PIC32MX795F512LT-80I/PT [MICROCHIP]

32-BIT, FLASH, 80 MHz, RISC MICROCONTROLLER, PQFP100, 12 X 12 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100;
PIC32MX795F512LT-80I/PT
型号: PIC32MX795F512LT-80I/PT
厂家: MICROCHIP    MICROCHIP
描述:

32-BIT, FLASH, 80 MHz, RISC MICROCONTROLLER, PQFP100, 12 X 12 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100

时钟 微控制器 外围集成电路
文件: 总236页 (文件大小:2088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC32MX5XX/6XX/7XX  
Family Data Sheet  
High-Performance, USB, CAN and Ethernet  
32-Bit Flash Microcontrollers  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-037-9  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS61156C-page 2  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
High-Performance, USB, CAN and Ethernet  
32-Bit Flash Microcontrollers  
High-Performance 32-Bit RISC CPU:  
Peripheral Features (Continued):  
• MIPS32® M4K™ 32-bit core with 5-stage pipeline  
• 80 MHz maximum frequency  
• Internal 8 MHz and 32 kHz oscillators  
• Six UART modules with:  
• 1.56 DMIPS/MHz (Dhrystone 2.1) performance  
at zero Wait state Flash access  
- RS-232, RS-485 and LIN 1.2 support  
- IrDA® with on-chip hardware encoder and  
• Single-cycle multiply and high-performance divide  
unit  
decoder  
• Up to four SPI modules  
• Up to five I2C™ modules  
• MIPS16e™ mode for up to 40% smaller code size  
• Two sets of 32 core register files (32-bit) to reduce  
interrupt latency  
• Separate PLLs for CPU and USB clocks  
• Parallel Master and Slave Port (PMP/PSP) with  
8-bit and 16-bit data, and up to 16 address lines  
• Prefetch Cache module to speed execution from  
Flash  
• Hardware Real-Time Clock/Calendar (RTCC)  
• Five 16-bit Timers/Counters (two 16-bit pairs  
combine to create two 32-bit timers)  
Microcontroller Features:  
• Five Capture inputs  
• Operating voltage range of 2.3V to 3.6V  
• Five Compare/PWM outputs  
• Five external interrupt pins  
• 256K to 512K Flash memory (plus an additional  
12 KB of Boot Flash)  
• 64K to 128K SRAM memory  
• Pin-compatible with most PIC24/dsPIC® devices  
• High-speed I/O pins capable of toggling at up to  
80 MHz  
• High-current sink/source (18 mA/18 mA) on  
all I/O pins  
• Multiple power management modes  
• Multiple interrupt vectors with individually  
programmable priority  
• Configurable open-drain output on digital I/O pins  
• Fail-Safe Clock Monitor mode  
Debug Features:  
• Configurable Watchdog Timer with on-chip  
Low-Power RC oscillator for reliable operation  
• Two programming and debugging Interfaces:  
- 2-wire interface with unintrusive access and  
real-time data exchange with application  
Peripheral Features:  
- 4-wire MIPS® standard enhanced JTAG  
interface  
• Atomic Set, Clear and Invert operation on select  
peripheral registers  
• Unintrusive hardware-based instruction trace  
• 8-channel hardware DMA with automatic data  
size detection  
• IEEE Standard 1149.2 compatible (JTAG)  
boundary scan  
• USB 2.0-compliant full-speed device and  
On-The-Go (OTG) controller:  
Analog Features:  
- Dedicated DMA channels  
• 10/100 Mbps Ethernet MAC with MII and RMII  
interface:  
• Up to 16-channel, 10-bit Analog-to-Digital  
Converter:  
- Dedicated DMA channels  
• CAN module:  
- 1 Msps conversion rate  
- Conversion available during Sleep and Idle  
• Two Analog Comparators  
- 2.0B Active with DeviceNet™ addressing  
support  
• 5V tolerant input pins (digital pins only)  
- Dedicated DMA channels  
• 3 MHz to 25 MHz crystal oscillator  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 3  
 
PIC32MX5XX/6XX/7XX  
TABLE 1:  
PIC32MX FEATURES  
PT,  
MR  
(1)  
PIC32MX575F256H 64 256 + 12  
PIC32MX675F256H 64 256 + 12  
PIC32MX775F256H 64 256 + 12  
PIC32MX575F512H 64 512 + 12  
PIC32MX675F512H 64 512 + 12  
PIC32MX695F512H 64 512 + 12  
PIC32MX775F512H 64 512 + 12  
PIC32MX795F512H 64 512 + 12  
64  
64  
1
1
1
1
1
1
1
1
0
1
1
0
1
1
1
1
1
0
2
1
0
0
2
2
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
8/4  
8/4  
8/8  
8/4  
8/4  
8/4  
8/8  
8/8  
6
6
6
6
6
6
6
6
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
16  
16  
16  
16  
16  
16  
16  
16  
2
2
2
2
2
2
2
2
Yes Yes No  
Yes Yes No  
Yes Yes No  
Yes Yes No  
Yes Yes No  
Yes Yes No  
Yes Yes No  
Yes Yes No  
PT,  
MR  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
PT,  
MR  
64  
PT,  
MR  
64  
PT,  
MR  
64  
PT,  
MR  
128  
64  
PT,  
MR  
PT,  
MR  
128  
PT,  
(1)  
(1)  
(1)  
(1)  
PIC32MX575F256L 100 256 + 12  
PIC32MX675F256L 100 256 + 12  
PIC32MX775F256L 100 256 + 12  
PIC32MX575F512L 100 512 + 12  
PIC32MX675F512L 100 512 + 12  
64  
64  
1
1
1
1
1
1
1
1
0
1
1
0
1
1
1
1
1
0
2
1
0
0
2
2
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
5/5/5  
8/4  
8/4  
8/8  
8/4  
8/4  
8/4  
8/8  
8/8  
6
6
6
6
6
6
6
6
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
16  
16  
16  
16  
16  
16  
16  
16  
2
2
2
2
2
2
2
2
Yes Yes Yes PF,  
BG  
PT,  
Yes Yes Yes PF,  
BG  
PT,  
Yes Yes Yes PF,  
BG  
64  
PT,  
Yes Yes Yes PF,  
BG  
64  
PT,  
Yes Yes Yes PF,  
BG  
(1)  
(1)  
64  
PT,  
Yes Yes Yes PF,  
BG  
512 + 12  
PIC32MX695F512L 100  
128  
64  
PT,  
Yes Yes Yes PF,  
BG  
(1)  
(1)  
PIC32MX775F512L 100 512 + 12  
PIC32MX795F512L 100 512 + 12  
PT,  
Yes Yes Yes PF,  
BG  
128  
Legend:  
PF, PT = TQFP  
MR = QFN  
BG = XBGA  
Note 1: This device features 12 KB boot Flash memory.  
2: CTS and RTS pins may not be available for all UART modules. Refer to the “Pin Diagrams” section for more  
information.  
2
3: Some pins between the UART, SPI and I C modules may be shared. Refer to the “Pin Diagramssection for more  
information.  
4: Refer to Section 32.0 “Packaging Information” for detailed information.  
DS61156C-page 4  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
Pin Diagrams  
64-Pin QFN  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
PMD5/RE5  
PMD6/RE6  
PMD7/RE7  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
48 SOSCO/T1CK/CN0/RC14  
47 SOSCI/CN1/RC13  
OC1/INT0/RD0  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
MCLR  
IC4/PMCS1/PMA14/INT4/RD11  
SCL1/IC3/PMCS2/PMA15/INT3/RD10  
SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9  
RTCC/IC1/INT1/RD8  
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
Vss  
PIC32MX575F256H  
PIC32MX575F512H  
VSS  
OSC2/CLKO/RC15  
V
DD  
OSC1/CLKI/RC12  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
V
DD  
D+/RG2  
D-/RG3  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
VUSB  
PGEC1/AN1/VREF-/CVREF-/CN3/RB1  
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0  
V
BUS  
USBID/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 5  
 
PIC32MX5XX/6XX/7XX  
Pin Diagrams (Continued)  
64-Pin QFN  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/T1CK/CN0/RC14  
ETXEN/PMD5/RE5  
ETXD0/PMD6/RE6  
1
2
SOSCI/CN1/RC13  
OC1/INT0/RD0  
ETXD1/PMD7/RE7  
3
ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11  
ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10  
AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9  
RTCC/AERXD1/ETXD3/IC1/INT1/RD8  
Vss  
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
4
5
6
MCLR  
7
PIC32MX675F256H  
PIC32MX675F512H  
PIC32MX695F512H  
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
8
OSC2/CLKO/RC15  
VSS  
9
OSC1/CLKI/RC12  
VDD  
10  
11  
12  
13  
14  
15  
16  
VDD  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
D+/RG2  
D-/RG3  
AN3/C2IN+/CN5/RB3  
VUSB  
AN2/C2IN-/CN4/RB2  
VBUS  
PGEC1/AN1/VREF-/CVREF-/CN3/RB1  
USBID/RF3  
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
DS61156C-page 6  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Pin Diagrams (Continued)  
64-Pin QFN  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
SOSCO/T1CK/CN0/RC14  
ETXEN/PMD5/RE5  
ETXD0/PMD6/RE6  
1
2
SOSCI/CN1/RC13  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
OC1/INT0/RD0  
ETXD1/PMD7/RE7  
3
ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11  
ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10  
AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9  
RTCC/AERXD1/ETXD3/IC1/INT1/RD8  
Vss  
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
4
5
6
PIC32MX775F256H  
PIC32MX775F512H  
PIC32MX795F512H  
MCLR  
7
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
8
OSC2/CLKO/RC15  
VSS  
9
OSC1/CLKI/RC12  
VDD  
10  
11  
12  
13  
14  
15  
16  
VDD  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
D+/RG2  
D-/RG3  
AN3/C2IN+/CN5/RB3  
VUSB  
AN2/C2IN-/CN4/RB2  
VBUS  
PGEC1/AN1/VREF-/CVREF-/CN3/RB1  
33 USBID/RF3  
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 7  
PIC32MX5XX/6XX/7XX  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
PMD5/RE5  
PMD6/RE6  
1
2
3
48 SOSCO/T1CK/CN0/RC14  
47 SOSCI/CN1/RC13  
46 OC1/INT0/RD0  
PMD7/RE7  
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
IC4/PMCS1/PMA14/INT4/RD11  
SCL1/IC3/PMCS2/PMA15/INT3/RD10  
SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9  
RTCC/IC1/INT1/RD8  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
MCLR  
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
Vss  
PIC32MX575F256H  
PIC32MX575F512H  
VSS  
OSC2/CLKO/RC15  
VDD  
OSC1/CLKI/RC12  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
VDD  
D+/RG2  
D-/RG3  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
VUSB  
PGEC1/AN1/VREF-/CVREF-/CN3/RB1  
VBUS  
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0  
USBID/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
DS61156C-page 8  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/T1CK/CN0/RC14  
ETXEN/PMD5/RE5  
ETXD0/PMD6/RE6  
1
2
SOSCI/CN1/RC13  
OC1/INT0/RD0  
ETXD1/PMD7/RE7  
3
ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11  
ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10  
AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9  
RTCC/AERXD1/ETXD3/IC1/INT1/RD8  
Vss  
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
4
5
6
MCLR  
7
PIC32MX675F256H  
PIC32MX675F512H  
PIC32MX695F512H  
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
8
OSC2/CLKO/RC15  
VSS  
9
OSC1/CLKI/RC12  
VDD  
10  
11  
12  
13  
14  
15  
16  
VDD  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
D+/RG2  
D-/RG3  
AN3/C2IN+/CN5/RB3  
VUSB  
AN2/C2IN-/CN4/RB2  
VBUS  
PGEC1/AN1/VREF-/CVREF-/CN3/RB1  
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0  
USBID/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 9  
PIC32MX5XX/6XX/7XX  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/T1CK/CN0/RC14  
ETXEN/PMD5/RE5  
ETXD0/PMD6/RE6  
1
2
SOSCI/CN1/RC13  
OC1/INT0/RD0  
ETXD1/PMD7/RE7  
3
ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11  
ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10  
AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9  
RTCC/AERXD1/ETXD3/IC1/INT1/RD8  
Vss  
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
4
5
6
MCLR  
7
PIC32MX775F256H  
PIC32MX775F512H  
PIC32MX795F512H  
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
8
OSC2/CLKO/RC15  
VSS  
9
OSC1/CLKI/RC12  
VDD  
10  
11  
12  
13  
14  
15  
16  
V
DD  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
D+/RG2  
D-/RG3  
AN3/C2IN+/CN5/RB3  
VUSB  
AN2/C2IN-/CN4/RB2  
V
BUS  
PGEC1/AN1/VREF-/CVREF-/CN3/RB1  
USBID/RF3  
PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
DS61156C-page 10  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Pin Diagrams (Continued)  
100-Pin TQFP  
= Pins are up to 5V tolerant  
RG15  
VSS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
VDD  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
2
PMD5/RE5  
PMD6/RE6  
3
SDO1/OC1/INT0/RD0  
IC4/PMCS1/PMA14/RD11  
SCK1/IC3/PMCS2/PMA15/RD10  
SS1/IC2/RD9  
4
PMD7/RE7  
5
T2CK/RC1  
6
T3CK/RC2  
7
T4CK/RC3  
RTCC/IC1/RD8  
8
T5CK/SDI1/RC4  
SDA1/INT4/RA15  
9
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
MCLR  
SCL1/INT3/RA14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
PIC32MX575F512L  
PIC32MX575F256L  
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
TDI/RA4  
SDA2/RA3  
SCL2/RA2  
D+/RG2  
VDD  
TMS/RA0  
INT1/RE8  
INT2/RE9  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
PGEC1/AN1/CN3/RB1  
PGED1/AN0/CN2/RB0  
D-/RG3  
VUSB  
VBUS  
SCL1A/SDO1A/U1ATX/RF8  
SDA1A/SDI1A/U1ARX/RF2  
USBID/RF3  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 11  
Pin Diagrams (Continued)  
100-Pin TQFP  
= Pins are up to 5V tolerant  
V
SS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
AERXERR/RG15  
1
VDD  
2
SDO1/OC1/INT0/RD0  
PMD5/RE5  
PMD6/RE6  
3
EMDC/AEMDC/IC4/PMCS1/PMA14/RD11  
SCK1/IC3/PMCS2/PMA15/RD10  
PIC32MX675F256L  
PIC32MX675F512L  
PIC32MX695F512L  
4
PMD7/RE7  
5
SS1/IC2/RD9  
T2CK/RC1  
6
RTCC/EMDIO/AEMDIO/IC1/RD8  
AETXEN/SDA1/INT4/RA15  
AETXCLK/SCL1/INT3/RA14  
T3CK/RC2  
7
T4CK/RC3  
8
T5CK/SDI1/RC4  
9
VSS  
ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
ERXDV/AERXDV/ECRSDV/AECRSDV/SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
MCLR  
VDD  
TDO/RA5  
TDI/RA4  
SDA2/RA3  
SCL2/RA2  
D+/RG2  
ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
VSS  
VDD  
TMS/RA0  
AERXD0/INT1/RE8  
D-/RG3  
AERXD1/INT2/RE9  
VUSB  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
VBUS  
SCL1A/SDO1A/U1ATX/RF8  
SDA1A/SDI1A/U1ARX/RF2  
USBID/RF3  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
PGEC1/AN1/CN3/RB1  
PGED1/AN0/CN2/RB0  
Pin Diagrams (Continued)  
100-Pin TQFP  
= Pins are up to 5V tolerant  
V
SS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
SDO1/OC1/INT0/RD0  
AERXERR/RG15  
1
EMDC/AEMDC/IC4/PMCS1/PMA14/RD11  
SCK1/IC3/PMCS2/PMA15/RD10  
VDD  
2
PMD5/RE5  
PMD6/RE6  
3
SS1/IC2/RD9  
PIC32MX775F256L  
PIC32MX775F512L  
PIC32MX795F512L  
4
RTCC/EMDIO/AEMDIO/IC1/RD8  
AETXEN/SDA1/INT4/RA15  
AETXCLK/SCL1/INT3/RA14  
PMD7/RE7  
5
T2CK/RC1  
6
T3CK/AC2TX/RC2  
T4CK/AC2RX/RC3  
T5CK/SDI1/RC4  
7
VSS  
8
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
9
ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD  
TDO/RA5  
TDI/RA4  
SDA2/RA3  
SCL2/RA2  
D+/RG2  
ERXDV/AERXDV/ECRSDV/AECRSDV/SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
MCLR  
ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
VSS  
VDD  
D-/RG3  
TMS/RA0  
AERXD0/INT1/RE8  
VUSB  
VBUS  
AERXD1/INT2/RE9  
SCL1A/SDO1A/U1ATX/RF8  
SDA1A/SDI1A/U1ARX/RF2  
USBID/RF3  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
PGEC1/AN1/CN3/RB1  
PGED1/AN0/CN2/RB0  
PIC32MX5XX/6XX/7XX  
Pin Diagrams (Continued)  
121-Pin XBGA(1)  
= Pins are up to 5V tolerant  
PIC32MX575F256L  
PIC32MX675F256L  
PIC32MX775F256L  
PIC32MX575F512L  
PIC32MX675F512L  
PIC32MX695F512L  
PIC32MX775F512L  
PIC32MX795F512L  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
RE4  
NC  
RE3  
RG13  
RE2  
RE0  
RE1  
RG0  
RA7  
RF1  
RF0  
VDD  
VSS  
RD12  
RD3  
RD2  
VSS  
RD1  
RG15  
VCAP/  
RD5  
RC14  
VDDCORE  
C
D
E
F
RE6  
RC1  
RC4  
MCLR  
RE8  
RB5  
RB3  
RB1  
RB6  
VDD  
RE7  
RC3  
RG8  
RE9  
RB4  
RB2  
RB0  
RA9  
RG12  
RE5  
RG6  
RG9  
RA0  
VSS  
RG14  
VSS  
RA6  
VSS  
VDD  
VSS  
VDD  
NC  
NC  
NC  
RD7  
RD6  
VSS  
RD4  
RD13  
RA15  
VDD  
VDD  
RD0  
RD8  
RC12  
RA5  
RC13  
NC  
RD11  
RD10  
RA14  
RC15  
RA4  
RC2  
RG7  
NC  
RG1  
NC  
RD9  
VSS  
NC  
G
H
J
VSS  
VDD  
RA1  
RF12  
VSS  
NC  
RA3  
RG2  
RF8  
RF3  
RF4  
VDD  
AVDD  
RB8  
RB9  
NC  
VBUS  
NC  
VUSB  
NC  
RA2  
RB7  
RA10  
AVSS  
RB11  
NC  
RB12  
RB14  
RB13  
RG3  
RF2  
K
L
VDD  
RD15  
RD14  
RB10  
RB15  
RF5  
RF13  
Note 1: Refer to Table 2, Table 3 and Table 4 for full pin names.  
DS61156C-page 14  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
TABLE 2:  
PIN NAMES: PIC32MX575F256L AND PIC32MX575F512L DEVICES  
Pin  
Number  
Pin  
Number  
Full Pin Name  
Full Pin Name  
A1  
A2  
PMD4/RE4  
PMD3/RE3  
E8  
E9  
SDA1/INT4/RA15  
RTCC/IC1/RD8  
A3  
A4  
A5  
A6  
TRD0/RG13  
PMD0/RE0  
E10  
E11  
F1  
SS1/IC2/RD9  
SCL1/INT3/RA14  
MCLR  
PMD8/RG0  
C1TX/PMD10/RF1  
F2  
SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8  
A7  
A8  
VDD  
F3  
F4  
SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9  
VSS  
SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
VSS  
A9  
IC5/PMD12/RD12  
OC3/RD2  
F5  
A10  
A11  
B1  
F6  
No Connect (NC)  
No Connect (NC)  
VDD  
OC2/RD1  
F7  
No Connect (NC)  
RG15  
F8  
B2  
F9  
OSC1/CLKI/RC12  
VSS  
B3  
PMD2/RE2  
PMD1/RE1  
TRD3/RA7  
C1RX/PMD11/RF0  
VCAP/VDDCORE  
PMRD/CN14/RD5  
OC4/RD3  
F10  
F11  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J1  
B4  
OSC2/CLKO/RC15  
INT1/RE8  
B5  
B6  
INT2/RE9  
B7  
TMS/RA0  
B8  
No Connect (NC)  
VDD  
B9  
B10  
B11  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
E1  
VSS  
VSS  
SOSCO/T1CK/CN0/RC14  
PMD6/RE6  
VSS  
No Connect (NC)  
TDO/RA5  
VDD  
TRD1/RG12  
SDA2/RA3  
TRD2/RG14  
TDI/RA4  
TRCLK/RA6  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
VSS  
No Connect (NC)  
PMD15/CN16/RD7  
OC5/PMWR/CN13/RD4  
VDD  
VDD  
No Connect (NC)  
VDD  
SOSCI/CN1/RC13  
IC4/PMCS1/PMA14/RD11  
T2CK/RC1  
No Connect (NC)  
VBUS  
PMD7/RE7  
VUSB  
PMD5/RE5  
D+/RG2  
VSS  
SCL2/RA2  
VSS  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
PGED2/AN7/RB7  
AVDD  
No Connect (NC)  
PMD14/CN15/RD6  
PMD13/CN19/RD13  
SDO1/OC1/INT0/RD0  
No Connect (NC)  
SCK1/IC3/PMCS2/PMA15/RD10  
T5CK/SDI1/RC4  
T4CK/RC3  
J2  
J3  
J4  
J5  
AN11/PMA12/RB11  
TCK/RA1  
J6  
J7  
AN12/PMA11/RB12  
No Connect (NC)  
No Connect (NC)  
J8  
E2  
J9  
E3  
E4  
E5  
E6  
E7  
SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
J10  
J11  
K1  
SCL1A/SDO1A/U1ATX/RF8  
D-/RG3  
T3CK/RC2  
VDD  
PGEC1/AN1/CN3/RB1  
PGED1/AN0/CN2/RB0  
VREF+/CVREF+/PMA6/RA10  
PMD9/RG1  
VSS  
K2  
K3  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 15  
 
PIC32MX5XX/6XX/7XX  
TABLE 2:  
PIN NAMES: PIC32MX575F256L AND PIC32MX575F512L DEVICES (CONTINUED)  
Pin  
Number  
Pin  
Number  
Full Pin Name  
Full Pin Name  
K4  
K5  
AN8/C1OUT/RB8  
No Connect (NC)  
L3  
L4  
AVSS  
AN9/C2OUT/RB9  
K6  
AC1RX/SS3A/U3BRX/U3ACTS/RF12  
L5  
AN10/CVREFOUT/PMA13/RB10  
K7  
K8  
AN14/PMALH/PMA1/RB14  
VDD  
L6  
L7  
AC1TX/SCK3A/U3BTX/U3ARTS/RF13  
AN13/PMA10/RB13  
K9  
SCK1A/U1BTX/U1ARTS/CN21/RD15  
L8  
AN15/OCFB/PMALL/PMA0/CN12/RB15  
K10  
K11  
L1  
USBID/RF3  
L9  
SS1A/U1BRX/U1ACTS/CN20/RD14  
SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4  
SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5  
SDA1A/SDI1A/U1ARX/RF2  
PGEC2/AN6/OCFA/RB6  
VREF-/CVREF-/PMA7/RA9  
L10  
L11  
L2  
DS61156C-page 16  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
TABLE 3:  
PIN NAMES: PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES  
Pin  
Number  
Pin  
Number  
Full Pin Name  
Full Pin Name  
A1  
A2  
PMD4/RE4  
E8  
E9  
AETXEN/SDA1/INT4/RA15  
PMD3/RE3  
RTCC/EMDIO/AEMDIO/IC1/RD8  
A3  
A4  
TRD0/RG13  
PMD0/RE0  
E10  
E11  
SS1/IC2/RD9  
AETXCLK/SCL1/INT3/RA14  
A5  
A6  
PMD8/RG0  
F1  
F2  
MCLR  
ETXD0/PMD10/RF1  
ERXDV/AERXDV/ECRSDV/AECRSDV//SCL2A/SDO2A/  
U2ATX/PMA3/CN10/RG8  
A7  
VDD  
VSS  
F3  
ERXCLK/AERXCLK/EREFCLK/AEREFCLK//SS2A/U2BRX/  
U2ACTS/PMA2/CN11/RG9  
A8  
A9  
F4  
F5  
ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
ETXD2/IC5/PMD12/RD12  
OC3/RD2  
VSS  
A10  
A11  
B1  
F6  
No Connect (NC)  
No Connect (NC)  
VDD  
OC2/RD1  
F7  
No Connect (NC)  
AERXERR/RG15  
PMD2/RE2  
F8  
B2  
F9  
OSC1/CLKI/RC12  
VSS  
B3  
F10  
F11  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J1  
B4  
PMD1/RE1  
OSC2/CLKO/RC15  
AERXD0/INT1/RE8  
AERXD1/INT2/RE9  
TMS/RA0  
B5  
TRD3/RA7  
B6  
ETXD1/PMD11/RF0  
VCAP/VDDCORE  
PMRD/CN14/RD5  
OC4/RD3  
B7  
B8  
No Connect (NC)  
VDD  
B9  
B10  
B11  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
E1  
VSS  
VSS  
SOSCO/T1CK/CN0/RC14  
PMD6/RE6  
VSS  
No Connect (NC)  
TDO/RA5  
VDD  
TRD1/RG12  
SDA2/RA3  
TRD2/RG14  
TDI/RA4  
TRCLK/RA6  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
VSS  
No Connect (NC)  
ETXCLK/PMD15/CN16/RD7  
OC5/PMWR/CN13/RD4  
VDD  
VDD  
No Connect (NC)  
VDD  
SOSCI/CN1/RC13  
EMDC/AEMDC/IC4/PMCS1/PMA14/RD11  
T2CK/RC1  
No Connect (NC)  
VBUS  
PMD7/RE7  
VUSB  
PMD5/RE5  
D+/RG2  
VSS  
SCL2/RA2  
VSS  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
PGED2/AN7/RB7  
AVDD  
No Connect (NC)  
ETXEN/PMD14/CN15/RD6  
ETXD3/PMD13/CN19/RD13  
SDO1/OC1/INT0/RD0  
No Connect (NC)  
SCK1/IC3/PMCS2/PMA15/RD10  
T5CK/SDI1/RC4  
T4CK/RC3  
J2  
J3  
J4  
J5  
AN11/ERXERR/AETXERR/PMA12/RB11  
TCK/RA1  
J6  
J7  
AN12/ERXD0/AECRS/PMA11/RB12  
No Connect (NC)  
No Connect (NC)  
SCL1A/SDO1A/U1ATX/RF8  
D-/RG3  
J8  
E2  
J9  
E3  
ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
T3CK/RC2  
J10  
J11  
K1  
K2  
K3  
E4  
E5  
VDD  
PGEC1/AN1/CN3/RB1  
PGED1/AN0/CN2/RB0  
VREF+/CVREF+/AERXD3/PMA6/RA10  
E6  
EXTERR/PMD9/RG1  
VSS  
E7  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 17  
 
PIC32MX5XX/6XX/7XX  
TABLE 3:  
PIN NAMES: PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES  
Pin  
Number  
Pin  
Number  
Full Pin Name  
Full Pin Name  
K4  
K5  
AN8/C1OUT/RB8  
No Connect (NC)  
L3  
L4  
AVSS  
AN9/C2OUT/RB9  
K6  
K7  
K8  
K9  
SS3A/U3BRX/U3ACTS/RF12  
AN14/ERXD2/AETXD3/PMALH/PMA1/RB14  
VDD  
L5  
L6  
L7  
L8  
AN10/CVREFOUT/PMA13/RB10  
SCK3A/U3BTX/U3ARTS/RF13  
AN13/ERXD1/AECOL/PMA10/RB13  
AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15  
AETXD1/SCK1A/U1BTX/U1ARTS/CN21/RD15  
K10  
K11  
L1  
USBID/RF3  
L9  
AETXD0/SS1A/U1BRX/U1ACTS/CN20/RD14  
SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4  
SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5  
SDA1A/SDI1A/U1ARX/RF2  
PGEC2/AN6/OCFA/RB6  
VREF-/CVREF-/AERXD2/PMA7/RA9  
L10  
L11  
L2  
DS61156C-page 18  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
TABLE 4:  
PIN NAMES: PIC32MX775F256L, PIC32MX775F512L, PIC32MX795F512L AND DEVICES  
Pin  
Number  
Pin  
Number  
Full Pin Name  
Full Pin Name  
A1  
A2  
A3  
A4  
A5  
A6  
PMD4/RE4  
E8  
E9  
AETXEN/SDA1/INT4/RA15  
PMD3/RE3  
RTCC/EMDIO/AEMDIO/IC1/RD8  
SS1/IC2/RD9  
TRD0/RG13  
PMD0/RE0  
E10  
E11  
F1  
AETXCLK/SCL1/INT3/RA14  
MCLR  
C2RX/PMD8/RG0  
C1TX/ETXD0/PMD10/RF1  
F2  
ERXDV/AERXDV/ECRSDV/AECRSDV/SCL2A/SDO2A/  
U2ATX/PMA3/CN10/RG8  
A7  
VDD  
F3  
ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2A/U2BRX/  
U2ACTS/PMA2/CN11/RG9  
A8  
A9  
VSS  
F4  
F5  
ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7  
ETXD2/IC5/PMD12/RD12  
OC3/RD2  
VSS  
A10  
A11  
B1  
F6  
No Connect (NC)  
No Connect (NC)  
VDD  
OC2/RD1  
F7  
No Connect (NC)  
AERXERR/RG15  
PMD2/RE2  
F8  
B2  
F9  
OSC1/CLKI/RC12  
VSS  
B3  
F10  
F11  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J1  
B4  
PMD1/RE1  
OSC2/CLKO/RC15  
AERXD0/INT1/RE8  
AERXD1/INT2/RE9  
TMS/RA0  
B5  
TRD3/RA7  
B6  
C1RX/ETXD1/PMD11/RF0  
VCAP/VDDCORE  
PMRD/CN14/RD5  
OC4/RD3  
B7  
B8  
No Connect (NC)  
VDD  
B9  
B10  
B11  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
E1  
VSS  
VSS  
SOSCO/T1CK/CN0/RC14  
PMD6/RE6  
VSS  
No Connect (NC)  
TDO/RA5  
VDD  
TRD1/RG12  
SDA2/RA3  
TRD2/RG14  
TDI/RA4  
TRCLK/RA6  
AN5/C1IN+/VBUSON/CN7/RB5  
AN4/C1IN-/CN6/RB4  
VSS  
No Connect (NC)  
ETXCLK/PMD15/CN16/RD7  
OC5/PMWR/CN13/RD4  
VDD  
VDD  
No Connect (NC)  
VDD  
SOSCI/CN1/RC13  
EMDC/AEMDC/IC4/PMCS1/PMA14/RD11  
T2CK/RC1  
No Connect (NC)  
VBUS  
PMD7/RE7  
VUSB  
PMD5/RE5  
D+/RG2  
VSS  
SCL2/RA2  
VSS  
AN3/C2IN+/CN5/RB3  
AN2/C2IN-/CN4/RB2  
PGED2/AN7/RB7  
AVDD  
No Connect (NC)  
ETXEN/PMD14/CN15/RD6  
ETXD3/PMD13/CN19/RD13  
SDO1/OC1/INT0/RD0  
No Connect (NC)  
SCK1/IC3/PMCS2/PMA15/RD10  
T5CK/SDI1/RC4  
T4CK/AC2RX/RC3  
J2  
J3  
J4  
J5  
AN11/ERXERR/AETXERR/PMA12/RB11  
TCK/RA1  
J6  
J7  
AN12/ERXD0/AECRS/PMA11/RB12  
No Connect (NC)  
No Connect (NC)  
J8  
E2  
J9  
E3  
E4  
E5  
E6  
E7  
ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6  
J10  
J11  
K1  
SCL1A/SDO1A/U1ATX/RF8  
D-/RG3  
T3CK/AC2TX/RC2  
VDD  
PGEC1/AN1/CN3/RB1  
PGED1/AN0/CN2/RB0  
VREF+/CVREF+/AERXD3/PMA6/RA10  
C2TX/EXTERR/PMD9/RG1  
VSS  
K2  
K3  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 19  
 
PIC32MX5XX/6XX/7XX  
TABLE 4:  
PIN NAMES: PIC32MX775F256L, PIC32MX775F512L, PIC32MX795F512L AND DEVICES  
Pin  
Number  
Pin  
Number  
Full Pin Name  
Full Pin Name  
K4  
K5  
K6  
K7  
K8  
AN8/C1OUT/RB8  
No Connect (NC)  
L3  
L4  
L5  
L6  
L7  
AVSS  
AN9/C2OUT/RB9  
AC1RX/SS3A/U3BRX/U3ACTS/RF12  
AN14/ERXD2/AETXD3/PMALH/PMA1/RB14  
VDD  
AN10/CVREFOUT/PMA13/RB10  
AC1TX/SCK3A/U3BTX/U3ARTS/RF13  
AN13/ERXD1/AECOL/PMA10/RB13  
K9  
K10  
K11  
L1  
AETXD1/SCK1A/U1BTX/U1ARTS/CN21/RD15  
USBID/RF3  
L8  
L9  
AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15  
AETXD0/SS1A/U1BRX/U1ACTS/CN20/RD14  
SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4  
SDA1A/SDI1A/U1ARX/RF2  
PGEC2/AN6/OCFA/RB6  
L10  
L11  
SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5  
L2  
VREF-/CVREF-/AERXD2/PMA7/RA9  
DS61156C-page 20  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 23  
2.0 Guidelines for Getting Started with 32-Bit Microcontrollers........................................................................................................ 35  
3.0 PIC32MX MCU........................................................................................................................................................................... 39  
4.0 Memory Organization................................................................................................................................................................. 45  
5.0 Flash Program Memory............................................................................................................................................................ 105  
6.0 Resets ...................................................................................................................................................................................... 107  
7.0 Interrupt Controller ................................................................................................................................................................... 109  
8.0 Oscillator Configuration............................................................................................................................................................ 113  
9.0 Prefetch Cache......................................................................................................................................................................... 115  
10.0 Direct Memory Access (DMA) Controller ................................................................................................................................ 117  
11.0 USB On-The-Go (OTG)............................................................................................................................................................ 119  
12.0 I/O Ports ................................................................................................................................................................................... 121  
13.0 Timer1 ...................................................................................................................................................................................... 123  
14.0 Timer2/3, Timer4/5................................................................................................................................................................... 125  
15.0 Input Capture............................................................................................................................................................................ 127  
16.0 Output Compare....................................................................................................................................................................... 129  
17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 131  
2
18.0 Inter-Integrated Circuit (I C™) ................................................................................................................................................. 133  
19.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 135  
20.0 Parallel Master Port (PMP) ...................................................................................................................................................... 137  
21.0 Real-Time Clock and Calendar (RTCC)................................................................................................................................... 139  
22.0 10-Bit Analog-to-Digital Converter (ADC)................................................................................................................................. 141  
23.0 Controller Area Network (CAN)................................................................................................................................................ 143  
24.0 Ethernet Controller ................................................................................................................................................................... 145  
25.0 Comparator .............................................................................................................................................................................. 147  
26.0 Comparator Voltage Reference (CVref)................................................................................................................................... 149  
27.0 Power-Saving Features ........................................................................................................................................................... 151  
28.0 Special Features ...................................................................................................................................................................... 153  
29.0 Instruction Set .......................................................................................................................................................................... 165  
30.0 Development Support............................................................................................................................................................... 167  
31.0 Electrical Characteristics.......................................................................................................................................................... 171  
32.0 Packaging Information.............................................................................................................................................................. 213  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 21  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 22  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
This document contains device-specific information for  
PIC32MX5XX/6XX/7XX devices.  
1.0  
DEVICE OVERVIEW  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the related section of the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip  
web site (www.microchip.com/PIC32).  
Figure 1-1 shows a general block diagram of the core  
and peripheral modules in the PIC32MX5XX/6XX/7XX  
family of devices.  
Table 1-1 lists the functions of the various pins shown  
in the pinout diagrams.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
FIGURE 1-1:  
BLOCK DIAGRAM(1,2)  
VCAP/VDDCORE  
OSC2/CLKO  
OSC1/CLKI  
OSC/SOSC  
Oscillators  
Power-up  
VDD, VSS  
Timer  
FRC/LPRC  
Oscillators  
MCLR  
Voltage  
Oscillator  
Start-up Timer  
Regulator  
PLL  
Power-on  
Reset  
Precision  
Band Gap  
Reference  
Dividers  
PLL-USB  
Watchdog  
Timer  
USBCLK  
SYSCLK  
PBCLK  
Brown-out  
Reset  
Timing  
Generation  
Peripheral Bus Clocked by SYSCLK  
CN1-22  
PORTA  
Timer1-5  
Priority  
JTAG  
BSCAN  
Interrupt  
Controller  
PWM  
OC1-5  
PORTB  
PORTC  
PORTD  
PORTE  
PORTF  
PORTG  
32  
EJTAG  
INT  
MIPS32® M4K™  
CPU Core  
IC1-5  
IS  
DS  
32  
32  
32  
32  
32  
32  
32  
SPI1,1A,2A,3A  
32  
Bus Matrix  
32  
I2C1,2,1A,  
2A,3A  
32  
32  
32  
Prefetch  
Module  
Peripheral Bridge  
Data RAM  
PMP  
10-Bit ADC  
128  
UART1A,1B,2A,  
2B,3A,3B  
128-Bit Wide  
Program Flash Memory  
RTCC  
Comparators  
Note 1: Some features are not available on all device variants.  
2: BOR functionality is provided when the on-board voltage regulator is enabled.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 23  
 
 
 
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS  
Pin Number(1)  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
64-Pin  
QFN/TQFP  
100-Pin  
TQFP  
121-Pin  
XBGA  
AN0  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
39  
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
63  
K2  
K1  
J2  
J1  
H2  
H1  
L1  
J3  
K4  
L4  
L5  
J5  
J7  
L7  
K7  
L8  
F9  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog Analog input channels.  
AN1  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
CLKI  
ST/CMOS External clock source input. Always associated  
with OSC1 pin function.  
CLKO  
40  
64  
F11  
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode. Optionally  
functions as CLKO in RC and EC modes.  
Always associated with OSC2 pin function.  
OSC1  
OSC2  
39  
40  
63  
64  
F9  
I
ST/CMOS Oscillator crystal input. ST buffer when  
configured in RC mode; CMOS otherwise.  
F11  
I/O  
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode. Optionally  
functions as CLKO in RC and EC modes.  
SOSCI  
47  
48  
73  
74  
C10  
B11  
I
ST/CMOS 32.768 kHz low-power oscillator crystal input;  
CMOS otherwise.  
SOSCO  
O
32.768 kHz low-power oscillator crystal output.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagramssection for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
DS61156C-page 24  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Type  
Buffer  
Type  
Description  
64-Pin  
100-Pin  
121-Pin  
XBGA  
QFN/TQFP  
TQFP  
CN0  
CN1  
CN2  
CN3  
CN4  
CN5  
CN6  
CN7  
CN8  
CN9  
CN10  
CN11  
CN12  
CN13  
CN14  
CN15  
CN16  
CN17  
CN18  
CN19  
CN20  
CN21  
IC1  
48  
47  
16  
15  
14  
13  
12  
11  
4
74  
73  
25  
24  
23  
22  
21  
20  
10  
11  
12  
14  
44  
81  
82  
83  
84  
49  
50  
80  
47  
48  
68  
69  
70  
71  
79  
26  
72  
76  
77  
78  
81  
44  
72  
18  
19  
66  
67  
B11  
C10  
K2  
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Change notification inputs.  
Can be software programmed for internal weak  
pull-ups on all inputs.  
I
K1  
I
J2  
I
J1  
I
H2  
H1  
E3  
I
I
I
5
F4  
I
6
F2  
I
8
F3  
I
30  
52  
53  
54  
55  
31  
32  
42  
43  
44  
45  
52  
17  
46  
49  
50  
51  
52  
30  
46  
42  
43  
44  
45  
L8  
I
C8  
B8  
I
I
D7  
C7  
L10  
L11  
D8  
L9  
I
I
I
I
I
I
K9  
I
E9  
I
Capture Inputs 1-5.  
IC2  
E10  
D11  
C11  
A9  
I
IC3  
I
IC4  
I
IC5  
I
OCFA  
OC1  
OC2  
OC3  
OC4  
OC5  
OCFB  
INT0  
INT1  
INT2  
INT3  
INT4  
L1  
I
Output Compare Fault A input.  
Output Compare Output 1.  
Output Compare Output 2  
Output Compare Output 3.  
Output Compare Output 4.  
Output Compare Output 5.  
Output Compare Fault B input.  
External Interrupt 0.  
D9  
A11  
A10  
B9  
O
O
O
O
O
I
C8  
L8  
ST  
ST  
ST  
ST  
ST  
ST  
D9  
G1  
G2  
E11  
E8  
I
I
External Interrupt 1.  
I
External Interrupt 2.  
I
External Interrupt 3.  
I
External Interrupt 4.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 25  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Buffer  
Type  
Pin Name  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
XBGA  
Type  
QFN/TQFP  
RA0  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
39  
47  
48  
40  
17  
38  
58  
59  
60  
61  
91  
92  
28  
29  
66  
67  
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
6
G3  
J6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTA is a bidirectional I/O port.  
RA1  
RA2  
H11  
G10  
G11  
G9  
C5  
B5  
L2  
RA3  
RA4  
RA5  
RA6  
RA7  
RA9  
RA10  
RA14  
RA15  
RB0  
K3  
E11  
E8  
K2  
K1  
J2  
PORTB is a bidirectional I/O port.  
RB1  
RB2  
RB3  
J1  
RB4  
H2  
H1  
L1  
RB5  
RB6  
RB7  
J3  
RB8  
K4  
L4  
RB9  
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
RC1  
RC2  
RC3  
RC4  
RC12  
RC13  
RC14  
RC15  
L5  
J5  
J7  
L7  
K7  
L8  
D1  
E4  
E2  
E1  
F9  
PORTC is a bidirectional I/O port.  
7
8
9
63  
73  
74  
64  
C10  
B11  
F11  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
DS61156C-page 26  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Type  
Buffer  
Type  
Description  
64-Pin  
100-Pin  
121-Pin  
XBGA  
QFN/TQFP  
TQFP  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD8  
RD9  
RD10  
RD11  
RD12  
RD13  
RD14  
RD15  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
RE8  
RE9  
RF0  
46  
49  
50  
51  
52  
53  
54  
55  
42  
43  
44  
45  
60  
61  
62  
63  
64  
1
72  
76  
77  
78  
81  
82  
83  
84  
68  
69  
70  
71  
79  
80  
47  
48  
93  
94  
98  
99  
100  
3
D9  
A11  
A10  
B9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTD is a bidirectional I/O port.  
C8  
B8  
D7  
C7  
E9  
E10  
D11  
C11  
A9  
D8  
L9  
K9  
A4  
PORTE is a bidirectional I/O port.  
B4  
B3  
A2  
A1  
D3  
C1  
D2  
G1  
G2  
B6  
2
4
3
5
58  
59  
33  
31  
32  
18  
19  
87  
88  
52  
51  
49  
50  
53  
40  
39  
PORTF is a bidirectional I/O port.  
RF1  
A6  
RF2  
K11  
K10  
L10  
L11  
J10  
K6  
RF3  
RF4  
RF5  
RF8  
RF12  
RF13  
L6  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 27  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Buffer  
Type  
Pin Name  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
XBGA  
Type  
QFN/TQFP  
RG0  
4
90  
89  
10  
11  
12  
14  
96  
97  
95  
1
A5  
E6  
E3  
F4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTG is a bidirectional I/O port.  
RG1  
RG6  
RG7  
5
RG8  
6
F2  
RG9  
8
F3  
RG12  
RG13  
RG14  
RG15  
RG2  
37  
36  
48  
43  
49  
50  
51  
C3  
A3  
C4  
B2  
H10  
J11  
B11  
D1  
E4  
E2  
E1  
L9  
57  
56  
74  
6
PORTG input pins.  
RG3  
I
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
U1ACTS  
U1ARTS  
U1ARX  
U1ATX  
U2ACTS  
U2ARTS  
I
Timer1 external clock input.  
Timer2 external clock input.  
Timer3 external clock input.  
Timer4 external clock input.  
Timer5 external clock input.  
UART1A clear to send.  
UART1A ready to send.  
UART1A receive.  
I
7
I
8
I
9
I
47  
48  
52  
53  
I
K9  
K11  
J10  
O
I
ST  
O
I
UART1A transmit.  
8
4
5
14  
10  
11  
F3  
E3  
F4  
ST  
UART2A clear to send.  
UART2A ready to send.  
O
U2ARX  
U2ATX  
I
O
I
ST  
UART2A receive.  
6
12  
F2  
UART2A transmit.  
UART3A clear to send.  
UART3A ready to send.  
UART3A receive.  
U3ACTS  
U3ARTS  
U3ARX  
21  
29  
31  
40  
39  
49  
K6  
L6  
ST  
O
I
L10  
ST  
32  
50  
L11  
U3ATX  
U1BRX  
U1BTX  
U2BRX  
U2BTX  
U3BRX  
U3BTX  
SCK1  
O
I
ST  
UART3A transmit.  
43  
49  
8
47  
48  
14  
10  
40  
39  
70  
9
L9  
K9  
F3  
UART1B receive.  
O
I
UART1B transmit.  
ST  
UART2B receive.  
4
E3  
K6  
L6  
O
I
UART2B transmit.  
21  
29  
ST  
UART3B receive.  
O
I/O  
I
UART3B transmit.  
D11  
E1  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 data in.  
SDI1  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
DS61156C-page 28  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Type  
Buffer  
Type  
Description  
64-Pin  
100-Pin  
121-Pin  
XBGA  
QFN/TQFP  
TQFP  
SDO1  
SS1  
49  
72  
69  
48  
D9  
E10  
K9  
O
ST  
ST  
SPI1 data out.  
I/O  
I/O  
SPI1 slave synchronization or frame pulse I/O.  
SCK1A  
Synchronous serial clock input/output for  
SPI1A.  
SDI1A  
SDO1A  
SS1A  
50  
51  
43  
52  
53  
47  
K11  
J10  
L9  
I
ST  
SPI1A data in.  
SPI1A data out.  
O
I/O  
ST  
SPI1A slave synchronization or frame pulse  
I/O.  
SCK2A  
4
10  
E3  
I/O  
ST  
Synchronous serial clock input/output for  
SPI2A.  
SDI2A  
SDO2A  
SS2A  
5
6
8
11  
12  
14  
F4  
F2  
F3  
I
ST  
SPI2A data in.  
SPI2A data out.  
O
I/O  
ST  
SPI2A slave synchronization or frame pulse  
I/O.  
SCK3A  
29  
39  
L6  
I/O  
ST  
Synchronous serial clock input/output for  
SPI3A.  
SDI3A  
SDO3A  
SS3A  
31  
32  
21  
49  
50  
40  
L10  
L11  
K6  
I
ST  
SPI3A data in.  
SPI3A data out.  
O
I/O  
ST  
SPI3A slave synchronization or frame pulse  
I/O.  
SCL1  
44  
43  
51  
66  
67  
53  
E11  
E8  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Synchronous serial clock input/output for I2C1.  
Synchronous serial data input/output for I2C1.  
SDA1  
SCL1A  
J10  
Synchronous serial clock input/output for  
I2C1A.  
SDA1A  
50  
52  
K11  
I/O  
ST  
Synchronous serial data input/output for  
I2C1A.  
SCL2  
6
58  
59  
12  
H11  
G10  
F2  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Synchronous serial clock input/output for I2C2.  
Synchronous serial data input/output for I2C2.  
SDA2  
SCL2A  
Synchronous serial clock input/output for  
I2C2A.  
SDA2A  
SCL3A  
SDA3A  
5
11  
50  
49  
F4  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Synchronous serial data input/output for  
I2C2A.  
32  
31  
L11  
L10  
Synchronous serial clock input/output for  
I2C3A.  
Synchronous serial data input/output for  
I2C3A.  
TMS  
TCK  
TDI  
23  
27  
28  
24  
42  
17  
38  
60  
61  
68  
G3  
J6  
I
I
ST  
ST  
ST  
JTAG Test mode select pin.  
JTAG test clock input pin.  
JTAG test data input pin.  
JTAG test data output pin.  
Real-Time Clock alarm output.  
G11  
G9  
E9  
I
TDO  
RTCC  
O
O
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 29  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Buffer  
Type  
Pin Name  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
XBGA  
Type  
QFN/TQFP  
CVREF-  
CVREF+  
CVREFOUT  
C1IN-  
15  
16  
23  
12  
11  
21  
14  
13  
22  
28  
29  
34  
21  
20  
32  
23  
22  
33  
44  
L2  
K3  
L5  
H2  
H1  
K4  
J2  
I
I
Analog Comparator Voltage Reference (low).  
Analog Comparator Voltage Reference (high).  
Analog Comparator Voltage Reference output.  
Analog Comparator 1 negative input.  
O
I
C1IN+  
I
Analog Comparator 1 positive input.  
C1OUT  
C2IN-  
O
I
Comparator 1 output.  
Analog Comparator 2 negative input.  
Analog Comparator 2 positive input.  
C2IN+  
J1  
I
C2OUT  
PMA0  
L4  
L8  
O
I/O  
Comparator 2 output.  
TTL/ST Parallel Master Port Address Bit 0 input  
(Buffered Slave modes) and output (Master  
modes).  
PMA1  
43  
K7  
I/O  
TTL/ST Parallel Master Port Address Bit 1 input  
(Buffered Slave modes) and output (Master  
modes).  
PMA2  
8
14  
12  
11  
10  
29  
28  
50  
49  
42  
41  
35  
34  
71  
70  
71  
70  
F3  
F2  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Parallel Master Port address (Demultiplexed  
Master modes).  
PMA3  
6
PMA4  
5
F4  
PMA5  
4
E3  
PMA6  
16  
22  
32  
31  
28  
27  
24  
23  
45  
44  
45  
44  
K3  
PMA7  
L2  
PMA8  
L11  
L10  
L7  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMA14  
PMA15  
PMCS1  
PMCS2  
J7  
J5  
L5  
C11  
D11  
C11  
D11  
Parallel Master Port Chip Select 1 strobe.  
Parallel Master Port Chip Select 2 strobe.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
DS61156C-page 30  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Type  
Buffer  
Type  
Description  
64-Pin  
100-Pin  
121-Pin  
XBGA  
QFN/TQFP  
TQFP  
PMD0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMD8  
PMD9  
PMD10  
PMD11  
PMD12  
PMD13  
PMD14  
PMD15  
PMALL  
60  
61  
62  
63  
64  
1
93  
94  
98  
99  
100  
3
A4  
B4  
B3  
A2  
A1  
D3  
C1  
D2  
A5  
E6  
A6  
B6  
A9  
D8  
D7  
C7  
L8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
TTL/ST Parallel Master Port data (Demultiplexed  
Master mode) or address/data (Multiplexed  
Master modes).  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
2
4
3
5
30  
90  
89  
88  
87  
79  
80  
83  
84  
44  
Parallel Master Port address latch enable  
low byte (Multiplexed Master modes).  
PMALH  
29  
43  
K7  
O
Parallel Master Port address latch enable  
high byte (Multiplexed Master modes).  
PMRD  
PMWR  
VBUS  
53  
52  
34  
35  
11  
37  
36  
33  
58  
59  
32  
31  
29  
21  
61  
60  
59  
82  
81  
54  
55  
20  
57  
56  
51  
87  
88  
40  
39  
90  
89  
8
B8  
C8  
H8  
H9  
H1  
H10  
J11  
K10  
B6  
A6  
K6  
L6  
O
O
I
Parallel Master Port read strobe.  
Parallel Master Port write strobe.  
Analog USB bus power monitor.  
VUSB  
P
O
I/O  
I/O  
I
USB internal transceiver supply.  
VBUSON  
D+  
USB Host and OTG bus power control output.  
Analog USB D+.  
Analog USB D-.  
D-  
USBID  
C1RX  
C1TX  
AC1RX  
AC1TX  
C2RX  
C2TX  
AC2RX  
AC2TX  
ERXD0  
ERXD1  
ERXD2  
ST  
ST  
USB OTG ID detect.  
I
CAN1 bus receive pin.  
O
I
CAN1 bus transmit pin.  
ST  
Alternate CAN1 bus receive pin.  
Alternate CAN1 bus transmit pin.  
CAN2 bus receive pin.  
O
I
A5  
E6  
E2  
E4  
J7  
ST  
O
1
CAN2 bus transmit pin.  
ST  
Alternate CAN2 bus receive pin.  
Alternate CAN2 bus transmit pin.  
Ethernet Receive Data 0.(2)  
Ethernet Receive Data 1.(2)  
Ethernet Receive Data 2.(2)  
7
O
I
41  
42  
43  
ST  
ST  
ST  
L7  
I
K7  
I
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 31  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Buffer  
Type  
Pin Name  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
XBGA  
Type  
QFN/TQFP  
ERXD3  
58  
64  
62  
61  
63  
63  
2
44  
35  
12  
12  
14  
14  
88  
87  
79  
80  
89  
83  
84  
10  
11  
71  
68  
18  
19  
28  
29  
1
L8  
J5  
I
I
ST  
ST  
ST  
ST  
ST  
ST  
Ethernet Receive Data 3.(2)  
ERXERR  
ERXDV  
Ethernet receive error input.(2)  
Ethernet receive data valid.(2)  
Ethernet carrier sense data valid.(2)  
Ethernet receive clock.(2)  
Ethernet reference clock.(2)  
Ethernet Transmit Data 0.(2)  
Ethernet Transmit Data 1.(2)  
Ethernet Transmit Data 2.(2)  
Ethernet Transmit Data 3.(2)  
Ethernet transmit error.(2)  
F2  
F2  
F3  
F3  
A6  
B6  
A9  
D8  
E6  
D7  
C7  
E3  
F4  
C11  
E9  
G1  
G2  
L2  
K3  
B2  
I
ECRSDV  
ERXCLK  
EREFCLK  
ETXD0  
I
I
I
O
O
O
O
O
O
I
ETXD1  
3
ETXD2  
43  
42  
54  
1
ETXD3  
ETXERR  
ETXEN  
Ethernet transmit enable.(2)  
Ethernet transmit clock.(2)  
Ethernet collision detect.(2)  
Ethernet carrier sense.(2)  
ETXCLK  
ECOL  
55  
44  
45  
30  
49  
43  
42  
55  
44  
44  
45  
45  
59  
58  
54  
ST  
ST  
ST  
I
ECRS  
I
EMDC  
O
I/O  
I
Ethernet management data clock.(2)  
Ethernet management data.(2)  
Alternate Ethernet Receive Data 0.(2)  
Alternate Ethernet Receive Data 1.(2)  
Alternate Ethernet Receive Data 2.(2)  
Alternate Ethernet Receive Data 3.(2)  
Alternate Ethernet receive error input.(2)  
Alternate Ethernet receive data valid.(2)  
Alternate Ethernet carrier sense data valid.(2)  
Alternate Ethernet receive clock.(2)  
Alternate Ethernet reference clock.(2)  
Alternate Ethernet Transmit Data 0.(2)  
Alternate Ethernet Transmit Data 1.(2)  
Alternate Ethernet Transmit Data 2.(2)  
Alternate Ethernet Transmit Data 3.(2)  
Alternate Ethernet transmit error.(2)  
Alternate Ethernet transmit enable.(2)  
Alternate Ethernet transmit clock.(2)  
Alternate Ethernet collision detect.(2)  
Alternate Ethernet carrier sense.(2)  
Trace clock.  
EMDIO  
AERXD0  
AERXD1  
AERXD2  
AERXD3  
AERXERR  
AERXDV  
AECRSDV  
AERXCLK  
AEREFCLK  
AETXD0  
AETXD1  
AETXD2  
AETXD3  
AETXERR  
AETXEN  
AETXCLK  
AECOL  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
I
I
I
I
47  
48  
44  
43  
35  
67  
66  
42  
41  
91  
I
I
I
I
L9  
K9  
L8  
K7  
J5  
O
O
O
O
O
O
I
E8  
E11  
L7  
J7  
ST  
ST  
ST  
I
AECRS  
I
TRCLK  
C5  
O
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
DS61156C-page 32  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number(1)  
Pin  
Type  
Buffer  
Type  
Description  
64-Pin  
100-Pin  
121-Pin  
XBGA  
QFN/TQFP  
TQFP  
TRD0  
TRD1  
TRD2  
TRD3  
PGED1  
16  
97  
96  
95  
92  
25  
A3  
C3  
C4  
B5  
K2  
O
O
ST  
Trace Data Bits 0-3.  
O
O
I/O  
Data I/O pin for Programming/Debugging  
Communication Channel 1.  
PGEC1  
PGED2  
PGEC2  
MCLR  
AVDD  
15  
18  
17  
7
24  
27  
26  
13  
30  
31  
K1  
J3  
L1  
F1  
J4  
I
I/O  
I
ST  
ST  
ST  
ST  
P
Clock input pin for Programming/Debugging  
Communication Channel 1.  
Data I/O pin for Programming/Debugging  
Communication Channel 2.  
Clock input pin for Programming/Debugging  
Communication Channel 2.  
I/P  
P
Master Clear (Reset) input. This pin is an  
active-low Reset to the device.  
19  
20  
Positive supply for analog modules. This pin  
must be connected at all times.  
AVSS  
VDD  
L3  
P
P
P
Ground reference for analog modules.  
10, 26, 38, 2, 16, 37,  
A7, C2,  
Positive supply for peripheral logic and I/O  
pins.  
57  
46, 62, 86 C9, E5,  
K8, F8,  
G5, H4, H6  
VCAP/  
VDDCORE  
56  
85  
B7  
P
P
CPU logic filter capacitor connection.  
VSS  
9, 25, 41 15, 36, 45, A8, B10,  
Ground reference for logic and I/O pins. This  
pin must be connected at all times.  
65, 75  
D4, D5,  
E7, F5,  
F10, G6,  
G7, H3  
VREF+  
VREF-  
16  
15  
29  
28  
K3  
L2  
I
I
Analog Analog voltage reference (high) input.  
Analog Analog voltage reference (low) input.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability.  
2: See Section 24.0 “Ethernet Controller” for more information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 33  
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 34  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 32-BIT  
MICROCONTROLLERS  
The use of decoupling capacitors on power supply  
pins, such as VDD, VSS, AVDD and AVSS is required.  
See Figure 2-1.  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the related section of the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32)  
Consider the following criteria when using decoupling  
capacitors:  
Value and type of capacitor: A value of 0.1 µF  
(100 nF), 10-20V is recommended. The capacitor  
should be a low Equivalent Series Resistance  
(low-ESR) capacitor and have resonance fre-  
quency in the range of 20 MHz and higher. It is  
further recommended that ceramic capacitors be  
used.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended that  
the capacitors be placed on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within one-  
quarter inch (6 mm) in length.  
2.1  
Basic Connection Requirements  
Getting started with the PIC32MX5XX/6XX/7XX family  
of 32-bit Microcontrollers (MCU) requires attention to a  
minimal set of device pin connections before proceed-  
ing with development. The following is a list of pin  
names, which must always be connected:  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of  
tens of MHz, add a second ceramic-type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 µF in parallel with 0.001 µF.  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
• All AVDD and AVSS pins–even if the ADC module  
is not used  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP/VDDCORE pin  
(see Section 2.3 “Capacitor on Internal  
Voltage Regulator (VCAP/VDDCORE)”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins–used for In-Circuit Serial  
Programming (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins–when external oscillator  
source is used  
(see Section 2.8 “External Oscillator Pins”)  
The following pin may be required, as well:  
VREF+/VREF- pins–used when external voltage refer-  
ence for ADC module is implemented  
Note:  
The AVDD and AVSS pins must be  
connected, regardless of ADC use and the  
ADC voltage reference source.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 35  
 
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
2.4  
Master Clear (MCLR) Pin  
The MCLR pin provides for two specific device  
functions:  
0.1 µF  
Ceramic  
• Device Reset  
CEFC  
VDD  
CBP  
• Device programming and debugging  
Pulling The MCLR pin low generates a device Reset.  
Figure 2-2 shows a typical MCLR circuit. During  
device programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R and C will need to be adjusted based on the  
application and PCB requirements.  
R
R1  
MCLR  
C
PIC32MX  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
CBP  
0.1 µF  
Ceramic  
CBP  
For example, as shown in Figure 2-2, it is  
recommended that the capacitor C, be isolated from  
the MCLR pin during programming and debugging  
operations.  
0.1 µF  
Ceramic  
CBP  
0.1 µF  
Ceramic  
CBP  
10   
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
2.2.1  
BULK CAPACITORS  
The use of a bulk capacitor is recommended to improve  
power supply stability. Typical values range from 4.7 µF  
to 47 µF. This capacitor should be located as close to  
the device as possible.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
2.3  
Capacitor on Internal Voltage  
Regulator (VCAP/VDDCORE)  
R
R1  
MCLR  
2.3.1  
INTERNAL REGULATOR MODE  
PIC32MX  
JP  
C
A low-ESR (1 ohm) capacitor is required on the  
VCAP/VDDCORE pin, which is used to stabilize the inter-  
nal voltage regulator output. The VCAP/VDDCORE pin  
must not be connected to VDD, and must have a CEFC  
capacitor, with at least a 6V rating, connected to  
ground. The type can be ceramic or tantalum. Refer to  
Section 31.0 "Electrical Characteristics" for  
additional information on CEFC specifications.  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the MCLR  
pin VIH and VIL specifications are met.  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
3: The capacitor can be sized to prevent uninten-  
tional Resets from brief glitches or to extend  
the device Reset period during POR.  
DS61156C-page 36  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
2.5  
ICSP Pins  
2.6  
JTAG  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging pur-  
poses. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
The TMS, TDO, TDI and TCK pins are used for testing  
and debugging according to the Joint Test Action  
Group (JTAG) standard. It is recommended to keep the  
trace length between the JTAG connector and the  
JTAG pins on the device as short as possible. If the  
JTAG connector is expected to experience an ESD  
event, a series resistor is recommended, with the value  
in the range of a few tens of Ohms, not to exceed 100  
Ohms.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
Pull-up resistors, series diodes and capacitors on the  
TMS, TDO, TDI and TCK pins are not recommended  
as they will interfere with the programmer/debugger  
communications to the device. If such discrete compo-  
nents are an application requirement, they should be  
removed from the circuit during programming and  
debugging. Alternatively, refer to the AC/DC character-  
istics and timing requirements information in the  
respective device Flash programming specification for  
information on capacitive loading limits and pin input  
voltage high (VIH) and input low (VIL) requirements.  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 2, MPLAB ICD 3, or MPLAB REAL  
ICE™.  
2.7  
Trace  
The trace pins can be connected to a hardware-trace-  
enabled programmer to provide a compress real time  
instruction trace. When used for trace the TRD3,  
TRD2, TRD1, TRD0 and TRCLK pins should be dedi-  
cated for this use. The trace hardware requires a  
22 ohm series resistor between the trace pins and the  
trace connector.  
For more information on ICD 2, ICD 3 and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip web  
site.  
“MPLAB® ICD 2 In-Circuit Debugger User's  
Guide” DS51331  
“Using MPLAB® ICD 2” (poster) DS51265  
“MPLAB® ICD 2 Design Advisory” DS51566  
“Using MPLAB® ICD 3” (poster) DS51765  
“MPLAB® ICD 3 Design Advisory” DS51764  
“MPLAB® REAL ICE™ In-Circuit Debugger  
User's Guide” DS51616  
“Using MPLAB® REAL ICE™ Emulator” (poster)  
DS51749  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 37  
PIC32MX5XX/6XX/7XX  
2.8  
External Oscillator Pins  
2.9  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
Many MCUs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 8.0 "Oscillator  
Configuration" for details).  
If MPLAB ICD 2, ICD 3, or REAL ICE is selected as a  
debugger, it automatically initializes all of the A/D input  
pins (ANx) as “digital” pins by setting all bits in the  
ADPCFG register.  
The oscillator circuit should be placed on the same side  
of the board as the device. Also, place the oscillator cir-  
cuit close to the respective oscillator pins, not exceed-  
ing one-half inch (12 mm) distance between them. The  
load capacitors should be placed next to the oscillator  
itself, on the same side of the board. Use a grounded  
copper pour around the oscillator circuit to isolate them  
from surrounding circuits. The grounded copper pour  
should be routed directly to the MCU ground. Do not  
run any signal traces or power traces inside the ground  
pour. Also, if using a two-sided board, avoid any traces  
on the other side of the board where the crystal is  
placed. A suggested layout is shown in Figure 2-3.  
The bits in this register that correspond to the A/D pins  
that are initialized by MPLAB ICD 2, ICD 3, or REAL  
ICE, must not be cleared by the user application  
firmware; otherwise, communication errors will result  
between the debugger and the device.  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must clear the corresponding bits in the  
ADPCFG register during initialization of the ADC  
module.  
When MPLAB ICD 2, ICD 3, or REAL ICE is used as a  
programmer, the user application firmware must cor-  
rectly configure the ADPCFG register. Automatic initial-  
ization of this register is only done during debugger  
operation. Failure to correctly configure the register(s)  
will result in all A/D pins being recognized as analog  
input pins, resulting in the port value being read as a  
logic '0', which may affect user application functionality.  
FIGURE 2-3:  
SUGGESTED OSCILLATOR  
CIRCUIT PLACEMENT  
Oscillator  
Secondary  
2.10 Unused I/Os  
Guard Trace  
Guard Ring  
Unused I/O pins should not be allowed to float as  
inputs. They can be configured as outputs and driven  
to a logic-low state.  
Alternatively, inputs can be reserved by connecting the  
pin to VSS through a 1k to 10k resistor and configuring  
the pin as an input.  
Main Oscillator  
DS61156C-page 38  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
- Atomic interrupt enable/disable  
3.0  
PIC32MX MCU  
- GPR shadow registers to minimize latency  
for interrupt handlers  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 2. “MCU”  
(DS61113) in the “PIC32MX Family  
Reference Manual”, which is available  
- Bit field manipulation instructions  
• MIPS16e™ Code Compression  
- 16-bit encoding of 32-bit instructions to  
improve code density  
- Special PC-relative instructions for efficient  
loading of addresses and constants  
from  
the  
Microchip  
web  
site  
- SAVE & RESTORE macro instructions for  
setting up and tearing down stack frames  
within subroutines  
(www.microchip.com/PIC32). Resources  
for the MIPS32® M4K® Processor Core  
are available at http://www.mips.com.  
- Improved support for handling 8 and 16-bit  
data types  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Simple Fixed Mapping Translation (FMT)  
mechanism  
• Simple Dual Bus Interface  
- Independent 32-bit address and data busses  
- Transactions can be aborted to improve  
interrupt latency  
The MCU module is the heart of the  
PIC32MX5XX/6XX/7XX family processor. The MCU  
fetches instructions, decodes each instruction, fetches  
source operands, executes each instruction and writes  
the results of instruction execution to the proper  
destinations.  
• Autonomous Multiply/Divide Unit  
- Maximum issue rate of one 32x16 multiply  
per clock  
- Maximum issue rate of one 32x32 multiply  
every other clock  
- Early-in iterative divide. Minimum 11 and  
maximum 33 clock latency (dividend (rs) sign  
extension-dependent)  
3.1  
Features  
• 5-Stage Pipeline  
• Power Control  
• 32-Bit Address and Data Paths  
• MIPS32 Enhanced Architecture (Release 2)  
- Minimum frequency: 0 MHz  
- Low-Power mode (triggered by WAIT  
instruction)  
- Multiply-Accumulate and Multiply-Subtract  
instructions  
- Extensive use of local gated clocks  
• EJTAG Debug and Instruction Trace  
- Support for single stepping  
- Targeted Multiply instruction  
- Zero/One Detect instructions  
- WAITinstruction  
- Virtual instruction and data address/value  
- Breakpoints  
- Conditional Move instructions (MOVN, MOVZ)  
- Vectored interrupts  
- PC tracing with trace compression  
- Programmable exception vector base  
FIGURE 3-1:  
MCU  
MCU BLOCK DIAGRAM  
Trace I/F  
EJTAG  
MDU  
Trace  
TAP  
Off-Chip  
Debug I/F  
Execution  
Core  
(RF/ALU/Shift)  
FMT  
Bus Interface  
Dual Bus I/F  
System  
Coprocessor  
Power  
Management  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 39  
 
 
PIC32MX5XX/6XX/7XX  
3.2.2  
MULTIPLY/DIVIDE UNIT (MDU)  
3.2  
Architecture Overview  
The PIC32MX5XX/6XX/7XX family core includes a  
Multiply/Divide Unit (MDU) that contains a separate  
pipeline for multiply and divide operations. This pipeline  
operates in parallel with the Integer Unit (IU) pipeline  
and does not stall when the IU pipeline stalls. This  
allows MDU operations to be partially masked by  
system stalls and/or other integer unit instructions.  
The PIC32MX5XX/6XX/7XX family core contains sev-  
eral logic blocks working together in parallel, providing  
an efficient high-performance computing engine. The  
following blocks are included with the core:  
• Execution Unit  
• Multiply/Divide Unit (MDU)  
• System Control Coprocessor (CP0)  
• Fixed Mapping Translation (FMT)  
• Dual Internal Bus interfaces  
• Power Management  
The high-performance MDU consists of a 32x16 booth  
recoded multiplier, result/accumulation registers (HI  
and LO), a divide state machine, and the necessary  
multiplexers and control logic. The first number shown  
(‘32’ of 32x16) represents the rs operand. The second  
number (‘16’ of 32x16) represents the rt operand. The  
PIC32MX core only checks the value of the latter (rt)  
operand to determine how many times the operation  
must pass through the multiplier. The 16x16 and 32x16  
operations pass through the multiplier once. A 32x32  
operation passes through the multiplier twice.  
• MIPS16e Support  
• Enhanced JTAG (EJTAG) Controller  
3.2.1  
EXECUTION UNIT  
The PIC32MX5XX/6XX/7XX family core execution unit  
implements a load/store architecture with single-cycle  
ALU operations (logical, shift, add, subtract) and an  
autonomous multiply/divide unit. The core contains  
thirty-two 32-bit General Purpose Registers (GPRs)  
used for integer operations and address calculation.  
One additional register file shadow set (containing  
thirty-two registers) is added to minimize context  
switching overhead during interrupt/exception process-  
ing. The register file consists of two read ports and one  
write port and is fully bypassed to minimize operation  
latency in the pipeline.  
The MDU supports execution of one 16x16 or 32x16  
multiply operation every clock cycle; 32x32 multiply  
operations can be issued every other clock cycle.  
Appropriate interlocks are implemented to stall the  
issuance of back-to-back 32x32 multiply operations.  
The multiply operand size is automatically determined  
by logic built into the MDU.  
Divide operations are implemented with a simple 1 bit  
per clock iterative algorithm. An early-in detection  
checks the sign extension of the dividend (rs) operand.  
If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit  
wide rs, 15 iterations are skipped and for a 24-bit wide  
rs, 7 iterations are skipped. Any attempt to issue a sub-  
sequent MDU instruction while a divide is still active  
causes an IU pipeline stall until the divide operation is  
completed.  
The execution unit includes:  
• 32-bit adder used for calculating the data address  
• Address unit for calculating the next instruction  
address  
• Logic for branch determination and branch target  
address calculation  
• Load aligner  
Table 3-1 lists the repeat rate (peak issue rate of cycles  
until the operation can be reissued) and latency (num-  
ber of cycles until a result is available) for the PIC32MX  
core multiply and divide instructions. The approximate  
latency and repeat rates are listed in terms of pipeline  
clocks.  
• Bypass multiplexers used to avoid stalls when  
executing instruction streams where data  
producing instructions are followed closely by  
consumers of their results  
• Leading Zero/One detect unit for implementing  
the CLZand CLOinstructions  
• Arithmetic Logic Unit (ALU) for performing bitwise  
logical operations  
• Shifter and store aligner  
DS61156C-page 40  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
TABLE 3-1:  
PIC32MX5XX/6XX/7XX FAMILY CORE HIGH-PERFORMANCE INTEGER  
MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES  
Opcode  
Operand Size (mul rt) (div rs)  
Latency  
Repeat Rate  
MULT/MULTU, MADD/MADDU,  
MSUB/MSUBU  
16 bits  
32 bits  
16 bits  
32 bits  
8 bits  
1
2
1
2
MUL  
2
1
3
2
DIV/DIVU  
12  
19  
26  
33  
11  
18  
25  
32  
16 bits  
24 bits  
32 bits  
The MIPS architecture defines that the result of a  
multiply or divide operation be placed in the HI and LO  
registers. Using the Move-From-HI (MFHI) and Move-  
From-LO (MFLO) instructions, these values can be  
transferred to the General Purpose Register file.  
3.2.3  
SYSTEM CONTROL  
COPROCESSOR (CP0)  
In the MIPS architecture, CP0 is responsible for the  
virtual-to-physical address translation, the exception  
control system, the processor’s diagnostics capability,  
the operating modes (Kernel, User and Debug) and  
whether interrupts are enabled or disabled. Configura-  
tion information, such as presence of options like  
MIPS16e, is also available by accessing the CP0  
registers, listed in Table 3-2.  
In addition to the HI/LO targeted operations, the  
MIPS32 architecture also defines a multiply instruction,  
MUL, which places the least significant results in the pri-  
mary register file instead of the HI/LO register pair. By  
avoiding the explicit MFLO instruction required when  
using the LO register, and by supporting multiple desti-  
nation registers, the throughput of multiply-intensive  
operations is increased.  
Two other instructions, Multiply-Add (MADD) and  
Multiply-Subtract (MSUB), are used to perform the  
multiply-accumulate and multiply-subtract operations.  
The MADDinstruction multiplies two numbers and then  
adds the product to the current contents of the HI and  
LO registers. Similarly, the MSUBinstruction multiplies  
two operands and then subtracts the product from the  
HI and LO registers. The MADD and MSUB operations  
are commonly used in DSP algorithms.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 41  
PIC32MX5XX/6XX/7XX  
TABLE 3-2:  
COPROCESSOR 0 REGISTERS  
Register  
Number  
Register  
Name  
Function  
0-6  
7
Reserved  
Reserved in the PIC32MX5XX/6XX/7XX family core.  
Enables access via the RDHWRinstruction to selected hardware registers.  
Reports the address for the most recent address-related exception.  
Processor cycle count.  
HWREna  
BadVAddr(1)  
Count(1)  
Reserved  
Compare(1)  
Status(1)  
IntCtl(1)  
SRSCtl(1)  
SRSMap(1)  
Cause(1)  
EPC(1)  
8
9
10  
11  
Reserved in the PIC32MX5XX/6XX/7XX family core.  
Timer interrupt control.  
12  
12  
12  
12  
13  
14  
15  
15  
16  
16  
16  
16  
17-22  
23  
24  
25-29  
30  
31  
Processor status and control.  
Interrupt system status and control.  
Shadow register set status and control.  
Provides mapping from vectored interrupt to a shadow set.  
Cause of last general exception.  
Program counter at last exception.  
PRId  
Processor identification and revision.  
Exception vector base register.  
EBASE  
Config  
Configuration register.  
Config1  
Configuration Register 1.  
Config2  
Configuration Register 2.  
Config3  
Configuration Register 3.  
Reserved  
Debug(2)  
DEPC(2)  
Reserved  
ErrorEPC(1)  
DESAVE(2)  
Reserved in the PIC32MX5XX/6XX/7XX family core.  
Debug control and exception status.  
Program counter at last debug exception.  
Reserved in the PIC32MX5XX/6XX/7XX family core.  
Program counter at last error.  
Debug handler scratchpad register.  
Note 1: Registers used in exception processing.  
2: Registers used during debug.  
DS61156C-page 42  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
Coprocessor 0 also contains the logic for identifying  
and managing exceptions. Exceptions can be caused  
by a variety of sources, including alignment errors in  
data, external events or program errors. Table 3-3 lists  
the exception types in order of priority.  
TABLE 3-3:  
Exception  
PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES  
Description  
Reset  
DSS  
Assertion MCLR or a Power-on Reset (POR).  
EJTAG debug single step.  
DINT  
EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the  
EjtagBrk bit in the ECR register.  
NMI  
Assertion of NMI signal.  
Interrupt  
DIB  
Assertion of unmasked hardware or software interrupt signal.  
EJTAG debug hardware instruction break matched.  
AdEL  
Fetch address alignment error.  
Fetch reference to protected address.  
IBE  
Instruction fetch bus error.  
DBp  
Sys  
EJTAG breakpoint (execution of SDBBPinstruction).  
Execution of SYSCALLinstruction.  
Bp  
Execution of BREAKinstruction.  
RI  
Execution of a reserved instruction.  
CpU  
CEU  
Ov  
Execution of a coprocessor instruction for a coprocessor that is not enabled.  
Execution of a CorExtend instruction when CorExtendis not enabled.  
Execution of an arithmetic instruction that overflowed.  
Execution of a trap (when trap condition is true).  
EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).  
Tr  
DDBL/DDBS  
AdEL  
Load address alignment error.  
Load reference to protected address.  
AdES  
Store address alignment error.  
Store to protected address.  
DBE  
Load or store bus error.  
DDBL  
EJTAG data hardware breakpoint matched in load data compare.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 43  
 
 
PIC32MX5XX/6XX/7XX  
3.3  
Power Management  
3.4  
EJTAG Debug Support  
The PIC32MX5XX/6XX/7XX family core offers a number  
of power management features, including low-power  
design, active power management and power-down  
modes of operation. The core is a static design that  
supports slowing or Halting the clocks, which reduces  
system power consumption during Idle periods.  
The PIC32MX5XX/6XX/7XX family core provides for  
an Enhanced JTAG (EJTAG) interface for use in the  
software debug of application and kernel code. In  
addition to standard User mode and Kernel modes of  
operation, the PIC32MX5XX/6XX/7XX family core pro-  
vides a Debug mode that is entered after a debug  
exception (derived from a hardware breakpoint, single-  
step exception, etc.) is taken and continues until a  
Debug Exception Return (DERET) instruction is  
executed. During this time, the processor executes the  
debug exception handler routine.  
3.3.1  
INSTRUCTION-CONTROLLED  
POWER MANAGEMENT  
The mechanism for invoking Power-Down mode is  
through execution of the WAIT instruction. For more  
information on power management, see Section 27.0  
“Power-Saving Features”.  
The EJTAG interface operates through the Test Access  
Port (TAP), a serial communication port used for trans-  
ferring  
test  
data  
in  
and  
out  
of  
the  
3.3.2  
LOCAL CLOCK GATING  
PIC32MX5XX/6XX/7XX family core. In addition to the  
standard JTAG instructions, special instructions  
defined in the EJTAG specification define which  
registers are selected and how they are used.  
The majority of the power consumed by the  
PIC32MX5XX/6XX/7XX family core is in the clock tree  
and clocking registers. The PIC32MX family uses  
extensive use of local gated clocks to reduce this  
dynamic power consumption.  
DS61156C-page 44  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
4.1  
PIC32MX5XX/6XX/7XX Memory  
Layout  
4.0  
MEMORY ORGANIZATION  
Note:  
This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a compre-  
hensive reference source. For detailed  
information, refer to Section 3. “Memory  
PIC32MX5XX/6XX/7XX microcontrollers implement  
two address schemes: virtual and physical. All  
hardware resources, such as program memory, data  
memory and peripherals, are located at their respective  
physical addresses. Virtual addresses are exclusively  
used by the CPU to fetch and execute instructions as  
well as access peripherals. Physical addresses are  
used by bus master peripherals, such as DMA and the  
Flash controller, that access memory independently of  
the CPU.  
Organization”  
(DS61115)  
in  
the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
PIC32MX5XX/6XX/7XX microcontrollers provide 4 GB  
of unified virtual memory address space. All memory  
regions, including program, data memory, SFRs and  
Configuration registers, reside in this address space at  
their respective unique addresses. The program and  
data memories can be optionally partitioned into user  
and kernel memories. In addition, the data memory can  
be made executable, allowing PIC32MX5XX/6XX/7XX  
devices to execute from data memory.  
The memory maps for the PIC32MX5XX/6XX/7XX  
devices are shown in Figure 4-1, Figure 4-2 and  
Figure 4-3.  
4.1.1  
PERIPHERAL REGISTERS  
LOCATIONS  
Table 4-1 through Table 4-44 contain the peripheral  
address maps for the PIC32MX5XX/6XX/7XX  
devices. Peripherals located on the PB bus are  
mapped to 512-byte boundaries. Peripherals on the  
FPB bus are mapped to 4-Kbyte boundaries.  
Key features include:  
• 32-bit native data width  
• Separate User (KUSEG) and Kernel  
(KSEG0/KSEG1) mode address space  
• Flexible program Flash memory partitioning  
• Flexible data RAM partitioning for data and  
program space  
• Separate boot Flash memory for protected code  
• Robust bus exception handling to intercept  
runaway code  
• Simple memory mapping with Fixed Mapping  
Translation (FMT) unit  
• Cacheable (KSEG0) and non-cacheable (KSEG1)  
address regions  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 45  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 4-1:  
MEMORY MAP ON RESET FOR PIC32MX575F256H, PIC32MX575F256L,  
PIC32MX675F256H, PIC32MX675F256L, PIC32MX775F256H AND  
PIC32MX775F256L DEVICES(1)  
Virtual  
Memory Map  
Physical  
Memory Map  
0xFFFFFFFF  
0xBFC03000  
0xBFC02FFF  
0xFFFFFFFF  
Reserved  
Device  
Configuration  
Registers  
0xBFC02FF0  
0xBFC02FEF  
Boot Flash  
Reserved  
SFRs  
0xBFC00000  
0xBF900000  
0xBF8FFFFF  
Reserved  
0xBF800000  
Reserved  
0xBD040000  
0xBD03FFFF  
(2)  
Program Flash  
Reserved  
0xBD000000  
0xA0010000  
0xA000FFFF  
(2)  
RAM  
0xA0000000  
0x1FC03000  
0x1FC02FFF  
Device  
Configuration  
Registers  
Reserved  
0x9FC02FF0  
0x9FC02FFF  
Device  
Configuration  
Registers  
0x1FC02FF0  
0x1FC02FEF  
0x9FC02FEF  
0x9FC02FEF  
Boot Flash  
Reserved  
SFRs  
0x1FC00000  
Boot Flash  
Reserved  
0x9FC00000  
0x1F900000  
0x1F8FFFFF  
0x9D040000  
0x9D03FFFF  
0x1F800000  
(2)  
Program Flash  
Reserved  
Reserved  
0x9D000000  
0x1D040000  
0x1D03FFFF  
(2)  
0x80008000  
0x80007FFF  
Program Flash  
Reserved  
0x1D000000  
(2)  
RAM  
0x80000000  
0x00000000  
0x00010000  
0x0000FFFF  
0x00000000  
(2)  
Reserved  
RAM  
Note 1: Memory areas are not shown to scale.  
2: The size of this memory region is programmable (see Section 3. “Memory Organization”  
(DS61115)) and can be changed by initialization code provided by end user development  
tools (refer to the specific development tool documentation for information).  
DS61156C-page 46  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 4-2:  
MEMORY MAP ON RESET FOR PIC32MX575F512H, PIC32MX575F512L,  
PIC32MX675F512H, PIC32MX675F512L, PIC32MX775F512H AND  
PIC32MX775F512L DEVICES  
Virtual  
Physical  
Memory Map  
Memory Map  
0xFFFFFFFF  
0xBFC03000  
0xBFC02FFF  
0xFFFFFFFF  
Reserved  
Device  
Configuration  
Registers  
0xBFC02FF0  
0xBFC02FEF  
Boot Flash  
Reserved  
SFRs  
0xBFC00000  
0xBF900000  
0xBF8FFFFF  
Reserved  
0xBF800000  
Reserved  
0xBD080000  
0xBD07FFFF  
(2)  
Program Flash  
Reserved  
0xBD000000  
0xA0010000  
0xA000FFFF  
(2)  
RAM  
0xA0000000  
0x1FC03000  
0x1FC02FFF  
Device  
Configuration  
Registers  
Reserved  
0x9FC02FF0  
0x9FC02FFF  
Device  
Configuration  
Registers  
0x1FC02FF0  
0x1FC02FEF  
0x9FC02FEF  
0x9FC02FEF  
Boot Flash  
Reserved  
SFRs  
0x1FC00000  
Boot Flash  
Reserved  
0x9FC00000  
0x1F900000  
0x1F8FFFFF  
0x9D080000  
0x9D07FFFF  
0x1F800000  
(2)  
Program Flash  
Reserved  
Reserved  
0x9D000000  
0x1D080000  
0x1D07FFFF  
(2)  
0x80010000  
0x8000FFFF  
Program Flash  
Reserved  
0x1D000000  
(2)  
RAM  
0x80000000  
0x00000000  
0x00010000  
0x0000FFFF  
0x00000000  
(2)  
Reserved  
RAM  
Note 1: Memory areas are not shown to scale.  
2: The size of this memory region is programmable (see Section 3. “Memory Organization”  
(DS61115)) and can be changed by initialization code provided by end user development  
tools (refer to the specific development tool documentation for information).  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 47  
 
PIC32MX5XX/6XX/7XX  
FIGURE 4-3:  
MEMORY MAP ON RESET FOR PIC32MX695F512H, PIC32MX695F512L,  
PIC32MX795F512H AND PIC32MX795F512L DEVICES  
Virtual  
Physical  
Memory Map  
Memory Map  
0xFFFFFFFF  
0xBFC03000  
0xBFC02FFF  
0xFFFFFFFF  
Reserved  
Device  
Configuration  
Registers  
0xBFC02FF0  
0xBFC02FEF  
Boot Flash  
Reserved  
SFRs  
0xBFC00000  
0xBF900000  
0xBF8FFFFF  
Reserved  
0xBF800000  
Reserved  
0xBD080000  
0xBD07FFFF  
(2)  
Program Flash  
Reserved  
0xBD000000  
0xA0020000  
0xA001FFFF  
(2)  
RAM  
0xA0000000  
0x1FC03000  
0x1FC02FFF  
Device  
Configuration  
Registers  
Reserved  
0x9FC02FF0  
0x9FC02FFF  
Device  
Configuration  
Registers  
0x1FC02FF0  
0x1FC02FEF  
0x9FC02FEF  
0x9FC02FEF  
Boot Flash  
Reserved  
SFRs  
0x1FC00000  
Boot Flash  
Reserved  
0x9FC00000  
0x1F900000  
0x1F8FFFFF  
0x9D080000  
0x9D07FFFF  
0x1F800000  
(2)  
Program Flash  
Reserved  
Reserved  
0x9D000000  
0x1D080000  
0x1D07FFFF  
(2)  
0x80020000  
0x8001FFFF  
Program Flash  
Reserved  
0x1D000000  
(2)  
RAM  
0x80000000  
0x00000000  
0x00020000  
0x0001FFFF  
0x00000000  
(2)  
Reserved  
RAM  
Note 1: Memory areas are not shown to scale.  
2: The size of this memory region is programmable (see Section 3. “Memory Organization”  
(DS61115)) and can be changed by initialization code provided by end user development  
tools (refer to the specific development tool documentation for information).  
DS61156C-page 48  
Preliminary  
2010 Microchip Technology Inc.  
 
TABLE 4-1:  
BUS MATRIX REGISTER MAP  
Bits  
31/15  
30/14  
29/13 28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
BMXCHEDMA  
BMXERRIXI BMXERRICD BMXERRDMA BMXERRDS BMXERRIS 001F  
2000 BMXCON(1)  
2010 BMXDKPBA(1)  
2020 BMXDUDBA(1)  
2030 BMXDUPBA(1)  
2040 BMXDRMSZ  
2050 BMXPUPBA(1)  
2060 BMXPFMSZ  
2070 BMXBOOTSZ  
15:0  
31:16  
15:0  
BMXWSDRM  
BMXARB<2:0>  
0040  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
3000  
BMXDKPBA<15:0>  
31:16  
15:0  
BMXDUDBA<15:0>  
31:16  
15:0  
BMXDUPBA<15:0>  
31:16  
15:0  
BMXDRMSZ<31:0>  
31:16  
15:0  
BMXPUPBA<19:16>  
BMXPUPBA<15:0>  
31:16  
15:0  
BMXPFMSZ<31:0>  
31:16  
15:0  
BMXBOOTSZ<31:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.  
 
TABLE 4-2:  
INTERRUPT REGISTER MAP FOR THE PIC32MX575F256H AND PIC32MX575F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
FRZ  
MVEC  
TPC<2:0>  
INT4EP  
SS0  
0000  
1000 INTCON  
1010 INTSTAT  
1020 IPTMR  
INT3EP INT2EP INT1EP INT0EP 0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
RIPL<2:0>  
VEC<5:0>  
31:16  
15:0  
IPTMR<31:0>  
U1ATXIF U1ARXIF  
U1AEIF  
31:16 I2C1MIF I2CSIF  
I2CBIF SPI1ATXIF SPI1ARXIF SPI1AEIF  
I2C1AMIF I2C1ASIF I2C1ABIF  
OC5IF  
IC5IF  
IC1IF  
T5IF  
T1IF  
INT4IF  
INT0IF  
OC4IF  
CS1IF  
IC4IF  
T4IF 0000  
CTIF 0000  
1030  
IFS0  
15:0  
INT3IF  
OC3IF  
IC2EIF  
IC3IF  
T3IF  
INT2IF  
OC2IF  
IC2IF  
T2IF  
INT1IF  
OC1IF  
CS0IF  
31:16 IC3EIF  
IC1EIF  
CAN1IF  
USBIF  
FCEIF  
DMA7IF  
DMA6IF  
DMA5IF DMA4IF DMA3IF DMA2IF DMA1IF DMA0IF 0000  
U3ATXIF U3ARXIF U3AEIF  
U2ATXIF U2ARXIF  
U2AEIF  
1040  
1050  
1060  
IFS1  
IFS2  
IEC0  
15:0 RTCCIF FSCMIF  
SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF CMP2IF CMP1IF  
I2C3AMIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF  
PMPIF  
AD1IF  
CNIF 0000  
31:16  
15:0  
0000  
U3BTXIF U3BRXIF  
U1AEIE  
U3BEIF  
U2BTXIF U2BRXIF  
U2BEIF  
U1BTXIF U1BRXIF U1BEIF PMPEIF IC5EIF IC4EIF 0000  
U1ATXIE U1ARXIE  
31:16 I2C1MIE I2C1SIE I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE  
I2C1AMIE I2C1ASIE I2C1ABIE  
OC5IE  
IC5IE  
T5IE  
INT4IE  
OC4IE  
IC4IE  
T4IE 0000  
CTIE 0000  
15:0  
INT3IE  
OC3IE  
IC2EIE  
IC3IE  
T3IE  
INT2IE  
OC2IE  
IC2IE  
T2IE  
INT1IE  
OC1IE  
IC1IE  
T1IE  
INT0IE  
CS1IE  
CS0IE  
31:16 IC3EIE  
IC1EIE  
CAN1IE  
USBIE  
FCEIE  
DMA7IE  
DMA6IE  
DMA5IE DMA4IE DMA3IE DMA2IE DMA1IE DMA0IE 0000  
U3ATXIE U3ARXIE U3AEIE U2ATXIE U2ARXIE U2AEIE  
1070  
IEC1  
15:0 RTCCIE FSCMIE  
SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE CMP2IE CMP1IE  
I2C3AMIE I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE  
PMPIE  
AD1IE  
CNIE 0000  
31:16  
15:0  
U2BEIE  
0000  
1080  
1090  
IEC2  
IPC0  
U3BTXIE U3BRXIE  
INT0IP<2:0>  
U3BEIE U2BTXIE U2BRXIE  
U1BTXIE U1BRXIE U1BEIE PMPEIE IC5EIE IC4EIE 0000  
31:16  
15:0  
INT0IS<1:0>  
CS0IS<1:0>  
INT1IS<1:0>  
IC1IS<1:0>  
CS1IP<2:0>  
CTIP<2:0>  
OC1IP<2:0>  
T1IP<2:0>  
CS1IS<1:0>  
CTIS<1:0>  
OC1IS<1:0>  
T1IS<1:0>  
0000  
0000  
0000  
0000  
CS0IP<2:0>  
31:16  
15:0  
INT1IP<2:0>  
10A0 IPC1  
IC1IP<2:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for  
more information.  
TABLE 4-2:  
INTERRUPT REGISTER MAP FOR THE PIC32MX575F256H AND PIC32MX575F512H DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
INT2IP<2:0>  
IC2IP<2:0>  
INT3IP<2:0>  
IC3IP<2:0>  
INT4IP<2:0>  
IC4IP<2:0>  
INT2IS<1:0>  
OC2IP<2:0>  
T2IP<2:0>  
OC2IS<1:0>  
T2IS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
10B0 IPC2  
10C0 IPC3  
10D0 IPC4  
10E0 IPC5  
IC2IS<1:0>  
INT3IS<1:0>  
IC3IS<1:0>  
INT4IS<1:0>  
IC4IS<1:0>  
31:16  
15:0  
OC3IP<2:0>  
T3IP<2:0>  
OC3IS<1:0>  
T3IS<1:0>  
31:16  
15:0  
OC4IP<2:0>  
T4IP<2:0>  
OC4IS<1:0>  
T4IS<1:0>  
31:16  
15:0  
OC5IP<2:0>  
T5IP<2:0>  
OC5IS<1:0>  
T5IS<1:0>  
IC5IP<2:0>  
AD1IP<2:0>  
IC5IS<1:0>  
31:16  
AD1IS<1:0>  
CNIP<2:0>  
U1AIP<2:0>  
SPI1AIP<2:0>  
I2C1AIP<2:0>  
CNIS<1:0>  
U1AIS<1:0>  
SPI1AIS<1:0>  
I2C1AIS<1:0>  
10F0 IPC6  
15:0  
I2C1IP<2:0>  
I2C1IS<1:0>  
0000  
0000  
U2AIP<2:0>  
SPI2AIP<2:0>  
I2C2AIP<2:0>  
CMP1IP<2:0>  
RTCCIP<2:0>  
U2AIS<1:0>  
SPI2AIS<1:0>  
I2C2AIS<1:0>  
CMP1IS<1:0>  
RTCCIS<1:0>  
31:16  
CMP2IP<2:0>  
CMP2IS<1:0>  
1100  
IPC7  
15:0  
PMPIP<2:0>  
FSCMIP<2:0>  
U3AIP<2:0>  
SPI3AIP<2:0>  
I2C3AIP<2:0>  
DMA2IP<2:0>  
DMA0IP<2:0>  
DMA6IP<2:0>  
DMA4IP<2:0>  
CAN1IP<2:0>  
FCEIP<2:0>  
U2BIP<2:0>  
PMPIS<1:0>  
FSCMIS<1:0>  
U3AIS<1:0>  
0000  
0000  
31:16  
1110  
1120  
IPC8  
IPC9  
15:0  
SPI3AIS<1:0>  
I2C3AIS<1:0>  
DMA2IS<1:0>  
DMA0IS<1:0>  
DMA6IS<1:0>  
DMA4IS<1:0>  
CAN1IS<1:0>  
FCEIS<1:0>  
0000  
31:16  
15:0  
DMA3IP<2:0>  
DMA1IP<2:0>  
DMA7IP<2:0>  
DMA5IP<2:0>  
DMA3IS<1:0>  
DMA1IS<1:0>  
DMA7IS<1:0>  
DMA5IS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
1130 IPC10  
1140 IPC11  
1150 IPC12  
31:16  
15:0  
USBIP<2:0>  
U3BIP<2:0>  
U1BIP<2:0>  
USBIS<1:0>  
31:16  
15:0  
U3BIS<1:0>  
U1BIS<1:0>  
U2BIS<1:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for  
more information.  
TABLE 4-3:  
INTERRUPT REGISTER MAP FOR THE PIC32MX675F256H, PIC32MX675F512H AND  
PIC32MX695F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
FRZ  
MVEC  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
SS0  
INT0EP  
0000  
0000  
0000  
0000  
0000  
0000  
1000 INTCON  
1010 INTSTAT  
1020 IPTMR  
TPC<2:0>  
31:16  
15:0  
RIPL<2:0>  
VEC<5:0>  
31:16  
15:0  
IPTMR<31:0>  
U1ATXIF U1ARXIF  
U1AEIF  
31:16 I2C1MIF  
I2CSIF  
I2CBIF SPI1ATXIF SPI1ARXIF SPI1AEIF  
I2C1AMIF I2C1ASIF I2C1ABIF  
OC5IF  
IC5IF  
T5IF  
INT4IF  
OC4IF  
IC4IF  
T4IF  
0000  
1030  
IFS0  
15:0 INT3IF  
OC3IF  
IC2EIF  
IC3IF  
T3IF  
INT2IF  
OC2IF  
IC2IF  
T2IF  
INT1IF  
OC1IF  
IC1IF  
T1IF  
INT0IF  
CS1IF  
CS0IF  
CTIF  
0000  
0000  
31:16 IC3EIF  
15:0 RTCCIF  
IC1EIF  
ETHIF  
USBIF  
FCEIF  
U3AEIF  
DMA7IF  
DMA6IF  
DMA5IF  
U2AEIF  
DMA4IF  
DMA3IF  
DMA2IF  
DMA1IF  
DMA0IF  
U3ATXIF U3ARXIF  
U2ATXIF U2ARXIF  
1040  
1050  
1060  
IFS1  
IFS2  
IEC0  
FSCMIF  
SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF CMP2IF  
I2C3AMIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF  
CMP1IF  
PMPIF  
AD1IF  
CNIF  
0000  
31:16  
15:0  
0000  
0000  
U3BTXIF U3BRXIF  
U1AEIE  
U3BEIF  
U2BTXIF U2BRXIF  
U2BEIF  
U1BTXIF U1BRXIF  
U1BEIF  
PMPEIF  
IC5EIF  
IC4EIF  
U1ATXIE U1ARXIE  
31:16 I2C1MIE  
I2C1SIE  
I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE  
I2C1AMIE I2C1ASIE I2C1ABIE  
OC5IE  
IC5IE  
T5IE  
INT4IE  
OC4IE  
IC4IE  
T4IE  
0000  
15:0 INT3IE  
OC3IE  
IC2EIE  
IC3IE  
T3IE  
INT2IE  
OC2IE  
IC2IE  
T2IE  
INT1IE  
OC1IE  
IC1IE  
T1IE  
INT0IE  
CS1IE  
CS0IE  
CTIE  
0000  
0000  
31:16 IC3EIE  
15:0 RTCCIE  
IC1EIE  
ETHIE  
USBIE  
FCEIE  
DMA7IE  
DMA6IE  
DMA5IE  
DMA4IE  
DMA3IE  
DMA2IE  
DMA1IE  
DMA0IE  
U3ATXIE U3ARXIE U3AEIE  
U2ATXIE U2ARXIE U2AEIE  
1070  
IEC1  
FSCMIE  
SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE CMP2IE  
I2C3AMIE I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE  
CMP1IE  
PMPIE  
AD1IE  
CNIE  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
1080  
1090  
10A0  
10B0  
10C0  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
U3BTXIE U3BRXIE  
INT0IP<2:0>  
CS0IP<2:0>  
INT1IP<2:0>  
IC1IP<2:0>  
U3BEIE  
U2BTXIE U2BRXIE U2BEIE  
U1BTXIE U1BRXIE  
U1BEIE  
PMPEIE  
IC5EIE  
IC4EIE  
31:16  
15:0  
INT0IS<1:0>  
CS1IP<2:0>  
CTIP<2:0>  
OC1IP<2:0>  
T1IP<2:0>  
OC2IP<2:0>  
T2IP<2:0>  
OC3IP<2:0>  
T3IP<2:0>  
CS1IS<1:0>  
CS0IS<1:0>  
INT1IS<1:0>  
IC1IS<1:0>  
INT2IS<1:0>  
IC2IS<1:0>  
INT3IS<1:0>  
IC3IS<1:0>  
CTIS<1:0>  
OC1IS<1:0>  
T1IS<1:0>  
OC2IS<1:0>  
T2IS<1:0>  
OC3IS<1:0>  
T3IS<1:0>  
31:16  
15:0  
31:16  
15:0  
INT2IP<2:0>  
IC2IP<2:0>  
31:16  
15:0  
INT3IP<2:0>  
IC3IP<2:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
 
TABLE 4-3:  
INTERRUPT REGISTER MAP FOR THE PIC32MX675F256H, PIC32MX675F512H AND  
PIC32MX695F512H DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
INT4IP<2:0>  
IC4IP<2:0>  
INT4IS<1:0>  
IC4IS<1:0>  
OC4IP<2:0>  
T4IP<2:0>  
OC4IS<1:0>  
0000  
0000  
0000  
0000  
0000  
10D0  
10E0  
IPC4  
IPC5  
T4IS<1:0>  
OC5IS<1:0>  
T5IS<1:0>  
31:16  
15:0  
OC5IP<2:0>  
T5IP<2:0>  
IC5IP<2:0>  
AD1IP<2:0>  
IC5IS<1:0>  
AD1IS<1:0>  
31:16  
CNIP<2:0>  
CNIS<1:0>  
U1AIP<2:0>  
SPI1AIP<2:0>  
I2C1AIP<2:0>  
U1AIS<1:0>  
SPI1AIS<1:0>  
I2C1AIS<1:0>  
10F0  
1100  
IPC6  
IPC7  
15:0  
I2C1IP<2:0>  
I2C1IS<1:0>  
0000  
0000  
U2AIP<2:0>  
SPI2AIP<2:0>  
I2C2AIP<2:0>  
CMP1IP<2:0>  
RTCCIP<2:0>  
U2AIS<1:0>  
SPI2AIS<1:0>  
I2C2AIS<1:0>  
CMP1IS<1:0>  
RTCCIS<1:0>  
31:16  
CMP2IP<2:0>  
CMP2IS<1:0>  
15:0  
PMPIP<2:0>  
FSCMIP<2:0>  
U3AIP<2:0>  
SPI3AIP<2:0>  
I2C3AIP<2:0>  
DMA2IP<2:0>  
DMA0IP<2:0>  
DMA6IP<2:0>  
DMA4IP<2:0>  
PMPIS<1:0>  
FSCMIS<1:0>  
U3AIS<1:0>  
0000  
0000  
31:16  
1110  
1120  
IPC8  
IPC9  
15:0  
SPI3AIS<1:0>  
I2C3AIS<1:0>  
DMA2IS<1:0>  
DMA0IS<1:0>  
DMA6IS<1:0>  
DMA4IS<1:0>  
0000  
31:16  
15:0  
DMA3IP<2:0>  
DMA1IP<2:0>  
DMA7IP<2:0>  
DMA5IP<2:0>  
DMA3IS<1:0>  
DMA1IS<1:0>  
DMA7IS<1:0>  
DMA5IS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
1130 IPC10  
1140 IPC11  
1150 IPC12  
31:16  
15:0  
USBIP<2:0>  
U3BIP<2:0>  
U1BIP<2:0>  
USBIS<1:0>  
FCEIP<2:0>  
U2BIP<2:0>  
ETHIP<2:0>  
FCEIS<1:0>  
31:16  
15:0  
U3BIS<1:0>  
U1BIS<1:0>  
U2BIS<1:0>  
ETHIS<1:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
TABLE 4-4:  
INTERRUPT REGISTER MAP FOR PIC32MX775F256H, PIC32MX775F512H AND  
PIC32MX795F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
FRZ  
MVEC  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
SS0  
INT0EP  
0000  
0000  
0000  
0000  
0000  
0000  
1000 INTCON  
1010 INTSTAT  
1020 IPTMR  
TPC<2:0>  
31:16  
15:0  
RIPL<2:0>  
VEC<5:0>  
31:16  
15:0  
IPTMR<31:0>  
U1ATXIF U1ARXIF  
U1AEIF  
31:16 I2C1MIF  
I2CSIF  
I2CBIF SPI1ATXIF SPI1ARXIF SPI1AEIF  
I2C1AMIF I2C1ASIF I2C1ABIF  
OC5IF  
IC5IF  
T5IF  
INT4IF  
OC4IF  
IC4IF  
T4IF  
0000  
1030  
IFS0  
15:0 INT3IF  
OC3IF  
IC2EIF  
IC3IF  
T3IF  
INT2IF  
OC2IF  
IC2IF  
T2IF  
INT1IF  
OC1IF  
IC1IF  
T1IF  
INT0IF  
CS1IF  
CS0IF  
CTIF  
0000  
0000  
31:16 IC3EIF  
15:0 RTCCIF  
IC1EIF  
ETHIF  
CAN2IF  
CAN1IF  
USBIF  
FCEIF  
U3AEIF  
DMA7IF  
DMA6IF  
DMA5IF  
U2AEIF  
DMA4IF  
DMA3IF  
DMA2IF  
DMA1IF  
DMA0IF  
U3ATXIF U3ARXIF  
U2ATXIF U2ARXIF  
1040  
1050  
1060  
IFS1  
IFS2  
IEC0  
FSCMIF  
SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF CMP2IF  
I2C3AMIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF  
CMP1IF  
PMPIF  
AD1IF  
CNIF  
0000  
31:16  
15:0  
0000  
0000  
U3BTXIF U3BRXIF  
U3BEIF  
U2BTXIF U2BRXIF  
U2BEIF  
U1BTXIF U1BRXIF  
U1BEIF  
PMPEIF  
IC5EIF  
IC4EIF  
U1ATXIE U1ARXIE U1AEIE  
31:16 I2C1MIE  
I2C1SIE  
I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE  
I2C1AMIE I2C1ASIE I2C1ABIE  
OC5IE  
IC5IE  
T5IE  
INT4IE  
OC4IE  
IC4IE  
T4IE  
0000  
15:0 INT3IE  
OC3IE  
IC2EIE  
IC3IE  
T3IE  
INT2IE  
OC2IE  
IC2IE  
T2IE  
INT1IE  
OC1IE  
IC1IE  
T1IE  
INT0IE  
CS1IE  
CS0IE  
CTIE  
0000  
0000  
31:16 IC3EIE  
15:0 RTCCIE  
IC1EIE  
ETHIE  
CAN2IE  
CAN1IE  
USBIE  
FCEIE  
DMA7IE  
DMA6IE  
DMA5IE  
DMA4IE  
DMA3IE  
DMA2IE  
DMA1IE  
DMA0IE  
U3ATXIE U3ARXIE U3AEIE  
U2ATXIE U2ARXIE U2AEIE  
1070  
IEC1  
FSCMIE  
SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE CMP2IE  
I2C3AMIE I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE  
CMP1IE  
PMPIE  
AD1IE  
CNIE  
0000  
31:16  
15:0  
U2BEIE  
0000  
0000  
0000  
0000  
0000  
0000  
1080  
1090  
10A0  
10B0  
10C0  
IEC2  
IPC0  
IPC1  
U3BTXIE U3BRXIE U3BEIE  
U2BTXIE U2BRXIE  
U1BTXIE U1BRXIE U1BEIE  
PMPEIE  
IC5EIE  
IC4EIE  
31:16  
15:0  
INT0IP<2:0>  
CS0IP<2:0>  
INT1IP<2:0>  
IC1IP<2:0>  
INT0IS<1:0>  
CS1IP<2:0>  
CTIP<2:0>  
OC1IP<2:0>  
T1IP<2:0>  
CS1IS<1:0>  
CS0IS<1:0>  
CTIS<1:0>  
OC1IS<1:0>  
T1IS<1:0>  
31:16  
15:0  
INT1IS<1:0>  
IC1IS<1:0>  
31:16  
15:0  
INT2IP<2:0>  
IC2IP<2:0>  
INT3IP<2:0>  
IC3IP<2:0>  
INT2IS<1:0>  
IC2IS<1:0>  
INT3IS<1:0>  
IC3IS<1:0>  
OC2IP<2:0>  
T2IP<2:0>  
OC3IP<2:0>  
T3IP<2:0>  
OC2IS<1:0>  
T2IS<1:0>  
OC3IS<1:0>  
T3IS<1:0>  
0000  
0000  
0000  
0000  
IPC2  
IPC3  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
 
TABLE 4-4:  
INTERRUPT REGISTER MAP FOR PIC32MX775F256H, PIC32MX775F512H AND  
PIC32MX795F512H DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
INT4IP<2:0>  
IC4IP<2:0>  
INT4IS<1:0>  
IC4IS<1:0>  
OC4IP<2:0>  
T4IP<2:0>  
OC4IS<1:0>  
0000  
0000  
0000  
0000  
0000  
10D0  
10E0  
IPC4  
IPC5  
T4IS<1:0>  
OC5IS<1:0>  
T5IS<1:0>  
31:16  
15:0  
OC5IP<2:0>  
T5IP<2:0>  
IC5IP<2:0>  
AD1IP<2:0>  
IC5IS<1:0>  
AD1IS<1:0>  
31:16  
CNIP<2:0>  
CNIS<1:0>  
U1AIP<2:0>  
SPI1AIP<2:0>  
I2C1AIP<2:0>  
U1AIS<1:0>  
SPI1AIS<1:0>  
I2C1AIS<1:0>  
10F0  
1100  
IPC6  
IPC7  
15:0  
I2C1IP<2:0>  
I2C1IS<1:0>  
0000  
0000  
U2AIP<2:0>  
SPI2AIP<2:0>  
I2C2AIP<2:0>  
CMP1IP<2:0>  
RTCCIP<2:0>  
U2AIS<1:0>  
SPI2AIS<1:0>  
I2C2AIS<1:0>  
CMP1IS<1:0>  
RTCCIS<1:0>  
31:16  
CMP2IP<2:0>  
CMP2IS<1:0>  
15:0  
PMPIP<2:0>  
FSCMIP<2:0>  
U3AIP<2:0>  
PMPIS<1:0>  
FSCMIS<1:0>  
U3AIS<1:0>  
0000  
0000  
31:16  
1110  
1120  
IPC8  
IPC9  
15:0  
SPI3AIP<2:0>  
I2C3AIP<2:0>  
DMA2IP<2:0>  
DMA0IP<2:0>  
DMA6IP<2:0>  
DMA4IP<2:0>  
CAN1IP<2:0>  
FCEIP<2:0>  
U2BIP<2:0>  
SPI3AIS<1:0>  
I2C3AIS<1:0>  
DMA2IS<1:0>  
DMA0IS<1:0>  
DMA6IS<1:0>  
DMA4IS<1:0>  
CAN1IS<1:0>  
FCEIS<1:0>  
U2BIS<1:0>  
0000  
31:16  
15:0  
DMA3IP<2:0>  
DMA1IP<2:0>  
DMA7IP<2:0>  
DMA5IP<2:0>  
CAN2IP<2:0>  
USBIP<2:0>  
U3BIP<2:0>  
U1BIP<2:0>  
DMA3IS<1:0>  
DMA1IS<1:0>  
DMA7IS<1:0>  
DMA5IS<1:0>  
CAN2IS<1:0>  
USBIS<1:0>  
U3BIS<1:0>  
U1BIS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
1130 IPC10  
1140 IPC11  
1150 IPC12  
31:16  
15:0  
31:16  
15:0  
ETHIP<2:0>  
ETHIS<1:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
TABLE 4-5:  
INTERRUPT REGISTER MAP FOR THE PIC32MX575F512L AND PIC32MX575F256L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
FRZ  
MVEC  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
SS0  
0000  
1000 INTCON  
1010 INTSTAT  
1020 IPTMR  
TPC<2:0>  
INT0EP 0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
RIPL<2:0>  
VEC<5:0>  
31:16  
15:0  
IPTMR<31:0>  
U1ATXIF U1ARXIF  
U1AEIF  
31:16 I2C1MIF  
I2CSIF  
I2CBIF SPI1ATXIF SPI1ARXIF SPI1AEIF SPI1TXIF SPI1RXIF SPI1EIF  
I2C1AMIF I2C1ASIF I2C1ABIF  
OC5IF  
IC5IF  
T5IF  
INT4IF  
OC4IF  
IC4IF  
T4IF  
CTIF  
0000  
1030  
IFS0  
15:0  
INT3IF  
IC3EIF  
OC3IF  
IC2EIF  
IC3IF  
T3IF  
INT2IF  
OC2IF  
IC2IF  
T2IF  
INT1IF  
OC1IF  
IC1IF  
T1IF  
INT0IF  
CS1IF  
CS0IF  
0000  
31:16  
IC1EIF  
CAN1IF  
USBIF  
FCEIF  
U3AEIF  
DMA7IF  
DMA6IF  
DMA5IF  
U2AEIF  
DMA4IF  
DMA3IF  
DMA2IF  
DMA1IF  
DMA0IF 0000  
U3ATXIF U3ARXIF  
U2ATXIF U2ARXIF  
1040  
1050  
1060  
IFS1  
IFS2  
IEC0  
15:0  
RTCCIF  
FSCMIF  
I2C2MIF  
I2C2SIF  
I2C2BIF SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF CMP2IF  
I2C3AMIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF  
CMP1IF  
PMPIF  
AD1IF  
CNIF  
0000  
31:16  
15:0  
0000  
0000  
U3BTXIF U3BRXIF  
U3BEIF  
U2BTXIF U2BRXIF  
U2BEIF  
U1BTXIF U1BRXIF  
U1BEIF  
PMPEIF  
IC5EIF  
IC4EIF  
U1ATXIE U1ARXIE U1AEIE  
31:16 I2C1MIE  
I2C1SIE  
I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE SPI1TXIE SPI1RXIE SPI1EIE  
I2C1AMIE I2C1ASIE I2C1ABIE  
OC5IE  
IC5IE  
T5IE  
INT4IE  
OC4IE  
IC4IE  
T4IE  
0000  
15:0  
INT3IE  
IC3EIE  
OC3IE  
IC2EIE  
IC3IE  
T3IE  
INT2IE  
OC2IE  
IC2IE  
T2IE  
INT1IE  
OC1IE  
IC1IE  
T1IE  
INT0IE  
CS1IE  
CS0IE  
CTIE  
0000  
31:16  
IC1EIE  
CAN1IE  
USBIE  
FCEIE  
DMA7IE  
DMA6IE  
DMA5IE  
DMA4IE  
DMA3IE  
DMA2IE  
DMA1IE  
DMA0IE 0000  
U3ATXIE U3ARXIE U3AEIE  
U2ATXIE U2ARXIE U2AEIE  
1070  
IEC1  
15:0  
RTCCIE  
FSCMIE  
I2C2MIE  
I2C2SIE  
I2C2BIE SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE CMP2IE  
I2C3AMIE I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE  
CMP1IE  
PMPIE  
AD1IE  
CNIE  
0000  
31:16  
15:0  
U2BEIE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
1080  
1090  
10A0  
10B0  
10C0  
10D0  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
U3BTXIE U3BRXIE U3BEIE  
U2BTXIE U2BRXIE  
U1BTXIE U1BRXIE U1BEIE  
PMPEIE  
IC5EIE  
IC4EIE  
31:16  
15:0  
INT0IP<2:0>  
CS0IP<2:0>  
INT1IP<2:0>  
IC1IP<2:0>  
INT2IP<2:0>  
IC2IP<2:0>  
INT3IP<2:0>  
IC3IP<2:0>  
INT4IP<2:0>  
IC4IP<2:0>  
INT0IS<1:0>  
CS1IP<2:0>  
CTIP<2:0>  
OC1IP<2:0>  
T1IP<2:0>  
OC2IP<2:0>  
T2IP<2:0>  
OC3IP<2:0>  
T3IP<2:0>  
OC4IP<2:0>  
T4IP<2:0>  
CS1IS<1:0>  
CS0IS<1:0>  
CTIS<1:0>  
OC1IS<1:0>  
T1IS<1:0>  
OC2IS<1:0>  
T2IS<1:0>  
OC3IS<1:0>  
T3IS<1:0>  
OC4IS<1:0>  
T4IS<1:0>  
31:16  
15:0  
INT1IS<1:0>  
IC1IS<1:0>  
INT2IS<1:0>  
IC2IS<1:0>  
INT3IS<1:0>  
IC3IS<1:0>  
INT4IS<1:0>  
IC4IS<1:0>  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
 
TABLE 4-5:  
INTERRUPT REGISTER MAP FOR THE PIC32MX575F512L AND PIC32MX575F256L DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
SPI1IP<2:0>  
IC5IP<2:0>  
AD1IP<2:0>  
SPI1IS<1:0>  
OC5IP<2:0>  
T5IP<2:0>  
OC5IS<1:0>  
0000  
0000  
0000  
10E0  
10F0  
IPC5  
IPC6  
IC5IS<1:0>  
AD1IS<1:0>  
T5IS<1:0>  
CNIS<1:0>  
31:16  
CNIP<2:0>  
U1AIP<2:0>  
SPI1AIP<2:0>  
I2C1AIP<2:0>  
U1AIS<1:0>  
SPI1AIS<1:0>  
I2C1AIS<1:0>  
15:0  
I2C1IP<2:0>  
I2C1IS<1:0>  
0000  
0000  
U2AIP<2:0>  
SPI2AIP<2:0>  
I2C2AIP<2:0>  
CMP1IP<2:0>  
RTCCIP<2:0>  
U2AIS<1:0>  
SPI2AIS<1:0>  
I2C2AIS<1:0>  
CMP1IS<1:0>  
RTCCIS<1:0>  
31:16  
CMP2IP<2:0>  
CMP2IS<1:0>  
1100  
1110  
IPC7  
IPC8  
15:0  
PMPIP<2:0>  
FSCMIP<2:0>  
U3AIP<2:0>  
SPI3AIP<2:0>  
I2C3AIP<2:0>  
DMA2IP<2:0>  
DMA0IP<2:0>  
DMA6IP<2:0>  
DMA4IP<2:0>  
CAN1IP<2:0>  
FCEIP<2:0>  
U2BIP<2:0>  
PMPIS<1:0>  
FSCMIS<1:0>  
U3AIS<1:0>  
0000  
0000  
31:16  
15:0  
I2C2IP<2:0>  
I2C2IS<1:0>  
SPI3AIS<1:0>  
I2C3AIS<1:0>  
DMA2IS<1:0>  
DMA0IS<1:0>  
DMA6IS<1:0>  
DMA4IS<1:0>  
CAN1IS<1:0>  
FCEIS<1:0>  
0000  
31:16  
15:0  
DMA3IP<2:0>  
DMA1IP<2:0>  
DMA7IP<2:0>  
DMA5IP<2:0>  
DMA3IS<1:0>  
DMA1IS<1:0>  
DMA7IS<1:0>  
DMA5IS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
1120  
1130  
1140  
1150  
IPC9  
IPC10  
IPC11  
IPC12  
31:16  
15:0  
31:16  
15:0  
USBIP<2:0>  
U3BIP<2:0>  
U1BIP<2:0>  
USBIS<1:0>  
31:16  
15:0  
U3BIS<1:0>  
U1BIS<1:0>  
U2BIS<1:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
TABLE 4-6:  
INTERRUPT REGISTER MAP FOR PIC32MX675F256L, PIC32MX675F512L AND  
PIC32MX695F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
FRZ  
MVEC  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
SS0  
INT0EP  
0000  
0000  
0000  
0000  
0000  
0000  
1000 INTCON  
1010 INTSTAT  
1020 IPTMR  
15:0  
31:16  
15:0  
TPC<2:0>  
RIPL<2:0>  
VEC<5:0>  
31:16  
15:0  
IPTMR<31:0>  
U1ATXIF U1ARXIF  
U1AEIF  
31:16 I2C1MIF  
I2CSIF  
I2CBIF SPI1ATXIF SPI1ARXIF SPI1AEIF SPI1TXIF SPI1RXIF SPI1EIF  
I2C1AMIF I2C1ASIF I2C1ABIF  
OC5IF  
IC5IF  
T5IF  
INT4IF  
OC4IF  
IC4IF  
T4IF  
0000  
1030  
IFS0  
15:0 INT3IF  
OC3IF  
IC2EIF  
IC3IF  
T3IF  
INT2IF  
OC2IF  
IC2IF  
T2IF  
INT1IF  
OC1IF  
IC1IF  
T1IF  
INT0IF  
CS1IF  
CS0IF  
CTIF  
0000  
0000  
31:16 IC3EIF  
15:0 RTCCIF  
IC1EIF  
ETHIF  
USBIF  
FCEIF  
U3AEIF  
DMA7IF  
DMA6IF  
DMA5IF  
U2AEIF  
DMA4IF  
DMA3IF  
DMA2IF  
DMA1IF  
DMA0IF  
U3ATXIF U3ARXIF  
U2ATXIF U2ARXIF  
1040  
1050  
1060  
IFS1  
IFS2  
IEC0  
FSCMIF  
I2C2MIF  
I2C2SIF  
I2C2BIF SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF CMP2IF  
I2C3AMIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF  
CMP1IF  
PMPIF  
AD1IF  
CNIF  
0000  
31:16  
15:0  
0000  
0000  
U3BTXIF U3BRXIF  
U1AEIE  
U3BEIF  
U2BTXIF U2BRXIF  
U2BEIF  
U1BTXIF U1BRXIF  
U1BEIF  
PMPEIF  
IC5EIF  
IC4EIF  
U1ATXIE U1ARXIE  
31:16 I2C1MIE  
I2C1SIE  
I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE SPI1TXIE SPI1RXIE SPI1EIE  
I2C1AMIE I2C1ASIE I2C1ABIE  
OC5IE  
IC5IE  
T5IE  
INT4IE  
OC4IE  
IC4IE  
T4IE  
0000  
15:0 INT3IE  
OC3IE  
IC2EIE  
IC3IE  
T3IE  
INT2IE  
OC2IE  
IC2IE  
T2IE  
INT1IE  
OC1IE  
IC1IE  
T1IE  
INT0IE  
CS1IE  
CS0IE  
CTIE  
0000  
0000  
31:16 IC3EIE  
15:0 RTCCIE  
IC1EIE  
ETHIE  
USBIE  
FCEIE  
DMA7IE  
DMA6IE  
DMA5IE  
DMA4IE  
DMA3IE  
DMA2IE  
DMA1IE  
DMA0IE  
U3ATXIE U3ARXIE U3AEIE  
U2ATXIE U2ARXIE U2AEIE  
1070  
IEC1  
FSCMIE  
I2C2MIE  
I2C2SIE  
I2C2BIE SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE CMP2IE  
I2C3AMIE I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE  
CMP1IE  
PMPIE  
AD1IE  
CNIE  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
1080  
1090  
10A0  
10B0  
10C0  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
U3BTXIE U3BRXIE  
INT0IP<2:0>  
CS0IP<2:0>  
INT1IP<2:0>  
IC1IP<2:0>  
U3BEIE  
U2BTXIE U2BRXIE U2BEIE  
U1BTXIE U1BRXIE  
U1BEIE  
PMPEIE  
IC5EIE  
IC4EIE  
31:16  
15:0  
INT0IS<1:0>  
CS1IP<2:0>  
CTIP<2:0>  
OC1IP<2:0>  
T1IP<2:0>  
OC2IP<2:0>  
T2IP<2:0>  
OC3IP<2:0>  
T3IP<2:0>  
CS1IS<1:0>  
CS0IS<1:0>  
INT1IS<1:0>  
IC1IS<1:0>  
INT2IS<1:0>  
IC2IS<1:0>  
INT3IS<1:0>  
IC3IS<1:0>  
CTIS<1:0>  
OC1IS<1:0>  
T1IS<1:0>  
OC2IS<1:0>  
T2IS<1:0>  
OC3IS<1:0>  
T3IS<1:0>  
31:16  
15:0  
31:16  
15:0  
INT2IP<2:0>  
IC2IP<2:0>  
31:16  
15:0  
INT3IP<2:0>  
IC3IP<2:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
 
TABLE 4-6:  
INTERRUPT REGISTER MAP FOR PIC32MX675F256L, PIC32MX675F512L AND  
PIC32MX695F512L DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
INT4IP<2:0>  
IC4IP<2:0>  
SPI1IP<2:0>  
IC5IP<2:0>  
AD1IP<2:0>  
INT4IS<1:0>  
OC4IP<2:0>  
T4IP<2:0>  
OC4IS<1:0>  
0000  
0000  
0000  
0000  
0000  
10D0  
10E0  
IPC4  
IPC5  
IC4IS<1:0>  
SPI1IS<1:0>  
IC5IS<1:0>  
AD1IS<1:0>  
T4IS<1:0>  
OC5IS<1:0>  
T5IS<1:0>  
31:16  
15:0  
OC5IP<2:0>  
T5IP<2:0>  
31:16  
CNIP<2:0>  
CNIS<1:0>  
U1AIP<2:0>  
SPI1AIP<2:0>  
I2C1AIP<2:0>  
U1AIS<1:0>  
SPI1AIS<1:0>  
I2C1AIS<1:0>  
10F0  
1100  
IPC6  
IPC7  
15:0  
I2C1IP<2:0>  
I2C1IS<1:0>  
0000  
0000  
U2AIP<2:0>  
SPI2AIP<2:0>  
I2C2AIP<2:0>  
CMP1IP<2:0>  
RTCCIP<2:0>  
U2AIS<1:0>  
SPI2AIS<1:0>  
I2C2AIS<1:0>  
CMP1IS<1:0>  
RTCCIS<1:0>  
31:16  
CMP2IP<2:0>  
CMP2IS<1:0>  
15:0  
PMPIP<2:0>  
FSCMIP<2:0>  
U3AIP<2:0>  
SPI3AIP<2:0>  
I2C3AIP<2:0>  
DMA2IP<2:0>  
DMA0IP<2:0>  
DMA6IP<2:0>  
DMA4IP<2:0>  
PMPIS<1:0>  
FSCMIS<1:0>  
U3AIS<1:0>  
0000  
0000  
31:16  
1110  
1120  
IPC8  
IPC9  
15:0  
I2C2IP<2:0>  
I2C2IS<1:0>  
SPI3AIS<1:0>  
I2C3AIS<1:0>  
DMA2IS<1:0>  
DMA0IS<1:0>  
DMA6IS<1:0>  
DMA4IS<1:0>  
0000  
31:16  
15:0  
DMA3IP<2:0>  
DMA1IP<2:0>  
DMA7IP<2:0>  
DMA5IP<2:0>  
DMA3IS<1:0>  
DMA1IS<1:0>  
DMA7IS<1:0>  
DMA5IS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
1130 IPC10  
1140 IPC11  
1150 IPC12  
31:16  
15:0  
USBIP<2:0>  
U3BIP<2:0>  
U1BIP<2:0>  
USBIS<1:0>  
FCEIP<2:0>  
U2BIP<2:0>  
ETHIP<2:0>  
FCEIS<1:0>  
31:16  
15:0  
U3BIS<1:0>  
U1BIS<1:0>  
U2BIS<1:0>  
ETHIS<1:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
TABLE 4-7:  
INTERRUPT REGISTER MAP FOR PIC32MX775F256L, PIC32MX775F512L AND  
PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
FRZ  
MVEC  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
SS0  
INT0EP  
0000  
0000  
0000  
0000  
0000  
0000  
1000 INTCON  
1010 INTSTAT  
1020 IPTMR  
TPC<2:0>  
31:16  
15:0  
RIPL<2:0>  
VEC<5:0>  
31:16  
15:0  
IPTMR<31:0>  
U1ATXIF U1ARXIF  
U1AEIF  
31:16 I2C1MIF  
I2CSIF  
I2CBIF SPI1ATXIF SPI1ARXIF SPI1AEIF SPI1TXIF SPI1RXIF SPI1EIF  
I2C1AMIF I2C1ASIF I2C1ABIF  
OC5IF  
IC5IF  
T5IF  
INT4IF  
OC4IF  
IC4IF  
T4IF  
0000  
1030  
IFS0  
15:0 INT3IF  
OC3IF  
IC2EIF  
IC3IF  
T3IF  
INT2IF  
OC2IF  
IC2IF  
T2IF  
INT1IF  
OC1IF  
IC1IF  
T1IF  
INT0IF  
CS1IF  
CS0IF  
CTIF  
0000  
0000  
31:16 IC3EIF  
15:0 RTCCIF  
IC1EIF  
ETHIF  
CAN2IF  
CAN1IF  
USBIF  
FCEIF  
U3AEIF  
DMA7IF  
DMA6IF  
DMA5IF  
U2AEIF  
DMA4IF  
DMA3IF  
DMA2IF  
DMA1IF  
DMA0IF  
U3ATXIF U3ARXIF  
U2ATXIF U2ARXIF  
1040  
1050  
1060  
IFS1  
IFS2  
IEC0  
FSCMIF  
I2C2MIF  
I2C2SIF  
I2C2BIF SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF CMP2IF  
I2C3AMIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF  
CMP1IF  
PMPIF  
AD1IF  
CNIF  
0000  
31:16  
15:0  
0000  
0000  
U3BTXIF U3BRXIF  
U3BEIF  
U2BTXIF U2BRXIF  
U2BEIF  
U1BTXIF U1BRXIF  
U1BEIF  
PMPEIF  
IC5EIF  
IC4EIF  
U1ATXIE U1ARXIE U1AEIE  
31:16 I2C1MIE  
I2C1SIE  
I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE SPI1TXIE SPI1RXIE SPI1EIE  
I2C1AMIE I2C1ASIE I2C1ABIE  
OC5IE  
IC5IE  
T5IE  
INT4IE  
OC4IE  
IC4IE  
T4IE  
0000  
15:0 INT3IE  
OC3IE  
IC2EIE  
IC3IE  
T3IE  
INT2IE  
OC2IE  
IC2IE  
T2IE  
FCEIE  
U3AEIE  
INT1IE  
OC1IE  
IC1IE  
T1IE  
INT0IE  
CS1IE  
CS0IE  
CTIE  
0000  
0000  
31:16 IC3EIE  
15:0 RTCCIE  
IC1EIE  
ETHIE  
CAN2IE  
CAN1IE  
USBIE  
DMA7IE  
DMA6IE  
DMA5IE  
DMA4IE  
DMA3IE  
DMA2IE  
DMA1IE  
DMA0IE  
U3ATXIE U3ARXIE  
U2ATXIE U2ARXIE U2AEIE  
1070  
IEC1  
FSCMIE  
I2C2MIE  
I2C2SIE  
I2C2BIE SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE CMP2IE  
I2C3AMIE I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE  
CMP1IE  
PMPIE  
AD1IE  
CNIE  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
1080  
1090  
10A0  
10B0  
10C0  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
U3BTXIE U3BRXIE U3BEIE  
U2BTXIE U2BRXIE U2BEIE  
U1BTXIE U1BRXIE U1BEIE  
PMPEIE  
IC5EIE  
IC4EIE  
31:16  
15:0  
INT0IP<2:0>  
CS0IP<2:0>  
INT1IP<2:0>  
IC1IP<2:0>  
INT2IP<2:0>  
IC2IP<2:0>  
INT3IP<2:0>  
IC3IP<2:0>  
INT0IS<1:0>  
CS1IP<2:0>  
CTIP<2:0>  
OC1IP<2:0>  
T1IP<2:0>  
OC2IP<2:0>  
T2IP<2:0>  
OC3IP<2:0>  
T3IP<2:0>  
CS1IS<1:0>  
CS0IS<1:0>  
INT1IS<1:0>  
IC1IS<1:0>  
INT2IS<1:0>  
IC2IS<1:0>  
INT3IS<1:0>  
IC3IS<1:0>  
CTIS<1:0>  
OC1IS<1:0>  
T1IS<1:0>  
OC2IS<1:0>  
T2IS<1:0>  
OC3IS<1:0>  
T3IS<1:0>  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
 
TABLE 4-7:  
INTERRUPT REGISTER MAP FOR PIC32MX775F256L, PIC32MX775F512L AND  
PIC32MX795F512L DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
INT4IP<2:0>  
IC4IP<2:0>  
SPI1IP<2:0>  
IC5IP<2:0>  
AD1IP<2:0>  
INT4IS<1:0>  
OC4IP<2:0>  
T4IP<2:0>  
OC4IS<1:0>  
0000  
0000  
0000  
0000  
0000  
10D0  
10E0  
IPC4  
IPC5  
IC4IS<1:0>  
SPI1IS<1:0>  
IC5IS<1:0>  
AD1IS<1:0>  
T4IS<1:0>  
OC5IS<1:0>  
T5IS<1:0>  
31:16  
15:0  
OC5IP<2:0>  
T5IP<2:0>  
31:16  
CNIP<2:0>  
CNIS<1:0>  
U1AIP<2:0>  
SPI1AIP<2:0>  
I2C1AIP<2:0>  
U1AIS<1:0>  
SPI1AIS<1:0>  
I2C1AIS<1:0>  
10F0  
1100  
IPC6  
IPC7  
15:0  
I2C1IP<2:0>  
I2C1IS<1:0>  
0000  
0000  
U2AIP<2:0>  
SPI2AIP<2:0>  
I2C2AIP<2:0>  
CMP1IP<2:0>  
RTCCIP<2:0>  
U2AIS<1:0>  
SPI2AIS<1:0>  
I2C2AIS<1:0>  
CMP1IS<1:0>  
RTCCIS<1:0>  
31:16  
CMP2IP<2:0>  
CMP2IS<1:0>  
15:0  
PMPIP<2:0>  
FSCMIP<2:0>  
U3AIP<2:0>  
PMPIS<1:0>  
FSCMIS<1:0>  
U3AIS<1:0>  
0000  
0000  
31:16  
1110  
1120  
IPC8  
IPC9  
15:0  
I2C2IP<2:0>  
I2C2IS<1:0>  
SPI3AIP<2:0>  
I2C3AIP<2:0>  
DMA2IP<2:0>  
DMA0IP<2:0>  
DMA6IP<2:0>  
DMA4IP<2:0>  
CAN1IP<2:0>  
FCEIP<2:0>  
U2BIP<2:0>  
SPI3AIS<1:0>  
I2C3AIS<1:0>  
DMA2IS<1:0>  
DMA0IS<1:0>  
DMA6IS<1:0>  
DMA4IS<1:0>  
CAN1IS<1:0>  
FCEIS<1:0>  
U2BIS<1:0>  
0000  
31:16  
15:0  
DMA3IP<2:0>  
DMA1IP<2:0>  
DMA7IP<2:0>  
DMA5IP<2:0>  
CAN2IP<2:0>  
USBIP<2:0>  
U3BIP<2:0>  
U1BIP<2:0>  
DMA3IS<1:0>  
DMA1IS<1:0>  
DMA7IS<1:0>  
DMA5IS<1:0>  
CAN2IS<1:0>  
USBIS<1:0>  
U3BIS<1:0>  
U1BIS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
1130 IPC10  
1140 IPC11  
1150 IPC12  
31:16  
15:0  
31:16  
15:0  
ETHIP<2:0>  
ETHIS<1:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
TABLE 4-8:  
TIMER1-TIMER5 REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
ON  
FRZ  
SIDL  
TWDIS  
TWIP  
TGATE  
TSYNC  
TCS  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0600 T1CON  
0610 TMR1  
15:0  
31:16  
15:0  
TCKPS<1:0>  
TMR1<15:0>  
31:16  
15:0  
0620  
PR1  
PR1<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
TGATE  
TCKPS<2:0>  
T32  
TCS  
0800 T2CON  
0810 TMR2  
31:16  
15:0  
TMR2<15:0>  
31:16  
15:0  
0820  
PR2  
PR2<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
TGATE  
TCKPS<2:0>  
TCS  
0A00 T3CON  
0A10 TMR3  
31:16  
15:0  
TMR3<15:0>  
31:16  
15:0  
0A20  
PR3  
PR3<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
TGATE  
TCKPS<2:0>  
T32  
TCS  
0C00 T4CON  
0C10 TMR4  
31:16  
15:0  
TMR4<15:0>  
31:16  
15:0  
0C20  
PR4  
PR4<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
TGATE  
TCKPS<2:0>  
TCS  
0E00 T5CON  
0E10 TMR5  
31:16  
15:0  
TMR5<15:0>  
31:16  
15:0  
0E20  
PR5  
PR5<15:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
TABLE 4-9:  
INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
2000 IC1CON(1)  
15:0  
31:16  
15:0  
ON  
FRZ  
SIDL  
FEDGE  
C32  
ICTMR  
ICI<1:0>  
ICOV  
ICBNE  
ICM<2:0>  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
2010  
IC1BUF  
IC1BUF<31:0>  
31:16  
15:0  
2200 IC2CON(1)  
ON  
FRZ  
SIDL  
FEDGE  
C32  
ICTMR  
ICI<1:0>  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2210  
IC2BUF  
IC2BUF<31:0>  
31:16  
15:0  
2400 IC3CON(1)  
ON  
FRZ  
SIDL  
FEDGE  
C32  
ICTMR  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2410  
IC3BUF  
IC3BUF<31:0>  
31:16  
15:0  
2600 IC4CON(1)  
ON  
FRZ  
SIDL  
FEDGE  
C32  
ICTMR  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2610  
IC4BUF  
IC4BUF<31:0>  
31:16  
15:0  
2800 IC5CON(1)  
ON  
FRZ  
SIDL  
FEDGE  
C32  
ICTMR  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2810  
IC5BUF  
IC5BUF<31:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.  
TABLE 4-10: OUTPUT COMPARE 1-OUTPUT COMPARE 5 REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
3000 OC1CON  
ON  
FRZ  
SIDL  
OC32  
OCFLT  
OCTSEL  
OCM<2:0>  
31:16  
15:0  
3010  
OC1R  
OC1R<31:0>  
OC1RS<31:0>  
31:16  
15:0  
3020 OC1RS  
3200 OC2CON  
31:16  
15:0  
ON  
FRZ  
SIDL  
OC32  
OCFLT  
OCTSEL  
OCM<2:0>  
31:16  
15:0  
3210  
OC2R  
OC2R<31:0>  
OC2RS<31:0>  
31:16  
15:0  
3220 OC2RS  
3400 OC3CON  
31:16  
15:0  
ON  
FRZ  
SIDL  
OC32  
OCFLT  
OCTSEL  
OCM<2:0>  
31:16  
15:0  
3410  
OC3R  
OC3R<31:0>  
OC3RS<31:0>  
31:16  
15:0  
3420 OC3RS  
3600 OC4CON  
31:16  
15:0  
ON  
FRZ  
SIDL  
OC32  
OCFLT  
OCTSEL  
OCM<2:0>  
31:16  
15:0  
3610  
OC4R  
OC4R<31:0>  
OC4RS<31:0>  
31:16  
15:0  
3620 OC4RS  
3800 OC5CON  
31:16  
15:0  
ON  
FRZ  
SIDL  
OC32  
OCFLT  
OCTSEL  
OCM<2:0>  
31:16  
15:0  
3810  
OC5R  
OC5R<31:0>  
OC5RS<31:0>  
31:16  
15:0  
3820 OC5RS  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
TABLE 4-11: I2C1, I2C1A, I2C2A AND I2C3A REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
STRICT  
A10M  
DISSLW  
SMEN  
GCEN  
STREN  
ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
SEN  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
5000 I2C1ACON  
5010 I2C1ASTAT  
5020 I2C1AADD  
5030 I2C1AMSK  
5040 I2C1ABRG  
5050 I2C1ATRN  
5060 I2C1ARCV  
5100 I2C2ACON  
5110 I2C2ASTAT  
5120 I2C2AADD  
5130 I2C2AMSK  
5140 I2C2ABRG  
5150 I2C2ATRN  
5160 I2C2ARCV  
5200 I2C3ACON  
5210 I2C3ASTAT  
SCLREL  
31:16  
15:0 ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
I2COV  
D/A  
P
S
R/W  
RBF  
TBF  
31:16  
15:0  
ON  
ADD<9:0>  
31:16  
15:0  
MSK<9:0>  
31:16  
15:0  
I2C1BRG<11:0>  
31:16  
15:0  
I2CT1DATA<7:0>  
31:16  
15:0  
I2CR1DATA<7:0>  
31:16  
15:0  
GCEN  
STREN  
ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
SEN  
FRZ  
SIDL  
SCLREL  
STRICT  
A10M  
DISSLW  
SMEN  
31:16  
15:0 ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
I2COV  
D/A  
P
S
R/W  
RBF  
TBF  
31:16  
15:0  
ON  
ADD<9:0>  
31:16  
15:0  
MSK<9:0>  
31:16  
15:0  
I2C1BRG<11:0>  
31:16  
15:0  
I2CT1DATA<7:0>  
31:16  
15:0  
I2CR1DATA<7:0>  
31:16  
15:0  
GCEN  
STREN  
ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
SEN  
FRZ  
SIDL  
SCLREL  
STRICT  
A10M  
DISSLW  
SMEN  
31:16  
15:0 ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
I2COV  
D/A  
P
S
R/W  
RBF  
TBF  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
 
TABLE 4-11: I2C1, I2C1A, I2C2A AND I2C3A REGISTER MAP(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
5220 I2C3AADD  
5230 I2C3AMSK  
5240 I2C3ABRG  
5250 I2C3ATRN  
5260 I2C3ARCV  
5300 I2C1CON  
5310 I2C1STAT  
5320 I2C1ADD  
5330 I2C1MSK  
5340 I2C1BRG  
5350 I2C1TRN  
5360 I2C1RCV  
ADD<9:0>  
31:16  
15:0  
MSK<9:0>  
31:16  
15:0  
I2C1BRG<11:0>  
31:16  
15:0  
I2CT1DATA<7:0>  
31:16  
15:0  
I2CR1DATA<7:0>  
31:16  
15:0  
GCEN  
STREN  
ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
SEN  
FRZ  
SCLREL  
STRICT  
A10M  
DISSLW  
SMEN  
31:16  
15:0 ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
I2COV  
D/A  
P
S
R/W  
RBF  
TBF  
31:16  
15:0  
ADD<9:0>  
31:16  
15:0  
MSK<9:0>  
31:16  
15:0  
I2C1BRG<11:0>  
31:16  
15:0  
I2CT1DATA<7:0>  
31:16  
15:0  
I2CR1DATA<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-12: I2C2 REGISTER MAP FOR PIC32MX575F512L, PIC32MX575F256L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
SCLREL  
STRICT  
A10M  
DISSLW  
SMEN  
GCEN  
STREN  
ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
SEN  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
5400 I2C2CON  
5410 I2C2STAT  
5420 I2C2ADD  
5430 I2C2MSK  
5440 I2C2BRG  
5450 I2C2TRN  
5460 I2C2RCV  
31:16  
15:0 ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
I2COV  
D/A  
P
S
R/W  
RBF  
TBF  
31:16  
15:0  
ADD<9:0>  
31:16  
15:0  
MSK<9:0>  
31:16  
15:0  
I2C2BRG<11:0>  
31:16  
15:0  
I2CT1DATA<7:0>  
31:16  
15:0  
I2CR1DATA<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
 
TABLE 4-13: UART1A, UART1B, UART2A, UART2B, UART3A AND UART3B REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
IREN  
0000  
6000 U1AMODE(1)  
6010 U1ASTA(1)  
6020 U1ATXREG  
6030 U1ARXREG  
6040 U1ABRG(1)  
6200 U1BMODE(1)  
6210 U1BSTA(1)  
6220 U1BTXREG  
6230 U1BRXREG  
6240 U1BBRG(1)  
6400 U2AMODE(1)  
6410 U2ASTA(1)  
6420 U2ATXREG  
6430 U2ARXREG  
6440 U2ABRG(1)  
6600 U2BMODE(1)  
6610 U2BSTA(1)  
6620 U2BTXREG  
RTSMD  
UEN<1:0>  
WAKE  
LPBACK  
ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
UTXISEL<1:0>  
UTXINV  
URXEN  
UTXBRK  
UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA 0110  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
BRG<15:0>  
ON  
FRZ  
SIDL  
IREN  
31:16  
15:0  
WAKE  
LPBACK  
ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
ADM_EN  
TRMT  
ADDR<7:0>  
UTXISEL<1:0>  
UTXINV  
URXEN  
UTXBRK  
UTXEN  
UTXBF  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA 0110  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
BRG<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
IREN  
RTSMD  
UEN<1:0>  
WAKE  
LPBACK  
ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
UTXISEL<1:0>  
UTXINV  
URXEN  
UTXBRK  
UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA 0110  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
BRG<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
IREN  
WAKE  
LPBACK  
ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
ADM_EN  
TRMT  
ADDR<7:0>  
UTXISEL<1:0>  
UTXINV  
URXEN  
UTXBRK  
UTXEN  
UTXBF  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA 0110  
31:16  
15:0  
0000  
0000  
TX8  
Transmit Register  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.  
TABLE 4-13: UART1A, UART1B, UART2A, UART2B, UART3A AND UART3B REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
RX8  
0000  
0000  
0000  
0000  
0000  
6630 U2BRXREG  
6640 U2BBRG(1)  
6800 U3AMODE(1)  
6810 U3ASTA(1)  
6820 U3ATXREG  
6830 U3ARXREG  
6840 U3ABRG(1)  
6A00 U3BMODE(1)  
6A10 U3BSTA(1)  
6A20 U3BTXREG  
6A30 U3BRXREG  
6A40 U3BBRG(1)  
Receive Register  
31:16  
15:0  
BRG<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
IREN  
RTSMD  
UEN<1:0>  
WAKE  
LPBACK  
ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
UTXISEL<1:0>  
UTXINV  
URXEN  
UTXBRK  
UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA 0110  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
BRG<15:0>  
31:16  
15:0  
ON  
FRZ  
SIDL  
IREN  
WAKE  
LPBACK  
ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
ADM_EN  
TRMT  
ADDR<7:0>  
UTXISEL<1:0>  
UTXINV  
URXEN  
UTXBRK  
UTXEN  
UTXBF  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA 0110  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
BRG<15:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.  
TABLE 4-14: SPI1A, SPI2A AND SPI3A REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16 FRMEN FRMSYNC FRMPOL  
MSSEN FRMSYPW  
FRMCNT<2:0>  
SMP  
CKP  
SPIFE  
ENHBUF 0000  
5800 SPI1ACON  
15:0  
31:16  
15:0  
ON  
FRZ  
SIDL  
DISSDO MODE32 MODE16  
CKE  
SSEN  
MSTEN  
STXISEL<1:0>  
TXBUFELM<4:0>  
SRXISEL<1:0>  
0000  
0000  
RXBUFELM<4:0>  
SPI1ASTAT  
SPI1ABUF  
SPI1ABRG  
SPI2ACON  
SPI2ASTAT  
SPI2ABUF  
SPI2ABRG  
SPI3ACON  
SPI3ASTAT  
SPI3ABUF  
SPI3ABRG  
5810  
5820  
5830  
5A00  
5A10  
5A20  
5A30  
5C00  
5C10  
5C20  
5C30  
SPIBUSY  
SPITUR  
SRMT  
SPIROV  
SPIRBE  
SPITBE  
SPITBF  
SPIRBF 0000  
0000  
31:16  
15:0  
DATA<31:0>  
0000  
31:16  
15:0  
BRG<8:0>  
0000  
0000  
31:16 FRMEN FRMSYNC FRMPOL  
MSSEN FRMSYPW  
FRMCNT<2:0>  
SMP  
CKP  
SPIFE  
ENHBUF 0000  
15:0  
31:16  
15:0  
ON  
FRZ  
SIDL  
DISSDO MODE32 MODE16  
CKE  
SSEN  
MSTEN  
STXISEL<1:0>  
TXBUFELM<4:0>  
SRXISEL<1:0>  
0000  
0000  
RXBUFELM<4:0>  
SPIBUSY  
SPITUR  
SRMT  
SPIROV  
SPIRBE  
SPITBE  
SPITBF  
SPIRBF 0000  
0000  
31:16  
15:0  
DATA<31:0>  
0000  
31:16  
15:0  
BRG<8:0>  
0000  
0000  
31:16 FRMEN FRMSYNC FRMPOL  
MSSEN FRMSYPW  
FRMCNT<2:0>  
SMP  
CKP  
SPIFE  
ENHBUF 0000  
15:0  
31:16  
15:0  
ON  
FRZ  
SIDL  
DISSDO MODE32 MODE16  
CKE  
SSEN  
MSTEN  
STXISEL<1:0>  
TXBUFELM<4:0>  
SRXISEL<1:0>  
0000  
0000  
RXBUFELM<4:0>  
SPIBUSY  
SPITUR  
SRMT  
SPIROV  
SPIRBE  
SPITBE  
SPITBF  
SPIRBF 0000  
0000  
31:16  
15:0  
DATA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
BRG<8:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
 
TABLE 4-15: SPI1 REGISTER MAP FOR PIC32MX575F512L, PIC32MX575F256L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
Register  
Name  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16 FRMEN FRMSYNC FRMPOL  
MSSEN FRMSYPW  
FRMCNT<2:0>  
SMP  
CKP  
SPIFE  
ENHBUF 0000  
5E00 SPI1CON  
5E10 SPI1STAT  
5E20 SPI1BUF  
5E30 SPI1BRG  
15:0  
31:16  
15:0  
ON  
FRZ  
SIDL  
DISSDO MODE32 MODE16  
CKE  
SSEN  
MSTEN  
STXISEL<1:0>  
TXBUFELM<4:0>  
SRXISEL<1:0>  
0000  
0000  
RXBUFELM<4:0>  
SPIBUSY  
SPITUR  
SRMT  
SPIROV  
SPIRBE  
SPITBE  
SPITBF  
SPIRBF 0000  
0000  
31:16  
15:0  
DATA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
BRG<8:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
 
TABLE 4-16: ADC REGISTER MAP  
Bits  
Register  
Name  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
CLRASAM  
ASAM  
SAMP  
DONE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
9000 AD1CON1(1)  
9010 AD1CON2(1)  
9020 AD1CON3(1)  
9040 AD1CHS(1)  
9060 AD1PCFG(1)  
9050 AD1CSSL(1)  
9070 ADC1BUF0  
9080 ADC1BUF1  
9090 ADC1BUF2  
90A0 ADC1BUF3  
90B0 ADC1BUF4  
90C0 ADC1BUF5  
90D0 ADC1BUF6  
90E0 ADC1BUF7  
90F0 ADC1BUF8  
9100 ADC1BUF9  
9110 ADC1BUFA  
9120 ADC1BUFB  
FORM<2:0>  
SSRC<2:0>  
31:16  
15:0  
CSCNA  
BUFS  
VCFG2  
VCFG1  
VCFG0  
OFFCAL  
SMPI<3:0>  
BUFM  
ALTS  
31:16  
15:0  
ADRC  
SAMC<4:0>  
ADCS<7:0>  
31:16 CH0NB  
CH0SB<3:0>  
CH0NA  
CH0SA<3:0>  
15:0  
31:16  
15:0 PCFG15 PCFG14 PCFG13 PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0 0000  
0000  
31:16  
15:0 CSSL15  
31:16  
15:0  
CSSL14  
CSSL13  
CSSL12  
CSSL11  
CSSL10  
CSSL9  
CSSL8  
CSSL7  
CSSL6  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0 0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
ADC Result Word 0 (ADC1BUF0<31:0>)  
ADC Result Word 1 (ADC1BUF1<31:0>)  
ADC Result Word 2 (ADC1BUF2<31:0>)  
ADC Result Word 3 (ADC1BUF3<31:0>)  
ADC Result Word 4 (ADC1BUF4<31:0>)  
ADC Result Word 5 (ADC1BUF5<31:0>)  
ADC Result Word 6 (ADC1BUF6<31:0>)  
ADC Result Word 7 (ADC1BUF7<31:0>)  
ADC Result Word 8 (ADC1BUF8<31:0>)  
ADC Result Word 9 (ADC1BUF9<31:0>)  
ADC Result Word A (ADC1BUFA<31:0>)  
ADC Result Word B (ADC1BUFB<31:0>)  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-16: ADC REGISTER MAP (CONTINUED)  
Bits  
Register  
Name  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
9130 ADC1BUFC  
9140 ADC1BUFD  
9150 ADC1BUFE  
9160 ADC1BUFF  
ADC Result Word C (ADC1BUFC<31:0>)  
ADC Result Word D (ADC1BUFD<31:0>)  
ADC Result Word E (ADC1BUFE<31:0>)  
ADC Result Word F (ADC1BUFF<31:0>)  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-17: DMA GLOBAL REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
BUSY  
0000  
0000  
0000  
0000  
0000  
0000  
3000 DMACON(1)  
3010 DMASTAT  
3020 DMAADDR  
SUSPEND  
31:16  
15:0  
RDWR  
DMACH<2:0>  
31:16  
15:0  
DMAADDR<31:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.  
TABLE 4-18: DMA CRC REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
BYTO<1:0>  
WBO  
BITO  
0000  
0000  
0000  
0000  
0000  
0000  
3030 DCRCCON  
3040 DCRCDATA  
3050 DCRCXOR  
PLEN<4:0>  
CRCEN CRCAPP CRCTYP  
CRCCH<2:0>  
31:16  
15:0  
DCRCDATA<31:0>  
DCRCXOR<31:0>  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-19: DMA CHANNELS 0-7 REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
0000  
00FF  
FF00  
3060 DCH0CON  
3070 DCH0ECON  
3080 DCH0INT  
3090 DCH0SSA  
30A0 DCH0DSA  
30B0 DCH0SSIZ  
30C0 DCH0DSIZ  
30D0 DCH0SPTR  
30E0 DCH0DPTR  
30F0 DCH0CSIZ  
3100 DCH0CPTR  
3110 DCH0DAT  
3120 DCH1CON  
3130 DCH1ECON  
3140 DCH1INT  
3150 DCH1SSA  
3160 DCH1DSA  
3170 DCH1SSIZ  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
00FF  
FF00  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
31:16  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
CHSSIZ<15:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-19: DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
00FF  
FF00  
3180 DCH1DSIZ  
3190 DCH1SPTR  
31A0 DCH1DPTR  
31B0 DCH1CSIZ  
31C0 DCH1CPTR  
31D0 DCH1DAT  
31E0 DCH2CON  
31F0 DCH2ECON  
3200 DCH2INT  
3210 DCH2SSA  
3220 DCH2DSA  
3230 DCH2SSIZ  
3240 DCH2DSIZ  
3250 DCH2SPTR  
3260 DCH2DPTR  
3270 DCH2CSIZ  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
31:16  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
0000  
0000  
0000  
0000  
3280 DCH2CPTR  
3290 DCH2DAT  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-19: DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
0000  
00FF  
FF00  
32A0 DCH3CON  
32B0 DCH3ECON  
32C0 DCH3INT  
32D0 DCH3SSA  
32E0 DCH3DSA  
32F0 DCH3SSIZ  
3300 DCH3DSIZ  
3310 DCH3SPTR  
3320 DCH3DPTR  
3330 DCH3CSIZ  
3340 DCH3CPTR  
3350 DCH3DAT  
3360 DCH4CON  
3370 DCH4ECON  
3380 DCH4INT  
3390 DCH4SSA  
33A0 DCH4DSA  
33B0 DCH4SSIZ  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
00FF  
FF00  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
31:16  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
CHSSIZ15:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-19: DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
00FF  
FF00  
33C0 DCH4DSIZ  
CHDSIZ<15:0>  
31:16  
15:0  
DCH4SPTR  
DCH4DPTR  
DCH4CSIZ  
DCH4CPTR  
DCH4DAT  
DCH5CON  
DCH5ECON  
DCH5INT  
33D0  
33E0  
33F0  
3400  
3410  
3420  
3430  
3440  
3450  
3460  
3470  
3480  
3490  
34A0  
34B0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
31:16  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
DCH5SSA  
DCH5DSA  
DCH5SSIZ  
DCH5DSIZ  
DCH5SPTR  
DCH5DPTR  
DCH5CSIZ  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
34C0 DCH5CPTR  
34D0 DCH5DAT  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-19: DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
0000  
00FF  
FF00  
34E0 DCH6CON  
34F0 DCH6ECON  
3500 DCH6INT  
3510 DCH6SSA  
3520 DCH6DSA  
3530 DCH6SSIZ  
3540 DCH6DSIZ  
3550 DCH6SPTR  
3560 DCH6DPTR  
3570 DCH6CSIZ  
3580 DCH6CPTR  
3590 DCH6DAT  
35A0 DCH7CON  
35B0 DCH7ECON  
35C0 DCH7INT  
35D0 DCH7SSA  
35E0 DCH7DSA  
35F0 DCH7SSIZ  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
00FF  
FF00  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
31:16  
15:0 CHBUSY  
CHCHNS  
CHEN  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT  
PATEN  
CHDDIE  
CHDDIF  
SIRQEN  
AIRQEN  
CHBCIE  
CHBCIF  
31:16  
15:0  
CHSDIE  
CHSDIF  
CHSHIE  
CHSHIF  
CHDHIE  
CHDHIF  
CHCCIE  
CHCCIF  
CHTAIE  
CHTAIF  
CHERIE 0000  
CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
CHDSA<31:0>  
0000  
31:16  
15:0  
0000  
0000  
31:16  
15:0  
0000  
0000  
CHSSIZ<15:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-19: DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
3600 DCH7DSIZ  
3610 DCH7SPTR  
3620 DCH7DPTR  
3630 DCH7CSIZ  
3640 DCH7CPTR  
3650 DCH7DAT  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-20: COMPARATOR REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
COE  
CPOL  
COUT  
CREF  
0000  
0000  
0000  
0000  
0000  
A000 CM1CON  
A010 CM2CON  
A060 CMSTAT  
EVPOL<1:0>  
CCH<1:0>  
31:16  
15:0  
ON  
COE  
CPOL  
COUT  
EVPOL<1:0>  
CREF  
CCH<1:0>  
31:16  
15:0  
FRZ  
SIDL  
C2OUT  
C1OUT 0000  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-21: COMPARATOR VOLTAGE REFERENCE REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
9800 CVRCON  
ON  
CVROE  
CVRR  
CVRSS  
CVR<3:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-22: FLASH CONTROLLER REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
F400 NVMCON(1)  
F410 NVMKEY  
WR  
WREN  
WRERR  
LVDERR LVDSTAT  
NVMOP<3:0>  
31:16  
15:0  
NVMKEY<31:0>  
NVMADDR<31:0>  
NVMDATA<31:0>  
31:16  
15:0  
(1)  
F420 NVMADDR  
31:16  
15:0  
F430 NVMDATA  
31:16  
15:0  
NVMSRC  
F440  
NVMSRCADDR<31:0>  
ADDR  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-23: SYSTEM CONTROL REGISTER MAP(1,2)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
PLLODIV<2:0>  
RCDIV<2:0>  
SOSCRDY  
LOCK  
PBDIV<1:0>  
PLLMULT<2:0>  
0000  
F000 OSCCON  
F010 OSCTUN  
0000 WDTCON  
COSC<2:0>  
NOSC<2:0>  
CLKLOCK ULOCK  
SLPEN  
CF  
UFRCEN SOSCEN OSWEN 0000  
31:16  
15:0  
0000  
0000  
0000  
TUN<5:0>  
31:16  
15:0  
SWDTPS<4:0>  
WDTCLR 0000  
31:16  
15:0  
SWR  
WDTO  
SLEEP  
IDLE  
POR  
0000  
0000  
0000  
F600  
RCON  
CM  
VREGS  
EXTR  
BOR  
31:16  
15:0  
F610 RSWRST  
SWRST 0000  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
information.  
2:  
Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.  
TABLE 4-24: PORTA REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
TRISA10  
TRISA9  
TRISA7  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
0000  
C6FF  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6000 TRISA  
6010 PORTA  
15:0 TRISA15 TRISA14  
31:16  
15:0  
RA15  
RA14  
RA10  
RA9  
RA7  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
31:16  
15:0  
6020  
LATA  
LATA15  
LATA14  
LATA10  
LATA9  
LATA7  
LATA6  
LATA5  
LATA4  
LATA3  
LATA2  
LATA1  
LATA0  
31:16  
6030 ODCA  
15:0 ODCA15 ODCA14  
ODCA10  
ODCA9  
ODCA7  
ODCA6  
ODCA5  
ODCA4  
ODCA3  
ODCA2  
ODCA1  
ODCA0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-25: PORTB REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
TRISB9  
TRISB8  
TRISB7  
TRISB6  
TRISB5  
TRISB4  
TRISB3  
TRISB2  
TRISB1  
TRISB0  
0000  
FFFF  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6040 TRISB  
6050 PORTB  
15:0 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10  
31:16  
15:0  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
31:16  
15:0  
6060  
LATB  
LATB15  
LATB14  
LATB13  
LATB12  
LATB11  
LATB10  
LATB9  
LATB8  
LATB7  
LATB6  
LATB5  
LATB4  
LATB3  
LATB2  
LATB1  
LATB0  
31:16  
6070 ODCB  
15:0 ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10  
ODCB9  
ODCB8  
ODCB7  
ODCB6  
ODCB5  
ODCB4  
ODCB3  
ODCB2  
ODCB1  
ODCB0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
 
TABLE 4-26: PORTC REGISTER MAP FOR PIC32MX575F256H, PIC32MX675F256H, PIC32MX575F512H, PIC32MX675F512H,  
PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
F000  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6080 TRISC  
6090 PORTC  
15:0 TRISC15 TRISC14 TRISC13 TRISC12  
31:16  
15:0  
RC15  
RC14  
RC13  
RC12  
31:16  
15:0  
60A0  
LATC  
LATC15  
LATC14  
LATC13  
LATC12  
31:16  
60B0 ODCC  
15:0 ODCC15 ODCC14 ODCC13 ODCC12  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-27: PORTC REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
0000  
F00F  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6080 TRISC  
6090 PORTC  
60A0 LATC  
60B0 ODCC  
15:0 TRISC15 TRISC14 TRISC13 TRISC12  
31:16  
15:0  
RC15  
RC14  
RC13  
RC12  
RC4  
RC3  
RC2  
RC1  
31:16  
15:0  
LATC15  
LATC14  
LATC13  
LATC12  
LATC4  
LATC3  
LATC2  
LATC1  
31:16  
15:0 ODCC15 ODCC14 ODCC13 ODCC12  
ODCC4  
ODCC3  
ODCC2  
ODCC1  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-28: PORTD REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H,  
PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
TRISD9  
TRISD8  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
0000  
0FFF  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
60C0 TRISD  
60D0 PORTD  
TRISD11 TRISD10  
31:16  
15:0  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
31:16  
15:0  
60E0  
LATD  
LATD11  
LATD10  
LATD9  
LATD8  
LATD7  
LATD6  
LATD5  
LATD4  
LATD3  
LATD2  
LATD1  
LATD0  
31:16  
15:0  
60F0 ODCD  
ODCD11 ODCD10  
ODCD9  
ODCD8  
ODCD7  
ODCD6  
ODCD5  
ODCD4  
ODCD3  
ODCD2  
ODCD1  
ODCD0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-29: PORTD REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
TRISD9  
TRISD8  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
0000  
FFFF  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
60C0 TRISD  
60D0 PORTD  
60E0 LATD  
60F0 ODCD  
15:0 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10  
31:16  
15:0  
RD15  
RD14  
RD13  
RD12  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
31:16  
15:0  
LAT15  
LAT14  
LAT13  
LAT12  
LATD11  
LATD10  
LATD9  
LATD8  
LATD7  
LATD6  
LATD5  
LATD4  
LATD3  
LATD2  
LATD1  
LATD0  
31:16  
15:0 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10  
ODCD9  
ODCD8  
ODCD7  
ODCD6  
ODCD5  
ODCD4  
ODCD3  
ODCD2  
ODCD1  
ODCD0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-30: PORTE REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H,  
PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
TRISE7  
TRISE6  
TRISE5  
TRISE4  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
0000  
00FF  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6100 TRISE  
6110 PORTE  
31:16  
15:0  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
31:16  
15:0  
6120  
LATE  
LATE7  
LATE6  
LATE5  
LATE4  
LATE3  
LATE2  
LATE1  
LATE0  
31:16  
15:0  
6130 ODCE  
ODCE7  
0DCE6  
ODCE5  
ODCE4  
ODCE3  
ODCE2  
ODCE1  
ODCE0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-31: PORTE REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
TRISE9  
TRISE8  
TRISE7  
TRISE6  
TRISE5  
TRISE4  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
0000  
03FF  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6100 TRISE  
6110 PORTE  
31:16  
15:0  
RE9  
RE8  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
31:16  
15:0  
6120  
LATE  
LATE9  
LATE8  
LATE7  
LATE6  
LATE5  
LATE4  
LATE3  
LATE2  
LATE1  
LATE0  
31:16  
15:0  
6130 ODCE  
ODCE9  
ODCE8  
ODCE7  
0DCE6  
ODCE5  
ODCE4  
ODCE3  
ODCE2  
ODCE1  
ODCE0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-32: PORTF REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H,  
PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
TRISF5  
TRISF4  
TRISF3  
TRISF1  
TRISF0  
0000  
003B  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6140 TRISF  
6150 PORTF  
6160 LATF  
6170 ODCF  
31:16  
15:0  
RF5  
RF4  
RF3  
RF1  
RF0  
31:16  
15:0  
LATF5  
LATF4  
LATF3  
LATF1  
LATF0  
31:16  
15:0  
ODCF5  
ODCF4  
ODCF3  
ODCF1  
ODCF0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-33: PORTF REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
TRISF8  
TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
TRISF0  
0000  
313F  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6140 TRISF  
6150 PORTF  
TRISF13 TRISF12  
31:16  
15:0  
RF13  
RF12  
RF8  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
31:16  
15:0  
6160  
LATF  
LATF13  
LATF12  
LATF8  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0  
31:16  
15:0  
6170 ODCF  
ODCF13 ODCF12  
ODCF8  
ODCF5  
ODCF4  
ODCF3  
ODCF2  
ODCF1  
ODCF0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-34: PORTG REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H,  
PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
TRISG9  
TRISG8  
TRISG7  
TRISG6  
TRISG3  
TRISG2  
0000  
03CC  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
TRISG  
6180  
31:16  
15:0  
6190 PORTG  
61A0 LATG  
61B0 ODCG  
RG9  
RG8  
RG7  
RG6  
RG3  
RG2  
31:16  
15:0  
LATG9  
LATG8  
LATG7  
LATG6  
LATG3  
LATG2  
31:16  
15:0  
ODCG9  
ODCG8  
ODCG7  
ODCG6  
ODCG3  
ODCG2  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-35: PORTG REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
TRISG9  
TRISG8  
TRISG7  
TRISG6  
TRISG3  
TRISG2  
TRISG1  
TRISG0  
0000  
F3CF  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
6180 TRISG  
6190 PORTG  
61A0 LATG  
61B0 ODCG  
15:0 TRISG15 TRISG14 TRISG13 TRISG12  
31:16  
15:0  
RG15  
RG14  
RG13  
RG12  
RG9  
RG8  
RG7  
RG6  
RG3  
RG2  
RG1  
RG0  
31:16  
15:0  
LATG15  
LATG14  
LATG13  
LATG12  
LATG9  
LATG8  
LATG7  
LATG6  
LATG3  
LATG2  
LATG1  
LATG0  
31:16  
15:0 ODCG15 ODCG14 ODCG13 ODCG12  
ODCG9  
ODCG8  
ODCG7  
ODCG6  
ODCG3  
ODCG2  
ODCG1  
ODCG0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
 
TABLE 4-36: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L,  
PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512 AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
0000  
0000  
61C0 CNCON  
61D0 CNEN  
61E0 CNPUE  
31:16  
CNEN21 CNEN20 CNEN19 CNEN18 CNEN17 CNEN16 0000  
CNEN5 CNEN4 CNEN3 CNEN2 CNEN1 CNEN0 0000  
CNPUE21 CNPUE20 CNPUE19 CNPUE18 CNPUE17 CNPUE16 0000  
15:0 CNEN15 CNEN14 CNEN13 CNEN12  
31:16  
CNEN11 CNEN10  
CNEN9  
CNEN8  
CNEN7  
CNEN6  
15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE0 0000  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-37: CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H,  
PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
0000  
0000  
61C0 CNCON  
61D0 CNEN  
61E0 CNPUE  
31:16  
CNEN18 CNEN17 CNEN16 0000  
CNEN2 CNEN1 CNEN0 0000  
CNPUE18 CNPUE17 CNPUE16 0000  
15:0 CNEN15 CNEN14 CNEN13 CNEN12  
31:16  
CNEN11 CNEN10  
CNEN9  
CNEN8  
CNEN7  
CNEN6  
CNEN5  
CNEN4  
CNEN3  
15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE0 0000  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
 
 
TABLE 4-38: PARALLEL MASTER PORT REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
ALP  
CS2P  
CS1P  
WRSP  
RDSP  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0080  
7000 PMCON  
7010 PMMODE  
7020 PMADDR  
7030 PMDOUT  
ADRMUX<1:0>  
PMPTTL PTWREN PTRDEN  
CSF<1:0>  
31:16  
15:0  
MODE16  
BUSY  
IRQM<1:0>  
INCM<1:0>  
MODE<1:0>  
WAITB<1:0>  
WAITM<3:0>  
WAITE<1:0>  
31:16  
15:0 CS2EN/A15 CS1EN/A14  
ADDR<13:0>  
31:16  
15:0  
DATAOUT<31:0>  
DATAIN<31:0>  
31:16  
15:0  
7040  
PMDIN  
31:16  
15:0  
7050 PMAEN  
7060 PMSTAT  
PTEN<15:0>  
31:16  
15:0  
IBF  
IBOV  
IB3F  
IB2F  
IB1F  
IB0F  
OBE  
OBUF  
OB3E  
OB2E  
OB1E  
OB0E  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV  
Registers” for more information.  
TABLE 4-39: PROGRAMMING AND DIAGNOSTICS REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0008  
F200 DDPCON  
Legend:  
JTAGEN  
TROEN  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-40: PREFETCH REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
PFMWS<2:0>  
CHECOH 0000  
4000 CHECON(1,2)  
4010 CHEACC(1)  
4020 CHETAG(1)  
4030 CHEMSK(1)  
DCSZ<1:0>  
PREFEN<1:0>  
0000  
31:16 CHEWEN  
15:0  
0000  
0000  
00xx  
xxx0  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
CHEIDX<3:0>  
31:16 LTAGBOOT  
15:0  
LTAG<23:16>  
LVALID  
LTAG<15:4>  
LLOCK  
LTYPE  
31:16  
15:0  
LMASK<15:5>  
31:16  
15:0  
4040  
4050  
4060  
4070  
CHEW0  
CHEW1  
CHEW2  
CHEW3  
CHEW0<31:0>  
CHEW1<31:0>  
CHEW2<31:0>  
CHEW3<31:0>  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
CHELRU<24:16>  
4080 CHELRU  
CHELRU<15:0>  
CHEHIT<31:0>  
31:16  
15:0  
4090  
40A0  
CHEHIT  
CHEMIS  
31:16  
15:0  
CHEMIS<31:0>  
31:16  
15:0  
40C0 CHEPFABT  
CHEPFABT<31:0>  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
1:  
2:  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.  
Reset value is dependent on DEVCFGx configuration.  
TABLE 4-41: RTCC REGISTER MAP(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
FRZ  
SIDL  
CAL<9:0>  
0000  
RTCWREN RTCSYNC HALFSEC RTCOE 0000  
0200 RTCCON  
0210 RTCALRM  
0220 RTCTIME  
0230 RTCDATE  
0240 ALRMTIME  
0250 ALRMDATE  
RTSECSEL RTCCLKON  
31:16  
0000  
0000  
xxxx  
xx00  
xxxx  
xx00  
xxxx  
xx00  
00xx  
xx0x  
15:0 ALRMEN  
31:16  
CHIME  
PIV  
ALRMSYNC  
AMASK<3:0>  
ARPT<7:0>  
HR10<3:0>  
HR01<3:0>  
SEC01<3:0>  
YEAR01<3:0>  
DAY01<3:0>  
HR01<3:0>  
MIN10<3:0>  
MIN01<3:0>  
15:0  
SEC10<3:0>  
YEAR10<3:0>  
DAY10<3:0>  
HR10<3:0>  
31:16  
MONTH10<3:0>  
MONTH01<3:0>  
WDAY01<3:0>  
MIN01<3:0>  
15:0  
31:16  
MIN10<3:0>  
15:0  
SEC10<3:0>  
SEC01<3:0>  
31:16  
15:0  
MONTH10<3:0>  
MONTH01<3:0>  
WDAY01<3:0>  
DAY10<3:0>  
DAY01<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-42: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16 FVBUSIO FUSBIDIO FSCMIO  
15:0  
FCANIO  
FETHIO  
FMIIEN  
FSRSSEL<2:0>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
2FF0 DEVCFG3  
2FF4 DEVCFG2  
2FF8 DEVCFG1  
2FFC DEVCFG0  
USERID<15:0>  
31:16  
FPLLODIV<2:0>  
FPLLIDIV<2:0>  
15:0 FUPLLEN  
FUPLLIDIV<2:0>  
FPLLMULT<2:0>  
31:16  
15:0  
FWDTEN  
IESO  
WDTPS<4:0>  
FNOSC<2:0>  
PWP<7:4>  
FCKSM<1:0>  
FPBDIV<1:0>  
CP  
OSCIOFNC  
POSCMOD<1:0>  
FSOSCEN  
31:16  
15:0  
BWP  
PWP<3:0>  
ICESEL  
DEBUG<1:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-43: DEVICE AND REVISION ID SUMMARY(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
VER<3:0>  
DEVID<27:16>  
xxxx  
xxxx  
F220  
DEVID  
DEVID<15:0>  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset values are dependent on the device variant. Refer to the “PIC32MX5XX/6XX/7XX Family Silicon Errata and Data Sheet Clarification” (DS80480) for more information.  
1:  
 
TABLE 4-44: USB REGISTER MAP  
Bits  
23/7  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
IDIF  
ACTVIF  
0000  
5040 U1OTGIR  
5050 U1OTGIE  
5060 U1OTGSTAT  
5070 U1OTGCON  
T1MSECIF LSTATEIF  
SESVDIF SESENDIF  
VBUSVDIF 0000  
0000  
VBUSVDIE 0000  
0000  
VBUSVD 0000  
0000  
31:16  
15:0  
IDIE  
T1MSECIE LSTATEIE  
ACTVIE  
SESVDIE SESENDIE  
31:16  
15:0  
LSTATE  
SESVD  
SESEND  
ID  
31:16  
15:0  
DPPULUP DMPULUP DPPULDWN DMPULDWN VBUSON OTGEN VBUSCHG VBUSDIS 0000  
31:16  
15:0  
UACTPND  
0000  
5080  
5200  
U1PWRC  
U1IR  
USLPGRD USBBUSY  
USUSPEND USBPWR 0000  
31:16  
IDLEIF  
TRNIF  
0000  
0000  
URSTIF  
15:0  
31:16  
15:0  
STALLIF ATTACHIF RESUMEIF  
SOFIF  
UERRIF  
DETACHIF 0000  
0000  
0000  
5210  
5220  
U1IE  
URSTIE  
STALLIE ATTACHIE RESUMEIE  
IDLEIE  
TRNIE  
SOFIE  
UERRIE  
DETACHIE 0000  
31:16  
15:0  
BTSEF  
BMXEF  
DMAEF  
CRC5EF  
EOFEF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
U1EIR  
BTOEF  
DFN8EF CRC16EF  
PIDEF  
31:16  
15:0  
5230  
5240  
5250  
5260  
U1EIE  
U1STAT  
U1CON  
U1ADDR  
CRC5EE  
EOFEE  
BTSEE  
BMXEE  
DMAEE  
BTOEE  
DFN8EE CRC16EE  
PIDEE  
31:16  
15:0  
DIR  
PPBI  
ENDPT<3:0>  
31:16  
SE0  
PKTDIS  
TOKBUSY  
USBRST  
USBEN  
SOFEN  
15:0  
JSTATE  
HOSTEN RESUME PPBRST  
31:16  
15:0  
LSPDEN  
DEVADDR<6:0>  
31:16  
15:0  
5270 U1BDTP1  
BDTPTRL<7:1>  
31:16  
15:0  
5280  
5290  
U1FRML  
U1FRMH  
U1TOK  
FRML<7:0>  
31:16  
15:0  
FRMH<2:0>  
31:16  
15:0  
52A0  
PID<3:0>  
EP<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-44: USB REGISTER MAP (CONTINUED)  
Bits  
23/7  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
52B0  
U1SOF  
CNT<7:0>  
31:16  
15:0  
52C0 U1BDTP2  
52D0 U1BDTP3  
52E0 U1CNFG1  
BDTPTRH<7:0>  
31:16  
15:0  
BDTPTRU<7:0>  
31:16  
15:0  
USBSIDL  
UTEYE UOEMON USBFRZ  
UASUSPND 0001  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
31:16  
15:0  
LSPD  
5300  
5310  
5320  
5330  
5340  
5350  
5360  
5370  
5380  
5390  
53A0  
53B0  
53C0  
U1EP0  
U1EP1  
U1EP2  
U1EP3  
U1EP4  
U1EP5  
U1EP6  
U1EP7  
U1EP8  
U1EP9  
U1EP10  
U1EP11  
U1EP12  
U1EP13  
RETRYDIS  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
53D0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-44: USB REGISTER MAP (CONTINUED)  
Bits  
23/7  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
53E0  
U1EP14  
U1EP15  
EPCONDIS EPRXEN EPTXEN EPSTALL  
EPHSHK 0000  
0000  
EPHSHK 0000  
31:16  
15:0  
53F0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-45: CAN1 REGISTER SUMMARY FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX775F256H, PIC32MX775F512H,  
PIC32MX795F512H, PIC32MX575F256L, PIC32MX575F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L  
DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDLE  
ABAT  
BUSY  
REQOP<2:0>  
OPMOD<2:0>  
CANCAP  
0400  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
B000  
B010  
B020  
B030  
B040  
B050  
C1CON  
C1CFG  
C1INT  
DNCNT<4:0>  
31:16  
WAKFIL  
SEG2PH<2:0>  
15:0 SEG2PHTS  
SAM  
WAKIE  
WAKIF  
SEG1PH<2:0>  
SERRIE  
SERRIF  
PRSEG<2:0>  
SJW<1:0>  
BRP<5:0>  
31:16  
15:0  
IVRIE  
IVRIF  
CERRIE  
CERRIF  
RBOVIE  
RBOVIF  
MODIE  
MODIF  
CTMRIE  
CTMRIF  
RBIE  
RBIF  
TBIE  
TBIF  
31:16  
15:0  
C1VEC  
C1TREC  
C1FSTAT  
FILHIT<4:0>  
ICOD<6:0>  
RXBP  
31:16  
15:0  
TXBO  
TXBP  
TXWARN RXWARN EWARN 0000  
TEC<7:0>  
REC<7:0>  
0000  
31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 FIFOIP24 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 0000  
15:0 FIFOIP15 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP8 FIFOIP7 FIFOIP6 FIFOIP5 FIFOIP4 FIFOIP3 FIFOIP2 FIFOIP1 FIFOIP0 0000  
31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
B060 C1RXOVF  
15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9  
31:16  
RXOVF8  
RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
CANTS<15:0>  
0000  
0000  
B070  
B080  
B090  
B0A0  
B0B0  
C1TMR  
C1RXM0  
C1RXM1  
C1RXM2  
C1RXM3  
15:0  
CANTSPRE<15:0>  
EID<15:0>  
31:16  
SID<10:0>  
SID<10:0>  
SID<10:0>  
SID<10:0>  
-—  
-—  
-—  
-—  
MIDE  
MIDE  
MIDE  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
xxxx  
xxxx  
15:0  
31:16  
xxxx  
xxxx  
15:0  
EID<15:0>  
31:16  
xxxx  
xxxx  
15:0  
EID<15:0>  
31:16  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
15:0  
EID<15:0>  
31:16 FLTEN3  
15:0 FLTEN1  
31:16 FLTEN7  
15:0 FLTEN5  
31:16 FLTEN11  
15:0 FLTEN9  
31:16 FLTEN15  
15:0 FLTEN13  
31:16 FLTEN19  
15:0 FLTEN17  
MSEL3<1:0>  
MSEL1<1:0>  
MSEL7<1:0>  
MSEL5<1:0>  
MSEL11<1:0>  
MSEL9<1:0>  
MSEL15<1:0>  
MSEL13<1:0>  
MSEL19<1:0>  
MSEL17<1:0>  
FSEL3<4:0>  
FSEL1<4:0>  
FSEL7<4:0>  
FSEL5<4:0>  
FSEL11<4:0>  
FSEL9<4:0>  
FSEL15<4:0>  
FSEL13<4:0>  
FSEL19<4:0>  
FSEL17<4:0>  
FLTEN2  
MSEL2<1:0>  
MSEL0<1:0>  
MSEL6<1:0>  
MSEL4<1:0>  
MSEL10<1:0>  
MSEL8<1:0>  
MSEL14<1:0>  
MSEL12<1:0>  
MSEL18<1:0>  
MSEL16<1:0>  
FSEL2<4:0>  
FSEL0<4:0>  
FSEL6<4:0>  
FSEL4<4:0>  
FSEL10<4:0>  
FSEL8<4:0>  
FSEL14<4:0>  
FSEL12<4:0>  
FSEL18<4:0>  
FSEL16<4:0:  
B0C0 C1FLTCON0  
B0D0 C1FLTCON1  
B0E0 C1FLTCON2  
B0F0 C1FLTCON3  
B100 C1FLTCON4  
FLTEN0  
FLTEN6  
FLTEN4  
FLTEN10  
FLTEN8  
FLTEN14  
FLTEN12  
FLTEN18  
FLTEN16  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
1:  
information.  
 
TABLE 4-45: CAN1 REGISTER SUMMARY FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX775F256H, PIC32MX775F512H,  
PIC32MX795F512H, PIC32MX575F256L, PIC32MX575F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L  
DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16 FLTEN23  
15:0 FLTEN21  
31:16 FLTEN27  
15:0 FLTEN25  
31:16 FLTEN31  
15:0 FLTEN29  
31:16  
MSEL23<1:0>  
FSEL23<4:0>  
FSEL21<4:0>  
FSEL27<4:0>  
FSEL25<4:0>  
FSEL31<4:0>  
FSEL29<4:0>  
SID<10:0>  
FLTEN22  
FLTEN20  
FLTEN26  
FLTEN24  
FLTEN30  
FLTEN28  
MSEL22<1:0>  
MSEL20<1:0>  
MSEL26<1:0>  
MSEL24<1:0>  
MSEL30<1:0>  
MSEL28<1:0>  
FSEL22<4:0>  
FSEL20<4:0>  
FSEL26<4:0>  
FSEL24<4:0>  
FSEL30<4:0>  
FSEL28<4:0>  
0000  
0000  
0000  
0000  
0000  
0000  
B110 C1FLTCON5  
B120 C1FLTCON6  
B130 C1FLTCON7  
MSEL21<1:0>  
MSEL27<1:0>  
MSEL25<1:0>  
MSEL31<1:0>  
MSEL29<1:0>  
-—  
EXID  
EID<17:16>  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
C1RXFn  
B140  
(n = 0-31)  
15:0  
EID<15:0>  
C1FIFOBA<31:0>  
31:16  
B340 C1FIFOBA  
15:0  
31:16  
15:0  
FSIZE<4:0>  
RTREN  
C1FIFOCONn  
B350  
(n = 0-31)  
FRESET  
UINC  
DONLY  
TXEN  
TXABAT TXLARB  
TXERR  
TXREQ  
TXPRI<1:0>  
RXN  
EMPTYIE  
31:16  
15:0  
TXNFULLIE TXHALFIE TXEMPTYIE  
TXNFULLIF TXHALFIF TXEMPTYIF  
RXOVFLIE RXFULLIE RXHALFIE  
RXOVFLIF RXFULLIF RXHALFIF  
0000  
0000  
C1FIFOINTn  
B360  
(n = 0-31)  
RXN  
EMPTYIF  
31:16  
15:0  
0000  
0000  
0000  
0000  
C1FIFOUAn  
B370  
C1FIFOUA<31:0>  
(n = 0-31)  
31:16  
15:0  
C1FIFOCIn  
B380  
(n = 0-31)  
C1FIFOCI<4:0>  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
1:  
information.  
TABLE 4-46: CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L,  
PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDLE  
ABAT  
BUSY  
REQOP<2:0>  
OPMOD<2:0>  
CANCAP  
0400  
0000  
C000  
C010  
C020  
C030  
C040  
C2CON  
C2CFG  
C2INT  
DNCNT<4:0>  
31:16  
WAKFIL  
SEG2PH<2:0>  
0000  
0000  
0000  
0000  
15:0 SEG2PHTS  
SAM  
WAKIE  
WAKIF  
SEG1PH<2:0>  
SERRIE  
SERRIF  
PRSEG<2:0>  
SJW<1:0>  
BRP<5:0>  
31:16  
15:0  
IVRIE  
IVRIF  
CERRIE  
CERRIF  
RBOVIE  
RBOVIF  
MODIE  
MODIF  
CTMRIE  
CTMRIF  
RBIE  
RBIF  
TBIE  
TBIF  
31:16  
15:0  
0000  
0000  
C2VEC  
C2TREC  
FILHIT<4:0>  
ICOD<6:0>  
RXBP  
31:16  
15:0  
TXBO  
TXBP  
TXWARN RXWARN EWARN 0000  
TEC<7:0>  
REC<7:0>  
0000  
31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 FIFOIP24 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16  
0000  
0000  
C050 C2FSTAT  
C060 C2RXOVF  
15:0 FIFOIP15 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9  
FIFOIP8  
FIFOIP7  
FIFOIP6  
FIFOIP5  
FIFOIP4  
FIFOIP3  
FIFOIP2  
FIFOIP1  
FIFOIP0  
31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9  
31:16  
RXOVF8  
RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
CANTS<15:0>  
0000  
0000  
C070  
C080  
C2TMR  
15:0  
CANTSPRE<15:0>  
EID<15:0>  
31:16  
SID<10:0>  
SID<10:0>  
SID<10:0>  
SID<10:0>  
-—  
-—  
-—  
-—  
MIDE  
MIDE  
MIDE  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
xxxx  
xxxx  
C2RXM0  
15:0  
31:16  
xxxx  
xxxx  
C0A0 C2RXM1  
C0B0 C2RXM2  
C0B0 C2RXM3  
C0C0 C2FLTCON0  
C0D0 C2FLTCON1  
C0E0 C2FLTCON2  
C0F0 C2FLTCON3  
15:0  
EID<15:0>  
31:16  
xxxx  
xxxx  
15:0  
EID<15:0>  
31:16  
xxxx  
xxxx  
15:0  
EID<15:0>  
31:16 FLTEN3  
15:0 FLTEN1  
31:16 FLTEN7  
15:0 FLTEN5  
31:16 FLTEN11  
15:0 FLTEN9  
31:16 FLTEN15  
15:0 FLTEN13  
MSEL3<1:0>  
MSEL1<1:0>  
MSEL7<1:0>  
MSEL5<1:0>  
MSEL11<1:0>  
MSEL9<1:0>  
MSEL15<1:0>  
MSEL13<1:0>  
FSEL3<4:0>  
FSEL1<4:0>  
FSEL7<4:0>  
FSEL5<4:0>  
FSEL11<4:0>  
FSEL9<4:0>  
FSEL15<4:0>  
FSEL13<4:0>  
FLTEN2  
MSEL2<1:0>  
MSEL0<1:0>  
MSEL6<1:0>  
MSEL4<1:0>  
MSEL10<1:0>  
MSEL8<1:0>  
MSEL14<1:0>  
MSEL12<1:0>  
FSEL2<4:0>  
FSEL0<4:0>  
FSEL6<4:0>  
FSEL4<4:0>  
FSEL10<4:0>  
FSEL8<4:0>  
FSEL14<4:0>  
FSEL12<4:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
FLTEN0  
FLTEN6  
FLTEN4  
FLTEN10  
FLTEN8  
FLTEN14  
FLTEN12  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
1:  
information.  
 
TABLE 4-46: CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L,  
PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16 FLTEN19  
15:0 FLTEN17  
31:16 FLTEN23  
15:0 FLTEN21  
31:16 FLTEN27  
15:0 FLTEN25  
31:16 FLTEN31  
15:0 FLTEN29  
31:16  
MSEL19<1:0>  
FSEL19<4:0>  
FSEL17<4:0>  
FSEL23<4:0>  
FSEL21<4:0>  
FSEL27<4:0>  
FSEL25<4:0>  
FSEL31<4:0>  
FSEL29<4:0>  
SID<10:0>  
FLTEN18  
FLTEN16  
FLTEN22  
FLTEN20  
FLTEN26  
FLTEN24  
FLTEN30  
FLTEN28  
MSEL18<1:0>  
FSEL18<4:0>  
FSEL16<4:0:  
FSEL22<4:0>  
FSEL20<4:0>  
FSEL26<4:0>  
FSEL24<4:0>  
FSEL30<4:0>  
FSEL28<4:0>  
0000  
0000  
0000  
0000  
C100 C2FLTCON4  
C110 C2FLTCON5  
C120 C2FLTCON6  
C130 C2FLTCON7  
MSEL17<1:0>  
MSEL23<1:0>  
MSEL21<1:0>  
MSEL27<1:0>  
MSEL25<1:0>  
MSEL31<1:0>  
MSEL29<1:0>  
MSEL16<1:0>  
MSEL22<1:0>  
MSEL20<1:0>  
MSEL26<1:0>  
MSEL24<1:0>  
MSEL30<1:0>  
MSEL28<1:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
-—  
EXID  
EID<17:16>  
C2RXFn  
C140  
(n = 0-31)  
15:0  
EID<15:0>  
C2FIFOBA<31:0>  
31:16  
0000  
0000  
0000  
0000  
0000  
C340 C2FIFOBA  
15:0  
31:16  
15:0  
FSIZE<4:0>  
RTREN  
C2FIFOCONn  
C350  
(n = 0-31)  
FRESET  
UINC  
DONLY  
TXEN  
TXABAT  
TXLARB  
TXERR  
TXREQ  
TXPRI<1:0>  
RXN  
EMPTYIE  
31:16  
15:0  
TXNFULLIE TXHALFIE TXEMPTYIE  
TXNFULLIF TXHALFIF TXEMPTYIF  
RXOVFLIE RXFULLIE RXHALFIE  
RXOVFLIF RXFULLIF RXHALFIF  
C2FIFOINTn  
C360  
(n = 0-31)  
RXN  
EMPTYIF  
0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
C2FIFOUAn  
C370  
C2FIFOUA<31:0>  
(n = 0-31)  
31:16  
15:0  
C2FIFOCIn  
C380  
(n = 0-31)  
C2FIFOCI<4:0>  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more  
1:  
information.  
TABLE 4-47: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H,  
PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
PTV<15:0>  
0000  
BUFCDEC 0000  
9000 ETHCON1  
9010 ETHCON2  
9020 ETHTXST  
9030 ETHRXST  
ON  
FRZ  
SIDL  
TXRTS  
RXEN  
AUTOFC  
MANFC  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RXBUFSZ<6:0>  
31:16  
15:0  
TXSTADDR<31:16>  
TXSTADDR<15:2>  
RXSTADDR<31:16>  
RXSTADDR<15:2>  
31:16  
15:0  
31:16  
15:0  
9040  
9050  
ETHHT0  
ETHHT1  
HT<31:0>  
31:16  
15:0  
HT<63:32>  
PMM<31:0>  
PMM<63:32>  
31:16  
15:0  
9060 ETHPMM0  
9070 ETHPMM1  
9080 ETHPMCS  
9090 ETHPMO  
31:16  
15:0  
31:16  
15:0  
PMCS<15:0>  
31:16  
15:0  
PMO<15:0>  
31:16  
90A0 ETHRXFC  
90B0 ETHRXWM  
CRC  
ERREN  
CRC  
OKEN  
RUNT  
ERREN  
NOT  
MEEN  
15:0  
HTEN  
MPEN  
NOTPM  
PMMODE<3:0>  
RUNTEN  
UCEN  
MCEN  
BCEN  
0000  
31:16  
15:0  
RXFWM<7:0>  
RXEWM<7:0>  
0000  
0000  
0000  
31:16  
90C0  
ETHIEN  
ETHIRQ  
TX  
BUSEIE  
RX  
BUSEIE  
EW  
MARKIE  
FW  
MARKIE  
RX  
DONEIE  
PK  
TPENDIE  
RX  
ACTIE  
TX  
DONEIE  
TX  
ABORTIE  
RX  
BUFNAIE  
RX  
OVFLWIE  
15:0  
0000  
0000  
31:16  
15:0  
90D0  
TXBUSE  
RXBUSE  
EWMARK FWMARK  
RXDONE PKTPEND  
RXACT  
TXDONE TXABORT RXBUFNA RXOVFLW 0000  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and  
INV Registers” for more information.  
1:  
2:  
Reset values default to the factory programmed value.  
 
TABLE 4-47: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H,  
PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
BUFCNT<7:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
90E0 ETHSTAT  
BUSY  
TXBUSY  
RXBUSY  
31:16  
15:0  
ETH  
9100  
RXOVFLOW  
RXOVFLWCNT<15:0>  
31:16  
15:0  
ETH  
9110  
FRMTXOK  
FRMTXOKCNT<15:0>  
31:16  
15:0  
ETH  
9120  
SCOLFRM  
SCOLFRMCNT<15:0>  
31:16  
15:0  
ETH  
9130  
MCOLFRM  
MCOLFRMCNT<15:0>  
31:16  
15:0  
ETH  
9140  
FRMRXOK  
FRMRXOKCNT<15:0>  
31:16  
15:0  
ETH  
9150  
FCSERR  
FCSERRCNT<15:0>  
31:16  
15:0  
ETH  
9160  
ALGNERR  
ALGNERRCNT<15:0>  
31:16  
EMACx  
9200  
SOFT  
RESET  
SIM  
RESET  
RESET  
RMCS  
RESET  
RFUN  
RESET  
TMCS  
RESET  
TFUN  
CFG1  
15:0  
31:16  
15:0  
LOOPBACK TXPAUSE RXPAUSE PASSALL RXENABLE 800D  
0000  
EMACx  
9210  
EXCESS  
DFR  
BP  
NOBKOFF  
PAD  
ENABLE  
CRC  
ENABLE  
CFG2  
NOBKOFF  
LONGPRE PUREPRE AUTOPAD VLANPAD  
DELAYCRC HUGEFRM LENGTHCK FULLDPLX 4082  
31:16  
15:0  
B2BIPKTGP<6:0>  
0000  
0012  
0000  
0C12  
0000  
370F  
0000  
05EE  
EMACx  
9220  
IPGT  
31:16  
15:0  
EMACx  
9230  
IPGR  
NB2BIPKTGP1<6:0>  
NB2BIPKTGP2<6:0>  
31:16  
15:0  
EMACx  
9240  
CLRT  
CWINDOW<5:0>  
RETX<3:0>  
31:16  
15:0  
EMACx  
9250  
MAXF  
MACMAXF<15:0>  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and  
INV Registers” for more information.  
1:  
2:  
Reset values default to the factory programmed value.  
TABLE 4-47: ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H,  
PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L,  
PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
1000  
EMACx  
SUPP  
9260  
9270  
9280  
RESET  
RMII  
SPEED  
RMII  
31:16  
15:0  
0000  
0000  
0000  
EMACx  
TEST  
SHRTQNTA  
TESTBP TESTPAUSE  
31:16  
EMACx  
MCFG  
RESET  
MGMT  
15:0  
CLKSEL<3:0>  
NOPRE  
SCANINC 0020  
31:16  
15:0  
SCAN  
READ  
0000  
0000  
0000  
0100  
0000  
0000  
0000  
0000  
0000  
EMACx  
MCMD  
9290  
92A0  
92B0  
92C0  
92D0  
9300  
9310  
9320  
31:16  
15:0  
PHYADDR<4:0>  
REGADDR<4:0>  
EMACx  
MADR  
31:16  
15:0  
EMACx  
MWTD  
MWTD<15:0>  
31:16  
15:0  
EMACx  
MRDD  
MRDD<15:0>  
31:16  
15:0  
SCAN  
EMACx  
MIND  
LINKFAIL NOTVALID  
MIIMBUSY 0000  
31:16  
15:0  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
EMACx  
(2)  
SA0  
STNADDR6<7:0>  
STNADDR5<7:0>  
31:16  
15:0  
EMACx  
(2)  
SA1  
STNADDR4<7:0>  
STNADDR3<7:0>  
31:16  
15:0  
EMACx  
(2)  
SA2  
STNADDR2<7:0>  
STNADDR1<7:0>  
Legend:  
Note  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and  
INV Registers” for more information.  
1:  
2:  
Reset values default to the factory programmed value.  
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 104  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
PIC32MX5XX/6XX/7XX devices contain an internal  
Flash program memory for executing user code. There  
are three methods by which the user can program this  
memory:  
5.0  
FLASH PROGRAM MEMORY  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 5. “Flash Pro-  
gram Memory” (DS61121) in the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
1. Run-Time Self Programming (RTSP)  
2. EJTAG Programming  
3. In-Circuit Serial Programming™ (ICSP™)  
RTSP is performed by software executing from either  
Flash or RAM memory. Information about RTSP  
techniques is available in Section 5. “Flash Program  
Memory” (DS61121) in the “PIC32MX Family  
Reference Manual”.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
EJTAG is performed using the EJTAG port of the  
device and an EJTAG capable programmer.  
ICSP is performed using a serial data connection to the  
device and allows much faster programming times than  
RTSP.  
The EJTAG and ICSP methods are described in the  
PIC32MX  
Flash  
Programming  
Specification”  
(DS61145), which can be downloaded from the  
Microchip web site.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 105  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 106  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The Reset module combines all Reset sources and  
controls the device Master Reset signal, SYSRST. The  
following is a list of device Reset sources:  
6.0  
RESETS  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 7. “Resets”  
(DS61118) in the “PIC32MX Family  
Reference Manual”, which is available  
• POR: Power-on Reset  
• MCLR: Master Clear Reset Pin  
• SWR: Software Reset  
• WDTR: Watchdog Timer Reset  
• BOR: Brown-out Reset  
• CMR: Configuration Mismatch Reset  
from  
the  
Microchip  
web  
site  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
FIGURE 6-1:  
SYSTEM RESET BLOCK DIAGRAM  
MCLR  
MCLR  
WDTR  
Glitch Filter  
Sleep or Idle  
WDT  
Time-out  
Voltage  
Regulator  
Enabled  
POR  
Power-up  
Timer  
SYSRST  
VDD  
VDD Rise  
Detect  
BOR  
Brown-out  
Reset  
Configuration  
Mismatch  
Reset  
CMR  
SWR  
Software Reset  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 107  
 
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 108  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The PIC32MX5XX/6XX/7XX interrupt module includes  
the following features:  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 8. “Interrupt  
Controller” (DS61108) in the “PIC32MX  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
• Up to 96 Interrupt Sources  
• Up to 64 Interrupt Vectors  
• Single and Multi-Vector mode Operations  
• Five External Interrupts with Edge Polarity Control  
• Interrupt Proximity Timer  
• Module Freeze in Debug mode  
• Seven User-Selectable Priority Levels for each  
Vector  
• Four User-Selectable Subpriority Levels within  
each Priority  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to  
4.0 “Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Dedicated Shadow Set for User-Selectable  
Priority Level  
• Software can Generate any Interrupt  
• User-Configurable Interrupt Vector Table Location  
• User-Configurable Interrupt Vector Spacing  
PIC32MX5XX/6XX/7XX devices generate interrupt  
requests in response to interrupt events from peripheral  
modules. The interrupt control module exists externally  
to the CPU logic and prioritizes the interrupt events  
before presenting them to the CPU.  
FIGURE 7-1:  
INTERRUPT CONTROLLER MODULE  
Vector Number  
Interrupt Controller  
CPU Core  
Priority Level  
Shadow Set Number  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 109  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 7-1:  
INTERRUPT IRQ, VECTOR AND BIT LOCATION  
Interrupt Bit Location  
Vector  
Number  
Interrupt Source(1)  
IRQ  
Flag  
Enable  
Priority  
Sub-Priority  
Highest Natural Order Priority  
CT – Core Timer Interrupt  
CS0 – Core Software Interrupt 0  
CS1 – Core Software Interrupt 1  
INT0 – External Interrupt 0  
T1 – Timer1  
0
1
0
1
IFS0<0>  
IFS0<1>  
IFS0<2>  
IFS0<3>  
IFS0<4>  
IFS0<5>  
IFS0<6>  
IFS0<7>  
IFS0<8>  
IFS0<9>  
IEC0<0>  
IPC0<4:2>  
IPC0<1:0>  
IPC0<9:8>  
IEC0<1> IPC0<12:10>  
2
2
IEC0<2> IPC0<20:18> IPC0<17:16>  
IEC0<3> IPC0<28:26> IPC0<25:24>  
3
3
4
4
IEC0<4>  
IPC1<4:2>  
IPC1<1:0>  
IPC1<9:8>  
IC1 – Input Capture 1  
5
5
IEC0<5> IPC1<12:10>  
OC1 – Output Compare 1  
INT1 – External Interrupt 1  
T2 – Timer2  
6
6
IEC0<6> IPC1<20:18> IPC1<17:16>  
IEC0<7> IPC1<28:26> IPC1<25:24>  
7
7
8
8
IEC0<8>  
IPC2<4:2>  
IPC2<1:0>  
IPC2<9:8>  
IC2 – Input Capture 2  
9
9
IEC0<9> IPC2<12:10>  
OC2 – Output Compare 2  
INT2 – External Interrupt 2  
T3 – Timer3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
23  
23  
IFS0<10> IEC0<10> IPC2<20:18> IPC2<17:16>  
IFS0<11> IEC0<11> IPC2<28:26> IPC2<25:24>  
IFS0<12> IEC0<12>  
IPC3<4:2>  
IPC3<1:0>  
IPC3<9:8>  
IC3 – Input Capture 3  
IFS0<13> IEC0<13> IPC3<12:10>  
OC3 – Output Compare 3  
INT3 – External Interrupt 3  
T4 – Timer4  
IFS0<14> IEC0<14> IPC3<20:18> IPC3<17:16>  
IFS0<15> IEC0<15> IPC3<28:26> IPC3<25:24>  
IFS0<16> IEC0<16>  
IPC4<4:2>  
IPC4<1:0>  
IPC4<9:8>  
IC4 – Input Capture 4  
IFS0<17> IEC0<17> IPC4<12:10>  
OC4 – Output Compare 4  
INT4 – External Interrupt 4  
T5 – Timer5  
IFS0<18> IEC0<18> IPC4<20:18> IPC4<17:16>  
IFS0<19> IEC0<19> IPC4<28:26> IPC4<25:24>  
IFS0<20> IEC0<20>  
IPC5<4:2>  
IPC5<1:0>  
IPC5<9:8>  
IC5 – Input Capture 5  
IFS0<21> IEC0<21> IPC5<12:10>  
OC5 – Output Compare 5  
SPI1E – SPI1 Fault  
IFS0<22> IEC0<22> IPC5<20:18> IPC5<17:16>  
IFS0<23> IEC0<23> IPC5<28:26> IPC5<25:24>  
IFS0<24> IEC0<24> IPC5<28:26> IPC5<25:24>  
IFS0<25> IEC0<25> IPC5<28:26> IPC5<25:24>  
SPI1RX – SPI1 Receive Done  
SPI1TX – SPI1 Transfer Done  
U1AE – UART1A Error  
SPI1AE – SPI1A Fault  
26  
27  
28  
24  
24  
24  
IFS0<26> IEC0<26>  
IFS0<27> IEC0<27>  
IFS0<28> IEC0<28>  
IPC6<4:2>  
IPC6<4:2>  
IPC6<4:2>  
IPC6<1:0>  
IPC6<1:0>  
IPC6<1:0>  
I2C1AB – I2C1A Bus Collision Event  
U1ARX – UART1A Receiver  
SPI1ARX – SPI1A Receive Done  
I2C1AS – I2C1A Slave Event  
U1ATX – UART1A Transmitter  
SPI1ATX – SPI1A Transfer Done  
I2C1AM – I2C1A Master Event  
I2C1B – I2C1 Bus Collision Event  
I2C1S – I2C1 Slave Event  
I2C1M – I2C1 Master Event  
CN – Input Change Interrupt  
AD1 – ADC1 Convert Done  
PMP – Parallel Master Port  
29  
30  
31  
32  
33  
34  
25  
25  
25  
26  
27  
28  
IFS0<29> IEC0<29> IPC6<12:10>  
IFS0<30> IEC0<30> IPC6<12:10>  
IFS0<31> IEC0<31> IPC6<12:10>  
IPC6<9:8>  
IPC6<9:8>  
IPC6<9:8>  
IFS1<0>  
IFS1<1>  
IFS1<2>  
IEC1<0> IPC6<20:18> IPC6<17:16>  
IEC1<1> IPC6<28:26> IPC6<25:24>  
IEC1<2>  
IPC7<4:2>  
IPC7<1:0>  
Note 1: Not all interrupt sources are available on all devices. See Table 1 for the list of available peripherals.  
DS61156C-page 110  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
TABLE 7-1:  
INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)  
Interrupt Bit Location  
Vector  
Number  
Interrupt Source(1)  
IRQ  
Flag  
Enable  
Priority  
Sub-Priority  
CMP1 – Comparator Interrupt  
CMP2 – Comparator Interrupt  
35  
36  
29  
30  
IFS1<3>  
IFS1<4>  
IEC1<3> IPC7<12:10>  
IPC7<9:8>  
IEC1<4> IPC7<20:18> IPC7<17:16>  
U2AE – UART2A Error  
SPI2AE – SPI2A Fault  
I2C2AB – I2C2A Bus Collision Event  
37  
38  
39  
40  
41  
42  
31  
31  
31  
32  
32  
32  
IFS1<5>  
IFS1<6>  
IFS1<7>  
IFS1<8>  
IFS1<9>  
IEC1<5> IPC7<28:26> IPC7<25:24>  
U2ARX – UART2A Receiver  
SPI2ARX – SPI2A Receive Done  
I2C2AS – I2C2A Slave Event  
IEC1<6> IPC7<28:26> IPC7<25:24>  
IEC1<7> IPC7<28:26> IPC7<25:24>  
U2ATX – UART2A Transmitter  
SPI2ATX – SPI2A Transfer Done  
IC2AM – I2C2A Master Event  
U3AE – UART3A Error  
SPI3AE – SPI3A Fault  
I2C3AB – I2C3A Bus Collision Event  
IEC1<8>  
IEC1<9>  
IPC8<4:2>  
IPC8<4:2>  
IPC8<4:2>  
IPC8<1:0>  
IPC8<1:0>  
IPC8<1:0>  
U3ARX – UART3A Receiver  
SPI3ARX – SPI3A Receive Done  
I2C3AS – I2C3A Slave Event  
U3ATX – UART3A Transmitter  
SPI3ATX – SPI3A Transfer Done  
IC3AM – I2C3A Master Event  
IFS1<10> IEC1<10>  
I2C2B – I2C2 Bus Collision Event  
I2C2S – I2C2 Slave Event  
I2C2M – I2C2 Master Event  
FSCM – Fail-Safe Clock Monitor  
RTCC – Real-Time Clock  
DMA0 – DMA Channel 0  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
33  
33  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
5
IFS1<11> IEC1<11> IPC8<12:10>  
IFS1<12> IEC1<12> IPC8<12:10>  
IFS1<13> IEC1<13> IPC8<12:10>  
IPC8<9:8>  
IPC8<9:8>  
IPC8<9:8>  
IFS1<14> IEC1<14> IPC8<20:18> IPC8<17:16>  
IFS1<15> IEC1<15> IPC8<28:26> IPC8<25:24>  
IFS1<16> IEC1<16>  
IPC9<4:2>  
IPC9<1:0>  
IPC9<9:8>  
DMA1 – DMA Channel 1  
IFS1<17> IEC1<17> IPC9<12:10>  
DMA2 – DMA Channel 2  
IFS1<18> IEC1<18> IPC9<20:18> IPC9<17:16>  
IFS1<19> IEC1<19> IPC9<28:26> IPC9<25:24>  
DMA3 – DMA Channel 3  
DMA4 – DMA Channel 4  
IFS1<20> IEC1<20> IPC10<4:2>  
IPC10<1:0>  
DMA5 – DMA Channel 5  
IFS1<21> IEC1<21> IPC10<12:10> IPC10<9:8>  
IFS1<22> IEC1<22> IPC10<20:18> IPC10<17:16>  
IFS1<23> IEC1<23> IPC10<28:26> IPC10<25:24>  
DMA6 – DMA Channel 6  
DMA7 – DMA Channel 7  
FCE – Flash Control Event  
USB – USB Interrupt  
IFS1<24> IEC1<24> IPC11<4:2>  
IPC11<1:0>  
IFS1<25> IEC1<25> IPC11<12:10> IPC11<9:8>  
IFS1<26> IEC1<26> IPC11<20:18> IPC11<17:16>  
IFS1<27> IEC1<27> IPC11<28:26> IPC11<25:24>  
CAN1 – Control Area Network 1  
CAN2 – Control Area Network 2  
ETH – Ethernet Interrupt  
IFS1<28> IEC1<28> IPC12<4:2>  
IFS1<29> IEC1<29> IPC1<12:10>  
IFS1<30> IEC1<30> IPC2<12:10>  
IFS1<31> IEC1<31> IPC3<12:10>  
IPC12<1:0>  
IPC1<9:8>  
IPC2<9:8>  
IPC3<9:8>  
IPC4<9:8>  
IPC5<9:8>  
IPC7<1:0>  
IC1E – Input Capture 1 Error  
IC2E – Input Capture 2 Error  
IC3E – Input Capture 3 Error  
IC4E – Input Capture 4 Error  
IC4E – Input Capture 5 Error  
PMPE – Parallel Master Port Error  
U1BE – UART1B Error  
9
13  
17  
21  
28  
49  
IFS2<0>  
IFS2<1>  
IFS2<2>  
IFS2<3>  
IEC2<0> IPC4<12:10>  
IEC2<1> IPC5<12:10>  
IEC2<2>  
IPC7<4:2>  
IEC2<3> IPC12<12:10> IPC12<9:8>  
Note 1: Not all interrupt sources are available on all devices. See Table 1 for the list of available peripherals.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 111  
PIC32MX5XX/6XX/7XX  
TABLE 7-1:  
INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)  
Interrupt Bit Location  
Enable Priority  
Vector  
Number  
Interrupt Source(1)  
IRQ  
Flag  
Sub-Priority  
U1BRX – UART1B Receiver  
U1BTX – UART1B Transmitter  
U2BE – UART2B Error  
68  
69  
70  
71  
72  
73  
74  
75  
49  
49  
50  
50  
50  
51  
51  
51  
IFS2<4>  
IFS2<5>  
IFS2<6>  
IFS2<7>  
IFS2<8>  
IFS2<9>  
IEC2<4> IPC12<12:10> IPC12<9:8>  
IEC2<5> IPC12<12:10> IPC12<9:8>  
IEC2<6> IPC12<20:18> IPC12<17:16>  
IEC2<7> IPC12<20:18> IPC12<17:16>  
IEC2<8> IPC12<20:18> IPC12<17:16>  
IEC2<9> IPC12<28:26> IPC12<25:24>  
U2BRX – UART2B Receiver  
U2BTX – UART2B Transmitter  
U3BE – UART3B Error  
U3BRX – UART3B Receiver  
U3BTX – UART3B Transmitter  
(Reserved)  
IFS2<10> IEC2<10> IPC12<28:26> IPC12<25:24>  
IFS2<11> IEC2<11> IPC12<28:26> IPC12<25:24>  
Lowest Natural Order Priority  
Note 1: Not all interrupt sources are available on all devices. See Table 1 for the list of available peripherals.  
DS61156C-page 112  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The PIC32MX5XX/6XX/7XX oscillator system has the  
following modules and features:  
8.0  
OSCILLATOR  
CONFIGURATION  
• A Total of Four External and Internal Oscillator  
Options as Clock Sources  
• On-Chip PLL with User-Selectable Input Divider,  
Multiplier and Output Divider to Boost Operating  
Frequency on Select Internal and External  
Oscillator Sources  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 6. “Oscillator  
• On-Chip User-Selectable Divisor Postscaler on  
Select Oscillator Sources  
Configuration”  
(DS61112) in the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
• Software-Controllable Switching Between  
Various Clock Sources  
• A Fail-Safe Clock Monitor (FSCM) that Detects  
Clock Failure and Permits Safe Application  
Recovery or Shutdown  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Dedicated On-Chip PLL for USB Peripheral  
FIGURE 8-1:  
PIC32MX5XX/6XX/7XX FAMILY CLOCK DIAGRAM  
USB PLL  
USB Clock (48 MHz)  
UFIN  
div 2  
div x  
PLL x24  
UFRCEN  
FUPLLEN  
UFIN 4 MHz  
FUPLLDIV<2:0>  
Primary Oscillator  
(POSC)  
C1(3)  
OSC1  
XT, HS, EC  
To Internal  
Logic  
(2)  
F
R
Peripherals  
PBCLK  
Postscaler  
div x  
4 MHz FIN 5 MHz  
FIN  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
XTAL  
Enable  
div x  
div y  
PLL  
(1)  
S
R
div 2  
C2(3)  
OSC2(4)  
PLL Input Divider  
FPLLIDIV<2:0>  
PLL Output Divider  
PLLODIV<2:0>  
PBDIV<2:0>  
ADC  
PLL Multiplier  
PLLMULT<2:0>  
FRC  
Oscillator  
COSC<2:0>  
FRC  
CPU and Select Peripherals  
8 MHz typical  
FRC/16  
FRCDIV  
div 16  
TUN<5:0>  
Postscaler  
FRCDIV<2:0>  
31.25 kHz typical  
LPRC  
SOSC  
LPRC  
Oscillator  
Secondary Oscillator (SOSC)  
SOSCO  
SOSCI  
32.768 kHz  
SOSCEN and FSOSCEN  
Clock Control Logic  
FSCM INT  
Fail-Safe  
Clock  
Monitor  
FSCM Event  
Notes: 1. A series resistor, RS, may be required for AT strip cut crystals.  
2. The internal feedback resistor, RF, is typically in the range of 2 to 10 M  
3. Refer to Section 6. “Oscillator Configuration” (DS61112) in the  
PIC32MX Family Reference Manual” for help in determining the best  
oscillator components.  
NOSC<2:0>  
COSC<2:0>  
FSCMEN<1:0>  
OSWEN  
WDT, PWRT  
Timer1, RTCC  
4. PBCLK out is available on the OSC2 pin in certain clock modes.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 113  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 114  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Prefetch cache increases performance for applications  
executing out of the cacheable program Flash memory  
regions by implementing instruction caching, constant  
data caching and instruction prefetching.  
9.0  
PREFETCH CACHE  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 4. “Prefetch  
Cache” (DS61119) in the “PIC32MX  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
9.1  
Features  
• 16 Fully Associative Lockable Cache Lines  
• 16-Byte Cache Lines  
• Up to Four Cache Lines Allocated to Data  
• Two Cache Lines with Address Mask to Hold  
Repeated Instructions  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to  
4.0 “Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Pseudo LRU Replacement Policy  
• All Cache Lines are Software Writable  
• 16-Byte Parallel Memory Fetch  
• Predictive Instruction Prefetch  
FIGURE 9-1:  
PREFETCH MODULE BLOCK DIAGRAM  
FSM  
CTRL  
Tag Logic  
Cache Line  
CTRL  
Bus Ctrl  
Cache Ctrl  
Prefetch Ctrl  
Hit LRU  
Cache  
Line  
RDATA  
Address  
Encode  
Miss LRU  
Hit Logic  
Prefetch  
Prefetch  
PFM  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 115  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 116  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
• Automatic Word-Size Detection:  
10.0 DIRECT MEMORY ACCESS  
(DMA) CONTROLLER  
- Transfer granularity, down to byte level  
- Bytes need not be word-aligned at source  
and destination  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 31. “Direct  
Memory Access (DMA) Controller”  
(DS61117) in the “PIC32MX Family  
Reference Manual”, which is available  
• Fixed Priority Channel Arbitration  
• Flexible DMA Channel Operating modes:  
- Manual (software) or automatic (interrupt)  
DMA requests  
- One-Shot or Auto-Repeat Block Transfer  
modes  
- Channel-to-channel chaining  
• Flexible DMA Requests:  
from  
the  
Microchip  
web  
site  
- A DMA request can be selected from any of  
the peripheral interrupt sources  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
- Each channel can select any (appropriate)  
observable interrupt as its DMA request  
source  
- A DMA transfer abort can be selected from  
any of the peripheral interrupt sources  
- Pattern (data) match transfer termination  
• Multiple DMA Channel Status Interrupts:  
- DMA channel block transfer complete  
- Source empty or half empty  
The PIC32MX Direct Memory Access (DMA) controller  
is a bus master module useful for data transfers  
between different devices without CPU intervention.  
The source and destination of a DMA transfer can be  
any of the memory mapped modules existent in the  
PIC32MX (such as Peripheral Bus (PBUS) devices:  
SPI, UART, I2C™, etc.) or memory itself.  
- Destination full or half full  
- DMA transfer aborted due to an external  
event  
- Invalid DMA address generated  
• DMA Debug Support Features:  
Following are some of the key features of the DMA  
controller module:  
- Most recent address accessed by a DMA  
channel  
• Four Identical Channels, each Featuring:  
- Auto-Increment Source and Destination  
Address registers  
- Most recent DMA channel to transfer data  
• CRC Generation Module:  
- Source and Destination Pointers  
- CRC module can be assigned to any of the  
available channels  
- Memory to memory and memory to  
peripheral transfers  
- CRC module is highly configurable  
FIGURE 10-1:  
DMA BLOCK DIAGRAM  
INT Controller  
System IRQ  
Peripheral Bus  
Address Decoder  
Channel 0 Control  
I0  
I1  
I2  
Channel 1 Control  
Channel n Control  
Y
Device Bus + Bus Arbitration  
Bus Interface  
In  
Global Control  
(DMACON)  
Channel Priority  
Arbitration  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 117  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 118  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The clock generator provides the 48 MHz clock  
required for USB full-speed and low-speed communi-  
cation. The voltage comparators monitor the voltage on  
the VBUS pin to determine the state of the bus. The  
transceiver provides the analog translation between  
the USB bus and the digital logic. The SIE is a state  
machine that transfers data to and from the endpoint  
buffers and generates the hardware protocol for data  
transfers. The USB DMA controller transfers data  
between the data buffers in RAM and the SIE. The inte-  
grated pull-up and pull-down resistors eliminate the  
need for external signaling components. The register  
interface allows the CPU to configure and  
communicate with the module.  
11.0 USB ON-THE-GO (OTG)  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 27. “USB On-  
The-Go (OTG)” (DS61126) in the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The PIC32MX USB module includes the following  
features:  
• USB Full-Speed Support for Host and Device  
• Low-Speed Host Support  
The Universal Serial Bus (USB) module contains  
analog and digital components to provide a USB 2.0  
full-speed and low-speed embedded host, full-speed  
device or OTG implementation with a minimum of  
external components. This module in Host mode is  
intended for use as an embedded host and therefore  
does not implement a UHCI or OHCI controller.  
• USB OTG Support  
• Integrated Signaling Resistors  
• Integrated Analog Comparators for VBUS  
Monitoring  
• Integrated USB Transceiver  
• Transaction Handshaking Performed by  
Hardware  
The USB module consists of the clock generator, the  
USB voltage comparators, the transceiver, the Serial  
Interface Engine (SIE), a dedicated USB DMA control-  
ler, pull-up and pull-down resistors, and the register  
interface. A block diagram of the PIC32MX USB OTG  
module is presented in Figure 11-1.  
• Endpoint Buffering Anywhere in System RAM  
• Integrated DMA to Access System RAM and  
Flash  
Note:  
IMPORTANT! The implementation and  
use of the USB specifications, as well as  
other third party specifications or technol-  
ogies, may require licensing; including,  
but not limited to, USB Implementers  
Forum, Inc. (also referred to as USB-IF).  
The user is fully responsible for investigat-  
ing and satisfying any applicable licensing  
obligations.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 119  
 
PIC32MX5XX/6XX/7XX  
FIGURE 11-1:  
PIC32MX5XX/6XX/7XX FAMILY USB INTERFACE DIAGRAM  
USBEN  
FRC  
USB Suspend  
Oscillator  
8 MHz Typical  
CPU Clock Not POST  
Sleep  
(4)  
TUN<5:0>  
Primary Oscillator  
(POST)  
(5)  
UFIN  
PLL  
Div x  
Div 2  
(3)  
UFRCEN  
OSC1  
OSC2  
(6)  
(6)  
FUPLLEN  
To Clock Generator for Core and Peripherals  
Sleep or Idle  
FUPLLIDIV  
USB Suspend  
(1)  
(PB Out)  
USB Module  
USB  
SRP Charge  
SRP Discharge  
Voltage  
Bus  
Comparators  
(7)  
48 MHz USB Clock  
Full Speed Pull-up  
(2)  
D+  
Registers  
and  
Control  
Interface  
Host Pull-down  
SIE  
Transceiver  
Low Speed Pull-up  
(2)  
D-  
DMA  
System  
RAM  
Host Pull-down  
ID Pull-up  
(8)  
ID  
(8)  
Vibes  
Transceiver Power 3.3V  
VUSB  
Note 1: PB clock is only available on this pin for select EC modes.  
2: Pins can be used as digital inputs when USB is not enabled.  
3: This bit field is contained in the OSCCON register.  
4: This bit field is contained in the OSCTRM register.  
5: USB PLL UFIN requirements: 4 MHz.  
6: This bit field is contained in the DEVCFG2 register.  
7: A 48 MHz clock is required for proper USB operation.  
8: Pins can be used as GPIO when the USB module is disabled.  
DS61156C-page 120  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
General purpose I/O pins are the simplest of peripher-  
als. They allow the PIC® MCU to monitor and control  
other devices. To add flexibility and functionality, some  
pins are multiplexed with alternate function(s). These  
functions depend on which peripheral features are on  
the device. In general, when a peripheral is functioning,  
that pin may not be used as a general purpose I/O pin.  
12.0 I/O PORTS  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 12. “I/O Ports”  
(DS61120) in the “PIC32MX Family  
Reference Manual”, which is available  
Following are some of the key features of this module:  
• Individual Output Pin Open-Drain Enable/Disable  
• Individual Input Pin Weak Pull-up Enable/Disable  
from  
the  
Microchip  
web  
site  
• Monitor Selective Inputs and Generate Interrupt  
when Change in Pin State is Detected  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Operation during CPU Sleep and Idle modes  
• Fast Bit Manipulation using CLR, SET and INV  
Registers  
Figure 12-1 shows a block diagram of a typical  
multiplexed I/O port.  
FIGURE 12-1:  
BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE  
Peripheral Module  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
PIO Module  
RD ODC  
Data Bus  
SYSCLK  
D
Q
Q
ODC  
CK  
EN  
WR ODC  
RD TRIS  
1
0
IO Cell  
0
1
D
Q
Q
1
0
TRIS  
LAT  
CK  
EN  
WR TRIS  
Output Multiplexers  
D
Q
Q
IO Pin  
CK  
EN  
WR LAT  
WR PORT  
RD LAT  
1
0
RD PORT  
Q
Q
D
Q
Q
D
Sleep  
CK  
CK  
SYSCLK  
Synchronization  
Peripheral Input  
R
Peripheral Input Buffer  
Legend:  
Note:  
R = Peripheral input buffer types may vary. Refer to Table 1-1 for peripheral details.  
This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure  
for any specific port/peripheral combination may be different than it is shown here.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C - page 121  
 
 
 
 
PIC32MX5XX/6XX/7XX  
12.1.2  
DIGITAL INPUTS  
12.1 Parallel I/O (PIO) Ports  
Pins are configured as digital inputs by setting the cor-  
responding TRIS register bits = 1. When configured as  
inputs, they are either TTL buffers or Schmitt Triggers.  
Several digital pins share functionality with analog  
inputs and default to the analog inputs at POR. Setting  
the corresponding bit in the AD1PCFG register = 1  
enables the pin as a digital pin.  
All port pins have three registers (TRIS, LAT and  
PORT) that are directly associated with their operation.  
TRIS is a Data Direction or Tri-State Control register  
that determines whether a digital pin is an input or an  
output. Setting a TRISx register bit = 1configures the  
corresponding I/O pin as an input; setting a TRISx  
register bit = 0configures the corresponding I/O pin as  
an output. All port I/O pins are defined as inputs after a  
device Reset. Certain I/O pins are shared with analog  
peripherals and default to analog inputs after a device  
Reset.  
The maximum input voltage allowed on the input pins  
is the same as the maximum VIH specification. Refer to  
Section 31.0 “Electrical Characteristics” for VIH  
specification details.  
Note:  
Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may  
cause the input buffer to consume current  
that exceeds the device specifications.  
PORT is a register used to read the current state of the  
signal applied to the port I/O pins. Writing to a PORTx  
register performs a write to the port’s latch, LATx  
register, latching the data to the port’s I/O pins.  
LAT is a register used to write data to the port I/O pins.  
The LATx Latch register holds the data written to either  
the LATx or PORTx registers. Reading the LATx Latch  
register reads the last value written to the  
corresponding PORT or Latch register.  
12.1.3  
ANALOG INPUTS  
Certain pins can be configured as analog inputs used  
by the ADC and comparator modules. Setting the cor-  
responding bits in the AD1PCFG register = 0enables  
the pin as an analog input pin and must have the corre-  
sponding TRIS bit set = 1 (input). If the TRIS bit is  
cleared = 0 (output), the digital output level (VOH or  
VOL) will be converted. Any time a port I/O pin is config-  
ured as analog, its digital input is disabled and the  
corresponding PORTx register bit will read ‘0’. The  
AD1PCFG register has a default value of ‘0x0000’;  
therefore, all pins that share ANx functions are analog  
(not digital) by default.  
Not all port I/O pins are implemented on some devices,  
therefore, the corresponding PORTx, LATx and TRISx  
register bits will read as zeros.  
12.1.1  
CLR, SET AND INV REGISTERS  
Every I/O module register has a corresponding CLR  
(clear), SET (set) and INV (invert) register designed to  
provide fast atomic bit manipulations. As the name of  
the register implies, a value written to a SET, CLR or  
INV register effectively performs the implied operation,  
but only on the corresponding base register and only  
bits specified as ‘1’ are modified. Bits specified as ‘0’  
are not modified.  
12.1.4  
DIGITAL OUTPUTS  
Pins are configured as digital outputs by setting the  
corresponding TRIS register bits = 0. When configured  
as digital outputs, these pins are CMOS drivers or can  
be configured as open-drain outputs by setting the cor-  
responding bits in the ODCx Open-Drain Configuration  
register.  
Reading SET, CLR and INV registers returns undefined  
values. To see the affects of a write operation to a SET,  
CLR or INV register, the base register must be read.  
To set PORTC bit 0, write to the LATSET register:  
The open-drain feature allows generation of outputs  
higher than VDD (e.g., 5V) on any desired 5V tolerant  
pins by using external pull-up resistors. The maximum  
open-drain voltage allowed is the same as the  
maximum VIH specification.  
LATCSET = 0x0001;  
To clear PORTC bit 0, write to the LATCLR register:  
LATCCLR = 0x0001;  
To toggle PORTC bit 0, write to the LATINV register:  
See the “Pin Diagrams” section for the available pins  
and their functionality.  
LATCINV = 0x0001;  
12.1.5  
ANALOG OUTPUTS  
Note:  
Using a PORTxINV register to toggle a bit  
is recommended because the operation is  
performed in hardware atomically, using  
fewer instructions, as compared to the  
Certain pins can be configured as analog outputs, such  
as the CVREF output voltage used by the comparator  
module. Configuring the comparator reference module  
to provide this output will present the analog output  
voltage on the pin, independent of the TRIS register  
setting for the corresponding pin.  
traditional  
read-modify-write  
method  
shown below:  
PORTC ^= 0x0001;  
DS61156C - page 122  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
PIC32MX5XX/6XX/7XX  
This family of PIC32MX devices features one  
synchronous/asynchronous 16-bit timer that can operate  
as a free-running interval timer for various timing applica-  
tions and counting external events. This timer can also  
be used with the Low-Power Secondary Oscillator  
(SOSC) for Real-Time Clock (RTC) applications. The  
following modes are supported:  
13.0 TIMER1  
Note 1: This data sheet summarizes the features of  
the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 14. “Timers”  
(DS61105) in the “PIC32MX Family  
Reference Manual”, which is available  
• Synchronous Internal Timer  
• Synchronous Internal Gated Timer  
• Synchronous External Timer  
• Asynchronous External Timer  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to  
4.0 “Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
13.1 Additional Supported Features  
• Selectable Clock Prescaler  
• Timer Operation during CPU Idle and Sleep mode  
• Fast Bit Manipulation using CLR, SET and INV  
registers  
• Asynchronous mode can be used with the SOSC  
to Function as a Real-Time Clock (RTC).  
FIGURE 13-1:  
TIMER1 BLOCK DIAGRAM(1)  
PR1  
Equal  
16-Bit Comparator  
TSYNC (T1CON<2>)  
1
0
Sync  
TMR1  
Reset  
0
T1IF  
Event Flag  
1
Q
Q
D
TGATE (T1CON<7>)  
TCS (T1CON<1>)  
ON (T1CON<15>)  
TGATE (T1CON<7>)  
SOSCO/T1CK  
x1  
Prescaler  
Gate  
Sync  
SOSCEN  
10  
00  
1, 8, 64, 256  
SOSCI  
PBCLK  
2
TCKPS<1:0>  
(T1CON<5:4>)  
Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit in  
Configuration Word, DEVCFG1.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 123  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 124  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Two 32-bit synchronous timers are available by  
combining Timer2 with Timer3 and Timer4 with Timer5.  
The 32-bit timers can operate in three modes:  
14.0 TIMER2/3, TIMER4/5  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 14. “Timers”  
(DS61105) of the “PIC32MX Family  
Reference Manual”, which is available  
• Synchronous Internal 32-Bit Timer  
• Synchronous Internal 32-Bit Gated Timer  
• Synchronous External 32-Bit Timer  
Note:  
In this chapter, references to registers,  
TxCON, TMRx and PRx, use ‘x’ to repre-  
sent Timer2 through 5 in 16-bit modes. In  
32-bit modes, ‘x’ represents Timer2 or 4;  
‘y’ represents Timer3 or 5.  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to  
4.0 “Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
14.1 Additional Supported Features  
• Selectable Clock Prescaler  
• Timers Operational during CPU Idle  
• Time Base for Input Capture and Output Compare  
modules (Timer2 and Timer3 only)  
This family of PIC32MX devices features four  
synchronous 16-bit timers (default) that can operate as  
a free-running interval timer for various timing applica-  
tions and counting external events. The following  
modes are supported:  
• ADC Event Trigger (Timer3 only)  
• Fast Bit Manipulation using CLR, SET and INV  
registers  
• Synchronous Internal 16-Bit Timer  
• Synchronous Internal 16-Bit Gated Timer  
• Synchronous External 16-Bit Timer  
FIGURE 14-1:  
TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)  
Sync  
TMRx  
ADC Event  
Trigger  
(1)  
Comparator x 16  
PRx  
Equal  
Reset  
0
1
TxIF  
Event Flag  
TGATE (TxCON<7>)  
TCS (TxCON<1>)  
ON (TxCON<15>)  
Q
Q
D
TGATE (TxCON<7>)  
(2)  
TxCK  
x1  
Prescaler  
1, 2, 4, 8, 16,  
32, 64, 256  
Gate  
Sync  
10  
PBCLK  
00  
3
TCKPS (TxCON<6:4>)  
Note 1: ADC event trigger is available on Timer3 only.  
2: TxCK pins are not available on 64-pin devices.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 125  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 14-2:  
TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)(1)  
Reset  
TMRy  
TMRx  
Sync  
LS Half Word  
MS Half Word  
ADC Event  
(3)  
Trigger  
32-Bit Comparator  
Equal  
PRy  
PRx  
TyIF Event  
Flag  
0
1
Q
Q
D
TGATE (TxCON<7>)  
TCS (TxCON<1>)  
ON (TxCON<15>)  
TGATE (TxCON<7>)  
(2)  
TxCK  
x1  
Prescaler  
1, 2, 4, 8, 16,  
32, 64, 256  
Gate  
Sync  
10  
00  
PBCLK  
3
TCKPS (TxCON<6:4>)  
Note 1: In this diagram, the use of “x’ in registers, TxCON, TMRx, PRx, TxCK, refers to either Timer2 or Timer4; the use of  
‘y’ in registers, TyCON, TMRy, PRy, TyIF, refers to either Timer3 or Timer5.  
2: TxCK pins are not available on 64-pin devices.  
3: ADC event trigger is available only on the Timer2/3 pair.  
DS61156C-page 126  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
2. Capture timer value on every edge (rising and  
falling)  
15.0 INPUT CAPTURE  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 15. “Input  
Capture” (DS61122) of the “PIC32MX  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
3. Capture timer value on every edge (rising and  
falling), specified edge first.  
4. Prescaler Capture Event modes  
- Capture timer value on every 4th rising  
edge of input at ICx pin  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
Each input capture channel can select between one of  
two 16-bit timers (Timer2 or Timer3) for the time base,  
or two 16-bit timers (Timer2 and Timer3) together to  
form a 32-bit timer. The selected timer can use either  
an internal or external clock.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Other operational features include:  
• Device Wake-up from Capture Pin during CPU  
Sleep and Idle modes  
• Interrupt on Input Capture Event  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
• 4-Word FIFO Buffer for Capture Values  
Interrupt Optionally Generated after 1, 2, 3 or 4  
Buffer Locations are Filled  
The input capture module captures the 16-bit or 32-bit  
value of the selected Time Base registers when an  
event occurs at the ICx pin. The following events cause  
capture events:  
• Input Capture can also be used to Provide  
Additional Sources of External Interrupts  
1. Simple Capture Event modes  
- Capture timer value on every falling edge of  
input at ICx pin  
- Capture timer value on every rising edge of  
input at ICx pin  
FIGURE 15-1:  
INPUT CAPTURE BLOCK DIAGRAM  
ICx Input  
Timer3 Timer2  
ICTMR  
0
1
C32  
FIFO Control  
ICxBUF<31:16>  
ICxBUF<15:0>  
Prescaler  
1, 4, 16  
Edge Detect  
ICM<2:0>  
FEDGE  
ICM<2:0>  
ICBNE  
ICOV  
Interrupt  
Event  
Generation  
ICxCON  
ICI<1:0>  
Data Space Interface  
Peripheral Data Bus  
Interrupt  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 127  
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 128  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The Output Compare module (OCMP) is used to gen-  
erate a single pulse or a train of pulses in response to  
selected time base events. For all modes of operation,  
the OCMP module compares the values stored in the  
OCxR and/or the OCxRS registers to the value in the  
selected timer. When a match occurs, the OCMP  
module generates an event based on the selected  
mode of operation.  
16.0 OUTPUT COMPARE  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 16. “Output  
Capture” (DS61111) in the “PIC32MX  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
The following are some of the key features:  
• Multiple Output Compare Modules in a Device  
• Programmable Interrupt Generation on Compare  
Event  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Single and Dual Compare modes  
• Single and Continuous Output Pulse Generation  
• Pulse-Width Modulation (PWM) mode  
• Hardware-Based PWM Fault Detection and  
Automatic Output Disable  
• Programmable Selection of 16-Bit or 32-Bit Time  
Bases  
• Can Operate from Either of Two Available 16-Bit  
Time Bases or a Single 32-Bit Time Base  
FIGURE 16-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF(1)  
OCxRS(1)  
Output  
Logic  
S
R
Q
OCxR(1)  
OCx(1)  
Output Enable  
3
OCM<2:0>  
Mode Select  
OCFA or OCFB(2)  
Comparator  
0
0
OCTSEL  
1
1
16  
16  
Period Match Signals  
from Time Bases(3)  
TMR Register Inputs  
from Time Bases(3)  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels,  
1 through 5.  
2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.  
3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit timer base.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 129  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 130  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The SPI module is a synchronous serial interface that  
is useful for communicating with external peripherals  
and other microcontroller devices. These peripheral  
devices may be Serial EEPROMs, Shift registers, dis-  
play drivers, A/D Converters, etc. The PIC32MX SPI  
module is compatible with Motorola® SPI and SIOP  
interfaces.  
17.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
Section 23. “Serial Peripheral Interface  
Following are some of the key features of this module:  
• Master and Slave modes Support  
• Four Different Clock Formats  
(SPI)”  
(DS61106) in the “PIC32MX  
Family Reference Manual”, which is avail-  
able from the Microchip web site  
(www.microchip.com/PIC32).  
• Enhanced Framed SPI Protocol Support  
• User-Configurable 8-Bit, 16-Bit and 32-Bit Data  
Width  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Separate SPI FIFO Buffers for Receive and  
Transmit  
- FIFO buffers act as 4/8/16-level deep FIFOs  
based on 32/16/8-bit data width  
• Programmable Interrupt Event on Every 8-Bit,  
16-Bit and 32-Bit Data Transfer  
• Operation during CPU Sleep and Idle mode  
• Fast Bit Manipulation using CLR, SET and INV  
Registers  
FIGURE 17-1:  
SPI MODULE BLOCK DIAGRAM  
Internal  
Data Bus  
SPIxBUF  
Read  
Write  
FIFOs Share Address SPIxBUF  
SPIxRXB FIFO  
SPIxTXB FIFO  
Transmit  
Receive  
SPIxSR  
SDIx  
bit 0  
SDOx  
Shift  
Control  
Slave Select  
and Frame  
Sync Control  
Clock  
Control  
Edge  
Select  
PBCLK  
SSx/FSYNC  
SCKx  
Baud Rate  
Generator  
Enable Master Clock  
Note: Access SPIxTXB and SPIxRXB FIFOs via SPIxBUF register.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 131  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 132  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The I2C module provides complete hardware support  
for both Slave and Multi-Master modes of the I2C serial  
communication standard. Figure 18-1 shows the I2C  
module block diagram.  
Each I2C module has a 2-pin interface: the SCLx pin is  
clock and the SDAx pin is data.  
Each I2C module offers the following key features:  
• I2C Interface Supporting both Master and Slave  
Operation  
• I2C Slave mode Supports 7 and 10-Bit Address  
• I2C Master mode Supports 7 and 10-Bit Address  
• I2C Port allows Bidirectional Transfers between  
Master and Slaves  
• Serial Clock Synchronization for I2C Port can be  
used as a Handshake Mechanism to Suspend  
and Resume Serial Transfer (SCLREL control)  
• I2C Supports Multi-Master Operation; Detects Bus  
Collision and Arbitrates Accordingly  
18.0 INTER-INTEGRATED CIRCUIT  
2
(I C™)  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 24. “Inter-  
Integrated Circuit” (DS61116) in the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Provides Support for Address Bit Masking  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 133  
 
PIC32MX5XX/6XX/7XX  
FIGURE 18-1:  
I2C™ BLOCK DIAGRAM (X = 1 OR 2)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Match Detect  
Write  
Read  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
PBCLK  
I2CxBRG  
DS61156C-page 134  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
The primary features of the UART module are:  
19.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Full-Duplex, 8-Bit or 9-Bit Data Transmission  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop Bits  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 21. “Universal  
Asynchronous Receiver Transmitter  
• Hardware Auto-Baud Feature  
• Hardware Flow Control Option  
• Fully Integrated Baud Rate Generator (BRG) with  
16-Bit Prescaler  
• Baud Rates Ranging from 76 bps to 20 Mbps at  
80 MHz  
(UART)”  
(DS61107) in the “PIC32MX  
• 8-Level Deep First-In-First-Out (FIFO) Transmit  
Data Buffer  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
• 8-Level Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error  
Detection  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Support for Interrupt Only on Address Detect  
(9th bit = 1)  
• Separate Transmit and Receive Interrupts  
• Loopback mode for Diagnostic Support  
• LIN 1.2 Protocol Support  
The UART module is one of the serial I/O modules  
available in PIC32MX5XX/6XX/7XX family devices.  
The UART is a full-duplex, asynchronous communica-  
tion channel that communicates with peripheral  
devices and personal computers through protocols,  
such as RS-232, RS-485, LIN 1.2 and IrDA®. The  
module also supports the hardware flow control option,  
with UxCTS and UxRTS pins, and also includes an  
IrDA encoder and decoder.  
• IrDA Encoder and Decoder with 16x Baud Clock  
Output for External IrDA Encoder/Decoder  
Support  
Figure 19-1 shows a simplified block diagram of the  
UART.  
FIGURE 19-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLKx  
UxRTS  
UxCTS  
Hardware Flow Control  
UARTx Receiver  
UxRX  
UxTX  
UARTx Transmitter  
Note:  
Not all pins are available for all UART modules. Refer to the device-specific pin diagram for more information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 135  
 
 
 
PIC32MX5XX/6XX/7XX  
Figure 19-2 and Figure 19-3 illustrate typical receive  
and transmit timing for the UART module.  
FIGURE 19-2:  
UART RECEPTION  
Char 1  
Char 2-4  
Char 11-13  
Char 5-10  
Read to  
UxRXREG  
Start  
1
Stop  
Start 2  
Stop 4  
Start 5  
Stop 10 Start 11  
Stop 13  
UxRX  
RIDLE  
Cleared by  
Software  
OERR  
Cleared by  
Software  
UxRXIF  
URXISEL = 00  
Cleared by  
Software  
UxRXIF  
URXISEL = 01  
UxRXIF  
URXISEL = 10  
FIGURE 19-3:  
TRANSMISSION (8-BIT OR 9-BIT DATA)  
8 into TxBUF  
Write to  
UxTXREG  
TSR  
Pull from Buffer  
BCLK/16  
(Shift Clock)  
UxTX  
Start  
Bit 0  
Bit 1  
Stop  
Start  
Bit 1  
UxTXIF  
UTXISEL = 00  
UxTXIF  
UTXISEL = 01  
UxTXIF  
UTXISEL = 10  
DS61156C-page 136  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
 
PIC32MX5XX/6XX/7XX  
Key features of the PMP module include:  
20.0 PARALLEL MASTER PORT  
(PMP)  
• 8-Bit, 16-Bit Interface  
• Up to 16 Programmable Address Lines  
• Up to Two Chip Select Lines  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 13. “Parallel  
Master Port (PMP)” (DS61128) in the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
• Programmable Strobe Options  
- Individual read and write strobes, or  
- Read/write strobe with enable strobe  
• Address Auto-Increment/Auto-Decrement  
• Programmable Address/Data Multiplexing  
• Programmable Polarity on Control Signals  
• Parallel Slave Port Support  
- Legacy addressable  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
- Address support  
- 4-byte deep auto-incrementing buffer  
• Programmable Wait States  
• Operates during CPU Sleep and Idle modes  
• Fast Bit Manipulation using CLR, SET and INV  
Registers  
The PMP is a parallel 8-bit/16-bit input/output module  
specifically designed to communicate with a wide  
variety of parallel devices, such as communications  
peripherals, LCDs, external memory devices and  
microcontrollers. Because the interface to parallel  
peripherals varies significantly, the PMP module is  
highly configurable.  
• Freeze Option for In-Circuit Debugging  
Note:  
On 64-pin devices, data pins, PMD<15:8>,  
are not available.  
FIGURE 20-1:  
PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES  
Address Bus  
Data Bus  
Control Lines  
PMA<0>  
PMALL  
PIC32MX5XX/6XX/7XX  
Parallel  
Master Port  
PMA<1>  
PMALH  
Flash  
EEPROM  
SRAM  
Up to 16-Bit Address  
PMA<13:2>  
PMA<14>  
PMCS1  
PMA<15>  
PMCS2  
PMRD  
PMRD/PMWR  
FIFO  
Buffer  
PMWR  
PMENB  
Microcontroller  
LCD  
PMD<7:0>  
PMD<15:8>(1)  
16/8-Bit Data (with or without multiplexed addressing)  
Note 1: On 64-pin devices, data pins, PMD<15:8>, are not available in 16-Bit Master modes.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 137  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 138  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Following are some of the key features of this module:  
21.0 REAL-TIME CLOCK AND  
CALENDAR (RTCC)  
• Time: Hours, Minutes and Seconds  
• 24-Hour Format (Military Time)  
• Visibility of One Half Second Period  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 29. “Real-Time  
• Provides Calendar: Weekday, Date, Month and  
Year  
• Alarm Intervals are Configurable for Half of a  
Second, One Second, 10 Seconds, One Minute,  
10 Minutes, One Hour, One Day, One Week, One  
Month and One Year  
Clock  
and  
Calendar  
(RTCC)”  
(DS61125) in the “PIC32MX Family  
Reference Manual”, which is available  
• Alarm Repeat with Decrementing Counter  
• Alarm with Indefinite Repeat: Chime  
Year Range: 2000 to 2099  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Leap Year Correction  
• BCD Format for Smaller Firmware Overhead  
• Optimized for Long-Term Battery Operation  
• Fractional Second Synchronization  
• User Calibration of the Clock Crystal Frequency  
with Auto-Adjust  
The PIC32MX RTCC module is intended for applica-  
tions in which accurate time must be maintained for  
extended periods of time with minimal or no CPU  
• Calibration Range: 0.66 Seconds Error per  
Month  
• Calibrates up to 260 ppm of Crystal Error  
intervention.  
Low-power  
optimization  
provides  
• Requirements: External 32.768 kHz Clock Crystal  
extended battery lifetime while keeping track of time.  
• Alarm Pulse or Seconds Clock Output on  
RTCC Pin  
FIGURE 21-1:  
RTCC BLOCK DIAGRAM  
32.768 kHz Input  
from Secondary  
Oscillator (SOSC)  
RTCC Prescalers  
0.5s  
YEAR, MTH, DAY  
RTCVAL  
WKDAY  
RTCC Timer  
Alarm  
HR, MIN, SEC  
Event  
Comparator  
MTH, DAY  
WKDAY  
Compare Registers  
with Masks  
ALRMVAL  
HR, MIN, SEC  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
Seconds Pulse  
RTCC Pin  
RTCOE  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 139  
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 140  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
• One Unipolar, Differential Sample and Hold  
Amplifier (SHA)  
22.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
• Automatic Channel Scan mode  
• Selectable Conversion Trigger Source  
• 16-word Conversion Result Buffer  
• Selectable Buffer Fill modes  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 17. “10-Bit  
Analog-to-Digital Converter (ADC)”  
(DS61104) in the “PIC32MX Family  
Reference Manual”, which is available  
• Eight Conversion Result Format Options  
• Operation during CPU Sleep and Idle modes  
A block diagram of the 10-bit ADC is shown in  
Figure 22-1. The 10-bit ADC has up to 16 analog input  
pins, designated AN0-AN15. In addition, there are two  
analog input pins for external voltage reference  
connections. These voltage reference inputs may be  
shared with other analog input pins and may be  
common to other analog module references.  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The analog inputs are connected through two multi-  
plexers (MUXs) to one SHA. The analog input MUXs  
can be switched between two sets of analog inputs  
between conversions. Unipolar differential conversions  
are possible on all channels, other than the pin used as  
the reference, using a reference input pin (see  
Figure 22-1).  
The PIC32MX5XX/6XX/7XX 10-bit Analog-to-Digital  
(A/D) Converter (or ADC) includes the following  
features:  
The Analog Input Scan mode sequentially converts  
user-specified channels. A control register specifies  
which analog input channels will be included in the  
scanning sequence.  
• Successive Approximation Register (SAR)  
Conversion  
• Up to 1 Msps Conversion Speed  
• Up to 16 Analog Input Pins  
The 10-bit ADC is connected to a 16-word result buffer.  
Each 10-bit result is converted to one of eight 32-bit  
output formats when it is read from the result buffer.  
• External Voltage Reference Input Pins  
FIGURE 22-1:  
ADC1 MODULE BLOCK DIAGRAM  
VREF+(1)  
VREF-(1)  
AVDD  
AVSS  
VCFG<2:0>  
AN0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
AN15  
VREFH  
VREFL  
S/H  
Channel  
Scan  
+
-
CH0SB<4:0>  
SAR ADC  
CH0SA<4:0>  
CSCNA  
AN1  
ADC1BUFE  
ADC1BUFF  
VREFL  
CH0NA CH0NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 141  
 
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 22-2:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
ADRC  
FRC  
Div 2  
0
1
TAD  
ADCS<7:0>  
8
ADC Conversion  
Clock Multiplier  
TPB  
2, 4,..., 512  
DS61156C-page 142  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
• Message Reception and Transmission:  
- 32 message FIFOs  
23.0 CONTROLLER AREA  
NETWORK (CAN)  
- Each FIFO can have up to 32 messages for a  
total of 1024 messages  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 34. “Controller  
Area Network (CAN)” in the “PIC32MX  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
- FIFO can be a transmit message FIFO or a  
receive message FIFO  
- User-defined priority levels for message  
FIFOs used for transmission  
- 32 acceptance filters for message filtering  
- Four acceptance filter mask registers for  
message filtering  
- Automatic response to remote transmit request  
- DeviceNet™ addressing support  
• Additional Features:  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
- Loopback, Listen All Messages and Listen  
Only modes for self-test, system diagnostics  
and bus monitoring  
- Low-power operating modes  
- CAN module is a bus master on the  
PIC32MX system bus  
The Controller Area Network (CAN) module supports  
the following key features:  
- Use of DMA is not required  
- Dedicated time-stamp timer  
- Dedicated DMA channels  
• Standards Compliance:  
- Full CAN 2.0B compliance  
- Programmable bit rate up to 1 Mbps  
- Data Only Message Reception mode  
Figure 23-1 illustrates the general structure of the CAN  
module.  
FIGURE 23-1:  
PIC32MX CAN MODULE BLOCK DIAGRAM  
CxTX  
32 Filters  
4 Masks  
CPU  
CxRX  
CAN Module  
System Bus  
Message  
Buffer Size  
2 or 4 Words  
System RAM  
Message Buffer 31  
Message Buffer 31  
Message Buffer 31  
Message Buffer 1  
Message Buffer 0  
Message Buffer 1  
Message Buffer 0  
Message Buffer 1  
Message Buffer 0  
FIFO0  
FIFO1  
FIFO31  
CAN Message FIFO (up to 32 FIFOs)  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 143  
 
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 144  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Following are some of the key features of this module:  
24.0  
ETHERNET CONTROLLER  
• Supports 10/100 Mbps Data Transfer Rates  
• Supports Full-Duplex and Half-Duplex Operation  
• Supports RMII and MII PHY Interface  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 35. “Ethernet  
Controller” in the “PIC32MX Family  
Reference Manual”, which is available  
• Supports MIIM PHY Management Interface  
• Supports both Manual and Automatic Flow Control  
• RAM Descriptor-Based DMA Operation for Both  
Receive and Transmit Path  
• Fully Configurable Interrupts  
• Configurable Receive Packet Filtering  
- CRC Check  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
- 64-Byte Pattern Match  
- Broadcast, Multicast and Unicast packets  
- Magic Packet™  
- 64-Bit Hash Table  
- Runt Packet  
• Supports Packet Payload Checksum Calculation  
• Supports Various Hardware Statistics Counters  
The Ethernet controller is a bus master module that  
interfaces with an off-chip Physical Layer (PHY) to  
implement a complete Ethernet node in a system.  
Figure 24-1 shows a block diagram of the Ethernet  
controller.  
FIGURE 24-1:  
ETHERNET CONTROLLER BLOCK DIAGRAM  
TX DMA  
TX BM  
TX Bus  
Master  
TX Function  
TX Flow Control  
MII/RMII  
IF  
RX Flow  
Control  
RX DMA  
RX BM  
External  
MAC  
PHY  
RX Bus  
Master  
RX Filter  
RX Function  
Checksum  
MIIM  
IF  
MAC Control  
and  
DMA  
Control  
Registers  
Configuration  
Ethernet DMA  
Host IF  
Registers  
Ethernet Controller  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 145  
 
 
 
PIC32MX5XX/6XX/7XX  
Table 24-1, Table 24-2, Table 24-3 and Table 24-4  
show four interfaces and the associated pins that can  
be used with the Ethernet Controller.  
TABLE 24-3: MII MODE ALTERNATE  
INTERFACE SIGNALS  
(FMIIEN = 1, FETHIO = 0)(1)  
TABLE 24-1: MII MODE DEFAULT  
INTERFACE SIGNALS  
Pin Name  
AEMDC  
Description  
Management Clock  
(FMIIEN = 1, FETHIO = 1)  
AEMDIO  
AETXCLK  
AETXEN  
AETXD0  
AETXD1  
AETXD2  
AETXD3  
AETXERR  
AERXCLK  
AERXDV  
AERXD0  
AERXD1  
AERXD2  
AERXD3  
AERXERR  
AECRS  
Management IO  
Transmit Clock  
Transmit Enable  
Transmit Data  
Transmit Data  
Transmit Data  
Transmit Data  
Transmit Error  
Receive Clock  
Receive Data Valid  
Receive Data  
Receive Data  
Receive Data  
Receive Data  
Receive Error  
Carrier Sense  
Collision Indication  
Pin Name  
EMDC  
Description  
Management Clock  
EMDIO  
ETXCLK  
ETXEN  
ETXD0  
ETXD1  
ETXD2  
ETXD3  
ETXERR  
ERXCLK  
ERXDV  
ERXD0  
ERXD1  
ERXD2  
ERXD3  
ERXERR  
ECRS  
Management IO  
Transmit Clock  
Transmit Enable  
Transmit Data  
Transmit Data  
Transmit Data  
Transmit Data  
Transmit Error  
Receive Clock  
Receive Data Valid  
Receive Data  
Receive Data  
Receive Data  
Receive Data  
Receive Error  
Carrier Sense  
Collision Indication  
AECOL  
Note 1: MII Alternate Interface is not available on  
64-pin devices.  
ECOL  
TABLE 24-4: RMII MODE ALTERNATE  
INTERFACE SIGNALS  
TABLE 24-2: RMII MODE DEFAULT  
INTERFACE SIGNALS  
(FMIIEN = 0, FETHIO = 0)  
(FMIIEN = 0, FETHIO = 1)  
Pin Name  
AEMDC  
Description  
Management Clock  
Pin Name  
EMDC  
Description  
Management Clock  
AEMDIO  
AETXEN  
AETXD0  
Management IO  
Transmit Enable  
Transmit Data  
EMDIO  
Management IO  
Transmit Enable  
Transmit Data  
ETXEN  
ETXD0  
AETXD1  
Transmit Data  
ETXD1  
Transmit Data  
AEREFCLK  
AECRSDV  
AERXD0  
AERXD1  
AERXERR  
Reference Clock  
Carrier Sense – Receive Data Valid  
Receive Data  
EREFCLK  
ECRSDV  
ERXDV  
ERXD0  
ERXD1  
ERXERR  
Reference Clock  
Carrier Sense – Receive Data Valid  
Receive Data Valid  
Receive Data  
Receive Data  
Receive Error  
Receive Data  
Receive Error  
DS61156C-page 146  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
 
PIC32MX5XX/6XX/7XX  
The PIC32MX5XX/6XX/7XX analog comparator  
module contains two comparators that can be  
configured in a variety of ways.  
25.0  
COMPARATOR  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this  
data sheet, refer to Section 19.  
Following are some of the key features of this module:  
• Selectable Inputs Available Include:  
- Analog inputs multiplexed with I/O pins  
- On-chip internal absolute Voltage Reference  
(IVREF)  
“Comparator”  
(DS61110) in the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
- Comparator Voltage Reference (CVREF)  
• Outputs can be Inverted  
• Selectable Interrupt Generation  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
A block diagram of the comparator module is shown in  
Figure 25-1.  
FIGURE 25-1:  
COMPARATOR BLOCK DIAGRAM  
Comparator 1  
COUT (CM1CON)  
C1OUT (CMSTAT)  
CREF  
ON  
CPOL  
(1)  
C1IN+  
(2)  
CVREF  
C1OUT  
CCH<1:0>  
C1  
C1IN-  
C1IN+  
C2IN+  
COE  
(2)  
IVREF  
Comparator 2  
COUT (CM2CON)  
C2OUT (CMSTAT)  
CREF  
ON  
CPOL  
C2IN+  
(2)  
CVREF  
C2OUT  
CCH<1:0>  
C2  
C2IN-  
COE  
C2IN+  
C1IN+  
(2)  
IVREF  
Note 1: On devices with a USB module, and when the module is enabled, this pin is controlled by the USB module,  
and therefore, is not available as a comparator input.  
2: Internally connected.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 147  
 
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 148  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
The CVREF module is a 16-tap, resistor ladder network  
that provides a selectable reference voltage. Although  
its primary purpose is to provide a reference for the  
analog comparators, it also may be used independently  
of them.  
26.0 COMPARATOR VOLTAGE  
REFERENCE (CVREF)  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
Section 20. “Comparator Voltage  
A block diagram of the module is shown in Figure 26-1.  
The resistor ladder is segmented to provide two ranges  
of voltage reference values and has a power-down  
function to conserve power when the reference is not  
being used. The module’s supply reference can be pro-  
vided from either device VDD/VSS or an external  
voltage reference. The CVREF output is available for  
the comparators and typically available for pin output.  
Reference (CVREF)”  
(DS61109) in the  
“PIC32MX Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The comparator voltage reference has the following  
features:  
• High and low range selection  
• Sixteen output levels available for each range  
• Internally connected to comparators to conserve  
device pins  
• Output can be connected to a pin  
FIGURE 26-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
VREF+  
AVDD  
8R  
CVR<3:0>  
R
CVREN  
CVREF  
R
R
R
16 Steps  
CVREFOUT  
CVRCON<CVROE>  
R
R
R
CVRR  
VREF-  
AVSS  
8R  
CVRSS = 1  
CVRSS = 0  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 149  
 
 
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 150  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
• SOSC Idle mode: the system clock is derived from  
the SOSC.  
27.0 POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
of the PIC32MX5XX/6XX/7XX family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
Section 10. “Power-Saving Features”  
(DS61130) in the “PIC32MX Family  
Reference Manual”, which is available  
Peripherals continue to operate, but can  
optionally be individually disabled.  
• LPRC Idle mode: the system clock is derived from  
the LPRC.  
Peripherals continue to operate, but can option-  
ally be individually disabled. This is the lowest  
power mode for the device with a clock running.  
• Sleep mode: the CPU, the system clock source  
and any peripherals that operate from the system  
clock source are Halted.  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Some peripherals can operate in Sleep using  
specific clock sources. This is the lowest power  
mode for the device.  
27.3 Power-Saving Operation  
Peripherals and the CPU can be Halted or disabled to  
further reduce power consumption.  
This section describes power-saving features for the  
PIC32MX5XX/6XX/7XX. The PIC32MX devices offer a  
total of nine methods and modes, organized into two  
categories, that allow the user to balance power  
consumption with device performance. In all of the  
methods and modes described in this section, power  
saving is controlled by software.  
27.3.1  
SLEEP MODE  
Sleep mode has the lowest power consumption of the  
device power-saving operating modes. The CPU and  
most peripherals are Halted. Select peripherals can  
continue to operate in Sleep mode and can be used to  
wake the device from Sleep. See the individual periph-  
eral module sections for descriptions of behavior in  
Sleep.  
27.1 Power Saving with CPU Running  
When the CPU is running, power consumption can be  
controlled by reducing the CPU clock frequency, lower-  
ing the PBCLK and by individually disabling modules.  
These methods are grouped into the following  
categories:  
Sleep mode includes the following characteristics:  
• The CPU is Halted.  
• The system clock source is typically shut down.  
See Section 27.3.3 “Peripheral Bus Scaling  
Method” for specific information.  
• FRC Run mode: the CPU is clocked from the FRC  
clock source with or without postscalers.  
• There can be a wake-up delay based on the  
oscillator selection.  
• LPRC Run mode: the CPU is clocked from the  
LPRC clock source.  
• The Fail-Safe Clock Monitor (FSCM) does not  
operate during Sleep mode.  
• SOSC Run mode: the CPU is clocked from the  
SOSC clock source.  
• The BOR circuit, if enabled, remains operative  
during Sleep mode.  
In addition, the Peripheral Bus Scaling mode is available  
where peripherals are clocked at the programmable  
fraction of the CPU clock (SYSCLK).  
• The WDT, if enabled, is not automatically cleared  
prior to entering Sleep mode.  
• Some peripherals can continue to operate at  
limited functionality in Sleep mode. These periph-  
erals include I/O pins that detect a change in the  
input signal, WDT, ADC, UART and peripherals  
that use an external clock input or the internal  
LPRC oscillator (e.g., RTCC, Timer1 and Input  
Capture).  
27.2 CPU Halted Methods  
The device supports two power-saving modes, Sleep  
and Idle, both of which Halt the clock to the CPU. These  
modes operate with all clock sources, as listed below:  
• POSC Idle mode: the system clock is derived from  
the POSC. The system clock source continues to  
operate.  
• I/O pins continue to sink or source current in the  
same manner as they do when the device is not in  
Sleep.  
Peripherals continue to operate, but can  
optionally be individually disabled.  
• The USB module can override the disabling of the  
Posc or FRC. Refer to the USB section for  
specific details.  
• FRC Idle mode: the system clock is derived from  
the FRC with or without postscalers.  
• Modules can be individually disabled by software  
prior to entering Sleep in order to further reduce  
consumption.  
Peripherals continue to operate, but can  
optionally be individually disabled.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 151  
 
 
 
 
PIC32MX5XX/6XX/7XX  
The processor will exit, or ‘wake-up’, from Sleep on one  
of the following events:  
The processor will wake or exit from Idle mode on the  
following events:  
• On any interrupt from an enabled source that is  
operating in Sleep. The interrupt priority must be  
greater than the current CPU priority.  
• On any interrupt event for which the interrupt  
source is enabled. The priority of the interrupt  
event must be greater than the current priority of  
the CPU. If the priority of the interrupt event is  
lower than or equal to current priority of the CPU,  
the CPU will remain Halted and the device will  
remain in Idle mode.  
• On any form of device Reset.  
• On a WDT time-out.  
If the interrupt priority is lower than or equal to the  
current priority, the CPU will remain Halted, but the  
PBCLK will start running and the device will enter into  
Idle mode.  
• On any form of device Reset  
• On a WDT time-out interrupt  
27.3.3  
PERIPHERAL BUS SCALING  
METHOD  
27.3.2  
IDLE MODE  
In Idle mode, the CPU is Halted but the System Clock  
(SYSCLK) source is still enabled. This allows peripher-  
als to continue operation when the CPU is Halted.  
Peripherals can be individually configured to Halt when  
entering Idle by setting their respective SIDL bit.  
Latency, when exiting Idle mode, is very low due to the  
CPU oscillator source remaining active.  
Most of the peripherals on the device are clocked using  
the PBCLK. The peripheral bus can be scaled relative to  
the SYSCLK to minimize the dynamic power consumed  
by the peripherals. The PBCLK divisor is controlled by  
PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to  
PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals  
using PBCLK are affected when the divisor is changed.  
Peripherals, such as the interrupt controller, DMA, bus  
matrix and prefetch cache, are clocked directly from  
SYSCLK. As a result, they are not affected by PBCLK  
divisor changes.  
Notes: Changing the PBCLK divider ratio  
requires recalculation of peripheral timing.  
For example, assume the UART is config-  
ured for 9600 baud with a PB clock ratio of  
1:1 and a POSC of 8 MHz. When the PB  
clock divisor of 1:2 is used, the input  
frequency to the baud clock is cut in half;  
therefore, the baud rate is reduced to 1/2  
its former value. Due to numeric truncation  
in calculations (such as the baud rate divi-  
sor), the actual baud rate may be a tiny  
percentage different than expected. For  
this reason, any timing calculation  
required for a peripheral should be per-  
formed with the new PB clock frequency  
instead of scaling the previous value  
based on a change in the PB divisor ratio.  
Most of the peripherals on the device are clocked using  
the PBCLK. The peripheral bus can be scaled relative to  
the SYSCLK to minimize the dynamic power consumed  
by the peripherals. The PBCLK divisor is controlled by  
PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to  
PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals  
using PBCLK are affected when the divisor is changed.  
Peripherals such as USB, interrupt controller, DMA, bus  
matrix and prefetch cache are clocked directly from  
SYSCLK. As a result, they are not affected by PBCLK  
divisor changes  
Changing the PBCLK divisor affects:  
• The CPU to peripheral access latency. The CPU  
has to wait for next PBCLK edge for a read to  
complete. In 1:8 mode, this results in a latency of  
one to seven SYSCLKs.  
Oscillator start-up and PLL lock delays  
are applied when switching to a clock  
source that was disabled and that uses a  
crystal and/or the PLL. For example,  
assume the clock source is switched from  
POSC to LPRC just prior to entering Sleep  
in order to save power. No oscillator start-  
up delay would be applied when exiting  
Idle. However, when switching back to  
POSC, the appropriate PLL and or oscilla-  
tor start-up/lock delays would be applied.  
• The power consumption of the peripherals. Power  
consumption is directly proportional to the fre-  
quency at which the peripherals are clocked. The  
greater the divisor, the lower the power consumed  
by the peripherals.  
To minimize dynamic power, the PB divisor should be  
chosen to run the peripherals at the lowest frequency  
that provides acceptable system performance. When  
selecting a PBCLK divider, peripheral clock require-  
ments, such as baud rate accuracy, should be taken  
into account. For example, the UART peripheral may  
not be able to achieve all baud rate values at some  
PBCLK divider depending on the SYSCLK value.  
The device enters Idle mode when the SLPEN  
(OSCCON<4>) bit is clear and a WAIT instruction is  
executed.  
DS61156C-page 152  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
PIC32MX5XX/6XX/7XX devices include several  
features intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
28.0 SPECIAL FEATURES  
Note:  
This data sheet summarizes the features of  
the PIC32MX5XX/6XX/7XX family family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
the related section in the “PIC32MX Family  
Reference Manual” (DS61132), which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
• Flexible Device Configuration  
• Watchdog Timer  
• JTAG Interface  
• In-Circuit Serial Programming™ (ICSP™)  
28.1 Configuration Bits  
The Configuration bits can be programmed to select  
various device configurations.  
REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0  
r-0  
r-1  
r-1  
R/P-1  
CP  
r-1  
r-1  
r-1  
R/P-1  
BWP  
bit 31  
bit 24  
r-1  
r-1  
r-1  
r-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
PWP<7:4>  
bit 23  
bit 16  
R/P-1  
bit 15  
R/P-1  
R/P-1  
R/P-1  
r-1  
r-1  
r-1  
r-1  
PWP<3:0>  
bit 8  
r-1  
r-1  
r-1  
r-1  
R/P-1  
r-1  
R/P-1  
R/P-1  
ICESEL  
DEBUG<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
P = Programmable bit  
r = Reserved bit  
U = Unimplemented bit  
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)  
bit 31  
Reserved: Write ‘0’  
Reserved: Write ‘1’  
CP: Code-Protect bit  
bit 30-29  
bit 28  
Prevents boot and program Flash memory from being read or modified by an external  
programming device.  
1= Protection is disabled  
0= Protection is enabled  
bit 27-25  
bit 24  
Reserved: Write ‘1’  
BWP: Boot Flash Write-Protect bit  
Prevents boot Flash memory from being modified during code execution.  
1= Boot Flash is writable  
0= Boot Flash is not writable  
bit 23-20  
Reserved: Write ‘1’  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 153  
 
 
 
PIC32MX5XX/6XX/7XX  
REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)  
bit 19-12  
PWP<7:0>: Program Flash Write-Protect bits  
Prevents selected program Flash memory pages from being modified during code execution.  
The PWP bits represent the one’s compliment of the number of write-protected program Flash  
memory pages.  
11111111= Disabled  
11111110= 0xBD00_0FFF  
11111101= 0xBD00_1FFF  
11111100= 0xBD00_2FFF  
11111011= 0xBD00_3FFF  
11111010= 0xBD00_4FFF  
11111001= 0xBD00_5FFF  
11111000= 0xBD00_6FFF  
11110111= 0xBD00_7FFF  
11110110= 0xBD00_8FFF  
11110101= 0xBD00_9FFF  
11110100= 0xBD00_AFFF  
11110011= 0xBD00_BFFF  
11110010= 0xBD00_CFFF  
11110001= 0xBD00_DFFF  
11110000= 0xBD00_EFFF  
11101111= 0xBD00_FFFF  
01111111= 0xBD07_FFFF  
bit 11-4  
bit 3  
Reserved: Write ‘1’  
ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit  
1= PGEC2/PGED2 pair is used  
0= PGEC1/PGED1 pair is used  
bit 2  
Reserved: Write ‘1’  
bit 1-0  
DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled)  
11= Debugger is disabled  
10= Debugger is enabled  
01= Reserved (same as ‘11’ setting)  
00= Reserved (same as ‘11’ setting)  
DS61156C-page 154  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
bit 31  
bit 24  
R/P-1  
r-1  
r-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
FWDTEN  
WDTPS<4:0>  
bit 23  
bit 16  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
r-1  
R/P-1  
FCKSM<1:0>  
FPBDIV<1:0>  
OSCIOFNC  
POSCMOD<1:0>  
bit 15  
bit 8  
R/P-1  
IESO  
r-1  
R/P-1  
r-1  
r-1  
R/P-1  
R/P-1  
R/P-1  
bit 0  
FSOSCEN  
FNOSC<2:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
P = Programmable bit  
r = Reserved bit  
U = Unimplemented bit  
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)  
bit 31-24  
bit 23  
Reserved: Write ‘1’  
FWDTEN: Watchdog Timer Enable bit  
1= The WDT is enabled and cannot be disabled by software  
0= The WDT is not enabled; it can be enabled in software  
bit 22-21  
bit 20-16  
Reserved: Write ‘1’  
WDTPS<4:0>: Watchdog Timer Postscale Select bits  
10100= 1:1048576  
10011= 1:524288  
10010= 1:262144  
10001= 1:131072  
10000= 1:65536  
01111= 1:32768  
01110= 1:16384  
01101= 1:8192  
01100= 1:4096  
01011= 1:2048  
01010= 1:1024  
01001= 1:512  
01000= 1:256  
00111= 1:128  
00110= 1:64  
00101= 1:32  
00100= 1:16  
00011= 1:8  
00010= 1:4  
00001= 1:2  
00000= 1:1  
All other combinations not shown result in operation = 10100  
Note 1: Do not disable POSC (POSCMOD = 11) when using this oscillator source.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 155  
 
 
PIC32MX5XX/6XX/7XX  
REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)  
bit 15-14  
FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
bit 13-12  
FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits  
11= PBCLK is SYSCLK divided by 8  
10= PBCLK is SYSCLK divided by 4  
01= PBCLK is SYSCLK divided by 2  
00= PBCLK is SYSCLK divided by 1  
bit 11  
bit 10  
Reserved: Write ‘1’  
OSCIOFNC: CLKO Enable Configuration bit  
1= CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for  
the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11or 00)  
0= CLKO output disabled  
bit 9-8  
bit 7  
POSCMOD<1:0>: Primary Oscillator Configuration bits  
11= Primary oscillator disabled  
10= HS Oscillator mode selected  
01= XT Oscillator mode selected  
00= External Clock mode selected  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)  
0= Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)  
bit 6  
bit 5  
Reserved: Write ‘1’  
FSOSCEN: Secondary Oscillator Enable bit  
1= Enable Secondary Oscillator  
0= Disable Secondary Oscillator  
bit 4-3  
bit 2-0  
Reserved: Write ‘1’  
FNOSC<2:0>: Oscillator Selection bits  
000= Fast RC Oscillator (FRC)  
001= Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)  
010= Primary Oscillator (XT, HS, EC)(1)  
011= Primary Oscillator with PLL module (XT+PLL, HS+PLL, EC+PLL)  
100= Secondary Oscillator (SOSC)  
101= Low-Power RC Oscillator (LPRC)  
110= FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler  
111= Fast RC Oscillator with divide-by-N (FRCDIV)  
Note 1: Do not disable POSC (POSCMOD = 11) when using this oscillator source.  
DS61156C-page 156  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
bit 31  
bit 23  
bit 24  
R/P-1  
bit 16  
r-1  
r-1  
r-1  
r-1  
r-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
FPLLODIV<2:0>  
R/P-1  
r-1  
r-1  
r-1  
r-1  
R/P-1  
R/P-1  
bit 8  
R/P-1  
UPLLEN  
UPLLIDIV<2:0>  
bit 15  
r-1  
R/P-1  
R/P-1  
R/P-1  
r-1  
R/P-1  
FPLLMULT<2:0>  
FPLLIDIV<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
P = Programmable bit  
r = Reserved bit  
U = Unimplemented bit  
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)  
bit 31-19  
bit 18-16  
Reserved: Write ‘1’  
FPLLODIV<2:0>: Default Postscaler for PLL bits  
111= PLL output divided by 256  
110= PLL output divided by 64  
101= PLL output divided by 32  
100= PLL output divided by 16  
011= PLL output divided by 8  
010= PLL output divided by 4  
001= PLL output divided by 2  
000= PLL output divided by 1  
bit 15  
UPLLEN: USB PLL Enable bit  
1= Enable USB PLL  
0= Disable and bypass USB PLL  
bit 14-11  
bit 10-8  
Reserved: Write ‘1’  
UPLLIDIV<2:0>: PLL Input Divider bits  
111= 12x divider  
110= 10x divider  
101= 6x divider  
100= 5x divider  
011= 4x divider  
010= 3x divider  
010= 3x divider  
001= 2x divider  
000= 1x divider  
bit 7  
Reserved: Write ‘1’  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 157  
 
PIC32MX5XX/6XX/7XX  
REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)  
bit 6-4  
FPLLMULT<2:0>: PLL Multiplier bits  
111= 24x multiplier  
110= 21x multiplier  
101= 20x multiplier  
100= 19x multiplier  
011= 18x multiplier  
010= 17x multiplier  
001= 16x multiplier  
000= 15x multiplier  
bit 3  
Reserved: Write ‘1’  
bit 2-0  
FPLLIDIV<2:0>: PLL Input Divider bits  
111= 12x divider  
110= 10x divider  
101= 6x divider  
100= 5x divider  
011= 4x divider  
010= 3x divider  
001= 2x divider  
000= 1x divider  
DS61156C-page 158  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3  
R/P-1  
FVBUSONIO  
bit 31  
R/P-1  
r-1  
r-1  
r-1  
R/P-1  
R/P-1  
R/P-1  
FUSBIDIO  
FCANIO  
FETHIO  
FMIIEN  
bit 24  
r-1  
r-1  
r-1  
r-1  
r-1  
R/P-1  
R/P-x  
R/P-x  
R/P-1  
R/P-1  
FSRSSEL<2:0>  
bit 23  
bit 16  
R/P-x  
bit 8  
R/P-x  
bit 15  
R/P-x  
R/P-x  
R/P-x  
R/P-x  
R/P-x  
R/P-x  
R/P-x  
R/P-x  
USERID<15:8>  
R/P-x  
R/P-x  
R/P-x  
R/P-x  
bit 0  
USERID<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
P = Programmable bit  
r = Reserved bit  
U = Unimplemented bit  
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)  
bit 31  
bit 30  
FVBUSONIO: USB VBUS_ON Selection bit  
1= VBUSON pin is controlled by the USB module  
0= VBUSON pin is controlled by the port function  
FUSBIDIO: USB USBID Selection bit  
1= USBID pin is controlled by the USB module  
0= USBID pin is controlled by the port function  
bit 29-27  
bit 26  
Reserved: Write ‘1’  
FCANIO: CAN I/O Pin Selection bit  
1= Default CAN I/O Pins  
0= Alternate CAN I/O Pins  
bit 25  
bit 24  
FETHIO: Ethernet I/O Pin Selection bit  
1= Default Ethernet I/O Pins  
0= Alternate Ethernet I/O Pins  
FMIIEN: Ethernet MII Enable bit  
1= MII is enabled  
0= RMII is enabled  
bit 23-19  
bit 18-16  
Reserved: Write ‘1’  
FSRSSEL<2:0>: SRS Select bits  
111= Assign Interrupt Priority 7 to a shadow register set  
110= Assign Interrupt Priority 6 to a shadow register set  
001= Assign Interrupt Priority 1 to a shadow register set  
000= All interrupt priorities are assigned to a shadow register set  
bit 15-0  
USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 159  
 
PIC32MX5XX/6XX/7XX  
REGISTER 28-5: DEVID: DEVICE AND REVISION ID REGISTER  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
VER<3:0>(1)  
DEVID<27:24>(1)  
bit 31  
bit 23  
bit 15  
bit 7  
bit 24  
bit 16  
bit 8  
R
R
R
R
R
R
R
R
R
R
R
DEVID<23:16>(1)  
R
R
DEVID<15:8>(1)  
R
R
DEVID<7:0>(1)  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
P = Programmable bit  
r = Reserved bit  
U = Unimplemented bit  
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)  
bit 31-28  
bit 27-0  
VER<3:0>: Revision Identifier bits(1)  
DEVID<27:0>: Device ID(1)  
Note 1: See the “PIC32MX Flash Programming Specification” (DS61145) for a list of Revision and Device ID values.  
DS61156C-page 160  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
The following are some of the key features of the WDT  
module:  
28.2 Watchdog Timer (WDT)  
This section describes the operation of the WDT and  
Power-up Timer of the PIC32MX5XX/6XX/7XX.  
• Configuration or software controlled  
• User-configurable time-out period  
• Can wake the device from Sleep or Idle  
The WDT, when enabled, operates from the internal  
Low-Power Oscillator (LPRC) clock source and can be  
used to detect system software malfunctions by reset-  
ting the device if the WDT is not cleared periodically in  
software. Various WDT time-out periods can be  
selected using the WDT postscaler. The WDT can also  
be used to wake the device from Sleep or Idle mode.  
FIGURE 28-1:  
WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM  
PWRT Enable  
WDT Enable  
LPRC  
Control  
PWRT Enable  
1:64 Output  
PWRT  
LPRC  
Oscillator  
1
Clock  
25-Bit Counter  
25  
WDTCLR = 1  
WDT Enable  
Wake  
Device Reset  
0
1
WDT Counter Reset  
WDT Enable  
Reset Event  
NMI (Wake-up)  
Power Save  
Decoder  
FWDTPS<4:0>(DEVCFG1<20:16>)  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 161  
 
 
PIC32MX5XX/6XX/7XX  
28.3.3  
POWER-UP REQUIREMENTS  
28.3 On-Chip Voltage Regulator  
The on-chip regulator is designed to meet the power-up  
requirements for the device. If the application does not  
use the regulator, then strict power-up conditions must  
be adhered to. While powering up, VDDCORE must  
never exceed VDD by 0.3 volts.  
All PIC32MX5XX/6XX/7XX devices’ core and digital  
logic are designed to operate at a nominal 1.8V. To  
simplify system designs, most devices in the  
PIC32MX5XX/6XX/7XX family incorporate an on-chip  
regulator providing the required core logic voltage from  
VDD.  
A low-ESR capacitor (such as tantalum) must be con-  
nected to the VCAP/VDDCORE pin (see Figure 28-2).  
This helps to maintain the stability of the regulator.  
The recommended value for the filter capacitor is  
provided in Section 31.1 “DC Characteristics”.  
FIGURE 28-2:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
(1)  
3.3V  
PIC32MX  
Note:  
It is important that the low-ESR capacitor  
is placed as close as possible to the  
VCAP/VDDCORE pin.  
VDD  
VCAP/VDDCORE  
VSS  
(2)  
28.3.1  
ON-CHIP REGULATOR AND POR  
CEFC  
(10 F typ)  
It takes a fixed delay for the on-chip regulator to generate  
an output. During this time, designated as TPU, code exe-  
cution is disabled. TPU is applied every time the device  
resumes operation after any power-down, including  
Sleep mode.  
Note 1: These are typical operating voltages. Refer  
to Section 31.1 “DC Characteristics” for  
the full operating ranges of VDD and  
VDDCORE.  
If the regulator is disabled, a separate Power-up Timer  
(PWRT) is automatically enabled. The PWRT adds a  
fixed delay of TPWRT at device start-up. See  
Section 31.0 “Electrical Characteristics” for more  
information on TPU AND TPWRT.  
2: It is important that the low-ESR capacitor  
is placed as close as possible to the  
VCAP/VDDCORE pin.  
28.3.2  
ON-CHIP REGULATOR AND BOR  
PIC32MX5XX/6XX/7XX devices also have a simple  
brown-out capability. If the voltage supplied to the reg-  
ulator is inadequate to maintain a regulated level, the  
regulator Reset circuitry will generate a Brown-out  
Reset. This event is captured by the BOR flag bit  
(RCON<1>). The brown-out voltage levels are specific  
in Section 31.1 “DC Characteristics”.  
DS61156C-page 162  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
PIC32MX5XX/6XX/7XX  
PIC32MX devices incorporate two programming and  
diagnostic modules, and a trace controller, that provide  
a range of functions to the application developer.  
28.4 Programming and Diagnostics  
PIC32MX5XX/6XX/7XX devices provide a complete  
range of programming and diagnostic features that can  
increase the flexibility of any application using them.  
These features allow system designers to include:  
• Simplified field programmability using two-wire  
In-Circuit Serial Programming™ (ICSP™)  
interfaces  
• Debugging using ICSP  
• Programming and debugging capabilities using  
the EJTAG extension of JTAG  
• JTAG boundary scan testing for device and board  
diagnostics  
FIGURE 28-3:  
BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS  
PGEC1  
PGED1  
ICSP™  
Controller  
PGEC2  
PGED2  
ICESEL  
TDI  
TDO  
JTAG  
Core  
Controller  
TCK  
TMS  
JTAGEN  
DEBUG<1:0>  
TRCLK  
TRD0  
TRD1  
TRD2  
TRD3  
Instruction Trace  
Controller  
DEBUG<1:0>  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 163  
 
PIC32MX5XX/6XX/7XX  
REGISTER 28-6: DDPCON: DEBUG DATA PORT CONTROL REGISTER  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
bit 31  
bit 24  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
bit 23  
bit 16  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
bit 15  
bit 8  
bit 0  
r-0  
r-0  
r-0  
r-0  
R/W-1  
R/W-0  
r-0  
r-0  
JTAGEN  
TROEN  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
P = Programmable bit  
r = Reserved bit  
U = Unimplemented bit  
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)  
bit 31-4  
bit 3  
Reserved: Write ‘0’; ignore read  
JTAGEN: JTAG Port Enable bit  
1= Enable the JTAG port  
0= Disable the JTAG port  
bit 2  
TROEN: Trace Output Enable bit  
1= Enable the trace port  
0= Disable the trace port  
bit 1-0  
Reserved: Write ‘1’; ignore read  
DS61156C-page 164  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
29.0 INSTRUCTION SET  
The PIC32MX5XX/6XX/7XX family instruction set  
complies with the MIPS32 Release 2 instruction set  
architecture. PIC32MX does not support the following  
features:  
• Core Extend Instructions  
• Coprocessor 1 Instructions  
• Coprocessor 2 Instructions  
Note:  
Refer to “MIPS32® Architecture for Pro-  
grammers Volume II: The MIPS32®  
Instruction Set” at www.mips.com for more  
information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 165  
 
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 166  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
30.1 MPLAB Integrated Development  
Environment Software  
30.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 167  
 
 
PIC32MX5XX/6XX/7XX  
30.2 MPLAB C Compilers for Various  
Device Families  
30.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
30.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
30.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
30.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS61156C-page 168  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
 
PIC32MX5XX/6XX/7XX  
30.7 MPLAB SIM Software Simulator  
30.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
30.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
30.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 169  
 
 
PIC32MX5XX/6XX/7XX  
30.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
30.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
30.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS61156C-page 170  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
31.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be  
provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating  
conditions for extended periods may affect device reliability. Functional operation of the device at these or any other  
conditions, above the parameters indicated in the operation listings of this specification, is not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias...............................................................................................................-40°C to +85°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant, with respect to VSS (Note 3)......................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 2.3V (Note 3)........................................ -0.3V to +5.5V  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V (Note 3)............................. -0.3V to (VDD + 0.3V)  
Voltage on VDDCORE with respect to VSS ................................................................................................... -0.3V to 2.0V  
Maximum current out of VSS pin(s).......................................................................................................................300 mA  
Maximum current into VDD pin(s) (Note 2)............................................................................................................300 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions,  
above those indicated in the operation listings of this specification, is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).  
3: See the Pin Diagramssection for the 5V tolerant pins.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 171  
 
PIC32MX5XX/6XX/7XX  
31.1 DC Characteristics  
TABLE 31-1: OPERATING MIPS VS. VOLTAGE  
Max. Frequency  
PIC32MX5XX/6XX/7XX  
80 MHz (Note 1)  
VDD Range  
(in Volts)  
Temp. Range  
Characteristic  
(in °C)  
DC5  
2.3-3.6V  
-40°C to +85°C  
Note 1: 40 MHz maximum for PIC32MX 40 MHz family variants.  
TABLE 31-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min.  
Typical  
Max.  
Unit  
PIC32MX5XX/6XX/7XX  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD – S IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = S ({VDD – VOH} x IOH) + S (VOL x IOL))  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristics  
Symbol Typical  
Max.  
Unit  
Notes  
Package Thermal Resistance, 121-Pin XBGA (10x10x1.1 mm)  
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)  
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)  
Package Thermal Resistance, 64-Pin QFN (9x9x0,9 mm)  
JA  
JA  
JA  
JA  
JA  
40  
43  
43  
47  
28  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Typical  
Max. Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
2.3  
3.6  
V
V
DC12  
VDR  
RAM Data Retention Voltage  
(Note 1)  
1.75  
DC16  
VPOR  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
1.75  
1.95  
V
DC17  
SVDD  
VDD Rise Rate  
0.00005  
0.115 V/s  
to Ensure Internal  
Power-on Reset Signal  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
DS61156C-page 172  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Parameter  
Typical(3)  
No.  
Max.  
Units  
Conditions  
Operating Current (IDD)(1,2)  
DC20  
DC20c  
DC21  
DC21c  
DC22  
DC22c  
DC23  
DC23c  
6
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Code executing from Flash  
4 MHz  
4
40  
70  
98  
Code executing from SRAM  
Code executing from Flash  
Code executing from SRAM  
Code executing from Flash  
Code executing from SRAM  
Code executing from Flash  
Code executing from SRAM  
37  
25  
64  
61  
85  
85  
25 MHz  
(Note 4)  
60 MHz  
(Note 4)  
80 MHz  
LPRC (31 kHz)  
DC25a  
125  
150  
µA  
+25°C  
3.3V  
(Note 4)  
Note 1: A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors,  
such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code  
execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate,  
oscillator type, as well as temperature, can have an impact on the current consumption.  
2: The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by  
external square wave from rail-to-rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data  
memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are dis-  
abled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and  
FSCM are disabled. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD.  
3: Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated.  
Parameters are for design guidance only and are not tested.  
4: This parameter is characterized, but not tested in manufacturing.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 173  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(2)  
No.  
Max.  
Units  
Conditions  
Idle Current (IIDLE): Core Off, Clock On Base Current (Note 1)  
DC30  
DC31  
4.5  
13  
28  
36  
6.5  
15  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
4 MHz  
25 MHz (Note 3)  
60 MHz (Note 3)  
80 MHz  
DC32  
30  
DC33  
DC34  
DC34a  
DC34b  
DC35  
DC35a  
DC35b  
DC36  
DC36a  
DC36b  
42  
40  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
75  
2.3V  
3.3V  
3.6V  
800  
35  
65  
600  
LPRC (31 kHz)  
(Note 3)  
43  
106  
800  
Note 1: The test conditions for base IDLE current measurements are as follows: System clock is enabled and  
PBCLK divisor = 1:8. CPU in Idle mode (CPU core Halted). Only digital peripheral modules are enabled  
(ON bit = 1) and being clocked. WDT and FSCM are disabled. All I/O pins are configured as inputs and  
pulled to VSS. MCLR = VDD.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
3: This parameter is characterized, but not tested in manufacturing.  
DS61156C-page 174  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(2)  
No.  
Max.  
Units  
Conditions  
Power-Down Current (IPD) (Note 1)  
DC40  
10  
36  
40  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+25°C  
-40°C  
+25°C  
+70°C  
+85°C  
DC40a  
DC40b  
DC40c  
DC40d  
DC40e  
DC40g  
DC40f  
100  
720  
120  
80  
2.3V Base Power-Down Current (Note 6)  
400  
41  
3.3V Base Power-Down Current  
22  
42  
120  
400  
800  
3.6V Base Power-Down Current  
315  
410  
Module Differential Current  
DC41  
5
10  
20  
40  
A  
A  
A  
A  
2.3V  
Watchdog Timer Current: IWDT (Notes 3, 6)  
Watchdog Timer Current: IWDT (Note 3)  
Watchdog Timer Current: IWDT (Note 3)  
DC41c  
DC41d  
DC42  
3.3V  
3.6V  
RTCC + Timer1 w/32 kHz Crystal: IRTCC  
(Notes 3, 6)  
2.3V  
3.3V  
DC42c  
DC42e  
23  
A  
A  
RTCC + Timer1 w/32 kHz Crystal: IRTCC  
(Note 3)  
50  
RTCC + Timer1 w/32 kHz Crystal: IRTCC  
(Note 3)  
3.6V  
DC43  
1100  
1300  
A  
A  
A  
2.5V  
3.3V  
3.6V  
ADC: IADC (Notes 3, 4, 6)  
ADC: IADC (Notes 3, 4)  
ADC: IADC (Notes 3, 4)  
DC43c  
DC43e  
1300  
Note 1: Base IPD is measured with all digital peripheral modules and being clocked, CPU clock is disabled. All I/Os  
are configured as inputs and pulled low. WDT and FSCM are disabled.  
2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
3: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.  
5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.  
6: This parameter is characterized, but not tested in manufacturing.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 175  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise  
stated)  
Operating temperature  
DC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
Param.  
No.  
Symbol  
Characteristics  
Min.  
Typical(1)  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O Pins:  
DI10  
with TTL Buffer  
with Schmitt Trigger Buffer  
MCLR(2)  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
V
V
V
V
V
V
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
DI15  
DI16  
DI17  
DI18  
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
SMBus disabled  
(Note 4)  
DI19  
DI20  
SDAx, SCLx  
VSS  
0.8  
V
SMBus enabled  
(Note 4)  
VIH  
Input High Voltage  
I/O Pins:  
with Analog Functions  
0.8 VDD  
0.8 VDD  
VDD  
V
V
V
V
V
V
V
V
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
Digital Only  
with TTL Buffer  
with Schmitt Trigger Buffer  
MCLR(2)  
0.25 VDD + 0.8V  
0.8 VDD  
5.5  
5.5  
DI25  
DI26  
DI27  
DI28  
0.8 VDD  
VDD  
VDD  
VDD  
5.5  
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
0.7 VDD  
0.7 VDD  
0.7 VDD  
SMBus disabled  
(Note 4)  
DI29  
DI30  
SDAx, SCLx  
2.1  
50  
5.5  
V
SMBus enabled,  
2.3V VPIN 5.5  
(Note 4)  
ICNPU  
IIL  
CNxx Pull up Current  
250  
400  
A VDD = 3.3V, VPIN = VSS  
Input Leakage Current  
(Note 3)  
DI50  
DI51  
I/O Ports  
+1  
+1  
A VSS VPIN VDD,  
Pin at high-impedance  
Analog Input Pins  
A VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR(2)  
OSC1  
+1  
+1  
A VSS VPIN VDD  
A VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: This parameter is characterized, but not tested in manufacturing.  
DS61156C-page 176  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise  
stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param.  
No.  
Symbol  
Characteristics  
Min.  
Typical  
Max. Units Conditions  
VOL  
Output Low Voltage  
DO10  
DO16  
I/O Ports  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 7 mA, VDD = 3.6V  
IOL = 6 mA, VDD = 2.3V  
IOL = 3.5 mA, VDD = 3.6V  
IOL = 2.5 mA, VDD = 2.3V  
OSC2/CLKO  
VOH  
Output High Voltage  
DO20  
DO26  
I/O Ports  
2.4  
1.4  
2.4  
1.4  
V
V
V
V
IOH = -12 mA, VDD = 3.6V  
IOH = -12 mA, VDD = 2.3V  
IOH = -12 mA, VDD = 3.6V  
IOH = -12 mA, VDD = 2.3V  
OSC2/CLKO  
TABLE 31-10: DC CHARACTERISTICS: PROGRAM MEMORY(3)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Programming temperature 0°C TA +70°C (25°C recommended)  
DC CHARACTERISTICS  
Param.  
No.  
Symbol  
Characteristics  
Min. Typical(1) Max. Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
1000  
VMIN  
E/W -40°C to +85°C  
VPR  
VDD for Read  
3.6  
V
VMIN = Minimum operating  
voltage  
D132  
D134  
VPEW  
VDD for Erase or Write  
Characteristic Retention  
3.0  
20  
3.6  
V
0°C to +40°C  
TRETD  
Year Provided no other specifications  
are violated  
D135  
IDDP  
Supply Current during  
Programming  
10  
mA 0°C to +40°C  
TWW  
TRW  
Word Write Cycle Time  
20  
3
40  
s 0°C to +40°C  
D136  
D137  
Row Write Cycle Time  
(Note 2)  
(128 words per row)  
4.5  
ms 0°C to +40°C  
TPE  
TCE  
Page Erase Cycle Time  
Chip Erase Cycle Time  
20  
80  
ms 0°C to +40°C  
ms 0°C to +40°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities  
during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads  
are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default  
Arbitration mode is mode 1 (CPU has lowest priority).  
3: Refer to the “PIC32MX Flash Programming Specification” (DS61145) for operating conditions during  
programming and erase cycles.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 177  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-11: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS  
Standard Operating Conditions: 2.3V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Required Flash Wait States  
SYSCLK  
Units  
Comments  
0 Wait State  
1 Wait State  
2 Wait States  
0 to 30  
31 to 60  
61 to 80  
MHz  
TABLE 31-12: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Input Offset Voltage  
Min. Typical Max.  
Units  
Comments  
D300  
VIOFF  
0
±7.5  
±25  
VDD  
mV  
AVDD = VDD,  
AVSS = VSS  
D301  
VICM  
Input Common Mode Voltage  
V
AVDD = VDD,  
AVSS = VSS  
(Note 2)  
D302  
D303  
CMRR  
TRESP  
Common Mode Rejection Ratio  
Response Time  
55  
dB  
ns  
Max VICM = (VDD – 1)V  
(Note 2)  
150  
400  
AVDD = VDD,  
AVSS = VSS  
(Notes 1, 2)  
D304  
ON2OV  
Comparator Enabled to Output  
Valid  
10  
s  
Comparator module is  
configured before setting  
the comparator ON bit.  
(Note 2)  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
2: These parameters are characterized but not tested.  
DS61156C-page 178  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-13: VOLTAGE REFERENCE SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Resolution  
Min. Typical Max.  
Units  
Comments  
D310  
D311  
D312  
D313  
VRES  
VRAA  
TSET  
VDD/24  
VDD/32  
1/2  
LSb  
LSb  
s  
Absolute Accuracy  
Settling Time(1)  
10  
VIREF  
Internal Voltage Reference  
0.6  
V
Note 1: Settling time measured while CVRR = 1and CVR<3:0> transitions from ‘0000’ to ‘1111’. This parameter is  
characterized, but not tested in manufacturing.  
TABLE 31-14: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Min. Typical Max. Units  
Comments  
D320  
D321  
VDDCORE Regulator Output Voltage  
1.62  
8
1.80  
10  
1.98  
V
CEFC  
External Filter Capacitor Value  
F Capacitor must be low series  
resistance (1 ohm)  
D322  
TPWRT  
Power-up Timer Period  
64  
ms  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 179  
 
 
PIC32MX5XX/6XX/7XX  
31.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
PIC32MX5XX/6XX/7XX AC characteristics and timing  
parameters.  
TABLE 31-15: AC CHARACTERISTICS  
AC CHARACTERISTICS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Operating voltage VDD range.  
FIGURE 31-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
Load Condition 2 – for OSC2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins  
50 pF for OSC2 pin (EC mode)  
VSS  
TABLE 31-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
No.  
Symbol  
Characteristics  
Min. Typical(1) Max. Units  
Conditions  
DO56  
DO58  
CIO  
CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
FIGURE 31-2:  
EXTERNAL CLOCK TIMING  
OS30  
OS31  
OS20  
OSC1  
OS31  
OS30  
DS61156C-page 180  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-17: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Typical(1)  
Max.  
Units  
Conditions  
OS10  
FOSC  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
4
50 (Note 3) MHz EC (Note 5)  
50 (Note 5) MHz ECPLL (Note 4)  
OS11  
OS12  
Oscillator Crystal Frequency  
3
4
10  
10  
MHz XT (Note 5)  
MHz XTPLL  
(Notes 4, 5)  
OS13  
OS14  
10  
10  
25  
25  
MHz HS (Note 5)  
MHz HSPLL  
(Notes 4, 5)  
OS15  
OS20  
32  
32.768  
100  
kHz SOSC (Note 5)  
TOSC  
TOSC = 1/FOSC = TCY (Note 2)  
See parameter  
OS10 for FOSC  
value  
OS30  
OS31  
OS40  
TOSL,  
TOSH  
External Clock In (OSC1)  
High or Low Time  
0.45 x TOSC  
0.05 x TOSC  
ns  
ns  
EC (Note 5)  
TOSR,  
TOSF  
External Clock In (OSC1)  
Rise or Fall Time  
EC (Note 5)  
TOST  
Oscillator Start-up Timer Period  
(Only applies to HS, HSPLL,  
XT, XTPLL and SOSC Clock  
Oscillator modes)  
1024  
TOSC (Note 5)  
OS41  
OS42  
TFSCM  
GM  
Primary Clock Fail Safe  
Time-out Period  
2
ms (Note 5)  
External Oscillator  
Transconductance  
12  
mA/V VDD = 3.3V,  
TA = +25°C  
(Note 5)  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not  
tested.  
2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device  
executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min.” values with an  
external clock applied to the OSC1/CLKI pin.  
3: 40 MHz maximum for PIC32MX 40 MHz family variants.  
4: PLL input requirements: 4 MHZ FPLLIN 5 MHZ (use PLL prescaler to reduce FOSC). This parameter is  
characterized, but tested at 10 MHz only at manufacturing.  
5: This parameter is characterized, but not tested in manufacturing.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 181  
 
PIC32MX5XX/6XX/7XX  
TABLE 31-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V)  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
Min. Typical(2) Max. Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range  
4
5
MHz ECPLL, HSPLL, XTPLL,  
FRCPLL modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
60  
120  
MHz  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
2
ms  
CLKO Stability  
(Period Jitter or Cumulative)  
-0.25  
+0.25  
%
Measured over 100 ms  
period  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 31-19: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
Units Conditions  
Param.  
No.  
Characteristics  
Min. Typical Max.  
Internal FRC Accuracy @ 8.00 MHz (Note 1)  
F20 FRC -2  
+2  
%
Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.  
TABLE 31-20: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
No.  
Characteristics  
Min. Typical Max.  
Units  
Conditions  
LPRC @ 31.25 kHz (Note 1)  
F21  
LPRC  
-15  
+15  
%
Note 1: Change of LPRC frequency as VDD changes.  
DS61156C-page 182  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
DO31  
DO32  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-21: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(2)  
Min.  
Typical(1)  
Max.  
Units  
Conditions  
DO31  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
10  
2
5
5
15  
10  
15  
10  
ns  
ns  
VDD < 2.5V  
VDD > 2.5V  
VDD < 2.5V  
VDD > 2.5V  
DO32  
TIOF  
5
ns  
5
ns  
DI35  
DI40  
TINP  
INTx Pin High or Low Time  
ns  
TRBP  
CNx High or Low Time (input)  
TSYSCLK  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: This parameter is characterized, but not tested in manufacturing.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 183  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-4:  
POWER-ON RESET TIMING CHARACTERISTICS  
Internal Voltage Regulator Enabled  
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)  
VDD  
VPOR  
(TSYSDLY)  
SY02  
Power-up Sequence  
(Note 2)  
CPU Starts Fetching Code  
SY00  
(TPU)  
(Note 1)  
Internal Voltage Regulator Enabled  
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)  
VDD  
VPOR  
(TSYSDLY)  
SY02  
Power-up Sequence  
(Note 2)  
CPU Starts Fetching Code  
SY00  
(TPU)  
SY10  
(TOST)  
(Note 1)  
External VDDCORE Provided  
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)  
VDD  
VDDCORE  
VPOR  
(TSYSDLY)  
SY02  
Power-up Sequence  
(Note 3)  
CPU Starts Fetching Code  
SY01  
(TPWRT)  
(Note 1)  
Note 1: The power-up period will be extended if the power-up sequence completes before the device exits from BOR  
(VDD < VDDMIN).  
2: Includes interval voltage regulator stabilization delay.  
3: Power-up Timer (PWRT); only active when the internal voltage regulator is disabled.  
DS61156C-page 184  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
FIGURE 31-5:  
EXTERNAL RESET TIMING CHARACTERISTICS  
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)  
MCLR  
TMCLR  
(SY20)  
BOR  
TBOR  
(SY30)  
(TSYSDLY)  
SY02  
Reset Sequence  
CPU Starts Fetching Code  
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)  
(TSYSDLY)  
SY02  
Reset Sequence  
CPU Starts Fetching Code  
TOST  
(SY10)  
TABLE 31-22: RESETS TIMING  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
Power-up Period  
Min.  
Typical(2)  
Max.  
Units  
Conditions  
SY00  
TPU  
400  
600  
s  
-40°C to +85°C  
Internal Voltage Regulator Enabled  
SY01  
TPWRT  
Power-up Period  
External VDDCORE Applied  
(Power-up timer active)  
48  
64  
80  
ms -40°C to +85°C  
SY02  
TSYSDLY System Delay Period:  
Time Required to Reload Device  
s +  
8 SYSCLK  
cycles  
-40°C to +85°C  
Configuration Fuses plus SYSCLK  
Delay before First instruction is  
Fetched.  
SY20  
SY30  
TMCLR  
TBOR  
MCLR Pulse Width (low)  
BOR Pulse Width (low)  
2
1
s  
s  
-40°C to +85°C  
-40°C to +85°C  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 185  
PIC32MX5XX/6XX/7XX  
FIGURE 31-6:  
TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(2)  
Min.  
Typical Max. Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK Synchronous,  
High Time with prescaler  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
ns Must also meet  
parameter TA15  
Asynchronous,  
with prescaler  
10  
ns  
TxCK  
Low Time  
Synchronous,  
with prescaler  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
ns Must also meet  
parameter TA15  
Asynchronous,  
with prescaler  
10  
ns  
TxCK  
Synchronous,  
[(Greater of 25 ns or  
2 TPB)/N] + 30 ns  
ns VDD > 2.7V  
ns VDD < 2.7V  
Input Period with prescaler  
[(Greater of 25 ns or  
2 TPB)/N] + 50 ns  
Asynchronous,  
with prescaler  
20  
50  
32  
ns VDD > 2.7V  
(Note 3)  
ns VDD < 2.7V  
(Note 3)  
OS60 FT1  
SOSC1/T1CK Oscillator  
Input Frequency Range  
(oscillator enabled by setting  
TCS bit (T1CON<1>))  
100 kHz  
TA20  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer  
1
TPB  
Increment  
Note 1: Timer1 is a Type A.  
2: This parameter is characterized, but not tested in manufacturing.  
3: N = Prescale Value (1, 8, 64, 256)  
DS61156C-page 186  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
(1)  
Characteristics  
Min.  
Max. Units Conditions  
TB10  
TB11  
TB15  
TTXH  
TTXL  
TTXP  
TxCK  
High Time prescaler  
Synchronous, with  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
1
ns Must also meet N = prescale  
parameter TB15 value  
(1, 2, 4, 8, 16,  
32, 64, 256)  
TxCK  
Low Time prescaler  
Synchronous, with  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
ns Must also meet  
parameter TB15  
TxCKInput Synchronous, with  
Period  
[(Greater of [(25 ns or  
2 TPB)/N] + 30 ns  
ns VDD > 2.7V  
ns VDD < 2.7V  
TPB  
prescaler  
[(Greater of [(25 ns or  
2 TPB)/N] + 50 ns  
TB20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
Note 1: These parameters are characterized, but not tested in manufacturing.  
FIGURE 31-7:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
Characteristics(1)  
Min.  
Max. Units  
Conditions  
No.  
IC10  
TCCL  
ICx Input Low Time  
ICx Input High Time  
ICx Input Period  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
ns  
ns  
ns  
Must also  
N = prescale  
meet  
value (1, 4, 16)  
parameter  
IC15.  
IC11  
IC15  
TCCH  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
Must also  
meet  
parameter  
IC15.  
TCCP  
[(25 ns or 2 TPB)/N]  
+ 50 ns  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 187  
 
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-8:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM mode)  
OC10  
OC11  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param.  
Symbol  
Characteristics(1)  
Min.  
Typical(2)  
Max.  
Units  
Conditions  
No.  
OC10  
OC11  
TCCF  
TCCR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter DO32  
See parameter DO31  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
FIGURE 31-9:  
OCx/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA/OCFB  
OC15  
OCx  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristics(1)  
Min  
Typical(2)  
Max  
Units  
Conditions  
OC15  
OC20  
TFD  
Fault Input to PWM I/O Change  
Fault Input Pulse Width  
50  
ns  
ns  
TFLT  
50  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS61156C-page 188  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-10:  
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
LSb In  
Bit 14 - - - -1  
SP41  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typical(2) Max. Units  
Conditions  
SCKx Output Low Time  
(Note 3)  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
TSCL  
TSCH  
TSCF  
TSCR  
TDOF  
TDOR  
TSCK/2  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx Output High Time  
(Note 3)  
TSCK/2  
SCKx Output Fall Time  
(Note 4)  
See parameter DO32  
See parameter DO31  
See parameter DO32  
See parameter DO31  
SCKx Output Rise Time  
(Note 4)  
SDOx Data Output Fall Time  
(Note 4)  
SDOx Data Output Rise Time  
(Note 4)  
TSCH2DOV, SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
10  
ns  
ns  
ns  
VDD > 2.7V  
VDD < 2.7V  
15  
20  
SP40  
SP41  
TDIV2SCH, Setup Time of SDIx Data Input  
TDIV2SCL  
TSCH2DIL, Hold Time of SDIx Data Input  
TSCL2DIL to SCKx Edge  
Note 1: These parameters are characterized, but not tested in manufacturing.  
to SCKx Edge  
ns  
10  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 189  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-11:  
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
SP20  
Bit 14 - - - - - -1  
LSb  
MSb  
SDOX  
SDIX  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°Cfor Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typ.(2)  
Max.  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
TSCL  
TSCH  
TSCF  
TSCR  
TDOF  
SCKx Output Low Time (Note 3) TSCK/2  
SCKx Output High Time (Note 3) TSCK/2  
ns  
ns  
SCKx Output Fall Time (Note 4)  
SCKx Output Rise Time (Note 4)  
ns See parameter DO32  
ns See parameter DO31  
ns See parameter DO32  
SDOx Data Output Fall Time  
(Note 4)  
SP31  
SP35  
TDOR  
SDOx Data Output Rise Time  
(Note 4)  
ns See parameter DO31  
TSCH2DOV, SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
15  
15  
20  
ns  
ns  
ns  
VDD > 2.7V  
VDD < 2.7V  
SP36  
SP40  
TDOV2SC, SDOx Data Output Setup to  
TDOV2SCL First SCKx Edge  
TDIV2SCH, Setup Time of SDIx Data Input to  
TDIV2SCL SCKx Edge  
15  
20  
15  
20  
ns  
ns  
ns  
ns  
VDD > 2.7V  
VDD < 2.7V  
VDD > 2.7V  
VDD < 2.7V  
SP41  
TSCH2DIL, Hold Time of SDIx Data Input  
TSCL2DIL  
to SCKx Edge  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS61156C-page 190  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-12:  
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP35  
MSb  
LSb  
SDOX  
SDIX  
Bit 14 - - - - - -1  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SP31  
TSCL  
TSCH  
TSCF  
TSCR  
TDOF  
TDOR  
SCKx Input Low Time (Note 3)  
SCKx Input High Time (Note 3)  
SCKx Input Fall Time  
TSCK/2  
TSCK/2  
15  
20  
ns  
ns  
ns See parameter DO32  
ns See parameter DO31  
ns See parameter DO32  
ns See parameter DO31  
ns VDD > 2.7V  
SCKx Input Rise Time  
SDOx Data Output Fall Time (Note 4)  
SDOx Data Output Rise Time (Note 4)  
SP35 TSCH2DOV, SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
ns VDD < 2.7V  
SP40 TDIV2SCH, Setup Time of SDIx Data Input  
TDIV2SCL to SCKx Edge  
10  
ns  
SP41 TSCH2DIL, Hold Time of SDIx Data Input  
TSCL2DIL to SCKx Edge  
10  
175  
25  
ns  
ns  
ns  
ns  
SP50 TSSL2SCH, SSx to SCKx or SCKx Input  
TSSL2SCL  
SP51 TSSH2DOZ SSx to SDOx Output  
High-Impedance (Note 3)  
5
SP52  
TSCH2SSH SSx after SCKx Edge  
TSCL2SSH  
TSCK + 20  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns.  
4: Assumes 50 pF load on all SPIx pins.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 191  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-13:  
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 31-1 for load conditions.  
TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typical(2) Max. Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
TSCL  
TSCH  
TSCF  
TSCR  
TDOF  
SCKx Input Low Time (Note 3)  
SCKx Input High Time (Note 3)  
SCKx Input Fall Time  
TSCK/2  
TSCK/2  
5
10  
10  
ns  
ns  
ns  
ns  
SCKx Input Rise Time  
5
SDOx Data Output Fall Time  
ns See parameter DO32  
(Note 4)  
SP31  
SP35  
TDOR  
SDOx Data Output Rise Time  
(Note 4)  
ns See parameter DO31  
TSCH2DOV, SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
10  
20  
30  
ns VDD > 2.7V  
ns VDD < 2.7V  
ns  
SP40  
SP41  
SP50  
TDIV2SCH, Setup Time of SDIx Data Input  
TDIV2SCL to SCKx Edge  
TSCH2DIL, Hold Time of SDIx Data Input  
TSCL2DIL  
10  
ns  
ns  
to SCKx Edge  
TSSL2SCH, SSx to SCKx or SCKx Input  
175  
TSSL2SCL  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns.  
4: Assumes 50 pF load on all SPIx pins.  
DS61156C-page 192  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typical(2) Max. Units  
Conditions  
SP51  
TSSH2DOZ SSx to SDOX Output  
High-Impedance  
5
25  
ns  
(Note 4)  
SP52  
SP60  
TSCH2SSH SSx after SCKx Edge  
TSCL2SSH  
TSCK +  
20  
ns  
ns  
TSSL2DOV SDOx Data Output Valid after  
SSx Edge  
25  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns.  
4: Assumes 50 pF load on all SPIx pins.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 193  
PIC32MX5XX/6XX/7XX  
FIGURE 31-14:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 31-1 for load conditions.  
FIGURE 31-15:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 31-1 for load conditions.  
DS61156C-page 194  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Min.(1)  
Max.  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
1 MHz mode  
(Note 2)  
THI:SCL Clock High Time 100 kHz mode  
400 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
1 MHz mode  
(Note 2)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
20 + 0.1 CB  
300  
300  
100  
ns  
ns  
ns  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode  
(Note 2)  
SDAx and SCLx 100 kHz mode  
20 + 0.1 CB  
1000  
300  
ns  
ns  
ns  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode  
(Note 2)  
300  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
250  
100  
100  
ns  
ns  
ns  
1 MHz mode  
(Note 2)  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
0
0
0
s  
s  
s  
0.9  
0.3  
1 MHz mode  
(Note 2)  
TSU:STA Start Condition 100 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode  
1 MHz mode  
(Note 2)  
THD:STA Start Condition 100 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
After this period, the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode  
1 MHz mode  
(Note 2)  
TSU:STO Stop Condition 100 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
Setup Time  
400 kHz mode  
1 MHz mode  
(Note 2)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
ns  
ns  
ns  
1 MHz mode  
(Note 2)  
Note 1: BRG is the value of the I2C™ Baud Rate Generator.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 195  
 
PIC32MX5XX/6XX/7XX  
TABLE 31-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Min.(1)  
Max.  
Units  
Conditions  
IM40  
IM45  
IM50  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
3500  
1000  
350  
ns  
ns  
ns  
400 kHz mode  
1 MHz mode  
(Note 2)  
TBF:SDA Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
0.5  
s  
s  
s  
The amount of time the  
bus must be free  
before a new  
1 MHz mode  
(Note 2)  
transmission can start  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: BRG is the value of the I2C™ Baud Rate Generator.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
DS61156C-page 196  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
FIGURE 31-16:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 31-1 for load conditions.  
FIGURE 31-17:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
Note: Refer to Figure 31-1 for load conditions.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 197  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Max. Units  
Conditions  
IS10  
IS11  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
s  
s  
s  
s  
s  
s  
PBCLK must operate at a  
minimum of 800 kHz  
1.3  
0.5  
4.0  
0.6  
0.5  
PBCLK must operate at a  
minimum of 3.2 MHz  
1 MHz mode  
(Note 1)  
THI:SCL  
Clock High Time 100 kHz mode  
PBCLK must operate at a  
minimum of 800 kHz  
400 kHz mode  
PBCLK must operate at a  
minimum of 3.2 MHz  
1 MHz mode  
(Note 1)  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
20 + 0.1 CB  
300  
300  
100  
ns  
ns  
ns  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode  
(Note 1)  
SDAx and SCLx 100 kHz mode  
20 + 0.1 CB  
1000  
300  
ns  
ns  
ns  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode  
(Note 1)  
300  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
250  
100  
100  
ns  
ns  
ns  
1 MHz mode  
(Note 1)  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
0
0
0
0.9  
0.3  
ns  
s  
s  
1 MHz mode  
(Note 1)  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
4700  
600  
s  
s  
s  
Only relevant for Repeated  
Start condition  
1 MHz mode  
(Note 1)  
250  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
4000  
600  
s  
s  
s  
After this period, the first  
clock pulse is generated  
1 MHz mode  
(Note 1)  
250  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
4000  
600  
s  
s  
s  
1 MHz mode  
600  
(Note 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
DS61156C-page 198  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Max. Units  
Conditions  
IS34  
IS40  
IS45  
IS50  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
4000  
600  
ns  
ns  
ns  
400 kHz mode  
1 MHz mode  
(Note 1)  
250  
TAA:SCL  
Output Valid From 100 kHz mode  
0
0
0
3500  
1000  
350  
ns  
ns  
ns  
Clock  
400 kHz mode  
1 MHz mode  
(Note 1)  
TBF:SDA Bus Free Time  
100 kHz mode  
400 kHz mode  
4.7  
1.3  
0.5  
s  
s  
s  
The amount of time the bus  
must be free before a new  
transmission can start  
1 MHz mode  
(Note 1)  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 199  
PIC32MX5XX/6XX/7XX  
FIGURE 31-18:  
CAN MODULE I/O TIMING CHARACTERISTICS  
CiTx Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CA20  
CiRx Pin  
(input)  
TABLE 31-34: CAN MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
CA10  
CA11  
CA20  
TioF  
TioR  
Tcwf  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Pulse Width to Trigger  
CAN Wake-up Filter  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS61156C-page 200  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-35: ETHERNET MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for Industrial  
Param.  
No.  
Characteristic  
Min.  
Typical  
Max.  
Units  
Conditions  
Device Supply  
ET20a  
ET20b  
Module VDD Supply  
Module VDD Supply  
2.5  
2.7  
3.6  
3.6  
V
V
For RMII mode only  
MIIM Timing Requirements  
ET1  
ET2  
ET3  
ET4  
MDC Duty Cycle  
MDC Period  
40  
400  
10  
0
60  
%
ns  
ns  
ns  
MDIO Output Delay  
MDIO Input Delay  
10  
300  
MII Timing Requirements  
ET5  
ET6  
ET7  
TX Clock Frequency  
35  
0
25  
65  
25  
MHz  
%
TX Clock Duty Cycle  
ETXDx, ETEN, ETXERR  
Delay  
ns  
ET8  
ET9  
RX Clock Frequency  
RX Clock Duty Cycle  
35  
10  
25  
65  
30  
MHz  
%
ET10  
ERXDx, ERXDV, ERXERR  
Delay  
ns  
RMII Timing Requirements  
ET11  
ET12  
ET13  
ET14  
Reference Clock Frequency  
35  
2
50  
65  
16  
16  
MHz  
%
Reference Clock Duty Cycle  
ETXDx, ETEN, Delay  
ns  
ERXDx, ERXDV, ERXERR  
Delay  
2
ns  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 201  
 
PIC32MX5XX/6XX/7XX  
TABLE 31-36: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
Characteristics  
Min.  
Typical  
Max.  
Units  
Conditions  
No.  
Device Supply  
AD01  
AVDD  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.5  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
AD02  
AVSS  
VSS  
VSS + 0.3  
Reference Inputs  
AD05  
AD05a  
AD06  
AD07  
VREFH  
Reference Voltage High AVSS + 2.0  
2.5  
AVDD  
3.6  
V
V
V
V
(Note 1)  
VREFH = AVDD (Note 3)  
(Note 1)  
VREFL  
VREF  
Reference Voltage Low  
AVSS  
2.0  
VREFH – 2.0  
AVDD  
Absolute Reference  
(Note 3)  
Voltage (VREFH – VREFL)  
AD08  
IREF  
Current Drain  
250  
400  
3
A ADC operating  
A ADC off  
Analog Input  
AD12 VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
V
V
VINL  
Absolute VINL Input  
Voltage  
AVSS – 0.3  
AVDD/2  
VIN  
Absolute Input Voltage  
Leakage Current  
AVSS – 0.3  
AVDD + 0.3  
V
+/- 0.001 +/-0.610  
A VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
Source Impedance = 10 k  
AD17  
RIN  
Recommended  
5K  
(Note 1)  
Impedance of Analog  
Voltage Source  
ADC Accuracy – Measurements with External VREF+/VREF-  
AD20c Nr  
Resolution  
10 data bits  
bits  
AD21c INL  
Integral Nonlinearity  
> -1  
> -1  
< 1  
< 1  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
AD22c DNL  
Differential Nonlinearity  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
(Note 2)  
AD23c GERR  
AD24n EOFF  
Gain Error  
> -1  
> -1  
< 1  
< 1  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
Offset Error  
LSb VINL = AVSS = 0V,  
AVDD = 3.3V  
AD25c  
Monotonicity  
Guaranteed  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: With no missing codes.  
3: These parameters are characterized, but not tested in manufacturing.  
4: Characterized with a 1 kHz sinewave.  
DS61156C-page 202  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
TABLE 31-36: ADC MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 2.5V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param.  
No.  
ADC Accuracy – Measurements with Internal VREF+/VREF-  
Symbol  
Characteristics  
Min.  
Typical  
Max.  
Units  
Conditions  
AD20d Nr  
Resolution  
10 data bits  
bits (Note 3)  
AD21d INL  
Integral Nonlinearity  
> -1  
> -1  
> -4  
> -2  
< 1  
< 1  
< 4  
< 2  
LSb VINL = AVSS = 0V,  
AVDD = 2.5V to 3.6V  
(Note 3)  
AD22d DNL  
AD23d GERR  
AD24d EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = 0V,  
AVDD = 2.5V to 3.6V  
(Notes 2, 3)  
LSb VINL = AVSS = 0V,  
AVDD = 2.5V to 3.6V  
(Note 3)  
Offset Error  
LSb VINL = AVSS = 0V,  
AVDD = 2.5V to 3.6V  
(Note 3)  
AD25d  
Monotonicity  
Guaranteed  
Dynamic Performance  
AD31b SINAD  
Signal to Noise and  
Distortion  
55  
58.5  
9.5  
dB (Notes 3, 4)  
bits (Notes 3, 4)  
AD34b ENOB  
Effective Number of Bits  
9.0  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: With no missing codes.  
3: These parameters are characterized, but not tested in manufacturing.  
4: Characterized with a 1 kHz sinewave.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 203  
PIC32MX5XX/6XX/7XX  
TABLE 31-37: 10-BIT CONVERSION RATE PARAMETERS  
PIC32MX 10-Bit A/D Converter Conversion Rates(2)  
TAD  
Sampling  
ADC Speed  
RS Max  
VDD  
Temperature  
ADC Channels Configuration  
Minimum Time Min  
1 Msps to  
65 ns  
200 ns  
200 ns  
132 ns  
200 ns  
200 ns  
500  
3.0V to  
3.6V  
-40°C to  
+85°C  
400 ksps(1)  
VREF- VREF+  
CH  
X
ANx  
SHA  
ADC  
Up to 400 ksps  
5.0 k2.5V to  
-40°C to  
+85°C  
3.6V  
V
REF  
or  
-
V
REF  
or  
+
AVSS AVDD  
CHX  
ANx  
SHA  
ADC  
ANx or VREF  
-
Up to 300 ksps  
5.0 k2.5V to  
-40°C to  
+85°C  
3.6V  
V
REF- VREF+  
or  
or  
AVSS AVDD  
CHX  
ANx  
SHA  
ADC  
ANx or VREF  
-
Note 1: External VREF- and VREF+ pins must be used for correct operation.  
2: These parameters are characterized, but not tested in manufacturing.  
DS61156C-page 204  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-38: A/D CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Typical(1) Max.  
Units  
Conditions  
Clock Parameters  
AD50  
TAD  
A/D Clock Period(2)  
65  
ns  
See Table 31-37  
Conversion Rate  
AD55  
AD56  
TCONV  
FCNV  
Conversion Time  
1
12 TAD  
1000  
400  
31  
Throughput Rate  
(Sampling Speed)  
ksps AVDD = 3.0V to 3.6V  
ksps AVDD = 2.5V to 3.6V  
AD57  
TSAMP  
Sample Time  
TAD  
TSAMP must be 132 ns  
Timing Parameters  
AD60  
TPCS  
Conversion Start from Sample  
Trigger(3)  
1.0 TAD  
Auto-Convert Trigger  
(SSRC<2:0> = 111)  
not selected  
AD61  
AD62  
AD63  
TPSS  
TCSS  
TDPU  
Sample Start from Setting  
Sample (SAMP) bit  
0.5 TAD  
0.5 TAD  
1.5 TAD  
s  
Conversion Completion to  
2
Sample Start (ASAM = 1)(3)  
Time to Stabilize Analog Stage  
from A/D Off to A/D On(3)  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
3: Characterized by design but not tested.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 205  
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-19:  
A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
AD55  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets ADxCON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in the “PIC32MX Family Reference Manual” (DS61132).  
– Software clears ADxCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 9.  
3
4
5
6
7
8
– Convert bit 8.  
– Convert bit 0.  
– One TAD for end of conversion.  
DS61156C-page 206  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-20:  
A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Execution  
Set ADON  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
TSAMP  
TSAMP  
AD55  
AD55  
TCONV  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
3
4
5
6
8
3
4
– Software sets ADxCON. ADON to start AD operation.  
– Convert bit 0.  
5
1
2
– Sampling starts after discharge period.  
TSAMP is described in the “PIC32MX  
Family Reference Manual” (DS61132).  
– One TAD for end of conversion.  
– Begin conversion of next channel.  
6
7
8
– Sample for time specified by SAMC<4:0>.  
– Convert bit 9.  
– Convert bit 8.  
3
4
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 207  
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-21:  
PARALLEL SLAVE PORT TIMING  
CS  
PS5  
RD  
PS6  
WR  
PS4  
PS7  
PMD<7:0>  
PS1  
PS3  
PS2  
TABLE 31-39: PARALLEL SLAVE PORT REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typical Max. Units  
Conditions  
PS1  
TdtV2wrH Data In Valid before WR or CS Inactive  
(setup time)  
20  
ns  
ns  
PS2  
TwrH2dtI WR or CS Inactive to Data–In Invalid  
(hold time)  
40  
PS3  
PS4  
TrdL2dtV RD and CS Active to Data–Out Valid  
0
60  
10  
ns  
ns  
TrdH2dtI RD Activeor CS Inactive to Data–Out  
Invalid  
PS5  
PS6  
PS7  
Tcs  
CS Active Time  
WR Active Time  
RD Active Time  
TPB + 40  
TPB + 25  
TPB + 25  
ns  
ns  
ns  
TWR  
TRD  
Note 1: These parameters are characterized, but not tested in manufacturing.  
DS61156C-page 208  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-22:  
PARALLEL MASTER PORT READ TIMING DIAGRAM  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
PB Clock  
PM4  
Address  
PMA<13:18>  
PMD<7:0>  
PM6  
Data  
Address<7:0>
PM2  
PM7  
PM3  
PMRD  
PM5  
PMWR  
PM1  
PMALL/PMALH  
PMCS<2:1>  
TABLE 31-40: PARALLEL MASTER PORT READ TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typical  
Max.  
Units  
Conditions  
PM1  
PM2  
TLAT  
PMALL/PMALH Pulse Width  
1 TPB  
2 TPB  
TADSU  
Address Out Valid to PMALL/PMALH  
Invalid (address setup time)  
PM3  
PM4  
TADHOLD PMALL/PMALH Invalid to Address Out  
Invalid (address hold time)  
5
1 TPB  
ns  
TAHOLD  
PMRD Inactive to Address Out Invalid  
(address hold time)  
PM5  
PM6  
TRD  
PMRD Pulse Width  
1 TPB  
ns  
TDSU  
PMRD or PMENB Active to Data In  
Valid (data setup time)  
15  
PM7  
TDHOLD PMRD or PMENB Inactive to Data In  
Invalid (data hold time)  
80  
ns  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 209  
 
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-23:  
PARALLEL MASTER PORT WRITE TIMING DIAGRAM  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
PB Clock  
Address  
PMA<13:18>  
PM2 + PM3  
Address<7:0>  
PMD<7:0>  
Data  
PM12  
PM13  
PMRD  
PMWR  
PM11  
PM1  
PMALL/PMALH  
PMCS<2:1>  
TABLE 31-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
PMWR Pulse Width  
Min.  
Typical Max.  
Units  
Conditions  
PM11  
TWR  
1 TPB  
2 TPB  
PM12 TDVSU  
Data Out Valid before PMWR or  
PMENB goes Inactive (data setup time)  
PM13 TDVHOLD PMWR or PMEMB Invalid to Data Out  
Invalid (data hold time)  
1 TPB  
Note 1: These parameters are characterized, but not tested in manufacturing.  
DS61156C-page 210  
Preliminary  
2010 Microchip Technology Inc.  
 
 
 
PIC32MX5XX/6XX/7XX  
TABLE 31-42: OTG ELECTRICAL SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
Symbol  
No.  
Characteristics(1)  
USB Voltage  
Min. Typical Max.  
Units  
Conditions  
USB313 VUSB  
3.0  
3.6  
V
Voltage on bus must  
be in this range for  
proper USB operation  
USB315 VILUSB Input Low Voltage for USB Buffer  
USB316 VIHUSB Input High Voltage for USB Buffer  
2.0  
0.8  
V
V
V
V
USB318 VDIFS  
USB319 VCM  
Differential Input Sensitivity  
0.2  
2.5  
Differential Common Mode Range  
0.8  
The difference  
between D+ and D-  
must exceed this value  
while VCM is met  
USB320 ZOUT  
USB321 VOL  
Driver Output Impedance  
Voltage Output Low  
28.0  
0.0  
44.0  
0.3  
V
14.25 kload  
connected to 3.6V  
USB322 VOH  
Voltage Output High  
2.8  
3.6  
V
14.25 kload  
connected to ground  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 211  
 
PIC32MX5XX/6XX/7XX  
FIGURE 31-24:  
EJTAG TIMING CHARACTERISTICS  
T
TCKeye  
T
T
TCKlow  
TCKhigh  
T
rf  
TCK  
T
rf  
TMS  
TDI  
T
T
T
Thold  
rf  
Tsetup  
T
rf  
TDO  
TRST*  
T
TRST*low  
T
TDOout  
T
TDOzstate  
Undefined  
Defined  
T
rf  
TABLE 31-43: EJTAG TIMING REQUIREMENTS  
AC CHARACTERISTICS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param.  
No.  
Symbol  
Description(1)  
TCK Cycle Time  
Min.  
Max. Units  
Conditions  
EJ1  
TTCKCYC  
TTCKHIGH  
TTCKLOW  
TTSETUP  
25  
10  
10  
5
ns  
ns  
ns  
ns  
EJ2  
EJ3  
EJ4  
TCK High Time  
TCK Low Time  
TAP Signals Setup Time Before  
Rising TCK  
EJ5  
EJ6  
EJ7  
TTHOLD  
TAP Signals Hold Time After  
Rising TCK  
3
5
ns  
ns  
ns  
TTDOOUT  
TDO Output Delay Time From  
Falling TCK  
TTDOZSTATE TDO 3-State Delay Time From  
Falling TCK  
5
EJ8  
EJ9  
TTRSTLOW  
TRF  
TRST Low Time  
25  
ns  
ns  
TAP Signals Rise/Fall Time, All  
Input and Output  
Note 1: These parameters are characterized, but not tested in manufacturing.  
DS61156C-page 212  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
32.0 PACKAGING INFORMATION  
32.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
Example  
PIC32MX575F  
512H-80I/PT  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
e
3
0510017  
100-Lead TQFP (14x14x1 mm)  
Example  
PIC32MX575F  
512L-80I/PF  
0510017  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
e
3
100-Lead TQFP (12x12x1 mm)  
Example  
PIC32MX575F  
512L-80I/PT  
0510017  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (
e
3
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 213  
 
 
 
PIC32MX5XX/6XX/7XX  
32.1 Package Marking Information (Continued)  
64-Lead QFN (9x9x0.9 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC32MX575F  
512H-80I/MR  
e
3
0510017  
121-Lead XBGA (10x10x1.1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC32MX575F  
512H-80I/BG  
e
3
0510017  
DS61156C-page 214  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
32.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 215  
 
PIC32MX5XX/6XX/7XX  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
DS61156C-page 216  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢓꢗꢇMꢇꢘꢁꢚꢘꢁꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E1  
E
b
N
α
NOTE 1  
1 23  
NOTE 2  
A
φ
c
A2  
A1  
β
L1  
L
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢀꢓ1  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 217  
PIC32MX5XX/6XX/7XX  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢓꢗꢇMꢇꢘꢁꢚꢘꢁꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
DS61156C-page 218  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁꢔꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢐ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢐ  
ꢀꢐꢝ  
)
ꢓꢁꢀ@  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢓꢓ1  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 219  
PIC32MX5XX/6XX/7XX  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
DS61156C-page 220  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 221  
PIC32MX5XX/6XX/7XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS61156C-page 222  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 223  
PIC32MX5XX/6XX/7XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS61156C-page 224  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 225  
PIC32MX5XX/6XX/7XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS61156C-page 226  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
A.3  
Pin Assignments  
APPENDIX A: MIGRATING FROM  
PIC32MX3XX/4XX TO  
PIC32MX5XX/6XX/7XX  
DEVICES  
PIC32MX5XX/6XX/7XX devices have the same pin  
assignment for peripherals as PIC32MX4XX devices  
with the following exceptions:  
• Pins associated with the UART1 and UART2  
modules on PIC32MX4XX devices are now  
associated with the UART1A and UART3A  
modules, respectively on PIC32MX5XX/6XX/7XX  
devices  
This appendix provides an overview of considerations  
for migrating from PIC32MX3XX/4XX devices to the  
PIC32MX5XX/6XX/7XX family of devices. The code  
developed for the PIC32MX3XX/4XX devices can be  
ported to the PIC32MX5XX/6XX/7XX devices after  
making the appropriate changes outlined below.  
• Pins associated with the SPI2 module on  
PIC32MX4XX devices are now associated with  
the SPI2A module on PIC32MX5XX/6XX/7XX  
devices  
A.1  
DMA  
PIC32MX5XX/6XX/7XX devices do not support  
stopping DMA transfers in Idle mode.  
A.2  
Interrupts  
PIC32MX5XX/6XX/7XX devices have persistent inter-  
rupts for some of the peripheral modules. This means  
that the interrupt condition for these peripherals must  
be cleared before the interrupt flag can be cleared.  
For example, to clear a UART receive interrupt, the  
user application must first read the UART Receive reg-  
ister to clear the interrupt condition and then clear the  
associated UxIF flag to clear the pending UART inter-  
rupt. In other words, the UxIF flag cannot be cleared by  
software until the UART Receive register is read.  
Table A-1 outlines the peripherals and associated  
interrupts that are implemented differently on  
PIC32MX5XX/6XX/7XX versus PIC32MX3XX/4XX  
devices.  
In addition, on the SPI module, the IRQ numbers for the  
receive done interrupts were changed from 25 to 24  
and the transfer done interrupts were changed from 24  
to 25.  
TABLE A-1:  
PIC32MX3XX/4XX vs. PIC32MX5XX/6XX/7XX INTERRUPT IMPLEMENTATION  
DIFFERENCES  
Module  
Interrupt Implementation  
Input Capture  
To clear an interrupt source, read the Buffer Result (ICxBUF) register to obtain the number of  
capture results in the buffer that are below the interrupt threshold (specified by ICI<1:0> bits).  
SPI  
Receive and transmit interrupts are controlled by the SRXISEL<1:0> and STXISEL<1:0> bits,  
respectively. To clear an interrupt source, data must be written to, or read from, the SPIxBUF  
register to obtain the number of data to receive/transmit below the level specified by the  
SRXISEL<1:0> and STXISEL<1:0> bits.  
UART  
TX interrupt will be generated as soon as the UART module is enabled.  
Receive and transmit interrupts are controlled by the URXISEL<1:0> and UTXISEL<1:0> bits,  
respectively. To clear an interrupt source, data must be read from, or written to, the UxRXREG or  
UxTXREG registers to obtain the number of data to receive/transmit below the level specified by  
the URXISEL<1:0> and UTXISEL<1:0> bits.  
ADC  
PMP  
All samples must be read from the result registers (ADC1BUFx) to clear the interrupt source.  
To clear an interrupt source, read the Parallel Master Port Data Input/Output (PMDIN/PMDOUT)  
register.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 227  
 
 
 
 
PIC32MX5XX/6XX/7XX  
Revision B (November 2009)  
APPENDIX B: REVISION HISTORY  
The revision includes the following global update:  
Revision A (August 2009)  
• Added Note 2 to the shaded table that appears at  
the beginning of each chapter. This new note  
provides information regarding the availability of  
registers and their associated bits  
This is the initial revision of this document.  
Other major changes are referenced by their respective  
chapter/section in Table B-1.  
TABLE B-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, USB, CAN and Added the following devices:  
Ethernet 32-Bit Flash  
Microcontrollers”  
- PIC32MX575F256L  
- PIC32MX695F512L  
- PIC32MX695F512H  
The 100-pin TQFP pin diagrams have been updated to reflect the current pin  
name locations (see the Pin Diagramssection).  
Added the 121-pin Ball Grid Array (XBGA) pin diagram.  
Updated Table 1: “PIC32MX Features”  
Added the following tables:  
- Table 2: “Pin Names: PIC32MX575F256L and PIC32MX575F512L  
Devices”,  
- Table 3: “Pin Names: PIC32MX675F256L, PIC32MX675F512L and  
PIC32MX695F512L Devices”  
- Table 4: “Pin Names: PIC32MX775F256L, PIC32MX775F512L,  
PIC32MX795F512L and Devices”  
Updated the following pins as 5V tolerant:  
- 64-pin QFN: Pin 36 (D-/RG3) and Pin 37 (D+/RG2)  
- 64-pin TQFP: Pin 36 (D-/RG3) and Pin 37 (D+/RG2)  
- 100-pin TQFP: Pin 56 (D-/RG3) and Pin 57 (D+/RG2)  
Section 2.0 “Guidelines for Getting Removed the last sentence of Section 2.3.1 “Internal Regulator Mode”.  
Started with 32-Bit  
Microcontrollers”  
Removed Section 2.3.2 “External Regulator Mode”  
DS61156C-page 228  
Preliminary  
2010 Microchip Technology Inc.  
 
 
PIC32MX5XX/6XX/7XX  
TABLE B-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 4.0 “Memory  
Organization”  
Updated all register tables to include the Virtual Address and All Resets  
columns.  
Updated the title of Figure 4-1 to include the PIC32MX575F256L device.  
Updated the title of Figure 4-3 to include the PIC32MX695F512L and  
PIC32MX695F512H devices. Also changed PIC32MX795F512L to  
PIC32MX795F512H.  
Updated the title of Table 4-3 to include the PIC32MX695F512H device.  
Updated the title of Table 4-5 to include the PIC32MX575F5256L device.  
Updated the title of Table 4-6 to include the PIC32MX695F512L device.  
Reversed the order of Table 4-11 and Table 4-12.  
Reversed the order of Table 4-14 and Table 4-15.  
Updated the title of Table 4-15 to include the PIC32MX575F256L and  
PIC32MX695F512L devices.  
Updated the title of Table 4-45 to include the PIC32MX575F256L device.  
Updated the title of Table 4-47 to include the PIC32MX695F512H and  
PIC32MX695F512L devices.  
Section 12.0 “I/O Ports”  
Updated the second paragraph of Section 12.1.2 “Digital Inputs” and  
removed Table 12-1.  
Section 22.0 “10-Bit Analog-to-  
Digital Converter (ADC)”  
Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2).  
Section 28.0 “Special Features”  
Removed references to the ENVREG pin in Section 28.3 “On-Chip Voltage  
Regulator”.  
Updated the first sentence of Section 28.3.1 “On-Chip Regulator and  
POR” and Section 28.3.2 “On-Chip Regulator and BOR”.  
Updated the Connections for the On-Chip Regulator (see Figure 28-2).  
Updated the Absolute Maximum Ratings and added Note 3.  
Section 31.0 “Electrical  
Characteristics”  
Added Thermal Packaging Characteristics for the 121-pin XBGA package  
(see Table 31-3).  
Updated the Operating Current (IDD) DC Characteristics (see Table 31-5).  
Updated the Idle Current (IIDLE) DC Characteristics (see Table 31-6).  
Updated the Power-Down Current (IPD) DC Characteristics (see Table 31-7).  
Removed Note 1 from the Program Flash Memory Wait State Characteristics  
(see Table 31-11).  
Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics,  
changing SP52 to SP35 between the MSb and Bit 14 on SDOx (see  
Figure 31-13).  
Section 32.0 “Packaging  
Information”  
Added the 121-pin XBGA package marking information and package details.  
Product Identification System”  
Added the definition for BG (121-lead 10x10x1.1 mm, XBGA).  
Added the definition for Speed.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 229  
PIC32MX5XX/6XX/7XX  
Revision C (February 2010)  
The revision includes the following updates, as  
described in Table B-2:  
TABLE B-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, USB, CAN Added the following devices:  
and Ethernet 32-Bit Flash  
Microcontrollers”  
• PIC32MX675F256H  
• PIC32MX775F256H  
• PIC32MX775F512H  
• PIC32MX675F256L  
• PIC32MX775F256L  
• PIC32MX775F512L  
Added the following pins:  
• EREFCLK  
• ECRSDV  
• AEREFCLK  
• AECRSDV  
Added the EREFCLK and ECRSDV pins to Table 3 and Table 4.  
Section 1.0 “Device Overview” Updated the pin number pinout I/O descriptions for the following pin names in  
Table 1-1:  
• SCL1A  
• SDA1A  
• SCL2  
• TMS  
• C1IN-  
• C1IN+  
• C1OUT  
• C2IN-  
• C2IN+  
• C2OUT  
• PMA0  
• PMA1  
• TCK  
• TDI  
• SDA2  
• TDO  
• SCL2A  
• SDA2A  
• SCL3A  
• SDA3A  
• RTCC  
• CVREF-  
• CVREF+  
• CVREFOUT  
Added the following pins to the Pinout I/O Descriptions table (Table 1-1):  
• EREFCLK  
• ECRSDV  
• AEREFCLK  
• AECRSDV  
DS61156C-page 230  
Preliminary  
2010 Microchip Technology Inc.  
 
PIC32MX5XX/6XX/7XX  
TABLE B-2:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 4.0 “Memory  
Organization”  
Added new devices and updated the virtual and physical memory map values in  
Figure 4-1.  
Added new devices to Figure 4-2.  
Added new devices to the following register maps:  
Table 4-3, Table 4-4, Table 4-6 and Table 4-7 (Interrupt Register Maps)  
Table 4-12 (I2C2 Register Map)  
Table 4-15 (SPI1 Register Map)  
Table 4-24 through Table 4-35 (PORTA-PORTG Register Maps)  
Table 4-36 and Table 4-37 (Change Notice and Pull-up Register Maps)  
Table 4-45 (CAN1 Register Map)  
Table 4-46 (CAN2 Register Map)  
Table 4-47 (Ethernet Controller Register Map)  
Changed the bits named POSCMD to POSCMOD in Table 4-42 (Device  
Configuration Word Summary).  
Section 28.0 “Special  
Features”  
Changed all references of POSCMD to POSCMOD in the Device Configuration  
Word 1 register (see Register 28-2).  
Appendix A: “Migrating from  
PIC32MX3XX/4XX to  
PIC32MX5XX/6XX/7XX  
Devices”  
Added the new section A.3 “Pin Assignments”.  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 231  
PIC32MX5XX/6XX/7XX  
NOTES:  
DS61156C-page 232  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
INDEX  
A
D
AC Characteristics ............................................................ 180  
10-Bit Conversion Rate Parameters ......................... 204  
A/D Conversion Requirements ................................. 205  
ADC Specifications ................................................... 202  
EJTAG Timing Requirements ................................... 212  
Ethernet .................................................................... 201  
Internal FRC Accuracy.............................................. 182  
Internal RC Accuracy................................................ 182  
OTG Electrical Specifications ................................... 211  
Parallel Master Port Read Requirements ................. 209  
Parallel Master Port Write......................................... 210  
Parallel Master Port Write Requirements.................. 210  
Parallel Slave Port Requirements............................. 208  
PLL Clock Timing...................................................... 182  
Assembler  
DC Characteristics............................................................ 172  
I/O Pin Input Specifications ...................................... 176  
I/O Pin Output Specifications.................................... 177  
Idle Current (IIDLE).................................................... 174  
Operating Current (IDD) ............................................ 173  
Power-Down Current (IPD)........................................ 175  
Program Memory...................................................... 177  
Temperature and Voltage Specifications.................. 172  
Development Support....................................................... 167  
Direct Memory Access (DMA) Controller.......................... 117  
E
Electrical Characteristics .................................................. 171  
AC............................................................................. 180  
Errata.................................................................................. 21  
Ethernet Controller............................................................ 145  
External Clock  
MPASM Assembler................................................... 168  
B
Timer1 Timing Requirements ................................... 186  
Timer2, 3, 4, 5 Timing Requirements ....................... 187  
Timing Requirements ............................................... 181  
Block Diagrams  
A/D Module ............................................................... 141  
Comparator I/O Operating Modes............................. 147  
Comparator Voltage Reference ................................ 149  
Connections for On-Chip Voltage Regulator............. 162  
Core and Peripheral Modules ..................................... 23  
DMA.......................................................................... 117  
Ethernet Controller.................................................... 145  
I2C Circuit ................................................................. 134  
Input Capture ............................................................ 127  
Interrupt Controller.................................................... 109  
JTAG Programming, Debugging and  
Trace Ports ....................................................... 163  
MCU............................................................................ 39  
Output Compare Module........................................... 129  
PIC32MX CAN Module ............................................. 143  
PMP Pinout and Connections to External  
F
Flash Program Memory.................................................... 105  
RTSP Operation ....................................................... 105  
I
I/O Ports ........................................................................... 121  
Parallel I/O (PIO) ...................................................... 122  
Instruction Set................................................................... 165  
Inter-Integrated Circuit (I2C .............................................. 133  
Internal Voltage Reference Specifications........................ 179  
Interrupt Controller............................................................ 109  
IRG, Vector and Bit Location.................................... 110  
M
MCU  
Devices............................................................. 137  
Prefetch Module........................................................ 115  
Reset System............................................................ 107  
RTCC........................................................................ 139  
SPI Module ............................................................... 131  
Timer1....................................................................... 123  
Timer2/3/4/5 (16-Bit)................................................. 125  
Typical Multiplexed Port Structure ............................ 121  
UART ........................................................................ 135  
WDT and Power-up Timer ........................................ 161  
Brown-out Reset (BOR)  
Architecture Overview ................................................ 40  
Coprocessor 0 Registers............................................ 42  
Core Exception Types ................................................ 43  
EJTAG Debug Support............................................... 44  
Power Management ................................................... 44  
MCU Module....................................................................... 39  
Memory Maps............................................................... 46–48  
Memory Organization ......................................................... 45  
Layout......................................................................... 45  
Migration  
PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX......... 227  
MPLAB ASM30 Assembler, Linker, Librarian................... 168  
MPLAB Integrated Development  
and On-Chip Voltage Regulator................................ 162  
C
Environment Software .............................................. 167  
MPLAB PM3 Device Programmer .................................... 170  
MPLAB REAL ICE In-Circuit Emulator System ................ 169  
MPLINK Object Linker/MPLIB Object Librarian................ 168  
C Compilers  
MPLAB C18 .............................................................. 168  
Clock Diagram .................................................................. 113  
Comparator  
Specifications............................................................ 178  
Comparator Module .......................................................... 147  
Comparator Voltage Reference (CVREF ........................... 149  
Configuration Bit ............................................................... 153  
Controller Area Network (CAN)......................................... 143  
CPU Module........................................................................ 35  
O
Open-Drain Configuration................................................. 122  
Oscillator Configuration .................................................... 113  
Output Compare ............................................................... 129  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 233  
PIC32MX5XX/6XX/7XX  
Timing Requirements  
P
CLKO and I/O ........................................................... 183  
Timing Specifications  
Packaging .........................................................................213  
Details.......................................................................215  
Marking .....................................................................213  
Parallel Master Port (PMP) ...............................................137  
PIC32MX Family USB Interface Diagram .........................120  
Pinout I/O Descriptions (table) ............................................24  
Power-on Reset (POR)  
and On-Chip Voltage Regulator................................162  
Power-Saving Features.....................................................151  
CPU Halted Methods ................................................151  
Operation ..................................................................151  
with CPU Running.....................................................151  
Prefetch Cache .................................................................115  
Program Flash Memory  
CAN I/O Requirements............................................. 200  
I2Cx Bus Data Requirements (Master Mode)........... 195  
I2Cx Bus Data Requirements (Slave Mode)............. 198  
Input Capture Requirements..................................... 187  
Output Compare Requirements................................ 188  
Simple OCx/PWM Mode Requirements ................... 188  
SPIx Master Mode (CKE = 0) Requirements............ 189  
SPIx Master Mode (CKE = 1) Requirements............ 190  
SPIx Slave Mode (CKE = 1) Requirements.............. 192  
SPIx Slave Mode Requirements (CKE = 0).............. 191  
U
UART................................................................................ 135  
USB On-The-Go (OTG).................................................... 119  
Wait State Characteristics.........................................178  
R
V
Real-Time Clock and Calendar (RTCC)............................139  
Register Maps............................................................. 49–103  
Registers  
VCAP/VDDCORE pin............................................................ 162  
Voltage Reference Specifications..................................... 179  
Voltage Regulator (On-Chip) ............................................ 162  
DDPCON (Debug Data Port Control)........................164  
DEVCFG0 (Device Configuration Word 0.................153  
DEVCFG1 (Device Configuration Word 1.................155  
DEVCFG2 (Device Configuration Word 2.................157  
DEVCFG3 (Device Configuration Word 3.................159  
DEVID (Device and Revision ID) ..............................160  
Resets...............................................................................107  
Revision History ................................................................228  
W
Watchdog Timer (WDT).................................................... 161  
WWW, On-Line Support ..................................................... 21  
S
Serial Peripheral Interface (SPI) .......................................131  
Software Simulator (MPLAB SIM).....................................169  
Special Features ...............................................................153  
T
Timer1 Module ..................................................................123  
Timer2/3, Timer4/5 Modules .............................................125  
Timing Diagrams  
10-Bit A/D Conversion (CHPS = 01, SIMSAM = 0,  
ASAM = 0, SSRC = 000) ..................................206  
10-Bit A/D Conversion (CHPS = 01, SIMSAM = 0,  
ASAM = 1, SSRC = 111, SAMC = 00001)........207  
CAN I/O.....................................................................200  
EJTAG ......................................................................212  
External Clock...........................................................180  
I/O Characteristics ....................................................183  
I2Cx Bus Data (Master Mode) ..................................194  
I2Cx Bus Data (Slave Mode) ....................................197  
I2Cx Bus Start/Stop Bits (Master Mode)...................194  
I2Cx Bus Start/Stop Bits (Slave Mode).....................197  
Input Capture (CAPx)................................................187  
OCx/PWM .................................................................188  
Output Compare (OCx).............................................188  
Parallel Master Port Read.........................................209  
Parallel Master Port Write .........................................210  
Parallel Slave Port ....................................................208  
SPIx Master Mode (CKE = 0)....................................189  
SPIx Master Mode (CKE = 1)....................................190  
SPIx Slave Mode (CKE = 0)......................................191  
SPIx Slave Mode (CKE = 1)......................................192  
Timer1, 2, 3, 4, 5 External Clock...............................186  
UART Reception.......................................................136  
UART Transmission (8-Bit or 9-Bit Data)..................136  
DS61156C-page 234  
Preliminary  
2010 Microchip Technology Inc.  
PIC32MX5XX/6XX/7XX  
Product Identification System  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Example:  
PIC32 MX 5XX F 512 H T - 80 I / PT - XXX  
PIC32MX575F256H-80I/PT:  
General purpose PIC32MX,  
256 KB program memory,  
64-pin, Industrial temperature,  
TQFP package.  
Microchip Brand  
Architecture  
Product Groups  
Flash Memory Family  
Program Memory Size (KB)  
Pin Count  
Tape and Reel Flag (if applicable)  
Speed  
Temperature Range  
Package  
Pattern  
Flash Memory Family  
Architecture  
MX = 32-bit RISC MCU core  
Product Groups  
5XX = General purpose microcontroller family  
6XX = General purpose microcontroller family  
7XX = General purpose microcontroller family  
Flash Memory Family  
F
= Flash program memory  
Program Memory Size 256 = 256K  
512 = 512K  
Pin Count  
H
L
= 64-pin  
= 100-pin  
Speed  
80 = 80 MHz  
Temperature Range  
Package  
I
= -40°C to +85°C (Industrial)  
PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack)  
PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack)  
PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack)  
MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)  
BG = 121-Lead (10x10x1.1 mm) XBGA (Plastic Thin Profile Ball Grid Array)  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)  
ES = Engineering Sample  
2010 Microchip Technology Inc.  
Preliminary  
DS61156C-page 235  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS61156C-page 236  
Preliminary  
2010 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY