a serial interface, useful for communicating with  
other CAN modules or microcontroller devices. This  
interface/protocol was designed to allow communica-  
tions within noisy environments. The PIC24H devices  
contain up to two ECAN modules.  
18.2 Frame Types  
The CAN module transmits various types of frames  
which include data messages, remote transmission  
requests and as other frames that are automatically  
generated for control purposes. The following frame  
types are supported:  
The CAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH specification. The module will support CAN 1.2,  
CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active  
versions of the protocol. The module implementation is  
a full CAN system. The CAN specification is not covered  
within this data sheet. The reader may refer to the  
BOSCH CAN specification for further details.  
• Standard Data Frame:  
A standard data frame is generated by a node  
when the node wishes to transmit data. It includes  
an 11-bit standard identifier (SID) but not an 18-bit  
extended identifier (EID).  
• Extended Data Frame:  
An extended data frame is similar to a standard  
data frame but includes an extended identifier as  
well.  
The module features are as follows:  
• Implementation of the CAN protocol, CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Remote Frame:  
• Standard and extended data frames  
• 0-8 bytes data length  
It is possible for a destination node to request the  
data from the source. For this purpose, the  
destination node sends a remote frame with an  
identifier that matches the identifier of the required  
data frame. The appropriate data source node will  
then send a data frame as a response to this  
remote request.  
• Programmable bit rate up to 1 Mbit/sec  
• Automatic response to remote transmission  
requests  
• Up to 8 transmit buffers with application specified  
prioritization and abort capability (each buffer may  
contain up to 8 bytes of data)  
• Error Frame:  
• Up to 32 receive buffers (each buffer may contain  
up to 8 bytes of data)  
An error frame is generated by any node that  
detects a bus error. An error frame consists of two  
fields: an error flag field and an error delimiter  
field.  
• Up to 16 full (standard/extended identifier)  
acceptance filters  
• 3 full acceptance filter masks  
• Overload Frame:  
• DeviceNet™ addressing support  
An overload frame can be generated by a node as  
a result of two conditions. First, the node detects  
a dominant bit during interframe space which is an  
illegal condition. Second, due to internal condi-  
tions, the node is not yet able to start reception of  
the next message. A node may generate a maxi-  
mum of 2 sequential overload frames to delay the  
start of the next message.  
• Programmable wake-up functionality with  
integrated low-pass filter  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Programmable clock source  
• Programmable link to input capture module (IC2  
for both CAN1 and CAN2) for time-stamping and  
network synchronization  
• Interframe Space:  
Interframe space separates a proceeding frame  
(of whatever type) from a following data or remote  
frame.  
• Low-power Sleep and Idle mode  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 179  
PIC24H  
FIGURE 18-1:  
ECAN™ MODULE BLOCK  
DIAGRAM  
RXF15 Filter  
RXF14 Filter  
RXF13 Filter  
RXF12 Filter  
RXF11 Filter  
RXF10 Filter  
RXF9 Filter  
RXF8 Filter  
RXF7 Filter  
RXF6 Filter  
RXF5 Filter  
RXF4 Filter  
RXF3 Filter  
RXF2 Filter  
RXF1 Filter  
RXF0 Filter  
DMA Controller  
TRB7 TX/RX Buffer Control Register  
TRB6 TX/RX Buffer Control Register  
TRB5 TX/RX Buffer Control Register  
TRB4 TX/RX Buffer Control Register  
TRB3 TX/RX Buffer Control Register  
TRB2 TX/RX Buffer Control Register  
TRB1 TX/RX Buffer Control Register  
TRB0 TX/RX Buffer Control Register  
RXM2 Mask  
RXM1 Mask  
RXM0 Mask  
Transmit Byte  
Sequencer  
Message Assembly  
Buffer  
Control  
Configuration  
Logic  
CPU  
Bus  
CAN Protocol  
Engine  
Interrupts  
(1)  
(1)  
CiTX  
CiRX  
Note 1: i = 1 or 2 refers to a particular ECAN module (ECAN1 or ECAN2).  
DS70175D-page 180  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
18.3 Modes of Operation  
Note:  
Typically, if the CAN module is allowed to  
transmit in a particular mode of operation  
and a transmission is requested immedi-  
ately after the CAN module has been  
placed in that mode of operation, the mod-  
ule waits for 11 consecutive recessive bits  
on the bus before starting transmission. If  
the user switches to Disable mode within  
this 11-bit period, then this transmission is  
aborted and the corresponding TXABT bit  
is set and TXREQ bit is cleared.  
The CAN module can operate in one of several operation  
modes selected by the user. These modes include:  
• Initialization Mode  
• Disable Mode  
• Normal Operation Mode  
• Listen Only Mode  
• Listen All Messages Mode  
• Loopback Mode  
Modes are requested by setting the REQOP<2:0> bits  
(CiCTRL1<10:8>). Entry into a mode is Acknowledged  
18.3.3  
NORMAL OPERATION MODE  
by  
monitoring  
the  
OPMODE<2:0>  
bits  
Normal Operation mode is selected when  
REQOP<2:0> = 000. In this mode, the module is  
activated and the I/O pins will assume the CAN bus  
functions. The module will transmit and receive CAN  
bus messages via the CiTX and CiRX pins.  
(CiCTRL1<7:5>). The module will not change the mode  
and the OPMODE bits until a change in mode is  
acceptable, generally during bus Idle time, which is  
defined as at least 11 consecutive recessive bits.  
18.3.1  
INITIALIZATION MODE  
18.3.4  
LISTEN ONLY MODE  
In the Initialization mode, the module will not transmit or  
receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer will  
have access to Configuration registers that are access  
restricted in other modes. The module will protect the  
user from accidentally violating the CAN protocol  
through programming errors. All registers which control  
the configuration of the module can not be modified  
while the module is on-line. The CAN module will not  
be allowed to enter the Configuration mode while a  
transmission is taking place. The Configuration mode  
serves as a lock to protect the following registers.  
If the Listen Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or Acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is neces-  
sary that there are at least two further nodes that  
communicate with each other.  
18.3.5  
LISTEN ALL MESSAGES MODE  
The module can be set to ignore all errors and receive  
any message. The Listen All Messages mode is acti-  
vated by setting REQOP<2:0> = ‘111’. In this mode,  
the data which is in the message assembly buffer, until  
the time an error occurred, is copied in the receive  
buffer and can be read via the CPU interface.  
• All Module Control Registers  
• Baud Rate and Interrupt Configuration Registers  
• Bus Timing Registers  
• Identifier Acceptance Filter Registers  
• Identifier Acceptance Mask Registers  
18.3.2  
DISABLE MODE  
18.3.6  
LOOPBACK MODE  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts will  
remain and the error counters will retain their value.  
If the Loopback mode is activated, the module will con-  
nect the internal transmit signal to the internal receive  
signal at the module boundary. The transmit and  
receive pins revert to their port I/O function.  
If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the  
module will enter the Module Disable mode. If the module  
is active, the module will wait for 11 recessive bits on the  
CAN bus, detect that condition as an Idle bus, then  
accept the module disable command. When the  
OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indi-  
cates whether the module successfully went into Module  
Disable mode. The I/O pins will revert to normal I/O  
function when the module is in the Module Disable mode.  
18.4 Message Reception  
18.4.1  
RECEIVE BUFFERS  
The CAN bus module has up to 32 receive buffers,  
located in DMA RAM. The first 8 buffers need to be  
configured as receive buffers by clearing the  
corresponding TX/RX buffer selection (TXENn) bit in a  
CiTRmnCON register. The overall size of the CAN  
buffer area in DMA RAM is selectable by the user and  
The module can be programmed to apply a low-pass  
filter function to the CiRX input line while the module or  
the CPU is in Sleep mode. The WAKFIL bit  
(CiCFG2<14>) enables or disables the filter.  
is  
defined  
by  
the  
DMABS<2:0>  
bits  
(CiFCTRL<15:13>). The first 16 buffers can be  
assigned to receive filters, while the rest can be used  
only as a FIFO buffer.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 181  
PIC24H  
An additional buffer is always committed to monitoring  
the bus for incoming messages. This buffer is called  
the Message Assembly Buffer (MAB).  
18.4.5  
RECEIVE ERRORS  
The CAN module will detect the following receive  
errors:  
All messages are assembled by the MAB and are trans-  
ferred to the buffers only if the acceptance filter criterion  
are met. When a message is received, the RBIF flag  
(CiINTF<1>) will be set. The user would then need to  
inspect the CiVEC and/or CiRXFUL1 register to deter-  
mine which filter and buffer caused the interrupt to get  
generated. The RBIF bit can only be set by the module  
when a message is received. The bit is cleared by the  
user when it has completed processing the message in  
the buffer. If the RBIE bit is set, an interrupt will be  
generated when a message is received.  
• Cyclic Redundancy Check (CRC) Error  
• Bit Stuffing Error  
• Invalid Message Receive Error  
These receive errors do not generate an interrupt.  
However, the receive error counter is incremented by  
one in case one of these errors occur. The RXWAR bit  
(CiINTF<9>) indicates that the receive error counter  
has reached the CPU warning limit of 96 and an  
interrupt is generated.  
18.4.6  
RECEIVE INTERRUPTS  
18.4.2  
FIFO BUFFER MODE  
Receive interrupts can be divided into 3 major groups,  
each including various conditions that generate  
interrupts:  
The ECAN module provides FIFO buffer functionality if  
the buffer pointer for a filter has a value of ‘1111’. In this  
mode, the results of a hit on that buffer will write to the  
next available buffer location within the FIFO.  
• Receive Interrupt:  
A message has been successfully received and  
loaded into one of the receive buffers. This inter-  
rupt is activated immediately after receiving the  
End-of-Frame (EOF) field. Reading the RXnIF flag  
will indicate which receive buffer caused the  
interrupt.  
The CiFCTRL register defines the size of the FIFO. The  
FSA<4:0> bits in this register define the start of the  
FIFO buffers. The end of the FIFO is defined by the  
DMABS<2:0> bits if DMA is enabled. Thus, FIFO sizes  
up to 32 buffers are supported.  
18.4.3  
MESSAGE ACCEPTANCE FILTERS  
• Wake-up Interrupt:  
The CAN module has woken up from Disable  
mode or the device has woken up from Sleep  
mode.  
The message acceptance filters and masks are used to  
determine if a message in the message assembly  
buffer should be loaded into either of the receive buff-  
ers. Once a valid message has been received into the  
Message Assembly Buffer (MAB), the identifier fields of  
the message are compared to the filter values. If there  
is a match, that message will be loaded into the  
appropriate receive buffer. Each filter is associated with  
a buffer pointer (FnBP<3:0>), which is used to link the  
filter to one of 16 receive buffers.  
• Receive Error Interrupts:  
A receive error interrupt will be indicated by the  
ERRIF bit. This bit shows that an error condition  
occurred. The source of the error can be deter-  
mined by checking the bits in the CAN Interrupt  
Flag register, CiINTF.  
- Invalid Message Received:  
The acceptance filter looks at incoming messages for  
the IDE bit (CiTRBnSID<0>) to determine how to com-  
pare the identifiers. If the IDE bit is clear, the message  
is a standard frame and only filters with the EXIDE bit  
(CiRXFnSID<3>) clear are compared. If the IDE bit is  
set, the message is an extended frame, and only filters  
with the EXIDE bit set are compared.  
If any type of error occurred during reception of  
the last message, an error will be indicated by  
the IVRIF bit.  
- Receiver Overrun:  
The RBOVIF bit (CiINTF<2>) indicates that an  
overrun condition occurred.  
18.4.4  
MESSAGE ACCEPTANCE FILTER  
MASKS  
- Receiver Warning:  
The RXWAR bit indicates that the receive error  
counter (RERRCNT<7:0>) has reached the  
warning limit of 96.  
The mask bits essentially determine which bits to apply  
the filter to. If any mask bit is set to a zero, then that bit  
will automatically be accepted regardless of the filter  
bit. There are three programmable acceptance filter  
masks associated with the receive buffers. Any of  
these three masks can be linked to each filter by select-  
ing the desired mask in the FnMSK<1:0> bits in the  
appropriate CiFMSKSELn register.  
- Receiver Error Passive:  
The RXEP bit indicates that the receive error  
counter has exceeded the error passive limit of  
127 and the module has gone into error passive  
state.  
DS70175D-page 182  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
18.5.4  
AUTOMATIC PROCESSING OF  
REMOTE TRANSMISSION  
REQUESTS  
18.5 Message Transmission  
18.5.1 TRANSMIT BUFFERS  
The CAN module has up to eight transmit buffers,  
located in DMA RAM. These 8 buffers need to be con-  
figured as transmit buffers by setting the corresponding  
TX/RX buffer selection (TXENn or TXENm) bit in a  
CiTRmnCON register. The overall size of the CAN  
buffer area in DMA RAM is selectable by the user and  
If the RTRENn bit (in the CiTRmnCON register) for a  
particular transmit buffer is set, the hardware automat-  
ically transmits the data in that buffer in response to  
remote transmission requests matching the filter that  
points to that particular buffer. The user does not need  
to manually initiate a transmission in this case.  
is  
defined  
by  
the  
DMABS<2:0>  
bits  
(CiFCTRL<15:13>).  
18.5.5  
ABORTING MESSAGE  
TRANSMISSION  
Each transmit buffer occupies 16 bytes of data. Eight of  
the bytes are the maximum 8 bytes of the transmitted  
message. Five bytes hold the standard and extended  
identifiers and other message arbitration information.  
The last byte is unused.  
The system can also abort a message by clearing the  
TXREQ bit associated with each message buffer. Set-  
ting the ABAT bit (CiCTRL1<12>) will request an abort  
of all pending messages. If the message has not yet  
started transmission, or if the message started but is  
interrupted by loss of arbitration or an error, the abort  
will be processed. The abort is indicated when the  
module sets the TXABT bit and the TXnIF flag is not  
automatically set.  
18.5.2  
TRANSMIT MESSAGE PRIORITY  
Transmit priority is a prioritization within each node of  
the pending transmittable messages. There are four  
levels of transmit priority. If the TXnPRI<1:0> bits (in  
CiTRmnCON) for a particular message buffer are set to  
11’, that buffer has the highest priority. If the  
18.5.6  
TRANSMISSION ERRORS  
TXnPRI<1:0> bits for a particular message buffer are  
set to ‘10’ or ‘01’, that buffer has an intermediate prior-  
ity. If the TXnPRI<1:0> bits for a particular message  
buffer are ‘00’, that buffer has the lowest priority. If two  
or more pending messages have the same priority, the  
messages are transmitted in decreasing order of buffer  
index.  
The CAN module will detect the following transmission  
errors:  
• Acknowledge Error  
• Form Error  
• Bit Error  
These transmission errors will not necessarily generate  
an interrupt, but are indicated by the transmission error  
counter. However, each of these errors will cause the  
transmission error counter to be incremented by one.  
Once the value of the error counter exceeds the value  
of 96, the ERRIF (CiINTF<5>) and the TXWAR bit  
(CiINTF<10>) are set. Once the value of the error  
counter exceeds the value of 96, an interrupt is  
generated and the TXWAR bit in the Interrupt Flag  
register is set.  
18.5.3  
TRANSMISSION SEQUENCE  
To initiate transmission of the message, the TXREQn  
bit (in CiTRmnCON) must be set. The CAN bus module  
resolves any timing conflicts between the setting of the  
TXREQn bit and the Start-of-Frame (SOF), ensuring  
that if the priority was changed, it is resolved correctly  
before the SOF occurs. When TXREQn is set, the  
TXABTn, TXLARBn and TXERRn flag bits are  
automatically cleared.  
Setting the TXREQn bit simply flags a message buffer  
as enqueued for transmission. When the module  
detects an available bus, it begins transmitting the  
message which has been determined to have the  
highest priority.  
If the transmission completes successfully on the first  
attempt, the TXREQn bit is cleared automatically and  
an interrupt is generated if TXnIE was set.  
If the message transmission fails, one of the error con-  
dition flags will be set and the TXREQn bit will remain  
set, indicating that the message is still pending for  
transmission. If the message encountered an error  
condition during the transmission attempt, the TXERRn  
bit will be set and the error condition may cause an  
interrupt. If the message loses arbitration during the  
transmission attempt, the TXLARBn bit is set. No  
interrupt is generated to signal the loss of arbitration.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 183  
PIC24H  
18.5.7  
TRANSMIT INTERRUPTS  
18.6 Baud Rate Setting  
Transmit interrupts can be divided into 2 major groups,  
each including various conditions that generate  
interrupts:  
All nodes on any particular CAN bus must have the  
same nominal bit rate. In order to set the baud rate, the  
following parameters have to be initialized:  
• Transmit Interrupt:  
• Synchronization Jump Width  
• Baud Rate Prescaler  
At least one of the three transmit buffers is empty  
(not scheduled) and can be loaded to schedule a  
message for transmission. Reading the TXnIF  
flags will indicate which transmit buffer is available  
and caused the interrupt.  
• Phase Segments  
• Length Determination of Phase Segment 2  
• Sample Point  
• Propagation Segment bits  
• Transmit Error Interrupts:  
A transmission error interrupt will be indicated by  
the ERRIF flag. This flag shows that an error con-  
dition occurred. The source of the error can be  
determined by checking the error flags in the CAN  
Interrupt Flag register, CiINTF. The flags in this  
register are related to receive and transmit errors.  
18.6.1  
BIT TIMING  
All controllers on the CAN bus must have the same  
baud rate and bit length. However, different controllers  
are not required to have the same master oscillator  
clock. At different clock frequencies of the individual  
controllers, the baud rate has to be adjusted by  
adjusting the number of time quanta in each segment.  
- Transmitter Warning Interrupt:  
The TXWAR bit indicates that the transmit error  
counter has reached the CPU warning limit  
of 96.  
The nominal bit time can be thought of as being divided  
into separate non-overlapping time segments. These  
segments are shown in Figure 18-2.  
- Transmitter Error Passive:  
Synchronization Segment (Sync Seg)  
Propagation Time Segment (Prop Seg)  
Phase Segment 1 (Phase1 Seg)  
Phase Segment 2 (Phase2 Seg)  
The TXEP bit (CiINTF<12>) indicates that the  
transmit error counter has exceeded the error  
passive limit of 127 and the module has gone to  
error passive state.  
The time segments and also the nominal bit time are  
made up of integer units of time called time quanta or  
TQ. By definition, the nominal bit time has a minimum  
of 8 TQ and a maximum of 25 TQ. Also, by definition,  
the minimum nominal bit time is 1 μsec corresponding  
to a maximum bit rate of 1 MHz.  
- Bus Off:  
The TXBO bit (CiINTF<13>) indicates that the  
transmit error counter has exceeded 255 and  
the module has gone to the bus off state.  
Note:  
Both ECAN1 and ECAN2 can trigger a  
DMA data transfer. If C1TX, C1RX, C2TX  
or C2RX is selected as a DMA IRQ  
source, a DMA transfer occurs when the  
C1TXIF, C1RXIF, C2TXIF or C2RXIF bit  
gets set as a result of an ECAN1 or  
ECAN2 transmission or reception.  
FIGURE 18-2:  
ECAN™ MODULE BIT TIMING  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
Sync  
Sample Point  
TQ  
DS70175D-page 184  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Typically, the sampling of the bit should take place at  
about 60-70% through the bit time, depending on the  
system parameters.  
18.6.2  
PRESCALER SETTING  
There is a programmable prescaler with integral values  
ranging from 1 to 64, in addition to a fixed divide-by-2  
for clock generation. The time quantum (TQ) is a fixed  
unit of time derived from the oscillator period and is  
given by Equation 18-1.  
18.6.6  
SYNCHRONIZATION  
To compensate for phase shifts between the oscillator  
frequencies of the different bus stations, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time (Synchro-  
nous Segment). The circuit will then adjust the values  
of Phase1 Seg and Phase2 Seg. There are two  
mechanisms used to synchronize.  
Note:  
FCAN must not exceed 40 MHz. If  
CANCKS = 0, then FCY must not exceed  
20 MHz.  
EQUATION 18-1: TIME QUANTUM FOR  
CLOCK GENERATION  
TQ = 2 (BRP<5:0> + 1)/FCAN  
18.6.6.1  
Hard Synchronization  
Hard synchronization is only done whenever there is a  
‘recessive’ to ‘dominant’ edge during bus Idle, indicat-  
ing the start of a message. After hard synchronization,  
the bit time counters are restarted with the Sync Seg.  
Hard synchronization forces the edge which has  
caused the hard synchronization to lie within the  
synchronization segment of the restarted bit time. If a  
hard synchronization is done, there will not be a  
resynchronization within that bit time.  
18.6.3  
PROPAGATION SEGMENT  
This part of the bit time is used to compensate physical  
delay times within the network. These delay times con-  
sist of the signal propagation time on the bus line and  
the internal delay time of the nodes. The Prop Seg can  
be programmed from 1 TQ to 8 TQ by setting the  
PRSEG<2:0> bits (CiCFG2<2:0>).  
18.6.4  
PHASE SEGMENTS  
18.6.6.2  
Resynchronization  
The phase segments are used to optimally locate the  
sampling of the received bit within the transmitted bit  
time. The sampling point is between Phase1 Seg and  
Phase2 Seg. These segments are lengthened or short-  
ened by resynchronization. The end of the Phase1 Seg  
determines the sampling point within a bit period. The  
segment is programmable from 1 TQ to 8 TQ. Phase2  
Seg provides delay to the next transmitted data transi-  
tion. The segment is programmable from 1 TQ to 8 TQ,  
or it may be defined to be equal to the greater of  
Phase1 Seg or the information processing time (2 TQ).  
The Phase1 Seg is initialized by setting bits  
SEG1PH<2:0> (CiCFG2<5:3>) and Phase2 Seg is  
initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).  
As a result of resynchronization, Phase1 Seg may be  
lengthened or Phase2 Seg may be shortened. The  
amount of lengthening or shortening of the phase  
buffer segment has an upper boundary known as the  
synchronization jump width, and is specified by the  
SJW<1:0> bits (CiCFG1<7:6>). The value of the syn-  
chronization jump width will be added to Phase1 Seg or  
subtracted from Phase2 Seg. The resynchronization  
jump width is programmable between 1 TQ and 4 TQ.  
The following requirement must be fulfilled while setting  
the SJW<1:0> bits:  
Phase2 Seg > Synchronization Jump Width  
The following requirement must be fulfilled while setting  
the lengths of the phase segments:  
Note:  
In the register descriptions that follow, ‘i’ in  
the register identifier denotes the specific  
ECAN module (ECAN1 or ECAN2).  
Prop Seg + Phase1 Seg Phase2 Seg  
‘n’ in the register identifier denotes the  
buffer, filter or mask number.  
18.6.5  
SAMPLE POINT  
The sample point is the point of time at which the bus  
level is read and interpreted as the value of that respec-  
tive bit. The location is at the end of Phase1 Seg. If the  
bit timing is slow and contains many TQ, it is possible to  
specify multiple sampling of the bus line at the sample  
point. The level determined by the CAN bus then corre-  
sponds to the result from the majority decision of three  
values. The majority samples are taken at the sample  
point and twice before with a distance of TQ/2. The  
CAN module allows the user to choose between sam-  
pling three times at the same point or once at the same  
point, by setting or clearing the SAM bit (CiCFG2<6>).  
‘m’ in the register identifier denotes the  
word number within a particular CAN data  
field.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 185  
PIC24H  
REGISTER 18-1: CiCTRL1: ECAN MODULE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
CSIDL  
R/W-0  
ABAT  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
CANCKS  
REQOP<2:0>  
bit 15  
R-1  
R-0  
R-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
WIN  
OPMODE<2:0>  
CANCAP  
bit 7  
Legend:  
bit 0  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ABAT: Abort All Pending Transmissions bit  
Signal all transmit buffers to abort transmission. Module will clear this bit when all transmissions  
are aborted  
bit 11  
CANCKS: CAN Master Clock Select bit  
1= CAN FCAN clock is FCY  
0= CAN FCAN clock is FOSC  
bit 10-8  
REQOP<2:0>: Request Operation Mode bits  
000= Set Normal Operation mode  
001= Set Disable mode  
010= Set Loopback mode  
011= Set Listen Only Mode  
100= Set Configuration mode  
101= Reserved – do not use  
110= Reserved – do not use  
111= Set Listen All Messages mode  
bit 7-5  
OPMODE<2:0>: Operation Mode bits  
000= Module is in Normal Operation mode  
001= Module is in Disable mode  
010= Module is in Loopback mode  
011= Module is in Listen Only mode  
100= Module is in Configuration mode  
101= Reserved  
110= Reserved  
111= Module is in Listen All Messages mode  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CANCAP: CAN Message Receive Timer Capture Event Enable bit  
1= Enable input capture based on CAN message receive  
0= Disable CAN capture  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
WIN: SFR Map Window Select bit  
1= Use filter window  
0= Use buffer window  
DS70175D-page 186  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-2: CiCTRL2: ECAN MODULE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DNCNT<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DNCNT<4:0>: DeviceNet™ Filter Bit Number bits  
10010-11111= Invalid selection  
10001= Compare up to data byte 3, bit 6 with EID<17>  
....  
00001= Compare up to data byte 1, bit 7 with EID<0>  
00000= Do not compare data bytes  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 187  
PIC24H  
REGISTER 18-3: CiVEC: ECAN MODULE INTERRUPT CODE REGISTER  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FILHIT<4:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-1  
R-0  
R-0  
R-0  
R-0  
ICODE<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Number bits  
10000-11111= Reserved  
01111= Filter 15  
....  
00001= Filter 1  
00000= Filter 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
ICODE<6:0>: Interrupt Flag Code bits  
1000101-1111111= Reserved  
1000100= FIFO almost full interrupt  
1000011= Receiver overflow interrupt  
1000010= Wake-up interrupt  
1000001= Error interrupt  
1000000= No interrupt  
0010000-0111111= Reserved  
0001111= RB15 buffer Interrupt  
....  
0001001= RB9 buffer interrupt  
0001000= RB8 buffer interrupt  
0000111= TRB7 buffer interrupt  
0000110= TRB6 buffer interrupt  
0000101= TRB5 buffer interrupt  
0000100= TRB4 buffer interrupt  
0000011= TRB3 buffer interrupt  
0000010= TRB2 buffer interrupt  
0000001= TRB1 buffer interrupt  
0000000= TRB0 Buffer interrupt  
DS70175D-page 188  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-4: CiFCTRL: ECAN MODULE FIFO CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMABS<2:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
FSA<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
DMABS<2:0>: DMA Buffer Size bits  
111= Reserved  
110= 32 buffers in DMA RAM  
101= 24 buffers in DMA RAM  
100= 16 buffers in DMA RAM  
011= 12 buffers in DMA RAM  
010= 8 buffers in DMA RAM  
001= 6 buffers in DMA RAM  
000= 4 buffers in DMA RAM  
bit 12-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FSA<4:0>: FIFO Area Starts with Buffer bits  
11111= RB31 buffer  
11110= RB30 buffer  
....  
00001= TRB1 buffer  
00000= TRB0 buffer  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 189  
PIC24H  
REGISTER 18-5: CiFIFO: ECAN MODULE FIFO STATUS REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
FBP<5:0>  
R-0  
R-0  
R-0  
R-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
FNRB<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FBP<5:0>: FIFO Write Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
....  
000001= TRB1 buffer  
000000= TRB0 buffer  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FNRB<5:0>: FIFO Next Read Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
....  
000001= TRB1 buffer  
000000= TRB0 buffer  
DS70175D-page 190  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-6: CiINTF: ECAN MODULE INTERRUPT FLAG REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TXBO  
TXBP  
RXBP  
TXWAR  
RXWAR  
EWARN  
bit 8  
bit 15  
R/C-0  
IVRIF  
R/C-0  
R/C-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
RBIF  
R/C-0  
TBIF  
WAKIF  
ERRIF  
FIFOIF  
RBOVIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
TXBO: Transmitter in Error State Bus Off bit  
TXBP: Transmitter in Error State Bus Passive bit  
RXBP: Receiver in Error State Bus Passive bit  
TXWAR: Transmitter in Error State Warning bit  
RXWAR: Receiver in Error State Warning bit  
EWARN: Transmitter or Receiver in Error State Warning bit  
IVRIF: Invalid Message Received Interrupt Flag bit  
WAKIF: Bus Wake-up Activity Interrupt Flag bit  
ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)  
Unimplemented: Read as ‘0’  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
FIFOIF: FIFO Almost Full Interrupt Flag bit  
RBOVIF: RX Buffer Overflow Interrupt Flag bit  
RBIF: RX Buffer Interrupt Flag bit  
bit 2  
bit 1  
bit 0  
TBIF: TX Buffer Interrupt Flag bit  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 191  
PIC24H  
REGISTER 18-7: CiINTE: ECAN MODULE INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IVRIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
TBIE  
WAKIE  
FIFOIE  
RBOVIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
IVRIE: Invalid Message Received Interrupt Enable bit  
WAKIE: Bus Wake-up Activity Interrupt Flag bit  
ERRIE: Error Interrupt Enable bit  
Unimplemented: Read as ‘0’  
FIFOIE: FIFO Almost Full Interrupt Enable bit  
RBOVIE: RX Buffer Overflow Interrupt Enable bit  
RBIE: RX Buffer Interrupt Enable bit  
TBIE: TX Buffer Interrupt Enable bit  
DS70175D-page 192  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-8: CiEC: ECAN MODULE TRANSMIT/RECEIVE ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TERRCNT<7:0>  
bit 15  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RERRCNT<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
TERRCNT<7:0>: Transmit Error Count bits  
RERRCNT<7:0>: Receive Error Count bits  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 193  
PIC24H  
REGISTER 18-9: CiCFG1: ECAN MODULE BAUD RATE CONFIGURATION REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SJW<1:0>  
BRP<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SJW<1:0>: Synchronization Jump Width bits  
11= Length is 4 x TQ  
10= Length is 3 x TQ  
01= Length is 2 x TQ  
00= Length is 1 x TQ  
bit 5-0  
BRP<5:0>: Baud Rate Prescaler bits  
11 1111= TQ = 2 x 64 x 1/FCAN  
00 0010= TA = 2 x 3 x 1/FCAN  
00 0001= TA = 2 x 2 x 1/FCAN  
00 0000= TQ = 2 x 1 x 1/FCAN  
DS70175D-page 194  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-10: CiCFG2: ECAN MODULE BAUD RATE CONFIGURATION REGISTER 2  
U-0  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
bit 8  
WAKFIL  
SEG2PH<2:0>  
bit 15  
R/W-x  
R/W-x  
SAM  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
SEG2PHTS  
SEG1PH<2:0>  
PRSEG<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
WAKFIL: Select CAN bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 13-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SEG2PH<2:0>: Phase Buffer Segment 2 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN bus Line bit  
1= Bus line is sampled three times at the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
bit 2-0  
SEG1PH<2:0>: Phase Buffer Segment 1 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
PRSEG<2:0>: Propagation Time Segment bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 195  
PIC24H  
REGISTER 18-11: CiFEN1: ECAN MODULE ACCEPTANCE FILTER ENABLE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLTEN15  
FLTEN14  
FLTEN13  
FLTEN12  
FLTEN11  
FLTEN10  
FLTEN9  
FLTEN8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN7  
FLTEN6  
FLTEN5  
FLTEN4  
FLTEN3  
FLTEN2  
FLTEN1  
FLTEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
FLTENn: Enable Filter n to Accept Messages bits  
1= Enable Filter n  
0= Disable Filter n  
REGISTER 18-12: CiBUFPNT1: ECAN MODULE FILTER 0-3 BUFFER POINTER REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
F3BP<3:0>  
F2BP<3:0>  
bit 15  
R/W-0  
bit 7  
R/W-0 R/W-0  
F1BP<3:0>  
R/W-0  
R/W-0  
R/W-0 R/W-0  
F0BP<3:0>  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F3BP<3:0>: RX Buffer Written when Filter 3 Hits bits  
F2BP<3:0>: RX Buffer Written when Filter 2 Hits bits  
F1BP<3:0>: RX Buffer Written when Filter 1 Hits bits  
F0BP<3:0>: RX Buffer Written when Filter 0 Hits bits  
bit 3-0  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
....  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
DS70175D-page 196  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-13: CiBUFPNT2: ECAN MODULE FILTER 4-7 BUFFER POINTER REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7BP<3:0>  
F6BP<3:0>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0 R/W-0  
F5BP<3:0>  
R/W-0  
R/W-0  
R/W-0 R/W-0  
F4BP<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits  
F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits  
F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits  
F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits  
bit 3-0  
REGISTER 18-14: CiBUFPNT3: ECAN MODULE FILTER 8-11 BUFFER POINTER REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11BP<3:0>  
F10BP<3:0>  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0 R/W-0  
F9BP<3:0>  
R/W-0  
R/W-0  
R/W-0 R/W-0  
F8BP<3:0>  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F11BP<3:0>: RX Buffer Written when Filter 11 Hits bits  
F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits  
F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits  
F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits  
bit 3-0  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 197  
PIC24H  
REGISTER 18-15: CiBUFPNT4: ECAN MODULE FILTER 12-15 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15BP<3:0>  
F14BP<3:0>  
bit 8  
R/W-0  
bit 7  
R/W-0 R/W-0  
F13BP<3:0>  
R/W-0  
R/W-0  
R/W-0 R/W-0  
F12BP<3:0>  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits  
F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits  
F13BP<3:0>: RX Buffer Written when Filter 13 Hits bits  
F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits  
bit 3-0  
DS70175D-page 198  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-16: CiRXFnSID: ECAN MODULE ACCEPTANCE FILTER n STANDARD IDENTIFIER  
(n = 0, 1, ..., 15)  
R/W-x  
SID10  
R/W-x  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
SID9  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
EXIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Message address bit SIDx must be ‘1’ to match filter  
0= Message address bit SIDx must be ‘0’ to match filter  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDE: Extended Identifier Enable bit  
If MIDE = 1then:  
1= Match only messages with extended identifier addresses  
0= Match only messages with standard identifier addresses  
If MIDE = 0then:  
Ignore EXIDE bit.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
REGISTER 18-17: CiRXFnEID: ECAN MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER  
(n = 0, 1, ..., 15)  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 8  
bit 15  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 199  
PIC24H  
REGISTER 18-18: CiFMSKSEL1: ECAN MODULE FILTER 7-0 MASK SELECTION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7MSK<1:0>  
F6MSK<1:0>  
F5MSK<1:0>  
F4MSK<1:0>  
bit 15  
bit 8  
R/W-0 R/W-0  
F3MSK<1:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F2MSK<1:0>  
F1MSK<1:0>  
F0MSK<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-12  
bit 11-10  
bit 9-8  
F7MSK<1:0>: Mask Source for Filter 7 bit  
F6MSK<1:0>: Mask Source for Filter 6 bit  
F5MSK<1:0>: Mask Source for Filter 5 bit  
F4MSK<1:0>: Mask Source for Filter 4 bit  
F3MSK<1:0>: Mask Source for Filter 3 bit  
F2MSK<1:0>: Mask Source for Filter 2 bit  
F1MSK<1:0>: Mask Source for Filter 1 bit  
F0MSK<1:0>: Mask Source for Filter 0 bit  
11= No mask  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
DS70175D-page 200  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-19: CiRXMnSID: ECAN MODULE ACCEPTANCE FILTER MASK n STANDARD  
IDENTIFIER  
R/W-x  
SID10  
R/W-x  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
SID9  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
MIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Include bit SIDx in filter comparison  
0= Bit SIDx is don’t care in filter comparison  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
MIDE: Identifier Receive Mode bit  
1= Match only message types (standard or extended address) that correspond to EXIDE bit in filter  
0= Match either standard or extended address message if filters match  
(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
REGISTER 18-20: CiRXMnEID: ECAN TECHNOLOGY ACCEPTANCE FILTER MASK n EXTENDED  
IDENTIFIER  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 15  
bit 8  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 201  
PIC24H  
REGISTER 18-21: CiRXFUL1: ECAN MODULE RECEIVE BUFFER FULL REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL15  
RXFUL14  
RXFUL13  
RXFUL12  
RXFUL11  
RXFUL10  
RXFUL9  
RXFUL8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL7  
RXFUL6  
RXFUL5  
RXFUL4  
RXFUL3  
RXFUL2  
RXFUL1  
RXFUL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<15:0>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (clear by application software)  
REGISTER 18-22: CiRXFUL2: ECAN MODULE RECEIVE BUFFER FULL REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL31  
RXFUL30  
RXFUL29  
RXFUL28  
RXFUL27  
RXFUL26  
RXFUL25  
RXFUL24  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL23  
RXFUL22  
RXFUL21  
RXFUL20  
RXFUL19  
RXFUL18  
RXFUL17  
RXFUL16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<31:16>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (clear by application software)  
DS70175D-page 202  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-23: CiRXOVF1: ECAN MODULE RECEIVE BUFFER OVERFLOW REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF15  
RXOVF14  
RXOVF13  
RXOVF12  
RXOVF11  
RXOVF10  
RXOVF9  
RXOVF8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF7  
RXOVF6  
RXOVF5  
RXOVF4  
RXOVF3  
RXOVF2  
RXOVF1  
RXOVF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF<15:0>: Receive Buffer n Overflow bits  
1= Module pointed a write to a full buffer (set by module)  
0= Overflow is cleared (clear by application software)  
REGISTER 18-24: CiRXOVF2: ECAN MODULE RECEIVE BUFFER OVERFLOW REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF24  
bit 8  
RXOVF31  
RXOVF30  
RXOVF29  
RXOVF28  
RXOVF27  
RXOVF26  
RXOVF25  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF23  
RXOVF22  
RXOVF21  
RXOVF20  
RXOVF19  
RXOVF18  
RXOVF17  
RXOVF16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF<31:16>: Receive Buffer n Overflow bits  
1= Module pointed a write to a full buffer (set by module)  
0= Overflow is cleared (clear by application software)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 203  
PIC24H  
REGISTER 18-25: CiTRmnCON: ECAN MODULE TX/RX BUFFER m CONTROL REGISTER  
(m = 0,2,4,6; n = 1,3,5,7)  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENn  
TXABTn  
TXLARBn  
TXERRn  
TXREQn  
RTRENn  
TXnPRI<1:0>  
bit 15  
bit 8  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENm  
TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm  
RTRENm  
TXmPRI<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
See Definition for Bits 7-0, Controls Buffer n  
TXENm: TX/RX Buffer Selection bit  
1= Buffer TRBn is a transmit buffer  
0= Buffer TRBn is a receive buffer  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
TXABTm: Message Aborted bit(1)  
1= Message was aborted  
0= Message completed transmission successfully  
TXLARBm: Message Lost Arbitration bit(1)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERRm: Error Detected During Transmission bit(1)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQm: Message Send Request bit  
Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message  
is successfully sent. Clearing the bit to ‘0’ while set will request a message abort.  
RTRENm: Auto-Remote Transmit Enable bit  
1= When a remote transmit is received, TXREQ will be set  
0= When a remote transmit is received, TXREQ will be unaffected  
TXmPRI<1:0>: Message Transmission Priority bits  
11= Highest message priority  
10= High intermediate message priority  
01= Low intermediate message priority  
00= Lowest message priority  
Note 1: This bit is cleared when TXREQ is set.  
DS70175D-page 204  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Note:  
The buffers, SID, EID, DLC, Data Field and Receive Status registers are stored in DMA RAM. These are  
not Special Function Registers.  
REGISTER 18-26: CiTRBnSID: ECAN MODULE BUFFER n STANDARD IDENTIFIER  
(n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
bit 15  
bit 8  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
IDE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SID<10:0>: Standard Identifier bits  
SRR: Substitute Remote Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 0  
IDE: Extended Identifier bit  
1= Message will transmit extended identifier  
0= Message will transmit standard identifier  
REGISTER 18-27: CiTRBnEID: ECAN MODULE BUFFER n EXTENDED IDENTIFIER  
(n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
R/W-x  
EID15  
R/W-x  
EID14  
bit 15  
bit 8  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
R/W-x  
EID7  
R/W-x  
EID6  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
EID<17:6>: Extended Identifier bits  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 205  
PIC24H  
REGISTER 18-28: CiTRBnDLC: ECAN MODULE BUFFER n DATA LENGTH CONTROL  
(n = 0, 1, ..., 31)  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
R/W-x  
RTR  
R/W-x  
RB1  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
EID<5:0>: Extended Identifier bits  
RTR: Remote Transmission Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 8  
RB1: Reserved Bit 1  
User must set this bit to ‘0’ per CAN protocol.  
Unimplemented: Read as ‘0’  
bit 7-5  
bit 4  
RB0: Reserved Bit 0  
User must set this bit to ‘0’ per CAN protocol.  
DLC<3:0>: Data Length Code bits  
bit 3-0  
REGISTER 18-29: CiTRBnDm: ECAN MODULE BUFFER n DATA FIELD BYTE m  
(n = 0, 1, ..., 31; m = 0, 1, ..., 7)(1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
TRBnDm7  
TRBnDm6  
TRBnDm5  
TRBnDm4 TRBnDm3  
TRBnDm2  
TRBnDm1  
TRBnDm0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.  
TRnDm<7:0>: Data Field Buffer ‘n’ Byte ‘m’ bits  
DS70175D-page 206  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 18-30: CiTRBnSTAT: ECAN MODULE RECEIVE BUFFER n STATUS  
(n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers)  
Encodes number of filter that resulted in writing this buffer.  
Unimplemented: Read as ‘0’  
bit 7-0  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 207  
PIC24H  
NOTES:  
DS70175D-page 208  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
19.2 A/D Initialization  
19.0 10-BIT/12-BIT A/D CONVERTER  
The following configuration steps should be performed.  
1. Configure the A/D module:  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
a) Select port pins as analog inputs  
(ADxPCFGH<15:0> or ADxPCFGL<15:0>)  
b) Select voltage reference source to match  
expected range on analog inputs  
(ADxCON2<15:13>)  
The PIC24H devices have up to 32 A/D input channels.  
These devices also have up to 2 A/D converter mod-  
ules (ADCx, where ‘x’ = 1 or 2), each with its own set of  
Special Function Registers.  
c) Select the analog conversion clock to  
match desired data rate with processor  
clock (ADxCON3<5:0>)  
d) Determine how many S/H channels will  
The AD12B bit (ADxCON1<10>) allows each of the  
A/D modules to be configured by the user as either a  
10-bit, 4-sample/hold A/D (default configuration) or a  
12-bit, 1-sample/hold A/D.  
be  
used  
(ADxCON2<9:8>  
and  
ADxPCFGH<15:0> or ADxPCFGL<15:0>)  
e) Select the appropriate sample/conversion  
sequence  
ADxCON3<12:8>)  
(ADxCON1<7:5>  
and  
Note:  
The A/D module needs to be disabled  
before modifying the AD12B bit.  
f) Select how conversion results are  
presented in the buffer (ADxCON1<9:8>)  
19.1 Key Features  
g) Turn on A/D module (ADxCON1<15>)  
2. Configure A/D interrupt (if required):  
a) Clear the ADxIF bit  
The 10-bit A/D configuration has the following key  
features:  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 1.1 Msps  
• Up to 32 analog input pins  
b) Select A/D interrupt priority  
19.3 ADC and DMA  
• External voltage reference input pins  
If more than one conversion result needs to be buffered  
before triggering an interrupt, DMA data transfers can  
be used. Both ADC1 and ADC2 can trigger a DMA data  
transfer. If ADC1 or ADC2 is selected as the DMA IRQ  
source, a DMA transfer occurs when the AD1IF or  
AD2IF bit gets set as a result of an ADC1 or ADC2  
sample conversion sequence.  
• Simultaneous sampling of up to four analog input  
pins  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• Selectable Buffer Fill modes  
• Four result alignment options (signed/unsigned,  
fractional/integer)  
The SMPI<3:0> bits (ADxCON2<5:2>) are used to  
select how often the DMA RAM buffer pointer is  
incremented.  
• Operation during CPU Sleep and Idle modes  
The 12-bit A/D configuration supports all the above  
features, except:  
The ADDMABM bit (ADxCON1<12>) determines how  
the conversion results are filled in the DMA RAM buffer  
area being used for ADC. If this bit is set, DMA buffers  
are written in the order of conversion. The module will  
provide an address to the DMA channel that is the  
same as the address used for the non-DMA  
stand-alone buffer. If the ADDMABM bit is cleared,  
then DMA buffers are written in Scatter/Gather mode.  
The module will provide a scatter/gather address to the  
DMA channel, based on the index of the analog input  
and the size of the DMA buffer.  
• In the 12-bit configuration, conversion speeds of  
up to 500 ksps are supported  
• There is only 1 sample/hold amplifier in the 12-bit  
configuration, so simultaneous sampling of  
multiple channels is not supported.  
Depending on the particular device pinout, the A/D con-  
verter can have up to 32 analog input pins, designated  
AN0 through AN31. In addition, there are two analog  
input pins for external voltage reference connections.  
These voltage reference inputs may be shared with  
other analog input pins. The actual number of analog  
input pins and external voltage reference input config-  
uration will depend on the specific device. Refer to the  
device data sheet for further details.  
A block diagram of the A/D converter is shown in  
Figure 19-1.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 209  
PIC24H  
FIGURE 19-1:  
ADC1 MODULE BLOCK DIAGRAM  
AVDD  
AVSS  
VREF+(1)  
VREF-(1)  
AN0  
AN3  
AN0  
AN1  
AN2  
+
CH1(2)  
CH2(2)  
CH3(2)  
S/H  
ADC1  
AN6  
AN9  
VREF-  
-
Conversion Logic  
Conversion  
Result  
AN1  
AN4  
+
S/H  
AN7  
AN10  
VREF-  
-
16-bit  
ADC Output  
Buffer  
AN2  
AN5  
+
S/H  
AN8  
AN11  
VREF-  
CH1,CH2,  
CH3,CH0  
-
Sample/Sequence  
Control  
Sample  
00000  
00001  
00010  
00011  
Input  
Switches  
Input MUX  
Control  
AN3  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
11110  
11111  
AN30  
AN31  
+
CH0  
VREF-  
AN1  
S/H  
-
Note 1: VREF+, VREF- inputs may be multiplexed with other analog inputs. See device data sheet for details.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
DS70175D-page 210  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 19-2:  
ADC2 MODULE BLOCK DIAGRAM(1)  
AVDD  
AVSS  
VREF+(2)  
VREF-(2)  
AN0  
AN3  
AN0  
AN1  
AN2  
+
CH1(3)  
CH2(3)  
CH3(3)  
S/H  
ADC2  
AN6  
AN9  
VREF-  
-
Conversion Logic  
Conversion  
Result  
AN1  
AN4  
+
S/H  
AN7  
AN10  
VREF-  
-
16-bit  
ADC Output  
Buffer  
AN2  
AN5  
+
S/H  
AN8  
AN11  
VREF-  
CH1,CH2,  
CH3,CH0  
-
Sample/Sequence  
Control  
Sample  
00000  
00001  
00010  
00011  
Input  
Switches  
Input MUX  
Control  
AN3  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
11110  
11111  
AN14  
AN15  
+
CH0  
VREF-  
AN1  
S/H  
-
Note 1: On devices with two ADC modules, AN0-AN15 can be read by either ADC1, ADC2 or both ADCs.  
2: VREF+, VREF- inputs may be multiplexed with other analog inputs. See device data sheet for details.  
3: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 211  
PIC24H  
EQUATION 19-1: A/D CONVERSION CLOCK PERIOD  
TAD = TCY(ADCS + 1)  
TAD  
– 1  
ADCS =  
TCY  
FIGURE 19-3:  
A/D TRANSFER FUNCTION (10-BIT EXAMPLE)  
Output Code  
11 1111 1111 (= 1023)  
11 1111 1110 (= 1022)  
10 0000 0011 (= 515)  
10 0000 0010 (= 514)  
10 0000 0001 (= 513)  
10 0000 0000 (= 512)  
01 1111 1111 (= 511)  
01 1111 1110 (= 510)  
01 1111 1101 (= 509)  
00 0000 0001 (= 1)  
00 0000 0000 (= 0)  
VREFL  
VREFH  
VREFH – VREFL  
1024  
512 * (VREFH – VREFL)  
1024  
1023 * (VREFH – VREFL)  
1024  
VREFL +  
VREFL +  
VREFL +  
(VINH – VINL)  
FIGURE 19-4:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
ADxCON3<15>  
ADC Internal  
RC Clock  
0
1
TAD  
ADxCON3<5:0>  
6
ADC Conversion  
Clock Multiplier  
TCY  
(1)  
TOSC  
X2  
1, 2, 3, 4, 5,..., 64  
1. Refer to Figure 8-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal to the clock  
source frequency. Tosc = 1/Fosc.  
DS70175D-page 212  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 19-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADSIDL  
ADDMABM  
AD12B  
FORM<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
ASAM  
R/W-0  
HC,HS  
R/C-0  
HC, HS  
SSRC<2:0>  
SIMSAM  
SAMP  
DONE  
bit 7  
bit 0  
Legend:  
HC = Cleared by hardware  
W = Writable bit  
HS = Set by hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
ADON: A/D Operating Mode bit  
1= A/D converter module is operating  
0= A/D converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ADDMABM: DMA Buffer Build Mode bit  
1= DMA buffers are written in the order of conversion. The module will provide an address to the  
DMA channel that is the same as the address used for the non-DMA stand-alone buffer.  
0= DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address  
to the DMA channel, based on the index of the analog input and the size of the DMA buffer.  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
AD12B: 10-bit or 12-bit Operation Mode bit  
1= 12-bit, 1-channel A/D operation  
0= 10-bit, 4-channel A/D operation  
bit 9-8  
FORM<1:0>: Data Output Format bits  
For 10-bit operation:  
11= Signed fractional (DOUT = sddd dddd dd00 0000, where s= .NOT.d<9>)  
10= Fractional (DOUT = dddd dddd dd00 0000)  
01= Signed integer (DOUT = ssss sssd dddd dddd, where s= .NOT.d<9>)  
00= Integer (DOUT = 0000 00dd dddd dddd)  
For 12-bit operation:  
11= Signed fractional (DOUT = sddd dddd dddd 0000, where s= .NOT.d<11>)  
10= Fractional (DOUT = dddd dddd dddd 0000)  
01= Signed Integer (DOUT = ssss sddd dddd dddd, where s= .NOT.d<11>)  
00= Integer (DOUT = 0000 dddd dddd dddd)  
bit 7-5  
SSRC<2:0>: Sample Clock Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
101= Reserved  
100= Reserved  
011= Reserved  
010= GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion  
001= Active transition on INTx pin ends sampling and starts conversion  
000= Clearing sample bit ends sampling and starts conversion  
bit 4  
Unimplemented: Read as ‘0’  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 213  
PIC24H  
REGISTER 19-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)(where x = 1 or 2)  
bit 3  
SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01or 1x)  
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’  
1= Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or  
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)  
0= Samples multiple channels individually in sequence  
bit 2  
bit 1  
ASAM: A/D Sample Auto-Start bit  
1= Sampling begins immediately after last conversion. SAMP bit is auto-set.  
0= Sampling begins when SAMP bit is set  
SAMP: A/D Sample Enable bit  
1= A/D sample/hold amplifiers are sampling  
0= A/D sample/hold amplifiers are holding  
If ASAM = 0, software may write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.  
If SSRC = 000, software may write ‘0’ to end sampling and start conversion. If SSRC 000,  
automatically cleared by hardware to end sampling and start conversion.  
bit 0  
DONE: A/D Conversion Status bit  
1= A/D conversion cycle is completed.  
0= A/D conversion not started or in progress  
Automatically set by hardware when A/D conversion is complete. Software may write ‘0’ to clear  
DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in  
progress. Automatically cleared by hardware at start of a new conversion.  
DS70175D-page 214  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 19-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
SMPI<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Converter Voltage Reference Configuration bits  
ADREF+  
ADREF-  
000  
001  
010  
011  
1xx  
AVDD  
External VREF+  
AVDD  
AVSS  
AVSS  
External VREF-  
External VREF-  
AVSS  
External VREF+  
AVDD  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ during Sample A bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
CHPS<1:0>: Selects Channels Utilized bits  
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’  
1x=Converts CH0, CH1, CH2 and CH3  
01=Converts CH0 and CH1  
00=Converts CH0  
BUFS: Buffer Fill Status bit (only valid when BUFM = 1)  
1= A/D is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7  
0= A/D is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion  
operations per interrupt  
1111= Increments the DMA address or generates interrupt after completion of every 16th  
sample/conversion operation  
1110= Increments the DMA address or generates interrupt after completion of every 15th  
sample/conversion operation  
• • •  
0001= Increments the DMA address or generates interrupt after completion of every 2nd  
sample/conversion operation  
0000= Increments the DMA address or generates interrupt after completion of every  
sample/conversion operation  
bit 1  
bit 0  
BUFM: Buffer Fill Mode Select bit  
1= Starts buffer filling at address 0x0 on first interrupt and 0x8 on next interrupt  
0= Always starts filling buffer at address 0x0  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 215  
PIC24H  
REGISTER 19-3: ADxCON3: ADCx CONTROL REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
ADRC  
SAMC<4:0>  
bit 15  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
ADCS<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: A/D Conversion Clock Source bit  
1= A/D internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto Sample Time bits  
11111= 31 TAD  
• • •  
00001= 1 TAD  
00000= 0 TAD  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ADCS<5:0>: A/D Conversion Clock Select bits  
111111= TCY ·(ADCS<7:0> + 1) = 64 ·TCY = TAD  
• • •  
000010= TCY ·(ADCS<7:0> + 1) = 3 ·TCY = TAD  
000001= TCY ·(ADCS<7:0> + 1) = 2 ·TCY = TAD  
000000= TCY ·(ADCS<7:0> + 1) = 1 ·TCY = TAD  
DS70175D-page 216  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 19-4: ADxCON4: ADCx CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
DMABL<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits  
111=Allocates 128 words of buffer to each analog input  
110=Allocates 64 words of buffer to each analog input  
101=Allocates 32 words of buffer to each analog input  
100=Allocates 16 words of buffer to each analog input  
011=Allocates 8 words of buffer to each analog input  
010=Allocates 4 words of buffer to each analog input  
001=Allocates 2 words of buffer to each analog input  
000=Allocates 1 word of buffer to each analog input  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 217  
PIC24H  
REGISTER 19-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NB<1:0>  
CH123SB  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NA<1:0>  
CH123SA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits  
When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 8  
CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit  
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
bit 7-3  
bit 2-1  
Unimplemented: Read as ‘0’  
CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits  
When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 0  
CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit  
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
DS70175D-page 218  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 19-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CH0NB  
CH0SB<4:0>  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for Sample B bit  
Same definition as bit 7.  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits  
Same definition as bit<4:0>.  
bit 7  
CH0NA: Channel 0 Negative Input Select for Sample A bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 6-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits  
11111= Channel 0 positive input is AN31  
11110= Channel 0 positive input is AN30  
• • •  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 219  
PIC24H  
REGISTER 19-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS31  
CSS30  
CSS29  
CSS28  
CSS27  
CSS26  
CSS25  
CSS24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS23  
CSS22  
CSS21  
CSS20  
CSS19  
CSS18  
CSS17  
CSS16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CSS<31:16>: A/D Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 32 analog inputs, all ADxCSSL bits may be selected by user. However, inputs  
selected for scan without a corresponding input on device will convert ADREF-.  
REGISTER 19-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS11  
R/W-0  
R/W-0  
CSS9  
R/W-0  
CSS8  
bit 8  
CSS15  
CSS14  
CSS13  
CSS12  
CSS10  
bit 15  
R/W-0  
CSS7  
R/W-0  
CSS6  
R/W-0  
CSS5  
R/W-0  
CSS4  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CSS<15:0>: A/D Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs  
selected for scan without a corresponding input on device will convert ADREF-.  
DS70175D-page 220  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
REGISTER 19-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG31  
PCFG30  
PCFG29  
PCFG28  
PCFG27  
PCFG26  
PCFG25  
PCFG24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG23  
PCFG22  
PCFG21  
PCFG20  
PCFG19  
PCFG18  
PCFG17  
PCFG16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<31:16>: A/D Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVSS  
0= Port pin in Analog mode, port read input disabled, A/D samples pin voltage  
Note 1: On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on  
ports without a corresponding input on device.  
2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.  
REGISTER 19-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG15  
PCFG14  
PCFG13  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<15:0>: A/D Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVSS  
0= Port pin in Analog mode, port read input disabled, A/D samples pin voltage  
Note 1: On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on  
ports without a corresponding input on device.  
2: On devices with 2 analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration  
of port pins multiplexed with AN0-AN15.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 221  
PIC24H  
NOTES:  
DS70175D-page 222  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
The device Configuration register map is shown in  
Table 20-1.  
20.0 SPECIAL FEATURES  
Note:  
This data sheet summarizes the features  
The individual Configuration bit descriptions for the  
FBS, FSS, FGS, FOSCSEL, FOSC, FWDT and FPOR  
Configuration registers are shown in Table 20-1.  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
Note that address 0xF80000 is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (0x800000-0xFFFFFF), which can only  
be accessed using table reads and table writes.  
PIC24H devices include several features intended to  
maximize application flexibility and reliability, and mini-  
mize cost through elimination of external components.  
These are:  
The upper byte of all device Configuration registers  
should always be ‘1111 1111’. This makes them  
appear to be NOPinstructions in the remote event that  
their locations are ever executed by accident. Since  
Configuration bits are not implemented in the  
corresponding locations, writing ‘1’s to these locations  
has no effect on device operation.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
• In-Circuit Emulation  
20.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select vari-  
ous device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
TABLE 20-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
RBS<1:0>  
RSS<1:0>  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BSS<2:0>  
SSS<2:0>  
BWRP  
SWRP  
GWRP  
0xF80000 FBS  
0xF80002 FSS  
0xF80004 FGS  
GSS<1:0>  
FNOSC<2:0>  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E RESERVED3  
0xF80010 FUID0  
0xF80012 FUID1  
0xF80014 FUID2  
0xF80016 FUID3  
IESO  
TEMP  
FCKSM<1:0>  
FWDTEN WINDIS  
Reserved(2)  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
WDTPRE  
FPWRT<2:0>  
Reserved  
User Unit ID Byte 0  
User Unit ID Byte 1  
User Unit ID Byte 2  
User Unit ID Byte 3  
Note 1: This reserved bit is a read-only copy of the GCP bit.  
2: Reserved bits are read as ‘1’ and must be programmed as ‘1’.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 223  
PIC24H  
TABLE 20-2: PIC24H CONFIGURATION BITS DESCRIPTION  
Bit Field  
Register  
Description  
BWRP  
FBS  
Boot Segment Program Flash Write Protection  
1= Boot segment may be written  
0= Boot segment is write-protected  
BSS<2:0>  
FBS  
Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 1K IW less VS  
110= Standard security; boot program Flash segment starts at End of  
VS, ends at 0x0007FE  
010= High security; boot program Flash segment starts at End of VS,  
ends at 0x0007FE  
Boot space is 4K IW less VS  
101= Standard security; boot program Flash segment starts at End of  
VS, ends at 0x001FFE  
001= High security; boot program Flash segment starts at End of VS,  
ends at 0x001FFE  
Boot space is 8K IW less VS  
100= Standard security; boot program Flash segment starts at End of  
VS, ends at 0x003FFE  
000= High security; boot program Flash segment starts at End of VS,  
ends at 0x003FFE  
RBS<1:0>  
SWRP  
FBS  
FSS  
Boot Segment RAM Code Protection  
10= No Boot RAM defined  
10= Boot RAM is 128 Bytes  
01= Boot RAM is 256 Bytes  
00 = Boot RAM is 1024 Bytes  
Secure Segment Program Flash Write Protection  
1= Secure segment may be written  
0= Secure segment is write-protected.  
DS70175D-page 224  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 20-2: PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
SSS<2:0>  
FSS  
Secure Segment Program Flash Code Protection Size  
(FOR 128K and 256K DEVICES)  
X11= No Secure program Flash segment  
Secure space is 8K IW less BS  
110= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x003FFE  
010= High security; secure program Flash segment starts at End of  
BS, ends at 0x003FFE  
Secure space is 16K IW less BS  
101= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x007FFE  
001= High security; secure program Flash segment starts at End of  
BS, ends at 0x007FFE  
Secure space is 32K IW less BS  
100= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x00FFFE  
000= High security; secure program Flash segment starts at End of  
BS, ends at 0x00FFFE  
(FOR 64K DEVICES)  
X11= No Secure program Flash segment  
Secure space is 4K IW less BS  
110= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x001FFE  
010= High security; secure program Flash segment starts at End of  
BS, ends at 0x001FFE  
Secure space is 8K IW less BS  
101= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x003FFE  
001= High security; secure program Flash segment starts at End of  
BS, ends at 0x003FFE  
Secure space is 16K IW less BS  
100= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x007FFE  
000= High security; secure program Flash segment starts at End of  
BS, ends at 0x007FFE  
RSS<1:0>  
GSS<1:0>  
FSS  
FGS  
Secure Segment RAM Code Protection  
10= No Secure RAM defined  
10= Secure RAM is 256 Bytes less BS RAM  
01= Secure RAM is 2048 Bytes less BS RAM  
00= Secure RAM is 4096 Bytes less BS RAM  
General Segment Code-Protect bit  
11= User program memory is not code-protected  
10= Standard Security; general program Flash segment starts at End  
of SS, ends at EOM  
0x= High Security; general program Flash segment starts at End of  
ESS, ends at EOM  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 225  
PIC24H  
TABLE 20-2: PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
GWRP  
FGS  
General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
IESO  
FOSCSEL  
Internal External Start-up Option bit  
1= Start-up device with FRC, then automatically switch to the  
user-selected oscillator source when ready  
0= Start-up device with user-selected oscillator source  
TEMP  
FOSCSEL  
FOSCSEL  
Temperature Protection Enable bit  
1= Temperature protection disabled  
0= Temperature protection enabled  
FNOSC<2:0>  
Initial Oscillator Source Selection bits  
111= Internal Fast RC (FRC) oscillator with postscaler  
110= Reserved  
101= LPRC oscillator  
100= Secondary (LP) oscillator  
011= Primary (XT, HS, EC) oscillator with PLL  
010= Primary (XT, HS, EC) oscillator  
001= Internal Fast RC (FRC) oscillator with PLL  
000= FRC oscillator  
FCKSM<1:0>  
FOSC  
Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFNC  
FOSC  
FOSC  
OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
POSCMD<1:0>  
Primary Oscillator Mode Select bits  
11= Primary oscillator disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
FWDTEN  
FWDT  
Watchdog Timer Enable bit  
1= Watchdog Timer always enabled (LPRC oscillator cannot be disabled.  
Clearing the SWDTEN bit in the RCON register will have no effect.)  
0= Watchdog Timer enabled/disabled by user software (LPRC can be  
disabled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
WDTPRE  
WDTPOST  
FWDT  
FWDT  
FWDT  
Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
.
.
.
0001= 1:2  
0000= 1:1  
DS70175D-page 226  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 20-2: PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
FPWRT<2:0>  
FPOR  
Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
Reserved  
FPOR,  
RESERVED3  
Reserved (read as ‘1’ and must be programmed as ‘1’)  
FGS, FOSCSEL, Unimplemented (read as ‘0’, write as ‘0’)  
FOSC, FWDT,  
FPOR  
FIGURE 20-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR(1)  
20.2 On-Chip Voltage Regulator  
All of the PIC24H devices power their core digital logic  
at a nominal 2.5V. This may create an issue for designs  
that are required to operate at a higher typical voltage,  
such as 3.3V. To simplify system design, all devices in  
the PIC24H family incorporate an on-chip regulator that  
allows the device to run its core logic from VDD.  
3.3V  
PIC24H  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VDDCORE/VCAP pin  
(Figure 20-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter capac-  
itor is provided in TABLE 23-12: “Internal Voltage  
Regulator Specifications” located in Section 23.1  
“DC Characteristics”.  
VDD  
VDDCORE/VCAP  
VSS  
10 μF  
Note 1: These are typical operating voltages. Refer  
to TABLE 23-12: “Internal Voltage Regu-  
lator Specifications” located in  
On a POR, it takes approximately 20 μs for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
Section 23.1 “DC Characteristics” for the  
full operating ranges of VDD and VDDCORE.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 227  
PIC24H  
If the WDT is enabled, it will continue to run during Sleep  
or Idle modes. When the WDT time-out occurs, the  
device will wake the device and code execution will con-  
tinue from where the PWRSAVinstruction was executed.  
The corresponding SLEEP or IDLE bits (RCON<3,2>)  
will need to be cleared in software after the device wakes  
up.  
20.3 Watchdog Timer (WDT)  
For PIC24H devices, the WDT is driven by the LPRC  
oscillator. When the WDT is enabled, the clock source  
is also enabled.  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>) which allow the selec-  
tion of a total of 16 settings, from 1:1 to 1:32,768. Using  
the prescaler and postscaler, time-out periods ranging  
from 1 ms to 131 seconds can be achieved.  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN con-  
trol bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for crit-  
ical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
Note:  
If the WINDIS bit (FWDT<6>) is cleared, the  
CLRWDTinstruction should be executed by  
the application software only during the last  
1/4 of the WDT period. This CLRWDT win-  
dow can be determined by using a timer. If  
a CLRWDT instruction is executed before  
this window, a WDT Reset occurs.  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
FIGURE 20-2:  
WDT BLOCK DIAGRAM  
SWDTEN  
FWDTEN  
LPRC Control  
Wake from Sleep  
WDTPRE  
Prescaler  
WDTPOST<3:0>  
WDT  
Counter  
WDT Overflow  
Reset  
Postscaler  
LPRC Input  
32.768 kHz  
1 ms/4 ms  
All Device Resets  
Transition to  
New Clock Source  
Exit Sleep or  
Idle Mode  
CLRWDTInstr.  
PWRSAVInstr.  
Sleep or Idle Mode  
DS70175D-page 228  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
20.4 JTAG Interface  
20.7 In-Circuit Debugger  
PIC24H devices implement a JTAG interface, which  
supports boundary scan device testing, as well as  
in-circuit programming. Detailed information on the  
interface will be provided in future revisions of the  
document.  
When MPLAB® ICD 2 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This func-  
tion allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pin functions.  
20.5 Code Protection and  
CodeGuard™ Security  
Any 1 out of 3 pairs of debugging clock/data pins may  
be used:  
• PGC1/EMUC1 and PGD1/EMUD1  
• PGC2/EMUC2 and PGD2/EMUD2  
• PGC3/EMUC3 and PGD3/EMUD3  
The PIC24H product families offer advanced imple-  
mentation of CodeGuard™ Security. CodeGuard  
Security enables multiple parties to securely share  
resources (memory, interrupts and peripherals) on a  
single chip. This feature helps protect individual  
Intellectual Property in collaborative system designs.  
To use the in-circuit debugger function of the device,  
the design must implement ICSP programming capa-  
bility connections to MCLR, VDD, VSS, PGC, PGD and  
the EMUDx/EMUCx pin pair. In addition, when the fea-  
ture is enabled, some of the resources are not available  
for general use. These resources include the first 80  
bytes of data RAM and two I/O pins.  
When coupled with software encryption libraries,  
CodeGuard Security can be used to securely update  
Flash even when multiple IP are resident on the single  
chip. The code protection features vary depending on  
the actual PIC24H implemented. The following  
sections provide an overview these features.  
The code protection features are controlled by the  
Configuration registers: FBS, FSS and FGS.  
Note:  
Refer to CodeGuard Security Reference  
Manual (DS70180) for further information  
on usage, configuration and operation of  
CodeGuard Security.  
20.6 In-Circuit Serial Programming  
Programming Capability  
PIC24H family digital signal controllers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
sequence. This allows customers to manufacture  
boards with unprogrammed devices and then program  
the digital signal controller just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware, to be programmed. Please refer to  
the “dsPIC33F Flash Programming Specification”  
(DS70152) document for details about ICSP  
programming capability.  
Any 1 out of 3 pairs of programming clock/data pins  
may be used:  
• PGC1/EMUC1 and PGD1/EMUD1  
• PGC2/EMUC2 and PGD2/EMUD2  
• PGC3/EMUC3 and PGD3/EMUD3  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 229  
PIC24H  
NOTES:  
DS70175D-page 230  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
21.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of this group of PIC24H devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to the “dsPIC30F  
Family Reference Manual” (DS70046).  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The PIC24H instruction set is identical to that of the  
PIC24F, and is a subset of the dsPIC30F/33F  
instruction set.  
The literal instructions that involve data movement may  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
• The first source operand which is a register ‘Wb’  
without any address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
• The second source operand which is a literal  
value  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
• DSP operations  
The control instructions may use some of the following  
operands:  
• Control operations  
Table 21-1 shows the general symbols used in  
describing the instructions.  
• A program memory address  
• The mode of the table read and table write  
instructions  
The PIC24H instruction set summary in Table 21-2 lists  
all the instructions, along with the status flags affected  
by each instruction.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
However, word or byte-oriented file register instruc-  
tions have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 231  
PIC24H  
All instructions are a single word, except for certain  
double word instructions, which were made double  
word instructions so that all the required information is  
available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
reads and writes and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles. Certain instructions that involve skipping over the  
subsequent instruction require either two or three cycles  
if the skip is performed, depending on whether the  
instruction being skipped is a single-word or double word  
instruction. Moreover, double word moves require two  
cycles. The double word instructions execute in two  
instruction cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
Note:  
For more details on the instruction set,  
refer to the “dsPIC30F/33F Programmer’s  
Reference Manual” (DS70157).  
TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
bit4  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388608}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
Wm*Wm  
Multiplicand and Multiplier working register pair for Square instructions ∈  
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Wm*Wn  
Wn  
Multiplicand and Multiplier working register pair for DSP instructions ∈  
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
One of 16 working registers {W0..W15}  
DS70175D-page 232  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 233  
PIC24H  
TABLE 21-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
1
ADD  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f + WREG  
1
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
1
2
3
4
ADDC  
f = f + WREG + (C)  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
1
1
1
AND  
1
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
Wd = Wb .AND. lit5  
1
N,Z  
1
N,Z  
1
N,Z  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
ASR  
f,WREG  
Ws,Wd  
1
ASR  
1
ASR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
1
ASR  
1
N,Z  
5
6
BCLR  
BRA  
BCLR  
BCLR  
BRA  
1
None  
Ws,#bit4  
C,Expr  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
BRA  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
Branch if unsigned less than  
Branch if Negative  
None  
BRA  
None  
BRA  
NC,Expr  
NN,Expr  
NZ,Expr  
Expr  
Branch if Not Carry  
None  
BRA  
Branch if Not Negative  
Branch if Not Zero  
None  
BRA  
None  
BRA  
Branch Unconditionally  
Branch if Zero  
None  
BRA  
Z,Expr  
1 (2)  
2
None  
BRA  
Wn  
Computed Branch  
None  
7
BSET  
BSW  
BTG  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
f,#bit4  
Bit Set f  
1
None  
Ws,#bit4  
Ws,Wb  
Bit Set Ws  
1
None  
8
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
9
f,#bit4  
1
None  
BTG  
Ws,#bit4  
f,#bit4  
Bit Toggle Ws  
1
None  
10  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1
1
None  
None  
None  
(2 or 3)  
11  
BTSS  
1
(2 or 3)  
Ws,#bit4  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
DS70175D-page 234  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
12  
BTST  
BTST  
f,#bit4  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Ws,Wb  
f,#bit4  
Bit Test Ws to C  
Bit Test Ws to Z  
C
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
Z
13  
BTSTS  
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
Wn  
f
None  
None  
None  
None  
None  
WDTO,Sleep  
N,Z  
Call indirect subroutine  
f = 0x0000  
CLR  
WREG  
Ws  
WREG = 0x0000  
Ws = 0x0000  
CLR  
16  
17  
CLRWDT  
COM  
CLRWDT  
COM  
COM  
Clear Watchdog Timer  
f = f  
f
f,WREG  
WREG = f  
N,Z  
COM  
CP  
Ws,Wd  
Wd = Ws  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
18  
CP  
f
Compare f with WREG  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
Compare Wb with lit5  
CP  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
DEC  
Wn  
Wn = decimal adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
DEC2  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
28  
29  
DISI  
DIV  
Disable Interrupts for k instruction cycles  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
EXCH  
FBCL  
FF1L  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Swap Wns with Wnd  
1
1
1
1
1
1
1
1
2
1
18  
18  
18  
18  
1
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
30  
31  
32  
33  
34  
EXCH  
FBCL  
FF1L  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
C
1
C
FF1R  
GOTO  
FF1R  
1
C
GOTO  
GOTO  
2
None  
Wn  
Go to indirect  
2
None  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 235  
PIC24H  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
35  
INC  
INC  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
f
WREG = f + 1  
Wd = Ws + 1  
f = f + 2  
INC  
36  
37  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f,WREG  
Ws,Wd  
f
WREG = f + 2  
Wd = Ws + 2  
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
N,Z  
IOR  
N,Z  
IOR  
Wd = Wb .IOR. Ws  
N,Z  
IOR  
Wd = Wb .IOR. lit5  
N,Z  
38  
39  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f
f = Logical Right Shift f  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
LSR  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
LSR  
LSR  
LSR  
N,Z  
40  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV.b  
MOV  
MOV  
MOV  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
None  
f
Move f to f  
N,Z  
f,WREG  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move f to WREG  
N,Z  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
None  
None  
Move Wn to f  
None  
Wso,Wdo  
WREG,f  
Wns,Wd  
Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Move Ws to Wd  
None  
Move WREG to f  
N,Z  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
None  
None  
41  
MUL  
None  
None  
None  
MUL.UU Wb,Ws,Wnd  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
None  
MUL.SU  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
MUL.UU Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
NEG  
f
W3:W2 = f * WREG  
f = f + 1  
1
1
1
1
1
1
None  
42  
NEG  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
None  
43  
44  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
2
All  
45  
46  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
None  
None  
None  
PUSH  
Wso  
Wns  
PUSH.D  
Push W(ns):W(ns + 1) to Top-of-Stack  
(TOS)  
PUSH.S  
Push Shadow Registers  
1
1
1
1
None  
PWRSAV  
PWRSAV #lit1  
Go into Sleep or Idle mode  
WDTO,Sleep  
DS70175D-page 236  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
47  
RCALL  
RCALL  
RCALL  
Expr  
Wn  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
None  
None  
Computed Call  
48  
REPEAT  
REPEAT #lit14  
REPEAT Wn  
RESET  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
1
None  
1
None  
49  
50  
51  
52  
53  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
RETFIE  
Return from interrupt  
3 (2)  
3 (2)  
3 (2)  
1
None  
RETLW  
RETURN  
RLC  
#lit10,Wn  
Return with literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = sign-extended Ws  
f = 0xFFFF  
None  
None  
f
C,N,Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C,N,Z  
RLC  
1
C,N,Z  
54  
55  
56  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
RRC  
RRC  
RRNC  
RRNC  
RRNC  
SE  
1
N,Z  
f,WREG  
Ws,Wd  
f
1
N,Z  
1
N,Z  
1
C,N,Z  
f,WREG  
Ws,Wd  
f
1
C,N,Z  
1
C,N,Z  
RRNC  
1
N,Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N,Z  
1
N,Z  
57  
58  
SE  
1
C,N,Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
Ws  
WREG = 0xFFFF  
1
None  
Ws = 0xFFFF  
1
None  
59  
60  
61  
SL  
f
f = Left Shift f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N,Z  
SUB  
SUBB  
SUB  
SUB  
SUB  
SUB  
SUB  
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
WREG = f – WREG  
1
Wn = Wn – lit10  
1
Wd = Wb – Ws  
1
Wd = Wb – lit5  
1
SUBB  
SUBB  
SUBB  
f
f = f – WREG – (C)  
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
#lit10,Wn  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
62  
63  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG – f  
Wd = Ws – Wb  
Wd = lit5 – Wb  
SUBBR  
f = WREG – f – (C)  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
Wd = lit5 – Wb – (C)  
64  
65  
SWAP  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Wn  
None  
TBLRDH  
TBLRDH Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
None  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 237  
PIC24H  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDL Ws,Wd  
Read Prog<15:0> to Wd  
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
None  
None  
None  
None  
N,Z  
67  
68  
69  
70  
TBLWTH Ws,Wd  
TBLWTL Ws,Wd  
ULNK  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
XOR  
XOR  
XOR  
XOR  
XOR  
XOR  
ZE  
f
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N,Z  
N,Z  
N,Z  
Wd = Wb .XOR. lit5  
N,Z  
71  
ZE  
Wnd = Zero-extend Ws  
C,Z,N  
DS70175D-page 238  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
22.1 MPLAB Integrated Development  
Environment Software  
22.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PICmicro MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 239  
PIC24H  
22.2 MPASM Assembler  
22.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
22.6 MPLAB SIM Software Simulator  
22.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PICmicro MCUs and dsPIC® DSCs on an  
instruction level. On any given instruction, the data  
areas can be examined or modified and stimuli can be  
applied from a comprehensive stimulus controller.  
Registers can be logged to files for further run-time  
analysis. The trace buffer and logic analyzer display  
extend the power of the simulator to record and track  
program execution, actions on I/O, most peripherals  
and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 family of microcontrollers and the  
dsPIC30, dsPIC33 and PIC24 family of digital signal  
controllers. These compilers provide powerful integra-  
tion capabilities, superior code optimization and ease  
of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
22.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS70175D-page 240  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
22.7 MPLAB ICE 2000  
High-Performance  
22.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PICmicro  
MCUs and can be used to develop for these and other  
PICmicro MCUs and dsPIC DSCs. The MPLAB ICD 2  
utilizes the in-circuit debugging capability built into  
the Flash devices. This feature, along with Microchip’s  
In-Circuit Serial ProgrammingTM (ICSPTM) protocol,  
offers cost-effective, in-circuit Flash debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by setting breakpoints,  
single stepping and watching variables, and CPU  
status and peripheral registers. Running at full speed  
enables testing hardware and applications in real  
time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro MCU devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
22.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ programming capability  
cable assembly is included as a standard item. In  
Stand-Alone mode, the MPLAB PM3 Device Program-  
mer can read, verify and program PICmicro MCU  
devices without a PC connection. It can also set code  
protection in this mode. The MPLAB PM3 connects to  
the host PC via an RS-232 or USB cable. The MPLAB  
PM3 has high-speed communications and optimized  
algorithms for quick programming of large memory  
devices and incorporates an SD/MMC card for file stor-  
age and secure data applications.  
22.8 MPLAB ICE 4000  
High-Performance  
In-Circuit Emulator  
The MPLAB ICE 4000 In-Circuit Emulator is intended to  
provide the product development engineer with a  
complete microcontroller design tool set for high-end  
PICmicro MCUs and dsPIC DSCs. Software control of  
the MPLAB ICE 4000 In-Circuit Emulator is provided by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLAB ICE 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, and up to 2 Mb of emulation memory.  
The MPLAB ICE 4000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 241  
PIC24H  
22.11 PICSTART Plus Development  
Programmer  
22.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PICmicro MCU devices in DIP packages up to 40  
pins. Larger pin count devices, such as the PIC16C92X  
and PIC17C76X, may be supported with an adapter  
socket. The PICSTART Plus Development  
A wide variety of demonstration, development and  
evaluation boards for various PICmicro MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Programmer is CE compliant.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
22.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer with an easy-to-use interface for pro-  
gramming many of Microchip’s baseline, mid-range  
and PIC18F families of Flash memory microcontrollers.  
The PICkit 2 Starter Kit includes a prototyping develop-  
ment board, twelve sequential lessons, software and  
HI-TECH’s PICC™ Lite C compiler, and is designed to  
help get up to speed quickly using PIC® micro-  
controllers. The kit provides everything needed to  
program, evaluate and develop applications using  
Microchip’s powerful, mid-range Flash memory family  
of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS70175D-page 242  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
23.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of PIC24H electrical characteristics. Additional information will be provided in future  
revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24H family are listed below. Exposure to these maximum rating conditions for  
extended periods may affect device reliability. Functional operation of the device at these or any other conditions above  
the parameters indicated in the operation listings of this specification is not implied.  
(Note 1)  
Absolute Maximum Ratings  
Ambient temperature under bias...............................................................................................................-40°C to +85°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital-only pin with respect to VSS .................................................................................. -0.3V to +5.6V  
Voltage on VDDCORE with respect to VSS ................................................................................................ 2.25V to 2.75V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 2)................................................................................................................250 mA  
Maximum output current sunk by any I/O pin (Note 3) .............................................................................................4 mA  
Maximum output current sourced by any I/O pin (Note 3)........................................................................................4 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 23-2).  
3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGCx  
and PGDx pins, which are able to sink/source 12 mA.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 243  
PIC24H  
23.1 DC Characteristics  
TABLE 23-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
PIC24H  
40  
VDD Range  
(in Volts)  
Temp Range  
Characteristic  
(in °C)  
DC5  
3.0-3.6V  
-40°C to +85°C  
TABLE 23-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
PIC24H  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD Σ IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = Σ ({VDD VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/θJA  
TABLE 23-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)  
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)  
Legend: TBD = To Be Determined  
θJA  
θJA  
θJA  
θJA  
48.4  
52.3  
38.7  
38.3  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.  
TABLE 23-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
3.0  
2.8  
VSS  
3.6  
V
V
V
DC12  
DC16  
VDR  
RAM Data Retention Voltage(2)  
VPOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
DC17  
SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms 0-3.3V in 0.1s  
0-2.5V in 60 ms  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
DS70175D-page 244  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 23-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(2)  
DC20  
27  
26  
33  
32  
44  
43  
60  
58  
74  
72  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
+25°C  
+85°C  
+25°C  
+85°C  
+25°C  
+85°C  
+25°C  
+85°C  
+25°C  
+85°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
DC20a  
DC21  
DC21a  
DC22  
DC22a  
DC23  
DC23a  
DC24  
DC24a  
Legend: TBD = To Be Determined  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VSS.  
MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are  
operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits  
are all zeroed.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 245  
PIC24H  
TABLE 23-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core OFF Clock ON Base Current(2)  
DC40  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
16.5  
16  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
+25°C  
+85°C  
+25°C  
+85°C  
+25°C  
+85°C  
+25°C  
+85°C  
+25°C  
+85°C  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
3.3V  
3.3V  
DC40a  
DC41  
DC41a  
DC42  
3.3V  
3.3V  
3.3V  
DC42a  
DC43  
DC43a  
DC44  
DC44a  
Legend: TBD = To Be Determined  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module  
Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to VSS.  
TABLE 23-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)(2)  
DC60  
200  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
+25°C  
+85°C  
+25°C  
+85°C  
3.0V  
3.0V  
Base Power-Down Current(3,4)  
DC60a  
DC61  
(3)  
Watchdog Timer Current: ΔIWDT  
DC61a  
Legend: TBD = To Be Determined  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/O pins are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off.  
3: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
DS70175D-page 246  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 23-8: DC CHARACTERISTICS:DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Doze  
Ratio  
Parameter No.  
Typical(1)  
Max  
Units  
Conditions  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
42  
26  
25  
41  
25  
24  
1:2  
1:64  
1:128  
1:2  
mA  
25°C  
3.3V  
40 MIPS  
mA  
85°C  
1:64  
1:128  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 247  
PIC24H  
TABLE 23-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Input Low Voltage  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
DI10  
DI15  
DI16  
DI17  
DI18  
DI19  
I/O pins  
MCLR  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.2 VDD  
V
V
V
V
V
V
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
SMBus disabled  
SDAx, SCLx  
SMBus enabled  
VIH  
Input High Voltage  
DI20  
I/O pins:  
with analog functions  
digital-only  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
DI25  
DI26  
DI27  
DI28  
DI29  
MCLR  
0.8 VDD  
0.7 VDD  
0.7 VDD  
0.7 VDD  
0.8 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
SMBus disabled  
SMBus enabled  
SDAx, SCLx  
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
50  
250  
400  
μA VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2)(3)  
DI50  
DI51  
I/O ports  
TBD  
TBD  
TBD  
TBD  
μA VSS VPIN VDD,  
Pin at high-impedance  
Analog Input Pins  
μA VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
TBD  
TBD  
TBD  
TBD  
μA  
VSS VPIN VDD  
μA VSS VPIN VDD,  
XT and HS modes  
Legend: TBD = To Be Determined  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS70175D-page 248  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 23-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
VOL  
Output Low Voltage  
I/O ports  
DO10  
DO16  
0.4  
0.4  
V
V
IOL = TBD mA, VDD = 3.3V  
IOL = TBD mA, VDD = 3.3V  
OSC2/CLKO  
VOH  
Output High Voltage  
I/O ports  
DO20  
DO26  
2.4  
2.4  
V
V
IOH = -3.0 mA, VDD = 3.3V  
IOH = -1.3 mA, VDD = 3.3V  
OSC2/CLKO  
Legend: TBD = To Be Determined  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 23-11: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
100  
1000  
E/W -40°C to +85°C  
VPR  
VDD for Read  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D133A TIW  
Self-Timed Write Cycle Time  
Characteristic Retention  
1.5  
ms  
D134  
D135  
D136  
D137  
D138  
TRETD  
IDDP  
TRW  
TPE  
20  
Year Provided no other specifications  
are violated  
Supply Current during  
Programming  
20  
10  
1.6  
20.5  
40  
mA  
ms  
ms  
μs  
Self-Timed Row Write Cycle  
Time  
Self-Timed Page Erase  
Cycle Time  
TWW  
Word Write Cycle Time  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
TABLE 23-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value  
1
10  
μF  
Capacitor must be low series  
resistance (< 5 ohms)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 249  
PIC24H  
23.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
PIC24H AC characteristics and timing parameters.  
TABLE 23-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Operating voltage VDD range as described in Section 23.0 “Electrical  
Characteristics”.  
FIGURE 23-1:  
Load Condition 1 – for all pins except OSC2  
VDD/2  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
VSS  
15 pF for OSC2 output  
TABLE 23-14: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
No.  
DO50 COSC2  
OSC2/SOSC2 pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS70175D-page 250  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS41  
OS40  
TABLE 23-15: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symb  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
0.8  
4
64  
8
MHz EC  
MHz ECPLL  
Oscillator Crystal Frequency  
3
3
10  
10  
10  
10  
40  
40  
33  
MHz XT  
MHz XTPLL  
MHz HS  
MHz HSPLL  
kHz SOSC  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
12.5  
25  
DC  
DC  
ns  
ns  
TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.625 x TOSC  
ns  
EC  
EC  
OS31  
TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
TBD  
ns  
OS40  
OS41  
TckR CLKO Rise Time(3)  
6
6
TBD  
TBD  
ns  
ns  
TckF  
CLKO Fall Time(3)  
Legend: TBD = To Be Determined  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 251  
PIC24H  
TABLE 23-16: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range  
0.8  
8
MHz ECPLL, HSPLL, XTPLL  
modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
100  
200  
MHz  
OS52  
OS53  
TLOC  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)  
TBD  
TBD  
100  
1
TBD  
TBD  
μs  
%
Measured over 100 ms  
period  
Legend: TBD = To Be Determined  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 23-17: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 7.3728 MHz(1)  
F20  
FRC  
TBD  
TBD  
TBD  
TBD  
%
%
+25°C  
-40°C TA +85°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Legend: TBD = To Be Determined  
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
TABLE 23-18: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21  
TBD  
TBD  
TBD  
TBD  
%
%
+25°C  
-40°C TA +85°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Legend: TBD = To Be Determined  
Note 1: Change of LPRC frequency as VDD changes.  
DS70175D-page 252  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-3:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 23-1 for load conditions.  
TABLE 23-19: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
20  
2
10  
10  
25  
25  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (output)  
CNx High or Low Time (input)  
ns  
DI40  
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 253  
PIC24H  
FIGURE 23-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 23-1 for load conditions.  
DS70175D-page 254  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 23-20: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
μs  
-40°C to +85°C  
TPWRT  
0.75  
1.5  
3
1
2
4
1.25  
2.5  
5
ms -40°C to +85°C  
User programmable  
6
8
10  
12  
24  
48  
96  
16  
32  
64  
128  
20  
40  
80  
160  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
0.8  
1.0  
SY20  
TWDT1  
Watchdog Timer Time-out Period  
(No Prescaler)  
1.8  
2.0  
2.2  
ms VDD = 5V, -40°C to +85°C  
TWDT2  
TOST  
1.9  
2.1  
1024 TOSC  
500  
2.3  
ms VDD = 3V, -40°C to +85°C  
SY30  
SY35  
Oscillator Start-up Timer Period  
Fail-Safe Clock Monitor Delay  
TOSC = OSC1 period  
-40°C to +85°C  
TFSCM  
900  
μs  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
3: Characterized by design but not tested.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 255  
PIC24H  
FIGURE 23-5:  
TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 23-1 for load conditions.  
TABLE 23-21: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK Oscillator Input  
frequency Range (oscillator enabled  
by setting bit TCS (T1CON<1>))  
DC  
50  
kHz  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer1 is a Type A.  
DS70175D-page 256  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 23-22: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TB10  
TB11  
TB15  
TtxH  
TtxL  
TtxP  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
TABLE 23-23: TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TC11  
TC15  
TtxH  
TtxL  
TtxP  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns Must also meet  
parameter TC15  
0.5 TCY + 20  
TCY + 10  
ns Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
ns N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 257  
PIC24H  
FIGURE 23-6:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 23-1 for load conditions.  
TABLE 23-24: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(2 TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 23-7:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 23-1 for load conditions.  
TABLE 23-25: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter D032  
See parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
DS70175D-page 258  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-8:  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA/OCFB  
OC15  
OCx  
TABLE 23-26: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
50  
ns  
OC20  
TFLT  
Fault Input Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
FIGURE 23-9:  
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
LSb In  
Bit 14 - - - -1  
SP41  
Note: Refer to Figure 23-1 for load conditions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 259  
PIC24H  
TABLE 23-27: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Low Time(3)  
SCKx Output High Time(3)  
SCKx Output Fall Time(4)  
SCKx Output Rise Time(4)  
SDOx Data Output Fall Time(4)  
SDOx Data Output Rise Time(4)  
TCY/2  
TCY/2  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
See parameter D032  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40  
SP41  
TdiV2scH, Setup Time of SDIx Data Input  
20  
20  
ns  
ns  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
to SCKx Edge  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
FIGURE 23-10:  
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
LSb  
MSb  
SP40  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
Note: Refer to Figure 23-1 for load conditions.  
DS70175D-page 260  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 23-28: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
TscL  
TscH  
TscF  
TscR  
TdoF  
SCKx Output Low Time(3)  
SCKx Output High Time(3)  
SCKx Output Fall Time(4)  
SCKx Output Rise Time(4)  
TCY/2  
TCY/2  
ns  
ns  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
See parameter D032  
SDOx Data Output Fall  
Time(4)  
SP31  
SP35  
SP36  
SP40  
SP41  
TdoR  
SDOx Data Output Rise  
Time(4)  
30  
20  
20  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
FIGURE 23-11:  
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP =  
0
)
)
SP71  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP =  
1
SP73  
LSb  
SP35  
MSb  
Bit 14 - - - - - -1  
SP30,SP31  
SDOX  
SDIX  
SP51  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 23-1 for load conditions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 261  
PIC24H  
TABLE 23-29: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKx Input Low Time  
30  
30  
10  
10  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx Input High Time  
SCKx Input Fall Time(3)  
SCKx Input Rise Time(3)  
SDOx Data Output Fall Time(3)  
SDOx Data Output Rise Time(3)  
See parameter D032  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40  
SP41  
SP50  
SP51  
SP52  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
20  
20  
50  
ns  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
High-Impedance(3)  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY +40  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Assumes 50 pF load on all SPIx pins.  
DS70175D-page 262  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-12:  
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 23-1 for load conditions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 263  
PIC24H  
TABLE 23-30: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKx Input Low Time  
30  
30  
10  
10  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx Input High Time  
SCKx Input Fall Time(3)  
SCKx Input Rise Time(3)  
SDOx Data Output Fall Time(3)  
SDOx Data Output Rise Time(3)  
See parameter D032  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
20  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
20  
TssL2scH, SSx to SCKx or SCKx ↑  
TssL2scL Input  
120  
TssH2doZ SSx to SDOX Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70175D-page 264  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-13:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 23-1 for load conditions.  
FIGURE 23-14:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 23-1 for load conditions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 265  
PIC24H  
TABLE 23-31: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
IM50  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode  
400 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
250  
100  
TBD  
THD:DAT Data Input  
Hold Time  
0
0
0.9  
TBD  
TSU:STA Start Condition 100 kHz mode  
TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode  
Hold Time  
TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
400 kHz mode  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode  
TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
TBD  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
CB  
Bus Capacitive Loading  
400  
Legend: TBD = To Be Determined  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 21. “Inter-Integrated Circuit (I2C™)”  
in the “dsPIC30F Family Reference Manual” (DS70046).  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
DS70175D-page 266  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-15:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 23-16:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 267  
PIC24H  
TABLE 23-32: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
1.3  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
μs  
μs  
IS11  
THI:SCL  
Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
μs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL  
Output Valid From 100 kHz mode  
3500  
1000  
350  
Clock  
400 kHz mode  
1 MHz mode(1)  
0
0
TBF:SDA Bus Free Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
DS70175D-page 268  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-17:  
ECAN™ MODULE I/O TIMING CHARACTERISTICS  
CiTx Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CiRx Pin  
(input)  
CA20  
TABLE 23-33: ECAN™ MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2) Max  
Units  
Conditions  
CA10  
CA11  
CA20  
TioF  
TioR  
Tcwf  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Pulse Width to Trigger  
CAN Wake-up Filter  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 269  
PIC24H  
TABLE 23-34: A/D MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD - 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS - 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
AD06  
AD07  
VREFH  
VREFL  
VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 1.7  
AVSS  
AVDD  
V
V
V
AVDD - 1.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS – 0.3  
AD08  
IREF  
Current Drain  
200  
.001  
300  
3
μA  
μA  
A/D operating  
A/D off  
Analog Input  
VREFL  
AD10 VINH-VINL Full-Scale Input Span  
VREFH  
AVDD + 0.3  
±0.610  
V
V
See Note  
AD11  
AD12  
VIN  
Absolute Input Voltage  
Leakage Current  
AVSS – 0.3  
±0.001  
μA  
VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
Source Impedance =  
2.5 KΩ  
AD13  
Leakage Current  
±0.001  
±0.610  
μA  
VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Source Impedance =  
2.5 KΩ  
AD17 RIN  
Recommended Impedance  
of Analog Voltage Source  
1K  
2.5K  
Ω
Ω
10-bit  
12-bit  
ADC Accuracy (12-bit Mode)  
AD20a Nr  
Resolution  
12 data bits  
bits  
AD21a INL  
Integral Nonlinearity(2)  
<±2  
<±1  
±3  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
AD22a DNL  
AD23a GERR  
AD24a EOFF  
AD25a —  
Differential Nonlinearity(2)  
Gain Error(2)  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
TBD  
TBD  
TBD  
TBD  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Offset Error(2)  
±2  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Monotonicity(1)  
Guaranteed  
Dynamic Performance (12-bit Mode)  
AD30a THD  
Total Harmonic Distortion  
TBD  
TBD  
dB  
dB  
AD31a SINAD  
Signal to Noise and  
Distortion  
Legend: TBD = To Be Determined  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.  
DS70175D-page 270  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
TABLE 23-34: A/D MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
AD32a SFDR  
Spurious Free Dynamic  
Range  
TBD  
dB  
AD33a FNYQ  
AD34a ENOB  
Input Signal Bandwidth  
Effective Number of Bits  
250  
kHz  
bits  
TBD  
TBD  
ADC Accuracy (10-bit Mode)  
AD20b Nr  
Resolution  
10 data bits  
bits  
AD21b INL  
Integral Nonlinearity  
TBD  
TBD  
TBD  
TBD  
<±2  
<±1  
<±3  
<±2  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
AD22b DNL  
AD23b GERR  
AD24b EOFF  
AD25b —  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Offset Error  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Monotonicity(1)  
Guaranteed  
Dynamic Performance (10-bit Mode)  
AD30b THD  
Total Harmonic Distortion  
dB  
dB  
AD31b SINAD  
Signal to Noise and  
Distortion  
TBD  
AD32b SFDR  
Spurious Free Dynamic  
Range  
TBD  
dB  
AD33b FNYQ  
AD34b ENOB  
Input Signal Bandwidth  
Effective Number of Bits  
550  
kHz  
bits  
TBD  
TBD  
Legend: TBD = To Be Determined  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 271  
PIC24H  
FIGURE 23-18:  
A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
AD55  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets ADxCON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in Section 17 in the “dsPIC30F Family Reference Manual”  
(DS70046).  
– Software clears ADxCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 9.  
3
4
5
6
7
8
– Convert bit 8.  
– Convert bit 0.  
– One TAD for end of conversion.  
DS70175D-page 272  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-19:  
A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Execution  
Set ADON  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
TSAMP  
TSAMP  
AD55  
AD55  
TCONV  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
3
4
5
6
8
3
4
– Software sets ADxCON. ADON to start AD operation.  
– Convert bit 0.  
5
1
2
– Sampling starts after discharge period.  
TSAMP is described in the “dsPIC30F  
Family Reference Manual” (DS70046), Section 17.  
– One TAD for end of conversion.  
– Begin conversion of next channel.  
6
7
8
– Sample for time specified by SAMC<4:0>.  
– Convert bit 9.  
– Convert bit 8.  
3
4
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 273  
PIC24H  
TABLE 23-35: A/D CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters  
AD50 TAD  
AD51 tRC  
A/D Clock Period(2)  
70  
ns  
ns  
TCY = 70 ms, ADxCON3  
in default state  
A/D Internal RC Oscillator Period  
250  
Conversion Rate  
AD55 tCONV  
AD56 FCNV  
Conversion Time  
Throughput Rate  
12 TAD  
1.1  
Msps  
AD57 TSAMP Sample Time  
1 TAD  
Timing Parameters  
AD60 tPCS  
Conversion Start from Sample  
1.0 TAD  
Auto-Convert Trigger  
(SSRC<2:0> = 111) not  
selected  
Trigger(3)  
AD61 tPSS  
AD62 tCSS  
AD63 tDPU  
Sample Start from Setting  
Sample (SAMP) bit  
0.5 TAD  
0.5 TAD  
20  
1.5 TAD  
μs  
Conversion Completion to  
Sample Start (ASAM = 1)(3)  
Time to Stabilize Analog Stage  
from A/D Off to A/D On(3)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
3: Characterized by design but not tested.  
DS70175D-page 274  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
FIGURE 23-20:  
A/D CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS  
(ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
CONV  
ADxIF  
Buffer(0)  
1
2
3
4
5
6
7
8
9
– Software sets ADxCON. SAMP to start sampling.  
– Sampling starts after discharge period.  
1
2
TSAMP is described in the “dsPIC30F Family Reference Manual” (DS70046), Section 17.  
– Software clears ADxCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 11.  
3
4
5
6
7
8
9
– Convert bit 10.  
– Convert bit 1.  
– Convert bit 0.  
– One TAD for end of conversion.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 275  
PIC24H  
TABLE 23-36: A/D CONVERSION (12-BIT MODE) TIMING REQUIREMENTS)  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
A/D Clock Period(1)  
133  
ns  
ns  
Tcy = 133 ns, ADxCON3  
in default state  
A/D Internal RC Oscillator  
Period  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
Conversion Time  
Throughput Rate  
Sample Time  
14 TAD  
ns  
ksps  
ns  
500  
TSAMP  
1 TAD  
Timing Parameters  
AD60  
AD61  
AD62  
AD63  
tPCS  
tPSS  
tCSS  
tDPU  
Conversion Start from Sample  
Trigger  
0.5 TAD  
1.0 TAD  
1.5 TAD  
ns  
ns  
ns  
μs  
Sample Start from Setting  
Sample (SAMP) bit  
Conversion Completion to  
Sample Start (ASAM = 1)  
Time to Stabilize Analog Stage  
from A/D Off to A/D On  
20  
Legend: TBD = To Be Determined  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
DS70175D-page 276  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
24.0 PACKAGING INFORMATION  
24.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC24HJ  
256GP706  
-I/PT  
0510017  
e
3
100-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24HJ256  
GP710-I/PT  
0510017  
e
3
100-Lead TQFP (14x14x1mm)  
100-Lead TQFP (14x14x1mm)  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24HJ256  
GP710-I/PF  
0510017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 277  
PIC24H  
24.2 Package Details  
The following sections give the technical details of the  
packages.  
64-Lead Plastic Thin-Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45°  
α
A
φ
c
A2  
L
A1  
β
F
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS  
NOM  
64  
*
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
64  
.020  
16  
0.50  
Pins per Side  
n1  
A
16  
Overall Height  
.039  
.043  
.039  
.006  
.024  
.047  
1.00  
1.10  
1.20  
1.05  
0.25  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.037  
.002  
.018  
.041  
.010  
.030  
0.95  
0.05  
0.45  
1.00  
0.15  
Foot Length  
0.60  
Footprint  
F
.039 REF.  
1.00 REF.  
φ
Foot Angle  
0
3.5  
.472  
.472  
.394  
.394  
.007  
.009  
.035  
10  
7
0
3.5  
12.00  
7
Overall Width  
E
D
.463  
.463  
.390  
.390  
.005  
.007  
.025  
.482  
.482  
.398  
.398  
.009  
.011  
.045  
15  
11.75  
11.75  
9.90  
9.90  
0.13  
0.17  
0.64  
12.25  
12.25  
10.10  
10.10  
0.23  
0.27  
1.14  
15  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
12.00  
10.00  
10.00  
0.18  
0.22  
0.89  
10  
E1  
D1  
c
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5
5
β
5
10  
15  
5
10  
15  
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MS-026  
Drawing No. C04-085  
Revised 07-22-05  
DS70175D-page 278  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
100-Lead Plastic Thin-Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45°  
A
α
c
φ
A1  
β
A2  
L
F
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS  
*
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
100  
.016 BSC  
100  
0.40 BSC  
25  
Pins per Side  
Overall Height  
n1  
A
25  
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.047  
1.00  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.041  
.006  
.030  
0.95  
0.05  
0.45  
1.05  
0.15  
0.75  
Foot Length  
Footprint (Reference)  
Foot Angle  
F
φ
.039 REF.  
3.5°  
.551 BSC  
1.00 REF.  
3.5°  
0°  
7°  
0°  
7°  
Overall Width  
E
D
14.00 BSC  
Overall Length  
.551 BSC  
.472 BSC  
.472 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
.004  
.005  
5°  
.006  
.008  
.009  
15°  
0.09  
0.15  
0.18  
10°  
0.20  
0.23  
15°  
Lead Width  
B
α
β
.007  
10°  
10°  
0.13  
5°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5°  
15°  
5°  
10°  
15°  
*
Controlling Parameter  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MS-026  
Drawing No. C04-100  
Revised 07-22-05  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 279  
PIC24H  
100-Lead Plastic Thin-Quad Flatpack (PF) 14x14x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
B
2
1
α
n
A
φ
A2  
c
A1  
β
L
F
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS  
*
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
100  
.020 BSC  
100  
0.50 BSC  
25  
Pins per Side  
n1  
A
25  
Overall Height  
Molded Package Thickness  
Standoff  
.047  
.041  
.006  
.030  
1.20  
1.05  
0.15  
0.75  
A2  
A1  
L
.037  
.039  
.024  
0.95  
1.00  
.002  
.018  
0.05  
0.45  
Foot Length  
0.60  
Footprint  
F
φ
.039 REF  
3.5°  
.630 BSC  
1.00 REF  
Foot Angle  
0°  
7°  
0°  
3.5°  
16.00 BSC  
7°  
Overall Width  
E
D
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
.630 BSC  
.551 BSC  
.551 BSC  
16.00 BSC  
14.00 BSC  
14.00 BSC  
E1  
D1  
c
.004  
.007  
11°  
11°  
.008  
.011  
13°  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
B
α
β
.009  
12°  
12°  
0.22  
12°  
12°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
13°  
11°  
13°  
*
Controlling Parameter  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MS-026  
Drawing No. C04-110  
Revised 07-21-05  
DS70175D-page 280  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
APPENDIX A: REVISION HISTORY  
Revision A (February 2006)  
• Initial release of this document  
Revision B (March 2006)  
• Updated the Configuration Bits Description table  
(Table 20.1)  
• Updated registers and register maps  
• Updated Section 15.0 “Serial Peripheral Inter-  
face (SPI)”  
• Updated Section 23.0 “Electrical Characteris-  
tics”  
• Updated pinout diagrams  
• Additional minor corrections throughout document  
text  
Revision C (May 2006)  
• Updated Section 23.0 “Electrical Characteris-  
tics”  
• Updated the Configuration Bits Description table  
(Table 20.1)  
• Additional minor corrections throughout document  
text  
Revision D (July 2006)  
• Added FBS and FSS Device Configuration regis-  
ters (see Table 20-1) and corresponding bit field  
descriptions (see Table 20-2). These added regis-  
ters replaced the former RESERVED1 and  
RESERVED2 registers.  
• Added INTTREG Interrupt Control and Status  
register. (See Section 6.3 “Interrupt Control  
and Status Registers”. See also Register 6-33.)  
• Added Core Registers BSRAM and SSRAM (see  
Section 3.2.7 “Data Ram Protection Feature”)  
• Clarified Fail-Safe Clock Monitor operation (see  
Section 8.3 “Fail-Safe Clock Monitor (FSCM)”)  
• Updated COSC<2:0> and NOSC<2:0> bit config-  
urations in OSCCON register (see Register 8-1)  
• Updated CLKDIV register bit configurations (see  
Register 8-2)  
• Added Word Write Cycle Time parameter (TWW)  
to Program Flash Memory (see Table 23-11)  
• Noted exceptions to Absolute Maximum Ratings  
on I/O pin output current (see Section 23.0  
“Electrical Characteristics”)  
• Added ADC2 Event Trigger for Timer4/5  
(Section 12.0 “Timer2/3, Timer4/5, Timer6/7  
and Timer8/9”)  
• Corrected mislabeled I2COV bit in I2CxSTAT  
register (see Register 16-2)  
• Removed AD26a, AD27a, AD28a, AD26b, AD27b  
and AD28b from Table 23-34 (A/D Module)  
• Revised Table 23-36 (AD63)  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 281  
PIC24H  
NOTES:  
DS70175D-page 282  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
INDEX  
A
D
A/D Converter ................................................................... 209  
DMA.......................................................................... 209  
Initialization ............................................................... 209  
Key Features............................................................. 209  
AC Characteristics ............................................................ 250  
Internal RC Accuracy................................................ 252  
Load Conditions........................................................ 250  
ADC Module  
ADC1 Register Map.................................................... 37  
ADC2 Register Map.................................................... 37  
Alternate Vector Table (AIVT)............................................. 67  
Arithmetic Logic Unit (ALU)................................................. 23  
Assembler  
Data Address Space........................................................... 27  
Alignment.................................................................... 27  
Memory Map for PIC24H Devices with 16 KBs RAM. 29  
Memory Map for PIC24H Devices with 8 KBs RAM... 28  
Near Data Space........................................................ 27  
Software Stack ........................................................... 48  
Width .......................................................................... 27  
DC Characteristics............................................................ 244  
I/O Pin Input Specifications ...................................... 248  
I/O Pin Output Specifications.................................... 249  
Idle Current (IDOZE) .................................................. 247  
Idle Current (IIDLE).................................................... 246  
Operating Current (IDD) ............................................ 245  
Power-Down Current (IPD)........................................ 246  
Program Memory...................................................... 249  
Temperature and Voltage Specifications.................. 244  
Development Support....................................................... 239  
DMA  
MPASM Assembler................................................... 240  
Automatic Clock Stretch.................................................... 163  
Receive Mode........................................................... 163  
Transmit Mode.......................................................... 163  
B
Interrupts and Traps ................................................. 116  
Request Source Selection........................................ 116  
DMA Module  
Block Diagrams  
16-bit Timer1 Module................................................ 139  
A/D Module ....................................................... 210, 211  
Connections for On-Chip Voltage Regulator............. 227  
ECAN Module ........................................................... 180  
Input Capture ............................................................ 147  
Output Compare ....................................................... 151  
PIC24H ....................................................................... 14  
PIC24H CPU Core...................................................... 18  
PIC24H Oscillator System Diagram.......................... 127  
PIC24H PLL.............................................................. 129  
Reset System.............................................................. 61  
Shared Port Structure ............................................... 137  
SPI ............................................................................ 154  
Timer2 (16-bit) .......................................................... 143  
Timer2/3 (32-bit) ....................................................... 142  
UART ........................................................................ 171  
Watchdog Timer (WDT)............................................ 228  
DMA Register Map ..................................................... 38  
DMAC Operating Modes................................................... 114  
Addressing................................................................ 115  
Byte or Word Transfer .............................................. 115  
Continuous or One-Shot........................................... 116  
Manual Transfer ....................................................... 116  
Null Data Peripheral Write........................................ 115  
Ping-Pong................................................................. 116  
Transfer Direction..................................................... 115  
DMAC Registers............................................................... 114  
DMAxCNT ................................................................ 114  
DMAxCON................................................................ 114  
DMAxPAD ................................................................ 114  
DMAxREQ................................................................ 114  
DMAxSTA................................................................. 114  
DMAxSTB................................................................. 114  
C
E
C Compilers  
ECAN Module  
MPLAB C18 .............................................................. 240  
MPLAB C30 .............................................................. 240  
Clock Switching................................................................. 134  
Enabling.................................................................... 134  
Sequence.................................................................. 134  
Code Examples  
DMA Sample Initialization Method............................ 117  
Erasing a Program Memory Page............................... 58  
Initiating a Programming Sequence............................ 59  
Loading Write Buffers ................................................. 59  
Port Write/Read ........................................................ 138  
PWRSAV Instruction Syntax..................................... 135  
Code Protection ........................................................ 223, 229  
Configuration Bits.............................................................. 223  
Description (Table).................................................... 224  
Configuration Register Map .............................................. 223  
Configuring Analog Port Pins............................................ 138  
CPU  
Baud Rate Setting .................................................... 184  
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)......... 39  
ECAN1 Register Map (C1CTRL1.WIN = 0)................ 40  
ECAN1 Register Map (C1CTRL1.WIN = 1)................ 40  
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)......... 42  
ECAN2 Register Map (C2CTRL1.WIN = 0)................ 42  
ECAN2 Register Map (C2CTRL1.WIN = 1)................ 43  
Frame Types ............................................................ 179  
Message Reception.................................................. 181  
Message Transmission............................................. 183  
Modes of Operation.................................................. 181  
Overview................................................................... 179  
Electrical Characteristics .................................................. 243  
AC............................................................................. 250  
Enhanced CAN Module .................................................... 179  
Equations  
A/D Conversion Clock Period................................... 212  
Calculating the PWM Period..................................... 150  
Calculation for Maximum PWM Resolution .............. 150  
Device Operating Frequency.................................... 128  
FOSC Calculation..................................................... 128  
Relationship Between Device and  
Control Register.......................................................... 20  
CPU Clocking System....................................................... 128  
PLL Configuration ..................................................... 128  
Selection ................................................................... 128  
Sources..................................................................... 128  
Customer Change Notification Service ............................. 287  
Customer Support............................................................. 287  
SPI Clock Speed .............................................. 156  
Serial Clock Rate...................................................... 161  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 283  
PIC24H  
Time Quantum for Clock Generation ........................185  
UART Baud Rate with BRGH = 0 .............................172  
UART Baud Rate with BRGH = 1 .............................172  
XT with PLL Mode Example......................................129  
Errata ..................................................................................11  
IFSx ............................................................................ 71  
INTCON1.................................................................... 71  
INTCON2.................................................................... 71  
INTTREG.................................................................... 71  
IPCx............................................................................ 71  
Interrupt Setup Procedures............................................... 111  
Initialization............................................................... 111  
Interrupt Disable ....................................................... 111  
Interrupt Service Routine.......................................... 111  
Trap Service Routine................................................ 111  
Interrupt Vector Table (IVT)................................................ 67  
Interrupts Coincident with Power Save Instructions ......... 136  
F
Flash Program Memory.......................................................55  
Control Registers ........................................................56  
Operations ..................................................................56  
Programming Algorithm ..............................................58  
RTSP Operation..........................................................56  
Table Instructions........................................................55  
Flexible Configuration .......................................................223  
FSCM  
J
JTAG Boundary Scan Interface........................................ 223  
Delay for Crystal and PLL Clock Sources...................65  
Device Resets.............................................................65  
M
Memory Organization ......................................................... 25  
Microchip Internet Web Site.............................................. 287  
Modes of Operation  
I
I/O Ports............................................................................137  
Parallel I/O (PIO).......................................................137  
Write/Read Timing ....................................................138  
Disable...................................................................... 181  
Initialization............................................................... 181  
Listen All Messages.................................................. 181  
Listen Only................................................................ 181  
Loopback .................................................................. 181  
Normal Operation ..................................................... 181  
MPLAB ASM30 Assembler, Linker, Librarian................... 240  
MPLAB ICD 2 In-Circuit Debugger ................................... 241  
MPLAB ICE 2000 High-Performance Universal  
2
I C  
Addresses.................................................................163  
Baud Rate Generator................................................161  
General Call Address Support ..................................163  
Interrupts...................................................................161  
IPMI Support.............................................................163  
Master Mode Operation  
Clock Arbitration................................................164  
Multi-Master Communication, Bus  
In-Circuit Emulator.................................................... 241  
MPLAB ICE 4000 High-Performance Universal  
Collision and Bus Arbitration.....................164  
In-Circuit Emulator.................................................... 241  
MPLAB Integrated Development Environment Software.. 239  
MPLAB PM3 Device Programmer .................................... 241  
MPLINK Object Linker/MPLIB Object Librarian................ 240  
Multi-Bit Data Shifter........................................................... 23  
Operating Modes ......................................................161  
Registers...................................................................161  
Slave Address Masking ............................................163  
Slope Control ............................................................164  
Software Controlled Clock Stretching (STREN = 1)..163  
N
2
I C Module  
NVM Module  
I2C1 Register Map ......................................................35  
I2C2 Register Map ......................................................35  
In-Circuit Debugger...........................................................229  
In-Circuit Emulation...........................................................223  
In-Circuit Serial Programming (ICSP) ....................... 223, 229  
Infrared Support  
Built-in IrDA Encoder and Decoder...........................173  
External IrDA, IrDA Clock Output..............................173  
Input Capture  
Register Map .............................................................. 47  
O
Open-Drain Configuration................................................. 138  
Output Compare ............................................................... 149  
Registers .................................................................. 152  
P
Packaging......................................................................... 277  
Details....................................................................... 278  
Marking..................................................................... 277  
Peripheral Module Disable (PMD) .................................... 136  
PICSTART Plus Development Programmer..................... 242  
Pinout I/O Descriptions (table)............................................ 15  
PMD Module  
Register Map .............................................................. 47  
POR and Long Oscillator Start-up Times ........................... 65  
PORTA  
Register Map .............................................................. 45  
PORTB  
Register Map .............................................................. 45  
PORTC  
Register Map .............................................................. 45  
PORTD  
Register Map .............................................................. 45  
PORTE  
Registers...................................................................148  
Input Change Notification Module.....................................138  
Instruction Addressing Modes.............................................48  
File Register Instructions ............................................48  
Fundamental Modes Supported..................................49  
MCU Instructions ........................................................48  
Move and Accumulator Instructions............................49  
Other Instructions........................................................49  
Instruction Set  
Overview ...................................................................234  
Summary...................................................................231  
Instruction-Based Power-Saving Modes...........................135  
Idle ............................................................................136  
Sleep.........................................................................135  
Internal RC Oscillator  
Use with WDT...........................................................228  
Internet Address................................................................287  
Interrupt Control and Status Registers................................71  
IECx ............................................................................71  
Register Map .............................................................. 46  
DS70175D-page 284  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
PORTF  
Register Map............................................................... 46  
PORTG  
Register Map............................................................... 46  
Power-Saving Features .................................................... 135  
Clock Frequency and Switching................................ 135  
Program Address Space..................................................... 25  
Construction................................................................ 50  
Data Access from Program Memory  
CiRXOVF2 (ECAN Receive Buffer Overflow 2)........ 203  
CiTRBnDLC (ECAN Buffer n Data Length Control).. 206  
CiTRBnEID (ECAN Buffer n Extended Identifier)..... 205  
CiTRBnSID (ECAN Buffer n Standard Identifier)...... 205  
CiTRBnSTAT (ECAN Receive Buffer n Status)........ 207  
CiTRmnCON (ECAN TX/RX Buffer m Control) ........ 204  
CiVEC (ECAN Interrupt Code) ................................. 188  
CLKDIV (Clock Divisor) ............................................ 131  
CORCON (Core Control)...................................... 22, 72  
DMACS0 (DMA Controller Status 0) ........................ 122  
DMACS1 (DMA Controller Status 1) ........................ 124  
DMAxCNT (DMA Channel x Transfer Count)........... 121  
DMAxCON (DMA Channel x Control)....................... 118  
DMAxPAD (DMA Channel x Peripheral Address) .... 121  
DMAxREQ (DMA Channel x IRQ Select)................. 119  
DMAxSTA (DMA Channel x RAM Start Address A). 120  
DMAxSTB (DMA Channel x RAM Start Address B). 120  
DSADR (Most Recent DMA RAM Address) ............. 125  
I2CxCON (I2Cx Control)........................................... 165  
I2CxMSK (I2Cx Slave Mode Address Mask)............ 169  
I2CxSTAT (I2Cx Status)........................................... 167  
ICxCON (Input Capture x Control)............................ 148  
IEC0 (Interrupt Enable Control 0)............................... 84  
IEC1 (Interrupt Enable Control 1)............................... 86  
IEC2 (Interrupt Enable Control 2)............................... 88  
IEC3 (Interrupt Enable Control 3)............................... 90  
IEC4 (Interrupt Enable Control 4)............................... 91  
IFS0 (Interrupt Flag Status 0)..................................... 76  
IFS1 (Interrupt Flag Status 1)..................................... 78  
IFS2 (Interrupt Flag Status 2)..................................... 80  
IFS3 (Interrupt Flag Status 3)..................................... 82  
IFS4 (Interrupt Flag Status 4)..................................... 83  
INTCON1 (Interrupt Control 1) ................................... 73  
INTCON2 (Interrupt Control 2) ................................... 75  
IPC0 (Interrupt Priority Control 0)............................... 92  
IPC1 (Interrupt Priority Control 1)............................... 93  
IPC10 (Interrupt Priority Control 10)......................... 102  
IPC11 (Interrupt Priority Control 11)......................... 103  
IPC12 (Interrupt Priority Control 12)......................... 104  
IPC13 (Interrupt Priority Control 13)......................... 105  
IPC14 (Interrupt Priority Control 14)......................... 106  
IPC15 (Interrupt Priority Control 15)......................... 107  
IPC16 (Interrupt Priority Control 16)................. 108, 110  
IPC17 (Interrupt Priority Control 17)......................... 109  
IPC2 (Interrupt Priority Control 2)............................... 94  
IPC3 (Interrupt Priority Control 3)............................... 95  
IPC4 (Interrupt Priority Control 4)............................... 96  
IPC5 (Interrupt Priority Control 5)............................... 97  
IPC6 (Interrupt Priority Control 6)............................... 98  
IPC7 (Interrupt Priority Control 7)............................... 99  
IPC8 (Interrupt Priority Control 8)............................. 100  
IPC9 (Interrupt Priority Control 9)............................. 101  
NVMCON (Flash Memory Control)............................. 57  
OCxCON (Output Compare x Control)..................... 152  
OSCCON (Oscillator Control)................................... 130  
OSCTUN (FRC Oscillator Tuning)............................ 133  
PLLFBD (PLL Feedback Divisor) ............................. 132  
RCON (Reset Control)................................................ 62  
SPIxCON1 (SPIx Control 1) ..................................... 158  
SPIxCON2 (SPIx Control 2) ..................................... 159  
SPIxSTAT (SPIx Status and Control)....................... 157  
SR (CPU Status) .................................................. 20, 72  
T1CON (Timer1 Control) .......................................... 140  
TxCON (T2CON, T4CON, T6CON or  
Using Program Space Visibility........................... 53  
Data Access from Program Memory Using  
Table Instructions ............................................... 52  
Data Access from, Address Generation...................... 51  
Memory Map............................................................... 25  
Table Read Instructions  
TBLRDH ............................................................. 52  
TBLRDL .............................................................. 52  
Visibility Operation ...................................................... 53  
Program Memory  
Interrupt Vector ........................................................... 26  
Organization................................................................ 26  
Reset Vector ............................................................... 26  
Pulse-Width Modulation Mode .......................................... 150  
PWM  
Duty Cycle................................................................. 150  
Period........................................................................ 150  
R
Reader Response............................................................. 288  
Registers  
ADxCHS0 (ADCx Input Channel 0 Select................. 219  
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) ... 218  
ADxCON1 (ADCx Control 1)..................................... 213  
ADxCON2 (ADCx Control 2)..................................... 215  
ADxCON3 (ADCx Control 3)..................................... 216  
ADxCON4 (ADCx Control 4)..................................... 217  
ADxCSSH (ADCx Input Scan Select High)............... 220  
ADxCSSL (ADCx Input Scan Select Low) ................ 220  
ADxPCFGH (ADCx Port Configuration High) ........... 221  
ADxPCFGL (ADCx Port Configuration Low)............. 221  
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)........... 196  
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)........... 197  
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)......... 197  
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)....... 198  
CiCFG1 (ECAN Baud Rate Configuration 1) ............ 194  
CiCFG2 (ECAN Baud Rate Configuration 2) ............ 195  
CiCTRL1 (ECAN Control 1) ...................................... 186  
CiCTRL2 (ECAN Control 2) ...................................... 187  
CiEC (ECAN Transmit/Receive Error Count)............ 193  
CiFCTRL (ECAN FIFO Control)................................ 189  
CiFEN1 (ECAN Acceptance Filter Enable)............... 196  
CiFIFO (ECAN FIFO Status)..................................... 190  
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)...... 200  
CiINTE (ECAN Interrupt Enable) .............................. 192  
CiINTF (ECAN Interrupt Flag)................................... 191  
CiRXFnEID (ECAN Acceptance Filter n  
Extended Identifier)........................................... 199  
CiRXFnSID (ECAN Acceptance Filter n  
Standard Identifier) ........................................... 199  
CiRXFUL1 (ECAN Receive Buffer Full 1)................. 202  
CiRXFUL2 (ECAN Receive Buffer Full 2)................. 202  
CiRXMnEID (ECAN Acceptance Filter Mask n  
Extended Identifier)........................................... 201  
CiRXMnSID (ECAN Acceptance Filter Mask n  
Standard Identifier) ........................................... 201  
CiRXOVF1 (ECAN Receive Buffer Overflow 1)........ 203  
T8CON Control)................................................ 144  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 285  
PIC24H  
TyCON (T3CON, T5CON, T7CON or  
Input Capture............................................................ 258  
Timing Specifications  
T9CON Control)................................................145  
UxMODE (UARTx Mode)..........................................174  
UxSTA (UARTx Status and Control).........................176  
Reset  
Clock Source Selection...............................................64  
Special Function Register Reset States .....................65  
Times ..........................................................................64  
Reset Sequence..................................................................67  
Resets.................................................................................61  
10-bit A/D Conversion Requirements....................... 274  
12-bit A/D Conversion Requirements....................... 276  
CAN I/O Requirements............................................. 269  
I2Cx Bus Data Requirements (Master Mode)........... 266  
I2Cx Bus Data Requirements (Slave Mode)............. 268  
Output Compare Requirements................................ 258  
PLL Clock ................................................................. 252  
Reset, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and Brown-out  
S
Reset Requirements......................................... 255  
Simple OC/PWM Mode Requirements ..................... 259  
SPIx Master Mode (CKE = 0) Requirements............ 260  
SPIx Master Mode (CKE = 1) Requirements............ 261  
SPIx Slave Mode (CKE = 0) Requirements.............. 262  
SPIx Slave Mode (CKE = 1) Requirements.............. 264  
Timer1 External Clock Requirements....................... 256  
Timer2, Timer4, Timer6 and Timer8 External  
Serial Peripheral Interface (SPI) .......................................153  
Setup for Continuous Output Pulse Generation................149  
Setup for Single Output Pulse Generation........................149  
Software Simulator (MPLAB SIM).....................................240  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame......................................................48  
Special Features ...............................................................223  
SPI  
Master, Frame Master Connection ...........................155  
Master/Slave Connection..........................................155  
Slave, Frame Master Connection .............................156  
Slave, Frame Slave Connection ...............................156  
SPI Module  
Clock Requirements ......................................... 257  
Timer3, Timer5, Timer7 and Timer9 External  
Clock Requirements ......................................... 257  
U
UART  
Operating Function Description ................................153  
SPI1 Register Map......................................................36  
SPI2 Register Map......................................................36  
Symbols Used in Opcode Descriptions.............................232  
System Control  
Baud Rate  
Generator (BRG) .............................................. 172  
Break and Sync Transmit Sequence ........................ 173  
Flow Control Using UxCTS and UxRTS Pins ........... 173  
Receiving in 8-bit or 9-bit Data Mode ....................... 173  
Transmitting in 8-bit Data Mode................................ 173  
Transmitting in 9-bit Data Mode................................ 173  
UART Module  
Register Map...............................................................47  
T
Temperature and Voltage Specifications  
UART1 Register Map.................................................. 35  
UART2 Register Map.................................................. 36  
AC .............................................................................250  
Timer1...............................................................................139  
Timer2/3, Timer4/5, Timer6/7 and Timer8/9 .....................141  
Timing Characteristics  
V
Voltage Regulator (On-Chip) ............................................ 227  
CLKO and I/O ...........................................................253  
Timing Diagrams  
W
Watchdog Timer (WDT)............................................ 223, 228  
Programming Considerations ................................... 228  
WWW Address ................................................................. 287  
WWW, On-Line Support ..................................................... 11  
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0,  
ASAM = 0, SSRC = 000) ..................................272  
10-bit A/D Conversion (CHPS = 01, SIMSAM =  
0, ASAM = 1, SSRC = 111, SAMC =  
00001)...........................................................273  
12-bit A/D Conversion (ASAM = 0, SSRC = 000) .....275  
CAN I/O.....................................................................269  
ECAN Bit...................................................................184  
External Clock...........................................................251  
I2Cx Bus Data (Master Mode) ..................................265  
I2Cx Bus Data (Slave Mode) ....................................267  
I2Cx Bus Start/Stop Bits (Master Mode)...................265  
I2Cx Bus Start/Stop Bits (Slave Mode).....................267  
Input Capture (CAPx)................................................258  
OC/PWM...................................................................259  
Output Compare (OCx).............................................258  
Reset, Watchdog Timer, Oscillator Start-up  
Timer and Power-up Timer ...............................254  
SPIx Master Mode (CKE = 0)....................................259  
SPIx Master Mode (CKE = 1)....................................260  
SPIx Slave Mode (CKE = 0)......................................261  
SPIx Slave Mode (CKE = 1)......................................263  
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock...............256  
Timing Requirements  
CLKO and I/O ...........................................................253  
External Clock...........................................................251  
DS70175D-page 286  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following informa-  
tion:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata, appli-  
cation notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers should contact their distributor, representa-  
tive or field application engineer (FAE) for support.  
Local sales offices are also available to help custom-  
ers. A listing of sales offices and locations is included  
in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of Micro-  
chip sales offices, distributors and factory repre-  
sentatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a spec-  
ified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change Notifi-  
cation and follow the registration instructions.  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 287  
PIC24H  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC24H  
DS70175D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70175D-page 288  
Preliminary  
© 2006 Microchip Technology Inc.  
PIC24H  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PIC 24 HJ 256 GP6 10 T I / PT - XXX  
a)  
b)  
PIC24HJ256GP210I/PT:  
General-purpose PIC24H, 256 KB program  
memory, 100-pin, Industrial temp.,  
TQFP package.  
Microchip Trademark  
Architecture  
PIC24HJ64GP506I/PT-ES:  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
General-purpose PIC24H, 64 KB program  
memory, 64-pin, Industrial temp.,  
TQFP package, Engineering Sample.  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
24  
=
=
16-bit Microcontroller  
Flash Memory Family: HJ  
Flash program memory, 3.3V, High-speed  
Product Group:  
GP2  
=
=
=
=
General purpose family  
General purpose family  
General purpose family  
General purpose family  
GP3  
GP5  
GP6  
Pin Count:  
06  
10  
=
=
64-pin  
100-pin  
Temperature Range:  
Package:  
I
=
-40°C to +85°C (Industrial)  
PT  
PF  
=
=
10x10 or 12x12 mmTQFP (Thin Quad Flatpack)  
14x14 mmTQFP (Thin Quad Flatpack)  
Pattern:  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES  
=
Engineering Sample  
© 2006 Microchip Technology Inc.  
Preliminary  
DS70175D-page 289  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-3910  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Atlanta  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Boston  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Detroit  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
06/08/06  
DS70175D-page 290  
Preliminary  
© 2006 Microchip Technology Inc.  

相关型号:

PIC24HF

16-bit Embedded Control Solutions PIC24 Microcontrollers dsPIC Digital Signal Controllers
MICROCHIP

PIC24HGP

16-bit Embedded Control Solutions PIC24 Microcontrollers dsPIC Digital Signal Controllers
MICROCHIP

PIC24HJ128GP202

16-bit Microcontrollers (up to 128 KB Flash and 8K SRAM) with Advanced Analog
MICROCHIP

PIC24HJ128GP204

16-bit Microcontrollers (up to 128 KB Flash and 8K SRAM) with Advanced Analog
MICROCHIP

PIC24HJ128GP204-I/PT

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-44
MICROCHIP

PIC24HJ128GP206

Flash Programming Specification
MICROCHIP

PIC24HJ128GP206-I

High-Performance, 16-Bit Microcontrollers
MICROCHIP

PIC24HJ128GP206A

16-bit Microcontrollers (up to 256 KB Flash and 16 KB SRAM) with Advanced Analog
MICROCHIP

PIC24HJ128GP206AE/MR

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQCC64, 9 X 9 MM, 0.90 MM HEIGHT, 0.50 MM, LEAD FREE, PLASTIC, QFN-64
MICROCHIP

PIC24HJ128GP206AE/PT

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, 0.50 MM, LEAD FREE, PLASTIC, TQFP-64
MICROCHIP

PIC24HJ128GP206AH/PT

16-BIT, FLASH, 20 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, 0.50 MM, LEAD FREE, PLASTIC, TQFP-64
MICROCHIP
MICROCHIP