SE22 [MICROCHIP]

64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology; 64引脚基于闪存的8位CMOS微控制器与LCD驱动器,并采用nanoWatt XLP技术
SE22
型号: SE22
厂家: MICROCHIP    MICROCHIP
描述:

64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
64引脚基于闪存的8位CMOS微控制器与LCD驱动器,并采用nanoWatt XLP技术

驱动器 闪存 微控制器 CD
文件: 总478页 (文件大小:5366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16(L)F1946/1947  
Data Sheet  
64-Pin Flash-Based, 8-Bit  
CMOS Microcontrollers with  
LCD Driver and nanoWatt XLP Technology  
2010-2012 Microchip Technology Inc.  
DS41414D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620760840  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
DS41414D-page 2  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with  
LCD Driver and nanoWatt XLP Technology  
High-Performance RISC CPU:  
PIC16LF1946/47 Low-Power Features:  
• Only 49 Instructions to Learn:  
• Standby Current:  
- All single-cycle instructions except branches  
• Operating Speed:  
- 60 nA @ 1.8V, typical  
• Operating Current:  
- DC – 32 MHz oscillator/clock input  
- DC – 125 ns instruction cycle  
• Up to 16K x 14 Words of Flash Program Memory  
• Up to 1024 Bytes of Data Memory (RAM)  
• Interrupt Capability with Automatic Context  
Saving  
- 7.0 A @ 32 kHz, 1.8V, typical  
- 35 A/MHz, 1.8V, typical  
• Timer1 Oscillator Current:  
- 600 nA @ 32 kHz, 1.8V, typical  
• Low-Power Watchdog Timer Current:  
- 500 nA @ 1.8V, typical  
• 16-Level Deep Hardware Stack  
• Direct, Indirect and Relative Addressing modes  
• Processor Read Access to Program Memory  
Peripheral Features:  
• 54 I/O Pins (1 Input-only pin):  
- High-current source/sink for direct LED drive  
- Individually programmable Interrupt-on-pin  
change pins  
- Individually programmable weak pull-ups  
• Integrated LCD Controller:  
- Up to 184 segments  
- Variable clock input  
- Contrast control  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%, typical  
- Software selectable frequency range from  
32 MHz to 31 kHz  
• Power-Saving Sleep mode  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset (BOR):  
- Selectable between two trip points  
- Disable in Sleep option  
• Multiplexed Master Clear with Pull-up/Input Pin  
• Programmable Code Protection  
• High Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
• Wide Operating Voltage Range:  
- 1.8V-5.5V (PIC16F1946/47)  
- Internal voltage reference selections  
• Capacitive Sensing (CSM) Module (mTouchTM):  
- 17 selectable channels  
• A/D Converter:  
- 10-bit resolution and 17 channels  
- Selectable 1.024/2.048/4.096V voltage  
reference  
• Timer0: 8-Bit Timer/Counter with 8-Bit  
Programmable Prescaler  
• Enhanced Timer1:  
- Dedicated low-power 32 kHz oscillator driver  
- 16-bit timer/counter with prescaler  
- External Gate Input mode with toggle and  
single shot modes  
- 1.8V-3.6V (PIC16LF1946/47)  
- Interrupt-on-gate completion  
• Timer2, 4, 6: 8-Bit Timer/Counter with 8-Bit Period  
Register, Prescaler and Postscaler  
• Two Capture, Compare, PWM Modules (CCP):  
- 16-bit Capture, max. resolution 125 ns  
- 16-bit Compare, max. resolution 125 ns  
- 10-bit PWM, max. frequency 31.25 kHz  
• Three Enhanced Capture, Compare, PWM  
Modules (ECCP):  
- 3 PWM time-base options  
- Auto-shutdown and auto-restart  
- PWM steering  
- Programmable Dead-band Delay  
2010-2012 Microchip Technology Inc.  
DS41414D-page 3  
PIC16(L)F1946/47  
Peripheral Features (Continued):  
• Two Master Synchronous Serial Ports (MSSPs)  
with SPI and I2CTM with:  
- 7-bit address masking  
- SMBus/PMBusTM compatibility  
- Auto-wake-up on start  
• Two Enhanced Universal Synchronous:  
Asynchronous Receiver Transmitters (EUSARTs)  
- RS-232, RS-485 and LIN compatible  
- Auto-Baud Detect  
• SR Latch (555 Timer):  
- Multiple Set/Reset input options  
- Emulates 555 Timer applications  
• Three Comparators:  
- Rail-to-rail inputs/outputs  
- Power mode control  
- Software enable hysteresis  
• Voltage Reference Module:  
- Fixed Voltage Reference (FVR) with 1.024V,  
2.048V and 4.096V output levels  
- 5-bit rail-to-rail resistive DAC with positive  
and negative reference selection  
PIC16(L)F193X/194X Family Types  
Device  
PIC16(L)F1933 (1) 4096  
PIC16(L)F1934 (2) 4096  
PIC16(L)F1936 (2) 8192  
PIC16(L)F1937 (2) 8192  
256  
256  
256  
256  
256 25 11  
256 36 14 16  
512 25 11  
512 36 14 16  
8
2
2
2
2
2
2
3
3
4/1  
4/1  
4/1  
4/1  
4/1  
4/1  
4/1  
4/1  
1
1
1
1
1
1
2
2
1
1
1
1
1
1
2
2
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
4/16/60(3) I/H  
4/24/96 I/H  
4/16/60(3) I/H  
4/24/96 I/H  
4/16/60(3) I/H  
Y
Y
Y
Y
Y
Y
Y
Y
8
PIC16(L)F1938 (3) 16384 256 1024 25 11  
PIC16(L)F1939 (3) 16384 256 1024 36 14 16  
PIC16(L)F1946 (4) 8192 256 512 54 17 17  
PIC16(L)F1947 (4) 16384 256 1024 54 17 17  
8
4/24/96  
4/46/184  
4/46/184  
I/H  
I
I
Note 1: I – Debugging, Integrated on Chip; H – Debugging, Requires Debug Header.  
2: One pin is input-only.  
3: COM3 and SEG15 share the same physical pin, therefore SEG15 is not available when using 1/4 multiplex  
displays.  
Data Sheet Index: (Unshaded devices are described in this document.)  
1: DS41575 PIC16(L)F1933 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.  
2: DS41364 PIC16(L)F1934/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.  
3: DS41574 PIC16(L)F1938/9 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.  
4: DS41414 PIC16(L)F1946/1947 Data Sheet, 64-Pin Flash, 8-bit Microcontrollers.  
DS41414D-page 4  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
Pin Diagram – 64-Pin TQFP/QFN (PIC16(L)F1946/47)  
64-pin TQFP, QFN  
64  
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
RE1  
RE0  
RG0  
RG1  
RG2  
RG3  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
VSS  
RA6  
RA7  
VDD  
RB7  
RC5  
RC4  
RC3  
RC2  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VPP/MCLR/RG5  
PIC16(L)F1946/47  
RG4  
VSS  
VDD  
RF7  
RF6  
RF5  
RF4  
RF3  
RF2  
9
10  
11  
12  
13  
14  
15  
16  
17 18 19 20 21 22 23 24 25 26 27 28  
29 3031 32  
Note 1: Pin location selected by APFCON register setting. Default location.  
2: Pin function can be moved using the APFCON register. Alternate location.  
3: QFN package orientation is the same. No leads are present on the QFN package.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 5  
PIC16(L)F1946/47  
TABLE 1:  
64-PIN SUMMARY(PIC16(L)F1946/47)  
RA0 24  
RA1 23  
RA2 22  
RA3 21  
RA4 28  
RA5 27  
RA6 40  
Y
Y
AN0  
AN1  
AN2  
AN3  
CPS0  
CPS1  
CPS2  
CPS3  
SEG33  
SEG18  
SEG34  
SEG35  
SEG14  
SEG15  
SEG36  
Y
VREF-  
VREF+  
Y
Y
T0CKI  
AN4  
CPS4  
OSC2/  
CLK-  
OUT  
RA7 39  
RB0 48  
SEG37  
SEG30  
Y
OSC1/  
CLKIN  
SRI  
FLT0  
INT/  
IOC  
RB1 47  
RB2 46  
RB3 45  
RB4 44  
RB5 43  
RB6 42  
SEG8  
SEG9  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
Y
Y
Y
Y
Y
SEG10  
SEG11  
SEG29  
SEG38  
T1G  
ICSP-  
CLK/  
ICDCLK  
RB7 37  
SEG39  
IOC  
Y
ICSP-  
DAT/  
ICDDAT  
RC0 30  
RC1 29  
RC2 33  
RC3 34  
RC4 35  
T1OSO/  
T1CKI  
T1OSI CCP2(1)  
P2A(1)  
SEG40  
SEG32  
SEG13  
/
CCP1/  
P1A  
SCK1/ SEG17  
SCL1  
SDI1/ SEG16  
SDA1  
RC5 36  
RC6 31  
SDO1 SEG12  
TX1/  
CK1  
SEG27  
RC7 32  
RX1/  
DT1  
SEG28  
RD0 58  
RD1 55  
RD2 54  
RD3 53  
P2D(2)  
P2C(2)  
P2B(2)  
SEG0  
SEG1  
SEG2  
SEG3  
P3C(2)  
P3B(2)  
P1C(2)  
RD4 52  
RD5 51  
SDO2  
SEG4  
SEG5  
SDI2  
SDA2  
RD6 50  
P1B(2)  
SCK2/ SEG6  
SCL2  
Note 1: Pin functions can be moved using the APFCON register(s). Default location.  
2: Pin function can be moved using the APFCON register. Alternate location.  
3: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.  
4: See Section 8.0 “Low Dropout (LDO) Voltage Regulator”.  
DS41414D-page 6  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 1:  
64-PIN SUMMARY(PIC16(L)F1946/47) (Continued)  
RD7 49  
Y
SS2  
SEG7  
VLCD1  
VLCD2  
VLCD3  
RE0  
RE1  
2
1
P2D(1)  
P2C(1)  
P2B(1)  
Y
RE2 64  
Y
RE3 63  
RE4 62  
RE5 61  
RE6 60  
P3C(1)  
P3B(1)  
P1C(1)  
P1B(1)  
COM0  
COM1  
COM2  
COM3  
CCP2(2)  
P2A(2)  
/
RE7 59  
RF0 18  
Y
SEG31  
SEG41  
(4)  
AN16  
CPS16 C1IN0-  
C2IN0-  
VCAP  
RF1 17  
Y
AN6  
CPS6  
C2OUT  
C1OUT  
SRNQ  
SEG19  
RF2 16  
RF3 15  
Y
Y
AN7  
AN8  
CPS7  
CPS8  
SRQ  
SEG20  
SEG21  
C1IN2-  
C2IN2-  
C3IN2-  
RF4 14  
RF5 13  
Y
Y
AN9  
CPS9  
C2IN+  
SEG22  
SEG23  
AN10 DACOUT CPS10  
C1IN1-  
C2IN1-  
RF6 12  
RF7 11  
Y
Y
AN11  
AN5  
CPS11  
CPS5  
C1IN+  
SEG24  
SEG25  
C1IN3-  
C2IN3-  
C3IN3-  
SS1  
RG0  
RG1  
RG2  
3
4
5
Y
CCP3  
P3A  
SEG42  
SEG43  
SEG44  
AN15  
AN14  
CPS15 C3OUT  
CPS14 C3IN+  
TX2/  
CK2  
Y
RX2/  
DT2  
RG3  
RG4  
RG5  
6
8
7
Y
Y
AN13  
AN12  
CPS13 C3IN0-  
CPS12 C3IN1-  
CCP4  
P3D  
SEG45  
SEG26  
CCP5  
P1D  
Y(3)  
MCLR/  
VPP  
VDD 10  
VDD  
26  
38  
57  
VSS  
9
VSS  
25  
41  
56  
AVDD 19  
AVSS 20  
AVDD  
AVSS  
Note 1: Pin functions can be moved using the APFCON register(s). Default location.  
2: Pin function can be moved using the APFCON register. Alternate location.  
3: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.  
4: See Section 8.0 “Low Dropout (LDO) Voltage Regulator”.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 7  
PIC16(L)F1946/47  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 11  
2.0 Enhanced Mid-Range CPU ........................................................................................................................................................ 19  
3.0 Memory Organization................................................................................................................................................................. 21  
4.0 Device Configuration .................................................................................................................................................................. 55  
5.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 61  
6.0 Resets ........................................................................................................................................................................................ 79  
7.0 Interrupts .................................................................................................................................................................................... 87  
8.0 Low Dropout (LDO) Voltage Regulator .................................................................................................................................... 103  
9.0 Power-Down Mode (Sleep) ...................................................................................................................................................... 105  
10.0 Watchdog Timer....................................................................................................................................................................... 107  
11.0 Data EEPROM and Flash Program Memory Control............................................................................................................... 111  
12.0 I/O Ports ................................................................................................................................................................................... 127  
13.0 Interrupt-On-Change ................................................................................................................................................................ 153  
14.0 Fixed Voltage Reference (FVR) ............................................................................................................................................... 157  
15.0 Temperature Indicator Module ................................................................................................................................................. 159  
16.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 161  
17.0 Digital-to-Analog Converter (DAC) Module .............................................................................................................................. 175  
18.0 Comparator Module.................................................................................................................................................................. 179  
19.0 SR Latch................................................................................................................................................................................... 189  
20.0 Timer0 Module ......................................................................................................................................................................... 195  
21.0 Timer1 Module with Gate Control............................................................................................................................................. 199  
22.0 Timer2/4/6 Modules.................................................................................................................................................................. 211  
23.0 Capture/Compare/PWM Modules ............................................................................................................................................ 215  
24.0 Master Synchronous Serial Port (MSSP1 and MSSP2) Module .............................................................................................. 243  
25.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 297  
26.0 Capacitive Sensing (CPS) Module ........................................................................................................................................... 327  
27.0 Liquid Crystal Display (LCD) Driver Module............................................................................................................................. 335  
28.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 371  
29.0 Instruction Set Summary.......................................................................................................................................................... 375  
30.0 Electrical Specifications............................................................................................................................................................ 389  
31.0 DC and AC Characteristics Graphs and Charts....................................................................................................................... 421  
32.0 Development Support............................................................................................................................................................... 455  
33.0 Packaging Information.............................................................................................................................................................. 459  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 465  
®
Appendix B: Migrating From Other PIC Devices.............................................................................................................................. 465  
Index .................................................................................................................................................................................................. 467  
The Microchip Web Site..................................................................................................................................................................... 475  
Customer Change Notification Service .............................................................................................................................................. 475  
Customer Support.............................................................................................................................................................................. 475  
Reader Response .............................................................................................................................................................................. 476  
Product Identification System............................................................................................................................................................. 477  
DS41414D-page 8  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 9  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 10  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
1.0  
DEVICE OVERVIEW  
The PIC16(L)F1946/47 are described within this data  
sheet. They are available in 64-pin packages.  
Figure 1-1 shows  
a
block diagram of the  
PIC16(L)F1946/47 devices. Table 1-2 shows the pinout  
descriptions.  
Reference Table 1-1 for peripherals available per  
device.  
TABLE 1-1:  
DEVICE PERIPHERAL  
SUMMARY  
Peripheral  
ADC  
Capacitive Sensing (CPS) Module  
Data EEPROM  
Digital-to-Analog Converter (DAC)  
Fixed Voltage Reference (FVR)  
LCD  
SR Latch  
Capture/Compare/PWM Modules  
ECCP1  
ECCP2  
ECCP3  
CCP4  
CCP5  
Comparators  
C1  
C2  
C3  
EUSARTS  
EUSART1  
EUSART2  
Master Synchronous Serial Ports  
MSSP1  
MSSP2  
Timers  
Timer0  
Timer1  
Timer2  
Timer4  
Timer6  
2010-2012 Microchip Technology Inc.  
DS41414D-page 11  
PIC16(L)F1946/47  
FIGURE 1-1:  
PIC16(L)F1946/47 BLOCK DIAGRAM  
Program  
Flash Memory  
EEPROM  
PORTA  
RAM  
OSC2/CLKOUT  
OSC1/CLKIN  
Timing  
Generation  
PORTB  
PORTC  
PORTD  
PORTE  
PORTF  
PORTG  
CPU  
INTRC  
Oscillator  
Figure 2-1  
MCLR  
SR  
Latch  
ADC  
10-Bit  
Timer0  
ECCP2  
Timer1  
Timer2  
CCP4  
Timer4  
CCP5  
Comparators  
EUSARTx  
Timer6  
MSSPx  
LCD  
ECCP1  
ECCP3  
Note 1: See applicable chapters for more information on peripherals.  
DS41414D-page 12  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 1-2:  
PIC16(L)F1946/47 PINOUT DESCRIPTION  
Input Output  
Function  
Name  
Description  
Type  
Type  
RA0/AN0/CPS0/SEG33  
RA0  
AN0  
TTL  
AN  
AN  
CMOS General purpose I/O.  
A/D Channel input.  
CPS0  
SEG33  
Capacitive sensing input 0.  
LCD Analog output.  
AN  
RA1/AN1/CPS1/SEG18  
RA1  
AN1  
TTL  
AN  
AN  
CMOS General purpose I/O.  
A/D Channel input.  
CPS1  
SEG18  
RA2  
Capacitive sensing input.  
LCD Analog output.  
AN  
RA2/AN2/VREF-/CPS2/SEG34  
TTL  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN2  
A/D Channel input.  
VREF-  
CPS2  
SEG34  
RA3  
A/D Negative Voltage Reference input.  
Capacitive sensing input.  
LCD Analog output.  
AN  
RA3/AN3/VREF+/CPS3/SEG35  
TTL  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN3  
A/D Channel input.  
VREF+  
CPS3  
SEG35  
RA4  
A/D Voltage Reference input.  
Capacitive sensing input.  
LCD Analog output.  
AN  
RA4/T0CKI/SEG14  
TTL  
ST  
CMOS General purpose I/O.  
T0CKI  
SEG14  
RA5  
Timer0 clock input.  
LCD Analog output.  
AN  
RA5/AN4/CPS4/SEG15  
TTL  
AN  
AN  
CMOS General purpose I/O.  
AN4  
A/D Channel input.  
CPS4  
SEG5  
RA6  
Capacitive sensing input.  
LCD Analog output.  
AN  
RA6/OSC2/CLKOUT/SEG36  
RA7/OSC1/CLKIN/SEG37  
RB0/INT/SRI/FLT0/SEG30  
TTL  
CMOS General purpose I/O.  
OSC2  
CLKOUT  
SEG36  
RA7  
XTAL Crystal/Resonator (LP, XT, HS modes).  
CMOS FOSC/4 output.  
AN  
LCD Analog output.  
TTL  
XTAL  
CMOS  
CMOS General purpose I/O.  
OSC1  
CLKIN  
SEG37  
RB0  
Crystal/Resonator (LP, XT, HS modes).  
External clock input (EC mode).  
LCD Analog output.  
AN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
INT  
SRI  
ST  
ST  
External interrupt.  
SR Latch input.  
FLT0  
SEG30  
RB1  
ST  
ECCP Auto-shutdown Fault input.  
LCD analog output.  
AN  
RB1/SEG8  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
SEG8  
AN  
LCD Analog output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 13  
PIC16(L)F1946/47  
TABLE 1-2:  
PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB2/SEG9  
RB2  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
SEG9  
RB3  
AN  
LCD Analog output.  
RB3/SEG10  
RB4/SEG11  
RB5/T1G/SEG29  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
SEG10  
RB4  
AN  
LCD Analog output.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
SEG11  
RB5  
AN  
LCD Analog output.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
T1G  
SEG29  
RB6  
ST  
Timer1 Gate input.  
LCD Analog output.  
AN  
RB6/ICSPCLK/ICDCLK/SEG38  
RB7/ICSPDAT/ICDDAT/SEG39  
RC0/T1OSO/T1CKI/SEG40  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPCLK  
ICDCLK  
SEG38  
RB7  
ST  
ST  
Serial Programming Clock.  
In-Circuit Debug Clock.  
LCD Analog output.  
AN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPDAT  
ICDDAT  
SEG39  
RC0  
ST  
ST  
CMOS ICSP™ Data I/O.  
CMOS In-Circuit Data I/O.  
AN  
LCD Analog output.  
ST  
XTAL  
ST  
CMOS General purpose I/O.  
T1OSO  
T1CKI  
SEG40  
RC1  
XTAL Timer1 oscillator connection.  
Timer1 clock input.  
LCD Analog output.  
AN  
(1)  
(1)  
RC1/T1OSI/P2A /CCP2  
/
ST  
XTAL  
CMOS General purpose I/O.  
XTAL Timer1 oscillator connection.  
CMOS PWM output.  
SEG32  
T1OSI  
P2A  
CCP2  
SEG32  
RC2  
ST  
CMOS Capture/Compare/PWM.  
AN  
LCD Analog output.  
RC2/CCP1/P1A/SEG13  
RC3/SCK/SCL/SEG17  
RC4/SDI1/SDA1/SEG16  
ST  
ST  
CMOS General purpose I/O.  
CMOS Capture/Compare/PWM.  
CMOS PWM output.  
CCP1  
P1A  
SEG13  
RC3  
AN  
LCD Analog output.  
ST  
ST  
CMOS General purpose I/O.  
SCK  
CMOS SPI clock.  
2
2
SCL  
I C  
OD  
AN  
I C™ clock.  
SEG17  
RC4  
ST  
ST  
LCD Analog output.  
CMOS General purpose I/O.  
SDI1  
SPI data input.  
2
2
SDA1  
SEG16  
I C  
OD  
AN  
I C™ data input/output.  
LCD Analog output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
DS41414D-page 14  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 1-2:  
PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RC5/SDO1/SEG12  
RC5  
SDO1  
SEG12  
RC6  
ST  
CMOS General purpose I/O.  
CMOS SPI data output.  
AN  
LCD Analog output.  
RC6/TX1/CK1/SEG27  
ST  
CMOS General purpose I/O.  
TX1  
CMOS USART1 asynchronous transmit.  
CMOS USART1 synchronous clock.  
CK1  
ST  
SEG27  
RC7  
AN  
LCD Analog output.  
RC7/RX1/DT1/SEG28  
ST  
ST  
ST  
CMOS General purpose I/O.  
RX  
USART1 asynchronous input.  
DT1  
CMOS USART1 synchronous data.  
SEG28  
RD0  
AN  
LCD Analog output.  
(1)  
RD0/P2D /SEG0  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
P2D  
SEG0  
RD1  
AN  
LCD Analog output.  
(1)  
RD1/P2C /SEG1  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
P2C  
SEG1  
RD2  
AN  
LCD Analog output.  
(1)  
RD2/P2B /SEG2  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
P2B  
SEG2  
RD3  
AN  
LCD Analog output.  
(1)  
RD3/P3C /SEG3  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
P3C  
SEG3  
RD4  
AN  
LCD analog output.  
(1)  
RD4/SDO2/P3B /SEG4  
ST  
CMOS General purpose I/O.  
CMOS SPI data output.  
CMOS PWM output.  
SDO2  
P3B  
SEG4  
RD5  
AN  
LCD analog output.  
(1)  
RD5/SDI2/SDA2/P1C /SEG5  
ST  
ST  
CMOS General purpose I/O.  
SDI2  
SDA2  
P1C  
SPI data input.  
2
2
I C  
OD  
I C™ data input/output.  
CMOS PWM output.  
SEG5  
RD6  
AN  
LCD analog output.  
(1)  
RD6/SCK2/SCL2/P1B /SEG6  
ST  
CMOS General purpose I/O.  
SCK2  
SCL2  
P1B  
ST  
CMOS SPI clock.  
2
2
I C  
OD  
I C™ clock.  
CMOS PWM output.  
SEG6  
RD7  
AN  
LCD analog output.  
RD7/SS2/SEG7  
ST  
ST  
CMOS General purpose I/O.  
SS2  
Slave Select input.  
LCD analog output.  
SEG7  
RE0  
AN  
(1)  
RE0/P2D /VLCD1  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
P2D  
VLCD1  
AN  
LCD analog input.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 15  
PIC16(L)F1946/47  
TABLE 1-2:  
PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
(1)  
RE1/P2C /VLCD2  
RE1  
P2C  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
VLCD2  
RE2  
AN  
ST  
LCD analog input.  
(1)  
RE2/P2B /VLCD3  
CMOS General purpose I/O.  
CMOS PWM output.  
P2B  
VLCD3  
RE3  
AN  
ST  
LCD analog input.  
(1)  
RE3/P3C /COM0  
CMOS General purpose I/O.  
CMOS PWM output.  
P3C  
COM0  
RE4  
AN  
LCD Analog output.  
(1)  
RE4/P3B /COM1  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
P3B  
COM1  
RE5  
AN  
LCD Analog output.  
(1)  
RE5/P1C /COM2  
ST  
CMOS General purpose I/O.  
CMOS PWM output.  
P1C  
COM2  
RE6  
AN  
LCD Analog output.  
General purpose I/O.  
(1)  
RE6/P1B /COM3  
ST  
P1B  
CMOS PWM output.  
COM3  
RE7  
AN  
LCD Analog output.  
(1)  
(1)  
RE7/CCP2 /P2A /SEG31  
ST  
ST  
CMOS General purpose I/O.  
CMOS Capture/Compare/PWM.  
CMOS PWM output.  
CCP2  
P2A  
SEG31  
RF0  
AN  
LCD analog output.  
RF0/AN16/CPS16/C12IN0-/  
SEG41/VCAP  
ST  
AN  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN16  
CPS16  
C1IN0-  
C2IN0-  
SEG41  
VCAP  
RF1  
A/D Channel input.  
Capacitive sensing input.  
Comparator negative input.  
Comparator negative input.  
LCD Analog output.  
AN  
Power Power Filter capacitor for Voltage Regulator.  
RF1/AN6/CPS6/C2OUT/SRNQ/  
SEG19  
ST  
AN  
AN  
CMOS General purpose I/O.  
AN6  
A/D Channel input.  
CPS6  
C2OUT  
SRNQ  
SEG19  
RF2  
Capacitive sensing input.  
CMOS Comparator output.  
CMOS SR Latch inverting output.  
AN  
LCD Analog output.  
RF2/AN7/CPS7/C1OUT/SRQ/  
SEG20  
ST  
AN  
AN  
CMOS General purpose I/O.  
AN7  
A/D Channel input.  
CPS7  
C1OUT  
SRQ  
Capacitive sensing input.  
CMOS Comparator output.  
CMOS SR Latch non-inverting output.  
SEG20  
AN  
LCD Analog output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
DS41414D-page 16  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 1-2:  
PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RF3/AN8/CPS8/C123IN2-/  
SEG21  
RF3  
AN8  
ST  
AN  
AN  
AN  
AN  
AN  
CMOS General purpose I/O.  
A/D Channel input.  
CPS8  
C1IN2-  
C2IN2-  
C3IN2-  
SEG21  
RF4  
Capacitive sensing input.  
Comparator negative input.  
Comparator negative input.  
Comparator negative input.  
LCD Analog output.  
AN  
RF4/AN9/CPS9/C2IN+/SEG22  
ST  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN9  
A/D Channel input.  
CPS9  
C2IN+  
SEG22  
RF5  
Capacitive sensing input.  
Comparator positive input.  
LCD Analog output.  
AN  
RF5/AN10/CPS10/C12IN1-/  
DACOUT/SEG23  
ST  
AN  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN10  
CPS10  
C1IN1-  
C2IN1-  
DACOUT  
SEG23  
RF6  
A/D Channel input.  
Capacitive sensing input.  
Comparator negative input.  
Comparator negative input.  
Voltage Reference output.  
LCD Analog output.  
AN  
AN  
RF6/AN11/CPS11/C1IN+/SEG24  
ST  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN11  
A/D Channel input.  
CPS11  
C1IN+  
SEG24  
RF7  
Capacitive sensing input.  
Comparator positive input.  
LCD Analog output.  
AN  
RF7/AN5/CPS5/C123IN3-/SS1/  
SEG25  
ST  
AN  
AN  
AN  
AN  
AN  
ST  
CMOS General purpose I/O.  
AN5  
A/D Channel input.  
CPS5  
C1IN3-  
C2IN3-  
C3IN3-  
SS1  
Capacitive sensing input.  
Comparator negative input.  
Comparator negative input.  
Comparator negative input.  
Slave Select input.  
AN  
SEG25  
RG0  
LCD Analog output.  
RG0/CCP3/P3A/SEG42  
ST  
ST  
CMOS General purpose I/O.  
CMOS Capture/Compare/PWM.  
CMOS PWM output.  
CCP3  
P3A  
SEG42  
RG1  
AN  
LCD Analog output.  
RG1/AN15/CPS15/TX2/CK2/  
C3OUT/SEG43  
ST  
AN  
AN  
CMOS General purpose I/O.  
AN15  
CPS15  
TX2  
A/D Channel input.  
Capacitive sensing input.  
CMOS USART2 asynchronous transmit.  
CMOS USART2 synchronous clock.  
CMOS Comparator output.  
CK2  
ST  
C3OUT  
SEG43  
AN  
LCD Analog output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 17  
PIC16(L)F1946/47  
TABLE 1-2:  
PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RG2/AN14/CPS14/RX2/DT2/  
C3IN+/SEG44  
RG2  
AN14  
CPS14  
RX2  
ST  
AN  
AN  
ST  
CMOS General purpose I/O.  
A/D Channel input.  
Capacitive sensing input.  
USART2 asynchronous input.  
DT2  
ST  
CMOS USART2 synchronous data.  
C3IN+  
SEG44  
RG3  
AN  
Comparator positive input.  
LCD Analog output.  
AN  
RG3/AN13/CPS13/C3IN0-/  
CCP4/P3D/SEG45  
ST  
CMOS General purpose I/O.  
AN13  
CPS13  
C3IN0-  
CCP4  
P3D  
AN  
AN  
AN  
ST  
A/D Channel input.  
Capacitive sensing input.  
Comparator negative input.  
CMOS Capture/Compare/PWM.  
CMOS PWM output.  
SEG45  
RG4  
AN  
LCD Analog output.  
RG4/AN12/CPS12/C3IN1-/  
CCP5/P1D/SEG26  
ST  
CMOS General purpose I/O.  
AN12  
CPS12  
C3IN1-  
CCP5  
P1D  
AN  
AN  
AN  
ST  
A/D Channel input.  
Capacitive sensing input.  
Comparator negative input.  
CMOS Capture/Compare/PWM.  
CMOS PWM output.  
SEG26  
RG5  
AN  
LCD Analog output.  
RG5/MCLR/VPP  
ST  
General purpose input.  
Master Clear with internal pull-up.  
Programming voltage.  
Positive supply.  
MCLR  
VPP  
ST  
HV  
Power  
Power  
VDD  
VSS  
VDD  
VSS  
Ground reference.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
DS41414D-page 18  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
2.0  
ENHANCED MID-RANGE CPU  
This family of devices contain an enhanced mid-range  
8-bit CPU core. The CPU has 49 instructions. Interrupt  
capability includes automatic context saving. The  
hardware stack is 16 levels deep and has Overflow and  
Underflow Reset capability. Direct, Indirect, and  
Relative addressing modes are available. Two File  
Select Registers (FSRs) provide the ability to read  
program and data memory.  
• Automatic Interrupt Context Saving  
• 16-level Stack with Overflow and Underflow  
• File Select Registers  
• Instruction Set  
2.1  
Automatic Interrupt Context  
Saving  
During interrupts, certain registers are automatically  
saved in shadow registers and restored when returning  
from the interrupt. This saves stack space and user  
code. See Section 7.5 “Automatic Context Saving”,  
for more information.  
2.2  
16-level Stack with Overflow and  
Underflow  
These devices have an external stack memory 15 bits  
wide and 16 words deep. A Stack Overflow or Under-  
flow will set the appropriate bit (STKOVF or STKUNF)  
in the PCON register, and if enabled will cause a soft-  
ware Reset. See section Section 3.5 “Stack” for more  
details.  
2.3  
File Select Registers  
There are two 16-bit File Select Registers (FSR). FSRs  
can access all file registers and program memory,  
which allows one Data Pointer for all memory. When an  
FSR points to program memory, there is one additional  
instruction cycle in instructions using INDF to allow the  
data to be fetched. General purpose memory can now  
also be addressed linearly, providing the ability to  
access contiguous data larger than 80 bytes. There are  
also new instructions to support the FSRs. See  
Section 3.6 “Indirect Addressing” for more details.  
2.4  
Instruction Set  
There are 49 instructions for the enhanced mid-range  
CPU to support the features of the CPU. See  
Section 29.0 “Instruction Set Summary” for more  
details.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 19  
PIC16(L)F1946/1947  
FIGURE 2-1:  
CORE BLOCK DIAGRAM  
15  
Configuration
15  
8
Data Bus  
RAM  
Program Counter  
Flash  
Program  
Memory  
16-LevelStack  
(15-bit)  
Program  
Bus  
14  
RAM Addr  
Program Memory  
Read (PMR)  
12  
Addr MUX  
InstructionReg  
Indirect  
Addr  
7
Direct Addr  
12  
12  
5
BSR Reg  
15  
FSR0 Reg  
FSR1 Reg  
15  
STATUSReg  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decodeand  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC2/CLKOUT  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD  
VSS  
DS41414D-page 20  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
The following features are associated with access and  
control of program memory and data memory:  
3.0  
MEMORY ORGANIZATION  
These devices contain the following types of memory:  
• PCL and PCLATH  
• Stack  
• Program Memory  
- Configuration Words  
- Device ID  
• Indirect Addressing  
- User ID  
3.1  
Program Memory Organization  
- Flash Program Memory  
• Data Memory  
The enhanced mid-range core has a 15-bit program  
counter capable of addressing a 32K x 14 program  
memory space. Table 3-1 shows the memory sizes  
implemented for the PIC16(L)F1946/47 family.  
Accessing a location above these boundaries will cause  
a wrap-around within the implemented memory space.  
The Reset vector is at 0000h and the interrupt vector is  
at 0004h (see Figures 3-1 and 3-2).  
- Core Registers  
- Special Function Registers  
- General Purpose RAM  
- Common RAM  
• Data EEPROM memory(1)  
Note 1: The Data EEPROM Memory and the  
method to access Flash memory through  
the EECON registers is described in  
Section 11.0 “Data EEPROM and Flash  
Program Memory Control”.  
TABLE 3-1:  
DEVICE SIZES AND ADDRESSES  
Device  
Program Memory Space (Words)  
Last Program Memory Address  
PIC16(L)F1946  
PIC16(L)F1947  
8,192  
1FFFh  
3FFFh  
16,384  
2010-2012 Microchip Technology Inc.  
DS41414D-page 21  
PIC16(L)F1946/1947  
FIGURE 3-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
FIGURE 3-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC16(L)F1946  
PIC16(L)F1947  
PC<14:0>  
PC<14:0>  
CALL, CALLW  
RETURN, RETLW  
Interrupt, RETFIE  
15  
CALL, CALLW  
RETURN, RETLW  
Interrupt, RETFIE  
15  
Stack Level 0  
Stack Level 1  
Stack Level 0  
Stack Level 1  
Stack Level 15  
Reset Vector  
Stack Level 15  
Reset Vector  
0000h  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-chip  
Program  
Memory  
07FFh  
0800h  
07FFh  
0800h  
Page 1  
Page 2  
Page 1  
Page 2  
On-chip  
Program  
Memory  
0FFFh  
1000h  
0FFFh  
1000h  
17FFh  
1800h  
17FFh  
1800h  
Page 3  
Page 3  
Page 4  
1FFFh  
2000h  
1FFFh  
2000h  
Rollover to Page 0  
Page 7  
3FFFh  
4000h  
Rollover to Page 0  
Rollover to Page 3  
Rollover to Page 7  
7FFFh  
7FFFh  
DS41414D-page 22  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
3.1.1  
READING PROGRAM MEMORY AS  
DATA  
There are two methods of accessing constants in pro-  
gram memory. The first method is to use tables of  
RETLW instructions. The second method is to set an  
FSR to point to the program memory.  
3.1.1.1  
RETLWInstruction  
The RETLWinstruction can be used to provide access  
to tables of constants. The recommended way to create  
such a table is shown in Example 3-1.  
EXAMPLE 3-1:  
RETLWINSTRUCTION  
constants  
BRW  
;Add Index in W to  
;program counter to  
;select data  
RETLW DATA0  
RETLW DATA1  
RETLW DATA2  
RETLW DATA3  
;Index0 data  
;Index1 data  
my_function  
;… LOTS OF CODE…  
MOVLW DATA_INDEX  
CALL constants  
;… THE CONSTANT IS IN W  
The BRW instruction makes this type of table very  
simple to implement. If your code must remain portable  
with previous generations of microcontrollers, then the  
BRW instruction is not available so the older table read  
method must be used.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 23  
PIC16(L)F1946/1947  
3.1.1.2  
Indirect Read with FSR  
3.2.1  
CORE REGISTERS  
The program memory can be accessed as data by set-  
ting bit 7 of the FSRxH register and reading the match-  
ing INDFx register. The MOVIWinstruction will place the  
lower 8 bits of the addressed word in the W register.  
Writes to the program memory cannot be performed via  
the INDF registers. Instructions that access the pro-  
gram memory via the FSR require one extra instruction  
cycle to complete. Example 3-2 demonstrates access-  
ing the program memory via an FSR.  
The core registers contain the registers that directly  
affect the basic operation. The core registers occupy  
the first 12 addresses of every data memory bank  
(addresses x00h/x08h through x0Bh/x8Bh). These reg-  
isters are listed below in Table 3-2. For detailed infor-  
mation, see Table 3-4.  
TABLE 3-2:  
CORE REGISTERS  
The HIGH directive will set bit<7> if a label points to a  
location in program memory.  
Addresses  
BANKx  
x00h or x80h  
x01h or x81h  
x02h or x82h  
x03h or x83h  
x04h or x84h  
x05h or x85h  
x06h or x86h  
x07h or x87h  
x08h or x88h  
x09h or x89h  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
EXAMPLE 3-2:  
ACCESSING PROGRAM  
MEMORY VIA FSR  
constants  
RETLW DATA0  
RETLW DATA1  
RETLW DATA2  
RETLW DATA3  
my_function  
;Index0 data  
;Index1 data  
;… LOTS OF CODE…  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
LOW constants  
FSR1L  
HIGH constants  
FSR1H  
WREG  
PCLATH  
INTCON  
x0Ah or x8Ah  
x0Bh or x8Bh  
MOVIW 0[FSR1]  
;THE PROGRAM MEMORY IS IN W  
3.2  
Data Memory Organization  
The data memory is partitioned in 32 memory banks  
with 128 bytes in a bank. Each bank consists of  
(Figure 3-3):  
• 12 core registers  
• 20 Special Function Registers (SFR)  
• Up to 80 bytes of General Purpose RAM (GPR)  
• 16 bytes of common RAM  
The active bank is selected by writing the bank number  
into the Bank Select Register (BSR). Unimplemented  
memory will read as ‘0’. All data memory can be  
accessed either directly (via instructions that use the  
file registers) or indirectly via the two File Select  
Registers (FSR). See Section 3.6 “Indirect  
Addressing” for more information.  
Data Memory uses a 12-bit address. The upper 7-bits  
of the address define the Bank address and the lower  
5-bits select the registers/RAM in that bank.  
DS41414D-page 24  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
3.2.1.1  
STATUS Register  
The STATUS register, shown in Register 3-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (Refer to Section 29.0  
“Instruction Set Summary”).  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as Borrow  
and Digit Borrow out bits, respectively, in  
subtraction.  
3.3  
Register Definitions: Status  
REGISTER 3-1:  
STATUS: STATUS REGISTER  
U-0  
U-0  
U-0  
R-1/q  
TO  
R-1/q  
PD  
R/W-0/u  
Z
R/W-0/u  
DC(1)  
R/W-0/u  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
bit 3  
bit 2  
bit 1  
bit 0  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 25  
PIC16(L)F1946/1947  
3.3.1  
SPECIAL FUNCTION REGISTER  
FIGURE 3-3:  
BANKED MEMORY  
PARTITIONING  
The Special Function Registers are registers used by  
the application to control the desired operation of  
peripheral functions in the device. The Special Function  
Registers occupy the 20 bytes after the core registers of  
every data memory bank (addresses x0Ch/x8Ch  
through x1Fh/x9Fh). The registers associated with the  
operation of the peripherals are described in the appro-  
priate peripheral chapter of this data sheet.  
Memory Region  
7-bit Bank Offset  
00h  
Core Registers  
(12 bytes)  
0Bh  
0Ch  
3.3.2  
GENERAL PURPOSE RAM  
Special Function Registers  
(20 bytes maximum)  
There are up to 80 bytes of GPR in each data memory  
bank. The Special Function Registers occupy the 20  
bytes after the core registers of every data memory  
bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).  
1Fh  
20h  
3.3.2.1  
Linear Access to GPR  
The general purpose RAM can be accessed in a  
non-banked method via the FSRs. This can simplify  
access to large memory structures. See Section 3.6.2  
“Linear Data Memory” for more information.  
General Purpose RAM  
(80 bytes maximum)  
3.3.3  
COMMON RAM  
There are 16 bytes of common RAM accessible from all  
banks.  
6Fh  
70h  
Common RAM  
(16 bytes)  
7Fh  
3.3.4  
DEVICE MEMORY MAPS  
The memory maps for the device family are as shown  
in Table 3-3.  
TABLE 3-3:  
Device  
MEMORY MAP TABLES  
Banks  
Table No.  
PIC16(L)F1946/47  
0-7  
Table 3-4  
Table 3-5, Table 3-8  
Table 3-6  
8-15  
16-23  
23-31  
Table 3-7, Table 3-9  
DS41414D-page 26  
2010-2012 Microchip Technology Inc.  
TABLE 3-4:  
PIC16(L)F1946/47 MEMORY MAP, BANKS 0-7  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
000h  
001h  
002h  
003h  
004h  
005h  
006h  
007h  
008h  
009h  
00Ah  
00Bh  
00Ch  
00Dh  
00Eh  
00Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
INDF0  
INDF1  
PCL  
080h  
081h  
082h  
083h  
084h  
085h  
086h  
087h  
088h  
089h  
08Ah  
08Bh  
08Ch  
08Dh  
08Eh  
08Fh  
090h  
091h  
092h  
093h  
094h  
INDF0  
INDF1  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
INDF0  
INDF1  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
INDF0  
INDF1  
200h  
201h  
202h  
203h  
204h  
205h  
206h  
207h  
208h  
209h  
20Ah  
20Bh  
20Ch  
20Dh  
20Eh  
20Fh  
210h  
211h  
212h  
213h  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
INDF0  
INDF1  
280h  
281h  
282h  
283h  
284h  
285h  
286h  
287h  
288h  
289h  
28Ah  
28Bh  
28Ch  
28Dh  
28Eh  
28Fh  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
INDF0  
INDF1  
300h  
301h  
302h  
303h  
304h  
305h  
306h  
307h  
308h  
309h  
30Ah  
30Bh  
30Ch  
30Dh  
30Eh  
30Fh  
310h  
311h  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
INDF0  
INDF1  
380h  
381h  
382h  
383h  
384h  
385h  
386h  
387h  
388h  
389h  
38Ah  
38Bh  
38Ch  
38Dh  
38Eh  
38Fh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
LATF  
LATG  
PCL  
PCL  
PCL  
PCL  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
STATUS  
FSR0L  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
FSR0H  
FSR1L  
FSR0H  
FSR1L  
FSR0H  
FSR1L  
FSR1H  
BSR  
FSR1H  
BSR  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PIR1  
WREG  
PCLATH  
INTCON  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
WREG  
WREG  
PCLATH  
INTCON  
ANSELA  
WREG  
WREG  
WREG  
PCLATH  
INTCON  
TRISF  
PCLATH  
INTCON  
LATA  
PCLATH  
INTCON  
PCLATH  
INTCON  
PORTF  
PORTG  
LATB  
WPUB  
TRISG  
LATC  
LATD  
LATE  
ANSELE  
EEADRL  
EEADRH  
EEDATL  
EEDATH  
EECON1  
EECON2  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
CMOUT  
BORCON  
FVRCON  
DACCON0  
DACCON1  
SRCON0  
SRCON1  
SSP1BUF  
SSP1ADD  
SSP1MSK  
SSP1STAT  
SSP1CON1  
SSP1CON2  
SSP1CON3  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
CCP1AS  
PSTR1CON  
CCPR3L  
CCPR3H  
CCP3CON  
PWM3CON  
CCP3AS  
PSTR3CON  
PIR2  
PIE2  
PIR3  
PIE3  
PIR4  
PIE4  
IOCBP  
IOCBN  
IOCBF  
TMR0  
095h OPTION_REG 115h  
TMR1L  
TMR1H  
T1CON  
T1GCON  
TMR2  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
PCON  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
WDTCON  
OSCTUNE  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
CCPR2L  
CCPR2H  
CCP2CON  
PWM2CON  
CCP2AS  
PSTR2CON  
CCPTMRS0  
CCPR4L  
CCPR4H  
CCP4CON  
RC1REG  
TX1REG  
SP1BRGL  
SP1BRGH  
RC1STA  
TX1STA  
SSP2BUF  
SSP2ADD  
SSP2MSK  
SSP2STAT  
SSP2CON1  
SSP2CON2  
PR2  
T2CON  
CCPR5L  
CCPR5H  
CCP5CON  
APFCON  
CM3CON0  
CPSCON0  
01Fh  
020h  
CPSCON1  
09Fh  
0A0h  
11Fh  
120h  
CM3CON1  
19Fh  
1A0h  
BAUD1CON  
21Fh  
220h  
SSP2CON3  
29Fh  
2A0h  
CCPTMRS1  
31Fh  
320h  
39Fh  
3A0h  
General Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
16 Bytes  
32Fh  
330h  
Register  
General  
Purpose  
Register  
96 Bytes  
General Purpose  
Register  
80 Bytes(1)  
64 Bytes(1)  
36Fh  
370h  
3EFh  
3F0h  
06Fh  
070h  
0EFh  
0F0h  
16Fh  
170h  
1EFh  
1F0h  
26Fh  
270h  
2EFh  
2F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
07Fh  
0FFh  
17Fh  
1FFh  
27Fh  
2FFh  
37Fh  
3FFh  
Legend:  
Note 1:  
= Unimplemented data memory locations, read as ‘0’.  
Not available on PIC16F1946.  
TABLE 3-5:  
PIC16(L)F1946/47 MEMORY MAP, BANKS 8-15  
BANK 8  
BANK 9  
BANK 10  
BANK 11  
BANK 12  
BANK 13  
BANK 14  
BANK 15  
INDF0  
INDF1  
PCL  
INDF0  
INDF1  
PCL  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
400h  
401h  
402h  
403h  
404h  
405h  
406h  
407h  
408h  
409h  
40Ah  
40Bh  
40Ch  
40Dh  
40Eh  
40Fh  
410h  
411h  
412h  
413h  
414h  
415h  
416h  
417h  
418h  
419h  
41Ah  
41Bh  
41Ch  
41Dh  
41Eh  
480h  
481h  
482h  
483h  
484h  
485h  
486h  
487h  
488h  
489h  
48Ah  
48Bh  
48Ch  
48Dh  
48Eh  
48Fh  
490h  
491h  
492h  
493h  
494h  
495h  
496h  
497h  
498h  
499h  
49Ah  
49Bh  
49Ch  
49Dh  
49Eh  
500h  
501h  
502h  
503h  
504h  
505h  
506h  
507h  
508h  
509h  
50Ah  
50Bh  
50Ch  
50Dh  
50Eh  
50Fh  
510h  
511h  
512h  
513h  
514h  
515h  
516h  
517h  
518h  
519h  
51Ah  
51Bh  
51Ch  
51Dh  
51Eh  
580h  
581h  
582h  
583h  
584h  
585h  
586h  
587h  
588h  
589h  
58Ah  
58Bh  
58Ch  
58Dh  
58Eh  
58Fh  
590h  
591h  
592h  
593h  
594h  
595h  
596h  
597h  
598h  
599h  
59Ah  
59Bh  
59Ch  
59Dh  
59Eh  
600h  
601h  
602h  
603h  
604h  
605h  
606h  
607h  
608h  
609h  
60Ah  
60Bh  
60Ch  
60Dh  
60Eh  
60Fh  
610h  
611h  
612h  
613h  
614h  
615h  
616h  
617h  
618h  
619h  
61Ah  
61Bh  
61Ch  
61Dh  
61Eh  
680h  
681h  
682h  
683h  
684h  
685h  
686h  
687h  
688h  
689h  
68Ah  
68Bh  
68Ch  
68Dh  
68Eh  
68Fh  
690h  
691h  
692h  
693h  
694h  
695h  
696h  
697h  
698h  
699h  
69Ah  
69Bh  
69Ch  
69Dh  
69Eh  
700h  
701h  
702h  
703h  
704h  
705h  
706h  
707h  
708h  
709h  
70Ah  
70Bh  
70Ch  
70Dh  
70Eh  
70Fh  
710h  
711h  
712h  
713h  
714h  
715h  
716h  
717h  
718h  
719h  
71Ah  
71Bh  
71Ch  
71Dh  
71Eh  
780h  
781h  
782h  
783h  
784h  
785h  
786h  
787h  
788h  
789h  
78Ah  
78Bh  
78Ch  
78Dh  
78Eh  
78Fh  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
ANSELF  
ANSELG  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
WPUG  
RC2REG  
TX2REG  
SP2BRGL  
SP2BRGH  
RC2STA  
TX2STA  
BAUD2CON  
TMR4  
PR4  
T4CON  
See Table 3-8  
TMR6  
PR6  
T6CON  
41Fh  
420h  
49Fh  
4A0h  
51Fh  
520h  
59Fh  
5A0h  
61Fh  
620h  
69Fh  
6A0h  
71Fh  
720h  
79Fh  
7A0h  
General Purpose  
Register  
General  
Purpose  
General  
Purpose  
General  
Purpose  
General  
Purpose  
48 Bytes(1)  
Unimplemented  
Unimplemented  
Register  
Register  
Register  
Register  
Read as ‘0’  
Read as ‘0’  
80 Bytes(1)  
80 Bytes(1)  
80 Bytes(1)  
80 Bytes(1)  
Unimplemented  
Read as ‘0’  
46Fh  
470h  
4EFh  
4F0h  
56Fh  
570h  
5EFh  
5F0h  
66Fh  
670h  
6EFh  
6F0h  
76Fh  
770h  
7EFh  
7F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
4FFh  
57Fh  
47Fh  
5FFh  
67Fh  
6FFh  
77Fh  
7FFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’  
Note 1:  
Not available on PIC16F1946.  
TABLE 3-6:  
PIC16(L)F1946/47 MEMORY MAP, BANKS 16-23  
BANK 16  
BANK 17  
BANK 18  
BANK 19  
BANK 20  
BANK 21  
BANK 22  
BANK 23  
800h  
801h  
802h  
803h  
804h  
805h  
806h  
807h  
808h  
809h  
80Ah  
80Bh  
80Ch  
80Dh  
80Eh  
80Fh  
810h  
811h  
812h  
813h  
814h  
815h  
816h  
817h  
818h  
819h  
81Ah  
81Bh  
81Ch  
81Dh  
81Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
880h  
881h  
882h  
883h  
884h  
885h  
886h  
887h  
888h  
889h  
88Ah  
88Bh  
88Ch  
88Dh  
88Eh  
88Fh  
890h  
891h  
892h  
893h  
894h  
895h  
896h  
897h  
898h  
899h  
89Ah  
89Bh  
89Ch  
89Dh  
89Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
900h  
901h  
902h  
903h  
904h  
905h  
906h  
907h  
908h  
909h  
90Ah  
90Bh  
90Ch  
90Dh  
90Eh  
90Fh  
910h  
911h  
912h  
913h  
914h  
915h  
916h  
917h  
918h  
919h  
91Ah  
91Bh  
91Ch  
91Dh  
91Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
980h  
981h  
982h  
983h  
984h  
985h  
986h  
987h  
988h  
989h  
98Ah  
98Bh  
98Ch  
98Dh  
98Eh  
98Fh  
990h  
991h  
992h  
993h  
994h  
995h  
996h  
997h  
998h  
999h  
99Ah  
99Bh  
99Ch  
99Dh  
99Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
A00h  
A01h  
A02h  
A03h  
A04h  
A05h  
A06h  
A07h  
A08h  
A09h  
A0Ah  
A0Bh  
A0Ch  
A0Dh  
A0Eh  
A0Fh  
A10h  
A11h  
A12h  
A13h  
A14h  
A15h  
A16h  
A17h  
A18h  
A19h  
A1Ah  
A1Bh  
A1Ch  
A1Dh  
A1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
A80h  
A81h  
A82h  
A83h  
A84h  
A85h  
A86h  
A87h  
A88h  
A89h  
A8Ah  
A8Bh  
A8Ch  
A8Dh  
A8Eh  
A8Fh  
A90h  
A91h  
A92h  
A93h  
A94h  
A95h  
A96h  
A97h  
A98h  
A99h  
A9Ah  
A9Bh  
A9Ch  
A9Dh  
A9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
B00h  
B01h  
B02h  
B03h  
B04h  
B05h  
B06h  
B07h  
B08h  
B09h  
B0Ah  
B0Bh  
B0Ch  
B0Dh  
B0Eh  
B0Fh  
B10h  
B11h  
B12h  
B13h  
B14h  
B15h  
B16h  
B17h  
B18h  
B19h  
B1Ah  
B1Bh  
B1Ch  
B1Dh  
B1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
B80h  
B81h  
B82h  
B83h  
B84h  
B85h  
B86h  
B87h  
B88h  
B89h  
B8Ah  
B8Bh  
B8Ch  
B8Dh  
B8Eh  
B8Fh  
B90h  
B91h  
B92h  
B93h  
B94h  
B95h  
B96h  
B97h  
B98h  
B99h  
B9Ah  
B9Bh  
B9Ch  
B9Dh  
B9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
81Fh  
820h  
89Fh  
8A0h  
91Fh  
920h  
99Fh  
9A0h  
A1Fh  
A20h  
A9Fh  
AA0h  
B1Fh  
B20h  
B9Fh  
BA0h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
9EFh  
9F0h  
AEFh  
AF0h  
BEFh  
BF0h  
86Fh  
870h  
8EFh  
8F0h  
96Fh  
970h  
A6Fh  
A70h  
B6Fh  
B70h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
87Fh  
8FFh  
97Fh  
9FFh  
A7Fh  
AFFh  
B7Fh  
BFFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
TABLE 3-7:  
PIC16(L)F1946/47 MEMORY MAP, BANKS 24-31  
BANK 24  
BANK 25  
BANK 26  
BANK 27  
BANK 28  
BANK 29  
BANK 30  
BANK 31  
C00h  
C01h  
C02h  
C03h  
C04h  
C05h  
C06h  
C07h  
C08h  
C09h  
C0Ah  
C0Bh  
C0Ch  
C0Dh  
C0Eh  
C0Fh  
C10h  
C11h  
C12h  
C13h  
C14h  
C15h  
C16h  
C17h  
C18h  
C19h  
C1Ah  
C1Bh  
C1Ch  
C1Dh  
C1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
C80h  
C81h  
C82h  
C83h  
C84h  
C85h  
C86h  
C87h  
C88h  
C89h  
C8Ah  
C8Bh  
C8Ch  
C8Dh  
C8Eh  
C8Fh  
C90h  
C91h  
C92h  
C93h  
C94h  
C95h  
C96h  
C97h  
C98h  
C99h  
C9Ah  
C9Bh  
C9Ch  
C9Dh  
C9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
D00h  
D01h  
D02h  
D03h  
D04h  
D05h  
D06h  
D07h  
D08h  
D09h  
D0Ah  
D0Bh  
D0Ch  
D0Dh  
D0Eh  
D0Fh  
D10h  
D11h  
D12h  
D13h  
D14h  
D15h  
D16h  
D17h  
D18h  
D19h  
D1Ah  
D1Bh  
D1Ch  
D1Dh  
D1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
D80h  
D81h  
D82h  
D83h  
D84h  
D85h  
D86h  
D87h  
D88h  
D89h  
D8Ah  
D8Bh  
D8Ch  
D8Dh  
D8Eh  
D8Fh  
D90h  
D91h  
D92h  
D93h  
D94h  
D95h  
D96h  
D97h  
D98h  
D99h  
D9Ah  
D9Bh  
D9Ch  
D9Dh  
D9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
E00h  
E01h  
E02h  
E03h  
E04h  
E05h  
E06h  
E07h  
E08h  
E09h  
E0Ah  
E0Bh  
E0Ch  
E0Dh  
E0Eh  
E0Fh  
E10h  
E11h  
E12h  
E13h  
E14h  
E15h  
E16h  
E17h  
E18h  
E19h  
E1Ah  
E1Bh  
E1Ch  
E1Dh  
E1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
E80h  
E81h  
E82h  
E83h  
E84h  
E85h  
E86h  
E87h  
E88h  
E89h  
E8Ah  
E8Bh  
E8Ch  
E8Dh  
E8Eh  
E8Fh  
E90h  
E91h  
E92h  
E93h  
E94h  
E95h  
E96h  
E97h  
E98h  
E99h  
E9Ah  
E9Bh  
E9Ch  
E9Dh  
E9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
F00h  
F01h  
F02h  
F03h  
F04h  
F05h  
F06h  
F07h  
F08h  
F09h  
F0Ah  
F0Bh  
F0Ch  
F0Dh  
F0Eh  
F0Fh  
F10h  
F11h  
F12h  
F13h  
F14h  
F15h  
F16h  
F17h  
F18h  
F19h  
F1Ah  
F1Bh  
F1Ch  
F1Dh  
F1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
F80h  
F81h  
F82h  
F83h  
F84h  
F85h  
F86h  
F87h  
F88h  
F89h  
F8Ah  
F8Bh  
F8Ch  
F8Dh  
F8Eh  
F8Fh  
F90h  
F91h  
F92h  
F93h  
F94h  
F95h  
F96h  
F97h  
F98h  
F99h  
F9Ah  
F9Bh  
F9Ch  
F9Dh  
F9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
See Table 3-9  
C1Fh  
C20h  
C9Fh  
CA0h  
D1Fh  
D20h  
D9Fh  
DA0h  
E1Fh  
E20h  
E9Fh  
EA0h  
F1Fh  
F20h  
F9Fh  
FA0h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
C6Fh  
C70h  
CEFh  
CF0h  
D6Fh  
D70h  
DEFh  
DF0h  
E6Fh  
E70h  
EEFh  
EF0h  
F6Fh  
F70h  
FEFh  
FF0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
CFFh  
D7Fh  
DFFh  
E7Fh  
EFFh  
F7Fh  
FFFh  
CFFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
PIC16(L)F1946/1947  
TABLE 3-8:  
PIC16(L)F1946/47 MEMORY  
MAP, BANK 15  
TABLE 3-9:  
PIC16(L)F1946/47 MEMORY  
MAP, BANK 31  
Bank 15  
Bank 31  
LCDCON  
LCDPS  
LCDREF  
LCDCST  
LCDRL  
F8Ch  
F8Dh  
F8Eh  
F8Fh  
F90h  
F91h  
F92h  
F93h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
LCDSE0  
LCDSE1  
LCDSE2  
LCDSE3  
LCDSE4  
LCDSE5  
F94h  
F95h  
F96h  
F97h  
F98h  
F99h  
F9Ah  
F9Bh  
F9Ch  
F9Dh  
F9Eh  
F9Fh  
FA0h  
FA1h  
FA2h  
FA3h  
FA4h  
FA5h  
FA6h  
FA7h  
FA8h  
FA9h  
FAAh  
FABh  
79Fh  
7A0h  
7A1h  
7A2h  
7A3h  
7A4h  
7A5h  
7A6h  
7A7h  
7A8h  
7A9h  
7AAh  
7ABh  
7ACh  
7ADh  
7AEh  
7AFh  
7B0h  
7B1h  
7B2h  
7B3h  
7B4h  
7B5h  
7B6h  
7B7h  
LCDDATA0  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
LCDDATA10  
LCDDATA11  
LCDDATA12  
LCDDATA13  
LCDDATA14  
LCDDATA15  
LCDDATA16  
LCDDATA17  
LCDDATA18  
LCDDATA19  
LCDDATA20  
LCDDATA21  
LCDDATA22  
LCDDATA23  
FDFh  
FC0h  
FDFh  
FE0h  
FE1h  
FE2h  
FE3h  
FE4h  
FE5h  
FE6h  
FE7h  
FE8h  
FE9h  
FEAh  
FEBh  
FECh  
FEDh  
FEEh  
FEFh  
7B8h  
Unimplemented  
Read as ‘0’  
STATUS_SHAD  
WREG_SHAD  
BSR_SHAD  
PCLATH_SHAD  
FSR0L_SHAD  
FSR0H_SHAD  
FSR1L_SHAD  
FSR1H_SHAD  
7EFh  
Legend:  
= Unimplemented data memory locations, read  
as ‘0’.  
STKPTR  
TOSL  
TOSH  
Legend:  
= Unimplemented data memory locations, read  
as ‘0’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 31  
PIC16(L)F1946/1947  
3.3.5  
SPECIAL FUNCTION REGISTERS  
SUMMARY  
The Special Function Register Summary for the device  
family are as follows:  
Device  
Bank(s)  
Page No.  
0
33  
34  
35  
36  
37  
38  
39  
40  
41  
43  
44  
46  
47  
1
2
3
4
5
PIC16(L)F1946/1947  
6
7
8
9-14  
15  
16-30  
31  
DS41414D-page 32  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
000h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
001h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
002h(2)  
003h(2)  
004h(2)  
005h(2)  
006h(2)  
007h(2)  
008h(2)  
009h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx xxxx uuuu  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
00Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
00Bh(2)  
00Ch  
00Dh  
00Eh  
00Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
INTCON  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PIR1  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
PORTE Data Latch when written: PORTE pins when read  
TMR1GIF  
OSFIF  
ADIF  
C2IF  
RCIF  
C1IF  
TXIF  
EEIF  
SSPIF  
BCLIF  
TMR6IF  
CCP1IF  
LCDIF  
TMR2IF  
C3IF  
TMR1IF 0000 0000 0000 0000  
CCP2IF 0000 0000 0000 0000  
PIR2  
PIR3  
CCP5IF  
CCP4IF  
RC2IF  
CCP3IF  
TX2IF  
TMR4IF  
BCL2IF  
-000 0-0- -000 0-0-  
PIR4  
SSP2IF --00 --00 --00 --00  
xxxx xxxx uuuu uuuu  
TMR0  
Timer0 Module Register  
TMR1L  
TMR1H  
T1CON  
T1GCON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1CS<1:0>  
TMR1GE T1GPOL  
T1CKPS<1:0>  
T1GTM T1GSPM  
T1OSCEN T1SYNC  
TMR1ON 0000 00-0 uuuu uu-u  
T1GGO/  
DONE  
T1GVAL  
T1GSS<1:0>  
0000 0x00 uuuu uxuu  
01Ah  
TMR2  
Timer 2 Module Register  
Timer 2 Period Register  
0000 0000 0000 0000  
1111 1111 1111 1111  
-000 0000 -000 0000  
01Bh  
01Ch  
01Dh  
01Eh  
01Fh  
PR2  
T2CON  
T2OUTPS<3:0>  
TMR2ON  
T2CKPS<1:0>  
Unimplemented  
CPSCON0  
CPSCON1  
CPSON  
CPSRM  
CPSRNG1 CPSRNG0 CPSOUT T0XCS 00-- 0000 00-- 0000  
CPSCH<4:0> ---0 0000 ---0 0000  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 33  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
080h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
081h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
082h(2)  
083h(2)  
084h(2)  
085h(2)  
086h(2)  
087h(2)  
088h(2)  
089h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
08Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
08Bh(2)  
08Ch  
08Dh  
08Eh  
08Fh  
090h  
091h  
092h  
093h  
094h  
095h  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
09Fh  
Legend:  
INTCON  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
PORTA Data Direction Register  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
PORTE Data Direction Register  
TMR1GIE  
OSFIE  
ADIE  
C2IE  
RCIE  
C1IE  
TXIE  
EEIE  
SSPIE  
BCLIE  
CCP1IE  
LCDIE  
TMR2IE  
C3IE  
TMR1IE 0000 0000 0000 0000  
CCP2IE 0000 0000 0000 0000  
PIE2  
PIE3  
CCP5IE  
CCP4IE  
RC2IE  
T0CS  
CCP3IE  
TX2IE  
T0SE  
TMR6IE  
TMR4IE  
BCL2IE  
PS<2:0>  
POR  
-000 0-0- -000 0-0-  
PIE4  
SSP2IE --00 --00 --00 --00  
OPTION_REG WPUEN  
INTEDG  
STKUNF  
PSA  
1111 1111 1111 1111  
PCON  
STKOVF  
RMCLR  
WDTPS<4:0>  
RI  
BOR  
00-- 11qq qq-- qquu  
WDTCON  
OSCTUNE  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
SWDTEN --01 0110 --01 0110  
TUN<5:0>  
--00 0000 --00 0000  
SPLLEN  
T1OSCR  
IRCF<3:0>  
SCS<1:0>  
0011 1-00 0011 1-00  
HFIOFS 00q0 0q0- qqqq qq0-  
xxxx xxxx uuuu uuuu  
PLLR  
OSTS  
HFIOFR  
HFIOFL  
MFIOFR  
LFIOFR  
A/D Result Register Low  
A/D Result Register High  
xxxx xxxx uuuu uuuu  
CHS<4:0>  
GO/DONE  
ADON  
-000 0000 -000 0000  
ADFM  
ADCS<2:0>  
ADNREF ADPREF1 ADPREF0 0000 -000 0000 -000  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
DS41414D-page 34  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
100h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
101h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
102h(2)  
103h(2)  
104h(2)  
105h(2)  
106h(2)  
107h(2)  
108h(2)  
109h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
10Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
10Bh(2)  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
INTCON  
LATA  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
PORTA Data Latch  
PORTB Data Latch  
PORTC Data Latch  
PORTD Data Latch  
PORTE Data Latch  
LATB  
LATC  
LATD  
LATE  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
CMOUT  
BORCON  
FVRCON  
DACCON0  
DACCON1  
SRCON0  
SRCON1  
C1ON  
C1INTP  
C2ON  
C2INTP  
C1OUT  
C1OE  
C1PCH1  
C2OE  
C2PCH1  
C1POL  
C1PCH0  
C2POL  
C2PCH0  
C1SP  
C1HYS C1SYNC 0000 -100 0000 -100  
C1NCH<1:0> 0000 --00 0000 --00  
C2HYS C2SYNC 0000 -100 0000 -100  
C2NCH<1:0> 0000 --00 0000 --00  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
Legend:  
C1INTN  
C2OUT  
C2INTN  
C2SP  
MC3OUT MC2OUT MC1OUT ---- -000 ---- -000  
BORRDY 1--- ---q u--- ---u  
ADFVR<1:0> 0q00 0000 0q00 0000  
SBOREN  
FVREN  
DACEN  
FVRRDY  
DACLPS  
TSEN  
DACOE  
TSRNG  
CDAFVR1 CDAFVR0  
DACPSS<1:0>  
DACNSS 000- 00-0 000- 00-0  
DACR<4:0>  
---0 0000 ---0 0000  
SRLEN  
SRSPE  
SRCLK2  
SRSCKE  
SRCLK1  
SRSC2E  
SRCLK0  
SRSC1E  
SRQEN  
SRRPE  
SRNQEN  
SRPS  
SRPR  
0000 0000 0000 0000  
SRRCKE SRRC2E SRRC1E 0000 0000 0000 0000  
Unimplemented  
APFCON  
CM3CON0  
CM3CON1  
P3CSEL  
C3ON  
P3BSEL  
P2DSEL  
C3OE  
P2CSEL  
C3POL  
P2BSEL  
CCP2SEL P1CSEL P1BSEL 0000 0000 0000 0000  
C3OUT  
C3INTN  
C3SP  
C3HYS C3SYNC 0000 -100 0000 -100  
C3NCH<1:0> 0000 --00 0000 --00  
C3INTP  
C3PCH1  
C3PCH0  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 35  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 3  
180h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
181h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
182h(2)  
183h(2)  
184h(2)  
185h(2)  
186h(2)  
187h(2)  
188h(2)  
189h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
18Ah(1, 2) PCLATH  
GIE  
Write Buffer for the upper 7 bits of the Program Counter  
18Bh(2)  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
Legend:  
INTCON  
ANSELA  
PEIE  
TMR0IE  
ANSA5  
INTE  
IOCIE  
TMR0IF  
ANSA2  
INTF  
IOCIF  
ANSA3  
ANSA1  
ANSA0 --1- 1111 --1- 1111  
Unimplemented  
Unimplemented  
Unimplemented  
ANSELE  
EEADRL  
EEADRH  
EEDATL  
EEDATH  
EECON1  
EECON2  
ANSE2  
ANSE1  
ANSE0 ---- -111 ---- -111  
0000 0000 0000 0000  
1000 0000 1000 0000  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
EEPROM / Program Memory Address Register Low Byte  
(3)  
EEPROM / Program Memory Address Register High Byte  
EEPROM / Program Memory Read Data Register Low Byte  
EEPROM / Program Memory Read Data Register High Byte  
EEPGD  
CFGS  
LWLO  
FREE  
WRERR  
WREN  
WR  
RD  
0000 x000 0000 q000  
0000 0000 0000 0000  
EEPROM control register 2  
Unimplemented  
Unimplemented  
RC1REG  
TX1REG  
SP1BRGL  
SP1BRGH  
RC1STA  
TX1STA  
BAUD1CON  
USART Receive Data Register  
USART Transmit Data Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0010 0000 0010  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
SPEN  
CSRC  
RX9  
TX9  
SREN  
TXEN  
CREN  
SYNC  
SCKP  
ADDEN  
SENDB  
BRG16  
FERR  
BRGH  
OERR  
TRMT  
WUE  
RX9D  
TX9D  
ABDOVF  
RCIDL  
ABDEN 01-0 0-00 01-0 0-00  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
DS41414D-page 36  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 4  
200h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
201h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
202h(2)  
203h(2)  
204h(2)  
205h(2)  
206h(2)  
207h(2)  
208h(2)  
209h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
20Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
20Bh(2)  
20Ch  
20Dh  
20Eh  
20Fh  
210h  
211h  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
Unimplemented  
WPUB  
WPUB7  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2  
WPUB1  
WPUB0 1111 1111 1111 1111  
Unimplemented  
Unimplemented  
Unimplemented  
SSP1BUF  
SSP1ADD  
SSP1MSK  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
1111 1111 1111 1111  
Synchronous Serial Port Receive Buffer/Transmit Register  
212h  
213h  
ADD<7:0>  
MSK<7:0>  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
SSP1STAT  
SSP1CON1  
SSP1CON2  
SSP1CON3  
SMP  
WCOL  
GCEN  
ACKTIM  
CKE  
SSPOV  
ACKSTAT  
PCIE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPEN  
ACKDT  
SCIE  
CKP  
SSPM<3:0>  
ACKEN  
BOEN  
RCEN  
PEN  
RSEN  
AHEN  
SEN  
SDAHT  
SBCDE  
DHEN  
Unimplemented  
SSP2BUF  
SSP2ADD  
SSP2MSK  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
1111 1111 1111 1111  
Synchronous Serial Port Receive Buffer/Transmit Register  
ADD<7:0>  
MSK<7:0>  
21Ch  
SSP2STAT  
SSP2CON1  
SSP2CON2  
SSP2CON3  
SMP  
WCOL  
GCEN  
ACKTIM  
CKE  
SSPOV  
ACKSTAT  
PCIE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
21Dh  
SSPEN  
ACKDT  
SCIE  
CKP  
SSPM<3:0>  
21Eh  
ACKEN  
BOEN  
RCEN  
PEN  
RSEN  
AHEN  
SEN  
21Fh  
SDAHT  
SBCDE  
DHEN  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 37  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 5  
280h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
281h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
282h(2)  
283h(2)  
284h(2)  
285h(2)  
286h(2)  
287h(2)  
288h(2)  
289h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
28Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE  
28Bh(2)  
28Ch  
28Dh  
28Eh  
28Fh  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
29Fh  
Legend:  
INTCON  
PORTF  
GIE  
TMR0IF  
INTF  
RG1  
IOCIF  
RG0  
PORTF Data Latch when written: PORTF pins when read  
PORTG  
RG5  
RG4  
RG3  
RG2  
Unimplemented  
Unimplemented  
Unimplemented  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
CCP1AS  
PSTR1CON  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
P1M<1:0>  
P1RSEN  
DC1B<1:0>  
CCP1M<3:0>  
P1DC<6:0>  
STR1D  
CCP1ASE  
CCP1AS<2:0>  
PSS1AC<1:0>  
PSS1BD<1:0>  
STR1B STR1A ---0 0001 ---0 0001  
STR1SYNC  
STR1C  
Unimplemented  
CCPR2L  
CCPR2H  
CCP2CON  
PWM2CON  
CCP2AS  
PSTR2CON  
CCPTMRS0  
CCPTMRS1  
Capture/Compare/PWM Register 2 (LSB)  
Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
P2M<1:0>  
P2RSEN  
DC2B<1:0>  
CCP2M<3:0>  
P2DC<6:0>  
CCP2ASE  
CCP2AS<2:0>  
PSS2AC<1:0>  
STR2D STR2C  
C2TSEL1 C2TSEL0 C1TSEL1 C1TSEL0 0000 0000 0000 0000  
C5TSEL<1:0> ---- --00 ---- --00  
PSS2BD<1:0>  
C3TSEL1  
STR2SYNC  
C3TSEL0  
STR2B  
STR2A ---0 0001 ---0 0001  
C4TSEL1 C4TSEL0  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
DS41414D-page 38  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 6  
300h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
301h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
302h(2)  
303h(2)  
304h(2)  
305h(2)  
306h(2)  
307h(2)  
308h(2)  
309h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
30Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
30Bh(2)  
30Ch  
30Dh  
30Eh  
30Fh  
310h  
311h  
INTCON  
TRISF  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
PORTF Data Direction Register  
TRISG  
TRISG5  
TRISG4  
TRISG3  
TRISG2  
TRISG1  
TRISG0 --11 1111 --11 1111  
Unimplemented  
Unimplemented  
Unimplemented  
CCPR3L  
CCPR3H  
CCP3CON  
PWM3CON  
CCP3AS  
PSTR3CON  
Capture/Compare/PWM Register 3 (LSB)  
Capture/Compare/PWM Register 3 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
31Fh  
Legend:  
P3M<1:0>  
P3RSEN  
DC3B<1:0>  
CCP3M<1:0>  
0000 0000 0000 0000  
P3DC<6:0>  
0000 0000 0000 0000  
CCP3ASE  
CCP3AS<2:0>  
STR3SYNC  
PSS3AC<1:0>  
PSS3BD<1:0>  
0000 0000 0000 0000  
STR3D  
STR3C  
STR3B  
STR3A ---0 0001 ---0 0001  
Unimplemented  
CCPR4L  
CCPR4H  
CCP4CON  
Capture/Compare/PWM Register 4 (LSB)  
Capture/Compare/PWM Register 4 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
DC4B<1:0>  
CCP4M<3:0>  
Unimplemented  
CCPR5L  
CCPR5H  
CCP5CON  
Capture/Compare/PWM Register 5 (LSB)  
Capture/Compare/PWM Register 5 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
DC5B<1:0>  
CCP5M<3:0>  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 39  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 7  
380h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
381h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
382h(2)  
383h(2)  
384h(2)  
385h(2)  
386h(2)  
387h(2)  
388h(2)  
389h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
38Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
38Bh(2)  
38Ch  
38Dh  
38Eh  
38Fh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
39Fh  
Legend:  
INTCON  
LATF  
LATG  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
PORTF Data Latch  
LATG5  
LATG4  
LATG3  
LATG2  
LATG1  
LATG0 --xx xxxx --uu uuuu  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
IOCBP  
IOCBN  
IOCBF  
IOCBP7  
IOCBN7  
IOCBF7  
IOCBP6  
IOCBN6  
IOCBF6  
IOCBP5  
IOCBN5  
IOCBF5  
IOCBP4  
IOCBN4  
IOCBF4  
IOCBP3  
IOCBN3  
IOCBF3  
IOCBP2  
IOCBN2  
IOCBF2  
IOCBP1  
IOCBP0 0000 0000 0000 0000  
IOCBN1 IOCBN0 0000 0000 0000 0000  
IOCBF1 IOCBF0 0000 0000 0000 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
DS41414D-page 40  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 8  
400h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
401h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
402h(2)  
403h(2)  
404h(2)  
405h(2)  
406h(2)  
407h(2)  
408h(2)  
409h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
40Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
40Bh(2)  
40Ch  
40Dh  
40Eh  
40Fh  
410h  
411h  
INTCON  
ANSELF  
ANSELG  
GIE  
INTF  
IOCIF  
ANSELF7 ANSELF6 ANSELF5 ANSELF4 ANSELF3 ANSELF2 ANSELF1 ANSELF0 1111 1111 1111 1111  
ANSELG4 ANSELG3 ANSELG2 ANSELG1  
---1 111- ---1 111-  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
412h  
413h  
414h  
415h  
416h  
417h  
418h  
419h  
41Ah  
41Bh  
41Ch  
41Dh  
41Eh  
41Fh  
Legend:  
TMR4  
PR4  
T4CON  
Timer 4 Module Register  
Timer 4 Period Register  
0000 0000 0000 0000  
1111 1111 1111 1111  
-000 0000 -000 0000  
T4OUTPS<3:0>  
TMR4ON  
T4CKPS<1:0>  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Timer 6 Module Register  
Timer 6 Period Register  
TMR6  
PR6  
T6CON  
0000 0000 0000 0000  
1111 1111 1111 1111  
-000 0000 -000 0000  
T6OUTPS<3:0>  
TMR6ON  
T6CKPS<1:0>  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 41  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 9  
480h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
481h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
482h(2)  
483h(2)  
404h(2)  
485h(2)  
486h(2)  
487h(2)  
488h(2)  
489h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
48Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
48Bh(2)  
48Ch  
48Dh  
48Eh  
48Fh  
490h  
491h  
492h  
493h  
494h  
495h  
496h  
497h  
498h  
499h  
49Ah  
49Bh  
49Ch  
49Dh  
49Eh  
49Fh  
Legend:  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
Unimplemented  
WPUG  
WPUG5  
--1- ---- --1- ----  
Unimplemented  
Unimplemented  
Unimplemented  
RC2REG  
USART Receive Data Register  
USART Transmit Data Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0010 0000 0010  
TX2REG  
SP2BRGL  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
SP2BRGH  
RC2STA  
SPEN  
CSRC  
RX9  
TX9  
SREN  
TXEN  
CREN  
SYNC  
SCKP  
ADDEN  
SENDB  
BRG16  
FERR  
BRGH  
OERR  
TRMT  
WUE  
RX9D  
TX9D  
TX2STA  
BAUD2CON  
ABDOVF  
RCIDL  
ABDEN 01-0 0-00 01-0 0-00  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
DS41414D-page 42  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Banks 10-14  
x00h/  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
x80h(2)  
x00h/  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
x81h(2)  
x02h/  
PCL  
Program Counter (PC) Least Significant Byte  
x82h(2)  
x03h/  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
x83h(2)  
x04h/  
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
x84h(2)  
x05h/  
x85h(2)  
x06h/  
x86h(2)  
x07h/  
x87h(2)  
x08h/  
BSR<4:0>  
x88h(2)  
x09h/  
WREG  
PCLATH  
INTCON  
Working Register  
x89h(2)  
x0Ah/  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
x8Ah(1),(2)  
x0Bh/  
GIE  
INTF  
IOCIF  
x8Bh(2)  
x0Ch/  
x8Ch  
Unimplemented  
x1Fh/  
x9Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 43  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 15  
780h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
781h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
782h(2)  
783h(2)  
784h(2)  
785h(2)  
786h(2)  
787h(2)  
788h(2)  
789h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
78Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
78Bh(2)  
78Ch  
78Dh  
78Eh  
78Fh  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
79Fh  
7A0h  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
LCDCON  
LCDPS  
LCDREF  
LCDCST  
LCDRL  
LCDEN  
WFT  
SLPEN  
WERR  
LCDA  
LCDIRI  
WA  
CS<1:0>  
LMUX<1:0>  
000- 0011 000- 0011  
0000 0000 0000 0000  
000- 000- 000- 000-  
---- -000 ---- -000  
0000 -000 0000 -000  
BIASMD  
LCDIRS  
LP<3:0>  
VLCD3PE VLCD2PE VLCD1PE  
LCDIRE  
LCDCST<2:0>  
LRLAT<2:0>  
LRLAP<1:0>  
LRLBP<1:0>  
Unimplemented  
Unimplemented  
LCDSE0  
LCDSE1  
LCDSE2  
LCDSE3  
LCDSE4  
LCDSE5  
SE<7:0>  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
--00 0000 --uu uuuu  
SE<15:8>  
SE<23:16>  
SE<31:24>  
SE<39:32>  
SE<45:40>  
Unimplemented  
Unimplemented  
LCDDATA0  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
xxxx xxxx uuuu uuuu  
7A1h  
7A2h  
7A3h  
7A4h  
7A5h  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
xxxx xxxx uuuu uuuu  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16 xxxx xxxx uuuu uuuu  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16 xxxx xxxx uuuu uuuu  
COM1  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
DS41414D-page 44  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 15 (Continued)  
7A6h  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
LCDDATA10  
LCDDATA11  
LCDDATA12  
LCDDATA13  
LCDDATA14  
LCDDATA15  
LCDDATA16  
LCDDATA17  
LCDDATA18  
LCDDATA19  
LCDDATA20  
LCDDATA21  
LCDDATA22  
LCDDATA23  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
7A7h  
7A8h  
7A9h  
7AAh  
7ABh  
7ACh  
7ADh  
7AEh  
7AFh  
7B0h  
7B1h  
7B2h  
7B3h  
7B4h  
7B5h  
7B6h  
7B7h  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16 xxxx xxxx uuuu uuuu  
COM2  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16 xxxx xxxx uuuu uuuu  
COM3  
SEG31  
COM0  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24 xxxx xxxx uuuu uuuu  
COM0  
SEG39  
COM0  
SEG38  
COM0  
SEG37  
COM0  
SEG36  
COM0  
SEG35  
COM0  
SEG34  
COM0  
SEG33  
COM0  
SEG32 xxxx xxxx uuuu uuuu  
COM0  
SEG45  
COM0  
SEG44  
COM0  
SEG43  
COM0  
SEG42  
COM0  
SEG41  
COM0  
SEG40 --xx xxxx --uu uuuu  
COM0  
SEG31  
COM1  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24 xxxx xxxx uuuu uuuu  
COM1  
SEG39  
COM1  
SEG38  
COM1  
SEG37  
COM1  
SEG36  
COM1  
SEG35  
COM1  
SEG34  
COM1  
SEG33  
COM1  
SEG32 xxxx xxxx uuuu uuuu  
COM1  
SEG45  
COM1  
SEG44  
COM1  
SEG43  
COM1  
SEG42  
COM1  
SEG41  
COM1  
SEG40 --xx xxxx --uu uuuu  
COM1  
SEG31  
COM2  
SEG30  
COM2  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24 xxxx xxxx uuuu uuuu  
COM2  
SEG39  
COM2  
SEG38  
COM2  
SEG37  
COM2  
SEG36  
COM2  
SEG35  
COM2  
SEG34  
COM2  
SEG33  
COM2  
SEG32 xxxx xxxx uuuu uuuu  
COM2  
SEG45  
COM2  
SEG44  
COM2  
SEG43  
COM2  
SEG42  
COM2  
SEG41  
COM2  
SEG40 --xx xxxx --uu uuuu  
COM2  
SEG31  
COM3  
SEG30  
COM3  
SEG29  
COM3  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24 xxxx xxxx uuuu uuuu  
COM3  
SEG39  
COM3  
SEG38  
COM3  
SEG37  
COM3  
SEG36  
COM3  
SEG35  
COM3  
SEG34  
COM3  
SEG33  
COM3  
SEG32 xxxx xxxx uuuu uuuu  
COM3  
SEG45  
COM3  
SEG44  
COM3  
SEG43  
COM3  
SEG42  
COM3  
SEG41  
COM3  
SEG40 --xx xxxx --uu uuuu  
COM3  
7B8h  
Unimplemented  
7EFh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 45  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Banks 16-30  
x00h/  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
x80h(2)  
x00h/  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
x81h(2)  
x02h/  
PCL  
Program Counter (PC) Least Significant Byte  
x82h(2)  
x03h/  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
x83h(2)  
x04h/  
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
x84h(2)  
x05h/  
x85h(2)  
x06h/  
x86h(2)  
x07h/  
x87h(2)  
x08h/  
BSR<4:0>  
x88h(2)  
x09h/  
WREG  
PCLATH  
INTCON  
Working Register  
x89h(2)  
x0Ah/  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
x8Ah(1),(2)  
x0Bh/  
GIE  
INTF  
IOCIF  
x8Bh(2)  
x0Ch/  
x8Ch  
Unimplemented  
x1Fh/  
x9Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
DS41414D-page 46  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 31  
F80h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
F81h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
F82h(2)  
F83h(2)  
F84h(2)  
F85h(2)  
F86h(2)  
F87h(2)  
F88h(2)  
F89h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR<4:0>  
WREG  
Working Register  
F8Ah(1),(2 PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
)
F8Bh(2)  
INTCON  
GIE  
PEIE TMR0IE INTE IOCIE TMR0IF  
INTF  
DC  
IOCIF  
C
0000 000x 0000 000u  
F8Ch  
FE3h  
Unimplemented  
FE4h  
FE5h  
FE6h  
FE7h  
FE8h  
FE9h  
FEAh  
FEBh  
STATUS_  
Z
---- -xxx ---- -uuu  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
-xxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SHAD  
WREG_  
SHAD  
BSR_  
Working Register Normal (Non-ICD) Shadow  
Bank Select Register Normal (Non-ICD) Shadow  
Program Counter Latch High Register Normal (Non-ICD) Shadow  
Indirect Data Memory Address 0 Low Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 0 High Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 1 Low Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 1 High Pointer Normal (Non-ICD) Shadow  
Unimplemented  
SHAD  
PCLATH_  
SHAD  
FSR0L_  
SHAD  
FSR0H_  
SHAD  
FSR1L_  
SHAD  
FSR1H_  
SHAD  
FECh  
FEDh  
FEEh  
Current Stack Pointer  
---1 1111 ---1 1111  
xxxx xxxx uuuu uuuu  
-xxx xxxx -uuu uuuu  
STKPTR  
TOSL  
Top of Stack Low byte  
Top of Stack High byte  
FEFh  
TOSH  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 47  
PIC16(L)F1946/1947  
3.4.3  
COMPUTED FUNCTION CALLS  
3.4  
PCL and PCLATH  
A computed function CALLallows programs to maintain  
tables of functions and provide another way to execute  
state machines or look-up tables. When performing a  
table read using a computed function CALL, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block).  
The Program Counter (PC) is 15 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<14:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 3-4 shows the five  
situations for the loading of the PC.  
If using the CALLinstruction, the PCH<2:0> and PCL  
registers are loaded with the operand of the CALL  
instruction. PCH<6:3> is loaded with PCLATH<6:3>.  
FIGURE 3-4:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
The CALLWinstruction enables computed calls by com-  
bining PCLATH and W to form the destination address.  
A computed CALLWis accomplished by loading the W  
register with the desired address and executing CALLW.  
The PCL register is loaded with the value of W and  
PCH is loaded with PCLATH.  
14  
0
Instruction with  
PCL as  
Destination  
PCH  
PCL  
PC  
8
7
6
0
ALU Result  
PCLATH  
14  
0
PCH  
PCL  
3.4.4  
BRANCHING  
GOTO, CALL  
PC  
The branching instructions add an offset to the PC.  
This allows relocatable code and code that crosses  
page boundaries. There are two forms of branching,  
BRW and BRA. The PC will have incremented to fetch  
the next instruction in both cases. When using either  
branching instruction, a PCL memory boundary may be  
crossed.  
4
11  
6
0
0
PCLATH  
OPCODE <10:0>  
14  
0
PCH  
PCL  
CALLW  
PC  
7
8
6
W
PCLATH  
If using BRW, load the W register with the desired  
unsigned address and execute BRW. The entire PC will  
be loaded with the address PC + 1 + W.  
14  
0
0
PCH  
PCH  
PCL  
BRW  
PC  
If using BRA, the entire PC will be loaded with PC + 1 +,  
the signed value of the operand of the BRAinstruction.  
15  
PC + W  
14  
PCL  
BRA  
PC  
15  
PC + OPCODE <8:0>  
3.4.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program Coun-  
ter PC<14:8> bits (PCH) to be replaced by the contents  
of the PCLATH register. This allows the entire contents  
of the program counter to be changed by writing the  
desired upper 7 bits to the PCLATH register. When the  
lower 8 bits are written to the PCL register, all 15 bits of  
the program counter will change to the values con-  
tained in the PCLATH register and those being written  
to the PCL register.  
3.4.2  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset to  
the program counter (ADDWF PCL). When performing a  
table read using a computed GOTOmethod, care should  
be exercised if the table location crosses a PCL memory  
boundary (each 256-byte block). Refer to the Application  
Note AN556, “Implementing a Table Read” (DS00556).  
DS41414D-page 48  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
3.5.1  
ACCESSING THE STACK  
3.5  
Stack  
The stack is available through the TOSH, TOSL and  
STKPTR registers. STKPTR is the current value of the  
Stack Pointer. TOSH:TOSL register pair points to the  
TOP of the stack. Both registers are read/writable. TOS  
is split into TOSH and TOSL due to the 15-bit size of the  
PC. To access the stack, adjust the value of STKPTR,  
which will position TOSH:TOSL, then read/write to  
TOSH:TOSL. STKPTR is 5 bits to allow detection of  
overflow and underflow.  
All devices have a 16-level x 15-bit wide hardware  
stack (refer to Figures 3-4 and 3-5). The stack space is  
not part of either program or data space. The PC is  
PUSHed onto the stack when CALLor CALLWinstruc-  
tions are executed or an interrupt causes a branch. The  
stack is POPed in the event of a RETURN, RETLWor a  
RETFIEinstruction execution. PCLATH is not affected  
by a PUSH or POP operation.  
The stack operates as a circular buffer if the STVREN  
bit is programmed to ‘0‘ (Configuration Words). This  
means that after the stack has been PUSHed sixteen  
times, the seventeenth PUSH overwrites the value that  
was stored from the first PUSH. The eighteenth PUSH  
overwrites the second PUSH (and so on). The  
STKOVF and STKUNF flag bits will be set on an Over-  
flow/Underflow, regardless of whether the Reset is  
enabled.  
Note:  
Care should be taken when modifying the  
STKPTR while interrupts are enabled.  
During normal program operation, CALL, CALLWand  
Interrupts will increment STKPTR while RETLW,  
RETURN, and RETFIEwill decrement STKPTR. At any  
time STKPTR can be inspected to see how much stack  
is left. The STKPTR always points at the currently used  
place on the stack. Therefore, a CALL or CALLW will  
increment the STKPTR and then write the PC, and a  
return will unload the PC and then decrement the STK-  
PTR.  
Note 1: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, CALLW, RETURN, RETLW and  
RETFIE instructions or the vectoring to  
an interrupt address.  
Reference Figure through Figure for examples of  
accessing the stack.  
FIGURE 3-5:  
ACCESSING THE STACK EXAMPLE 1  
Stack Reset Disabled  
STKPTR = 0x1F  
TOSH:TOSL  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x1F  
(STVREN = 0)  
Initial Stack Configuration:  
After Reset, the stack is empty. The  
empty stack is initialized so the Stack  
Pointer is pointing at 0x1F. If the Stack  
Overflow/Underflow Reset is enabled, the  
TOSH/TOSL registers will return ‘0’. If  
the Stack Overflow/Underflow Reset is  
disabled, the TOSH/TOSL registers will  
return the contents of stack address 0x0F.  
Stack Reset Enabled  
STKPTR = 0x1F  
TOSH:TOSL  
0x0000  
(STVREN = 1)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 49  
PIC16(L)F1946/1947  
FIGURE 3-6:  
ACCESSING THE STACK EXAMPLE 2  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
This figure shows the stack configuration  
after the first CALLor a single interrupt.  
If a RETURN instruction is executed, the  
return address will be placed in the  
Program Counter and the Stack Pointer  
decremented to the empty state (0x1F).  
TOSH:TOSL  
Return Address  
STKPTR = 0x00  
FIGURE 3-7:  
ACCESSING THE STACK EXAMPLE 3  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
After seven CALLs or six CALLs and an  
interrupt, the stack looks like the figure  
on the left. A series of RETURNinstructions  
will repeatedly place the return addresses  
into the Program Counter and pop the stack.  
STKPTR = 0x06  
TOSH:TOSL  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
DS41414D-page 50  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
FIGURE 3-8:  
ACCESSING THE STACK EXAMPLE 4  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
When the stack is full, the next CALLor  
an interrupt will set the Stack Pointer to  
0x10. This is identical to address 0x00  
so the stack will wrap and overwrite the  
return address at 0x00. If the Stack  
Overflow/Underflow Reset is enabled, a  
Reset will occur and location 0x00 will  
not be overwritten.  
TOSH:TOSL  
STKPTR = 0x10  
3.5.2  
OVERFLOW/UNDERFLOW RESET  
If the STVREN bit in Configuration Words is  
programmed to ‘1’, the device will be reset if the stack  
is PUSHed beyond the sixteenth level or POPed  
beyond the first level, setting the appropriate bits  
(STKOVF or STKUNF, respectively) in the PCON  
register.  
3.6  
Indirect Addressing  
The INDFn registers are not physical registers. Any  
instruction that accesses an INDFn register actually  
accesses the register at the address specified by the  
File Select Registers (FSR). If the FSRn address  
specifies one of the two INDFn registers, the read will  
return ‘0’ and the write will not occur (though Status bits  
may be affected). The FSRn register value is created  
by the pair FSRnH and FSRnL.  
The FSR registers form a 16-bit address that allows an  
addressing space with 65536 locations. These locations  
are divided into three memory regions:  
• Traditional Data Memory  
• Linear Data Memory  
• Program Flash Memory  
2010-2012 Microchip Technology Inc.  
DS41414D-page 51  
PIC16(L)F1946/1947  
FIGURE 3-9:  
INDIRECT ADDRESSING  
0x0000  
0x0000  
Traditional  
Data Memory  
0x0FFF  
0x0FFF  
0x1000  
0x1FFF  
0x2000  
Reserved  
Linear  
Data Memory  
0x29AF  
0x29B0  
Reserved  
0x0000  
FSR  
Address  
Range  
0x7FFF  
0x8000  
Program  
Flash Memory  
0xFFFF  
0x7FFF  
Note:  
Not all memory regions are completely implemented. Consult device memory tables for memory limits.  
DS41414D-page 52  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
3.6.1  
TRADITIONAL DATA MEMORY  
The traditional data memory is a region from FSR  
address 0x000 to FSR address 0xFFF. The addresses  
correspond to the absolute addresses of all SFR, GPR  
and common registers.  
FIGURE 3-10:  
TRADITIONAL DATA MEMORY MAP  
Direct Addressing  
From Opcode  
Indirect Addressing  
4
BSR  
6
7
FSRxH  
0
7
FSRxL  
0
0
0
0
0
0
0
Location Select  
Bank Select  
Bank Select  
Location Select  
00000 00001 00010  
11111  
0x00  
0x7F  
Bank 0 Bank 1 Bank 2  
Bank 31  
2010-2012 Microchip Technology Inc.  
DS41414D-page 53  
PIC16(L)F1946/1947  
3.6.2  
LINEAR DATA MEMORY  
3.6.3  
PROGRAM FLASH MEMORY  
The linear data memory is the region from FSR  
address 0x2000 to FSR address 0x29AF. This region is  
a virtual region that points back to the 80-byte blocks of  
GPR memory in all the banks.  
To make constant data access easier, the entire  
program Flash memory is mapped to the upper half of  
the FSR address space. When the MSB of FSRnH is  
set, the lower 15 bits are the address in program  
memory which will be accessed through INDF. Only the  
lower 8 bits of each memory location is accessible via  
INDF. Writing to the program Flash memory cannot be  
accomplished via the FSR/INDF interface. All  
instructions that access program Flash memory via the  
FSR/INDF interface will require one additional  
instruction cycle to complete.  
Unimplemented memory reads as 0x00. Use of the  
linear data memory region allows buffers to be larger  
than 80 bytes because incrementing the FSR beyond  
one bank will go directly to the GPR memory of the next  
bank.  
The 16 bytes of common memory are not included in  
the linear data memory region.  
FIGURE 3-12:  
PROGRAM FLASH  
MEMORY MAP  
FIGURE 3-11:  
LINEAR DATA MEMORY  
MAP  
7
7
0
0
FSRnH  
FSRnL  
7
1
7
0
0
FSRnH  
FSRnL  
0
0 1  
Location Select  
0x8000  
0x0000  
Location Select  
0x2000  
0x020  
Bank 0  
0x06F  
0x0A0  
Bank 1  
0x0EF  
0x120  
Program  
Flash  
Memory  
(low 8  
bits)  
Bank 2  
0x16F  
0xF20  
Bank 30  
0x7FFF  
0xFFFF  
0xF6F  
0x29AF  
DS41414D-page 54  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
4.0  
DEVICE CONFIGURATION  
Device Configuration consists of Configuration Words,  
Code Protection and Device ID.  
4.1  
Configuration Words  
There are several Configuration Word bits that allow  
different oscillator and memory protection options.  
These are implemented as Configuration Word 1 at  
8007h and Configuration Word 2 at 8008h.  
Note:  
The DEBUG bit in Configuration Word 2 is  
managed automatically by device  
development tools including debuggers  
and programmers. For normal device  
operation, this bit should be maintained as  
a '1'.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 55  
PIC16(L)F1946/1947  
4.2  
Register Definitions: Configuration Words  
REGISTER 4-1:  
CONFIG1: CONFIGURATION WORD 1  
R/P-1  
R/P-1  
IESO  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
CPD  
FCMEN  
CLKOUTEN  
BOREN<1:0>  
bit 13  
bit 8  
R/P-1  
CP  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
bit 0  
MCLRE  
PWRTE  
WDTE<1:0>  
FOSC<2:0>  
bit 7  
Legend:  
R = Readable bit  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
‘0’ = Bit is cleared  
-n = Value when blank or after Bulk Erase  
bit 13  
bit 12  
bit 11  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
IESO: Internal External Switchover bit  
1= Internal/External Switchover mode is enabled  
0= Internal/External Switchover mode is disabled  
CLKOUTEN: Clock Out Enable bit  
If FOSC configuration bits are set to LP, XT, HS modes:  
This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin.  
All other FOSC modes:  
1= CLKOUT function is disabled. I/O function on the CLKOUT pin.  
0= CLKOUT function is enabled on the CLKOUT pin  
bit 10-9  
BOREN<1:0>: Brown-out Reset Enable bits(1)  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the BORCON register  
00= BOR disabled  
bit 8  
bit 7  
bit 6  
CPD: Data Code Protection bit(2)  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
CP: Code Protection bit(3)  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
MCLRE: MCLR/VPP Pin Function Select bit  
If LVP bit = 1:  
This bit is ignored.  
If LVP bit = 0:  
1= MCLR/VPP pin function is MCLR; Weak pull-up enabled.  
0= MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of  
WPUG5 bit.  
bit 5  
PWRTE: Power-up Timer Enable bit(1)  
1= PWRT disabled  
0= PWRT enabled  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire data EEPROM will be erased when the code protection is turned off during  
3: The entire program memory will be erased when the code protection is turned off.  
DS41414D-page 56  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
REGISTER 4-1:  
CONFIG1: CONFIGURATION WORD 1 (CONTINUED)  
bit 4-3  
WDTE<1:0>: Watchdog Timer Enable bit  
11= WDT enabled  
10= WDT enabled while running and disabled in Sleep  
01= WDT controlled by the SWDTEN bit in the WDTCON register  
00= WDT disabled  
bit 2-0  
FOSC<2:0>: Oscillator Selection bits  
111= ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin  
110= ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin  
101= ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin  
100= INTOSC oscillator: I/O function on CLKIN pin  
011= EXTRC oscillator: External RC circuit connected to CLKIN pin  
010= HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins  
001= XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins  
000= LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire data EEPROM will be erased when the code protection is turned off during  
3: The entire program memory will be erased when the code protection is turned off.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 57  
PIC16(L)F1946/1947  
REGISTER 4-2:  
CONFIG2: CONFIGURATION WORD 2  
R/P-1  
LVP(1)  
R/P-1  
DEBUG(2)  
U-1  
R/P-1  
BORV(3)  
R/P-1  
R/P-1  
STVREN  
PLLEN  
bit 13  
bit 8  
U-1  
U-1  
U-1  
R/P-1/1  
U-1  
U-1  
R/P-1  
R/P-1  
VCAPEN  
WRT<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
‘0’ = Bit is cleared  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
-n = Value when blank or after Bulk Erase  
bit 13  
bit 12  
LVP: Low-Voltage Programming Enable bit(1)  
1= Low-voltage programming enabled  
0= High-voltage on MCLR must be used for programming  
DEBUG: In-Circuit Debugger Mode bit(2)  
1= In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins  
0= In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger  
bit 11  
bit 10  
Unimplemented: Read as ‘1’  
BORV: Brown-out Reset Voltage Selection bit(3)  
1= Brown-out Reset voltage (Vbor), low trip point selected.  
0= Brown-out Reset voltage (Vbor), high trip point selected.  
bit 9  
bit 8  
STVREN: Stack Overflow/Underflow Reset Enable bit  
1= Stack Overflow or Underflow will cause a Reset  
0= Stack Overflow or Underflow will not cause a Reset  
PLLEN: PLL Enable bit  
1= 4xPLL enabled  
0= 4xPLL disabled  
bit 7-5  
bit 4  
Unimplemented: Read as ‘1’  
VCAPEN: Voltage Regulator Capacitor Enable bits  
0= VCAP functionality is enabled on RF0  
1= No capacitor on VCAP pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘1’  
WRT<1:0>: Flash Memory Self-Write Protection bits  
8 kW Flash memory (PIC16(L)F1946):  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to 1FFFh may be modified by EECON control  
01= 000h to FFFh write-protected, 1000h to 1FFFh may be modified by EECON control  
00= 000h to 1FFFh write-protected, no addresses may be modified by EECON control  
16 kW Flash memory (PIC16(L)F1947):  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to 3FFFh may be modified by EECON control  
01= 000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by EECON control  
00= 000h to 3FFFh write-protected, no addresses may be modified by EECON control  
Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.  
2: The DEBUG bit in Configuration Words is managed automatically by device development tools including  
debuggers and programmers. For normal device operation, this bit should be maintained as a ‘1’.  
3: See Vbor parameter for specific trip point voltages.  
DS41414D-page 58  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/1947  
4.3  
Code Protection  
Code protection allows the device to be protected from  
unauthorized access. Program memory protection and  
data EEPROM protection are controlled independently.  
Internal access to the program memory and data  
EEPROM are unaffected by any code protection  
setting.  
4.3.1  
PROGRAM MEMORY PROTECTION  
The entire program memory space is protected from  
external reads and writes by the CP bit in Configuration  
Words. When CP = 0, external reads and writes of  
program memory are inhibited and a read will return all  
0’s. The CPU can continue to read program memory,  
regardless of the protection bit settings. Writing the  
program memory is dependent upon the write  
protection  
setting.  
See  
Section 4.4  
“Write  
Protection” for more information.  
4.3.2  
DATA EEPROM PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by the CPD bit. When CPD = 0,  
external reads and writes of data EEPROM are  
inhibited. The CPU can continue to read and write data  
EEPROM regardless of the protection bit settings.  
4.4  
Write Protection  
Write protection allows the device to be protected from  
unintended self-writes. Applications, such as  
bootloader software, can be protected while allowing  
other regions of the program memory to be modified.  
The WRT<1:0> bits in Configuration Words define the  
size of the program memory block that is protected.  
4.5  
User ID  
Four memory locations (8000h-8003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
readable and writable during normal execution. See  
Section 4.6 “Device ID and Revision ID” for more  
information on accessing these memory locations. For  
more information on checksum calculation, see the  
PIC16F193X/LF193X/PIC16F194X/LF194X Memory  
Programming Specification” (DS41397).  
2010-2012 Microchip Technology Inc.  
DS41414D-page 59  
PIC16(L)F1946/1947  
4.6  
Device ID and Revision ID  
The memory location 8006h is where the Device ID and  
Revision ID are stored. The upper nine bits hold the  
Device ID. The lower five bits hold the Revision ID. See  
Section 11.5 “User ID, Device ID and Configuration  
Word Access” for more information on accessing  
these memory locations.  
Development tools, such as device programmers and  
debuggers, may be used to read the Device ID and  
Revision ID.  
4.7  
Register Definitions: Device ID  
REGISTER 4-3:  
DEVICEID: DEVICE ID REGISTER  
R
R
R
R
R
R
R
R
R
R
DEV<8:3>  
bit 13  
bit 8  
bit 0  
R
R
R
R
DEV<2:0>  
REV<4:0>  
bit 7  
Legend:  
R = Readable bit  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
-n = Value when blank or after Bulk Erase  
bit 13-5  
DEV<8:0>: Device ID bits  
DEVICEID<13:0> Values  
DEV<8:0> REV<4:0>  
Device  
PIC16F1946  
PIC16F1947  
PIC16LF1946  
PIC16LF1947  
10 0011 001  
10 0011 010  
10 0011 011  
10 0011 100  
x xxxx  
x xxxx  
x xxxx  
x xxxx  
bit 4-0  
REV<4:0>: Revision ID bits  
These bits are used to identify the revision (see Table under DEV<8:0> above).  
DS41414D-page 60  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
The oscillator module can be configured in one of eight  
clock modes.  
5.0  
5.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. ECL – External Clock Low Power mode  
(0 MHz to 0.5 MHz)  
Overview  
2. ECM – External Clock Medium Power mode  
(0.5 MHz to 4 MHz)  
The oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 5-1  
illustrates a block diagram of the oscillator module.  
3. ECH – External Clock High Power mode  
(4 MHz to 32 MHz)  
4. LP – 32 kHz Low-Power Crystal mode.  
5. XT – Medium Gain Crystal or Ceramic Resonator  
Oscillator mode (up to 4 MHz)  
Clock sources can be supplied from external oscillators,  
quartz crystal resonators, ceramic resonators and  
Resistor-Capacitor (RC) circuits. In addition, the system  
clock source can be supplied from one of two internal  
oscillators and PLL circuits, with a choice of speeds  
selectable via software. Additional clock features  
include:  
6. HS – High Gain Crystal or Ceramic Resonator  
mode (4 MHz to 20 MHz)  
7. RC – External Resistor-Capacitor (RC).  
8. INTOSC – Internal oscillator (31 kHz to 32 MHz).  
Clock Source modes are selected by the FOSC<2:0>  
bits in the Configuration Words. The FOSC bits  
determine the type of oscillator that will be used when  
the device is first powered.  
• Selectable system clock source between external  
or internal sources via software.  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
The EC clock mode relies on an external logic level  
signal as the device clock source. The LP, XT, and HS  
clock modes require an external crystal or resonator to  
be connected to the device. Each mode is optimized for  
a different frequency range. The RC clock mode  
requires an external resistor and capacitor to set the  
oscillator frequency.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
• Oscillator Start-up Timer (OST) ensures stability  
of crystal oscillator sources  
The INTOSC internal oscillator block produces low,  
medium, and high frequency clock sources, designated  
LFINTOSC, MFINTOSC, and HFINTOSC. (see  
Internal Oscillator Block, Figure 5-1). A wide selection  
of device clock frequencies may be derived from these  
three clock sources.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 61  
PIC16(L)F1946/47  
FIGURE 5-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
External  
Oscillator  
LP, XT, HS, RC, EC  
OSC2  
Sleep  
4 x PLL  
Sleep  
OSC1  
Timer1  
CPU and  
Oscillator  
T1OSC  
FOSC<2:0> = 100  
T1OSO  
Peripherals  
T1OSCEN  
Enable  
Oscillator  
IRCF<3:0>  
T1OSI  
Internal Oscillator  
16 MHz  
8 MHz  
4 MHz  
Internal  
Oscillator  
Block  
2 MHz  
Clock  
1 MHz  
Control  
HFPLL  
500 kHz  
250 kHz  
125 kHz  
62.5 kHz  
31.25 kHz  
16 MHz  
(HFINTOSC)  
FOSC<2:0> SCS<1:0>  
500 kHz  
Source  
500 kHz  
(MFINTOSC)  
Clock Source Option  
for other modules  
31 kHz  
Source  
31 kHz  
31 kHz (LFINTOSC)  
WDT, PWRT, Fail-Safe Clock Monitor  
Two-Speed Start-up and other modules  
DS41414D-page 62  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
5.2  
Clock Source Types  
Clock sources can be classified as external or internal.  
External clock sources rely on external circuitry for the  
clock source to function. Examples are: oscillator mod-  
ules (EC mode), quartz crystal resonators or ceramic  
resonators (LP, XT and HS modes) and Resis-  
tor-Capacitor (RC) mode circuits.  
Internal clock sources are contained within the  
oscillator module. The internal oscillator block has two  
internal oscillators and a dedicated Phase-Lock Loop  
(HFPLL) that are used to generate three internal  
system clock sources: the 16 MHz High-Frequency  
Internal Oscillator (HFINTOSC), 500 kHZ (MFINTOSC)  
and the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
FIGURE 5-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
OSC1/CLKIN  
PIC® MCU  
Clock from  
Ext. System  
OSC2/CLKOUT  
(1)  
FOSC/4 or  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bits in the OSCCON register. See Section 5.3  
“Clock Switching” for additional information.  
I/O  
Note 1: Output depends upon CLKOUTEN bit of the  
Configuration Words.  
5.2.1  
EXTERNAL CLOCK SOURCES  
5.2.1.2  
LP, XT, HS Modes  
An external clock source can be used as the device  
system clock by performing one of the following  
actions:  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 5-3). The three modes select  
a low, medium or high gain setting of the internal  
inverter-amplifier to support various resonator types  
and speed.  
• Program the FOSC<2:0> bits in the Configuration  
Words to select an external clock source that will  
be used as the default system clock upon a  
device Reset.  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is designed to  
drive only 32.768 kHz tuning-fork type crystals (watch  
crystals).  
• Write the SCS<1:0> bits in the OSCCON register  
to switch the system clock source to:  
- Timer1 oscillator during run-time, or  
- An external clock source determined by the  
value of the FOSC bits.  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
See Section 5.3 “Clock Switching”for more informa-  
tion.  
5.2.1.1  
EC Mode  
The External Clock (EC) mode allows an externally  
generated logic level signal to be the system clock  
source. When operating in this mode, an external clock  
source is connected to the OSC1 input.  
OSC2/CLKOUT is available for general purpose I/O or  
CLKOUT. Figure 5-2 shows the pin connections for EC  
mode.  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
Figure 5-3 and Figure 5-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
EC mode has 3 power modes to select from through  
Configuration Words:  
• High power, 4-32 MHz (FOSC = 111)  
• Medium power, 0.5-4 MHz (FOSC = 110)  
• Low power, 0-0.5 MHz (FOSC = 101)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 63  
PIC16(L)F1946/47  
FIGURE 5-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
FIGURE 5-4:  
CERAMIC RESONATOR  
OPERATION  
(XT OR HS MODE)  
PIC® MCU  
PIC® MCU  
OSC1/CLKIN  
OSC1/CLKIN  
C1  
C1  
To Internal  
Logic  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
Sleep  
RF  
(3)  
(2)  
RP  
RF  
Sleep  
OSC2/CLKOUT  
(1)  
C2  
RS  
OSC2/CLKOUT  
(1)  
C2  
RS  
Ceramic  
Resonator  
Note 1: A series resistor (RS) may be required for  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 Mto 10 M.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 Mto 10 M.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
Note 1: Quartz  
crystal  
characteristics  
vary  
according to type, package and  
manufacturer. The user should consult the  
manufacturer data sheets for specifications  
and recommended application.  
5.2.1.3  
Oscillator Start-up Timer (OST)  
If the oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the oscillator  
module.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 5.4  
“Two-Speed Clock Start-up Mode”).  
Analysis and Design” (DS00943)  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
5.2.1.4  
4x PLL  
The oscillator module contains a 4x PLL that can be  
used with both external and internal clock sources to  
provide a system clock source. The input frequency for  
the 4x PLL must fall within specifications. See the PLL  
Clock Timing Specifications in Section 30.0  
“Electrical Specifications”.  
The 4x PLL may be enabled for use by one of two  
methods:  
1. Program the PLLEN bit in Configuration Words  
to a ‘1’.  
2. Write the SPLLEN bit in the OSCCON register to  
a ‘1’. If the PLLEN bit in Configuration Words is  
programmed to a ‘1’, then the value of SPLLEN  
is ignored.  
DS41414D-page 64  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
5.2.1.5  
TIMER1 Oscillator  
5.2.1.6  
External RC Mode  
The Timer1 Oscillator is a separate crystal oscillator  
that is associated with the Timer1 peripheral. It is opti-  
mized for timekeeping operations with a 32.768 kHz  
crystal connected between the T1OSO and T1OSI  
device pins.  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required.  
The Timer1 Oscillator can be used as an alternate sys-  
tem clock source and can be selected during run-time  
using clock switching. Refer to Section 5.3 “Clock  
Switching” for more information.  
The RC circuit connects to OSC1. OSC2/CLKOUT is  
available for general purpose I/O or CLKOUT. The  
function of the OSC2/CLKOUT pin is determined by the  
CLKOUTEN bit in Configuration Words.  
Figure 5-6 shows the external RC mode connections.  
FIGURE 5-5:  
QUARTZ CRYSTAL  
OPERATION (TIMER1  
OSCILLATOR)  
FIGURE 5-6:  
EXTERNAL RC MODES  
VDD  
PIC® MCU  
PIC® MCU  
REXT  
OSC1/CLKIN  
Internal  
Clock  
T1OSI  
C1  
To Internal  
Logic  
CEXT  
VSS  
32.768 kHz  
Quartz  
Crystal  
OSC2/CLKOUT  
(1)  
FOSC/4 or I/O  
T1OSO  
C2  
Recommended values: 10 k  REXT 100 k, <3V  
3 k  REXT 100 k, 3-5V  
CEXT > 20 pF, 2-5V  
Note 1: Quartz  
crystal  
characteristics  
vary  
Note 1: Output depends upon CLKOUTEN bit of the  
according to type, package and  
manufacturer. The user should consult the  
manufacturer data sheets for specifications  
and recommended application.  
Configuration Words.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
Analysis and Design” (DS00943)  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
• TB097, “Interfacing a Micro Crystal  
MS1V-T1K 32.768 kHz Tuning Fork  
Crystal to a PIC16F690/SS” (DS91097)  
• AN1288, “Design Practices for  
Low-Power External Oscillators”  
(DS01288)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 65  
PIC16(L)F1946/47  
5.2.2  
INTERNAL CLOCK SOURCES  
5.2.2.1  
HFINTOSC  
The device may be configured to use the internal oscil-  
lator block as the system clock by performing one of the  
following actions:  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 16 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 5-3).  
• Program the FOSC<2:0> bits in Configuration  
Words to select the INTOSC clock source, which  
will be used as the default system clock upon a  
device Reset.  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 5-1). One of multiple  
frequencies derived from the HFINTOSC can be  
selected via software using the IRCF<3:0> bits of the  
OSCCON register. See Section 5.2.2.7 “Internal  
Oscillator Clock Switch Timing” for more information.  
• Write the SCS<1:0> bits in the OSCCON register  
to switch the system clock source to the internal  
oscillator during run-time. See Section 5.3  
“Clock Switching”for more information.  
The HFINTOSC is enabled by:  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT is available for general  
purpose I/O or CLKOUT.  
• Configure the IRCF<3:0> bits of the OSCCON  
register for the desired HF frequency, and  
• FOSC<2:0> = 100, or  
The function of the OSC2/CLKOUT pin is determined  
by the CLKOUTEN bit in Configuration Words.  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’.  
The internal oscillator block has two independent  
oscillators and a dedicated Phase-Lock Loop, HFPLL  
that can produce one of three internal system clock  
sources.  
A fast start-up oscillator allows internal circuits to  
power-up and stabilize before switching to HFINTOSC.  
The High-Frequency Internal Oscillator Ready bit  
(HFIOFR) of the OSCSTAT register indicates when the  
HFINTOSC is running.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
16 MHz. The HFINTOSC source is generated  
from the 500 kHz MFINTOSC source and the  
dedicated Phase-Lock Loop, HFPLL. The  
frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 5-3).  
The High-Frequency Internal Oscillator Status Locked  
bit (HFIOFL) of the OSCSTAT register indicates when  
the HFINTOSC is running within 2% of its final value.  
The High-Frequency Internal Oscillator Stable bit  
(HFIOFS) of the OSCSTAT register indicates when the  
HFINTOSC is running within 0.5% of its final value.  
2. The MFINTOSC (Medium-Frequency Internal  
Oscillator) is factory calibrated and operates at  
500 kHz. The frequency of the MFINTOSC can  
be user-adjusted via software using the  
OSCTUNE register (Register 5-3).  
5.2.2.2  
The  
MFINTOSC  
Medium-Frequency  
Internal  
Oscillator  
(MFINTOSC) is a factory calibrated 500 kHz internal  
clock source. The frequency of the MFINTOSC can be  
altered via software using the OSCTUNE register  
(Register 5-3).  
3. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
31 kHz.  
The output of the MFINTOSC connects to a postscaler  
and multiplexer (see Figure 5-1). One of nine  
frequencies derived from the MFINTOSC can be  
selected via software using the IRCF<3:0> bits of the  
OSCCON register. See Section 5.2.2.7 “Internal  
Oscillator Clock Switch Timing” for more information.  
The MFINTOSC is enabled by:  
• Configure the IRCF<3:0> bits of the OSCCON  
register for the desired HF frequency, and  
• FOSC<2:0> = 100, or  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’  
The Medium-Frequency Internal Oscillator Ready bit  
(MFIOFR) of the OSCSTAT register indicates when the  
MFINTOSC is running.  
DS41414D-page 66  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
5.2.2.3  
Internal Oscillator Frequency  
Adjustment  
5.2.2.5  
Internal Oscillator Frequency  
Selection  
The 500 kHz internal oscillator is factory calibrated.  
This internal oscillator can be adjusted in software by  
writing to the OSCTUNE register (Register 5-3). Since  
the HFINTOSC and MFINTOSC clock sources are  
derived from the 500 kHz internal oscillator a change in  
the OSCTUNE register value will apply to both.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<3:0> of the OSCCON register.  
The output of the 16 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 5-1). The Internal Oscillator Frequency  
Select bits IRCF<3:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
the following frequencies can be selected via software:  
The default value of the OSCTUNE register is ‘0’. The  
value is a 6-bit two’s complement number. A value of  
1Fh will provide an adjustment to the maximum  
frequency. A value of 20h will provide an adjustment to  
the minimum frequency.  
• HFINTOSC  
- 32 MHz (requires 4x PLL)  
- 16 MHz  
When the OSCTUNE register is modified, the oscillator  
frequency will begin shifting to the new frequency. Code  
execution continues during this shift. There is no  
indication that the shift has occurred.  
- 8 MHz  
- 4 MHz  
- 2 MHz  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
- 1 MHz  
- 500 kHz (default after Reset)  
- 250 kHz  
- 125 kHz  
- 62.5 kHz  
- 31.25 kHz  
• LFINTOSC  
- 31 kHz  
5.2.2.4  
LFINTOSC  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
Note:  
Following any Reset, the IRCF<3:0> bits  
of the OSCCON register are set to ‘0111’  
and the frequency selection is set to  
500 kHz. The user can modify the IRCF  
bits to select a different frequency.  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 5-1). Select 31 kHz, via  
software, using the IRCF<3:0> bits of the OSCCON  
register. See Section 5.2.2.7 “Internal Oscillator  
Clock Switch Timing” for more information. The  
LFINTOSC is also the frequency for the Power-up Timer  
(PWRT), Watchdog Timer (WDT) and Fail-Safe Clock  
Monitor (FSCM).  
The IRCF<3:0> bits of the OSCCON register allow  
duplicate selections for some frequencies. These dupli-  
cate choices can offer system design trade-offs. Lower  
power consumption can be obtained when changing  
oscillator sources for a given frequency. Faster transi-  
tion times can be obtained between frequency changes  
that use the same oscillator source.  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<3:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bits of the OSCCON  
register = 1x), or when any of the following are  
enabled:  
• Configure the IRCF<3:0> bits of the OSCCON  
register for the desired LF frequency, and  
• FOSC<2:0> = 100, or  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’  
Peripherals that use the LFINTOSC are:  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor (FSCM)  
The Low Frequency Internal Oscillator Ready bit  
(LFIOFR) of the OSCSTAT register indicates when the  
LFINTOSC is running.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 67  
PIC16(L)F1946/47  
5.2.2.6  
32 MHz Internal Oscillator  
Frequency Selection  
5.2.2.7  
Internal Oscillator Clock Switch  
Timing  
The Internal Oscillator Block can be used with the 4x  
PLL associated with the External Oscillator Block to  
produce a 32 MHz internal system clock source. The  
following settings are required to use the 32 MHz inter-  
nal clock source:  
When switching between the HFINTOSC, MFINTOSC  
and the LFINTOSC, the new oscillator may already be  
shut down to save power (see Figure 5-7). If this is the  
case, there is a delay after the IRCF<3:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The OSCSTAT register will  
reflect the current active status of the HFINTOSC,  
MFINTOSC and LFINTOSC oscillators. The sequence  
of a frequency selection is as follows:  
• The FOSC bits in Configuration Words must be  
set to use the INTOSC source as the device sys-  
tem clock (FOSC<2:0> = 100).  
• The SCS bits in the OSCCON register must be  
cleared to use the clock determined by  
FOSC<2:0> in Configuration Words  
(SCS<1:0> = 00).  
1. IRCF<3:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• The IRCF bits in the OSCCON register must be  
set to the 8 MHz HFINTOSC set to use  
(IRCF<3:0> = 1110).  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
• The SPLLEN bit in the OSCCON register must be  
set to enable the 4xPLL, or the PLLEN bit of the  
Configuration Words must be programmed to a  
1’.  
4. The current clock is held low and the clock  
switch circuitry waits for a rising edge in the new  
clock.  
5. The new clock is now active.  
Note:  
When using the PLLEN bit of the  
Configuration Words, the 4xPLL cannot  
be disabled by software and the 8 MHz  
HFINTOSC option will no longer be  
available.  
6. The OSCSTAT register is updated as required.  
7. Clock switch is complete.  
See Figure 5-7 for more details.  
If the internal oscillator speed is switched between two  
clocks of the same source, there is no start-up delay  
before the new frequency is selected. Clock switching  
time delays are shown in Table 5-1.  
The 4xPLL is not available for use with the internal  
oscillator when the SCS bits of the OSCCON register  
are set to ‘1x’. The SCS bits must be set to ‘00’ to use  
the 4xPLL with the internal oscillator.  
Start-up delay specifications are located in the  
oscillator tables of Section 30.0 “Electrical  
Specifications”  
DS41414D-page 68  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 5-7:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC/  
MFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC/  
MFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
0  
IRCF <3:0>  
System Clock  
HFINTOSC/  
MFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
HFINTOSC/  
MFINTOSC  
2-cycle Sync  
Running  
LFINTOSC  
IRCF <3:0>  
0  
0  
System Clock  
LFINTOSC  
HFINTOSC/MFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC/  
MFINTOSC  
= 0  
0  
IRCF <3:0>  
System Clock  
2010-2012 Microchip Technology Inc.  
DS41414D-page 69  
PIC16(L)F1946/47  
5.3.3  
TIMER1 OSCILLATOR  
5.3  
Clock Switching  
The Timer1 oscillator is a separate crystal oscillator  
associated with the Timer1 peripheral. It is optimized  
for timekeeping operations with a 32.768 kHz crystal  
connected between the T1OSO and T1OSI device  
pins.  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bits of the OSCCON  
register. The following clock sources can be selected  
using the SCS bits:  
The Timer1 oscillator is enabled using the T1OSCEN  
control bit in the T1CON register. See Section 21.0  
“Timer1 Module with Gate Control” for more  
information about the Timer1 peripheral.  
• Default system oscillator determined by FOSC  
bits in Configuration Words  
• Timer1 32 kHz crystal oscillator  
• Internal Oscillator Block (INTOSC)  
5.3.4  
TIMER1 OSCILLATOR READY  
(T1OSCR) BIT  
5.3.1  
SYSTEM CLOCK SELECT (SCS)  
BITS  
The user must ensure that the Timer1 oscillator is  
ready to be used before it is selected as a system clock  
source. The Timer1 Oscillator Ready (T1OSCR) bit of  
the OSCSTAT register indicates whether the Timer1  
oscillator is ready to be used. After the T1OSCR bit is  
set, the SCS bits can be configured to select the Timer1  
oscillator.  
The System Clock Select (SCS) bits of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
• When the SCS bits of the OSCCON register = 00,  
the system clock source is determined by value of  
the FOSC<2:0> bits in the Configuration Words.  
• When the SCS bits of the OSCCON register = 01,  
the system clock source is the Timer1 oscillator.  
• When the SCS bits of the OSCCON register = 1x,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<3:0>  
bits of the OSCCON register. After a Reset, the  
SCS bits of the OSCCON register are always  
cleared.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or  
Fail-Safe Clock Monitor, does not update  
the SCS bits of the OSCCON register. The  
user can monitor the OSTS bit of the  
OSCSTAT register to determine the current  
system clock source.  
When switching between clock sources, a delay is  
required to allow the new clock to stabilize. These oscil-  
lator delays are shown in Table 5-1.  
5.3.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCSTAT register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Words, or from the internal clock source. In particular,  
OSTS indicates that the Oscillator Start-up Timer  
(OST) has timed out for LP, XT or HS modes. The OST  
does not reflect the status of the Timer1 oscillator.  
DS41414D-page 70  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
5.4.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
5.4  
Two-Speed Clock Start-up Mode  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device. This mode  
allows the application to wake-up from Sleep, perform  
a few instructions using the INTOSC internal oscillator  
block as the clock source and go back to Sleep without  
waiting for the external oscillator to become stable.  
Two-Speed Start-up mode is configured by the  
following settings:  
• IESO (of the Configuration Words) = 1; Inter-  
nal/External Switchover bit (Two-Speed Start-up  
mode enabled).  
• SCS (of the OSCCON register) = 00.  
• FOSC<2:0> bits in the Configuration Words  
configured for LP, XT or HS mode.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
Two-Speed Start-up provides benefits when the oscil-  
lator module is configured for LP, XT, or HS modes.  
The Oscillator Start-up Timer (OST) is enabled for  
these modes and must count 1024 oscillations before  
the oscillator can be used as the system clock source.  
• Wake-up from Sleep.  
If the oscillator module is configured for any mode  
other than LP, XT or HS mode, then Two-Speed  
Start-up is disabled. This is because the external clock  
oscillator does not require any stabilization time after  
POR or an exit from Sleep.  
If the OST count reaches 1024 before the device  
enters Sleep mode, the OSTS bit of the OSCSTAT reg-  
ister is set and program execution switches to the  
external oscillator. However, the system may never  
operate from the external oscillator if the time spent  
awake is very short.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCSTAT register to  
remain clear.  
TABLE 5-1:  
Switch From  
OSCILLATOR SWITCHING DELAYS  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC(1)  
MFINTOSC(1)  
HFINTOSC(1)  
31 kHz  
31.25 kHz-500 kHz  
31.25 kHz-16 MHz  
Sleep/POR  
Oscillator Warm-up Delay (TWARM)  
Sleep/POR  
LFINTOSC  
EC, RC(1)  
EC, RC(1)  
DC – 32 MHz  
DC – 32 MHz  
2 cycles  
1 cycle of each  
Timer1 Oscillator  
LP, XT, HS(1)  
Sleep/POR  
32 kHz-20 MHz  
1024 Clock Cycles (OST)  
MFINTOSC(1)  
31.25 kHz-500 kHz  
31.25 kHz-16 MHz  
Any clock source  
2 s (approx.)  
HFINTOSC(1)  
Any clock source  
Any clock source  
PLL inactive  
LFINTOSC(1)  
Timer1 Oscillator  
PLL active  
31 kHz  
1 cycle of each  
32 kHz  
1024 Clock Cycles (OST)  
2 ms (approx.)  
16-32 MHz  
Note 1: PLL inactive.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 71  
PIC16(L)F1946/47  
5.4.2  
TWO-SPEED START-UP  
SEQUENCE  
5.4.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
1. Wake-up from Power-on Reset or Sleep.  
Checking the state of the OSTS bit of the OSCSTAT  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Words, or the  
internal oscillator.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<3:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
FIGURE 5-8:  
TWO-SPEED START-UP  
INTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
Program Counter  
PC - N  
PC + 1  
PC  
System Clock  
DS41414D-page 72  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
5.5.3  
FAIL-SAFE CONDITION CLEARING  
5.5  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or changing the SCS bits  
of the OSCCON register. When the SCS bits are  
changed, the OST is restarted. While the OST is  
running, the device continues to operate from the  
INTOSC selected in OSCCON. When the OST times  
out, the Fail-Safe condition is cleared after successfully  
switching to the external clock source. The OSFIF bit  
should be cleared prior to switching to the external  
clock source. If the Fail-Safe condition still exists, the  
OSFIF flag will again become set by hardware.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Words. The FSCM is applicable to all  
external Oscillator modes (LP, XT, HS, EC, Timer1  
Oscillator and RC).  
FIGURE 5-9:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch  
5.5.4  
RESET OR WAKE-UP FROM SLEEP  
External  
Clock  
S
Q
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 s)  
488 Hz  
(~2 ms)  
Sample Clock  
Clock  
Failure  
Detected  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
Status bits in the OSCSTAT register to  
verify the oscillator start-up and that the  
system clock switchover has successfully  
completed.  
5.5.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 5-9. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire  
half-cycle of the sample clock elapses before the  
external clock goes low.  
5.5.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR2 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE2  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<3:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 73  
PIC16(L)F1946/47  
FIGURE 5-10:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
DS41414D-page 74  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
5.6  
Register Definitions: Oscillator Control  
REGISTER 5-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0/0 R/W-1/1 R/W-1/1 R/W-1/1  
IRCF<3:0>  
R/W-0/0  
SPLLEN  
bit 7  
U-0  
R/W-0/0  
R/W-0/0  
SCS<1:0>  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
SPLLEN: Software PLL Enable bit  
If PLLEN in Configuration Words = 1:  
SPLLEN bit is ignored. 4x PLL is always enabled (subject to oscillator requirements)  
If PLLEN in Configuration Words = 0:  
1= 4x PLL Is enabled  
0 = 4x PLL is disabled  
bit 6-3  
IRCF<3:0>: Internal Oscillator Frequency Select bits  
1111= 16 MHz HF  
1110= 8 MHz or 32 MHz HF(see Section 5.2.2.1 “HFINTOSC”)  
1101= 4 MHz HF  
1100= 2 MHz HF  
1011= 1 MHz HF  
1010= 500 kHz HF(1)  
1001= 250 kHz HF(1)  
1000= 125 kHz HF(1)  
0111= 500 kHz MF (default upon Reset)  
0110= 250 kHz MF  
0101= 125 kHz MF  
0100= 62.5 kHz MF  
0011= 31.25 kHz HF(1)  
0010= 31.25 kHz MF  
000x= 31 kHz LF  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
SCS<1:0>: System Clock Select bits  
1x= Internal oscillator block  
01= Timer1 oscillator  
00= Clock determined by FOSC<2:0> in Configuration Words  
Note 1: Duplicate frequency derived from HFINTOSC.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 75  
PIC16(L)F1946/47  
REGISTER 5-2:  
OSCSTAT: OSCILLATOR STATUS REGISTER  
R-1/q  
T1OSCR  
bit 7  
R-0/q  
PLLR  
R-q/q  
R-0/q  
R-0/q  
R-q/q  
R-0/0  
R-0/q  
OSTS  
HFIOFR  
HFIOFL  
MFIOFR  
LFIOFR  
HFIOFS  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Conditional  
bit 7  
T1OSCR: Timer1 Oscillator Ready bit  
If T1OSCEN = 1:  
1= Timer1 oscillator is ready  
0= Timer1 oscillator is not ready  
If T1OSCEN = 0:  
1= Timer1 clock source is always ready  
bit 6  
bit 5  
PLLR 4x PLL Ready bit  
1= 4x PLL is ready  
0= 4x PLL is not ready  
OSTS: Oscillator Start-up Time-out Status bit  
1= Running from the clock defined by the FOSC<2:0> bits of the Configuration Words  
0= Running from an internal oscillator (FOSC<2:0> = 100)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HFIOFR: High Frequency Internal Oscillator Ready bit  
1= HFINTOSC is ready  
0= HFINTOSC is not ready  
HFIOFL: High Frequency Internal Oscillator Locked bit  
1= HFINTOSC is at least 2% accurate  
0= HFINTOSC is not 2% accurate  
MFIOFR: Medium Frequency Internal Oscillator Ready bit  
1= MFINTOSC is ready  
0= MFINTOSC is not ready  
LFIOFR: Low Frequency Internal Oscillator Ready bit  
1= LFINTOSC is ready  
0= LFINTOSC is not ready  
HFIOFS: High Frequency Internal Oscillator Stable bit  
1= HFINTOSC is at least 0.5% accurate  
0= HFINTOSC is not 0.5% accurate  
DS41414D-page 76  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 5-3:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
TUN<5:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
100000= Minimum frequency  
111111=  
000000= Oscillator module is running at the factory-calibrated frequency.  
000001=  
011110=  
011111= Maximum frequency  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
OSCSTAT  
OSCTUNE  
PIE2  
SPLLEN  
T1OSCR  
IRCF<3:0>  
SCS<1:0>  
75  
76  
PLLR  
OSTS  
HFIOFR  
HFIOFL  
MFIOFR  
LFIOFR  
HFIOFS  
TUN<5:0>  
77  
(1)  
LCDIE  
LCDIF  
OSFIE  
OSFIF  
C2IE  
C2IF  
C1IE  
C1IF  
EEIE  
EEIF  
BCLIE  
BCLIF  
C3IE  
C3IF  
CCP2IE  
CCP2IF  
94  
(1)  
PIR2  
98  
T1CON  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN  
T1SYNC  
TMR1ON  
207  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
Note 1: PIC16F1947 only.  
TABLE 5-3:  
SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES  
Register  
on Page  
Name  
CONFIG1  
CONFIG2  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CP  
MCLRE  
FCMEN  
PWRTE  
LVP  
IESO  
CLKOUTEN  
BOREN<1:0>  
CPD  
56  
58  
WDTE<1:0>  
FOSC<2:0>  
STVREN  
13:8  
7:0  
DEBUG  
BORV  
PLLEN  
VCAPEN  
WRT<1:0>  
Legend:  
Note 1:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
PIC16F1946/47 only.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 77  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 78  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
6.0  
RESETS  
There are multiple ways to reset this device:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• MCLR Reset  
• WDT Reset  
RESETinstruction  
• Stack Overflow  
• Stack Underflow  
• Programming mode exit  
To allow VDD to stabilize, an optional power-up timer  
can be enabled to extend the Reset time after a BOR  
or POR event.  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 6-1.  
FIGURE 6-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Programming Mode Exit  
RESET Instruction  
Stack Overflow/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLRE  
MCLR  
Sleep  
WDT  
Time-out  
Device  
Reset  
Power-on  
Reset  
VDD  
Brown-out  
Reset  
BOR  
Enable  
PWRT  
Zero  
LFINTOSC  
64 ms  
PWRTEN  
2010-2012 Microchip Technology Inc.  
DS41414D-page 79  
PIC16(L)F1946/47  
6.1  
Power-on Reset (POR)  
6.2  
Brown-Out Reset (BOR)  
The POR circuit holds the device in Reset until VDD has  
reached an acceptable level for minimum operation.  
Slow rising VDD, fast operating speeds or analog  
performance may require greater than minimum VDD.  
The PWRT, BOR or MCLR features can be used to  
extend the start-up period until all device operation  
conditions have been met.  
The BOR circuit holds the device in Reset when VDD  
reaches a selectable minimum level. Between the  
POR and BOR, complete voltage range coverage for  
execution protection can be implemented.  
The Brown-out Reset module has four operating  
modes controlled by the BOREN<1:0> bits in Configu-  
ration Words. The four operating modes are:  
• BOR is always on  
6.1.1  
POWER-UP TIMER (PWRT)  
• BOR is off when in Sleep  
• BOR is controlled by software  
• BOR is always off  
The Power-up Timer provides a nominal 64 ms time-  
out on POR or Brown-out Reset.  
The device is held in Reset as long as PWRT is active.  
The PWRT delay allows additional time for the VDD to  
rise to an acceptable level. The Power-up Timer is  
enabled by clearing the PWRTE bit in Configuration  
Words.  
Refer to Table 6-1 for more information.  
The Brown-out Reset voltage level is selectable by  
configuring the BORV bit in Configuration Words.  
A VDD noise rejection filter prevents the BOR from trig-  
gering on small events. If VDD falls below VBOR for a  
duration greater than parameter TBORDC, the device  
will reset. See Figure 6-2 for more information.  
The Power-up Timer starts after the release of the POR  
and BOR.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
TABLE 6-1:  
BOREN<1:0>  
11  
BOR OPERATING MODES  
Instruction Execution upon:  
Release of POR or Wake-up from Sleep  
SBOREN  
Device Mode  
BOR Mode  
X
X
X
Awake  
Sleep  
X
Active  
Active  
Waits for BOR ready(1) (BORRDY = 1)  
10  
Waits for BOR ready (BORRDY = 1)  
Waits for BOR ready(1) (BORRDY = 1)  
Begins immediately (BORRDY = x)  
Disabled  
Active  
1
0
X
01  
00  
X
Disabled  
Disabled  
X
Note 1: In these specific cases, “Release of POR” and “Wake-up from Sleep”, there is no delay in start-up. The BOR  
ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR  
circuit is forced on by the BOREN<1:0> bits.  
6.2.1  
BOR IS ALWAYS ON  
6.2.3  
BOR CONTROLLED BY SOFTWARE  
When the BOREN bits of Configuration Words are pro-  
grammed to ‘11’, the BOR is always on. The device  
start-up will be delayed until the BOR is ready and VDD  
is higher than the BOR threshold.  
When the BOREN bits of Configuration Words are pro-  
grammed to ‘01’, the BOR is controlled by the SBO-  
REN bit of the BORCON register. The device start-up  
is not delayed by the BOR ready condition or the VDD  
level.  
BOR protection is active during Sleep. The BOR does  
not delay wake-up from Sleep.  
BOR protection begins as soon as the BOR circuit is  
ready. The status of the BOR circuit is reflected in the  
BORRDY bit of the BORCON register.  
6.2.2  
BOR IS OFF IN SLEEP  
When the BOREN bits of Configuration Words are pro-  
grammed to ‘10’, the BOR is on, except in Sleep. The  
device start-up will be delayed until the BOR is ready  
and VDD is higher than the BOR threshold.  
BOR protection is unchanged by Sleep.  
BOR protection is not active during Sleep. The device  
wake-up will be delayed until the BOR is ready.  
DS41414D-page 80  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 6-2:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
TPWRT  
VDD  
VBOR  
Internal  
Reset  
< TPWRT  
(1)  
TPWRT  
VDD  
VBOR  
Internal  
Reset  
(1)  
TPWRT  
Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.  
6.3  
Register Definitions: BOR Control  
REGISTER 6-1:  
BORCON: BROWN-OUT RESET CONTROL REGISTER  
R/W-1/u  
SBOREN  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-q/u  
BORRDY  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
SBOREN: Software Brown-out Reset Enable bit  
If BOREN <1:0> in Configuration Words 01:  
SBOREN is read/write, but has no effect on the BOR.  
If BOREN <1:0> in Configuration Words = 01:  
1= BOR Enabled  
0= BOR Disabled  
bit 6-1  
bit 0  
Unimplemented: Read as ‘0’  
BORRDY: Brown-out Reset Circuit Ready Status bit  
1= The Brown-out Reset circuit is active  
0= The Brown-out Reset circuit is inactive  
2010-2012 Microchip Technology Inc.  
DS41414D-page 81  
PIC16(L)F1946/47  
6.4  
MCLR  
6.8  
Programming Mode Exit  
The MCLR is an optional external input that can reset  
the device. The MCLR function is controlled by the  
MCLRE bit of Configuration Words and the LVP bit of  
Configuration Words (Table 6-2).  
Upon exit of Programming mode, the device will  
behave as if a POR had just occurred.  
6.9  
Power-Up Timer  
The Power-up Timer optionally delays device execution  
after a BOR or POR event. This timer is typically used to  
allow VDD to stabilize before allowing the device to start  
running.  
TABLE 6-2:  
MCLRE  
MCLR CONFIGURATION  
LVP  
MCLR  
0
1
x
0
0
1
Disabled  
Enabled  
Enabled  
The Power-up Timer is controlled by the PWRTE bit of  
Configuration Words.  
6.10 Start-up Sequence  
6.4.1  
MCLR ENABLED  
Upon the release of a POR or BOR, the following must  
occur before the device will begin executing:  
When MCLR is enabled and the pin is held low, the  
device is held in Reset. The MCLR pin is connected to  
VDD through an internal weak pull-up.  
1. Power-up Timer runs to completion (if enabled).  
2. Oscillator start-up timer runs to completion (if  
required for oscillator source).  
The device has a noise filter in the MCLR Reset path.  
The filter will detect and ignore small pulses.  
3. MCLR must be released (if enabled).  
Note:  
A Reset does not drive the MCLR pin low.  
The total time-out will vary based on oscillator configu-  
ration and Power-up Timer configuration. See  
Section 5.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for more information.  
6.4.2  
MCLR DISABLED  
When MCLR is disabled, the pin functions as a general  
purpose input and the internal weak pull-up is under  
software control. See Section 12.15 “PORTG  
Registers” for more information.  
The Power-up Timer and oscillator start-up timer run  
independently of MCLR Reset. If MCLR is kept low long  
enough, the Power-up Timer and oscillator start-up  
timer will expire. Upon bringing MCLR high, the device  
will begin execution immediately (see Figure 6-3). This  
is useful for testing purposes or to synchronize more  
than one device operating in parallel.  
6.5  
Watchdog Timer (WDT) Reset  
The Watchdog Timer generates a Reset if the firmware  
does not issue a CLRWDTinstruction within the time-out  
period. The TO and PD bits in the STATUS register are  
changed to indicate the WDT Reset. See Section 10.0  
“Watchdog Timer (WDT)” for more information.  
6.6  
RESETInstruction  
A RESETinstruction will cause a device Reset. The RI  
bit in the PCON register will be set to ‘0’. See Table 6-4  
for default conditions after a RESET instruction has  
occurred.  
6.7  
Stack Overflow/Underflow Reset  
The device can reset when the Stack Overflows or  
Underflows. The STKOVF or STKUNF bits of the PCON  
register indicate the Reset condition. These Resets are  
enabled by setting the STVREN bit in Configuration  
Words. See Section 3.5.2 “Overflow/Underflow  
Reset” for more information.  
DS41414D-page 82  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 6-3:  
RESET START-UP SEQUENCE  
VDD  
Internal POR  
TPWRT  
Power Up Timer  
MCLR  
TMCLR  
Internal RESET  
Oscillator Modes  
External Crystal  
TOST  
Oscillator Start Up Timer  
Oscillator  
FOSC  
Internal Oscillator  
Oscillator  
FOSC  
External Clock (EC)  
CLKIN  
FOSC  
2010-2012 Microchip Technology Inc.  
DS41414D-page 83  
PIC16(L)F1946/47  
6.11 Determining the Cause of a Reset  
Upon any Reset, multiple bits in the STATUS and  
PCON register are updated to indicate the cause of the  
Reset. Table 6-3 and Table 6-4 show the Reset  
conditions of these registers.  
TABLE 6-3:  
RESET STATUS BITS AND THEIR SIGNIFICANCE  
STKOVF STKUNF RMCLR  
RI  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
0
u
u
u
u
u
u
1
u
0
0
0
0
u
u
u
u
u
u
u
1
1
1
1
1
u
u
u
0
0
u
u
u
1
1
1
1
u
u
u
u
u
0
u
u
0
0
0
u
u
u
u
u
u
u
u
u
x
x
x
0
u
u
u
u
u
u
u
u
1
0
x
1
0
0
1
u
1
u
u
u
1
x
0
1
u
0
0
u
0
u
u
u
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up from Sleep  
Interrupt Wake-up from Sleep  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
TABLE 6-4:  
RESET CONDITION FOR SPECIAL REGISTERS(2)  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
0000h  
---1 1000  
---u uuuu  
00-- 110x  
uu-- 0uuu  
MCLR Reset during normal operation  
0000h  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
---1 0uuu  
---0 uuuu  
---0 0uuu  
---1 1uuu  
---1 0uuu  
---u uuuu  
---u uuuu  
---u uuuu  
uu-- 0uuu  
uu-- uuuu  
uu-- uuuu  
00-- 11u0  
uu-- uuuu  
uu-- u0uu  
1u-- uuuu  
u1-- uuuu  
WDT Wake-up from Sleep  
Brown-out Reset  
PC + 1  
0000h  
Interrupt Wake-up from Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
PC + 1(1)  
0000h  
0000h  
0000h  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on  
the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  
2: If a Status bit is not implemented, that bit will be read as ‘0’.  
DS41414D-page 84  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
6.12 Power Control (PCON) Register  
The Power Control (PCON) register contains flag bits  
to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Reset Instruction Reset (RI)  
• Stack Overflow Reset (STKOVF)  
• Stack Underflow Reset (STKUNF)  
• MCLR Reset (RMCLR)  
The PCON register bits are shown in Register 6-2.  
6.13 Register Definitions: Power Control  
REGISTER 6-2:  
PCON: POWER CONTROL REGISTER  
R/W/HS-0/q R/W/HS-0/q  
U-0  
U-0  
R/W/HC-1/q R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u  
STKOVF  
bit 7  
STKUNF  
RMCLR  
RI  
POR  
BOR  
bit 0  
Legend:  
HC = Bit is cleared by hardware  
HS = Bit is set by hardware  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
-m/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
STKOVF: Stack Overflow Flag bit  
1= A Stack Overflow occurred  
0= A Stack Overflow has not occurred or set to ‘0’ by firmware  
STKUNF: Stack Underflow Flag bit  
1= A Stack Underflow occurred  
0= A Stack Underflow has not occurred or set to ‘0’ by firmware  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
RMCLR: MCLR Reset Flag bit  
1= A MCLR Reset has not occurred or set to ‘1’ by firmware  
0= A MCLR Reset has occurred (set to ‘0’ in hardware when a MCLR Reset occurs)  
bit 2  
bit 1  
bit 0  
RI: RESETInstruction Flag bit  
1= A RESETinstruction has not been executed or set to ‘1’ by firmware  
0= A RESETinstruction has been executed (set to ‘0’ in hardware upon executing a RESETinstruction)  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 85  
PIC16(L)F1946/47  
TABLE 6-5:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH RESETS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BORCON SBOREN  
RMCLR  
PD  
RI  
Z
POR  
DC  
BORRDY  
BOR  
81  
85  
PCON  
STKOVF STKUNF  
STATUS  
WDTCON  
TO  
C
25  
WDTPS<4:0>  
SWDTEN  
109  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Resets.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41414D-page 86  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
7.0  
INTERRUPTS  
The interrupt feature allows certain events to preempt  
normal program flow. Firmware is used to determine  
the source of the interrupt and act accordingly. Some  
interrupts can be configured to wake the MCU from  
Sleep mode.  
This chapter contains the following information for  
Interrupts:  
• Operation  
• Interrupt Latency  
• Interrupts During Sleep  
• INT Pin  
• Automatic Context Saving  
Many peripherals produce interrupts. Refer to the  
corresponding chapters for details.  
A block diagram of the interrupt logic is shown in  
Figure 7-1.  
FIGURE 7-1:  
INTERRUPT LOGIC  
TMR0IF  
TMR0IE  
Wake-up  
(If in Sleep mode)  
INTF  
INTE  
Peripheral Interrupts  
(TMR1IF) PIR1<0>  
IOCIF  
IOCIE  
Interrupt  
to CPU  
(TMR1IF) PIR1<0>  
PEIE  
GIE  
PIRn<7>  
PIEn<7>  
2010-2012 Microchip Technology Inc.  
DS41414D-page 87  
PIC16(L)F1946/47  
7.1  
Operation  
7.2  
Interrupt Latency  
Interrupts are disabled upon any device Reset. They  
are enabled by setting the following bits:  
Interrupt latency is defined as the time from when the  
interrupt event occurs to the time code execution at the  
interrupt vector begins. The latency for synchronous  
interrupts is 3 or 4 instruction cycles. For asynchronous  
interrupts, the latency is 3 to 5 instruction cycles,  
depending on when the interrupt occurs. See Figure 7-2  
and Figure 7-3 for more details.  
• GIE bit of the INTCON register  
• Interrupt Enable bit(s) for the specific interrupt  
event(s)  
• PEIE bit of the INTCON register (if the Interrupt  
Enable bit of the interrupt event is contained in the  
PIE1, PIE2, PIE3 and PIE4 registers)  
The INTCON, PIR1, PIR2, PIR3 and PIR4 registers  
record individual interrupts via interrupt flag bits. Inter-  
rupt flag bits will be set, regardless of the status of the  
GIE, PEIE and individual interrupt enable bits.  
The following events happen when an interrupt event  
occurs while the GIE bit is set:  
• Current prefetched instruction is flushed  
• GIE bit is cleared  
• Current Program Counter (PC) is pushed onto the  
stack  
• Critical registers are automatically saved to the  
shadow registers (See Section 7.5 “Automatic  
Context Saving”.”)  
• PC is loaded with the interrupt vector 0004h  
The firmware within the Interrupt Service Routine (ISR)  
should determine the source of the interrupt by polling  
the interrupt flag bits. The interrupt flag bits must be  
cleared before exiting the ISR to avoid repeated  
interrupts. Because the GIE bit is cleared, any interrupt  
that occurs while executing the ISR will be recorded  
through its interrupt flag, but will not cause the  
processor to redirect to the interrupt vector.  
The RETFIE instruction exits the ISR by popping the  
previous address from the stack, restoring the saved  
context from the shadow registers and setting the GIE  
bit.  
For additional information on a specific interrupt’s  
operation, refer to its peripheral chapter.  
Note 1: Individual interrupt flag bits are set,  
regardless of the state of any other  
enable bits.  
2: All interrupts will be ignored while the GIE  
bit is cleared. Any interrupt occurring  
while the GIE bit is clear will be serviced  
when the GIE bit is set again.  
DS41414D-page 88  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 7-2:  
INTERRUPT LATENCY  
OSC1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CLKOUT  
Interrupt Sampled  
during Q1  
Interrupt  
GIE  
PC-1  
PC  
PC+1  
0004h  
0005h  
PC  
1 Cycle Instruction at PC  
Execute  
Inst(PC)  
NOP  
NOP  
Inst(0004h)  
Interrupt  
GIE  
PC+1/FSR  
ADDR  
New PC/  
PC+1  
PC-1  
PC  
0004h  
0005h  
PC  
Execute  
2 Cycle Instruction at PC  
Inst(PC)  
NOP  
NOP  
Inst(0004h)  
Interrupt  
GIE  
PC-1  
PC  
FSR ADDR  
INST(PC)  
PC+1  
PC+2  
0004h  
0005h  
PC  
Execute  
3 Cycle Instruction at PC  
NOP  
NOP  
NOP  
Inst(0004h)  
Inst(0005h)  
Interrupt  
GIE  
PC-1  
PC  
FSR ADDR  
INST(PC)  
PC+1  
PC+2  
0004h  
0005h  
PC  
NOP  
Execute  
3 Cycle Instruction at PC  
NOP  
NOP  
NOP  
Inst(0004h)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 89  
PIC16(L)F1946/47  
FIGURE 7-3:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
INTF  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
GIE  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT not available in all Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 30.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
DS41414D-page 90  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
7.3  
Interrupts During Sleep  
Some interrupts can be used to wake from Sleep. To  
wake from Sleep, the peripheral must be able to  
operate without the system clock. The interrupt source  
must have the appropriate Interrupt Enable bit(s) set  
prior to entering Sleep.  
On waking from Sleep, if the GIE bit is also set, the  
processor will branch to the interrupt vector. Otherwise,  
the processor will continue executing instructions after  
the SLEEPinstruction. The instruction directly after the  
SLEEP instruction will always be executed before  
branching to the ISR. Refer to the Section 9.0 “Power-  
Down Mode (Sleep)”for more details.  
7.4  
INT Pin  
The INT pin can be used to generate an asynchronous  
edge-triggered interrupt. This interrupt is enabled by  
setting the INTE bit of the INTCON register. The  
INTEDG bit of the OPTION_REG register determines on  
which edge the interrupt will occur. When the INTEDG  
bit is set, the rising edge will cause the interrupt. When  
the INTEDG bit is clear, the falling edge will cause the  
interrupt. The INTF bit of the INTCON register will be set  
when a valid edge appears on the INT pin. If the GIE and  
INTE bits are also set, the processor will redirect  
program execution to the interrupt vector.  
7.5  
Automatic Context Saving  
Upon entering an interrupt, the return PC address is  
saved on the stack. Additionally, the following registers  
are automatically saved in the Shadow registers:  
• W register  
• STATUS register (except for TO and PD)  
• BSR register  
• FSR registers  
• PCLATH register  
Upon exiting the Interrupt Service Routine, these regis-  
ters are automatically restored. Any modifications to  
these registers during the ISR will be lost. If modifica-  
tions to any of these registers are desired, the corre-  
sponding Shadow register should be modified and the  
value will be restored when exiting the ISR. The  
Shadow registers are available in Bank 31 and are  
readable and writable. Depending on the user’s appli-  
cation, other registers may also need to be saved.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 91  
PIC16(L)F1946/47  
7.6  
Register Definitions: Interrupt Control  
REGISTER 7-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0/0  
GIE  
R/W-0/0  
PEIE  
R/W-0/0  
TMR0IE  
R/W-0/0  
INTE  
R/W-0/0  
IOCIE  
R/W-0/0  
TMR0IF  
R/W-0/0  
INTF  
R-0/0  
IOCIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all active interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all active peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: INT External Interrupt Enable bit  
1= Enables the INT external interrupt  
0= Disables the INT external interrupt  
IOCIE: Interrupt-on-Change Enable bit  
1= Enables the interrupt-on-change  
0= Disables the interrupt-on-change  
TMR0IF: Timer0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed  
0= TMR0 register did not overflow  
INTF: INT External Interrupt Flag bit  
1= The INT external interrupt occurred  
0= The INT external interrupt did not occur  
IOCIF: Interrupt-on-Change Interrupt Flag bit  
1= When at least one of the interrupt-on-change pins changed state  
0= None of the interrupt-on-change pins have changed state  
Note 1: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCBF register  
have been cleared by software.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
DS41414D-page 92  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 7-2:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0/0  
TMR1GIE  
bit 7  
R/W-0/0  
ADIE  
R/W-0/0  
RCIE  
R/W-0/0  
TXIE  
R/W-0/0  
SSPIE  
R/W-0/0  
CCP1IE  
R/W-0/0  
TMR2IE  
R/W-0/0  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR1GIE: Timer1 Gate Interrupt Enable bit  
1= Enables the Timer1 Gate Acquisition interrupt  
0= Disables the Timer1 Gate Acquisition interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART1 Receive Interrupt Enable bit  
1= Enables the USART1 receive interrupt  
0= Disables the USART1 receive interrupt  
TXIE: USART1 Transmit Interrupt Enable bit  
1= Enables the USART1 transmit interrupt  
0= Disables the USART1 transmit interrupt  
SSPIE: Synchronous Serial Port (MSSP1) Interrupt Enable bit  
1= Enables the MSSP1 interrupt  
0= Disables the MSSP1 interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 93  
PIC16(L)F1946/47  
REGISTER 7-3:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0/0  
OSFIE  
bit 7  
R/W-0/0  
C2IE  
R/W-0/0  
C1IE  
R/W-0/0  
EEIE  
R/W-0/0  
BCLIE  
R/W-0/0  
LCDIE  
R/W-0/0  
C3IE  
R/W-0/0  
CCP2IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables the Oscillator Fail interrupt  
0= Disables the Oscillator Fail interrupt  
C2IE: Comparator C2 Interrupt Enable bit  
1= Enables the Comparator C2 interrupt  
0= Disables the Comparator C2 interrupt  
C1IE: Comparator C1 Interrupt Enable bit  
1= Enables the Comparator C1 interrupt  
0= Disables the Comparator C1 interrupt  
EEIE: EEPROM Write Completion Interrupt Enable bit  
1= Enables the EEPROM Write Completion interrupt  
0= Disables the EEPROM Write Completion interrupt  
BCLIE: MSSP1 Bus Collision Interrupt Enable bit  
1= Enables the MSSP1 Bus Collision Interrupt  
0= Disables the MSSP1 Bus Collision Interrupt  
LCDIE: LCD Module Interrupt Enable bit  
1= Enables the LCD module interrupt  
0= Disables the LCD module interrupt  
C3IE: Comparator C3 Interrupt Enable bit  
1= Enables the Comparator C3 interrupt  
0= Disables the Comparator C3 interrupt  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
DS41414D-page 94  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 7-4:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
R/W-0/0  
CCP5IE  
R/W-0/0  
CCP4IE  
R/W-0/0  
CCP3IE  
R/W-0/0  
TMR6IE  
U-0  
R/W-0/0  
TMR4IE  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CCP5IE: CCP5 Interrupt Enable bit  
1= Enables the CCP5 interrupt  
0= Disables the CCP5 interrupt  
bit 5  
bit 4  
bit 3  
CCP4IE: CCP4 Interrupt Enable bit  
1= Enables the CCP4 interrupt  
0= Disables the CCP4 interrupt  
CCP3IE: CCP3 Interrupt Enable bit  
1= Enables the CCP3 interrupt  
0= Disables the CCP3 interrupt  
TMR6IE: TMR6 to PR6 Match Interrupt Enable bit  
1= Enables the TMR6 to PR6 Match interrupt  
0= Disables the TMR6 to PR6 Match interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR4IE: TMR4 to PR4 Match Interrupt Enable bit  
1= Enables the TMR4 to PR4 Match interrupt  
0= Disables the TMR4 to PR4 Match interrupt  
bit 0  
Unimplemented: Read as ‘0’  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 95  
PIC16(L)F1946/47  
REGISTER 7-5:  
PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4  
U-0  
U-0  
R/W-0/0  
RC2IE  
R/W-0/0  
TX2IE  
U-0  
U-0  
R/W-0/0  
BCL2IE  
R/W-0/0  
SSP2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IE: USART2 Receive Interrupt Enable bit  
1= Enables the USART2 receive interrupt  
0= Disables the USART2 receive interrupt  
bit 4  
TX2IE: USART2 Transmit Interrupt Enable bit  
1= Enables the USART2 transmit interrupt  
0= Disables the USART2 transmit interrupt  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
BCL2IE: MSSP2 Bus Collision Interrupt Enable bit  
1= Enables the MSSP2 Bus Collision Interrupt  
0= Disables the MSSP2 Bus Collision Interrupt  
bit 0  
SSP2IE: Synchronous Serial Port (MSSP2) Interrupt Enable bit  
1= Enables the MSSP2 interrupt  
0= Disables the MSSP2 interrupt  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
DS41414D-page 96  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 7-6:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0/0  
TMR1GIF  
bit 7  
R/W-0/0  
ADIF  
R-0/0  
RCIF  
R-0/0  
TXIF  
R/W-0/0  
SSPIF  
R/W-0/0  
CCP1IF  
R/W-0/0  
TMR2IF  
R/W-0/0  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR1GIF: Timer1 Gate Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
ADIF: A/D Converter Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
RCIF: USART1 Receive Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
TXIF: USART1 Transmit Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
SSPIF: Synchronous Serial Port (MSSP1) Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
CCP1IF: CCP1 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 97  
PIC16(L)F1946/47  
REGISTER 7-7:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
R/W-0/0  
OSFIF  
R/W-0/0  
C2IF  
R/W-0/0  
C1IF  
R/W-0/0  
EEIF  
R/W-0/0  
BCLIF  
R/W-0/0  
LCDIF  
U-0  
R/W-0/0  
CCP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
C2IF: Comparator C2 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
C1IF: Comparator C1 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
EEIF: EEPROM Write Completion Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
BCLIF: MSSP1 Bus Collision Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
LCDIF: LCD Module Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
DS41414D-page 98  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 7-8:  
PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3  
R/W-0/0  
R/W-0/0  
CCP5IF  
R/W-0/0  
CCP4IF  
R/W-0/0  
CCP3IF  
R/W-0/0  
TMR6IF  
R/W-0/0  
R/W-0/0  
TMR4IF  
R/W-0/0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CCP5IF: CCP5 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 5  
bit 4  
bit 3  
CCP4IF: CCP4 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
CCP3IF: CCP3 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
TMR6IF: TMR6 to PR6 Match Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR4IF: TMR4 to PR4 Match Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 0  
Unimplemented: Read as ‘0’  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 99  
PIC16(L)F1946/47  
REGISTER 7-9:  
PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4  
U-0  
U-0  
R/W-0/0  
RC2IF  
R/W-0/0  
TX2IF  
U-0  
U-0  
R/W-0/0  
BCL2IF  
R/W-0/0  
SSP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IF: USART2 Receive Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 4  
TX2IF: USART2 Transmit Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
BCL2IF: MSSP2 Bus Collision Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 0  
SSP2IF: Synchronous Serial Port (MSSP2) Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
DS41414D-page 100  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 7-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
T0CS  
RCIE  
INTE  
T0SE  
TXIE  
EEIE  
IOCIE  
PSA  
TMR0IF  
INTF  
IOCIF  
92  
197  
93  
OPTION_REG WPUEN INTEDG  
PS<2:0>  
PIE1  
PIE2  
PIE3  
PIE4  
PIR1  
PIR2  
PIR3  
PIR4  
TMR1GIE  
OSFIE  
ADIE  
C2IE  
SSPIE  
BCLIE  
CCP1IE TMR2IE TMR1IE  
C1IE  
LCDIE  
C3IE  
CCP2IE  
94  
CCP5IE CCP4IE CCP3IE TMR6IE  
TMR4IE  
95  
RC2IE  
RCIF  
C1IF  
TX2IE  
TXIF  
BCL2IE SSP2IE  
96  
TMR1GIF  
OSFIF  
ADIF  
C2IF  
SSPIF  
BCLIF  
CCP1IF TMR2IF TMR1IF  
97  
EEIF  
LCDIF  
C3IF  
CCP2IF  
98  
CCP5IF CCP4IF CCP3IF TMR6IF  
RC2IF TX2IF  
TMR4IF  
99  
BCL2IF SSP2IF  
100  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Interrupts.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 101  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 102  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
On power-up, the external capacitor will load the LDO  
voltage regulator. To prevent erroneous operation, the  
device is held in Reset while a constant current source  
charges the external capacitor. After the cap is fully  
charged, the device is released from Reset. For more  
information on the constant current rate, refer to the  
LDO Regulator Characteristics Table in Section 30.0  
“Electrical Specifications”.  
8.0  
LOW DROPOUT (LDO)  
VOLTAGE REGULATOR  
The PIC16F1946/47 has an internal Low Dropout  
Regulator (LDO) which provides operation above 3.6V.  
The LDO regulates a voltage for the internal device  
logic while permitting the VDD and I/O pins to operate  
at a higher voltage. There is no user enable/disable  
control available for the LDO, it is always active. The  
PIC16LF1946/47 operates at a maximum VDD of 3.6V  
and does not incorporate an LDO.  
A device I/O pin may be configured as the LDO voltage  
output, identified as the VCAP pin. Although not  
required, an external low-ESR capacitor may be con-  
nected to the VCAP pin for additional regulator stability.  
The VCAPEN bit of Configuration Words enables or dis-  
ables the VCAP pin. Refer to Table 8-1.  
TABLE 8-1:  
VCAPEN SELECT BIT  
Pin  
VCAPEN  
0
1
RF0  
No Vcap  
TABLE 8-2:  
SUMMARY OF CONFIGURATION WORD WITH LDO  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
LVP  
DEBUG  
BORV  
STVREN  
WRT1  
PLLEN  
WRT0  
CONFIG2  
58  
VCAPEN  
Legend:  
— = unimplemented locations read as ‘0’. Shaded cells are not used by LDO.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 103  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 104  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
9.1  
Wake-up from Sleep  
9.0  
POWER-DOWN MODE (SLEEP)  
The device can wake-up from Sleep through one of the  
following events:  
The Power-Down mode is entered by executing a  
SLEEPinstruction.  
1. External Reset input on MCLR pin, if enabled  
2. BOR Reset, if enabled  
Upon entering Sleep mode, the following conditions  
exist:  
3. POR Reset  
1. WDT will be cleared but keeps running, if  
enabled for operation during Sleep.  
4. Watchdog Timer, if enabled  
5. Any external interrupt  
2. PD bit of the STATUS register is cleared.  
3. TO bit of the STATUS register is set.  
4. CPU clock is disabled.  
6. Interrupts by peripherals capable of running dur-  
ing Sleep (see individual peripheral for more  
information)  
5. 31 kHz LFINTOSC is unaffected and peripherals  
that operate from it may continue operation in  
Sleep.  
The first three events will cause a device Reset. The  
last three events are considered a continuation of pro-  
gram execution. To determine whether a device Reset  
or wake-up event occurred, refer to Section 6.11  
“Determining the Cause of a Reset”.  
6. Timer1 oscillator is unaffected and peripherals  
that operate from it may continue operation in  
Sleep.  
7. ADC is unaffected, if the dedicated FRC clock is  
selected.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be enabled. Wake-up will  
occur regardless of the state of the GIE bit. If the GIE  
bit is disabled, the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
enabled, the device executes the instruction after the  
SLEEPinstruction, the device will then call the Interrupt  
Service Routine. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
8. Capacitive Sensing oscillator is unaffected.  
9. I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
10. Resets other than WDT are not affected by  
Sleep mode.  
Refer to individual chapters for more details on  
peripheral operation during Sleep.  
To minimize current consumption, the following condi-  
tions should be considered:  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
• I/O pins should not be floating  
• External circuitry sinking current from I/O pins  
• Internal circuitry sourcing current from I/O pins  
• Current draw from pins with internal weak pull-ups  
• Modules using 31 kHz LFINTOSC  
• Modules using Timer1 oscillator  
I/O pins that are high-impedance inputs should be  
pulled to VDD or VSS externally to avoid switching  
currents caused by floating inputs.  
Examples of internal circuitry that might be sourcing  
current include modules such as the DAC and FVR  
modules. See Section 17.0 “Digital-to-Analog Con-  
verter (DAC) Module” and Section 14.0 “Fixed Volt-  
age Reference (FVR)” for more information on these  
modules.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 105  
PIC16(L)F1946/47  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction  
9.1.1  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
- SLEEPinstruction will be completely exe-  
cuted  
- Device will immediately wake-up from Sleep  
- WDT and WDT prescaler will be cleared  
- TO bit of the STATUS register will be set  
- PD bit of the STATUS register will be cleared.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction  
- SLEEPinstruction will execute as a NOP.  
- WDT and WDT prescaler will not be cleared  
- TO bit of the STATUS register will not be set  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
- PD bit of the STATUS register will not be  
cleared.  
FIGURE 9-1:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1(1)  
(3)  
CLKOUT(2)  
TOST  
Interrupt Latency(4)  
Interrupt flag  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Forced NOP  
Forced NOP  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
XT, HS or LP Oscillator mode assumed.  
2:  
3:  
4:  
CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference.  
TOST = 1024 TOSC (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes.  
GIE = 1assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.  
TABLE 9-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE  
Register on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IOCBF  
IOCBN  
IOCBP  
PIE1  
GIE  
IOCBF7  
IOCBN7  
IOCBP7  
TMR1GIE  
OSFIE  
PEIE  
IOCBF6  
IOCBN6  
IOCBP6  
ADIE  
C2IE  
TMR0IE  
IOCBF5  
IOCBN5  
IOCBP5  
RCIE  
INTE  
IOCBF4  
IOCBN4  
IOCBP4  
TXIE  
IOCIE  
IOCBF3  
IOCBN3  
IOCBP3  
SSPIE  
BCLIE  
TMR6IE  
TMR0IF  
IOCBF2  
IOCBN2  
IOCBP2  
CCP1IE  
LCDIE  
INTF  
IOCBF1  
IOCBN1  
IOCBP1  
TMR2IE  
C3IE  
IOCIF  
IOCBF0  
IOCBN0  
IOCBP0  
TMR1IE  
CCP2IE  
92  
155  
155  
155  
93  
PIE2  
C1IE  
EEIE  
94  
PIE3  
CCP5IE  
CCP4IE  
RC2IE  
RCIF  
CCP3IE  
TX2IE  
TXIF  
TMR4IE  
BCL2IE  
TMR2IF  
C3IF  
95  
PIE4  
SSP2IE  
TMR1IF  
CCP2IF  
96  
PIR1  
TMR1GIF  
OSFIF  
ADIF  
C2IF  
SSPIF  
BCLIF  
CCP1IF  
LCDIF  
97  
PIR2  
C1IF  
EEIF  
98  
PIR3  
CCP5IF  
CCP4IF  
RC2IF  
CCP3IF  
TX2IF  
TO  
TMR6IF  
TMR4IF  
BCL2IF  
DC  
99  
PIR4  
SSP2IF  
C
100  
25  
STATUS  
WDTCON  
PD  
Z
WDTPS<4:0>  
SWDTEN  
109  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used in Power-Down mode.  
DS41414D-page 106  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
10.0 WATCHDOG TIMER (WDT)  
The Watchdog Timer is a system timer that generates  
a Reset if the firmware does not issue a CLRWDT  
instruction within the time-out period. The Watchdog  
Timer is typically used to recover the system from  
unexpected events.  
The WDT has the following features:  
• Independent clock source  
• Multiple operating modes  
- WDT is always on  
- WDT is off when in Sleep  
- WDT is controlled by software  
- WDT is always off  
• Configurable time-out period is from 1 ms to 256  
seconds (nominal)  
• Multiple Reset conditions  
• Operation during Sleep  
FIGURE 10-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDTE<1:0> = 01  
SWDTEN  
23-bit Programmable  
WDT Time-out  
WDTE<1:0> = 11  
LFINTOSC  
Prescaler WDT  
WDTE<1:0> = 10  
Sleep  
WDTPS<4:0>  
2010-2012 Microchip Technology Inc.  
DS41414D-page 107  
PIC16(L)F1946/47  
10.1 Independent Clock Source  
10.3 Time-Out Period  
The WDT derives its time base from the 31 kHz  
LFINTOSC internal oscillator. Time intervals in this  
chapter are based on a nominal interval of 1 ms. See  
Section 30.0 “Electrical Specifications” for the  
LFINTOSC tolerances.  
The WDTPS bits of the WDTCON register set the  
time-out period from 1 ms to 256 seconds (nominal).  
After a Reset, the default time-out period is 2 seconds.  
10.4 Clearing the WDT  
The WDT is cleared when any of the following condi-  
tions occur:  
10.2 WDT Operating Modes  
The Watchdog Timer module has four operating modes  
controlled by the WDTE<1:0> bits in Configuration  
Words. See Table 10-1.  
• Any Reset  
CLRWDTinstruction is executed  
• Device enters Sleep  
10.2.1  
WDT IS ALWAYS ON  
• Device wakes up from Sleep  
• Oscillator fail  
When the WDTE bits of Configuration Words are set to  
11’, the WDT is always on.  
• WDT is disabled  
• Oscillator Start-up Timer (OST) is running  
WDT protection is active during Sleep.  
See Table 10-2 for more information.  
10.2.2  
WDT IS OFF IN SLEEP  
When the WDTE bits of Configuration Words are set to  
10’, the WDT is on, except in Sleep.  
10.5 Operation During Sleep  
When the device enters Sleep, the WDT is cleared. If  
the WDT is enabled during Sleep, the WDT resumes  
counting.  
WDT protection is not active during Sleep.  
10.2.3  
WDT CONTROLLED BY SOFTWARE  
When the device exits Sleep, the WDT is cleared  
again. The WDT remains clear until the OST, if  
enabled, completes. See Section 5.0 “Oscillator  
Module (With Fail-Safe Clock Monitor)” for more  
information on the OST.  
When the WDTE bits of Configuration Words are set to  
01’, the WDT is controlled by the SWDTEN bit of the  
WDTCON register.  
WDT protection is unchanged by Sleep. See  
Table 10-1 for more details.  
When a WDT time-out occurs while the device is in  
Sleep, no Reset is generated. Instead, the device wakes  
up and resumes operation. The TO and PD bits in the  
STATUS register are changed to indicate the event. See  
Section 3.0 “Memory Organization” and STATUS  
register (Register 3-1) for more information.  
TABLE 10-1: WDT OPERATING MODES  
Device  
Mode  
WDT  
Mode  
WDTE<1:0>  
SWDTEN  
11  
10  
X
X
X
Active  
Active  
Awake  
Sleep Disabled  
1
0
X
Active  
X
01  
00  
Disabled  
X
Disabled  
TABLE 10-2: WDT CLEARING CONDITIONS  
Conditions  
WDT  
WDTE<1:0> = 00  
WDTE<1:0> = 01 and SWDTEN = 0  
WDTE<1:0> = 10 and enter Sleep  
CLRWDTCommand  
Cleared  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
Unaffected  
Change INTOSC divider (IRCF bits)  
DS41414D-page 108  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
10.6 Register Definitions: Watchdog Control  
REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-1/1  
R/W-0/0  
R/W-1/1  
R/W-1/1  
R/W-0/0  
WDTPS<4:0>  
SWDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-m/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-1  
Unimplemented: Read as ‘0’  
WDTPS<4:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
00000 = 1:32 (Interval 1 ms typ)  
00001 = 1:64 (Interval 2 ms typ)  
00010 = 1:128 (Interval 4 ms typ)  
00011 = 1:256 (Interval 8 ms typ)  
00100 = 1:512 (Interval 16 ms typ)  
00101 = 1:1024 (Interval 32 ms typ)  
00110 = 1:2048 (Interval 64 ms typ)  
00111 = 1:4096 (Interval 128 ms typ)  
01000 = 1:8192 (Interval 256 ms typ)  
01001 = 1:16384 (Interval 512 ms typ)  
01010 = 1:32768 (Interval 1s typ)  
01011 = 1:65536 (Interval 2s typ) (Reset value)  
01100 = 1:131072 (217) (Interval 4s typ)  
01101 = 1:262144 (218) (Interval 8s typ)  
01110 = 1:524288 (219) (Interval 16s typ)  
01111 = 1:1048576 (220) (Interval 32s typ)  
10000 = 1:2097152 (221) (Interval 64s typ)  
10001 = 1:4194304 (222) (Interval 128s typ)  
10010 = 1:8388608 (223) (Interval 256s typ)  
10011 = Reserved. Results in minimum interval (1:32)  
11111 = Reserved. Results in minimum interval (1:32)  
bit 0  
SWDTEN: Software Enable/Disable for Watchdog Timer bit  
If WDTE<1:0> = 00:  
This bit is ignored.  
If WDTE<1:0> = 01:  
1= WDT is turned on  
0= WDT is turned off  
If WDTE<1:0> = 1x:  
This bit is ignored.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 109  
PIC16(L)F1946/47  
TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
STATUS  
WDTCON  
Legend:  
IRCF<3:0>  
Z
SCS<1:0>  
DC  
75  
25  
TO  
PD  
C
WDTPS<4:0>  
SWDTEN  
109  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by Watchdog Timer.  
TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
FCMEN  
PWRTE  
IESO  
CLKOUTEN  
BOREN<1:0>  
FOSC<2:0>  
CPD  
CONFIG1  
56  
CP  
MCLRE  
WDTE<1:0>  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by Watchdog Timer.  
DS41414D-page 110  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
11.1 EEADRL and EEADRH Registers  
11.0 DATA EEPROM AND FLASH  
PROGRAM MEMORY  
CONTROL  
The EEADRH:EEADRL register pair can address up to  
a maximum of 256 bytes of data EEPROM or up to a  
maximum of 32K words of program memory.  
The data EEPROM and Flash program memory are  
readable and writable during normal operation (full VDD  
range). These memories are not directly mapped in the  
register file space. Instead, they are indirectly  
addressed through the Special Function Registers  
(SFRs). There are six SFRs used to access these  
memories:  
When selecting a program address value, the MSB of  
the address is written to the EEADRH register and the  
LSB is written to the EEADRL register. When selecting  
a EEPROM address value, only the LSB of the address  
is written to the EEADRL register.  
11.1.1  
EECON1 AND EECON2 REGISTERS  
• EECON1  
• EECON2  
• EEDATL  
• EEDATH  
• EEADRL  
• EEADRH  
EECON1 is the control register for EE memory  
accesses.  
Control bit EEPGD determines if the access will be a  
program or data memory access. When clear, any  
subsequent operations will operate on the EEPROM  
memory. When set, any subsequent operations will  
operate on the program memory. On Reset, EEPROM is  
selected by default.  
When interfacing the data memory block, EEDATL  
holds the 8-bit data for read/write, and EEADRL holds  
the address of the EEDATL location being accessed.  
These devices have 256 bytes of data EEPROM with  
an address range from 0h to 0FFh.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
When accessing the program memory block, the EED-  
ATH:EEDATL register pair forms a 2-byte word that  
holds the 14-bit data for read/write, and the EEADRL  
and EEADRH registers form a 2-byte word that holds  
the 15-bit address of the program memory location  
being read.  
The WREN bit, when set, will allow a write operation to  
occur. On power-up, the WREN bit is clear. The  
WRERR bit is set when a write operation is interrupted  
by a Reset during normal operation. In these situations,  
following Reset, the user can check the WRERR bit  
and execute the appropriate error handling routine.  
The EEPROM data memory allows byte read and write.  
An EEPROM byte write automatically erases the loca-  
tion and writes the new data (erase before write).  
Interrupt flag bit EEIF of the PIR2 register is set when  
write is complete. It must be cleared in the software.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
Reading EECON2 will read all ‘0’s. The EECON2 reg-  
ister is used exclusively in the data EEPROM write  
sequence. To enable writes, a specific pattern must be  
written to EECON2.  
Depending on the setting of the Flash Program  
Memory Self Write Enable bits WRT<1:0> of the  
Configuration Words, the device may or may not be  
able to write certain blocks of the program memory.  
However, reads from the program memory are always  
allowed.  
When the device is code-protected, the device  
programmer can no longer access data or program  
memory. When code-protected, the CPU may continue  
to read and write the data EEPROM memory and Flash  
program memory.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 111  
PIC16(L)F1946/47  
11.2.2  
WRITING TO THE DATA EEPROM  
MEMORY  
11.2 Using the Data EEPROM  
The data EEPROM is a high-endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program vari-  
ables or other data that are updated often). When vari-  
ables in one section change frequently, while variables  
in another section do not change, it is possible to  
exceed the total number of write cycles to the  
EEPROM without exceeding the total number of write  
cycles to a single byte. Refer to Section 30.0 “Electri-  
cal Specifications”. If this is the case, then a refresh  
of the array must be performed. For this reason, vari-  
ables that change infrequently (such as constants, IDs,  
calibration, etc.) should be stored in Flash program  
memory.  
To write an EEPROM data location, the user must first  
write the address to the EEADRL register and the data  
to the EEDATL register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
The write will not initiate if the above sequence is not  
followed exactly (write 55h to EECON2, write AAh to  
EECON2, then set the WR bit) for each byte. Interrupts  
should be disabled during this code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
11.2.1  
READING THE DATA EEPROM  
MEMORY  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
To read a data memory location, the user must write the  
address to the EEADRL register, clear the EEPGD and  
CFGS control bits of the EECON1 register, and then  
set control bit RD. The data is available at the very next  
cycle, in the EEDATL register; therefore, it can be read  
in the next instruction. EEDATL will hold this value until  
another read or until it is written to by the user (during  
a write operation).  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
11.2.3  
PROTECTION AGAINST SPURIOUS  
WRITE  
EXAMPLE 11-1:  
DATA EEPROM READ  
BANKSELEEADRL  
;
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, WREN is cleared. Also, the  
Power-up Timer (64 ms duration) prevents EEPROM  
write.  
MOVLW  
MOVWF  
DATA_EE_ADDR ;  
EEADRL  
;Data Memory  
;Address to read  
EECON1, CFGS ;Deselect Config space  
EECON1, EEPGD;Point to DATA memory  
BCF  
BCF  
BSF  
MOVF  
EECON1, RD  
EEDATL, W  
;EE Read  
;W = EEDATL  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• Brown-out  
Note:  
Data EEPROM can be read regardless of  
the setting of the CPD bit.  
• Power Glitch  
• Software Malfunction  
11.2.4  
DATA EEPROM OPERATION  
DURING CODE-PROTECT  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Words to ‘0’.  
When the data memory is code-protected, only the  
CPU is able to read and write data to the data  
EEPROM. It is recommended to code-protect the pro-  
gram memory when code-protecting data memory.  
This prevents anyone from replacing your program with  
a program that will access the contents of the data  
EEPROM.  
DS41414D-page 112  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
EXAMPLE 11-2:  
DATA EEPROM WRITE  
BANKSEL EEADRL  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
DATA_EE_ADDR  
EEADRL  
DATA_EE_DATA  
EEDATL  
;
;Data Memory Address to write  
;
;Data Memory Value to write  
;Deselect Configuration space  
EECON1, CFGS  
BCF  
EECON1, EEPGD ;Point to DATA memory  
BSF  
EECON1, WREN  
;Enable writes  
BCF  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
EECON1, WREN  
EECON1, WR  
$-2  
;Disable INTs.  
;
;Write 55h  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BSF  
BCF  
BTFSC  
GOTO  
;Write AAh  
;Set WR bit to begin write  
;Enable Interrupts  
;Disable writes  
;Wait for write to complete  
;Done  
FIGURE 11-1:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
EEADRH,EEADRL  
PC + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
EEDATH,EEDATL  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF EECON1,RD  
executed here  
INSTR(PC - 1)  
executed here  
INSTR(PC + 1)  
executed here  
Forced NOP  
executed here  
INSTR(PC + 3)  
executed here  
INSTR(PC + 4)  
executed here  
RD bit  
EEDATH  
EEDATL  
Register  
2010-2012 Microchip Technology Inc.  
DS41414D-page 113  
PIC16(L)F1946/47  
11.3.1  
READING THE FLASH PROGRAM  
MEMORY  
11.3 Flash Program Memory Overview  
It is important to understand the Flash program mem-  
ory structure for erase and programming operations.  
Flash Program memory is arranged in rows. A row con-  
sists of a fixed number of 14-bit program memory  
words. A row is the minimum block size that can be  
erased by user software.  
To read a program memory location, the user must:  
1. Write the Least and Most Significant address  
bits to the EEADRH:EEADRL register pair.  
2. Clear the CFGS bit of the EECON1 register.  
3. Set the EEPGD control bit of the EECON1  
register.  
Flash program memory may only be written or erased  
if the destination address is in a segment of memory  
that is not write-protected, as defined in bits WRT<1:0>  
of Configuration Words.  
4. Then, set control bit RD of the EECON1 register.  
Once the read control bit is set, the program memory  
Flash controller will use the second instruction cycle to  
read the data. This causes the second instruction  
immediately following the “BSF EECON1,RD” instruction  
to be ignored. The data is available in the very next cycle,  
in the EEDATH:EEDATL register pair; therefore, it can  
be read as two bytes in the following instructions.  
After a row has been erased, the user can reprogram  
all or a portion of this row. Data to be written into the  
program memory row is written to 14-bit wide data write  
latches. These write latches are not directly accessible  
to the user, but may be loaded via sequential writes to  
the EEDATH:EEDATL register pair.  
EEDATH:EEDATL register pair will hold this value until  
another read or until it is written to by the user.  
Note:  
If the user wants to modify only a portion  
of a previously programmed row, then the  
contents of the entire row must be read  
and saved in RAM prior to the erase.  
Note 1: The two instructions following a program  
memory read are required to be NOPs.  
This prevents the user from executing a  
two-cycle instruction on the next  
instruction after the RD bit is set.  
The number of data write latches may not be equivalent  
to the number of row locations. During programming,  
user software may need to fill the set of write latches  
and initiate a programming operation multiple times in  
order to fully reprogram an erased row. For example, a  
device with a row size of 32 words and eight write  
latches will need to load the write latches with data and  
initiate a programming operation four times.  
2: Flash program memory can be read  
regardless of the setting of the CP bit.  
The size of a program memory row and the number of  
program memory write latches may vary by device.  
See Table 11-1 for details.  
TABLE 11-1: FLASH MEMORY ORGANIZATION BY DEVICE  
Device  
Erase Block (Row) Size/Boundary  
Number of Write Latches/Boundary  
PIC16(L)F1946/47  
32 words, EEADRL<4:0> = 00000  
32 words, EEADRL<4:0> = 00000  
DS41414D-page 114  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
EXAMPLE 11-3:  
FLASH PROGRAM MEMORY READ  
* This code block will read 1 word of program  
* memory at the memory address:  
PROG_ADDR_HI: PROG_ADDR_LO  
*
*
data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL EEADRL  
; Select Bank for EEPROM registers  
MOVLW  
MOVWF  
MOVLW  
MOVWL  
PROG_ADDR_LO  
EEADRL  
PROG_ADDR_HI  
EEADRH  
;
; Store LSB of address  
;
; Store MSB of address  
BCF  
BSF  
BCF  
BSF  
NOP  
NOP  
BSF  
EECON1,CFGS  
EECON1,EEPGD  
INTCON,GIE  
EECON1,RD  
; Do not select Configuration Space  
; Select Program Memory  
; Disable interrupts  
; Initiate read  
; Executed (Figure 11-1)  
; Ignored (Figure 11-1)  
; Restore interrupts  
INTCON,GIE  
MOVF  
EEDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
EEDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
2010-2012 Microchip Technology Inc.  
DS41414D-page 115  
PIC16(L)F1946/47  
The following steps should be completed to load the  
write latches and program a block of program memory.  
These steps are divided into two parts. First, all write  
latches are loaded with data except for the last program  
memory location. Then, the last write latch is loaded  
and the programming sequence is initiated. A special  
unlock sequence is required to load a write latch with  
data or initiate a Flash programming operation. This  
unlock sequence should not be interrupted.  
11.3.2  
ERASING FLASH PROGRAM  
MEMORY  
While executing code, program memory can only be  
erased by rows. To erase a row:  
1. Load the EEADRH:EEADRL register pair with  
the address of new row to be erased.  
2. Clear the CFGS bit of the EECON1 register.  
3. Set the EEPGD, FREE, and WREN bits of the  
EECON1 register.  
1. Set the EEPGD and WREN bits of the EECON1  
register.  
4. Write 55h, then AAh, to EECON2 (Flash  
programming unlock sequence).  
2. Clear the CFGS bit of the EECON1 register.  
5. Set control bit WR of the EECON1 register to  
begin the erase operation.  
3. Set the LWLO bit of the EECON1 register. When  
the LWLO bit of the EECON1 register is ‘1’, the  
write sequence will only load the write latches  
and will not initiate the write to Flash program  
memory.  
6. Poll the FREE bit in the EECON1 register to  
determine when the row erase has completed.  
See Example 11-4.  
4. Load the EEADRH:EEADRL register pair with  
the address of the location to be written.  
After the “BSF EECON1,WR” instruction, the processor  
requires two cycles to set up the erase operation. The  
user must place two NOPinstructions after the WR bit is  
set. The processor will halt internal operations for the  
typical 2 ms erase time. This is not Sleep mode as the  
clocks and peripherals will continue to run. After the  
erase cycle, the processor will resume operation with  
the third instruction after the EECON1 write instruction.  
5. Load the EEDATH:EEDATL register pair with  
the program memory data to be written.  
6. Write 55h, then AAh, to EECON2, then set the  
WR bit of the EECON1 register (Flash  
programming unlock sequence). The write latch  
is now loaded.  
7. Increment the EEADRH:EEADRL register pair  
to point to the next location.  
11.3.3  
WRITING TO FLASH PROGRAM  
MEMORY  
8. Repeat steps 5 through 7 until all but the last  
write latch has been loaded.  
Program memory is programmed using the following  
steps:  
9. Clear the LWLO bit of the EECON1 register.  
When the LWLO bit of the EECON1 register is  
0’, the write sequence will initiate the write to  
Flash program memory.  
1. Load the starting address of the word(s) to be  
programmed.  
2. Load the write latches with data.  
10. Load the EEDATH:EEDATL register pair with  
the program memory data to be written.  
3. Initiate a programming operation.  
4. Repeat steps 1 through 3 until all data is written.  
11. Write 55h, then AAh, to EECON2, then set the  
WR bit of the EECON1 register (Flash  
programming unlock sequence). The entire  
latch block is now written to Flash program  
memory.  
Before writing to program memory, the word(s) to be  
written must be erased or previously unwritten. Pro-  
gram memory can only be erased one row at a time. No  
automatic erase occurs upon the initiation of the write.  
Program memory can be written one or more words at  
a time. The maximum number of words written at one  
time is equal to the number of write latches. See  
Figure 11-2 (block writes to program memory with 16  
write latches) for more details. The write latches are  
aligned to the address boundary defined by EEADRL  
as shown in Table 11-1. Write operations do not cross  
these boundaries. At the completion of a program  
memory write operation, the write latches are reset to  
contain 0x3FFF.  
It is not necessary to load the entire write latch block  
with user program data. However, the entire write latch  
block will be written to program memory.  
An example of the complete write sequence for eight  
words is shown in Example 11-5. The initial address is  
loaded into the EEADRH:EEADRL register pair; the  
eight words of data are loaded using indirect  
addressing.  
Note:  
The code sequence provided in  
Example 11-5 must be repeated multiple  
times to fully program an erased program  
memory row.  
DS41414D-page 116  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
After the “BSF EECON1,WR” instruction, the processor  
requires two cycles to set up the write operation. The  
user must place two NOPinstructions after the WR bit is  
set. The processor will halt internal operations for the  
typical 2 ms, only during the cycle in which the write  
takes place (i.e., the last word of the block write). This  
is not Sleep mode as the clocks and peripherals will  
continue to run. The processor does not stall when  
LWLO = 1, loading the write latches. After the write  
cycle, the processor will resume operation with the third  
instruction after the EECON1 write instruction.  
FIGURE 11-2:  
BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 32 WRITE LATCHES  
7
5
0
0 7  
EEDATH  
6
EEDATA  
8
Last word of block  
to be written  
First word of block  
to be written  
14  
14  
14  
14  
EEADRL<4:0> = 00000  
EEADRL<4:0> = 00001  
EEADRL<4:0> = 00010  
EEADRL<4:0> = 11111  
Buffer Register  
Buffer Register  
Buffer Register  
Buffer Register  
Program Memory  
2010-2012 Microchip Technology Inc.  
DS41414D-page 117  
PIC16(L)F1946/47  
EXAMPLE 11-4:  
ERASING ONE ROW OF PROGRAM MEMORY -  
; This row erase routine assumes the following:  
; 1. A valid address within the erase block is loaded in ADDRH:ADDRL  
; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)  
BCF  
INTCON,GIE  
EEADRL  
ADDRL,W  
EEADRL  
ADDRH,W  
; Disable ints so required sequences will execute properly  
; Load lower 8 bits of erase address boundary  
; Load upper 6 bits of erase address boundary  
BANKSEL  
MOVF  
MOVWF  
MOVF  
MOVWF  
BSF  
BCF  
BSF  
BSF  
EEADRH  
EECON1,EEPGD  
EECON1,CFGS  
EECON1,FREE  
EECON1,WREN  
; Point to program memory  
; Not configuration space  
; Specify an erase operation  
; Enable writes  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
EECON2  
0AAh  
EECON2  
EECON1,WR  
; Start of required sequence to initiate erase  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin erase  
; Any instructions here are ignored as processor  
; halts to begin erase sequence  
; Processor will stop here and wait for erase complete.  
NOP  
NOP  
; after erase processor continues with 3rd instruction  
BCF  
BSF  
EECON1,WREN  
INTCON,GIE  
; Disable writes  
; Enable interrupts  
DS41414D-page 118  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
EXAMPLE 11-5:  
WRITING TO FLASH PROGRAM MEMORY  
; This write routine assumes the following:  
; 1. The 16 bytes of data are loaded, starting at the address in DATA_ADDR  
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,  
;
stored in little endian format  
; 3. A valid starting address (the least significant bits = 000) is loaded in ADDRH:ADDRL  
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)  
;
BCF  
INTCON,GIE  
EEADRH  
ADDRH,W  
EEADRH  
ADDRL,W  
EEADRL  
; Disable ints so required sequences will execute properly  
; Bank 3  
; Load initial address  
;
;
;
BANKSEL  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
LOW DATA_ADDR ; Load initial data address  
FSR0L  
HIGH DATA_ADDR ; Load initial data address  
;
FSR0H  
;
EECON1,EEPGD  
EECON1,CFGS  
EECON1,WREN  
EECON1,LWLO  
; Point to program memory  
; Not configuration space  
; Enable writes  
BCF  
BSF  
BSF  
; Only Load Write Latches  
LOOP  
MOVIW  
MOVWF  
MOVIW  
MOVWF  
FSR0++  
EEDATL  
FSR0++  
EEDATH  
; Load first data byte into lower  
;
; Load second data byte into upper  
;
MOVF  
EEADRL,W  
0x07  
0x07  
STATUS,Z  
START_WRITE  
; Check if lower bits of address are '000'  
; Check if we're on the last of 8 addresses  
;
; Exit if last of eight words,  
;
XORLW  
ANDLW  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
EECON2  
0AAh  
EECON2  
EECON1,WR  
; Start of required write sequence:  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
NOP  
; Any instructions here are ignored as processor  
; halts to begin write sequence  
NOP  
; Processor will stop here and wait for write to complete.  
; After write processor continues with 3rd instruction.  
INCF  
GOTO  
EEADRL,F  
LOOP  
; Still loading latches Increment address  
; Write next latches  
START_WRITE  
BCF  
EECON1,LWLO  
; No more loading latches - Actually start Flash program  
; memory write  
MOVLW  
55h  
EECON2  
0AAh  
EECON2  
EECON1,WR  
; Start of required write sequence:  
; Write 55h  
;
MOVWF  
MOVLW  
MOVWF  
BSF  
; Write AAh  
; Set WR bit to begin write  
; Any instructions here are ignored as processor  
; halts to begin write sequence  
; Processor will stop here and wait for write complete.  
NOP  
NOP  
; after write processor continues with 3rd instruction  
; Disable writes  
; Enable interrupts  
BCF  
BSF  
EECON1,WREN  
INTCON,GIE  
2010-2012 Microchip Technology Inc.  
DS41414D-page 119  
PIC16(L)F1946/47  
11.4 Modifying Flash Program Memory  
11.5 User ID, Device ID and  
Configuration Word Access  
When modifying existing data in a program memory  
row, and data within that row must be preserved, it must  
first be read and saved in a RAM image. Program  
memory is modified using the following steps:  
Instead of accessing program memory or EEPROM  
data memory, the User ID’s, Device ID/Revision ID and  
Configuration Words can be accessed when CFGS = 1  
in the EECON1 register. This is the region that would  
be pointed to by PC<15> = 1, but not all addresses are  
accessible. Different access may exist for reads and  
writes. Refer to Table 11-2.  
1. Load the starting address of the row to be  
modified.  
2. Read the existing data from the row into a RAM  
image.  
When read access is initiated on an address outside the  
parameters listed in Table 11-2, the EEDATH:EEDATL  
register pair is cleared.  
3. Modify the RAM image to contain the new data  
to be written into program memory.  
4. Load the starting address of the row to be  
rewritten.  
5. Erase the program memory row.  
6. Load the write latches with data from the RAM  
image.  
7. Initiate a programming operation.  
8. Repeat steps 6 and 7 as many times as required  
to reprogram the erased row.  
TABLE 11-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)  
Address  
Function  
Read Access  
Write Access  
8000h-8003h  
8006h  
User IDs  
Yes  
Yes  
Yes  
Yes  
No  
No  
Device ID/Revision ID  
Configuration Words 1 and 2  
8007h-8008h  
EXAMPLE 11-3: CONFIGURATION WORD AND DEVICE ID ACCESS  
* This code block will read 1 word of program memory at the memory address:  
*
*
PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL EEADRL  
; Select correct Bank  
;
; Store LSB of address  
; Clear MSB of address  
MOVLW  
MOVWF  
CLRF  
PROG_ADDR_LO  
EEADRL  
EEADRH  
BSF  
BCF  
BSF  
NOP  
NOP  
BSF  
EECON1,CFGS  
INTCON,GIE  
EECON1,RD  
; Select Configuration Space  
; Disable interrupts  
; Initiate read  
; Executed (See Figure 11-1)  
; Ignored (See Figure 11-1)  
; Restore interrupts  
INTCON,GIE  
MOVF  
EEDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
EEDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
DS41414D-page 120  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
11.6 Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM or program memory should be verified (see  
Example 11-6) to the desired value to be written.  
Example 11-6 shows how to verify a write to EEPROM.  
EXAMPLE 11-6:  
EEPROM WRITE VERIFY  
BANKSELEEDATL  
;
MOVF  
EEDATL, W ;EEDATL not changed  
;from previous write  
BSF  
EECON1, RD ;YES, Read the  
;value written  
XORWF  
BTFSS  
GOTO  
:
EEDATL, W  
;
STATUS, Z ;Is data the same  
WRITE_ERR ;No, handle error  
;Yes, continue  
2010-2012 Microchip Technology Inc.  
DS41414D-page 121  
PIC16(L)F1946/47  
11.7 Register Definitions: Data EEPROM Control  
REGISTER 11-1: EEDATL: EEPROM DATA LOW BYTE REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
EEDAT<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory  
REGISTER 11-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
EEDAT<13:8>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EEDAT<13:8>: Read/write value for Most Significant bits of program memory  
DS41414D-page 122  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 11-3: EEADRL: EEPROM ADDRESS LOW BYTE REGISTER  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
EEADR<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address  
REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER  
U-1  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
(1)  
EEADR<14:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
Unimplemented: Read as ‘1’  
EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address  
bit 6-0  
Note 1: Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 123  
PIC16(L)F1946/47  
REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER  
R/W-0/0  
EEPGD  
R/W-0/0  
CFGS  
R/W-0/0  
LWLO  
R/W/HC-0/0  
FREE  
R/W-x/q  
WRERR  
R/W-0/0  
WREN  
R/S/HC-0/0 R/S/HC-0/0  
WR RD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
S = Bit can only be set  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = Bit is cleared by hardware  
bit 7  
bit 6  
bit 5  
EEPGD: Flash Program/Data EEPROM Memory Select bit  
1= Accesses program space Flash memory  
0= Accesses data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Accesses Configuration, User ID and Device ID Registers  
0= Accesses Flash Program or data EEPROM Memory  
LWLO: Load Write Latches Only bit  
If CFGS = 1(Configuration space) OR CFGS = 0and EEPGD = 1(program Flash):  
1= The next WR command does not initiate a write; only the program memory latches are  
updated.  
0= The next WR command writes a value from EEDATH:EEDATL into program memory latches  
and initiates a write of all the data stored in the program memory latches.  
If CFGS = 0and EEPGD = 0: (Accessing data EEPROM)  
LWLO is ignored. The next WR command initiates a write to the data EEPROM.  
bit 4  
FREE: Program Flash Erase Enable bit  
If CFGS = 1(Configuration space) OR CFGS = 0and EEPGD = 1(program Flash):  
1= Performs an erase operation on the next WR command (cleared by hardware after  
completion of erase).  
0= Performs a write operation on the next WR command.  
If EEPGD = 0 and CFGS = 0: (Accessing data EEPROM)  
FREE is ignored. The next WR command will initiate both a erase cycle and a write cycle.  
bit 3  
WRERR: EEPROM Error Flag bit  
1= Condition indicates an improper program or erase sequence attempt or termination (bit is set  
automatically on any set attempt (write ‘1’) of the WR bit).  
0= The program or erase operation completed normally.  
bit 2  
bit 1  
WREN: Program/Erase Enable bit  
1= Allows program/erase cycles  
0= Inhibits programming/erasing of program Flash and data EEPROM  
WR: Write Control bit  
1= Initiates a program Flash or data EEPROM program/erase operation.  
The operation is self-timed and the bit is cleared by hardware once operation is complete.  
The WR bit can only be set (not cleared) in software.  
0= Program/erase operation to the Flash or data EEPROM is complete and inactive.  
bit 0  
RD: Read Control bit  
1= Initiates an program Flash or data EEPROM read. Read takes one cycle. RD is cleared in  
hardware. The RD bit can only be set (not cleared) in software.  
0= Does not initiate a program Flash or data EEPROM data read.  
DS41414D-page 124  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 11-6: EECON2: EEPROM CONTROL 2 REGISTER  
W-0/0 W-0/0 W-0/0 W-0/0 W-0/0  
EEPROM Control Register 2  
W-0/0  
W-0/0  
W-0/0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
S = Bit can only be set  
‘1’ = Bit is set  
bit 7-0  
Data EEPROM Unlock Pattern bits  
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the  
EECON1 register. The value written to this register is used to unlock the writes. There are specific  
timing requirements on these writes. Refer to Section 11.2.2 “Writing to the Data EEPROM  
Memory” for more information.  
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM  
Register on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EECON1  
EECON2  
EEADRL  
EEPGD  
CFGS  
LWLO  
FREE  
WRERR  
WREN  
WR  
RD  
124  
111*  
123  
123  
122  
122  
92  
EEPROM Control Register 2 (not a physical register)  
EEADRL<7:0>  
(1)  
EEADRH  
EEDATL  
EEADRH<6:0>  
EEDATL<7:0>  
EEDATH  
INTCON  
PIE2  
EEDATH<5:0>  
GIE  
PEIE  
C2IE  
C2IF  
TMR0IE  
C1IE  
INTE  
EEIE  
EEIF  
IOCIE  
BCLIE  
BCLIF  
TMR0IF  
LCDIE  
LCDIF  
INTF  
C3IE  
C3IF  
IOCIF  
CCP2IE  
CCP2IF  
OSFIE  
OSFIF  
94  
PIR2  
C1IF  
98  
Legend:  
= unimplemented location, read as ‘0’. Shaded cells are not used by data EEPROM module.  
*
Page provides register information.  
Note 1: Unimplemented, read as ‘1’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 125  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 126  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 12-1:  
GENERIC I/O PORT  
OPERATION  
12.0 I/O PORTS  
Each port has three standard registers for its operation.  
These registers are:  
• TRISx registers (data direction)  
Read LATx  
• PORTx registers (reads the levels on the pins of  
the device)  
TRISx  
D
Q
• LATx registers (output latch)  
Write LATx  
Write PORTx  
Some ports may have one or more of the following  
additional registers. These registers are:  
CK  
Data Register  
VDD  
• ANSELx (analog select)  
• WPUx (weak pull-up)  
Data Bus  
In general, when a peripheral is enabled on a port pin,  
that pin cannot be used as a general purpose output.  
However, the pin can still be read.  
I/O pin  
Read PORTx  
To peripherals  
VSS  
ANSELx  
TABLE 12-1: PORT AVAILABILITY PER  
DEVICE  
EXAMPLE 12-1:  
INITIALIZING PORTA  
Device  
; This code example illustrates  
; initializing the PORTA register. The  
; other ports are initialized in the same  
; manner.  
PIC16F1946  
PIC16F1947  
BANKSEL PORTA  
CLRF PORTA  
BANKSEL LATA  
CLRF LATA  
BANKSEL ANSELA  
CLRF ANSELA  
BANKSEL TRISA  
;
The Data Latch (LATx registers) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
;Init PORTA  
;Data Latch  
;
;
;digital I/O  
;
A write operation to the LATx register has the same  
effect as a write to the corresponding PORTx register.  
A read of the LATx register reads of the values held in  
the I/O PORT latches, while a read of the PORTx  
register reads the actual I/O pin value.  
MOVLW  
MOVWF  
B'00111000' ;Set RA<5:3> as inputs  
TRISA  
;and set RA<2:0> as  
;outputs  
Ports that support analog inputs have an associated  
ANSELx register. When an ANSEL bit is set, the digital  
input buffer associated with that bit is disabled.  
Disabling the input buffer prevents analog signal levels  
on the pin between a logic high and low from causing  
excessive current in the logic input circuitry. A  
simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 12-1.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 127  
PIC16(L)F1946/47  
12.1 Alternate Pin Function  
The Alternate Pin Function Control (APFCON) register  
is used to steer specific peripheral input and output  
functions between different pins. The APFCON register  
is shown in Register 12-1. For this device family, the  
following functions can be moved between different  
pins.  
• CCP3/P3C output  
• CCP3/P3B output  
• CCP2/P2D output  
• CCP2/P2C output  
• CCP2/P2B output  
• CCP2/P2A output  
• CCP1/P1C output  
• CCP1/P1B output  
These bits have no effect on the values of any TRIS  
register. PORT and TRIS overrides will be routed to the  
correct pin. The unselected pin will be unaffected.  
DS41414D-page 128  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.2 Register Definitions: Alternate Pin Function Control  
REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER  
R/W-0/0  
P3CSEL  
R/W-0/0  
P3BSEL  
R/W-0/0  
P2DSEL  
R/W-0/0  
P2CSEL  
R/W-0/0  
P2BSEL  
R/W-0/0  
R/W-0/0  
P1CSEL  
R/W-0/0  
P1BSEL  
CCP2SEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
P3CSEL: CCP3 PWM C Output Pin Selection bit  
0= P3C function is on RE3/P3C/COM0  
1= P3C function is on RD3/P3C/SEG3  
P3BSEL: CCP3 PWM B Output Pin Selection bit  
0= P3B function is on RE4/P3B/COM1  
1= P3B function is on RD4/P3B/SEG4  
P2DSEL: CCP2 PWM D Output Pin Selection bit  
0= P2D function is on RE0/P2D/VLCD1  
1= P2D function is on RD0/P2D/SEG0  
P2CSEL: CCP2 PWM C Output Pin Selection bit  
0= P2C function is on RE1/P2C/VLCD2  
1= P2C function is on RD1/P2C/SEG1  
P2BSEL: CCP2 PWM B Output Pin Selection bit  
0= P2B function is on RE2/P2B/VLCD3  
1= P2B function is on RD2/P2B/SEG2  
CCP2SEL: CCP2 Input/Output Pin Selection bit  
0= CCP2/P2A function is on RC1/CCP2/P2A/T1OSI/SEG32  
1= CCP2/P2A function is on RE7/CCP2/P2A/SEG31  
P1CSEL: CCP1 PWM C Output Pin Selection bit  
0= P1C function is on RE5/P1C/COM2  
1= P1C function is on RD5/P1C/SEG5  
P1BSEL: CCP1 PWM B Output Pin Selection bit  
0= P1B function is on RE6/P1B/COM3  
1= P1B function is on RD6/P1B/SEG6  
2010-2012 Microchip Technology Inc.  
DS41414D-page 129  
PIC16(L)F1946/47  
12.3.2  
PORTA FUNCTIONS AND OUTPUT  
PRIORITIES  
12.3 PORTA Registers  
PORTA is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 12-3). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). Example 12-1 shows how to  
initialize PORTA.  
Each PORTA pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 12-2.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input functions, such as ADC, comparator and  
CapSense inputs, are not shown in the priority lists.  
These inputs are active when the I/O pin is set for  
Analog mode using the ANSELx registers. Digital  
output functions may control the pin when it is in Analog  
mode with the priority list.  
Reading the PORTA register (Register 12-2) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch (LATA).  
TABLE 12-2: PORTA OUTPUT PRIORITY  
Pin  
Name  
The TRISA register (Register 12-3) controls the  
PORTA pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISA register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
input always read ‘0’.  
Function Priority(1)  
RA0 SEG33 (LCD)  
RA0  
RA1 SEG18  
RA1  
12.3.1  
ANSELA REGISTER  
RA2 SEG34 (LCD)  
RA2  
The ANSELA register (Register 12-5) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELA bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
RA3 SEG35 (LCD)  
RA3  
RA4 SEG14 (LCD)  
RA4  
The state of the ANSELA bits has no effect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
RA5 SEG15 (LCD)  
RA5  
RA6 OSC2 (enabled by Configuration Word)  
CLKOUT (enabled by Configuration Word)  
SEG36 (LCD)  
RA6  
Note:  
The ANSELA bits default to the Analog  
mode after Reset. To use any pins as  
digital general purpose or peripheral  
inputs, the corresponding ANSEL bits  
must be initialized to ‘0’ by user software.  
RA7 OSC1/CLKIN (enabled by Configuration  
Word)  
SEG37 (LCD)  
RA7  
Note 1: Priority listed from highest to lowest.  
DS41414D-page 130  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.4 Register Definitions: PORTA  
REGISTER 12-2: PORTA: PORTA REGISTER  
R/W-x/u  
RA7  
R/W-x/u  
RA6  
R/W-x/u  
RA5  
R/W-x/u  
RA4  
R/W-x/u  
RA3  
R/W-x/u  
RA2  
R/W-x/u  
RA1  
R/W-x/u  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RA<7:0>: PORTA I/O Value bits(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return  
of actual I/O pin values.  
REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER  
R/W-1/1  
TRISA7  
R/W-1/1  
TRISA6  
R/W-1/1  
TRISA5  
R/W-1/1  
TRISA4  
R/W-1/1  
TRISA3  
R/W-1/1  
TRISA2  
R/W-1/1  
TRISA1  
R/W-1/1  
TRISA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISA<7:0>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER  
R/W-x/u  
LATA7  
R/W-x/u  
LATA6  
R/W-x/u  
LATA5  
R/W-x/u  
LATA4  
R/W-x/u  
LATA3  
R/W-x/u  
LATA2  
R/W-x/u  
LATA1  
R/W-x/u  
LATA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATA<7:0>: PORTA Output Latch Value bits(1)  
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return  
of actual I/O pin values.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 131  
PIC16(L)F1946/47  
REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1/1  
ANSA5  
U-0  
R/W-1/1  
ANSA3  
R/W-1/1  
ANSA2  
R/W-1/1  
ANSA1  
R/W-1/1  
ANSA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ANSA5: Analog Select between Analog or Digital Function on pins RA<5>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
ANSA<3:0>: Analog Select between Analog or Digital Function on pins RA<3:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSELA  
ADFM  
CHS<4:0>  
ADON  
GO/DONE  
168  
169  
ADCS<2:0>  
ANSA5  
ADPREF<1:0>  
ANSA3  
ANSA2  
ANSA1  
ANSA0  
T0XCS  
132  
333  
334  
178  
131  
341  
341  
341  
197  
131  
131  
CPSCON0  
CPSCON1  
DACCON0  
LATA  
CPSON  
CPSRM  
CPSRNG1 CPSRNG0 CPSOUT  
CPSCH<4:0>  
DACEN  
LATA7  
SE15  
DACLPS  
LATA6  
SE14  
DACOE  
LATA5  
SE13  
SE21  
SE37  
TMR0CS  
RA5  
---  
DACPSS<1:0>  
---  
DACNSS  
LATA0  
SE8  
LATA4  
SE12  
LATA3  
LATA2  
SE10  
SE18  
SE34  
LATA1  
SE9  
LCDSE1  
LCDSE2  
LCDSE4  
OPTION_REG  
PORTA  
SE11  
SE19  
SE35  
PSA  
SE23  
SE22  
SE20  
SE17  
SE33  
PS<2:0>  
RA1  
SE16  
SE39  
SE38  
SE36  
SE32  
WPUEN  
RA7  
INTEDG  
RA6  
TMR0SE  
RA4  
RA3  
RA2  
RA0  
TRISA  
TRISA7  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
FCMEN  
PWRTE  
IESO  
CLKOUTEN  
BOREN<1:0>  
FOSC<2:0>  
CPD  
CONFIG1  
56  
CP  
MCLRE  
WDTE<1:0>  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.  
DS41414D-page 132  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.5.3  
PORTB FUNCTIONS AND OUTPUT  
PRIORITIES  
12.5 PORTB Registers  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 12-7). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 12-1 shows how to initialize an I/O port.  
Each PORTB pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 12-5.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions, such as the EUSART RX  
signal, override other port functions and are included in  
the priority list.  
Reading the PORTB register (Register 12-6) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATB).  
TABLE 12-5: PORTB OUTPUT PRIORITY  
The TRISB register (Register 12-7) controls the PORTB  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog inputs  
always read ‘0’.  
Pin  
Name  
Function Priority(1)  
RB0  
SEG12 (LCD)  
SRI (SR Latch)  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
SEG8 (LCD)  
RB1  
12.5.1  
WEAK PULL-UPS  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:0> enable or  
disable each pull-up (see Register 12-9). Each weak  
pull-up is automatically turned off when the port pin is  
configured as an output. All pull-ups are disabled on a  
Power-on Reset by the WPUEN bit of the OPTION_REG  
register.  
SEG9 (LCD)  
RB2  
SEG10 (LCD)  
RB3  
SEG11 (LCD)  
RB4  
SEG29 (LCD)  
RB5  
12.5.2  
INTERRUPT-ON-CHANGE  
ICSPCLK (Programming)  
ICDCLK (enabled by Configuration Word)  
SEG38 (LCD)  
All of the PORTB pins are individually configurable as  
an interrupt-on-change pin. Control bits IOCB<7:0>  
enable or disable the interrupt function for each pin.  
The interrupt-on-change feature is disabled on a  
RB6  
Power-on  
Reset.  
Reference  
Section 13.0  
RB7  
ICSPDAT (Programming)  
ICDDAT (enabled by Configuration Word)  
SEG39 (LCD)  
“Interrupt-On-Change” for more information.  
RB7  
Note 1: Priority listed from highest to lowest.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 133  
PIC16(L)F1946/47  
12.6 Register Definitions: PORTB  
REGISTER 12-6: PORTB: PORTB REGISTER  
R/W-x/u  
RB7  
R/W-x/u  
RB6  
R/W-x/u  
RB5  
R/W-x/u  
RB4  
R/W-x/u  
RB3  
R/W-x/u  
RB2  
R/W-x/u  
RB1  
R/W-x/u  
RB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RB<7:0>: PORTB I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 12-7: TRISB: PORTB TRI-STATE REGISTER  
R/W-1/1  
TRISB7  
R/W-1/1  
TRISB6  
R/W-1/1  
TRISB5  
R/W-1/1  
TRISB4  
R/W-1/1  
TRISB3  
R/W-1/1  
TRISB2  
R/W-1/1  
TRISB1  
R/W-1/1  
TRISB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISB<7:0>: PORTB Tri-State Control bits  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
REGISTER 12-8: LATB: PORTB DATA LATCH REGISTER  
R/W-x/u  
LATB7  
R/W-x/u  
LATB6  
R/W-x/u  
LATB5  
R/W-x/u  
LATB4  
R/W-x/u  
LATB3  
R/W-x/u  
LATB2  
R/W-x/u  
LATB1  
R/W-x/u  
LATB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATB<7:0>: PORTB Output Latch Value bits(1)  
Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is  
return of actual I/O pin values.  
DS41414D-page 134  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 12-9: WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1/1  
WPUB7  
R/W-1/1  
WPUB6  
R/W-1/1  
WPUB5  
R/W-1/1  
WPUB4  
R/W-1/1  
WPUB3  
R/W-1/1  
WPUB2  
R/W-1/1  
WPUB1  
R/W-1/1  
WPUB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
WPUB<7:0>: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
IOCBP6  
IOCBN6  
IOCBF6  
LATB6  
SE14  
TMR0IE  
IOCBP5  
IOCBN5  
IOCBF5  
LATB5  
SE13  
INTE  
IOCBP4  
IOCBN4  
IOCBF4  
LATB4  
SE12  
IOCIE  
IOCBP3  
IOCBN3  
IOCBF3  
LATB3  
SE11  
TMR0IF  
IOCBP2  
IOCBN2  
IOCBF2  
LATB2  
SE10  
INTF  
IOCBP1  
IOCBN1  
IOCBF1  
LATB1  
SE9  
IOCIF  
IOCBP0  
IOCBN0  
IOCBF0  
LATB0  
SE8  
92  
IOCBP  
IOCBN  
IOCBF  
LATB  
IOCBP7  
IOCBN7  
IOCBF7  
LATB7  
SE15  
155  
155  
155  
134  
341  
341  
341  
197  
134  
208  
134  
135  
LCDSE1  
LCDSE3  
LCDSE4  
SE31  
SE30  
SE29  
SE28  
SE27  
SE26  
SE25  
SE24  
SE39  
SE38  
SE37  
SE36  
SE35  
SE34  
SE33  
SE32  
OPTION_REG WPUEN  
INTEDG  
RB6  
TMR0CS TMR0SE  
PSA  
PS<2:0>  
RB1  
PORTB  
T1GCON  
TRISB  
RB7  
RB5  
RB4  
RB3  
RB2  
RB0  
TMR1GE T1GPOL  
T1GTM  
TRISB5  
WPUB5  
T1GSPM T1GGO/DONE T1GVAL  
T1GSS<1:0>  
TRISB7  
WPUB7  
TRISB6  
WPUB6  
TRISB4  
WPUB4  
TRISB3  
WPUB3  
TRISB2  
WPUB2  
TRISB1  
WPUB1  
TRISB0  
WPUB0  
WPUB  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 135  
PIC16(L)F1946/47  
12.7.1  
PORTC FUNCTIONS AND OUTPUT  
PRIORITIES  
12.7 PORTC Registers  
PORTC is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISC  
(Register 12-11). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 12-1 shows how to initialize an I/O port.  
Each PORTC pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 12-7.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions override other port  
functions and are included in the priority list.  
Reading the PORTC register (Register 12-10) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATC).  
TABLE 12-7: PORTC OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
RC0  
T1OSO (Timer1 Oscillator)  
SEG40 (ICD)  
RC0  
The TRISC register (Register 12-11) controls the  
PORTC pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits in  
the TRISC register are maintained set when using them  
as analog inputs. I/O pins configured as analog inputs  
always read ‘0’.  
RC1  
T1OSI (Timer1 Oscillator)  
CCP2(2)/P2A(2)  
SEG32 (ICD)  
RC1  
RC2  
RC3  
SEG13 (LCD)  
CCP1/P1A  
RC2  
SEG17 (LCD)  
SCL1 (MSSP1)  
SCK1 (MSSP1)  
RC3  
RC4  
RC5  
RC6  
SEG16 (LCD)  
SDA1 (MSSP1)  
RC4  
SEG12 (LCD)  
SDO1 (MSSP1)  
RC5  
SEG27 (LCD)  
TX1 (EUSART1)  
CK2 (EUSART1)  
RC6  
RC7  
SEG28 (LCD)  
DT1 (EUSART1)  
RC7  
Note 1: Priority listed from highest to lowest.  
2: Default pin (see APFCON register).  
DS41414D-page 136  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.8 Register Definitions: PORTC  
REGISTER 12-10: PORTC: PORTC REGISTER  
R/W-x/u  
RC7  
R/W-x/u  
RC6  
R/W-x/u  
RC5  
R/W-x/u  
RC4  
R/W-x/u  
RC3  
R/W-x/u  
RC2  
R/W-x/u  
RC1  
R/W-x/u  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 12-11: TRISC: PORTC TRI-STATE REGISTER  
R/W-1/1  
TRISC7  
R/W-1/1  
TRISC6  
R/W-1/1  
TRISC5  
R/W-1/1  
TRISC4  
R/W-1/1  
TRISC3  
R/W-1/1  
TRISC2  
R/W-1/1  
TRISC1  
R/W-1/1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
REGISTER 12-12: LATC: PORTC DATA LATCH REGISTER  
R/W-x/u  
LATC7  
R/W-x/u  
LATC6  
R/W-x/u  
LATC5  
R/W-x/u  
LATC4  
R/W-x/u  
LATC3  
R/W-x/u  
LATC2  
R/W-x/u  
LATC1  
R/W-x/u  
LATC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATC<7:0>: PORTC Output Latch Value bits(1)  
Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is  
return of actual I/O pin values.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 137  
PIC16(L)F1946/47  
TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
P3CSEL  
P3BSEL  
P2DSEL  
P2CSEL  
P2BSEL  
CCP2SEL P1CSEL  
P1BSEL  
APFCON  
LATC  
129  
137  
341  
341  
341  
341  
341  
LATC7  
SE15  
SE23  
SE31  
SE39  
LATC6  
SE14  
SE22  
SE30  
SE38  
LATC5  
SE13  
SE21  
SE29  
SE37  
SE45  
LATC4  
SE12  
SE20  
SE28  
SE36  
SE44  
LATC3  
SE11  
SE19  
SE27  
SE35  
SE43  
LATC2  
SE10  
SE18  
SE26  
SE34  
SE42  
LATC1  
SE9  
LATC0  
SE8  
LCDSE1  
LCDSE2  
LCDSE3  
LCDSE4  
LCDSE5  
SE17  
SE25  
SE33  
SE41  
SE16  
SE24  
SE32  
SE40  
PORTC  
RC7  
RC6  
RC5  
SREN  
SREN  
SSPEN  
D/A  
RC4  
CREN  
CREN  
CKP  
P
RC3  
RC2  
RC1  
RC0  
RX9D  
RX9D  
137  
308  
308  
292  
291  
207  
307  
307  
137  
RC1STA  
RC2STA  
SSP1CON1  
SSP2STAT  
T1CON  
SPEN  
SPEN  
WCOL  
SMP  
RX9  
ADDEN  
ADDEN  
FERR  
FERR  
OERR  
OERR  
RX9  
SSPOV  
CKE  
SSPM<3:0>  
S
R/W  
UA  
BF  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN T1SYNC  
TMR1ON  
TX9D  
TX1STA  
TX2STA  
TRISC  
CSRC  
CSRC  
TX9  
TX9  
TXEN  
TXEN  
SYNC  
SYNC  
SENDB  
SENDB  
TRISC3  
BRGH  
BRGH  
TRMT  
TRMT  
TRISC1  
TX9D  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC2  
TRISC0  
Legend:  
x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
DS41414D-page 138  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.9.1  
PORTD FUNCTIONS AND OUTPUT  
PRIORITIES  
12.9 PORTD Registers  
PORTD is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 12-13). Setting a TRISD bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISD bit (= 0) will make the corresponding  
PORTD pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 12-1 shows how to initialize an I/O port.  
Each PORTD pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 12-5.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions override other port  
functions and are included in the priority list.  
Reading the PORTD register (Register 12-13) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATD).  
TABLE 12-9: PORTD OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
The TRISD register (Register 12-14) controls the PORTD  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISD register are maintained set when using them as  
analog inputs. I/O pins configured as analog inputs  
always read ‘0’.  
RD0  
SEG0 (LCD)  
P2D(2) (CCP)  
RD0  
RD1  
RD2  
RD3  
RD4  
SEG1 (LCD)  
P2C(2) (CCP)  
RD1  
P2B(2) (CCP)  
SEG2 (LCD)  
RD2  
SEG3 (LCD)  
P3C(2) (CCP)  
RD3  
SEG4 (LCD)  
P3D(2) (CCP)  
SDO2 (SSP2)  
RD4  
RD5  
RD6  
RD7  
SEG5 (LCD)  
P1C(2) (CCP)  
SDA2 (SSP2)  
RD5  
SEG5 (LCD)  
P1B(2) (CCP)  
SCK2/SCL2 (SSP2)  
RD6  
SEG7 (LCD)  
RD7  
Note 1: Priority listed from highest to lowest.  
2: Alternate pin (see APFCON register).  
2010-2012 Microchip Technology Inc.  
DS41414D-page 139  
PIC16(L)F1946/47  
12.10 Register Definitions: PORTD  
REGISTER 12-13: PORTD: PORTD REGISTER  
R/W-x/u  
RD7  
R/W-x/u  
RD6  
R/W-x/u  
RD5  
R/W-x/u  
RD4  
R/W-x/u  
RD3  
R/W-x/u  
RD2  
R/W-x/u  
RD1  
R/W-x/u  
RD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RD<7:0>: PORTD General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 12-14: TRISD: PORTD TRI-STATE REGISTER  
R/W-1/1  
TRISD7  
R/W-1/1  
TRISD6  
R/W-1/1  
TRISD5  
R/W-1/1  
TRISD4  
R/W-1/1  
TRISD3  
R/W-1/1  
TRISD2  
R/W-1/1  
TRISD1  
R/W-1/1  
TRISD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISD<7:0>: PORTD Tri-State Control bits  
1= PORTD pin configured as an input (tri-stated)  
0= PORTD pin configured as an output  
REGISTER 12-15: LATD: PORTD DATA LATCH REGISTER  
R/W-x/u  
LATD7  
R/W-x/u  
LATD6  
R/W-x/u  
LATD5  
R/W-x/u  
LATD4  
R/W-x/u  
LATD3  
R/W-x/u  
LATD2  
R/W-x/u  
LATD1  
R/W-x/u  
LATD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATD<7:0>: PORTD Output Latch Value bits(1)  
Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is  
return of actual I/O pin values.  
DS41414D-page 140  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 12-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Registeron  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
P3CSEL  
P3BSEL  
P2DSEL  
P2CSEL  
P2BSEL CCP2SEL P1CSEL  
CCPxM<3:0>  
P1BSEL  
APFCON  
CCPxCON  
LATD  
129  
238  
140  
337  
341  
140  
140  
(1)  
PxM<1:0>  
DCxB<1:0>  
LATD7  
LCDEN  
SE7  
LATD6  
SLPEN  
SE6  
LATD5  
WERR  
SE5  
LATD4  
LATD3  
LATD2  
LATD1  
LATD0  
LCDCON  
LCDSE0  
PORTD  
TRISD  
CS<1:0>  
LMUX<1:0>  
SE4  
SE3  
RD3  
SE2  
RD2  
SE1  
RD1  
SE0  
RD0  
RD7  
RD6  
RD5  
RD4  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTD.  
Note 1: Applies to ECCP modules only.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 141  
PIC16(L)F1946/47  
12.11.2 PORTE FUNCTIONS AND OUTPUT  
PRIORITIES  
12.11 PORTE Registers  
PORTE is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISE bit (= 0) will  
make the corresponding PORTE pin an output (i.e.,  
enable the output driver and put the contents of the  
output latch on the selected pin). Example 12-1 shows  
how to initialize an I/O port.  
Each PORTE pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 12-11.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Each PORTE pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are briefly described here. For additional information,  
refer to the appropriate section in this data sheet.  
Reading the PORTE register (Register 12-16) reads  
the status of the pins, whereas writing to it will write to  
the PORT latch. All write operations are  
read-modify-write operations. Therefore, a write to a  
port implies that the port pins are read, this value is  
modified and then written to the PORT data latch  
(LATE).  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the lowest number in  
the following lists.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions, such as the EUSART RX  
signal, override other port functions and are included in  
the priority list.  
12.11.1 ANSELE REGISTER  
The ANSELE register (Register 12-19) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELE bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
TABLE 12-11: PORTE OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
The state of the ANSELE bits has no effect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
RE0  
P2D(2) (CCP)  
RE0  
P2C(2) (CCP)  
RE1  
RE1  
RE2  
RE3  
P2B(2) (CCP)  
RE2  
P3C(2) (CCP)  
COM0 (LCD)  
RE3  
P3B(2) (CCP)  
COM1 (LCD)  
RE4  
P1C(2) (CCP)  
COM32(LCD)  
RE5  
P1B(2) (CCP)  
COM3 (LCD)  
RE6  
CCP2(3)/P2A(3) (CCP)  
SEG31 (LCD)  
RE7  
The TRISE register (Register 12-17) controls the PORTE  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISE register are maintained set when using them as  
analog inputs. I/O pins configured as analog inputs  
always read ‘0’.  
RE4  
RE5  
RE6  
RE7  
Note:  
The ANSELE register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs  
will read ‘0’.  
Note 1: Priority listed from highest to lowest.  
2: Default pin (see APFCON register).  
3: Alternate pin (see APFCON register).  
DS41414D-page 142  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.12 Register Definitions: PORTE  
REGISTER 12-16: PORTE: PORTE REGISTER  
R/W-x/u  
RE7  
R/W-x/u  
RE6  
R/W-x/u  
RE5  
R/W-x/u  
RE4  
R/W-x/u  
RE3  
R/W-x/u  
RE2  
R/W-x/u  
RE1  
R/W-x/u  
RE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RE<7:0>: PORTE I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 12-17: TRISE: PORTE TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISE7  
TRISE6  
TRISE5  
TRISE4  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISE<7:0>: RE<7:0> Tri-State Control bits  
1= PORTE pin configured as an input (tri-stated)  
0= PORTE pin configured as an output  
2010-2012 Microchip Technology Inc.  
DS41414D-page 143  
PIC16(L)F1946/47  
REGISTER 12-18: LATE: PORTE DATA LATCH REGISTER  
R/W-x/u  
LATE7  
R/W-x/u  
LATE6  
R/W-x/u  
LATE5  
R/W-x/u  
LATE4  
R/W-x/u  
LATE3  
R/W-x/u  
LATE2  
R/W-x/u  
LATE1  
R/W-x/u  
LATE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-0  
LATE<7:0>: PORTE Output Latch Value bits(1)  
Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of  
actual I/O pin values.  
REGISTER 12-19: ANSELE: PORTE ANALOG SELECT REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSE2  
ANSE1  
ANSE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
ANSE<7:0>: Analog Select between Analog or Digital Function on Pins RE<7:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
TABLE 12-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
P3CSEL  
P3BSEL  
P2DSEL  
P2CSEL  
P2BSEL CCP2SEL  
P1CSEL  
ANSE1  
P1BSEL  
ANSE0  
APFCON  
ANSELE  
CCPxCON  
LATE  
129  
144  
238  
144  
337  
339  
341  
ANSE2  
LATE2  
(1)  
PxM<1:0>  
DCxB<1:0>  
CCPxM<3:0>  
LATE7  
LCDEN  
LCDIRE  
SE31  
LATE6  
SLPEN  
LCDIRS  
SE30  
LATE5  
WERR  
LCDIRI  
SE29  
LATE4  
LATE3  
LATE1  
LATE0  
LCDCON  
LCDREF  
LCDSE2  
PORTE  
LMUX<1:0>  
CS<1:0>  
VLCD3PE VLCD2PE VLCD1PE  
SE28  
RE4  
SE27  
RE3  
SE26  
RE2  
SE25  
RE1  
SE24  
RE0  
RE7  
RE6  
RE5  
143  
143  
TRISE  
TRISE7  
TRISE6  
TRISE5  
TRISE4  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTE.  
Note 1: Applies to ECCP modules only.  
DS41414D-page 144  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.13.2 PORTF FUNCTIONS AND OUTPUT  
PRIORITIES  
12.13 PORTF Registers  
PORTF is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISF  
(Register 12-21). Setting a TRISF bit (= 1) will make the  
corresponding PORTF pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISF bit (= 0) will make the corresponding  
PORTF pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 12-1 shows how to initialize an I/O port.  
Each PORTF pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 12-13.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions override other port  
functions and are included in the priority list.  
Reading the PORTF register (Register 12-13) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATF).  
TABLE 12-13: PORTF OUTPUT PRIORITY  
(1)  
Pin Name  
Function Priority  
The TRISF register (Register 12-14) controls the  
PORTF pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISF register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
inputs always read ‘0’.  
RF0  
SEG41 (LCD)  
RF0  
RF1  
RF2  
C2OUT (Comparator)  
SRNQ (SR Latch)  
SEG19 (LCD)  
RF1  
C1OUT (Comparator)  
SEG20 (LCD)  
SRQ (SR Latch)  
RF2  
12.13.1 ANSELF REGISTER  
The ANSELF register (Register 12-23) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELF bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
RF3  
RF4  
RF5  
SEG21 (LCD)  
RF3  
SEG22 (LCD)  
RF4  
The state of the ANSELF bits has no effect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
DACOUT (DAC)  
SEG23 (LCD)  
RF5  
RF6  
RF7  
SEG24 (LCD)  
RF6  
Note:  
The ANSELF register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs  
will read ‘0’.  
SEG25 (LCD)  
RF7  
Note 1: Priority listed from highest to lowest.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 145  
PIC16(L)F1946/47  
12.14 Register Definitions: PORTF  
REGISTER 12-20: PORTF: PORTF REGISTER  
R/W-x/u  
RF7  
R/W-x/u  
RF6  
R/W-x/u  
RF5  
R/W-x/u  
RF4  
R/W-x/u  
RF3  
R/W-x/u  
RF2  
R/W-x/u  
RF1  
R/W-x/u  
RF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RF<7:0>: PORTF General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 12-21: TRISF: PORTF TRI-STATE REGISTER  
R/W-1/1  
TRISF7  
R/W-1/1  
TRISF6  
R/W-1/1  
TRISF5  
R/W-1/1  
TRISF4  
R/W-1/1  
TRISF3  
R/W-1/1  
TRISF2  
R/W-1/1  
TRISF1  
R/W-1/1  
TRISF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISF<7:0>: PORTF Tri-State Control bits  
1= PORTF pin configured as an input (tri-stated)  
0= PORTF pin configured as an output  
REGISTER 12-22: LATF: PORTF DATA LATCH REGISTER  
R/W-x/u  
LATF7  
R/W-x/u  
LATF6  
R/W-x/u  
LATF5  
R/W-x/u  
LATF4  
R/W-x/u  
LATF3  
R/W-x/u  
LATF2  
R/W-x/u  
LATF1  
R/W-x/u  
LATF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATF<7:0>: PORTF Output Latch Value bits(1)  
Note 1: Writes to PORTF are actually written to corresponding LATF register. Reads from PORTF register is return  
of actual I/O pin values.  
DS41414D-page 146  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 12-23: ANSELF: PORTF ANALOG SELECT REGISTER  
R/W-1/1  
ANSF7  
R/W-1/1  
ANSF6  
R/W-1/1  
ANSF5  
R/W-1/1  
ANSDF4  
R/W-1/1  
ANSF3  
R/W-1/1  
ANSF2  
R/W-1/1  
ANSDF1  
R/W-1/1  
ANSF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
ANSF<7:0>: Analog Select between Analog or Digital Function on Pins RF<7:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
TABLE 12-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Registeron  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
ADCON0  
ANSELF  
CCPxCON  
CMOUT  
CHS<4:0>  
ANSF4  
GO/DONE  
ANSF1  
ADON  
168  
147  
238  
186  
186  
186  
333  
334  
178  
140  
337  
341  
341  
341  
ANSF7  
ANSF6  
ANSF5  
ANSF3  
ANSF2  
ANSF0  
(1)  
PxM<1:0>  
DCxB<1:0>  
CCPxM<3:0>  
MC3OUT MC2OUT MC1OUT  
C1PCH1  
C2PCH1  
C1PCH0  
C2PCH0  
CM1CON1  
CM2CON1  
CPSCON0  
CPSCON1  
DACCON0  
LATF  
C1INTP  
C2INTP  
CPSON  
C1INTN  
C2INTN  
CPSRM  
C1NCH<1:0>  
C2NCH<1:0>  
CPSRNG<1:0>  
CPSOUT  
T0XCS  
CPSCH<3:0>  
DACEN  
LATF7  
LCDEN  
SE23  
DACLPS  
LATF6  
SLPEN  
SE22  
DACOE  
LATF5  
WERR  
SE21  
SE29  
SE45  
DACPSS<1:0>  
LATF3 LATF2  
CS<1:0>  
SE19  
DACNSS  
LATF0  
LATF4  
LATF1  
LCDCON  
LCDSE2  
LCDSE3  
LCDSE5  
LMUX<1:0>  
SE20  
SE28  
SE44  
SE18  
SE26  
SE42  
SE17  
SE25  
SE41  
SE16  
SE24  
SE40  
SE31  
SE30  
SE27  
SE43  
PORTF  
SRCON0  
TRISF  
RF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
146  
192  
146  
SRLEN  
TRISF7  
SRCLK2  
TRISF6  
SRCLK1  
TRISF5  
SRCLK0  
TRISF4  
SRQEN  
TRISF3  
SRNQEN  
TRISF2  
SRPS  
TRISF1  
SRPR  
TRISF0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTF.  
Note 1: Applies to ECCP modules only.  
TABLE 12-15: SUMMARY OF CONFIGURATION WORD ASSOCIATED WITH PORTF  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
LVP  
DEBUG  
BORV  
STVREN  
PLLEN  
CONFIG2  
58  
VCAPEN  
WRT<1:0>  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 147  
PIC16(L)F1946/47  
12.15.2 PORTG FUNCTIONS AND OUTPUT  
PRIORITIES  
12.15 PORTG Registers  
PORTG is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISG  
(Register 12-25). Setting a TRISG bit (= 1) will make the  
corresponding PORTG pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISG bit (= 0) will make the corresponding  
PORTG pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
The exception is RG5, which is input only and its TRIS  
bit will always read as ‘1’. Example 12-1 shows how to  
initialize an I/O port.  
Each PORTG pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 12-16.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions override other port  
functions and are included in the priority list.  
Reading the PORTG register (Register 12-24) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATG). RG5 reads ‘0’ when  
MCLRE = 1.  
TABLE 12-16: PORTG OUTPUT PRIORITY  
(1)  
Pin Name  
Function Priority  
RG0  
CCP3 (CCP)  
P3A (CCP)  
SEG42 (LCD)  
RG0  
The TRISG register (Register 12-25) controls the  
PORTG pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISG register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
inputs always read ‘0’.  
RG1  
TX2 (EUSART)  
CK2 (EUSART)  
C3OUT (Comparator)  
SEG43 (LCD)  
RG1  
RG2  
RG3  
DT2  
SEG44 (LCD)  
RG2  
12.15.1 ANSELG REGISTER  
The ANSELG register (Register 12-27) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELG bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
CCP4 (CCP)  
P3D (CCP)  
SEG45 (LCD)  
RG3  
The state of the ANSELG bits has no effect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
RG4  
RG5  
CCP5 (CCP)  
P1D (CCP)  
SEG26 (LCD)  
RG4  
Input-only pin  
Note 1: Priority listed from highest to lowest.  
Note:  
The ANSELG register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs  
will read ‘0’.  
DS41414D-page 148  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
12.16 Register Definitions: PORTG  
REGISTER 12-24: PORTG: PORTG REGISTER  
U-0  
U-0  
R/W-x/u  
RG5  
R/W-x/u  
RG4  
R/W-x/u  
RG3  
R/W-x/u  
RG2  
R/W-x/u  
RG1  
R/W-x/u  
RG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’.  
RG<5:0>: PORTG General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 12-25: TRISG: PORTG TRI-STATE REGISTER  
U-0  
U-0  
R-1/1  
R/W-1/1  
TRISG4  
R/W-1/1  
TRISG3  
R/W-1/1  
TRISG2  
R/W-1/1  
TRISG1  
R/W-1/1  
TRISG0  
bit 0  
TRISG5  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’.  
TRISG5: PORTG Tri-State Control bit  
This bit (RG5 pin) is an input only and always read as ‘1’.  
bit 4-0  
TRISG<4:0>: PORTG Tri-State Control bits  
1= PORTG pin configured as an input (tri-stated)  
0= PORTG pin configured as an output  
REGISTER 12-26: LATG: PORTG DATA LATCH REGISTER  
U-0  
U-0  
R/W-x/u  
LATG5  
R/W-x/u  
LATG4  
R/W-x/u  
LATG3  
R/W-x/u  
LATG2  
R/W-x/u  
LATG1  
R/W-x/u  
LATG0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’.  
LATG<5:0>: PORTG Output Latch Value bits  
Note 1: Writes to PORTG are actually written to corresponding LATG register. Reads from PORTG register is return of actual  
I/O pin values.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 149  
PIC16(L)F1946/47  
REGISTER 12-27: ANSELG: PORTG ANALOG SELECT REGISTER  
U-0  
U-0  
U-0  
R/W-1/1  
ANSG4  
R/W-1/1  
ANSG3  
R/W-1/1  
ANSG2  
R/W-1/1  
ANSG1  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’.  
ANSG<4:1>: Analog Select between Analog or Digital Function on Pins RG<4:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
bit 0  
Unimplemented: Read as ‘0’.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
REGISTER 12-28: WPUG: WEAK PULL-UP PORTG REGISTER  
U-0  
U-0  
R/W-1/1  
WPUG5  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’.  
WPUG5: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
bit 4-0  
Unimplemented: Read as ‘0’.  
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
DS41414D-page 150  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 12-17: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Registeron  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSELG  
CCPxCON  
CMOUT  
CHS<4:0>  
ANSG4  
GO/DONE  
ANSG1  
ADON  
168  
150  
238  
186  
186  
186  
333  
334  
149  
337  
341  
ANSG3  
ANSG2  
)
(1  
PxM<1:0>  
DCxB<1:0>  
CCPxM<3:0>  
MC3OUT MC2OUT MC1OUT  
C1PCH1  
C2PCH1  
C1PCH0  
C2PCH0  
CM1CON1  
CM2CON1  
CPSCON0  
CPSCON1  
LATG  
C1INTP  
C2INTP  
CPSON  
C1INTN  
C2INTN  
CPSRM  
C1NCH<1:0>  
C2NCH<1:0>  
CPSRNG<1:0>  
CPSOUT  
T0XCS  
CPSCH<3:0>  
LATG4  
LATG3  
LATG2  
LATG1  
SE41  
LATG0  
LCDCON  
LCDSE5  
LCDEN  
SLPEN  
WERR  
SE45  
CS<1:0>  
LMUX<1:0>  
SE44  
SE43  
SE42  
SE40  
PORTG  
TRISG  
RG5  
RG4  
TRISG4  
RG3  
TRISG3  
RG2  
TRISG2  
RG1  
TRISG1  
RG0  
TRISG0  
149  
149  
150  
TRISG5  
WPUG5  
WPUG  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTG.  
Note 1: Applies to ECCP modules only.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 151  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 152  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
13.3 Interrupt Flags  
13.0 INTERRUPT-ON-CHANGE  
The IOCBFx bits located in the IOCBF register are  
status flags that correspond to the Interrupt-on-change  
pins of PORTB. If an expected edge is detected on an  
appropriately enabled pin, then the status flag for that pin  
will be set, and an interrupt will be generated if the IOCIE  
bit is set. The IOCIF bit of the INTCON register reflects  
the status of all IOCBFx bits.  
The PORTB pins can be configured to operate as  
Interrupt-On-Change (IOC) pins. An interrupt can be  
generated by detecting a signal that has either a rising  
edge or a falling edge. Any individual PORTB pin, or  
combination of PORTB pins, can be configured to  
generate an interrupt. The interrupt-on-change module  
has the following features:  
• Interrupt-on-change enable (Master Switch)  
• Individual pin configuration  
13.4 Clearing Interrupt Flags  
• Rising and falling edge detection  
• Individual pin interrupt flags  
The individual status flags, (IOCBFx bits), can be  
cleared by resetting them to zero. If another edge is  
detected during this clearing operation, the associated  
status flag will be set at the end of the sequence,  
regardless of the value actually being written.  
Figure 13-1 is a block diagram of the IOC module.  
13.1 Enabling the Module  
In order to ensure that no detected edge is lost while  
clearing flags, only AND operations masking out known  
changed bits should be performed. The following  
sequence is an example of what should be performed.  
To allow individual PORTB pins to generate an interrupt,  
the IOCIE bit of the INTCON register must be set. If the  
IOCIE bit is disabled, the edge detection on the pin will  
still occur, but an interrupt will not be generated.  
EXAMPLE 13-1:  
CLEARING INTERRUPT  
FLAGS  
13.2 Individual Pin Configuration  
(PORTA EXAMPLE)  
For each PORTB pin, a rising edge detector and a falling  
edge detector are present. To enable a pin to detect a  
rising edge, the associated IOCBPx bit of the IOCBP  
register is set. To enable a pin to detect a falling edge,  
the associated IOCBNx bit of the IOCBN register is set.  
MOVLW 0xff  
XORWF IOCAF, W  
ANDWF IOCAF, F  
A pin can be configured to detect rising and falling  
edges simultaneously by setting both the IOCBPx bit  
and the IOCBNx bit of the IOCBP and IOCBN registers,  
respectively.  
13.5 Operation in Sleep  
The interrupt-on-change interrupt sequence will wake  
the device from Sleep mode, if the IOCIE bit is set.  
If an edge is detected while in Sleep mode, the IOCBF  
register will be updated prior to the first instruction  
executed out of Sleep.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 153  
PIC16(L)F1946/47  
FIGURE 13-1:  
INTERRUPT-ON-CHANGE BLOCK DIAGRAM  
Q4Q1  
IOCBNx  
D
Q
CK  
edge  
detect  
R
RBx  
data bus =  
0 or 1  
S
to data bus  
IOCBFx  
IOCBPx  
D
Q
D
Q
write IOCBFx  
CK  
CK  
IOCIE  
R
Q2  
from all other  
IOCBFx individual  
pin detectors  
IOC interrupt  
to CPU core  
Q1  
Q1  
Q1  
Q2  
Q3  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q4Q1  
Q4  
Q4  
Q4Q1  
Q4Q1  
Q4Q1  
DS41414D-page 154  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
13.6 Register Definitions: Interrupt-on-Change Control  
REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER  
R/W-0/0  
IOCBP7  
R/W-0/0  
IOCBP6  
R/W-0/0  
IOCBP5  
R/W-0/0  
IOCBP4  
R/W-0/0  
IOCBP3  
R/W-0/0  
IOCBP2  
R/W-0/0  
IOCBP1  
R/W-0/0  
IOCBP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
IOCBP<7:0>: Interrupt-on-Change PORTB Positive Edge Enable bits  
1= Interrupt-on-change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will  
be set upon detecting an edge.  
0= Interrupt-on-change disabled for the associated pin.  
REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER  
R/W-0/0  
IOCBN7  
R/W-0/0  
IOCBN6  
R/W-0/0  
IOCBN5  
R/W-0/0  
IOCBN4  
R/W-0/0  
IOCBN3  
R/W-0/0  
IOCBN2  
R/W-0/0  
IOCBN1  
R/W-0/0  
IOCBN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits  
1= Interrupt-on-change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will  
be set upon detecting an edge.  
0= Interrupt-on-change disabled for the associated pin.  
REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER  
R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0  
IOCBF7  
bit 7  
IOCBF6  
IOCBF5  
IOCBF4  
IOCBF3  
IOCBF2  
IOCBF1  
IOCBF0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
HS - Bit is set in hardware  
bit 7-0  
IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits  
1= An enabled change was detected on the associated pin.  
Set when IOCBPx = 1and a rising edge was detected on RBx, or when IOCBNx = 1and a falling  
edge was detected on RBx.  
0= No change was detected, or the user cleared the detected change.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 155  
PIC16(L)F1946/47  
TABLE 13-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IOCBF  
IOCBN  
IOCBP  
TRISB  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
92  
IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0  
IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0  
IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
155  
155  
155  
134  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change.  
DS41414D-page 156  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
14.1 Independent Gain Amplifiers  
14.0 FIXED VOLTAGE REFERENCE  
(FVR)  
The output of the FVR supplied to the ADC,  
Comparators, DAC and CPS module is routed through  
two independent programmable gain amplifiers. Each  
amplifier can be configured to amplify the reference  
voltage by 1x, 2x or 4x, to produce the three possible  
voltage levels.  
The Fixed Voltage Reference, or FVR, is a stable  
voltage reference, independent of VDD, with 1.024V,  
2.048V or 4.096V selectable output levels. The output  
of the FVR can be configured to supply a reference  
voltage to the following:  
The ADFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the ADC module. Refer-  
ence Section 16.0 “Analog-to-Digital Converter  
(ADC) Module” for additional information.  
• ADC input channel  
• ADC positive reference  
• Comparator positive input  
• Comparator negative input  
• Digital-to-Analog Converter (DAC)  
• Capacitive Sensing (CPS) module  
• LCD bias generator  
The CDAFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the Comparators, DAC  
and CPS module. Reference Section 17.0 “Digital-to-  
Analog Converter (DAC) Module”, Section 18.0  
“Comparator Module” and Section 26.0 “Capacitive  
Sensing (CPS) Module” for additional information.  
The FVR can be enabled by setting the FVREN bit of  
the FVRCON register.  
14.2 FVR Stabilization Period  
When the Fixed Voltage Reference module is enabled, it  
requires time for the reference and amplifier circuits to  
stabilize. Once the circuits stabilize and are ready for use,  
the FVRRDY bit of the FVRCON register will be set. See  
Section 30.0 “Electrical Specifications” for the  
minimum delay requirement.  
FIGURE 14-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
ADFVR<1:0>  
2
X1  
X2  
X4  
FVR BUFFER1  
(To ADC Module)  
CDAFVR<1:0>  
2
X1  
X2  
X4  
FVR BUFFER2  
(To Comparators, DAC, CPS)  
FVR VREF  
(To LCD Bias Generator)  
1.024V Fixed  
Reference  
+
_
FVREN  
FVRRDY  
Any peripheral requiring the  
Fixed Reference  
(See Table 14-1)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 157  
PIC16(L)F1946/47  
14.3 Register Definitions: FVR Control  
REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0/0  
FVREN  
R-q/q  
FVRRDY(1)  
R/W-0/0  
TSEN  
R/W-0/0  
TSRNG  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CDAFVR<1:0>  
ADFVR<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-2  
FVREN: Fixed Voltage Reference Enable bit  
1= Fixed Voltage Reference is enabled  
0= Fixed Voltage Reference is disabled  
FVRRDY: Fixed Voltage Reference Ready Flag bit(1)  
1= Fixed Voltage Reference output is ready for use  
0= Fixed Voltage Reference output is not ready or not enabled  
TSEN: Temperature Indicator Enable bit(3)  
1= Temperature Indicator is enabled  
0= Temperature Indicator is disabled  
TSRNG: Temperature Indicator Range Selection bit(3)  
1= VOUT = VDD - 4VT (High Range)  
0= VOUT = VDD - 2VT (Low Range)  
CDAFVR<1:0>: Comparator and DAC Fixed Voltage Reference Selection bit  
11= Comparator and DAC and CPS Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)  
10= Comparator and DAC and CPS Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)  
01= Comparator and DAC and CPS Fixed Voltage Reference Peripheral output is 1x (1.024V)  
00= Comparator and DAC and CPS Fixed Voltage Reference Peripheral output is off  
bit 1-0  
ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit  
11= ADC Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)  
10= ADC Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)  
01= ADC Fixed Voltage Reference Peripheral output is 1x (1.024V)  
00= ADC Fixed Voltage Reference Peripheral output is off  
Note 1: FVRRDY is always ‘1’ on PIC16F1946/47 only.  
2: Fixed Voltage Reference output cannot exceed VDD.  
3: See Section 15.0 “Temperature Indicator Module” for additional information.  
TABLE 14-1: SUMMARYOF REGISTERS ASSOCIATED WITH THEFIXED VOLTAGE REFERENCE  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
FVREN  
FVRRDY  
TSEN  
TSRNG  
CDAFVR<1:0>  
ADFVR<1:0>  
158  
Legend:  
Shaded cells are not used with the Fixed Voltage Reference.  
DS41414D-page 158  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 15-1:  
TEMPERATURE CIRCUIT  
DIAGRAM  
15.0 TEMPERATURE INDICATOR  
MODULE  
This family of devices is equipped with a temperature  
circuit designed to measure the operating temperature  
of the silicon die. The circuit’s range of operating  
temperature falls between -40°C and +85°C. The  
output is a voltage that is proportional to the device  
temperature. The output of the temperature indicator is  
internally connected to the device ADC.  
VDD  
TSEN  
TSRNG  
The circuit may be used as a temperature threshold  
detector or a more accurate temperature indicator,  
depending on the level of calibration performed. A one-  
point calibration allows the circuit to indicate a  
temperature closely surrounding that point. A two-point  
calibration allows the circuit to sense the entire range  
of temperature more accurately. Reference Application  
Note AN1333, “Use and Calibration of the Internal  
Temperature Indicator” (DS01333) for more details  
regarding the calibration process.  
VOUT  
To ADC  
15.1 Circuit Operation  
15.2 Minimum Operating VDD  
Figure 15-1 shows a simplified block diagram of the  
temperature circuit. The proportional voltage output is  
achieved by measuring the forward voltage drop across  
multiple silicon junctions.  
When the temperature circuit is operated in low range,  
the device may be operated at any operating voltage  
that is within specifications.  
When the temperature circuit is operated in high range,  
the device operating voltage, VDD, must be high  
enough to ensure that the temperature circuit is  
correctly biased.  
Equation 15-1 describes the output characteristics of  
the temperature indicator.  
EQUATION 15-1: VOUT RANGES  
Table 15-1 shows the recommended minimum VDD vs.  
range setting.  
High Range: VOUT = VDD - 4VT  
Low Range: VOUT = VDD - 2VT  
TABLE 15-1: RECOMMENDED VDD VS.  
RANGE  
Min. VDD, TSRNG = 1  
Min. VDD, TSRNG = 0  
The temperature sense circuit is integrated with the  
Fixed Voltage Reference (FVR) module. See  
Section 14.0 “Fixed Voltage Reference (FVR)” for  
more information.  
3.6V  
1.8V  
15.3 Temperature Output  
The output of the circuit is measured using the internal  
Analog-to-Digital Converter. A channel is reserved for  
the temperature circuit output. Refer to Section 16.0  
“Analog-to-Digital Converter (ADC) Module” for  
detailed information.  
The circuit is enabled by setting the TSEN bit of the  
FVRCON register. When disabled, the circuit draws no  
current.  
The circuit operates in either high or low range. The high  
range, selected by setting the TSRNG bit of the  
FVRCON register, provides a wider output voltage. This  
provides more resolution over the temperature range,  
but may be less consistent from part to part. This range  
requires a higher bias voltage to operate and thus, a  
higher VDD is needed.  
Note:  
Every time the ADC MUX is changed to  
the temperature indicator output selection  
(CHS bit in the ADCCON0 register), wait  
500 sec for the sampling capacitor to fully  
charge before sampling the temperature  
indicator output.  
The low range is selected by clearing the TSRNG bit of  
the FVRCON register. The low range generates a lower  
voltage drop and thus, a lower bias voltage is needed to  
operate the circuit. The low range is provided for low  
voltage operation.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 159  
PIC16(L)F1946/47  
15.4 ADC Acquisition Time  
To ensure accurate temperature measurements, the  
user must wait at least 200 s after the ADC input  
multiplexer is connected to the temperature indicator  
output before the conversion is performed. In addition,  
the user must wait 200 s between sequential  
conversions of the temperature indicator output.  
TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
FVREN  
FVRRDY  
TSEN  
TSRNG  
ADFVR<1:0>  
118  
Legend:  
Shaded cells are unused by the temperature indicator module.  
DS41414D-page 160  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
16.0 ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates  
a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESH:ADRESL register pair).  
Figure 16-1 shows the block diagram of the ADC.  
The ADC voltage reference is software selectable to be  
either internally generated or externally supplied.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 161  
PIC16(L)F1946/47  
FIGURE 16-1:  
ADC BLOCK DIAGRAM  
ADNREF = 1  
VREF-  
ADNREF = 0  
VSS  
VDD  
ADPREF = 00  
ADPREF = 11  
VREF+  
ADPREF = 10  
AN0  
AN1  
00000  
00001  
00010  
00011  
00100  
00101  
VREF-/AN2  
VREF+/AN2  
AN4  
AN5  
AN6  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
Ref+ Ref-  
ADC  
AN7  
AN8  
AN9  
10  
GO/DONE  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
0= Left Justify  
1= Right Justify  
ADFM  
ADON  
16  
ADRESH ADRESL  
VSS  
11101  
11110  
Temp Indicator  
DAC Output  
11111  
FVR Buffer1  
CHS<4:0>  
Note:  
When ADON = 0, all multiplexer inputs are disconnected.  
DS41414D-page 162  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
16.1.4  
CONVERSION CLOCK  
16.1 ADC Configuration  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON1 register. There  
are seven possible clock options:  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• FOSC/2  
• Channel selection  
• FOSC/4  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• Result formatting  
• FOSC/64  
16.1.1  
PORT CONFIGURATION  
• FRC (dedicated internal oscillator)  
The ADC can be used to convert both analog and  
digital signals. When converting analog signals, the I/O  
pin should be configured for analog by setting the  
associated TRIS and ANSEL bits. Refer to  
Section 12.0 “I/O Ports” for more information.  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11.5 TAD peri-  
ods as shown in Figure 16-2.  
For correct conversion, the appropriate TAD specifica-  
tion must be met. Refer to the A/D conversion require-  
ments in Section 30.0 “Electrical Specifications” for  
more information. Table 16-1 gives examples of appro-  
priate ADC clock selections.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input buf-  
fer to conduct excess current.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
16.1.2  
CHANNEL SELECTION  
There are 20 selections available:  
• AN<16:0> pins  
Temperature Indicator  
• DAC Output  
• FVR (Fixed Voltage Reference) Output  
Refer to Section 15.0 “Temperature Indicator Mod-  
ule”, Section 17.0 “Digital-to-Analog Converter  
(DAC) Module” and Section 14.0 “Fixed Voltage  
Reference (FVR)” for more information on these chan-  
nel selections.  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 16.2  
“ADC Operation” for more information.  
16.1.3  
ADC VOLTAGE REFERENCE  
The ADPREF bit of the ADCON1 register provides  
control of the positive voltage reference. The positive  
voltage reference can be:  
• VREF+ pin  
• VDD  
The ADNREF bit of the ADCON1 register provides  
control of the negative voltage reference. The negative  
voltage reference can be:  
• VREF- pin  
• VSS  
See Section 14.0 “Fixed Voltage Reference (FVR)”  
for more details on the fixed voltage reference.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 163  
PIC16(L)F1946/47  
TABLE 16-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC  
ADCS<2:0>  
Clock Source  
32 MHz  
20 MHz  
16 MHz 8 MHz  
4 MHz  
1 MHz  
(2)  
(2)  
(2)  
(2)  
(2)  
Fosc/2  
Fosc/4  
Fosc/8  
Fosc/16  
Fosc/32  
Fosc/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
62.5ns  
125 ns  
0.5 s  
100 ns  
200 ns  
400 ns  
125 ns  
250 ns  
250 ns  
500 ns  
500 ns  
1.0 s  
2.0 s  
4.0 s  
2.0 s  
4.0 s  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(3)  
0.5 s  
1.0 s  
2.0 s  
4.0 s  
8.0 s  
16.0 s  
32.0 s  
64.0 s  
(3)  
(3)  
(3)  
800 ns  
1.0 s  
800 ns  
1.6 s  
1.0 s  
2.0 s  
(3)  
8.0 s  
(3)  
(3)  
2.0 s  
3.2 s  
4.0 s  
8.0 s  
16.0 s  
(1,4)  
(1,4)  
(1,4)  
(1,4)  
(1,4)  
(1,4)  
1.0-6.0 s  
1.0-6.0 s  
1.0-6.0 s  
1.0-6.0 s  
1.0-6.0 s  
1.0-6.0 s  
Legend:  
Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 1.6 s for VDD.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the  
system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the  
device in Sleep mode.  
FIGURE 16-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY - TAD  
TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7  
b4  
b1  
b0  
b9  
b8  
b7  
b6  
b5  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
On the following cycle:  
ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
DS41414D-page 164  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
16.1.5  
INTERRUPTS  
16.1.6  
RESULT FORMATTING  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC Interrupt Flag is the ADIF bit in  
the PIR1 register. The ADC Interrupt Enable is the  
ADIE bit in the PIE1 register. The ADIF bit must be  
cleared in software.  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON1 register controls the output format.  
Figure 16-3 shows the two output formats.  
Note 1: The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
2: The ADC operates during Sleep only  
when the FRC oscillator is selected.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEPinstruc-  
tion is always executed. If the user is attempting to  
wake-up from Sleep and resume in-line code execu-  
tion, the GIE and PEIE bits of the INTCON register  
must be disabled. If the GIE and PEIE bits of the  
INTCON register are enabled, execution will switch to  
the Interrupt Service Routine.  
FIGURE 16-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
LSB  
(ADFM = 0)  
MSB  
bit 7  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
2010-2012 Microchip Technology Inc.  
DS41414D-page 165  
PIC16(L)F1946/47  
16.2 ADC Operation  
16.3 ADC Operation During Sleep  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
16.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital conversion.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 16.3.2 “A/D Conver-  
sion Procedure”.  
16.2.2  
COMPLETION OF A CONVERSION  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF Interrupt Flag bit  
16.3.1  
SPECIAL EVENT TRIGGER  
• Update the ADRESH and ADRESL registers with  
new conversion result  
The Special Event Trigger of the CCPx/ECCPX module  
allows periodic ADC measurements without software  
intervention. When this trigger occurs, the GO/DONE  
bit is set by hardware and the Timer1 counter resets to  
zero.  
16.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH and ADRESL registers will be updated with  
the partially complete Analog-to-Digital conversion  
sample. Incomplete bits will match the last bit  
converted.  
TABLE 16-2: SPECIAL EVENT TRIGGER  
Device  
CCPx/ECCPx  
PIC16(L)F1946/47  
CCP5  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
Refer to Section 23.0 “Capture/Compare/PWM  
Modules” for more information.  
DS41414D-page 166  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
16.3.2  
A/D CONVERSION PROCEDURE  
EXAMPLE 16-1:  
A/D CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
;This code block configures the ADC  
;for polling, Vdd and Vss references, Frc  
;clock and AN0 input.  
;
1. Configure Port:  
• Disable pin output driver (Refer to the TRIS  
register)  
;Conversion start & polling for completion  
; are included.  
;
• Configure pin as analog (Refer to the ANSEL  
register)  
BANKSEL  
MOVLW  
ADCON1  
;
B’11110000’ ;Right justify, Frc  
;clock  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Turn on ADC module  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
ADCON0  
;Vdd and Vss Vref  
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
B’00000001’ ;Select channel AN0  
ADCON0  
SampleTime  
;Turn ADC On  
;Acquisiton delay  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON0,ADGO ;Start conversion  
ADCON0,ADGO ;Is conversion done?  
$-1  
ADRESH  
;No, test again  
;
.
5. Start conversion by setting the GO/DONE bit.  
ADRESH,W  
RESULTHI  
ADRESL  
;Read upper 2 bits  
;store in GPR space  
;
6. Wait for ADC conversion to complete by one of  
the following:  
ADRESL,W  
RESULTLO  
;Read lower 8 bits  
;Store in GPR space  
• Polling the GO/DONE bit  
MOVWF  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Refer to Section 16.5 “A/D Acquisition  
Requirements”.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 167  
PIC16(L)F1946/47  
16.4 Register Definitions: ADC Control  
REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
ADON  
CHS<4:0>  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-2  
CHS<4:0>: Analog Channel Select bits  
11111=FVR (Fixed Voltage Reference) Buffer 1 Output(2)  
11110= DAC output(1)  
11101= Temperature Indicator(3)  
11100= Reserved. No channel connected.  
10001= Reserved. No channel connected.  
10000= AN16  
01111= AN15  
01110= AN14  
01101= AN13  
01100= AN12  
01011= AN11  
01010= AN10  
01001= AN9  
01000= AN8  
00111= AN7  
00110= AN6  
00101= AN5  
00100= AN4  
00011= AN3  
00010= AN2  
00001= AN1  
00000=AN0  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: See Section 17.0 “Digital-to-Analog Converter (DAC) Module” for more information.  
2: See Section 14.0 “Fixed Voltage Reference (FVR)” for more information.  
3: See Section 15.0 “Temperature Indicator Module” for more information.  
DS41414D-page 168  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 16-2: ADCON1: A/D CONTROL REGISTER 1  
R/W-0/0  
ADFM  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
ADCS<2:0>  
ADNREF  
ADPREF<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is  
loaded.  
0= Left justified. Six Least Significant bits of ADRESL are set to ‘0’ when the conversion result is  
loaded.  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
111=FRC (clock supplied from a dedicated RC oscillator)  
110=FOSC/64  
101=FOSC/16  
100=FOSC/4  
011=FRC (clock supplied from a dedicated RC oscillator)  
010=FOSC/32  
001=FOSC/8  
000=FOSC/2  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
ADNREF: A/D Negative Voltage Reference Configuration bit  
1= VREF- is connected to external VREF- pin(1)  
0= VREF- is connected to VSS  
bit 1-0  
ADPREF<1:0>: A/D Positive Voltage Reference Configuration bits  
11= VREF+ is connected to internal Fixed Voltage Reference (FVR) module(1)  
10= VREF+ is connected to external VREF+ pin(1)  
01= Reserved  
00= VREF+ is connected to VDD  
Note 1: When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a  
minimum voltage specification exists. See Section 30.0 “Electrical Specifications” for details.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 169  
PIC16(L)F1946/47  
REGISTER 16-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
ADRES<9:2>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 16-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
DS41414D-page 170  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 16-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES<9:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 16-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
ADRES<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
2010-2012 Microchip Technology Inc.  
DS41414D-page 171  
PIC16(L)F1946/47  
source impedance is decreased, the acquisition time  
may be decreased. After the analog input channel is  
selected (or changed), an A/D acquisition must be  
done before the conversion can be started. To calculate  
the minimum acquisition time, Equation 16-1 may be  
used. This equation assumes that 1/2 LSb error is used  
(1,024 steps for the ADC). The 1/2 LSb error is the  
maximum error allowed for the ADC to meet its  
specified resolution.  
16.5 A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 16-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), refer  
to Figure 16-4. The maximum recommended  
impedance for analog sources is 10 k. As the  
EQUATION 16-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10k5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + Temperature - 25°C0.05µs/°C  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED1 -------------------------- = VCHOLD  
2n + 11  
TC  
---------  
RC  
VAPPLIED 1 e  
= VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
RC  
1
= VAPPLIED1 --------------------------  
VAPPLIED 1 e  
2n + 11  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLDRIC + RSS + RSln(1/2047)  
= 10pF1k+ 7k+ 10kln4.88 10  
= 1.37µs  
4  
Therefore:  
TACQ = 2µs + 1.37µs + 50°C- 25°C0.05µs/°C  
= 4.62µs  
DS41414D-page 172  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
FIGURE 16-4:  
ANALOG INPUT MODEL  
VDD  
Analog  
Input  
pin  
Sampling  
Switch  
VT 0.6V  
SS  
RIC 1k  
Rss  
Rs  
(1)  
CPIN  
5 pF  
VA  
I LEAKAGE  
CHOLD = 10 pF  
VSS/VREF-  
VT 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend:  
CHOLD  
CPIN  
= Sample/Hold Capacitance  
= Input Capacitance  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
5 6 7 8 9 1011  
Sampling Switch  
RIC  
RSS  
SS  
VT  
= Interconnect Resistance  
= Resistance of Sampling Switch  
= Sampling Switch  
(k)  
= Threshold Voltage  
Note 1: Refer to Section 30.0 “Electrical Specifications”.  
FIGURE 16-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
03h  
02h  
01h  
00h  
Analog Input Voltage  
1.5 LSB  
0.5 LSB  
Zero-Scale  
Transition  
VREF-  
Full-Scale  
Transition  
VREF+  
2010-2012 Microchip Technology Inc.  
DS41414D-page 173  
PIC16(L)F1946/47  
TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC  
Register  
on Page  
Name  
ADCON0  
ADCON1  
ADRESH  
ADRESL  
ANSELA  
ANSELF  
ANSELG  
CCP1CON  
INTCON  
PIE1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CHS<4:0>  
GO/DONE  
ADON  
168  
169  
170  
170  
132  
147  
150  
238  
92  
ADFM  
ADCS<2:0>  
ADNREF  
ADPREF<1:0>  
A/D Result Register High  
A/D Result Register Low  
ANSA5  
ANSA3  
ANSA2  
ANSA1  
ANSA0  
ANSELF7 ANSELF6 ANSELF5 ANSELF4 ANSELF3 ANSELF2 ANSELF1 ANSELF0  
ANSELG4 ANSELG3 ANSELG2 ANSELG1  
CCP1M<3:0>  
P1M<1:0>  
DC1B<1:0>  
GIE  
TMR1GIE  
TMR1GIF  
TRISA7  
TRISB7  
TRISE7  
FVREN  
DACEN  
PEIE  
ADIE  
TMR0IE  
RCIE  
INTE  
TXIE  
IOCIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
IOCIF  
CCP1IE  
CCP1IF  
TRISA2  
TRISB2  
TRISE2  
TMR2IE  
TMR2IF  
TRISA1  
TRISB1  
TRISE1  
TMR1IE  
TMR1IF  
TRISA0  
TRISB0  
TRISE0  
93  
PIR1  
ADIF  
RCIF  
TXIF  
97  
TRISA  
TRISA6  
TRISB6  
TRISE6  
FVRRDY  
DACLPS  
TRISA5  
TRISB5  
TRISE5  
TSEN  
DACOE  
TRISA4  
TRISB4  
TRISE4  
TSRNG  
TRISA3  
TRISB3  
TRISE3  
131  
134  
143  
158  
178  
178  
TRISB  
TRISE  
FVRCON  
DACCON0  
DACCON1  
Legend:  
CDAFVR<1:0>  
DACPSS<1:0>  
DACR<4:0>  
ADFVR<1:0>  
DACNSS  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends on condition. Shaded cells are not  
used for ADC module.  
DS41414D-page 174  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
17.1 Output Voltage Selection  
17.0 DIGITAL-TO-ANALOG  
CONVERTER (DAC) MODULE  
The DAC has 32 voltage level ranges. The 32 levels  
are set with the DACR<4:0> bits of the DACCON1  
register.  
The Digital-to-Analog Converter supplies a variable  
voltage reference, ratiometric with the input source,  
with 32 selectable output levels.  
The DAC output voltage is determined by the following  
equations:  
The input of the DAC can be connected to:  
• External VREF pins  
• VDD supply voltage  
• FVR (Fixed Voltage Reference)  
The output of the DAC can be configured to supply a  
reference voltage to the following:  
• Comparator positive input  
• ADC input channel  
• DACOUT pin  
• Capacitive Sensing module (CPS)  
The Digital-to-Analog Converter (DAC) can be enabled  
by setting the DACEN bit of the DACCON0 register.  
EQUATION 17-1: DAC OUTPUT VOLTAGE  
IF DACEN = 1  
DACR4:0  
VOUT = VSOURCE+ VSOURCE-  ----------------------------- + VSOURCE-  
25  
IF DACEN = 0 & DACLPS = 1 & DACR[4:0] = 11111  
VOUT = VSOURCE +  
IF DACEN = 0 & DACLPS = 0 & DACR[4:0] = 00000  
VOUT = VSOURCE –  
VSOURCE+ = VDD, VREF, or FVR BUFFER 2  
VSOURCE- = VSS  
17.2 Ratiometric Output Level  
17.3 DAC Voltage Reference Output  
The DAC output value is derived using a resistor ladder  
with each end of the ladder tied to a positive and  
negative voltage reference input source. If the voltage  
of either input source fluctuates, a similar fluctuation will  
result in the DAC output value.  
The DAC can be output to the DACOUT pin by setting  
the DACOE bit of the DACCON0 register to ‘1’.  
Selecting the DAC reference voltage for output on the  
DACOUT pin automatically overrides the digital output  
buffer and digital input threshold detector functions of  
that pin. Reading the DACOUT pin when it has been  
configured for DAC reference voltage output will  
always return a ‘0’.  
The value of the individual resistors within the ladder  
can be found in Section 30.0 “Electrical  
Specifications”.  
Due to the limited current drive capability, a buffer must  
be used on the DAC voltage reference output for  
external connections to DACOUT. Figure 17-2 shows  
an example buffering technique.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 175  
PIC16(L)F1946/47  
FIGURE 17-1:  
DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM  
Digital-to-Analog Converter (DAC)  
FVR BUFFER2  
VSOURCE+  
VDD  
DACR<4:0>  
5
VREF+  
R
R
DACPSS<1:0>  
2
R
R
R
DACEN  
DACLPS  
32  
Steps  
DAC Output  
(To Comparator, CPS and  
ADC Modules)  
R
R
R
DACOUT  
DACOE  
DACNSS  
VREF-  
VSS  
VSOURCE-  
FIGURE 17-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC® MCU  
DAC  
Module  
R
+
Buffered DAC Output  
DACOUT  
Voltage  
Reference  
Output  
Impedance  
DS41414D-page 176  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
This is also the method used to output the voltage level  
from the FVR to an output pin. See Section 17.5  
“Operation During Sleep” for more information.  
17.4 Low-Power Voltage State  
In order for the DAC module to consume the least  
amount of power, one of the two voltage reference input  
sources to the resistor ladder must be disconnected.  
Either the positive voltage source, (VSOURCE+), or the  
negative voltage source, (VSOURCE-) can be disabled.  
Reference Figure 17-3 for output clamping examples.  
17.4.2  
OUTPUT CLAMPED TO NEGATIVE  
VOLTAGE SOURCE  
The negative voltage source is disabled by setting the  
DACLPS bit in the DACCON0 register. Clearing the  
DACLPS bit in the DACCON0 register disables the  
positive voltage source.  
The DAC output voltage can be set to VSOURCE- with  
the least amount of power consumption by performing  
the following:  
• Clearing the DACEN bit in the DACCON0 register.  
• Clearing the DACLPS bit in the DACCON0 register.  
17.4.1  
OUTPUT CLAMPED TO POSITIVE  
VOLTAGE SOURCE  
• Configuring the DACNSS bits to the proper  
negative source.  
The DAC output voltage can be set to VSOURCE+ with  
the least amount of power consumption by performing  
the following:  
• Configuring the DACR<4:0> bits to ‘00000’ in the  
DACCON1 register.  
• Clearing the DACEN bit in the DACCON0 register.  
• Setting the DACLPS bit in the DACCON0 register.  
This allows the comparator to detect a zero-crossing  
while not consuming additional current through the DAC  
module.  
• Configuring the DACPSS bits to the proper  
positive source.  
Reference Figure 17-3 for output clamping examples.  
• Configuring the DACR<4:0> bits to ‘11111’ in the  
DACCON1 register.  
FIGURE 17-3:  
OUTPUT VOLTAGE CLAMPING EXAMPLES  
Output Clamped to Positive Voltage Source  
Output Clamped to Negative Voltage Source  
VSOURCE+  
VSOURCE+  
R
R
R
DACR<4:0> = 11111  
R
DACEN = 0  
DACLPS = 1  
DACEN = 0  
DACLPS = 0  
DAC Voltage Ladder  
(see Figure 17-1)  
DAC Voltage Ladder  
(see Figure 17-1)  
R
R
DACR<4:0> = 00000  
VSOURCE-  
VSOURCE-  
17.5 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the DACCON0 register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
17.6 Effects of a Reset  
A device Reset affects the following:  
• DAC is disabled.  
• DAC output voltage is removed from the  
DACOUT pin.  
• The DACR<4:0> range select bits are cleared.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 177  
PIC16(L)F1946/47  
17.7 Register Definitions: DAC Control  
REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0  
R/W-0/0  
DACEN  
R/W-0/0  
DACLPS  
R/W-0/0  
DACOE  
U-0  
R/W-0/0  
R/W-0/0  
U-0  
R/W-0/0  
DACPSS<1:0>  
DACNSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
DACEN: DAC Enable bit  
1= DAC is enabled  
0= DAC is disabled  
DACLPS: DAC Low-Power Voltage State Select bit  
1= DAC Positive reference source selected  
0= DAC Negative reference source selected  
DACOE: DAC Voltage Output Enable bit  
1= DAC voltage level is also an output on the DACOUT pin  
0= DAC voltage level is disconnected from the DACOUT pin  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
DACPSS<1:0>: DAC Positive Source Select bits  
00= VDD  
01= VREF+ pin  
10= FVR Buffer2 output  
11= Reserved, do not use  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
DACNSS: DAC Negative Source Select bits  
1= VREF-  
0= VSS  
REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
DACR<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DACR<4:0>: DAC Voltage Output Select bits  
TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
DACCON0  
DACCON1  
Legend:  
FVREN  
DACEN  
FVRRDY  
DACLPS  
TSEN  
DACOE  
TSRNG  
CDAFVR<1:0>  
DACPSS<1:0>  
DACR<4:0>  
ADFVR1  
ADFVR0  
DACNSS  
158  
178  
178  
— = Unimplemented location, read as ‘0’. Shaded cells are not used with the DAC module.  
DS41414D-page 178  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 18-1:  
SINGLE COMPARATOR  
18.0 COMPARATOR MODULE  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
Comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of program execution. The analog  
comparator module includes the following features:  
VIN+  
VIN-  
+
Output  
VIN-  
VIN+  
• Independent comparator control  
• Programmable input selection  
• Comparator output is available internally/externally  
• Programmable output polarity  
• Interrupt-on-change  
Output  
• Wake-up from Sleep  
• Programmable Speed/Power optimization  
• PWM shutdown  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
• Programmable and fixed voltage reference  
18.1  
Comparator Overview  
A single comparator is shown in Figure 18-1 along with  
the relationship between the analog input levels and  
the digital output. When the analog voltage at VIN+ is  
less than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
The comparators available for this device are located in  
Table 18-1.  
TABLE 18-1: COMPARATORAVAILABILITY  
PER DEVICE  
Device  
PIC16(L)F1946  
PIC16(L)F1947  
2010-2012 Microchip Technology Inc.  
DS41414D-page 179  
PIC16(L)F1946/47  
FIGURE 18-2:  
COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM  
CxNCH<1:0>  
CxON(1)  
2
CxINTP  
Interrupt  
det  
0
CXIN0-  
CXIN1-  
CXIN2-  
CXIN3-  
Set CxIF  
1
CxINTN  
Interrupt  
det  
MUX  
(2)  
2
3
CXPOL  
CxVN  
CxVP  
-
to CMXCON0 (CXOUT)  
and CM2CON1 (MCXOUT)  
D
Q
Cx(3)  
+
Q1  
EN  
0
CXIN+  
CxHYS  
MUX  
DAC Output  
FVR Buffer2  
1
(2)  
CxSP  
async_CxOUT  
to PWM  
2
3
CXSYNC  
CXOE  
CxON  
VSS  
TRIS bit  
CXOUT  
CXPCH<1:0>  
0
1
2
D
Q
(from Timer1)  
T1CLK  
sync_CxOUT  
To Timer1 or  
SR Latch  
Note 1:  
When CxON = 0, the Comparator will produce a ‘0’ at the output.  
When CxON = 0, all multiplexer inputs are disconnected.  
Output of comparator can be frozen during debugging.  
2:  
3:  
DS41414D-page 180  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
18.2.3  
COMPARATOR OUTPUT POLARITY  
18.2 Comparator Control  
Inverting the output of the comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of the comparator output can be inverted by  
setting the CxPOL bit of the CMxCON0 register.  
Clearing the CxPOL bit results in a non-inverted output.  
Each comparator has 2 control registers: CMxCON0 and  
CMxCON1.  
The CMxCON0 registers (see Register 18-1) contain  
Control and Status bits for the following:  
• Enable  
Table 18-2 shows the output state versus input  
conditions, including polarity control.  
• Output selection  
• Output polarity  
TABLE 18-2: COMPARATOR OUTPUT  
STATE VS. INPUT  
• Speed/Power selection  
• Hysteresis enable  
• Output synchronization  
CONDITIONS  
Input Condition  
CxPOL  
CxOUT  
The CMxCON1 registers (see Register 18-2) contain  
Control bits for the following:  
CxVN > CxVP  
CxVN < CxVP  
CxVN > CxVP  
CxVN < CxVP  
0
0
1
1
0
1
1
0
• Interrupt enable  
• Interrupt edge polarity  
• Positive input channel selection  
• Negative input channel selection  
18.2.4  
COMPARATOR SPEED/POWER  
SELECTION  
18.2.1  
COMPARATOR ENABLE  
The trade-off between speed or power can be opti-  
mized during program execution with the CxSP control  
bit. The default state for this bit is ‘1’ which selects the  
normal speed mode. Device power consumption can  
be optimized at the cost of slower comparator propaga-  
tion delay by clearing the CxSP bit to ‘0’.  
Setting the CxON bit of the CMxCON0 register enables  
the comparator for operation. Clearing the CxON bit  
disables the comparator resulting in minimum current  
consumption.  
18.2.2  
COMPARATOR OUTPUT  
SELECTION  
The output of the comparator can be monitored by  
reading either the CxOUT bit of the CMxCON0 register  
or the MCxOUT bit of the CMOUT register. In order to  
make the output available for an external connection,  
the following conditions must be true:  
• CxOE bit of the CMxCON0 register must be set  
• Corresponding TRIS bit must be cleared  
• CxON bit of the CMxCON0 register must be set  
Note 1: The CxOE bit of the CMxCON0 register  
overrides the PORT data latch. Setting  
the CxON bit of the CMxCON0 register  
has no impact on the port override.  
2: The internal output of the comparator is  
latched with each instruction cycle.  
Unless otherwise specified, external  
outputs are not latched.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 181  
PIC16(L)F1946/47  
18.3 Comparator Hysteresis  
18.5 Comparator Interrupt  
A selectable amount of separation voltage can be  
added to the input pins of each comparator to provide a  
hysteresis function to the overall operation. Hysteresis  
is enabled by setting the CxHYS bit of the CMxCON0  
register.  
An interrupt can be generated upon a change in the  
output value of the comparator for each comparator, a  
rising edge detector and a Falling edge detector are  
present.  
When either edge detector is triggered and its associ-  
ated enable bit is set (CxINTP and/or CxINTN bits of  
the CMxCON1 register), the Corresponding Interrupt  
Flag bit (CxIF bit of the PIR2 register) will be set.  
See Section 30.0 “Electrical Specifications” for  
more information.  
18.4 Timer1 Gate Operation  
To enable the interrupt, you must set the following bits:  
• CxON, CxPOL and CxSP bits of the CMxCON0  
register  
The output resulting from a comparator operation can  
be used as a source for gate control of Timer1. See  
Section 21.6 “Timer1 Gate” for more information.  
This feature is useful for timing the duration or interval  
of an analog event.  
• CxIE bit of the PIE2 register  
• CxINTP bit of the CMxCON1 register (for a rising  
edge detection)  
It is recommended that the comparator output be syn-  
chronized to Timer1. This ensures that Timer1 does not  
increment while a change in the comparator is occur-  
ring.  
• CxINTN bit of the CMxCON1 register (for a falling  
edge detection)  
• PEIE and GIE bits of the INTCON register  
The associated interrupt flag bit, CxIF bit of the PIR2  
register, must be cleared in software. If another edge is  
detected while this flag is being cleared, the flag will still  
be set at the end of the sequence.  
18.4.1  
COMPARATOR OUTPUT  
SYNCHRONIZATION  
The output from a comparator can be synchronized  
with Timer1 by setting the CxSYNC bit of the  
CMxCON0 register.  
Note:  
Although a comparator is disabled, an  
interrupt can be generated by changing  
the output polarity with the CxPOL bit of  
the CMxCON0 register, or by switching  
the comparator on or off with the CxON bit  
of the CMxCON0 register.  
Once enabled, the comparator output is latched on the  
falling edge of the Timer1 source clock. If a prescaler is  
used with Timer1, the comparator output is latched after  
the prescaling function. To prevent a race condition, the  
comparator output is latched on the falling edge of the  
Timer1 clock source and Timer1 increments on the  
rising edge of its clock source. See the Comparator  
Block Diagram (Figure 18-2) and the Timer1 Block  
Diagram (Figure 21-1) for more information.  
18.6 Comparator Positive Input  
Selection  
Configuring the CxPCH<1:0> bits of the CMxCON1  
register directs an internal voltage reference or an  
analog pin to the non-inverting input of the comparator:  
• CxIN+ analog pin  
• DAC output  
• FVR (Fixed Voltage Reference)  
• VSS (Ground)  
See Section 14.0 “Fixed Voltage Reference (FVR)”  
for more information on the Fixed Voltage Reference  
module.  
See Section 17.0 “Digital-to-Analog Converter  
(DAC) Module” for more information on the DAC input  
signal.  
Any time the comparator is disabled (CxON = 0), all  
comparator inputs are disabled.  
DS41414D-page 182  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
18.7 Comparator Negative Input  
Selection  
18.10 Analog Input Connection  
Considerations  
The CxNCH<1:0> bits of the CMxCON0 register direct  
one of four analog pins to the comparator inverting  
input.  
A simplified circuit for an analog input is shown in  
Figure 18-3. Since the analog input pins share their  
connection with a digital input, they have reverse  
biased ESD protection diodes to VDD and VSS. The  
analog input, therefore, must be between VSS and VDD.  
If the input voltage deviates from this range by more  
than 0.6V in either direction, one of the diodes is for-  
ward biased and a latch-up may occur.  
Note:  
To use CxIN+ and CxINx- pins as analog  
input, the appropriate bits must be set in  
the ANSEL register and the correspond-  
ing TRIS bits must also be set to disable  
the output drivers.  
A maximum source impedance of 10 kis recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
18.8 Comparator Response Time  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the comparator  
differs from the settling time of the voltage reference.  
Therefore, both of these times must be considered when  
determining the total response time to a comparator  
input change. See the Comparator and Voltage Refer-  
ence Specifications in Section 30.0 “Electrical Speci-  
fications” for more details.  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
18.9 Interaction with ECCP Logic  
The comparators can be used as general purpose  
comparators. Their outputs can be brought out to the  
CxOUT pins. When the ECCP Auto-Shutdown is  
active it can use one or both comparator signals. If  
auto-restart is also enabled, the comparators can be  
configured as a closed loop analog feedback to the  
ECCP, thereby, creating an analog controlled PWM.  
Note:  
When the Comparator module is first  
initialized the output state is unknown.  
Upon initialization, the user should verify  
the output state of the comparator prior to  
relying on the result, primarily when using  
the result in connection with other  
peripheral features, such as the ECCP  
Auto-Shutdown mode.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 183  
PIC16(L)F1946/47  
FIGURE 18-3:  
ANALOG INPUT MODEL  
VDD  
Analog  
Input  
pin  
VT 0.6V  
RIC  
Rs < 10K  
To Comparator  
(1)  
ILEAKAGE  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
Note 1: See Section 30.0 “Electrical Specifications”  
DS41414D-page 184  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
18.11 Register Definitions: Comparator Control  
REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0  
R/W-0/0  
CxON  
R-0/0  
R/W-0/0  
CxOE  
R/W-0/0  
CxPOL  
U-0  
R/W-1/1  
CxSP  
R/W-0/0  
CxHYS  
R/W-0/0  
CxSYNC  
CxOUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
CxON: Comparator Enable bit  
1= Comparator is enabled and consumes no active power  
0= Comparator is disabled  
CxOUT: Comparator Output bit  
If CxPOL = 1 (inverted polarity):  
1= CxVP < CxVN  
0= CxVP > CxVN  
If CxPOL = 0 (non-inverted polarity):  
1= CxVP > CxVN  
0= CxVP < CxVN  
bit 5  
bit 4  
CxOE: Comparator Output Enable bit  
1= CxOUT is present on the CxOUT pin. Requires that the associated TRIS bit be cleared to actually  
drive the pin. Not affected by CxON.  
0= CxOUT is internal only  
CxPOL: Comparator Output Polarity Select bit  
1= Comparator output is inverted  
0= Comparator output is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CxSP: Comparator Speed/Power Select bit  
1= Comparator operates in normal power, higher speed mode  
0= Comparator operates in low-power, low-speed mode  
bit 1  
bit 0  
CxHYS: Comparator Hysteresis Enable bit  
1= Comparator hysteresis enabled  
0= Comparator hysteresis disabled  
CxSYNC: Comparator Output Synchronous Mode bit  
1= Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source.  
Output updated on the falling edge of Timer1 clock source.  
0= Comparator output to Timer1 and I/O pin is asynchronous.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 185  
PIC16(L)F1946/47  
REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1  
R/W-0/0  
CxINTP  
R/W-0/0  
CxINTN  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
CxPCH<1:0>  
CxNCH<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
CxINTP: Comparator Interrupt on Positive Going Edge Enable bits  
1= The CxIF interrupt flag will be set upon a positive going edge of the CxOUT bit  
0= No interrupt flag will be set on a positive going edge of the CxOUT bit  
bit 6  
CxINTN: Comparator Interrupt on Negative Going Edge Enable bits  
1= The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit  
0= No interrupt flag will be set on a negative going edge of the CxOUT bit  
bit 5-4  
CxPCH<1:0>: Comparator Positive Input Channel Select bits  
11= CxVP connects to VSS  
10= CxVP connects to FVR Voltage Reference  
01= CxVP connects to DAC Voltage Reference  
00= CxVP connects to CxIN+ pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CxNCH<1:0>: Comparator Negative Input Channel Select bits  
11= CxVN connects to CXIN3- pin  
10= CxVN connects to CXIN2- pin  
01= CxVN connects to CXIN1- pin  
00= CxVN connects to CXIN0- pin  
REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0/0  
R-0/0  
R-0/0  
MC3OUT  
MC2OUT  
MC1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
MC3OUT: Mirror Copy of C3OUT bit  
MC2OUT: Mirror Copy of C2OUT bit  
MC1OUT: Mirror Copy of C1OUT bit  
bit 1  
bit 0  
DS41414D-page 186  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 18-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELF  
ANSELG  
CM1CON0  
CM2CON0  
CM1CON1  
CM2CON1  
CM3CON0  
CM3CON1  
CMOUT  
ANSF7  
ANSF6  
ANSF5  
ANSF4  
ANSG4  
C1POL  
C2POL  
ANSF3  
ANSG3  
ANSF2  
ANSG2  
C1SP  
C2SP  
ANSF1  
ANSG1  
C1HYS  
C2HYS  
ANSF0  
147  
150  
185  
185  
186  
186  
185  
186  
186  
158  
178  
178  
92  
C1ON  
C2ON  
C1NTP  
C2NTP  
C3ON  
C3INTP  
C1OUT  
C2OUT  
C1INTN  
C2INTN  
C3OUT  
C3INTN  
C1OE  
C2OE  
C1SYNC  
C2SYNC  
C1PCH<1:0>  
C2PCH<1:0>  
C1NCH<1:0>  
C2NCH<1:0>  
C3HYS C3SYNC  
C3NCH<1:0>  
C3OE  
C3POL  
C3PCH0  
C3SP  
C3PCH1  
MC3OUT MC2OUT MC1OUT  
ADFVR<1:0>  
FVRCON  
DACCON0  
DACCON1  
INTCON  
PIE2  
FVREN  
DACEN  
FVRRDY  
DACLPS  
TSEN  
DACOE  
TSRNG  
CDAFVR<1:0>  
DACPSS<1:0>  
DACNSS  
DACR<4:0>  
TMR0IF  
LCDIE  
GIE  
PEIE  
TMR0IE  
C1IE  
INTE  
EEIE  
IOCIE  
BCLIE  
BCLIF  
INTF  
C3IE  
IOCIF  
OSFIE  
OSFIF  
TRISF7  
C2IE  
CCP2IE  
CCP2IF  
TRISF0  
TRISG0  
94  
PIR2  
C2IF  
C1IF  
EEIF  
LCDIF  
C3IF  
98  
TRISF  
TRISF6  
TRISF5  
TRISG5  
TRISF4  
TRISG4  
TRISF3  
TRISG3  
TRISF2  
TRISG2  
TRISF1  
TRISG1  
146  
149  
TRISG  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are unused by the comparator module.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 187  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 188  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
19.2 Latch Output  
19.0 SR LATCH  
The SRQEN and SRNQEN bits of the SRCON0 regis-  
ter control the Q and Q latch outputs. Both of the SR  
Latch outputs may be directly output to an I/O pin at the  
same time.  
The module consists of a single SR Latch with multiple  
Set and Reset inputs as well as separate latch outputs.  
The SR Latch module includes the following features:  
• Programmable input selection  
• SR Latch output is available externally  
• Separate Q and Q outputs  
The applicable TRIS bit of the corresponding port must  
be cleared to enable the port pin output driver.  
• Firmware Set and Reset  
19.3 Effects of a Reset  
The SR Latch can be used in a variety of analog appli-  
cations, including oscillator circuits, one-shot circuit,  
hysteretic controllers, and analog timing applications.  
Upon any device Reset, the SR Latch output is not ini-  
tialized to a known state. The user’s firmware is  
responsible for initializing the latch output before  
enabling the output pins.  
19.1 Latch Operation  
The latch is a Set-Reset Latch that does not depend on  
a clock source. Each of the Set and Reset inputs are  
active-high. The latch can be set or reset by:  
• Software control (SRPS and SRPR bits)  
• Comparator C1 output (sync_C1OUT)  
• Comparator C2 output (sync_C2OUT)  
• SRI pin  
• Programmable clock (SRCLK)  
The SRPS and the SRPR bits of the SRCON0 register  
may be used to set or reset the SR Latch, respectively.  
The latch is Reset-dominant. Therefore, if both Set and  
Reset inputs are high, the latch will go to the Reset  
state. Both the SRPS and SRPR bits are self resetting  
which means that a single write to either of the bits is all  
that is necessary to complete a latch Set or Reset oper-  
ation.  
The output from Comparator C1 or C2 can be used as  
the Set or Reset inputs of the SR Latch. The output of  
either comparator can be synchronized to the Timer1  
clock source. See Section 18.0 “Comparator Mod-  
ule” and Section 21.0 “Timer1 Module with Gate  
Control” for more information.  
An external source on the SRI pin can be used as the  
Set or Reset inputs of the SR Latch.  
An internal clock source is available that can periodically  
set or reset the SR Latch. The SRCLK<2:0> bits in the  
SRCON0 register are used to select the clock source  
period. The SRSCKE and SRRCKE bits of the SRCON1  
register enable the clock source to set or reset the SR  
Latch, respectively.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 189  
PIC16(L)F1946/47  
FIGURE 19-1:  
SR LATCH SIMPLIFIED BLOCK DIAGRAM  
SRLEN  
SRQEN  
SRPS  
Pulse  
(2)  
Gen  
SRI  
S
Q
SRSPE  
SRCLK  
SRQ  
SRSCKE  
(3)  
sync_C2OUT  
SRSC2E  
(3)  
sync_C1OUT  
SR  
SRSC1E  
(1)  
Latch  
SRPR  
Pulse  
(2)  
Gen  
SRI  
SRRPE  
SRCLK  
R
Q
SRNQ  
SRRCKE  
SRLEN  
(3)  
sync_C2OUT  
SRNQEN  
SRRC2E  
(3)  
sync_C1OUT  
SRRC1E  
Note 1: If R = 1and S = 1simultaneously, Q = 0, Q = 1.  
2: Pulse generator causes a 1 Q-state pulse width.  
3: Name denotes the connection point at the comparator output.  
DS41414D-page 190  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 19-1: SRCLK FREQUENCY TABLE  
SRCLK  
Divider  
FOSC = 32 MHz FOSC = 20 MHz FOSC = 16 MHz FOSC = 4 MHz  
FOSC = 1 MHz  
111  
110  
101  
100  
011  
010  
001  
000  
512  
256  
128  
64  
32  
16  
8
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
1 MHz  
39.0 kHz  
78.1 kHz  
156 kHz  
313 kHz  
625 kHz  
1.25 MHz  
2.5 MHz  
5 MHz  
31.3 kHz  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
1 MHz  
7.81 kHz  
15.6 kHz  
31.25 kHz  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
1 MHz  
1.95 kHz  
3.90 kHz  
7.81 kHz  
15.6 kHz  
31.3 kHz  
62.5 kHz  
125 kHz  
250 kHz  
2 MHz  
4 MHz  
2 MHz  
4
8 MHz  
4 MHz  
2010-2012 Microchip Technology Inc.  
DS41414D-page 191  
PIC16(L)F1946/47  
19.4 Register Definitions: SR Latch Control  
REGISTER 19-1: SRCON0: SR LATCH CONTROL 0 REGISTER  
R/W-0/0  
SRLEN  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
SRQEN  
R/W-0/0  
R/S-0/0  
SRPS  
R/S-0/0  
SRPR  
SRCLK<2:0>  
SRNQEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
S = Bit is set only  
bit 7  
SRLEN: SR Latch Enable bit  
1= SR Latch is enabled  
0= SR Latch is disabled  
SRCLK<2:0>: SR Latch Clock Divider bits  
bit 6-4  
111= Generates a 1 FOSC wide pulse every 512th FOSC cycle clock  
110= Generates a 1 FOSC wide pulse every 256th FOSC cycle clock  
101= Generates a 1 FOSC wide pulse every 128th FOSC cycle clock  
100= Generates a 1 FOSC wide pulse every 64th FOSC cycle clock  
011= Generates a 1 FOSC wide pulse every 32nd FOSC cycle clock  
010= Generates a 1 FOSC wide pulse every 16th FOSC cycle clock  
001= Generates a 1 FOSC wide pulse every 8th FOSC cycle clock  
000= Generates a 1 FOSC wide pulse every 4th FOSC cycle clock  
bit 3  
bit 2  
SRQEN: SR Latch Q Output Enable bit  
If SRLEN = 1:  
1= Q is present on the SRQ pin  
0= External Q output is disabled  
If SRLEN = 0:  
SR Latch is disabled  
SRNQEN: SR Latch Q Output Enable bit  
If SRLEN = 1:  
1= Q is present on the SRnQ pin  
0= External Q output is disabled  
If SRLEN = 0:  
SR Latch is disabled  
bit 1  
bit 0  
SRPS: Pulse Set Input of the SR Latch bit(1)  
1= Pulse set input for 1 Q-clock period  
0= No effect on set input  
SRPR: Pulse Reset Input of the SR Latch bit(1)  
1= Pulse reset input for 1 Q-clock period  
0= No effect on reset input  
Note 1: Set only, always reads back ‘0’.  
DS41414D-page 192  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 19-2: SRCON1: SR LATCH CONTROL 1 REGISTER  
R/W-0/0  
SRSPE  
R/W-0/0  
R/W-0/0  
SRSC2E  
R/W-0/0  
SRSC1E  
R/W-0/0  
SRRPE  
R/W-0/0  
R/W-0/0  
R/W-0/0  
SRSCKE  
SRRCKE  
SRRC2E  
SRRC1E  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SRSPE: SR Latch Peripheral Set Enable bit  
1= SR Latch is set when the SRI pin is high  
0= SRI pin has no effect on the set input of the SR Latch  
SRSCKE: SR Latch Set Clock Enable bit  
1= Set input of SR Latch is pulsed with SRCLK  
0= SRCLK has no effect on the set input of the SR Latch  
SRSC2E: SR Latch C2 Set Enable bit  
1= SR Latch is set when the C2 Comparator output is high  
0= C2 Comparator output has no effect on the set input of the SR Latch  
SRSC1E: SR Latch C1 Set Enable bit  
1= SR Latch is set when the C1 Comparator output is high  
0= C1 Comparator output has no effect on the set input of the SR Latch  
SRRPE: SR Latch Peripheral Reset Enable bit  
1= SR Latch is reset when the SRI pin is high  
0= SRI pin has no effect on the reset input of the SR Latch  
SRRCKE: SR Latch Reset Clock Enable bit  
1= Reset input of SR Latch is pulsed with SRCLK  
0= SRCLK has no effect on the reset input of the SR Latch  
SRRC2E: SR Latch C2 Reset Enable bit  
1= SR Latch is reset when the C2 Comparator output is high  
0= C2 Comparator output has no effect on the reset input of the SR Latch  
SRRC1E: SR Latch C1 Reset Enable bit  
1= SR Latch is reset when the C1 Comparator output is high  
0= C1 Comparator output has no effect on the reset input of the SR Latch  
TABLE 19-2: SUMMARY OF REGISTERS ASSOCIATED WITH SR LATCH MODULE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
SRCON0  
SRCON1  
TRISA  
ANSA5  
ANSA3  
ANSA2  
ANSA1  
SRPS  
ANSA0  
SRPR  
132  
192  
193  
131  
SRLEN  
SRSPE  
TRISA7  
SRCLK<2:0>  
SRQEN SRNQEN  
SRSCKE SRSC2E SRSC1E SRRPE SRRCKE SRRC2E SRRC1E  
TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are unused by the SR Latch module.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 193  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 194  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
20.0 TIMER0 MODULE  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
Note:  
The value written to the TMR0 register  
can be adjusted, in order to account for  
the two instruction cycle delay when  
TMR0 is written.  
• 8-bit timer/counter register (TMR0)  
• 8-bit prescaler (independent of Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
20.1.2  
8-BIT COUNTER MODE  
In 8-Bit Counter mode, the Timer0 module will increment  
on every rising or falling edge of the T0CKI pin or the  
Capacitive Sensing Oscillator (CPSCLK) signal.  
• TMR0 can be used to gate Timer1  
Figure 20-1 is a block diagram of the Timer0 module.  
8-Bit Counter mode using the T0CKI pin is selected by  
setting the TMR0CS bit in the OPTION_REG register to  
1’ and resetting the T0XCS bit in the CPSCON0 register  
to ‘0’.  
20.1 Timer0 Operation  
The Timer0 module can be used as either an 8-bit timer  
or an 8-bit counter.  
8-Bit Counter mode using the Capacitive Sensing  
Oscillator (CPSCLK) signal is selected by setting the  
TMR0CS bit in the OPTION_REG register to ‘1’ and  
setting the T0XCS bit in the CPSCON0 register to ‘1’.  
20.1.1  
8-BIT TIMER MODE  
The Timer0 module will increment every instruction  
cycle, if used without a prescaler. 8-bit Timer mode is  
selected by clearing the TMR0CS bit of the  
OPTION_REG register.  
The rising or falling transition of the incrementing edge  
for either input source is determined by the TMR0SE bit  
in the OPTION_REG register.  
FIGURE 20-1:  
BLOCK DIAGRAM OF THE TIMER0  
FOSC/4  
Data Bus  
0
1
8
T0CKI  
1
Sync  
0
1
TMR0  
2 TCY  
0
From CPSCLK  
Set Flag bit TMR0IF  
TMR0SE  
TMR0CS  
8-bit  
Prescaler  
on Overflow  
PSA  
T0XCS  
Overflow to Timer1  
8
PS<2:0>  
2010-2012 Microchip Technology Inc.  
DS41414D-page 195  
PIC16(L)F1946/47  
20.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A software programmable prescaler is available for  
exclusive use with Timer0. The prescaler is enabled by  
clearing the PSA bit of the OPTION_REG register.  
Note:  
The Watchdog Timer (WDT) uses its own  
independent prescaler.  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION_REG  
register. In order to have a 1:1 prescaler value for the  
Timer0 module, the prescaler must be disabled by set-  
ting the PSA bit of the OPTION_REG register.  
The prescaler is not readable or writable. All instructions  
writing to the TMR0 register will clear the prescaler.  
20.1.4  
TIMER0 INTERRUPT  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The TMR0IF  
interrupt flag bit of the INTCON register is set every  
time the TMR0 register overflows, regardless of  
whether or not the Timer0 interrupt is enabled. The  
TMR0IF bit can only be cleared in software. The Timer0  
interrupt enable is the TMR0IE bit of the INTCON  
register.  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
20.1.5  
8-BIT COUNTER MODE  
SYNCHRONIZATION  
When in 8-Bit Counter mode, the incrementing edge on  
the T0CKI pin must be synchronized to the instruction  
clock. Synchronization can be accomplished by  
sampling the prescaler output on the Q2 and Q4 cycles  
of the instruction clock. The high and low periods of the  
external clocking source must meet the timing  
requirements as shown in Section 30.0 “Electrical  
Specifications”.  
20.1.6  
OPERATION DURING SLEEP  
Timer0 cannot operate while the processor is in Sleep  
mode. The contents of the TMR0 register will remain  
unchanged while the processor is in Sleep mode.  
DS41414D-page 196  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
20.2 Register Definitions: Option Register  
REGISTER 20-1: OPTION_REG: OPTION REGISTER  
R/W-1/1  
WPUEN  
R/W-1/1  
INTEDG  
R/W-1/1  
R/W-1/1  
R/W-1/1  
PSA  
R/W-1/1  
R/W-1/1  
PS<2:0>  
R/W-1/1  
bit 0  
TMR0CS  
TMR0SE  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
WPUEN: Weak Pull-Up Enable bit  
1= All weak pull-ups are disabled (except MCLR, if it is enabled)  
0= Weak pull-ups are enabled by individual WPUx latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
TMR0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
TMR0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is not assigned to the Timer0 module  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CPSCON0  
INTCON  
CPSON CPSRM  
GIE PEIE  
CPSRNG<1:0>  
CPSOUT T0XCS  
333  
92  
TMR0IE  
INTE  
IOCIE  
PSA  
TMR0IF  
INTF  
IOCIF  
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE  
PS<2:0>  
197  
195*  
131  
TMR0  
TRISA  
Timer0 Module Register  
TRISA7 TRISA6 TRISA5 TRISA4  
TRISA3  
TRISA2  
TRISA1 TRISA0  
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module.  
Page provides register information.  
*
2010-2012 Microchip Technology Inc.  
DS41414D-page 197  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 198  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
• Gate Toggle mode  
21.0 TIMER1 MODULE WITH GATE  
CONTROL  
• Gate Single-Pulse mode  
• Gate Value Status  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• Gate Event Interrupt  
Figure 21-1 is a block diagram of the Timer1 module.  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 2-bit prescaler  
• Dedicated 32 kHz oscillator circuit  
• Optionally synchronized comparator out  
• Multiple Timer1 gate (count enable) sources  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
• Special Event Trigger (with CCP/ECCP)  
• Selectable Gate Source Polarity  
FIGURE 21-1:  
TIMER1 BLOCK DIAGRAM  
T1GSS<1:0>  
T1G  
T1GSPM  
00  
From Timer0  
Overflow  
0
01  
10  
11  
t1g_in  
Data Bus  
T1GVAL  
0
1
D
Q
Single-Pulse  
Acq. Control  
RD  
sync_C1OUT  
1
T1GCON  
Q1 EN  
D
Q
Q
sync_C2OUT  
Interrupt  
Set  
T1GGO/DONE  
CK  
TMR1ON  
T1GTM  
TMR1GIF  
det  
R
T1GPOL  
TMR1GE  
Set flag bit  
TMR1IF on  
Overflow  
TMR1ON  
To Comparator Module  
TMR1(2)  
EN  
D
Synchronized  
clock input  
0
T1CLK  
TMR1H  
TMR1L  
Q
1
TMR1CS<1:0>  
T1SYNC  
T1OSO  
OUT  
Cap. Sensing  
Oscillator  
11  
10  
Synchronize(3)  
det  
T1OSC  
EN  
Prescaler  
1, 2, 4, 8  
1
0
T1OSI  
2
T1CKPS<1:0>  
FOSC  
Internal  
Clock  
01  
00  
FOSC/2  
Internal  
Clock  
T1OSCEN  
T1CKI  
Sleep input  
FOSC/4  
Internal  
Clock  
(1)  
To LCD and Clock Switching Modules  
Note 1: ST Buffer is high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 199  
PIC16(L)F1946/47  
21.1 Timer1 Operation  
21.2 Clock Source Selection  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The TMR1CS<1:0> and T1OSCEN bits of the T1CON  
register are used to select the clock source for Timer1.  
Table 21-2 displays the clock source selections.  
21.2.1  
INTERNAL CLOCK SOURCE  
When used with an internal clock source, the module is  
a timer and increments on every instruction cycle.  
When used with an external clock source, the module  
can be used as either a timer or counter and incre-  
ments on every selected edge of the external source.  
When the internal clock source is selected, the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
When the FOSC internal clock source is selected, the  
Timer1 register value will increment by four counts every  
instruction clock cycle. Due to this condition, a 2 LSB  
error in resolution will occur when reading the Timer1  
value. To utilize the full resolution of Timer1, an  
asynchronous input signal must be used to gate the  
Timer1 clock input.  
Timer1 is enabled by configuring the TMR1ON and  
TMR1GE bits in the T1CON and T1GCON registers,  
respectively. Table 21-1 displays the Timer1 enable  
selections.  
TABLE 21-1: TIMER1 ENABLE  
SELECTIONS  
The following asynchronous sources may be used:  
• Asynchronous event on the T1G pin to Timer1  
gate  
Timer1  
Operation  
TMR1ON  
TMR1GE  
• C1 or C2 comparator input to Timer1 gate  
0
0
1
1
0
1
0
1
Off  
Off  
21.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
Always On  
Count Enabled  
When enabled to count, Timer1 is incremented on the  
rising edge of the external clock input T1CKI or the  
capacitive sensing oscillator signal. Either of these  
external clock sources can be synchronized to the  
microcontroller system clock or they can run  
asynchronously.  
When used as a timer with a clock oscillator, an  
external 32.768 kHz crystal can be used in conjunction  
with the dedicated internal oscillator circuit.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
• Timer1 enabled after POR  
• Write to TMR1H or TMR1L  
• Timer1 is disabled  
• Timer1 is disabled (TMR1ON = 0)  
when T1CKI is high then Timer1 is  
enabled (TMR1ON=1) when T1CKI is  
low.  
TABLE 21-2: CLOCK SOURCE SELECTIONS  
TMR1CS1  
TMR1CS0  
T1OSCEN  
Clock Source  
0
0
1
1
1
1
0
1
0
0
x
x
x
0
1
System Clock (FOSC)  
Instruction Clock (FOSC/4)  
Capacitive Sensing Oscillator  
External Clocking on T1CKI Pin  
Osc.Circuit On T1OSI/T1OSO Pins  
DS41414D-page 200  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
21.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
21.3 Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
21.4 Timer1 Oscillator  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
A dedicated low-power 32.768 kHz oscillator circuit is  
built-in between pins T1OSI (input) and T1OSO  
(amplifier output). This internal circuit is to be used in  
conjunction with an external 32.768 kHz crystal.  
The oscillator circuit is enabled by setting the  
T1OSCEN bit of the T1CON register. The oscillator will  
continue to run during Sleep.  
21.6 Timer1 Gate  
Timer1 can be configured to count freely or the count  
can be enabled and disabled using Timer1 gate  
circuitry. This is also referred to as Timer1 Gate Enable.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to using Timer1. A  
suitable delay, similar to the OST delay  
can be implemented in software by  
clearing the TMR1IF bit, then presetting  
the TMR1H:TMR1L register pair to  
FC00h. The TMR1IF flag will be set when  
1024 clock cycles have elapsed, thereby  
indicating that the oscillator is running and  
is reasonably stable.  
Timer1 gate can also be driven by multiple selectable  
sources.  
21.6.1  
TIMER1 GATE ENABLE  
The Timer1 Gate Enable mode is enabled by setting  
the TMR1GE bit of the T1GCON register. The polarity  
of the Timer1 Gate Enable mode is configured using  
the T1GPOL bit of the T1GCON register.  
When Timer1 Gate Enable mode is enabled, Timer1  
will increment on the rising edge of the Timer1 clock  
source. When Timer1 Gate Enable mode is disabled,  
no incrementing will occur and Timer1 will hold the  
current count. See Figure 21-3 for timing details.  
21.5 Timer1 Operation in  
Asynchronous Counter Mode  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If the external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 21.5.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
TABLE 21-3: TIMER1 GATE ENABLE  
SELECTIONS  
T1CLK T1GPOL  
T1G  
Timer1 Operation  
0
0
1
1
0
1
0
1
Counts  
Holds Count  
Holds Count  
Counts  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 201  
PIC16(L)F1946/47  
21.6.2  
TIMER1 GATE SOURCE  
SELECTION  
21.6.3  
TIMER1 GATE TOGGLE MODE  
When Timer1 Gate Toggle mode is enabled, it is possi-  
ble to measure the full-cycle length of a Timer1 gate  
signal, as opposed to the duration of a single level  
pulse.  
Timer1 gate source selections are shown in Table 21-4.  
Source selection is controlled by the T1GSS bits of the  
T1GCON register. The polarity for each available source  
is also selectable. Polarity selection is controlled by the  
T1GPOL bit of the T1GCON register.  
The Timer1 gate source is routed through a flip-flop that  
changes state on every incrementing edge of the sig-  
nal. See Figure 21-4 for timing details.  
TABLE 21-4: TIMER1 GATE SOURCES  
Timer1 Gate Toggle mode is enabled by setting the  
T1GTM bit of the T1GCON register. When the T1GTM  
bit is cleared, the flip-flop is cleared and held clear. This  
is necessary in order to control which edge is  
measured.  
T1GSS  
Timer1 Gate Source  
Timer1 Gate Pin  
00  
01  
Overflow of Timer0  
(TMR0 increments from FFh to 00h)  
Note:  
Enabling Toggle mode at the same time  
as changing the gate polarity may result in  
indeterminate operation.  
10  
11  
Comparator 1 Output sync_C1OUT  
(optionally Timer1 synchronized output)  
Comparator 2 Output sync_C2OUT  
(optionally Timer1 synchronized output)  
21.6.4  
TIMER1 GATE SINGLE-PULSE  
MODE  
21.6.2.1  
T1G Pin Gate Operation  
When Timer1 Gate Single-Pulse mode is enabled, it is  
possible to capture a single-pulse gate event. Timer1  
Gate Single-Pulse mode is first enabled by setting the  
T1GSPM bit in the T1GCON register. Next, the  
T1GGO/DONE bit in the T1GCON register must be set.  
The Timer1 will be fully enabled on the next incrementing  
edge. On the next trailing edge of the pulse, the  
T1GGO/DONE bit will automatically be cleared. No other  
gate events will be allowed to increment Timer1 until the  
T1GGO/DONE bit is once again set in software. See  
Figure 21-5 for timing details.  
The T1G pin is one source for Timer1 gate control. It  
can be used to supply an external source to the Timer1  
gate circuitry.  
21.6.2.2  
Timer0 Overflow Gate Operation  
When Timer0 increments from FFh to 00h,  
a
low-to-high pulse will automatically be generated and  
internally supplied to the Timer1 gate circuitry.  
21.6.2.3  
Comparator C1 Gate Operation  
The output resulting from a Comparator 1 operation can  
be selected as a source for Timer1 gate control. The  
If the Single-Pulse Gate mode is disabled by clearing the  
T1GSPM bit in the T1GCON register, the T1GGO/DONE  
bit should also be cleared.  
Comparator  
1
output (sync_C1OUT) can be  
synchronized to the Timer1 clock or left asynchronous.  
For more information see Section 18.4.1 “Comparator  
Output Synchronization”.  
Enabling the Toggle mode and the Single-Pulse mode  
simultaneously will permit both sections to work  
together. This allows the cycle times on the Timer1 gate  
source to be measured. See Figure 21-6 for timing  
details.  
21.6.2.4  
Comparator C2 Gate Operation  
The output resulting from a Comparator 2 operation  
can be selected as a source for Timer1 gate control.  
The Comparator 2 output (sync_C2OUT) can be  
synchronized to the Timer1 clock or left asynchronous.  
For more information see Section 18.4.1 “Comparator  
Output Synchronization”.  
21.6.5  
TIMER1 GATE VALUE STATUS  
When Timer1 Gate Value Status is utilized, it is possible  
to read the most current level of the gate control value.  
The value is stored in the T1GVAL bit in the T1GCON  
register. The T1GVAL bit is valid even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
21.6.6  
TIMER1 GATE EVENT INTERRUPT  
When Timer1 Gate Event Interrupt is enabled, it is pos-  
sible to generate an interrupt upon the completion of a  
gate event. When the falling edge of T1GVAL occurs,  
the TMR1GIF flag bit in the PIR1 register will be set. If  
the TMR1GIE bit in the PIE1 register is set, then an  
interrupt will be recognized.  
The TMR1GIF flag bit operates even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
DS41414D-page 202  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
21.7 Timer1 Interrupt  
21.9 ECCP/CCP Capture/Compare Time  
Base  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
The CCP modules use the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
• TMR1ON bit of the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
For  
more  
information,  
see  
Section 23.0  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
“Capture/Compare/PWM Modules”.  
21.10 ECCP/CCP Special Event Trigger  
When any of the CCP’s are configured to trigger a spe-  
cial event, the trigger will clear the TMR1H:TMR1L reg-  
ister pair. This special event does not cause a Timer1  
interrupt. The CCP module may still be configured to  
generate a CCP interrupt.  
21.8 Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
In this mode of operation, the CCPR1H:CCPR1L  
register pair becomes the period register for Timer1.  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register must be set  
Timer1 should be synchronized and FOSC/4 should be  
selected as the clock source in order to utilize the Spe-  
cial Event Trigger. Asynchronous operation of Timer1  
can cause a Special Event Trigger to be missed.  
• TMR1CS bits of the T1CON register must be  
configured  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the CCP, the write will  
take precedence.  
• T1OSCEN bit of the T1CON register must be  
configured  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine.  
For more information, see Section 16.3.1 “Special  
Event Trigger”.  
Timer1 oscillator will continue to operate in Sleep  
regardless of the T1SYNC bit setting.  
FIGURE 21-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 203  
PIC16(L)F1946/47  
FIGURE 21-3:  
TIMER1 GATE ENABLE MODE  
TMR1GE  
T1GPOL  
t1g_in  
T1CKI  
T1GVAL  
Timer1  
N
N + 1  
N + 2  
N + 3  
N + 4  
FIGURE 21-4:  
TIMER1 GATE TOGGLE MODE  
TMR1GE  
T1GPOL  
T1GTM  
t1g_in  
T1CKI  
T1GVAL  
Timer1  
N
N + 1 N + 2 N + 3 N + 4  
N + 5 N + 6 N + 7 N + 8  
DS41414D-page 204  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 21-5:  
TIMER1 GATE SINGLE-PULSE MODE  
TMR1GE  
T1GPOL  
T1GSPM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
t1g_in  
T1CKI  
T1GVAL  
Timer1  
N
N + 1  
N + 2  
Cleared by  
software  
Set by hardware on  
falling edge of T1GVAL  
Cleared by software  
TMR1GIF  
2010-2012 Microchip Technology Inc.  
DS41414D-page 205  
PIC16(L)F1946/47  
FIGURE 21-6:  
TMR1GE  
T1GPOL  
TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE  
T1GSPM  
T1GTM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
t1g_in  
T1CKI  
T1GVAL  
Timer1  
N + 4  
N + 2 N + 3  
N
N + 1  
Set by hardware on  
falling edge of T1GVAL  
Cleared by  
software  
Cleared by software  
TMR1GIF  
DS41414D-page 206  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
21.11 Register Definitions: Timer1 Control  
REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
T1SYNC  
U-0  
R/W-0/u  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
TMR1CS<1:0>: Timer1 Clock Source Select bits  
11=Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)  
10=Timer1 clock source is pin or oscillator:  
If T1OSCEN = 0:  
External clock from T1CKI pin (on the rising edge)  
If T1OSCEN = 1:  
Crystal oscillator on T1OSI/T1OSO pins  
01=Timer1 clock source is system clock (FOSC)  
00=Timer1 clock source is instruction clock (FOSC/4)  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: LP Oscillator Enable Control bit  
1= Dedicated Timer1 oscillator circuit enabled  
0= Dedicated Timer1 oscillator circuit disabled  
T1SYNC: Timer1 Synchronization Control bit  
1= Do not synchronize asynchronous clock input  
0= Synchronize asynchronous clock input with system clock (FOSC)  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1 and clears Timer1 gate flip-flop  
2010-2012 Microchip Technology Inc.  
DS41414D-page 207  
PIC16(L)F1946/47  
REGISTER 21-2: T1GCON: TIMER1 GATE CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
T1GPOL  
R/W-0/u  
T1GTM  
R/W-0/u  
R/W/HC-0/u  
R-x/x  
R/W-0/u  
R/W-0/u  
TMR1GE  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = Bit is cleared by hardware  
bit 7  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 counting is controlled by the Timer1 gate function  
0= Timer1 counts regardless of Timer1 gate function  
bit 6  
bit 5  
T1GPOL: Timer1 Gate Polarity bit  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
T1GTM: Timer1 Gate Toggle Mode bit  
1= Timer1 Gate Toggle mode is enabled  
0= Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared  
Timer1 gate flip-flop toggles on every rising edge.  
bit 4  
T1GSPM: Timer1 Gate Single-Pulse Mode bit  
1= Timer1 Gate Single-Pulse mode is enabled and is controlling Timer1 gate  
0= Timer1 Gate Single-Pulse mode is disabled  
bit 3  
T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit  
1= Timer1 gate single-pulse acquisition is ready, waiting for an edge  
0= Timer1 gate single-pulse acquisition has completed or has not been started  
bit 2  
T1GVAL: Timer1 Gate Current State bit  
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.  
Unaffected by Timer1 Gate Enable (TMR1GE).  
bit 1-0  
T1GSS<1:0>: Timer1 Gate Source Select bits  
11= Comparator 2 optionally synchronized output (sync_C2OUT)  
10= Comparator 1 optionally synchronized output (sync_C1OUT)  
01= Timer0 overflow output  
00= Timer1 gate pin  
DS41414D-page 208  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 21-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP1CON  
CCP2CON  
INTCON  
PIE1  
P1M<1:0>  
P2M<1:0>  
GIE  
DC1B<1:0>  
DC2B<1:0>  
CCP1M<3:0>  
CCP2M<3:0>  
238  
238  
92  
PEIE  
ADIE  
ADIF  
TMR0IE  
INTE  
TXIE  
TXIF  
IOCIE  
SSPIE  
SSPIF  
TMR0IF  
INTF  
IOCIF  
TMR1IE  
TMR1IF  
TMR1GIE  
TMR1GIF  
RCIE  
RCIF  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
93  
PIR1  
97  
TMR1H  
TMR1L  
TRISB  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
203*  
203*  
134  
137  
207  
208  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
T1SYNC  
T1GVAL  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
TMR1ON  
TRISC  
T1CON  
T1GCON  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GSS<1:0>  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer1 module.  
*
Page provides register information.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 209  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 210  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
22.0 TIMER2/4/6 MODULES  
There are up to three identical Timer2-type modules  
available. To maintain pre-existing naming conventions,  
the Timers are called Timer2, Timer4 and Timer6 (also  
Timer2/4/6).  
Note:  
The ‘x’ variable used in this section is  
used to designate Timer2, Timer4, or  
Timer6. For example, TxCON references  
T2CON, T4CON or T6CON. PRx refer-  
ences PR2, PR4 or PR6.  
The Timer2/4/6 modules incorporate the following  
features:  
• 8-bit Timer and Period registers (TMRx and PRx,  
respectively)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16  
and 1:64)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMRx match with PRx, respectively  
• Optional use as the shift clock for the MSSPx  
modules (Timer2 only)  
See Figure 22-1 for a block diagram of Timer2/4/6.  
FIGURE 22-1:  
TIMER2/4/6 BLOCK DIAGRAM  
Prescaler  
TMRx  
Reset  
EQ  
TMRx Output  
FOSC/4  
1:1, 1:4, 1:16, 1:64  
Postscaler  
1:1 to 1:16  
2
Comparator  
Sets Flag bit TMRxIF  
TxCKPS<1:0>  
PRx  
4
TxOUTPS<3:0>  
2010-2012 Microchip Technology Inc.  
DS41414D-page 211  
PIC16(L)F1946/47  
22.1 Timer2/4/6 Operation  
22.3 Timer2/4/6 Output  
The clock input to the Timer2/4/6 modules is the  
system instruction clock (FOSC/4).  
The unscaled output of TMRx is available primarily to  
the CCP modules, where it is used as a time base for  
operations in PWM mode.  
TMRx increments from 00h on each clock edge.  
Timer2 can be optionally used as the shift clock source  
for the MSSPx modules operating in SPI mode.  
Additional information is provided in Section 24.0  
“Master Synchronous Serial Port (MSSP1 and  
MSSP2) Module”.  
A 4-bit counter/prescaler on the clock input allows direct  
input, divide-by-4 and divide-by-16 prescale options.  
These options are selected by the prescaler control bits,  
TxCKPS<1:0> of the TxCON register. The value of  
TMRx is compared to that of the Period register, PRx, on  
each clock cycle. When the two values match, the  
comparator generates a match signal as the timer  
output. This signal also resets the value of TMRx to 00h  
on the next cycle and drives the output  
counter/postscaler (see Section 22.2 “Timer2/4/6  
Interrupt”).  
22.4 Timer2/4/6 Operation During Sleep  
The Timer2/4/6 timers cannot be operated while the  
processor is in Sleep mode. The contents of the TMRx  
and PRx registers will remain unchanged while the  
processor is in Sleep mode.  
The TMRx and PRx registers are both directly readable  
and writable. The TMRx register is cleared on any  
device Reset, whereas the PRx register initializes to  
FFh. Both the prescaler and postscaler counters are  
cleared on the following events:  
• a write to the TMRx register  
• a write to the TxCON register  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• MCLR Reset  
• Watchdog Timer (WDT) Reset  
• Stack Overflow Reset  
• Stack Underflow Reset  
RESETInstruction  
Note:  
TMRx is not cleared when TxCON is  
written.  
22.2 Timer2/4/6 Interrupt  
Timer2/4/6 can also generate an optional device  
interrupt. The Timer2/4/6 output signal (TMRx-to-PRx  
match)  
provides  
the  
input  
for  
the  
4-bit  
counter/postscaler. This counter generates the TMRx  
match interrupt flag which is latched in TMRxIF of the  
PIRx register. The interrupt is enabled by setting the  
TMRx Match Interrupt Enable bit, TMRxIE of the PIEx  
register.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, TxOUTPS<3:0>, of the TxCON register.  
DS41414D-page 212  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
22.5 Register Definitions: Timer2 Control  
REGISTER 22-1: TXCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
TxOUTPS<3:0>  
TMRxON  
TxCKPS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TxOUTPS<3:0>: Timerx Output Postscaler Select bits  
1111= 1:16 Postscaler  
1110= 1:15 Postscaler  
1101= 1:14 Postscaler  
1100= 1:13 Postscaler  
1011= 1:12 Postscaler  
1010= 1:11 Postscaler  
1001= 1:10 Postscaler  
1000= 1:9 Postscaler  
0111= 1:8 Postscaler  
0110= 1:7 Postscaler  
0101= 1:6 Postscaler  
0100= 1:5 Postscaler  
0011= 1:4 Postscaler  
0010= 1:3 Postscaler  
0001= 1:2 Postscaler  
0000= 1:1 Postscaler  
bit 2  
TMRxON: Timerx On bit  
1= Timerx is on  
0= Timerx is off  
bit 1-0  
TxCKPS<1:0>: Timer2-type Clock Prescale Select bits  
11= Prescaler is 64  
10= Prescaler is 16  
01= Prescaler is 4  
00= Prescaler is 1  
2010-2012 Microchip Technology Inc.  
DS41414D-page 213  
PIC16(L)F1946/47  
TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP2CON  
INTCON  
PIE1  
P2M<1:0>  
DC2B<1:0>  
CCP2M<3:0>  
238  
92  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
TMR1GIE  
ADIE  
RCIE  
TXIE  
SSPIE  
CCP1IE TMR2IE  
TMR1IE  
93  
PIE3  
CCP5IE  
CCP4IE  
CCP3IE  
TMR6IE  
TMR4IE  
95  
PIR1  
TMR1GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR4IF  
TMR1IF  
97  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR6IF  
99  
PR2  
Timer2 Module Period Register  
Timer4 Module Period Register  
Timer6 Module Period Register  
211*  
211*  
211*  
213  
213  
213  
211*  
211*  
211*  
PR4  
PR6  
T2CON  
T4CON  
T6CON  
TMR2  
TMR4  
TMR6  
T2OUTPS<3:0>  
T4OUTPS<3:0>  
T6OUTPS<3:0>  
TMR2ON  
TMR4ON  
TMR6ON  
T2CKPS<1:0>  
T4CKPS<1:0>  
T6CKPS<1:0>  
Holding Register for the 8-bit TMR2 Register  
Holding Register for the 8-bit TMR4 Register(1)  
Holding Register for the 8-bit TMR6 Register(1)  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.  
Page provides register information.  
*
DS41414D-page 214  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
23.0 CAPTURE/COMPARE/PWM  
MODULES  
Note 1: In devices with more than one CCP  
module, it is very important to pay close  
attention to the register names used. A  
number placed after the module acronym  
is used to distinguish between separate  
modules. For example, the CCP1CON  
and CCP2CON control the same  
operational aspects of two completely  
different CCP modules.  
The Capture/Compare/PWM module is a peripheral  
which allows the user to time and control different  
events, and to generate Pulse-Width Modulation  
(PWM) signals. In Capture mode, the peripheral allows  
the timing of the duration of an event. The Compare  
mode allows the user to trigger an external event when  
a predetermined amount of time has expired. The  
PWM mode can generate Pulse-Width Modulated  
signals of varying frequency and duty cycle.  
2: Throughout  
this  
section,  
generic  
references to a CCP module in any of its  
operating modes may be interpreted as  
being equally applicable to ECCP1,  
ECCP2, ECCP3, CCP4 and CCP5.  
Register names, module signals, I/O pins,  
and bit names may use the generic  
designator 'x' to indicate the use of a  
numeral to distinguish a particular module,  
when required.  
This family of devices contains three Enhanced  
Capture/Compare/PWM modules (ECCP1, ECCP2,  
and ECCP3) and two standard Capture/Compare/PWM  
modules (CCP4 and CCP5).  
The Capture and Compare functions are identical for all  
five CCP modules (ECCP1, ECCP2, ECCP3, CCP4,  
and CCP5). The only differences between CCP  
modules are in the Pulse-Width Modulation (PWM)  
function. The standard PWM function is identical in  
modules, CCP4 and CCP5. In CCP modules ECCP1,  
ECCP2, and ECCP3, the Enhanced PWM function has  
slight variations from one another. Full-Bridge ECCP  
modules have four available I/O pins while Half-Bridge  
ECCP modules only have two available I/O pins. See  
Table 23-1 for more information.  
TABLE 23-1: PWM RESOURCES  
Device Name  
ECCP1  
Enhanced PWM Enhanced PWM Enhanced PWM  
Full-Bridge Full-Bridge Full-Bridge  
ECCP2  
ECCP3  
CCP4  
CCP5  
PIC16(L)F1946/47  
Standard PWM  
Standard PWM  
2010-2012 Microchip Technology Inc.  
DS41414D-page 215  
PIC16(L)F1946/47  
23.1.2  
TIMER1 MODE RESOURCE  
23.1 Capture Mode  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
The Capture mode function described in this section is  
available and identical for CCP modules ECCP1,  
ECCP2, ECCP3, CCP4 and CCP5.  
Capture mode makes use of the 16-bit Timer1  
resource. When an event occurs on the CCPx pin, the  
16-bit CCPRxH:CCPRxL register pair captures and  
stores the 16-bit value of the TMR1H:TMR1L register  
pair, respectively. An event is defined as one of the  
following and is configured by the CCPxM<3:0> bits of  
the CCPxCON register:  
See Section 21.0 “Timer1 Module with Gate Control”  
for more information on configuring Timer1.  
23.1.3  
SOFTWARE INTERRUPT MODE  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit of the PIEx register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCPxIF interrupt flag bit of the PIRx register  
following any change in Operating mode.  
• Every falling edge  
• Every rising edge  
• Every 4th rising edge  
• Every 16th rising edge  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Capture  
mode. In order for Capture mode to  
recognize the trigger event on the CCPx  
pin, Timer1 must be clocked from the  
instruction clock (FOSC/4) or from an  
external clock source.  
When a capture is made, the Interrupt Request Flag bit  
CCPxIF of the PIRx register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPRxH, CCPRxL register pair  
is read, the old captured value is overwritten by the new  
captured value.  
Figure 23-1 shows a simplified diagram of the Capture  
operation.  
23.1.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCPxM<3:0> bits of the CCPxCON register. Whenever  
the CCP module is turned off, or the CCP module is not  
in Capture mode, the prescaler counter is cleared. Any  
Reset will clear the prescaler counter.  
23.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the CCPx pin should be configured  
as an input by setting the associated TRIS control bit.  
Also, the CCPx pin function can be moved to  
alternative pins using the APFCON register. Refer to  
Section 12.1 “Alternate Pin Function” for more  
details.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCPxCON register before changing the  
prescaler. Example 23-1 demonstrates the code to  
perform this function.  
Note:  
If the CCPx pin is configured as an output,  
a write to the port can cause a capture  
condition.  
EXAMPLE 23-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
FIGURE 23-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
BANKSELCCPxCON  
;Set Bank bits to point  
;to CCPxCON  
;Turn CCP module off  
Set Flag bit CCPxIF  
(PIRx register)  
CLRF  
CCPxCON  
Prescaler  
1, 4, 16  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
;the new prescaler  
CCPx  
pin  
;move value and CCP ON  
;Load CCPxCON with this  
;value  
CCPRxH  
CCPRxL  
MOVWF  
CCPxCON  
Capture  
Enable  
and  
Edge Detect  
TMR1H  
TMR1L  
CCPxM<3:0>  
System Clock (FOSC)  
DS41414D-page 216  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
23.1.5  
CAPTURE DURING SLEEP  
23.1.6  
ALTERNATE PIN LOCATIONS  
Capture mode depends upon the Timer1 module for  
proper operation. There are two options for driving the  
Timer1 module in Capture mode. It can be driven by the  
instruction clock (FOSC/4), or by an external clock source.  
This module incorporates I/O pins that can be moved to  
other locations with the use of the alternate pin function  
register, APFCON. To determine which pins can be  
moved and what their default locations are upon a  
reset, see Section 12.1 “Alternate Pin Function” for  
more information.  
When Timer1 is clocked by FOSC/4, Timer1 will not  
increment during Sleep. When the device wakes from  
Sleep, Timer1 will continue from its previous state.  
Capture mode will operate during Sleep when Timer1  
is clocked by an external clock source.  
TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
CCPxCON  
CCPRxL  
CCPRxH  
INTCON  
PIE1  
PxM<1:0>  
DCxB<1:0>  
CCPxM<3:0>  
238  
216*  
216*  
92  
Capture/Compare/PWM Register x Low Byte (LSB)  
Capture/Compare/PWM Register x High Byte (MSB)  
GIE  
TMR1GIE  
OSFIE  
PEIE  
ADIE  
TMR0IE  
RCIE  
INTE  
TXIE  
IOCIE  
SSPIE  
TMR0IF  
CCP1IE  
LCDIE  
INTF  
IOCIF  
TMR1IE  
CCP2IE  
TMR2IE  
C3IE  
93  
PIE2  
C2IE  
C1IE  
EEIE  
BCLIE  
94  
PIE3  
CCP5IE  
ADIF  
CCP4IE  
RCIF  
CCP3IE  
TXIF  
TMR6IE  
SSPIF  
TMR4IE  
TMR2IF  
C3IF  
95  
PIR1  
TMR1GIF  
OSFIF  
CCP1IF  
LCDIF  
TMR1IF  
CCP2IF  
97  
PIR2  
C2IF  
C1IF  
EEIF  
BCLIF  
98  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR6IF  
T1OSCEN  
TMR4IF  
99  
T1CON  
T1GCON  
TMR1L  
TMR1H  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1SYNC  
TMR1ON  
207  
208  
203*  
203*  
131  
134  
137  
140  
143  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM T1GGO/DONE T1GVAL  
T1GSS<1:0>  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISE3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISE2  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISE1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISE0  
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by Capture mode.  
Note 1: Applies to ECCP modules only.  
*
Page provides register information.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 217  
PIC16(L)F1946/47  
23.2.2  
TIMER1 MODE RESOURCE  
23.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
The Compare mode function described in this section  
is available and identical for CCP modules ECCP1,  
ECCP2, ECCP3, CCP4 and CCP5.  
Compare mode makes use of the 16-bit Timer1  
resource. The 16-bit value of the CCPRxH:CCPRxL  
register pair is constantly compared against the 16-bit  
value of the TMR1H:TMR1L register pair. When a  
match occurs, one of the following events can occur:  
See Section 21.0 “Timer1 Module with Gate Control”  
for more information on configuring Timer1.  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Capture  
mode. In order for Capture mode to  
recognize the trigger event on the CCPx  
pin, TImer1 must be clocked from the  
instruction clock (FOSC/4) or from an  
external clock source.  
Toggle the CCPx output  
• Set the CCPx output  
• Clear the CCPx output  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
23.2.3  
SOFTWARE INTERRUPT MODE  
The action on the pin is based on the value of the  
CCPxM<3:0> control bits of the CCPxCON register. At  
the same time, the interrupt flag CCPxIF bit is set.  
When Generate Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the CCPx module does not  
assert control of the CCPx pin (see the CCPxCON  
register).  
All Compare modes can generate an interrupt.  
Figure 23-2 shows  
Compare operation.  
a simplified diagram of the  
23.2.4  
SPECIAL EVENT TRIGGER  
When Special Event Trigger mode is chosen  
(CCPxM<3:0> = 1011), the CCPx module does the  
following:  
FIGURE 23-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
• Resets Timer1  
CCPxM<3:0>  
Mode Select  
• Starts an ADC conversion if ADC is enabled  
The CCPx module does not assert control of the CCPx  
pin in this mode.  
Set CCPxIF Interrupt Flag  
(PIRx)  
4
CCPx  
Pin  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPRxH, CCPRxL regis-  
ter pair. The TMR1H, TMR1L register pair is not reset  
until the next rising edge of the Timer1 clock. The Spe-  
cial Event Trigger output starts an A/D conversion (if  
the A/D module is enabled). This allows the CCPRxH,  
CCPRxL register pair to effectively provide a 16-bit pro-  
grammable period register for Timer1.  
CCPRxH CCPRxL  
Comparator  
Q
S
R
Output  
Logic  
Match  
TMR1H TMR1L  
TRIS  
Output Enable  
Special Event Trigger  
TABLE 23-3: SPECIAL EVENT TRIGGER  
23.2.1  
CCP PIN CONFIGURATION  
Device  
CCPx/ECCPx  
The user must configure the CCPx pin as an output by  
clearing the associated TRIS bit.  
PIC16(L)F1946/47  
CCP5  
Also, the CCPx pin function can be moved to  
alternative pins using the APFCON register. Refer to  
Section 12.1 “Alternate Pin Function” for more  
details.  
Refer to Section 16.0 “Analog-to-Digital Converter  
(ADC) Module” for more information.  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMR1IF of the PIR1 register.  
Note:  
Clearing the CCPxCON register will force  
the CCPx compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
2: Removing the match condition by  
changing the contents of the CCPRxH  
and CCPRxL register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will  
preclude the Reset from occurring.  
DS41414D-page 218  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
23.2.5  
COMPARE DURING SLEEP  
23.2.6  
ALTERNATE PIN LOCATIONS  
The Compare mode is dependent upon the system  
clock (FOSC) for proper operation. Since FOSC is shut  
down during Sleep mode, the Compare mode will not  
function properly during Sleep.  
This module incorporates I/O pins that can be moved to  
other locations with the use of the alternate pin function  
register, APFCON. To determine which pins can be  
moved and what their default locations are upon a  
reset, see Section 12.1 “Alternate Pin Function” for  
more information.  
TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
CCPxCON  
CCPRxL  
CCPRxH  
INTCON  
PIE1  
PxM<1:0>  
DCxB<1:0>  
CCPxM<3:0>  
238  
216*  
216*  
92  
Capture/Compare/PWM Register x Low Byte (LSB)  
Capture/Compare/PWM Register x High Byte (MSB)  
GIE  
TMR1GIE  
OSFIE  
PEIE  
ADIE  
TMR0IE  
RCIE  
INTE  
TXIE  
IOCIE  
SSPIE  
TMR0IF  
CCP1IE  
LCDIE  
INTF  
IOCIF  
TMR1IE  
CCP2IE  
TMR2IE  
C3IE  
93  
PIE2  
C2IE  
C1IE  
EEIE  
BCLIE  
94  
PIE3  
CCP5IE  
ADIF  
CCP4IE  
RCIF  
CCP3IE  
TXIF  
TMR6IE  
SSPIF  
TMR4IE  
TMR2IF  
C31F  
95  
PIR1  
TMR1GIF  
OSFIF  
CCP1IF  
LCDIF  
TMR1IF  
CCP2IF  
97  
PIR2  
C2IF  
C1IF  
EEIF  
BCLIF  
98  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR6IF  
T1OSCEN  
TMR4IF  
99  
T1CON  
T1GCON  
TMR1L  
TMR1H  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1SYNC  
TMR1ON  
207  
208  
203*  
203*  
131  
134  
137  
140  
143  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM T1GGO/DONE T1GVAL  
T1GSS<1:0>  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISE7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISE6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISE5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISE4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISE3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISE2  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISE1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISE0  
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by Compare mode.  
Note 1: Applies to ECCP modules only.  
*
Page provides register information.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 219  
PIC16(L)F1946/47  
FIGURE 23-3:  
CCP PWM OUTPUT SIGNAL  
23.3 PWM Overview  
Pulse-Width Modulation (PWM) is a scheme that  
provides power to a load by switching quickly between  
fully on and fully off states. The PWM signal resembles  
a square wave where the high portion of the signal is  
considered the on state and the low portion of the signal  
is considered the off state. The high portion, also known  
as the pulse width, can vary in time and is defined in  
steps. A larger number of steps applied, which  
lengthens the pulse width, also supplies more power to  
the load. Lowering the number of steps applied, which  
shortens the pulse width, supplies less power. The  
PWM period is defined as the duration of one complete  
cycle or the total amount of on and off time combined.  
Period  
Pulse Width  
TMRx = PRx  
TMRx = CCPRxH:CCPxCON<5:4>  
TMRx = 0  
FIGURE 23-4:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCPxCON<5:4>  
Duty Cycle Registers  
PWM resolution defines the maximum number of steps  
that can be present in a single PWM period. A higher  
resolution allows for more precise control of the pulse  
width time and in turn the power that is applied to the  
load.  
CCPRxL  
CCPRxH(2) (Slave)  
Comparator  
CCPx  
The term duty cycle describes the proportion of the on  
time to the off time and is expressed in percentages,  
where 0% is fully off and 100% is fully on. A lower duty  
cycle corresponds to less power applied and a higher  
duty cycle corresponds to more power applied.  
R
S
Q
(1)  
TMRx  
TRIS  
Figure 23-3 shows a typical waveform of the PWM  
signal.  
Comparator  
PRx  
Clear Timer,  
toggle CCPx pin and  
latch duty cycle  
23.3.1  
STANDARD PWM OPERATION  
The standard PWM function described in this section is  
available and identical for CCP modules ECCP1,  
ECCP2, ECCP3, CCP4 and CCP5.  
Note 1: The 8-bit timer TMRx register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
The standard PWM mode generates a Pulse-Width  
modulation (PWM) signal on the CCPx pin with up to 10  
bits of resolution. The period, duty cycle, and resolution  
are controlled by the following registers:  
2: In PWM mode, CCPRxH is a read-only register.  
• PRx registers  
• TxCON registers  
• CCPRxL registers  
• CCPxCON registers  
Figure 23-4 shows a simplified block diagram of PWM  
operation.  
Note 1: The corresponding TRIS bit must be  
cleared to enable the PWM output on the  
CCPx pin.  
2: Clearing the CCPxCON register will  
relinquish control of the CCPx pin.  
DS41414D-page 220  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
When TMRx is equal to PRx, the following three events  
occur on the next increment cycle:  
23.3.2  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for standard PWM operation:  
• TMRx is cleared  
• The CCPx pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
1. Disable the CCPx pin output driver by setting the  
associated TRIS bit.  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH.  
2. Timer2/4/6 resource selection:  
• Select the Timer2/4/6 resource to be used  
for PWM generation by setting the  
CxTSEL<1:0> bits in the CCPTMRSx  
register.  
Note:  
The Timer postscaler (see Section 22.1  
“Timer2/4/6 Operation”) is not used in the  
determination of the PWM frequency.  
3. Load the PRx register with the PWM period  
value.  
23.3.5  
PWM DUTY CYCLE  
4. Configure the CCP module for the PWM mode  
by loading the CCPxCON register with the  
appropriate values.  
The PWM duty cycle is specified by writing a 10-bit  
value to multiple registers: CCPRxL register and  
DCxB<1:0> bits of the CCPxCON register. The  
CCPRxL contains the eight MSbs and the DCxB<1:0>  
bits of the CCPxCON register contain the two LSbs.  
CCPRxL and DCxB<1:0> bits of the CCPxCON  
register can be written to at any time. The duty cycle  
value is not latched into CCPRxH until after the period  
completes (i.e., a match between PRx and TMRx  
registers occurs). While using the PWM, the CCPRxH  
register is read-only.  
5. Load the CCPRxL register and the DCxBx bits  
of the CCPxCON register, with the PWM duty  
cycle value.  
6. Configure and start Timer2/4/6:  
• Clear the TMRxIF interrupt flag bit of the  
PIRx register. See Note below.  
• Configure the TxCKPS bits of the TxCON  
register with the Timer prescale value.  
• Enable the Timer by setting the TMRxON  
bit of the TxCON register.  
Equation 23-2 is used to calculate the PWM pulse  
width.  
7. Enable PWM output pin:  
Equation 23-3 is used to calculate the PWM duty cycle  
ratio.  
• Wait until the Timer overflows and the  
TMRxIF bit of the PIRx register is set. See  
Note below.  
EQUATION 23-2: PULSE WIDTH  
• Enable the CCPx pin output driver by clear-  
ing the associated TRIS bit.  
Pulse Width = CCPRxL:CCPxCON<5:4>  
TOSC (TMRx Prescale Value)  
Note:  
In order to send a complete duty cycle and  
period on the first PWM output, the above  
steps must be included in the setup  
sequence. If it is not critical to start with a  
complete PWM signal on the first output,  
then step 6 may be ignored.  
EQUATION 23-3: DUTY CYCLE RATIO  
CCPRxL:CCPxCON<5:4>  
Duty Cycle Ratio = ----------------------------------------------------------------------  
4PRx + 1  
23.3.3  
TIMER2/4/6 TIMER RESOURCE  
The PWM standard mode makes use of one of the 8-bit  
Timer2/4/6 timer resources to specify the PWM period.  
The CCPRxH register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
Configuring the CxTSEL<1:0> bits in the CCPTMRSx  
register selects which Timer2/4/6 timer is used.  
The 8-bit timer TMRx register is concatenated with either  
the 2-bit internal system clock (FOSC), or 2 bits of the  
prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2/4/6 prescaler is set to 1:1.  
23.3.4  
PWM PERIOD  
The PWM period is specified by the PRx register of  
Timer2/4/6. The PWM period can be calculated using  
the formula of Equation 23-1.  
When the 10-bit time base matches the CCPRxH and  
2-bit latch, then the CCPx pin is cleared (see  
Figure 23-4).  
EQUATION 23-1: PWM PERIOD  
PWM Period = PRx+ 1  4 TOSC   
(TMRx Prescale Value)  
Note 1: TOSC = 1/FOSC  
2010-2012 Microchip Technology Inc.  
DS41414D-page 221  
PIC16(L)F1946/47  
23.3.6  
PWM RESOLUTION  
EQUATION 23-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log4PRx + 1  
Resolution = ----------------------------------------- bits  
log2  
The maximum PWM resolution is 10 bits when PRx is  
255. The resolution is a function of the PRx register  
value as shown by Equation 23-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 23-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 32 MHz)  
PWM Frequency  
Timer Prescale  
1.95 kHz  
7.81 kHz  
31.25 kHz  
125 kHz  
250 kHz  
333.3 kHz  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
PRx Value  
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 23-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
Timer Prescale  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
PRx Value  
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 23-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
Timer Prescale  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
PRx Value  
Maximum Resolution (bits)  
DS41414D-page 222  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
23.3.7  
OPERATION IN SLEEP MODE  
23.3.10 ALTERNATE PIN LOCATIONS  
In Sleep mode, the TMRx register will not increment  
and the state of the module will not change. If the CCPx  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMRx will continue from its  
previous state.  
This module incorporates I/O pins that can be moved to  
other locations with the use of the alternate pin function  
register, APFCON. To determine which pins can be  
moved and what their default locations are upon a  
reset, see Section 12.1 “Alternate Pin Function” for  
more information.  
23.3.8  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 5.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for additional details.  
23.3.9  
EFFECTS OF RESET  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
TABLE 23-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
CCPxCON  
CCPTMRS0  
CCPTMRS1  
INTCON  
PIE1  
PxM<1:0>  
DCxB<1:0>  
C3TSEL<1:0>  
CCPxM<3:0>  
C2TSEL<1:0> C1TSEL<1:0>  
C5TSEL<1:0>  
238  
239  
239  
92  
C4TSEL<1:0>  
GIE  
TMR1GIE  
OSFIE  
PEIE  
TMR0IE  
RCIE  
INTE  
IOCIE  
SSPIE  
BCLIE  
TMR6IE  
SSPIF  
BCLIF  
TMR6IF  
TMR0IF  
CCP1IE  
LCDIE  
INTF  
IOCIF  
TMR1IE  
CCP2IE  
ADIE  
TXIE  
TMR2IE  
C3IE  
93  
PIE2  
C2IE  
C1IE  
EEIE  
94  
PIE3  
CCP5IE  
ADIF  
CCP4IE  
RCIF  
CCP3IE  
TXIF  
TMR4IE  
TMR2IF  
C3IF  
95  
PIR1  
TMR1GIF  
OSFIF  
CCP1IF  
LCDIF  
TMR1IF  
CCP2IF  
97  
PIR2  
C2IF  
C1IF  
EEIF  
98  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR4IF  
99  
PR2  
Timer2 Period Register  
Timer4Period Register  
Timer6 Period Register  
211*  
211*  
211*  
213  
213  
213  
211*  
211*  
211*  
131  
134  
137  
140  
143  
PR4  
PR6  
T2CON  
T4CON  
T6CON  
TMR2  
TMR4  
TMR6  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
T2OUTPS<3:0>  
TMR2ON  
TMR4ON  
TMR6ON  
T2CKPS<:0>1  
T4OUTPS<3:0>  
T6OUTPS<3:0>  
T4CKPS<:0>1  
T6CKPS<:0>1  
Timer2 Module Register  
Timer4 Module Register  
Timer6 Module Register  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISE7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISE6  
TRISA5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISE4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISE3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISE2  
TRISA1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISE0  
TRISB5  
TRISC5  
TRISD5  
TRISE5  
TRISB1  
TRISC1  
TRISD1  
TRISE1  
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the PWM.  
Note 1: Applies to ECCP modules only.  
*
Page provides register information.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 223  
PIC16(L)F1946/47  
To select an Enhanced PWM Output mode, the PxM bits  
of the CCPxCON register must be configured  
appropriately.  
23.4 PWM (Enhanced Mode)  
The enhanced PWM function described in this section is  
available for CCP modules ECCP1, ECCP2 and  
ECCP3, with any differences between modules noted.  
The PWM outputs are multiplexed with I/O pins and are  
designated PxA, PxB, PxC and PxD. The polarity of the  
PWM pins is configurable and is selected by setting the  
CCPxM bits in the CCPxCON register appropriately.  
The enhanced PWM mode generates a Pulse-Width  
Modulation (PWM) signal on up to four different output  
pins with up to 10 bits of resolution. The period, duty  
cycle, and resolution are controlled by the following  
registers:  
Figure 23-5 shows an example of a simplified block  
diagram of the Enhanced PWM module.  
Table 23-9 shows the pin assignments for various  
Enhanced PWM modes.  
• PRx registers  
• TxCON registers  
• CCPRxL registers  
• CCPxCON registers  
Note 1: The corresponding TRIS bit must be  
cleared to enable the PWM output on the  
CCPx pin.  
The ECCP modules have the following additional PWM  
registers which control Auto-shutdown, Auto-restart,  
Dead-band Delay and PWM Steering modes:  
2: Clearing the CCPxCON register will  
relinquish control of the CCPx pin.  
3: Any pin not used in the enhanced PWM  
mode is available for alternate pin  
functions, if applicable.  
• CCPxAS registers  
• PSTRxCON registers  
• PWMxCON registers  
4: To prevent the generation of an  
incomplete waveform when the PWM is  
first enabled, the ECCP module waits  
until the start of a new PWM period  
before generating a PWM signal.  
The enhanced PWM module can generate the following  
five PWM Output modes:  
• Single PWM  
• Half-Bridge PWM  
• Full-Bridge PWM, Forward Mode  
• Full-Bridge PWM, Reverse Mode  
• Single PWM with PWM Steering Mode  
FIGURE 23-5:  
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE  
DCxB<1:0>  
PxM<1:0>  
CCPxM<3:0>  
4
Duty Cycle Registers  
2
CCPRxL  
CCPx/PxA  
CCPx/PxA  
PxB  
TRISx  
TRISx  
TRISx  
TRISx  
CCPRxH (Slave)  
Comparator  
PxB  
Output  
Controller  
R
S
Q
PxC  
PxC  
(1)  
TMRx  
PxD  
PxD  
Comparator  
PRx  
Clear Timer,  
toggle PWM pin and  
latch duty cycle  
PWMxCON  
Note 1: The 8-bit timer TMRx register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time  
base.  
DS41414D-page 224  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 23-9: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES  
ECCP Mode  
PxM<1:0>  
CCPx/PxA  
PxB  
PxC  
PxD  
Single  
00  
10  
01  
11  
Yes(1)  
Yes  
Yes(1)  
Yes  
Yes(1)  
No  
Yes(1)  
No  
Half-Bridge  
Full-Bridge, Forward  
Full-Bridge, Reverse  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Note 1: PWM Steering enables outputs in Single mode.  
FIGURE 23-6:  
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH  
STATE)  
PRX+1  
Pulse  
Width  
0
Signal  
PxM<1:0>  
Period  
PxA Modulated  
(Single Output)  
00  
10  
Delay  
Delay  
PxA Modulated  
PxB Modulated  
PxA Active  
(Half-Bridge)  
PxB Inactive  
(Full-Bridge,  
Forward)  
01  
PxC Inactive  
PxD Modulated  
PxA Inactive  
PxB Modulated  
PxC Active  
(Full-Bridge,  
Reverse)  
11  
PxD Inactive  
Relationships:  
Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)  
Pulse Width = TOSC * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)  
Delay = 4 * TOSC * (PWMxCON<6:0>)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 225  
PIC16(L)F1946/47  
FIGURE 23-7:  
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
PRx+1  
Pulse  
Width  
0
Signal  
PxM<1:0>  
Period  
PxA Modulated  
PxA Modulated  
PxB Modulated  
PxA Active  
(Single Output)  
00  
10  
Delay  
Delay  
(Half-Bridge)  
(Full-Bridge,  
Forward)  
PxB Inactive  
PxC Inactive  
PxD Modulated  
PxA Inactive  
PxB Modulated  
PxC Active  
01  
(Full-Bridge,  
Reverse)  
11  
PxD Inactive  
Relationships:  
Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)  
Pulse Width = TOSC * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)  
Delay = 4 * TOSC * (PWMxCON<6:0>)  
DS41414D-page 226  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
Since the PxA and PxB outputs are multiplexed with the  
PORT data latches, the associated TRIS bits must be  
cleared to configure PxA and PxB as outputs.  
23.4.1  
HALF-BRIDGE MODE  
In Half-Bridge mode, two pins are used as outputs to  
drive push-pull loads. The PWM output signal is output  
on the CCPx/PxA pin, while the complementary PWM  
output signal is output on the PxB pin (see  
Figure 23-9). This mode can be used for Half-Bridge  
applications, as shown in Figure 23-9, or for Full-Bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
FIGURE 23-8:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
Period  
Period  
Pulse Width  
In Half-Bridge mode, the programmable dead-band delay  
can be used to prevent shoot-through current in  
Half-Bridge power devices. The value of the PDC<6:0>  
bits of the PWMxCON register sets the number of  
instruction cycles before the output is driven active. If the  
value is greater than the duty cycle, the corresponding  
output remains inactive during the entire cycle. See  
Section 23.4.5 “Programmable Dead-Band Delay  
Mode” for more details of the dead-band delay  
operations.  
(2)  
(2)  
PxA  
td  
td  
PxB  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMRx register is equal to the  
PRx register.  
2: Output signals are shown as active-high.  
FIGURE 23-9:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
-
PxA  
Load  
FET  
Driver  
+
-
PxB  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
FET  
Driver  
FET  
Driver  
PxA  
Load  
FET  
FET  
Driver  
Driver  
PxB  
2010-2012 Microchip Technology Inc.  
DS41414D-page 227  
PIC16(L)F1946/47  
23.4.2  
FULL-BRIDGE MODE  
In Full-Bridge mode, all four pins are used as outputs.  
An example of Full-Bridge application is shown in  
Figure 23-10.  
In the Forward mode, pin CCPx/PxA is driven to its active  
state, pin PxD is modulated, while PxB and PxC will be  
driven to their inactive state as shown in Figure 23-11.  
In the Reverse mode, PxC is driven to its active state, pin  
PxB is modulated, while PxA and PxD will be driven to  
their inactive state as shown Figure 23-11.  
PxA, PxB, PxC and PxD outputs are multiplexed with  
the PORT data latches. The associated TRIS bits must  
be cleared to configure the PxA, PxB, PxC and PxD  
pins as outputs.  
FIGURE 23-10:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
QC  
QA  
FET  
Driver  
FET  
Driver  
PxA  
PxB  
Load  
FET  
Driver  
FET  
Driver  
PxC  
PxD  
QD  
QB  
V-  
DS41414D-page 228  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 23-11:  
EXAMPLE OF FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
PxA  
Pulse Width  
(2)  
PxB  
(2)  
PxC  
(2)  
PxD  
(1)  
(1)  
Reverse Mode  
Period  
Pulse Width  
(2)  
PxA  
(2)  
PxB  
(2)  
PxC  
(2)  
PxD  
(1)  
(1)  
Note 1: At this time, the TMRx register is equal to the PRx register.  
2: Output signal is shown as active-high.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 229  
PIC16(L)F1946/47  
The Full-Bridge mode does not provide dead-band  
delay. As one output is modulated at a time, dead-band  
delay is generally not required. There is a situation  
where dead-band delay is required. This situation  
occurs when both of the following conditions are true:  
23.4.2.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge mode, the PxM1 bit in the CCPxCON  
register allows users to control the forward/reverse  
direction. When the application firmware changes this  
direction control bit, the module will change to the new  
direction on the next PWM cycle.  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
A direction change is initiated in software by changing  
the PxM1 bit of the CCPxCON register. The following  
sequence occurs four Timer cycles prior to the end of  
the current PWM period:  
Figure 23-13 shows an example of the PWM direction  
changing from forward to reverse, at a near 100% duty  
cycle. In this example, at time t1, the output PxA and  
PxD become inactive, while output PxC becomes  
active. Since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
will flow through power devices QC and QD (see  
Figure 23-10) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
• The modulated outputs (PxB and PxD) are placed  
in their inactive state.  
• The associated unmodulated outputs (PxA and  
PxC) are switched to drive in the opposite  
direction.  
• PWM modulation resumes at the beginning of the  
next period.  
See Figure 23-12 for an illustration of this sequence.  
If changing PWM direction at high duty cycle is required  
for an application, two possible solutions for eliminating  
the shoot-through current are:  
1. Reduce PWM duty cycle for one PWM period  
before changing directions.  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
FIGURE 23-12:  
EXAMPLE OF PWM DIRECTION CHANGE  
(1)  
Period  
Period  
Signal  
PxA (Active-High)  
PxB (Active-High)  
Pulse Width  
PxC (Active-High)  
PxD (Active-High)  
(2)  
Pulse Width  
Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.  
2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The  
modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.  
DS41414D-page 230  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 23-13:  
EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
PxA  
PxB  
PW  
PxC  
PxD  
PW  
TON  
External Switch C  
External Switch D  
TOFF  
Potential  
T = TOFF TON  
Shoot-Through Current  
Note 1: All signals are shown as active-high.  
2: TON is the turn on delay of power switch QC and its driver.  
3: TOFF is the turn off delay of power switch QD and its driver.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 231  
PIC16(L)F1946/47  
23.4.3  
ENHANCED PWM  
AUTO-SHUTDOWN MODE  
Note 1: The auto-shutdown condition is  
a
The PWM mode supports an Auto-Shutdown mode that  
will disable the PWM outputs when an external  
shutdown event occurs. Auto-Shutdown mode places  
the PWM output pins into a predetermined state. This  
mode is used to help prevent the PWM from damaging  
the application.  
level-based signal, not an edge-based  
signal. As long as the level is present, the  
auto-shutdown will persist.  
2: Writing to the CCPxASE bit of the  
CCPxAS register is disabled while an  
auto-shutdown condition persists.  
The auto-shutdown sources are selected using the  
CCPxAS<2:0> bits of the CCPxAS register. A shutdown  
event may be generated by:  
3: Once the auto-shutdown condition has  
been removed and the PWM restarted  
(either through firmware or auto-restart)  
the PWM signal will always restart at the  
beginning of the next PWM period.  
• A logic ‘0’ on the INT pin  
• A logic ‘0’ on a Comparator (async_CxOUT) output  
4: Prior to an auto-shutdown event caused  
by a comparator output or INT pin event,  
a software shutdown can be triggered in  
firmware by setting the CCPxASE bit of  
the CCPxAS register to ‘1’. The  
Auto-Restart feature tracks the active  
status of a shutdown caused by a  
comparator output or INT pin event only.  
If it is enabled at this time, it will  
immediately clear this bit and restart the  
ECCP module at the beginning of the  
next PWM period.  
A shutdown condition is indicated by the CCPxASE  
(Auto-Shutdown Event Status) bit of the CCPxAS  
register. If the bit is a ‘0’, the PWM pins are operating  
normally. If the bit is a ‘1’, the PWM outputs are in the  
shutdown state.  
When a shutdown event occurs, two things happen:  
The CCPxASE bit is set to ‘1’. The CCPxASE will  
remain set until cleared in firmware or an auto-restart  
occurs (see Section 23.4.4 “Auto-Restart Mode”).  
The enabled PWM pins are asynchronously placed in  
their shutdown states. The PWM output pins are  
grouped into pairs [PxA/PxC] and [PxB/PxD]. The state  
of each pin pair is determined by the PSSxAC and  
PSSxBD bits of the CCPxAS register. Each pin pair may  
be placed into one of three states:  
• Drive logic ‘1’  
• Drive logic ‘0’  
• Tri-state (high-impedance)  
DS41414D-page 232  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 23-14:  
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PXRSEN = 0)  
Missing Pulse  
(Auto-Shutdown)  
Missing Pulse  
(CCPxASE not clear)  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
PWM Period  
PWM Activity  
Start of  
PWM Period  
Shutdown Event  
CCPxASE bit  
PWM  
Resumes  
Shutdown  
Event Occurs  
Shutdown  
Event Clears  
CCPxASE  
Cleared by  
Firmware  
If auto-restart is enabled, the CCPxASE bit will remain  
set as long as the auto-shutdown condition is active.  
When the auto-shutdown condition is removed, the  
CCPxASE bit will be cleared via hardware and normal  
operation will resume.  
23.4.4  
AUTO-RESTART MODE  
The Enhanced PWM can be configured to automati-  
cally restart the PWM signal once the auto-shutdown  
condition has been removed. Auto-restart is enabled by  
setting the PxRSEN bit in the PWMxCON register.  
FIGURE 23-15:  
PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)  
Missing Pulse  
(Auto-Shutdown)  
Missing Pulse  
(CCPxASE not clear)  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
PWM Period  
PWM Activity  
Start of  
PWM Period  
Shutdown Event  
CCPxASE bit  
PWM  
Resumes  
Shutdown  
Event Occurs  
Shutdown  
Event Clears  
CCPxASE  
Cleared by  
Hardware  
2010-2012 Microchip Technology Inc.  
DS41414D-page 233  
PIC16(L)F1946/47  
23.4.5  
PROGRAMMABLE DEAD-BAND  
DELAY MODE  
FIGURE 23-16:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
In Half-Bridge applications where all power switches  
are modulated at the PWM frequency, the power  
switches normally require more time to turn off than to  
turn on. If both the upper and lower power switches are  
switched at the same time (one turned on, and the  
other turned off), both switches may be on for a short  
period of time until one switch completely turns off.  
Period  
Period  
Pulse Width  
(2)  
(2)  
PxA  
td  
td  
During this brief interval,  
a very high current  
PxB  
(shoot-through current) will flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from  
flowing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMRx register is equal to the  
PRx register.  
In Half-Bridge mode,  
a
digitally programmable  
2: Output signals are shown as active-high.  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Figure 23-16 for  
illustration. The lower seven bits of the associated  
PWMxCON register (Register 23-5) sets the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
FIGURE 23-17:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
V
-
PxA  
Load  
FET  
Driver  
+
V
-
PxB  
V-  
DS41414D-page 234  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
23.4.6  
PWM STEERING MODE  
In Single Output mode, PWM steering allows any of the  
PWM pins to be the modulated signal. Additionally, the  
same PWM signal can be simultaneously available on  
multiple pins.  
Once the Single Output mode is selected  
(CCPxM<3:2> = 11 and PxM<1:0> = 00 of the  
CCPxCON register), the user firmware can bring out  
the same PWM signal to one, two, three or four output  
pins by setting the appropriate STRx<D:A> bits of the  
PSTRxCON register, as shown in Table 23-9.  
Note:  
The associated TRIS bits must be set to  
output (‘0’) to enable the pin output driver  
in order to see the PWM signal on the pin.  
While the PWM Steering mode is active, CCPxM<1:0>  
bits of the CCPxCON register select the PWM output  
polarity for the Px<D:A> pins.  
The PWM auto-shutdown operation also applies to  
PWM Steering mode as described in Section 23.4.3  
“Enhanced PWM Auto-shutdown mode”. An  
auto-shutdown event will only affect pins that have  
PWM outputs enabled.  
FIGURE 23-18:  
SIMPLIFIED STEERING  
BLOCK DIAGRAM  
STRxA  
PxA Signal  
CCPxM1  
PxA pin  
1
PORT Data  
STRxB  
0
TRIS  
PxB pin  
CCPxM0  
1
PORT Data  
STRxC  
0
TRIS  
PxC pin  
1
CCPxM1  
PORT Data  
0
TRIS  
STRxD  
PxD pin  
1
CCPxM0  
PORT Data  
0
TRIS  
Note 1: Port outputs are configured as shown when  
the CCPxCON register bits PxM<1:0> = 00  
and CCPxM<3:2> = 11.  
2: Single PWM output requires setting at least  
one of the STRx bits.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 235  
PIC16(L)F1946/47  
drivers are enabled. Changing the polarity  
configuration while the PWM pin output drivers are  
enable is not recommended since it may result in  
damage to the application circuits.  
23.4.6.1  
Steering Synchronization  
The STRxSYNC bit of the PSTRxCON register gives  
the user two selections of when the steering event will  
happen. When the STRxSYNC bit is ‘0’, the steering  
event will happen at the end of the instruction that  
writes to the PSTRxCON register. In this case, the  
output signal at the Px<D:A> pins may be an  
incomplete PWM waveform. This operation is useful  
when the user firmware needs to immediately remove  
a PWM signal from the pin.  
The PxA, PxB, PxC and PxD output latches may not be  
in the proper states when the PWM module is  
initialized. Enabling the PWM pin output drivers at the  
same time as the Enhanced PWM modes may cause  
damage to the application circuit. The Enhanced PWM  
modes must be enabled in the proper Output mode and  
complete a full PWM cycle before enabling the PWM  
pin output drivers. The completion of a full PWM cycle  
is indicated by the TMRxIF bit of the PIRx register  
being set as the second PWM period begins.  
When the STRxSYNC bit is ‘1’, the effective steering  
update will happen at the beginning of the next PWM  
period. In this case, steering on/off the PWM output will  
always produce a complete PWM waveform.  
Note:  
When the microcontroller is released from  
Reset, all of the I/O pins are in the  
high-impedance state. The external cir-  
cuits must keep the power switch devices  
in the Off state until the microcontroller  
drives the I/O pins with the proper signal  
levels or activates the PWM output(s).  
Figures 23-19 and 23-20 illustrate the timing diagrams  
of the PWM steering depending on the STRxSYNC  
setting.  
23.4.7  
START-UP CONSIDERATIONS  
When any PWM mode is used, the application  
hardware must use the proper external pull-up and/or  
pull-down resistors on the PWM output pins.  
The CCPxM<1:0> bits of the CCPxCON register allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output  
pins (PxA/PxC and PxB/PxD). The PWM output  
polarities must be selected before the PWM pin output  
FIGURE 23-19:  
EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRxSYNC = 0)  
PWM Period  
PWM  
STRx  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
FIGURE 23-20:  
EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION  
(STRxSYNC = 1)  
PWM  
STRx  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
DS41414D-page 236  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
23.4.8  
ALTERNATE PIN LOCATIONS  
This module incorporates I/O pins that can be moved to  
other locations with the use of the alternate pin function  
register, APFCON. To determine which pins can be  
moved and what their default locations are upon a  
reset, see Section 12.1 “Alternate Pin Function” for  
more information.  
TABLE 23-10: SUMMARY OF REGISTERS ASSOCIATED WITH ENHANCED PWM  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
CCPxCON  
CCPxAS  
CCPTMRS0  
CCPTMRS1  
INTCON  
PIE1  
PxM<1:0>  
DCxB<1:0>  
CCPxM<3:0>  
PSSxAC<1:0> PSSxBD<1:0>  
C2TSEL<1:0>  
238  
240  
239  
239  
92  
CCPxASE  
CCPxAS<2:0>  
C4TSEL<1:0>  
C3TSEL<1:0>  
C1TSEL<1:0>  
C5TSEL<1:0>  
GIE  
PEIE  
TMR0IE  
RCIE  
INTE  
IOCIE  
SSPIE  
BCLIE  
TMR6IE  
SSPIF  
BCLIF  
TMR0IF  
CCP1IE  
LCDIE  
INTF  
IOCIF  
TMR1IE  
CCP2IE  
TMR1GIE  
OSFIE  
ADIE  
TXIE  
TMR2IE  
C3IE  
93  
PIE2  
C2IE  
C1IE  
EEIE  
94  
PIE3  
CCP5IE  
ADIF  
CCP4IE  
RCIF  
CCP3IE  
TXIF  
TMR4IE  
TMR2IF  
C3IF  
95  
PIR1  
TMR1GIF  
OSFIF  
CCP1IF  
LCDIF  
TMR1IF  
CCP2IF  
97  
PIR2  
C2IF  
C1IF  
EEIF  
98  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR6IF  
TMR4IF  
99  
PR2  
Timer2 Period Register  
Timer4 Period Register  
Timer6 Period Register  
211*  
211*  
211*  
242  
241  
213  
213  
PR4  
PR6  
PSTRxCON  
PWMxCON  
T2CON  
T4CON  
T6CON  
PxRSEN  
STRxSYNC  
STRxD  
STRxC  
STRxB  
STRxA  
PxDC<6:0>  
T2OUTPS<3:0>  
TMR2ON  
TMR4ON  
TMR6ON  
T2CKPS<:0>1  
T4OUTPS<3:0>  
T6OUTPS<3:0>  
T4CKPS<:0>1  
T6CKPS<:0>1  
213  
211*  
211*  
211*  
131  
134  
137  
140  
143  
TMR2  
TMR4  
TMR6  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
Timer2 Module Register  
Timer4 Module Register  
Timer6 Module Register  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISE3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISE2  
TRISA1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISE0  
TRISB5  
TRISC5  
TRISD5  
TRISB1  
TRISC1  
TRISD1  
TRISE1  
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the PWM.  
Note 1: Applies to ECCP modules only.  
*
Page provides register information.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 237  
PIC16(L)F1946/47  
23.5 Register Definitions: ECCP Control  
REGISTER 23-1: CCPxCON: CCPx CONTROL REGISTER  
R/W-00  
PxM<1:0>  
R/W-0/0  
(1)  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
DCxB<1:0>  
CCPxM<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Reset  
(1)  
bit 7-6  
PxM<1:0>: Enhanced PWM Output Configuration bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
If CCPxM<3:2> = 00, 01, 10:  
xx= PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins  
If CCPxM<3:2> = 11:  
11= Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive  
10= Half-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as port pins  
01= Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive  
00= Single output; PxA modulated; PxB, PxC, PxD assigned as port pins  
bit 5-4  
DCxB<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: ECCPx Mode Select bits  
1011= Compare mode: Special Event Trigger (ECCPx resets Timer, sets CCPxIF bit, starts A/D conversion if  
(1)  
A/D module is enabled)  
1010= Compare mode: generate software interrupt only; ECCPx pin reverts to I/O state  
1001= Compare mode: initialize ECCPx pin high; clear output on compare match (set CCPxIF)  
1000= Compare mode: initialize ECCPx pin low; set output on compare match (set CCPxIF)  
0111= Capture mode: every 16th rising edge  
0110= Capture mode: every 4th rising edge  
0101= Capture mode: every rising edge  
0100= Capture mode: every falling edge  
0011= Reserved  
0010= Compare mode: toggle output on match  
0001= Reserved  
0000= Capture/Compare/PWM off (resets ECCPx module)  
CCP4/CCP5 only:  
11xx= PWM mode  
ECCP1/ECCP2/ECCP3 only:  
1111= PWM mode: PxA, PxC active-low; PxB, PxD active-low  
1110= PWM mode: PxA, PxC active-low; PxB, PxD active-high  
1101= PWM mode: PxA, PxC active-high; PxB, PxD active-low  
1100= PWM mode: PxA, PxC active-high; PxB, PxD active-high  
Note 1: These bits are not implemented on CCP<5:4>.  
DS41414D-page 238  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 23-2: CCPTMRS0: PWM TIMER SELECTION CONTROL REGISTER 0  
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0  
C4TSEL<1:0> C3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0>  
R/W-0/0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
C4TSEL<1:0>: CCP4 Timer Selection  
11= Reserved  
10= CCP4 is based off Timer 6 in PWM Mode  
01= CCP4 is based off Timer 4 in PWM Mode  
00= CCP4 is based off Timer 2 in PWM Mode  
C3TSEL<1:0>: CCP3 Timer Selection  
11= Reserved  
10= CCP3 is based off Timer 6 in PWM Mode  
01= CCP3 is based off Timer 4 in PWM Mode  
00= CCP3 is based off Timer 2 in PWM Mode  
C2TSEL<1:0>: CCP2 Timer Selection  
11= Reserved  
10= CCP2 is based off Timer 6 in PWM Mode  
01= CCP2 is based off Timer 4 in PWM Mode  
00= CCP2 is based off Timer 2 in PWM Mode  
C1TSEL<1:0>: CCP1 Timer Selection  
11= Reserved  
10= CCP1 is based off Timer 6 in PWM Mode  
01= CCP1 is based off Timer 4 in PWM Mode  
00= CCP1 is based off Timer 2 in PWM Mode  
REGISTER 23-3: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
C5TSEL<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-2  
bit 1-0  
Unimplemented: Read as ‘0’  
C5TSEL<1:0>: CCP5 Timer Selection  
11= Reserved  
10= CCP5 is based off Timer 6 in PWM Mode  
01= CCP5 is based off Timer 4 in PWM Mode  
00= CCP5 is based off Timer 2 in PWM Mode  
2010-2012 Microchip Technology Inc.  
DS41414D-page 239  
PIC16(L)F1946/47  
REGISTER 23-4: CCPxAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CCPxASE  
CCPxAS<2:0>  
PSSxAC<1:0>  
PSSxBD<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
CCPxASE: CCPx Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; CCPx outputs are in shutdown state  
0= CCPx outputs are operating  
bit 6-4  
CCPxAS<2:0>: CCPx Auto-Shutdown Source Select bits  
111= VIL on INT pin or Comparator C1 or Comparator C2 high(1, 2)  
110= VIL on INT pin or Comparator C2 high(1, 2)  
101= VIL on INT pin or Comparator C1 high(1)  
100= VIL on INT pin  
011= Either Comparator C1 or C2 high(1, 2)  
010= Comparator C2 output high(1, 2)  
001= Comparator C1 output high(1)  
000= Auto-shutdown is disabled  
bit 3-2  
bit 1-0  
PSSxAC<1:0>: Pins PxA and PxC Shutdown State Control bits  
1x= Pins PxA and PxC tri-state  
01= Drive pins PxA and PxC to ‘1’  
00= Drive pins PxA and PxC to ‘0’  
PSSxBD<1:0>: Pins PxB and PxD Shutdown State Control bits  
1x= Pins PxB and PxD tri-state  
01= Drive pins PxB and PxD to ‘1’  
00= Drive pins PxB and PxD to ‘0’  
Note 1: If CxSYNC is enabled, the shutdown will be delayed by Timer1.  
2: For PIC16F1946/47 devices in ECCP3 mode, CCPxAS uses C3 instead of C2.  
DS41414D-page 240  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER  
R/W-0/0  
PxRSEN  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
PxDC<6:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
PxRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away;  
the PWM restarts automatically  
0= Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM  
bit 6-0  
PxDC<6:0>: PWM Delay Count bits  
PxDCx = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal  
should transition active and the actual time it transitions active  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 241  
PIC16(L)F1946/47  
REGISTER 23-6: PSTRxCON: PWM STEERING CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
STRxD  
R/W-0/0  
STRxC  
R/W-0/0  
STRxB  
R/W-1/1  
STRxA  
STRxSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
STRxSYNC: Steering Sync bit  
1= Output steering update occurs on next PWM period  
0= Output steering update occurs at the beginning of the instruction cycle boundary  
bit 3  
bit 2  
bit 1  
bit 0  
STRxD: Steering Enable bit D  
1= PxD pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= PxD pin is assigned to port pin  
STRxC: Steering Enable bit C  
1= PxC pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= PxC pin is assigned to port pin  
STRxB: Steering Enable bit B  
1= PxB pin has the PWM waveform with polarity control from CCPxM<1:0>  
0 = PxB pin is assigned to port pin  
STRxA: Steering Enable bit A  
1= PxA pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= PxA pin is assigned to port pin  
Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11and  
PxM<1:0> = 00.  
DS41414D-page 242  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
24.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP1 AND  
MSSP2) MODULE  
24.1 Master SSPx (MSSPx) Module  
Overview  
The Master Synchronous Serial Port (MSSPx) module  
is a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSPx module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
The SPI interface supports the following modes and  
features:  
• Master mode  
• Slave mode  
• Clock Parity  
• Slave Select Synchronization (Slave mode only)  
• Daisy-chain connection of slave devices  
Figure 24-1 is a block diagram of the SPI interface  
module.  
FIGURE 24-1:  
MSSPX BLOCK DIAGRAM (SPI MODE)  
Data Bus  
Write  
Read  
SSPxBUF Reg  
SSPxSR Reg  
SDIx  
Shift  
Clock  
bit 0  
SDOx  
SSx  
Control  
Enable  
SSx  
2 (CKP, CKE)  
Clock Select  
Edge  
Select  
SSPM<3:0>  
4
TMR2 Output  
(
)
2
SCKx  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Baud Rate  
Generator  
(SSPxADD)  
TRIS bit  
2010-2012 Microchip Technology Inc.  
DS41414D-page 243  
PIC16(L)F1946/47  
The I2C interface supports the following modes and  
features:  
The PIC16F1947 has two MSSP modules, MSSP1 and  
MSSP2, each module operating independently from  
the other.  
• Master mode  
• Slave mode  
• Byte NACKing (Slave mode)  
• Limited Multi-master support  
• 7-bit and 10-bit addressing  
• Start and Stop interrupts  
• Interrupt masking  
Note 1: In devices with more than one MSSP  
module, it is very important to pay close  
attention to SSPxCONx register names.  
SSP1CON1 and SSP1CON2 registers  
control different operational aspects of  
the same module, while SSP1CON1 and  
SSP2CON1 control the same features for  
two different modules.  
• Clock stretching  
• Bus collision detection  
• General call address matching  
• Address masking  
2: Throughout this section, generic refer-  
ences to an MSSP module in any of its  
operating modes may be interpreted as  
being equally applicable to MSSP1 or  
MSSP2. Register names, module I/O sig-  
nals, and bit names may use the generic  
designator ‘x’ to indicate the use of a  
numeral to distinguish a particular module  
when required.  
• Address Hold and Data Hold modes  
• Selectable SDAx hold times  
Figure 24-2 is a block diagram of the I2C interface mod-  
ule in Master mode. Figure 24-3 is a diagram of the I2C  
interface module in Slave mode.  
FIGURE 24-2:  
MSSPX BLOCK DIAGRAM (I2C™ MASTER MODE)  
Internal  
data bus  
[SSPM 3:0]  
Read  
Write  
SSPxBUF  
SSPxSR  
Baud Rate  
Generator  
(SSPxADD)  
SDAx  
Shift  
Clock  
SDAx in  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate (SSPxCON2)  
SCLx  
Start bit detect,  
Stop bit detect  
SCLx in  
Bus Collision  
Write collision detect  
Clock arbitration  
State counter for  
Set/Reset: S, P, SSPxSTAT, WCOL, SSPOV  
Reset SEN, PEN (SSPxCON2)  
Set SSPxIF, BCLxIF  
end of XMIT/RCV  
Address Match detect  
DS41414D-page 244  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-3:  
MSSPx BLOCK DIAGRAM (I2C™ SLAVE MODE)  
Internal  
Data Bus  
Read  
Write  
SSPxBUF Reg  
SSPxSR Reg  
SCLx  
SDAx  
Shift  
Clock  
MSb  
LSb  
SSPxMSK Reg  
Match Detect  
SSPxADD Reg  
Addr Match  
Set, Reset  
S, P bits  
(SSPxSTAT Reg)  
Start and  
Stop bit Detect  
2010-2012 Microchip Technology Inc.  
DS41414D-page 245  
PIC16(L)F1946/47  
its SDOx pin) and the slave device is reading this bit  
and saving it as the LSb of its shift register, that the  
slave device is also sending out the MSb from its shift  
register (on its SDOx pin) and the master device is  
reading this bit and saving it as the LSb of its shift  
register.  
24.2 SPI Mode Overview  
The Serial Peripheral Interface (SPI) bus is  
a
synchronous serial data communication bus that  
operates in Full Duplex mode. Devices communicate in  
a master/slave environment where the master device  
initiates the communication.  
A slave device is  
After 8 bits have been shifted out, the master and slave  
have exchanged register values.  
controlled through a chip select known as Slave Select.  
The SPI bus specifies four signal connections:  
If there is more data to exchange, the shift registers are  
loaded with new data and the process repeats itself.  
• Serial Clock (SCKx)  
• Serial Data Out (SDOx)  
• Serial Data In (SDIx)  
• Slave Select (SSx)  
Whether the data is meaningful or not (dummy data),  
depends on the application software. This leads to  
three scenarios for data transmission:  
Figure 24-1 shows the block diagram of the MSSPx  
module when operating in SPI Mode.  
• Master sends useful data and slave sends dummy  
data.  
• Master sends useful data and slave sends useful  
data.  
The SPI bus operates with a single master device and  
one or more slave devices. When multiple slave  
devices are used, an independent Slave Select con-  
nection is required from the master device to each  
slave device.  
• Master sends dummy data and slave sends useful  
data.  
Transmissions may involve any number of clock  
cycles. When there is no more data to be transmitted,  
the master stops sending the clock signal and it  
deselects the slave.  
Figure 24-4 shows a typical connection between a  
master device and multiple slave devices.  
The master selects only one slave at a time. Most slave  
devices have tri-state outputs so their output signal  
appears disconnected from the bus when they are not  
selected.  
Every slave device connected to the bus that has not  
been selected through its slave select line must disre-  
gard the clock and transmission signals and must not  
transmit out any data of its own.  
Transmissions involve two shift registers, eight bits in  
size, one in the master and one in the slave. With either  
the master or the slave device, data is always shifted  
out one bit at a time, with the Most Significant bit (MSb)  
shifted out first. At the same time, a new Least  
Significant bit (LSb) is shifted into the same register.  
Figure 24-5 shows a typical connection between two  
processors configured as master and slave devices.  
Data is shifted out of both shift registers on the pro-  
grammed clock edge and latched on the opposite edge  
of the clock.  
The master device transmits information out on its  
SDOx output pin which is connected to, and received  
by, the slave’s SDIx input pin. The slave device trans-  
mits information out on its SDOx output pin, which is  
connected to, and received by, the master’s SDIx input  
pin.  
To begin communication, the master device first sends  
out the clock signal. Both the master and the slave  
devices should be configured for the same clock polar-  
ity.  
The master device starts a transmission by sending out  
the MSb from its shift register. The slave device reads  
this bit from that same line and saves it into the LSb  
position of its shift register.  
During each SPI clock cycle, a full duplex data  
transmission occurs. This means that while the master  
device is sending out the MSb from its shift register (on  
DS41414D-page 246  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-4:  
SPI MASTER AND MULTIPLE SLAVE CONNECTION  
SCKx  
SDOx  
SCKx  
SDIx  
SDOx  
SSx  
SPI Master  
SPI Slave  
#1  
SDIx  
General I/O  
General I/O  
General I/O  
SCKx  
SDIx  
SDOx  
SSx  
SPI Slave  
#2  
SCKx  
SDIx  
SDOx  
SSx  
SPI Slave  
#3  
24.2.1 SPI MODE REGISTERS  
The MSSPx module has five registers for SPI mode  
operation. These are:  
• MSSPx STATUS register (SSPxSTAT)  
• MSSPx Control Register 1 (SSPxCON1)  
• MSSPx Control Register 3 (SSPxCON3)  
• MSSPx Data Buffer register (SSPxBUF)  
• MSSPx Address register (SSPxADD)  
• MSSPx Shift register (SSPxSR)  
(Not directly accessible)  
SSPxCON1 and SSPxSTAT are the control and  
STATUS registers in SPI mode operation. The  
SSPxCON1 register is readable and writable. The  
lower 6 bits of the SSPxSTAT are read-only. The upper  
two bits of the SSPxSTAT are read/write.  
In SPI master mode, SSPxADD can be loaded with a  
value used in the Baud Rate Generator. More informa-  
tion on the Baud Rate Generator is available in  
Section 24.7 “Baud Rate Generator”.  
SSPxSR is the shift register used for shifting data in  
and out. SSPxBUF provides indirect access to the  
SSPxSR register. SSPxBUF is the buffer register to  
which data bytes are written, and from which data  
bytes are read.  
In receive operations, SSPxSR and SSPxBUF  
together create a buffered receiver. When SSPxSR  
receives a complete byte, it is transferred to SSPxBUF  
and the SSPxIF interrupt is set.  
During transmission, the SSPxBUF is not buffered. A  
write to SSPxBUF will write to both SSPxBUF and  
SSPxSR.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 247  
PIC16(L)F1946/47  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
24.2.2 SPI MODE OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>).  
These control bits allow the following to be specified:  
The MSSPx consists of a transmit/receive shift register  
(SSPxSR) and a buffer register (SSPxBUF). The  
SSPxSR shifts the data in and out of the device, MSb  
first. The SSPxBUF holds the data that was written to  
the SSPxSR until the received data is ready. Once the  
8 bits of data have been received, that byte is moved to  
the SSPxBUF register. Then, the Buffer Full Detect bit,  
BF of the SSPxSTAT register, and the interrupt flag bit,  
SSPxIF, are set. This double-buffering of the received  
data (SSPxBUF) allows the next byte to start reception  
before reading the data that was just received. Any  
• Master mode (SCKx is the clock output)  
• Slave mode (SCKx is the clock input)  
• Clock Polarity (Idle state of SCKx)  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCKx)  
• Clock Rate (Master mode only)  
write  
to  
the  
SSPxBUF  
register  
during  
• Slave Select mode (Slave mode only)  
transmission/reception of data will be ignored and the  
write collision detect bit WCOL of the SSPxCON1  
register, will be set. User software must clear the  
WCOL bit to allow the following write(s) to the  
SSPxBUF register to complete successfully.  
To enable the serial port, SSPx Enable bit, SSPEN of  
the SSPxCON1 register, must be set. To reset or recon-  
figure SPI mode, clear the SSPEN bit, re-initialize the  
SSPxCONx registers and then set the SSPEN bit. This  
configures the SDIx, SDOx, SCKx and SSx pins as  
serial port pins. For the pins to behave as the serial port  
function, some must have their data direction bits (in  
the TRIS register) appropriately programmed as  
follows:  
When the application software is expecting to receive  
valid data, the SSPxBUF should be read before the  
next byte of data to transfer is written to the SSPxBUF.  
The Buffer Full bit, BF of the SSPxSTAT register,  
indicates when SSPxBUF has been loaded with the  
received data (transmission is complete). When the  
SSPxBUF is read, the BF bit is cleared. This data may  
be irrelevant if the SPI is only a transmitter. Generally,  
the MSSPx interrupt is used to determine when the  
transmission/reception has completed. If the interrupt  
method is not going to be used, then software polling  
can be done to ensure that a write collision does not  
occur.  
• SDIx must have corresponding TRIS bit set  
• SDOx must have corresponding TRIS bit cleared  
• SCKx (Master mode) must have corresponding  
TRIS bit cleared  
• SCKx (Slave mode) must have corresponding  
TRIS bit set  
• SSx must have corresponding TRIS bit set  
FIGURE 24-5:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xx  
= 1010  
SPI Slave SSPM<3:0> = 010x  
SDOx  
SDIx  
Serial Input Buffer  
Serial Input Buffer  
(SSPxBUF)  
(BUF)  
SDIx  
SDOx  
Shift Register  
(SSPxSR)  
Shift Register  
(SSPxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCKx  
SCKx  
SSx  
Slave Select  
(optional)  
General I/O  
Processor 2  
Processor 1  
DS41414D-page 248  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
The clock polarity is selected by appropriately  
programming the CKP bit of the SSPxCON1 register  
and the CKE bit of the SSPxSTAT register. This then,  
would give waveforms for SPI communication as  
shown in Figure 24-6, Figure 24-8 and Figure 24-9,  
where the MSb is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
24.2.3  
SPI MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCKx line. The master  
determines when the slave (Processor 2, Figure 24-5)  
is to broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPxBUF register is written to. If the SPI  
is only going to receive, the SDOx output could be dis-  
abled (programmed as an input). The SSPxSR register  
will continue to shift in the signal present on the SDIx  
pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPxBUF register as  
if a normal received byte (interrupts and Status bits  
appropriately set).  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 * TCY)  
• FOSC/64 (or 16 * TCY)  
• Timer2 output/2  
• Fosc/(4 * (SSPxADD + 1))  
Figure 24-6 shows the waveforms for Master mode.  
When the CKE bit is set, the SDOx data is valid before  
there is a clock edge on SCKx. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPxBUF is loaded with the received  
data is shown.  
FIGURE 24-6:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPxBUF  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCKx  
(CKP = 0  
CKE = 1)  
SCKx  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDOx  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDOx  
(CKE = 1)  
SDIx  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDIx  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPxIF  
SSPxSR to  
SSPxBUF  
2010-2012 Microchip Technology Inc.  
DS41414D-page 249  
PIC16(L)F1946/47  
24.2.4  
SPI SLAVE MODE  
24.2.5  
SLAVE SELECT  
SYNCHRONIZATION  
In Slave mode, the data is transmitted and received as  
external clock pulses appear on SCKx. When the last  
bit is latched, the SSPxIF interrupt flag bit is set.  
The Slave Select can also be used to synchronize com-  
munication. The Slave Select line is held high until the  
master device is ready to communicate. When the  
Slave Select line is pulled low, the slave knows that a  
new transmission is starting.  
Before enabling the module in SPI Slave mode, the clock  
line must match the proper Idle state. The clock line can  
be observed by reading the SCKx pin. The Idle state is  
determined by the CKP bit of the SSPxCON1 register.  
If the slave fails to receive the communication properly,  
it will be reset at the end of the transmission, when the  
Slave Select line returns to a high state. The slave is  
then ready to receive a new transmission when the  
Slave Select line is pulled low again. If the Slave Select  
line is not used, there is a risk that the slave will even-  
tually become out of sync with the master. If the slave  
misses a bit, it will always be one bit off in future trans-  
missions. Use of the Slave Select line allows the slave  
and master to align themselves at the beginning of  
each transmission.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCKx pin. This exter-  
nal clock must meet the minimum high and low times  
as specified in the electrical specifications.  
While in Sleep mode, the slave can transmit/receive  
data. The shift register is clocked from the SCKx pin  
input and when a byte is received, the device will gen-  
erate an interrupt. If enabled, the device will wake-up  
from Sleep.  
24.2.4.1 Daisy-Chain Configuration  
The SSx pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SSx pin control  
enabled (SSPxCON1<3:0> = 0100).  
The SPI bus can sometimes be connected in a  
daisy-chain configuration. The first slave output is con-  
nected to the second slave input, the second slave  
output is connected to the third slave input, and so on.  
The final slave output is connected to the master input.  
Each slave sends out, during a second group of clock  
pulses, an exact copy of what was received during the  
first group of clock pulses. The whole chain acts as  
one large communication shift register. The  
daisy-chain feature only requires a single Slave Select  
line from the master device.  
When the SSx pin is low, transmission and reception  
are enabled and the SDOx pin is driven.  
When the SSx pin goes high, the SDOx pin is no longer  
driven, even if in the middle of a transmitted byte and  
becomes a floating output. External pull-up/pull-down  
resistors may be desirable depending on the applica-  
tion.  
Note 1: When the SPI is in Slave mode with SSx  
pin control enabled (SSPxCON1<3:0> =  
0100), the SPI module will reset if the SSx  
pin is set to VDD.  
Figure 24-7 shows the block diagram of a typical  
daisy-chain connection when operating in SPI Mode.  
In a daisy-chain configuration, only the most recent  
byte on the bus is required by the slave. Setting the  
BOEN bit of the SSPxCON3 register will enable writes  
to the SSPxBUF register, even if the previous byte has  
not been read. This allows the software to ignore data  
that may not apply to it.  
2: When the SPI is used in Slave mode with  
CKE set; the user must enable SSx pin  
control.  
3: While operated in SPI Slave mode the  
SMP bit of the SSPxSTAT register must  
remain clear.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SSx pin to  
a high level or clearing the SSPEN bit.  
DS41414D-page 250  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-7:  
SPI DAISY-CHAIN CONNECTION  
SCK  
SCK  
SPI Master  
SDOx  
SDIx  
SDIx  
SDOx  
SSx  
SPI Slave  
#1  
General I/O  
SCK  
SDIx  
SDOx  
SSx  
SPI Slave  
#2  
SCK  
SDIx  
SDOx  
SSx  
SPI Slave  
#3  
FIGURE 24-8:  
SLAVE SELECT SYNCHRONOUS WAVEFORM  
SSx  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
Write to  
SSPxBUF  
Shift register SSPxSR  
and bit count are reset  
SSPxBUF to  
SSPxSR  
bit 6  
bit 6  
bit 7  
bit 7  
bit 0  
SDOx  
SDIx  
bit 7  
bit 0  
bit 7  
Input  
Sample  
SSPxIF  
Interrupt  
Flag  
SSPxSR to  
SSPxBUF  
2010-2012 Microchip Technology Inc.  
DS41414D-page 251  
PIC16(L)F1946/47  
FIGURE 24-9:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SSx  
Optional  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
Write to  
SSPxBUF  
Valid  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDOx  
bit 7  
SDIx  
bit 0  
bit 7  
Input  
Sample  
SSPxIF  
Interrupt  
Flag  
SSPxSR to  
SSPxBUF  
Write Collision  
detection active  
FIGURE 24-10:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SSx  
Not Optional  
SCKx  
(CKP = 0  
CKE = 1)  
SCKx  
(CKP = 1  
CKE = 1)  
Write to  
SSPxBUF  
Valid  
bit 6  
bit 3  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDOx  
bit 7  
bit 7  
SDIx  
bit 0  
Input  
Sample  
SSPxIF  
Interrupt  
Flag  
SSPxSR to  
SSPxBUF  
Write Collision  
detection active  
DS41414D-page 252  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
In SPI Master mode, when the Sleep mode is selected,  
all module clocks are halted and the transmis-  
sion/reception will remain in that state until the device  
wakes. After the device returns to Run mode, the mod-  
ule will resume transmitting and receiving data.  
24.2.6 SPI OPERATION IN SLEEP MODE  
In SPI Master mode, module clocks may be operating  
at a different speed than when in full power mode; in  
the case of the Sleep mode, all clocks are halted.  
Special care must be taken by the user when the  
MSSPx clock is much faster than the system clock.  
In SPI Slave mode, the SPI Transmit/Receive Shift  
register operates asynchronously to the device. This  
allows the device to be placed in Sleep mode and data  
to be shifted into the SPI Transmit/Receive Shift  
register. When all 8 bits have been received, the  
MSSPx interrupt flag bit will be set and if enabled, will  
wake the device.  
In Slave mode, when MSSPx interrupts are enabled,  
after the master completes sending data, an MSSPx  
interrupt will wake the controller from Sleep.  
If an exit from Sleep mode is not desired, MSSPx inter-  
rupts should be disabled.  
TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
APFCON  
INTCON  
PIE1  
ANSA7  
P3CSEL  
GIE  
ANSA6  
P3BSEL  
PEIE  
ADIE  
ANSA5  
P2DSEL  
TMR0IE  
RCIE  
ANSA4  
P2CSEL  
INTE  
ANSA3  
P2BSEL  
IOCIE  
SSPIE  
ANSA2  
CCP2SEL  
TMR0IF  
CCP1IE  
ANSA1  
P1CSEL  
INTF  
ANSA0  
P1BSEL  
IOCIF  
132  
129  
92  
TMR1GIE  
TXIE  
TMR2IE  
BCL2IE  
TMR2IF  
BCL2IF  
TMR1IE  
SSP2IE  
TMR1IF  
SSP2IF  
93  
PIE4  
RC2IE  
RCIF  
TX2IE  
TXIF  
96  
PIR1  
TMR1GIF  
ADIF  
SSPIF  
CCP1IF  
97  
PIR4  
RC2IF  
TX2IF  
100  
247*  
247*  
292  
295  
291  
292  
295  
291  
131  
134  
SSP1BUF  
SSP2BUF  
SSP1CON1  
Synchronous Serial Port Receive Buffer/Transmit Register  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
SSPOV  
PCIE  
SSPEN  
SCIE  
CKP  
SSPM<3:0>  
SSP1CON3 ACKTIM  
BOEN  
SDAHT  
S
SBCDE  
R/W  
AHEN  
UA  
DHEN  
BF  
SSP1STAT  
SSP2CON1  
SMP  
CKE  
SSPOV  
PCIE  
D/A  
SSPEN  
SCIE  
P
WCOL  
CKP  
BOEN  
SSPM<3:0>  
SSP2CON3 ACKTIM  
SDAHT  
SBCDE  
AHEN  
DHEN  
SSP2STAT  
TRISA  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
TRISA7  
TRISB7  
TRISA6  
TRISB6  
TRISA5  
TRISB5  
TRISA4  
TRISB4  
TRISA3  
TRISB3  
TRISA2  
TRISB2  
TRISA1  
TRISB1  
TRISA0  
TRISB0  
TRISB  
Legend:  
— = Unimplemented location, read as ‘0’. Shaded cells are not used by the MSSPx in SPI mode.  
*
Page provides register information.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 253  
PIC16(L)F1946/47  
I2C MASTER/  
24.3 I2C MODE OVERVIEW  
FIGURE 24-11:  
SLAVE CONNECTION  
The Inter-Integrated Circuit Bus (I²C) is a multi-master  
serial data communication bus. Devices communicate  
in a master/slave environment where the master  
devices initiate the communication. A Slave device is  
controlled through addressing.  
VDD  
SCLx  
SCLx  
The I2C bus specifies two signal connections:  
VDD  
• Serial Clock (SCLx)  
• Serial Data (SDAx)  
Master  
Slave  
SDAx  
SDAx  
Figure 24-2 and Figure 24-3 show the block diagrams  
of the MSSPx module when operating in I2C mode.  
Both the SCLx and SDAx connections are bidirectional  
open-drain lines, each requiring pull-up resistors for the  
supply voltage. Pulling the line to ground is considered  
a logical zero and letting the line float is considered a  
logical one.  
The Acknowledge bit (ACK) is an active-low signal,  
which holds the SDAx line low to indicate to the trans-  
mitter that the slave device has received the transmit-  
ted data and is ready to receive more.  
Figure 24-11 shows a typical connection between two  
processors configured as master and slave devices.  
The I2C bus can operate with one or more master  
devices and one or more slave devices.  
The transition of a data bit is always performed while  
the SCLx line is held low. Transitions that occur while  
the SCLx line is held high are used to indicate Start and  
Stop bits.  
If the master intends to write to the slave, then it repeat-  
edly sends out a byte of data, with the slave responding  
after each byte with an ACK bit. In this example, the  
master device is in Master Transmit mode and the  
slave is in Slave Receive mode.  
There are four potential modes of operation for a given  
device:  
• Master Transmit mode  
(master is transmitting data to a slave)  
• Master Receive mode  
If the master intends to read from the slave, then it  
repeatedly receives a byte of data from the slave, and  
responds after each byte with an ACK bit. In this exam-  
ple, the master device is in Master Receive mode and  
the slave is Slave Transmit mode.  
(master is receiving data from a slave)  
• Slave Transmit mode  
(slave is transmitting data to a master)  
• Slave Receive mode  
(slave is receiving data from the master)  
On the last byte of data communicated, the master  
device may end the transmission by sending a Stop bit.  
If the master device is in Receive mode, it sends the  
Stop bit in place of the last ACK bit. A Stop bit is indi-  
cated by a low-to-high transition of the SDAx line while  
the SCLx line is held high.  
To begin communication, a master device starts out in  
Master Transmit mode. The master device sends out a  
Start bit followed by the address byte of the slave it  
intends to communicate with. This is followed by a sin-  
gle Read/Write bit, which determines whether the mas-  
ter intends to transmit to or receive data from the slave  
device.  
In some cases, the master may want to maintain con-  
trol of the bus and re-initiate another transmission. If  
so, the master device may send another Start bit in  
place of the Stop bit or last ACK bit when it is in receive  
mode.  
If the requested slave exists on the bus, it will respond  
with an Acknowledge bit, otherwise known as an ACK.  
The master then continues in either Transmit mode or  
Receive mode and the slave continues in the comple-  
ment, either in Receive mode or Transmit mode,  
respectively.  
The I2C bus specifies three message protocols;  
• Single message where a master writes data to a  
slave.  
A Start bit is indicated by a high-to-low transition of the  
SDAx line while the SCLx line is held high. Address and  
data bytes are sent out, Most Significant bit (MSb) first.  
The Read/Write bit is sent out as a logical one when the  
master intends to read data from the slave, and is sent  
out as a logical zero when it intends to write data to the  
slave.  
• Single message where a master reads data from  
a slave.  
• Combined message where a master initiates a  
minimum of two writes, or two reads, or a  
combination of writes and reads, to one or more  
slaves.  
DS41414D-page 254  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
When one device is transmitting a logical one, or letting  
the line float, and a second device is transmitting a log-  
ical zero, or holding the line low, the first device can  
detect that the line is not a logical one. This detection,  
when used on the SCLx line, is called clock stretching.  
Clock stretching gives slave devices a mechanism to  
control the flow of data. When this detection is used on  
the SDAx line, it is called arbitration. Arbitration  
ensures that there is only one master device communi-  
cating at any single time.  
Slave Transmit mode can also be arbitrated, when a  
master addresses multiple slaves, but this is less com-  
mon.  
If two master devices are sending a message to two dif-  
ferent slave devices at the address stage, the master  
sending the lower slave address always wins arbitra-  
tion. When two master devices send messages to the  
same slave address, and addresses can sometimes  
refer to multiple slaves, the arbitration process must  
continue into the data stage.  
Arbitration usually occurs very rarely, but it is a neces-  
sary process for proper multi-master support.  
24.3.1  
CLOCK STRETCHING  
When a slave device has not completed processing  
data, it can delay the transfer of more data through the  
process of Clock Stretching. An addressed slave  
device may hold the SCLx clock line low after receiving  
or sending a bit, indicating that it is not yet ready to con-  
tinue. The master that is communicating with the slave  
will attempt to raise the SCLx line in order to transfer  
the next bit, but will detect that the clock line has not yet  
been released. Because the SCLx connection is  
open-drain, the slave has the ability to hold that line low  
until it is ready to continue communicating.  
2
24.4 I C Mode Operation  
All MSSPx I2C communication is byte oriented and  
shifted out MSb first. Six SFR registers and 2 interrupt  
flags interface the module with the PIC® microcon-  
troller and user software. Two pins, SDAx and SCLx,  
are exercised by the module to communicate with  
other external I2C devices.  
24.4.1 BYTE FORMAT  
All communication in I2C is done in 9-bit segments. A  
byte is sent from a Master to a Slave or vice-versa, fol-  
lowed by an Acknowledge bit sent back. After the 8th  
falling edge of the SCLx line, the device outputting data  
on the SDAx changes that pin to an input and reads in  
an acknowledge value on the next clock pulse.  
Clock stretching allows receivers that cannot keep up  
with a transmitter to control the flow of incoming data.  
24.3.2  
ARBITRATION  
Each master device must monitor the bus for Start and  
Stop bits. If the device detects that the bus is busy, it  
cannot begin a new message until the bus returns to an  
Idle state.  
The clock signal, SCLx, is provided by the master.  
Data is valid to change while the SCLx signal is low,  
and sampled on the rising edge of the clock. Changes  
on the SDAx line while the SCLx line is high define  
special conditions on the bus, explained below.  
However, two master devices may try to initiate a trans-  
mission on or about the same time. When this occurs,  
the process of arbitration begins. Each transmitter  
checks the level of the SDAx data line and compares it  
to the level that it expects to find. The first transmitter to  
observe that the two levels don’t match, loses arbitra-  
tion, and must stop transmitting on the SDAx line.  
24.4.2 DEFINITION OF I2C TERMINOLOGY  
There is language and terminology in the description of  
I2C communication that have definitions specific to I2C.  
That word usage is defined below and may be used in  
the rest of this document without explanation. This table  
was adapted from the Philips I2C specification.  
For example, if one transmitter holds the SDAx line to  
a logical one (lets it float) and a second transmitter  
holds it to a logical zero (pulls it low), the result is that  
the SDAx line will be low. The first transmitter then  
observes that the level of the line is different than  
expected and concludes that another transmitter is  
communicating.  
24.4.3 SDAX AND SCLX PINS  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCLx and SDAx pins to be open-drain.  
These pins should be set by the user to inputs by set-  
ting the appropriate TRIS bits.  
The first transmitter to notice this difference is the one  
that loses arbitration and must stop driving the SDAx  
line. If this transmitter is also a master device, it also  
must stop driving the SCLx line. It then can monitor the  
lines for a Stop condition before trying to reissue its  
transmission. In the meantime, the other device that  
has not noticed any difference between the expected  
and actual levels on the SDAx line continues with its  
original transmission. It can do so without any compli-  
cations, because so far, the transmission appears  
exactly as expected with no other transmitter disturbing  
the message.  
Note: Data is tied to output zero when an I2C  
mode is enabled.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 255  
PIC16(L)F1946/47  
24.4.4 SDAX HOLD TIME  
The hold time of the SDAx pin is selected by the  
SDAHT bit of the SSPxCON3 register. Hold time is the  
time SDAx is held valid after the falling edge of SCLx.  
Setting the SDAHT bit selects a longer 300 ns mini-  
mum hold time and may help on buses with large  
capacitance.  
TABLE 24-2: I2C BUS TERMS  
TERM  
Description  
Transmitter  
The device which shifts data out  
onto the bus.  
Receiver  
Master  
The device which shifts data in  
from the bus.  
The device that initiates a transfer,  
generates clock signals and termi-  
nates a transfer.  
Slave  
The device addressed by the mas-  
ter.  
Multi-master  
Arbitration  
A bus with more than one device  
that can initiate data transfers.  
Procedure to ensure that only one  
master at a time controls the bus.  
Winning arbitration ensures that  
the message is not corrupted.  
Synchronization Procedure to synchronize the  
clocks of two or more devices on  
the bus.  
Idle  
No master is controlling the bus,  
and both SDAx and SCLx lines are  
high.  
Active  
Any time one or more master  
devices are controlling the bus.  
Addressed  
Slave  
Slave device that has received a  
matching address and is actively  
being clocked by a master.  
Matching  
Address  
Address byte that is clocked into a  
slave that matches the value  
stored in SSPxADD.  
Write Request  
Read Request  
Slave receives a matching  
address with R/W bit clear, and is  
ready to clock in data.  
Master sends an address byte with  
the R/W bit set, indicating that it  
wishes to clock data out of the  
Slave. This data is the next and all  
following bytes until a Restart or  
Stop.  
Clock Stretching When a device on the bus hold  
SCLx low to stall communication.  
Bus Collision  
Any time the SDAx line is sampled  
low by the module while it is out-  
putting and expected high state.  
DS41414D-page 256  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
has the same effect on the slave that a Start would,  
resetting all slave logic and preparing it to clock in an  
address. The master may want to address the same or  
another slave.  
24.4.5 START CONDITION  
The I2C specification defines a Start condition as a  
transition of SDAx from a high to a low state while  
SCLx line is high. A Start condition is always gener-  
ated by the master and signifies the transition of the  
bus from an Idle to an Active state. Figure 24-10  
shows wave forms for Start and Stop conditions.  
In 10-bit Addressing Slave mode a Restart is required  
for the master to clock data out of the addressed  
slave. Once a slave has been fully addressed, match-  
ing both high and low address bytes, the master can  
issue a Restart and the high address byte with the  
R/W bit set. The slave logic will then hold the clock  
and prepare to clock out data.  
A bus collision can occur on a Start condition if the  
module samples the SDAx line low before asserting it  
low. This does not conform to the I2C Specification that  
states no bus collision can occur on a Start.  
After a full match with R/W clear in 10-bit mode, a prior  
match flag is set and maintained. Until a Stop condi-  
tion, a high address with R/W clear, or high address  
match fails.  
24.4.6 STOP CONDITION  
A Stop condition is a transition of the SDAx line from  
low-to-high state while the SCLx line is high.  
24.4.8 START/STOP CONDITION INTERRUPT  
MASKING  
Note: At least one SCLx low time must appear  
before a Stop is valid, therefore, if the SDAx  
line goes low then high again while the SCLx  
line stays high, only the Start condition is  
detected.  
The SCIE and PCIE bits of the SSPxCON3 register  
can enable the generation of an interrupt in Slave  
modes that do not typically support this function. Slave  
modes where interrupt on Start and Stop detect are  
already enabled, these bits will have no effect.  
24.4.7  
RESTART CONDITION  
A Restart is valid any time that a Stop would be valid.  
A master can issue a Restart if it wishes to hold the  
bus after terminating the current transfer. A Restart  
FIGURE 24-12:  
I2C START AND STOP CONDITIONS  
SDAx  
SCLx  
S
P
Change of  
Change of  
Data Allowed  
Data Allowed  
Stop  
Start  
Condition  
Condition  
FIGURE 24-13:  
I2C RESTART CONDITION  
Sr  
Change of  
Change of  
Data Allowed  
Data Allowed  
Restart  
Condition  
2010-2012 Microchip Technology Inc.  
DS41414D-page 257  
PIC16(L)F1946/47  
2
24.4.9 ACKNOWLEDGE SEQUENCE  
24.5 I C SLAVE MODE OPERATION  
The 9th SCLx pulse for any transferred byte in I2C is  
dedicated as an Acknowledge. It allows receiving  
devices to respond back to the transmitter by pulling  
the SDAx line low. The transmitter must release con-  
trol of the line during this time to shift in the response.  
The Acknowledge (ACK) is an active-low signal, pull-  
ing the SDAx line low indicated to the transmitter that  
the device has received the transmitted data and is  
ready to receive more.  
The MSSPx Slave mode operates in one of four  
modes selected in the SSPM bits of SSPxCON1 regis-  
ter. The modes can be divided into 7-bit and 10-bit  
Addressing mode. 10-bit Addressing modes operate  
the same as 7-bit with some additional overhead for  
handling the larger addresses.  
Modes with Start and Stop bit interrupts operated the  
same as the other modes with SSPxIF additionally  
getting set upon detection of a Start, Restart, or Stop  
condition.  
The result of an ACK is placed in the ACKSTAT bit of  
the SSPxCON2 register.  
24.5.1 SLAVE MODE ADDRESSES  
Slave software, when the AHEN and DHEN bits are  
set, allow the user to set the ACK value sent back to  
the transmitter. The ACKDT bit of the SSPxCON2 reg-  
ister is set/cleared to determine the response.  
The SSPxADD register (Register 24-6) contains the  
Slave mode address. The first byte received after a  
Start or Restart condition is compared against the  
value stored in this register. If the byte matches, the  
value is loaded into the SSPxBUF register and an  
interrupt is generated. If the value does not match, the  
module goes idle and no indication is given to the soft-  
ware that anything happened.  
Slave hardware will generate an ACK response if the  
AHEN and DHEN bits of the SSPxCON3 register are  
clear.  
There are certain conditions where an ACK will not be  
sent by the slave. If the BF bit of the SSPxSTAT regis-  
ter or the SSPOV bit of the SSPxCON1 register are  
set when a byte is received.  
The SSPx Mask register (Register 24-5) affects the  
address matching process. See Section 24.5.9  
“SSPx Mask Register” for more information.  
When the module is addressed, after the 8th falling  
edge of SCLx on the bus, the ACKTIM bit of the  
SSPxCON3 register is set. The ACKTIM bit indicates  
the acknowledge time of the active bus. The ACKTIM  
Status bit is only active when the AHEN bit or DHEN  
bit is enabled.  
24.5.1.1 I2C Slave 7-bit Addressing Mode  
In 7-bit Addressing mode, the LSb of the received data  
byte is ignored when determining if there is an address  
match.  
24.5.1.2 I2C Slave 10-bit Addressing Mode  
In 10-bit Addressing mode, the first received byte is  
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9  
and A8 are the two MSb of the 10-bit address and  
stored in bits 2 and 1 of the SSPxADD register.  
After the acknowledge of the high byte, the UA bit is  
set and SCLx is held low until the user updates  
SSPxADD with the low address. The low address byte  
is clocked in and all 8 bits are compared to the low  
address value in SSPxADD. Even if there is not an  
address match; SSPxIF and UA are set, and SCLx is  
held low until SSPxADD is updated to receive a high  
byte again. When SSPxADD is updated, the UA bit is  
cleared. This ensures the module is ready to receive  
the high address byte on the next communication.  
A high and low address match as a write request is  
required at the start of all 10-bit addressing communi-  
cation. A transmission can be initiated by issuing a  
Restart once the slave is addressed, and clocking in  
the high address with the R/W bit set. The slave hard-  
ware will then acknowledge the read request and pre-  
pare to clock out data. This is only valid for a slave  
after it has received a complete high and low address  
byte match.  
DS41414D-page 258  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
24.5.2 SLAVE RECEPTION  
24.5.2.2 7-bit Reception with AHEN and DHEN  
When the R/W bit of a matching received address byte  
is clear, the R/W bit of the SSPxSTAT register is  
cleared. The received address is loaded into the  
SSPxBUF register and acknowledged.  
Slave device reception with AHEN and DHEN set  
operate the same as without these options with extra  
interrupts and clock stretching added after the 8th fall-  
ing edge of SCLx. These additional interrupts allow the  
slave software to decide whether it wants to ACK the  
receive address or data byte, rather than the hard-  
ware. This functionality adds support for PMBus™ that  
was not present on previous versions of this module.  
When the overflow condition exists for a received  
address, then not Acknowledge is given. An overflow  
condition is defined as either bit BF of the SSPxSTAT  
register is set, or bit SSPOV of the SSPxCON1 register  
is set. The BOEN bit of the SSPxCON3 register modi-  
fies this operation. For more information see  
Register 24-4.  
This list describes the steps that need to be taken by  
slave software to use these options for I2C communi-  
cation. Figure 24-15 displays a module using both  
address and data holding. Figure 24-16 includes the  
operation with the SEN bit of the SSPxCON2 register  
set.  
An MSSPx interrupt is generated for each transferred  
data byte. Flag bit, SSPxIF, must be cleared by  
software.  
1. S bit of SSPxSTAT is set; SSPxIF is set if inter-  
rupt on Start detect is enabled.  
When the SEN bit of the SSPxCON2 register is set,  
SCLx will be held low (clock stretch) following each  
received byte. The clock must be released by setting  
the CKP bit of the SSPxCON1 register, except  
sometimes in 10-bit mode. See Section 24.2.3 “SPI  
Master Mode” for more detail.  
2. Matching address with R/W bit clear is clocked  
in. SSPxIF is set and CKP cleared after the 8th  
falling edge of SCLx.  
3. Slave clears the SSPxIF.  
4. Slave can look at the ACKTIM bit of the  
SSPxCON3 register to determine if the SSPxIF  
was after or before the ACK.  
24.5.2.1 7-bit Addressing Reception  
This section describes a standard sequence of events  
for the MSSPx module configured as an I2C Slave in  
7-bit Addressing mode. Figure 24-13 and Figure 24-14  
are used as visual references for this description.  
5. Slave reads the address value from SSPxBUF,  
clearing the BF flag.  
6. Slave sets ACK value clocked out to the master  
by setting ACKDT.  
This is a step by step process of what typically must  
be done to accomplish I2C communication.  
7. Slave releases the clock by setting CKP.  
8. SSPxIF is set after an ACK, not after a NACK.  
1. Start bit detected.  
9. If SEN = 1 the slave hardware will stretch the  
2. S bit of SSPxSTAT is set; SSPxIF is set if inter-  
rupt on Start detect is enabled.  
clock after the ACK.  
10. Slave clears SSPxIF.  
3. Matching address with R/W bit clear is received.  
4. The slave pulls SDAx low sending an ACK to the  
master, and sets SSPxIF bit.  
Note: SSPxIF is still set after the 9th falling edge of  
SCLx even if there is no clock stretching and  
BF has been cleared. Only if NACK is sent  
to Master is SSPxIF not set  
5. Software clears the SSPxIF bit.  
6. Software reads received address from  
SSPxBUF clearing the BF flag.  
11. SSPxIF set and CKP cleared after 8th falling  
edge of SCLx for a received data byte.  
7. If SEN = 1; Slave software sets CKP bit to  
release the SCLx line.  
12. Slave looks at ACKTIM bit of SSPxCON3 to  
determine the source of the interrupt.  
8. The master clocks out a data byte.  
9. Slave drives SDAx low sending an ACK to the  
master, and sets SSPxIF bit.  
13. Slave reads the received data from SSPxBUF  
clearing BF.  
10. Software clears SSPxIF.  
14. Steps 7-14 are the same for each received data  
byte.  
11. Software reads the received byte from  
SSPxBUF clearing BF.  
15. Communication is ended by either the slave  
sending an ACK = 1, or the master sending a  
Stop condition. If a Stop is sent and Interrupt on  
Stop Detect is disabled, the slave will only know  
by polling the P bit of the SSTSTAT register.  
12. Steps 8-12 are repeated for all received bytes  
from the Master.  
13. Master sends Stop condition, setting P bit of  
SSPxSTAT, and the bus goes idle.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 259  
PIC16(L)F1946/47  
FIGURE 24-14:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)  
DS41414D-page 260  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-15:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 261  
PIC16(L)F1946/47  
FIGURE 24-16:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1)  
DS41414D-page 262  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-17:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 263  
PIC16(L)F1946/47  
24.5.3  
SLAVE TRANSMISSION  
24.5.3.2  
7-bit Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPxSTAT register is set. The received address is  
loaded into the SSPxBUF register, and an ACK pulse is  
sent by the slave on the ninth bit.  
A master device can transmit a read request to a  
slave, and then clock data out of the slave. The list  
below outlines what software for a slave will need to  
do to accomplish  
a
standard transmission.  
Figure 24-17 can be used as a reference to this list.  
Following the ACK, slave hardware clears the CKP bit  
and the SCLx pin is held low (see Section 24.5.6  
“Clock Stretching” for more detail). By stretching the  
clock, the master will be unable to assert another clock  
pulse until the slave is done preparing the transmit  
data.  
1. Master sends a Start condition on SDAx and  
SCLx.  
2. S bit of SSPxSTAT is set; SSPxIF is set if inter-  
rupt on Start detect is enabled.  
3. Matching address with R/W bit set is received by  
the Slave setting SSPxIF bit.  
The transmit data must be loaded into the SSPxBUF  
register which also loads the SSPxSR register. Then  
the SCLx pin should be released by setting the CKP bit  
of the SSPxCON1 register. The eight data bits are  
shifted out on the falling edge of the SCLx input. This  
ensures that the SDAx signal is valid during the SCLx  
high time.  
4. Slave hardware generates an ACK and sets  
SSPxIF.  
5. SSPxIF bit is cleared by user.  
6. Software reads the received address from  
SSPxBUF, clearing BF.  
7. R/W is set so CKP was automatically cleared  
after the ACK.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCLx input pulse. This ACK  
value is copied to the ACKSTAT bit of the SSPxCON2  
register. If ACKSTAT is set (not ACK), then the data  
transfer is complete. In this case, when the not ACK is  
latched by the slave, the slave goes idle and waits for  
another occurrence of the Start bit. If the SDAx line was  
low (ACK), the next transmit data must be loaded into  
the SSPxBUF register. Again, the SCLx pin must be  
released by setting bit CKP.  
8. The slave software loads the transmit data into  
SSPxBUF.  
9. CKP bit is set releasing SCLx, allowing the  
master to clock the data out of the slave.  
10. SSPxIF is set after the ACK response from the  
master is loaded into the ACKSTAT register.  
11. SSPxIF bit is cleared.  
12. The slave software checks the ACKSTAT bit to  
see if the master wants to clock out more data.  
An MSSPx interrupt is generated for each data transfer  
byte. The SSPxIF bit must be cleared by software and  
the SSPxSTAT register is used to determine the status  
of the byte. The SSPxIF bit is set on the falling edge of  
the ninth clock pulse.  
Note 1: If the master ACKs the clock will be  
stretched.  
2: ACKSTAT is the only bit updated on the  
rising edge of SCLx (9th) rather than the  
falling.  
24.5.3.1  
Slave Mode Bus Collision  
13. Steps 9-13 are repeated for each transmitted  
byte.  
A slave receives a Read request and begins shifting  
data out on the SDAx line. If a bus collision is detected  
and the SBCDE bit of the SSPxCON3 register is set,  
the BCLxIF bit of the PIRx register is set. Once a bus  
collision is detected, the slave goes Idle and waits to be  
addressed again. User software can use the BCLxIF bit  
to handle a slave bus collision.  
14. If the master sends a not ACK; the clock is not  
held, but SSPxIF is still set.  
15. The master sends a Restart condition or a Stop.  
16. The slave is no longer addressed.  
DS41414D-page 264  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-18:  
I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 265  
PIC16(L)F1946/47  
24.5.3.3  
7-bit Transmission with Address  
Hold Enabled  
Setting the AHEN bit of the SSPxCON3 register  
enables additional clock stretching and interrupt gen-  
eration after the 8th falling edge of a received match-  
ing address. Once a matching address has been  
clocked in, CKP is cleared and the SSPxIF interrupt is  
set.  
Figure 24-18 displays a standard waveform of a 7-bit  
Address Slave Transmission with AHEN enabled.  
1. Bus starts Idle.  
2. Master sends Start condition; the S bit of  
SSPxSTAT is set; SSPxIF is set if interrupt on  
Start detect is enabled.  
3. Master sends matching address with R/W bit  
set. After the 8th falling edge of the SCLx line the  
CKP bit is cleared and SSPxIF interrupt is  
generated.  
4. Slave software clears SSPxIF.  
5. Slave software reads ACKTIM bit of SSPxCON3  
register, and R/W and D/A of the SSPxSTAT  
register to determine the source of the interrupt.  
6. Slave reads the address value from the  
SSPxBUF register clearing the BF bit.  
7. Slave software decides from this information if it  
wishes to ACK or not ACK and sets the ACKDT  
bit of the SSPxCON2 register accordingly.  
8. Slave sets the CKP bit releasing SCLx.  
9. Master clocks in the ACK value from the slave.  
10. Slave hardware automatically clears the CKP bit  
and sets SSPxIF after the ACK if the R/W bit is  
set.  
11. Slave software clears SSPxIF.  
12. Slave loads value to transmit to the master into  
SSPxBUF setting the BF bit.  
Note: SSPxBUF cannot be loaded until after the  
ACK.  
13. Slave sets CKP bit releasing the clock.  
14. Master clocks out the data from the slave and  
sends an ACK value on the 9th SCLx pulse.  
15. Slave hardware copies the ACK value into the  
ACKSTAT bit of the SSPxCON2 register.  
16. Steps 10-15 are repeated for each byte transmit-  
ted to the master from the slave.  
17. If the master sends a not ACK the slave  
releases the bus allowing the master to send a  
Stop and end the communication.  
Note: Master must send a not ACK on the last byte  
to ensure that the slave releases the SCLx  
line to receive a Stop.  
DS41414D-page 266  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-19:  
I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 267  
PIC16(L)F1946/47  
24.5.4 SLAVE MODE 10-BIT ADDRESS  
RECEPTION  
24.5.5 10-BIT ADDRESSING WITH ADDRESS  
OR DATA HOLD  
This section describes a standard sequence of events  
for the MSSPx module configured as an I2C Slave in  
10-bit Addressing mode.  
Reception using 10-bit addressing with AHEN or  
DHEN set is the same as with 7-bit modes. The only  
difference is the need to update the SSPxADD register  
using the UA bit. All functionality, specifically when the  
CKP bit is cleared and SCLx line is held low are the  
same. Figure 24-20 can be used as a reference of a  
slave in 10-bit addressing with AHEN set.  
Figure 24-19 is used as a visual reference for this  
description.  
This is a step by step process of what must be done by  
slave software to accomplish I2C communication.  
Figure 24-21 shows a standard waveform for a slave  
transmitter in 10-bit Addressing mode.  
1. Bus starts Idle.  
2. Master sends Start condition; S bit of SSPxSTAT  
is set; SSPxIF is set if interrupt on Start detect is  
enabled.  
3. Master sends matching high address with R/W  
bit clear; UA bit of the SSPxSTAT register is set.  
4. Slave sends ACK and SSPxIF is set.  
5. Software clears the SSPxIF bit.  
6. Software reads received address from  
SSPxBUF clearing the BF flag.  
7. Slave loads low address into SSPxADD,  
releasing SCLx.  
8. Master sends matching low address byte to the  
Slave; UA bit is set.  
Note: Updates to the SSPxADD register are not  
allowed until after the ACK sequence.  
9. Slave sends ACK and SSPxIF is set.  
Note: If the low address does not match, SSPxIF  
and UA are still set so that the slave soft-  
ware can set SSPxADD back to the high  
address. BF is not set because there is no  
match. CKP is unaffected.  
10. Slave clears SSPxIF.  
11. Slave reads the received matching address  
from SSPxBUF clearing BF.  
12. Slave loads high address into SSPxADD.  
13. Master clocks a data byte to the slave and  
clocks out the slaves ACK on the 9th SCLx  
pulse; SSPxIF is set.  
14. If SEN bit of SSPxCON2 is set, CKP is cleared  
by hardware and the clock is stretched.  
15. Slave clears SSPxIF.  
16. Slave reads the received byte from SSPxBUF  
clearing BF.  
17. If SEN is set the slave sets CKP to release the  
SCLx.  
18. Steps 13-17 repeat for each received byte.  
19. Master sends Stop to end the transmission.  
DS41414D-page 268  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-20:  
I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 269  
PIC16(L)F1946/47  
FIGURE 24-21:  
I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)  
DS41414D-page 270  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-22:  
I2C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 271  
PIC16(L)F1946/47  
24.5.6 CLOCK STRETCHING  
24.5.6.2 10-bit Addressing Mode  
Clock stretching occurs when a device on the bus  
holds the SCLx line low effectively pausing communi-  
cation. The slave may stretch the clock to allow more  
time to handle data or prepare a response for the mas-  
ter device. A master device is not concerned with  
stretching as anytime it is active on the bus and not  
transferring data it is stretching. Any stretching done  
by a slave is invisible to the master software and han-  
dled by the hardware that generates SCLx.  
In 10-bit Addressing mode, when the UA bit is set, the  
clock is always stretched. This is the only time the  
SCLx is stretched without CKP being cleared. SCLx is  
released immediately after a write to SSPxADD.  
Note: Previous versions of the module did not  
stretch the clock if the second address byte  
did not match.  
24.5.6.3 Byte NACKing  
The CKP bit of the SSPxCON1 register is used to con-  
trol stretching in software. Any time the CKP bit is  
cleared, the module will wait for the SCLx line to go  
low and then hold it. Setting CKP will release SCLx  
and allow more communication.  
When AHEN bit of SSPxCON3 is set; CKP is cleared  
by hardware after the 8th falling edge of SCLx for a  
received matching address byte. When DHEN bit of  
SSPxCON3 is set; CKP is cleared after the 8th falling  
edge of SCLx for received data.  
24.5.6.1 Normal Clock Stretching  
Stretching after the 8th falling edge of SCLx allows the  
slave to look at the received address or data and  
decide if it wants to ACK the received data.  
Following an ACK if the R/W bit of SSPxSTAT is set, a  
read request, the slave hardware will clear CKP. This  
allows the slave time to update SSPxBUF with data to  
transfer to the master. If the SEN bit of SSPxCON2 is  
set, the slave hardware will always stretch the clock  
after the ACK sequence. Once the slave is ready; CKP  
is set by software and communication resumes.  
24.5.7 CLOCK SYNCHRONIZATION AND  
THE CKP BIT  
Any time the CKP bit is cleared, the module will wait  
for the SCLx line to go low and then hold it. However,  
clearing the CKP bit will not assert the SCLx output  
low until the SCLx output is already sampled low.  
Therefore, the CKP bit will not assert the SCLx line  
until an external I2C master device has already  
asserted the SCLx line. The SCLx output will remain  
low until the CKP bit is set and all other devices on the  
I2C bus have released SCLx. This ensures that a write  
to the CKP bit will not violate the minimum high time  
requirement for SCLx (see Figure 24-22).  
Note 1: The BF bit has no effect on if the clock will  
be stretched or not. This is different than  
previous versions of the module that  
would not stretch the clock, clear CKP, if  
SSPxBUF was read before the 9th falling  
edge of SCLx.  
2: Previous versions of the module did not  
stretch the clock for a transmission if  
SSPxBUF was loaded before the 9th fall-  
ing edge of SCLx. It is now always cleared  
for read requests.  
FIGURE 24-23:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDAx  
SCLx  
DX  
DX ‚ 1  
Master device  
asserts clock  
CKP  
Master device  
releases clock  
WR  
SSPxCON1  
DS41414D-page 272  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
In 10-bit Address mode, the UA bit will not be set on  
the reception of the general call address. The slave  
will prepare to receive the second byte as data, just as  
it would in 7-bit mode.  
24.5.8 GENERAL CALL ADDRESS SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually deter-  
mines which device will be the slave addressed by the  
master device. The exception is the general call  
address which can address all devices. When this  
address is used, all devices should, in theory, respond  
with an acknowledge.  
If the AHEN bit of the SSPxCON3 register is set, just  
as with any other address reception, the slave hard-  
ware will stretch the clock after the 8th falling edge of  
SCLx. The slave must then set its ACKDT value and  
release the clock with communication progressing as it  
would normally.  
The general call address is a reserved address in the  
I2C protocol, defined as address 0x00. When the  
GCEN bit of the SSPxCON2 register is set, the slave  
module will automatically ACK the reception of this  
address regardless of the value stored in SSPxADD.  
After the slave clocks in an address of all zeros with  
the R/W bit clear, an interrupt is generated and slave  
software can read SSPxBUF and respond.  
Figure 24-23 shows  
sequence.  
a
general call reception  
FIGURE 24-24:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
9
R/W = 0  
General Call Address  
ACK  
SDAx  
D7 D6  
D0  
8
SCLx  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
S
SSPxIF  
BF (SSPxSTAT<0>)  
Cleared by software  
SSPxBUF is read  
GCEN (SSPxCON2<7>)  
1’  
24.5.9 SSPX MASK REGISTER  
An SSPx Mask (SSPxMSK) register (Register 24-5) is  
available in I2C Slave mode as a mask for the value  
held in the SSPxSR register during an address  
comparison operation. A zero (‘0’) bit in the SSPxMSK  
register has the effect of making the corresponding bit  
of the received address a “don’t care”.  
This register is reset to all ‘1’s upon any Reset  
condition and, therefore, has no effect on standard  
SSPx operation until written with a mask value.  
The SSPx Mask register is active during:  
• 7-bit Address mode: address compare of A<7:1>.  
• 10-bit Address mode: address compare of A<7:0>  
only. The SSPx mask has no effect during the  
reception of the first (high) byte of the address.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 273  
PIC16(L)F1946/47  
24.6.1 I2C MASTER MODE OPERATION  
2
24.6 I C MASTER MODE  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in the SSPxCON1 register and  
by setting the SSPEN bit. In Master mode, the SDAx  
and SCKx pins must be configured as inputs. The  
MSSP peripheral hardware will override the output  
driver TRIS controls when necessary to drive the pins  
low.  
In Master Transmitter mode, serial data is output  
through SDAx, while SCLx outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSPx module is disabled. Con-  
trol of the I2C bus may be taken when the P bit is set,  
or the bus is Idle.  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit condition detection. Start and Stop condition  
detection is the only active circuitry in this mode. All  
other communication is done by the user software  
directly manipulating the SDAx and SCLx lines.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDAx, while SCLx outputs  
the serial clock. Serial data is received 8 bits at a time.  
After each byte is received, an Acknowledge bit is  
transmitted. Start and Stop conditions indicate the  
beginning and end of transmission.  
The following events will cause the SSPx Interrupt Flag  
bit, SSPxIF, to be set (SSPx interrupt, if enabled):  
• Start condition detected  
• Stop condition detected  
• Data transfer byte transmitted/received  
• Acknowledge transmitted/received  
• Repeated Start generated  
A Baud Rate Generator is used to set the clock  
frequency output on SCLx. See Section 24.7 “Baud  
Rate Generator” for more detail.  
Note 1: The MSSPx module, when configured in  
I2C Master mode, does not allow queue-  
ing of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPxBUF register  
to initiate transmission before the Start  
condition is complete. In this case, the  
SSPxBUF will not be written to and the  
WCOL bit will be set, indicating that a  
write to the SSPxBUF did not occur  
2: When in Master mode, Start/Stop detec-  
tion is masked and an interrupt is gener-  
ated when the SEN/PEN bit is cleared and  
the generation is complete.  
DS41414D-page 274  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
24.6.2 CLOCK ARBITRATION  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
releases the SCLx pin (SCLx allowed to float high).  
When the SCLx pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCLx pin is actually sampled high. When the  
SCLx pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPxADD<7:0> and  
begins counting. This ensures that the SCLx high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 24-25).  
FIGURE 24-25:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDAx  
DX  
DX ‚ 1  
SCLx allowed to transition high  
SCLx deasserted but slave holds  
SCLx low (clock arbitration)  
SCLx  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCLx is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
24.6.3 WCOL STATUS FLAG  
If the user writes the SSPxBUF when a Start, Restart,  
Stop, Receive or Transmit sequence is in progress, the  
WCOL bit is set and the contents of the buffer are  
unchanged (the write does not occur). Any time the  
WCOL bit is set it indicates that an action on SSPxBUF  
was attempted while the module was not Idle.  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPxCON2 is disabled until the Start  
condition is complete.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 275  
PIC16(L)F1946/47  
24.6.4 I2C MASTER MODE START  
CONDITION TIMING  
by hardware; the Baud Rate Generator is suspended,  
leaving the SDAx line held low and the Start condition  
is complete.  
To initiate a Start condition, the user sets the Start  
Enable bit, SEN bit of the SSPxCON2 register. If the  
SDAx and SCLx pins are sampled high, the Baud Rate  
Generator is reloaded with the contents of  
SSPxADD<7:0> and starts its count. If SCLx and  
SDAx are both sampled high when the Baud Rate  
Generator times out (TBRG), the SDAx pin is driven  
low. The action of the SDAx being driven low while  
SCLx is high is the Start condition and causes the S bit  
of the SSPxSTAT1 register to be set. Following this,  
the Baud Rate Generator is reloaded with the contents  
of SSPxADD<7:0> and resumes its count. When the  
Baud Rate Generator times out (TBRG), the SEN bit of  
the SSPxCON2 register will be automatically cleared  
Note 1: If at the beginning of the Start condition,  
the SDAx and SCLx pins are already sam-  
pled low, or if during the Start condition,  
the SCLx line is sampled low before the  
SDAx line is driven low, a bus collision  
occurs, the Bus Collision Interrupt Flag,  
BCLxIF, is set, the Start condition is  
aborted and the I2C module is reset into  
its Idle state.  
2: The Philips I2C Specification states that a  
bus collision cannot occur on a Start.  
FIGURE 24-26:  
FIRST START BIT TIMING  
Set S bit (SSPxSTAT<3>)  
Write to SEN bit occurs here  
At completion of Start bit,  
hardware clears SEN bit  
and sets SSPxIF bit  
SDAx = 1,  
SCLx = 1  
TBRG  
TBRG  
Write to SSPxBUF occurs here  
1st bit  
2nd bit  
SDAx  
TBRG  
SCLx  
S
TBRG  
DS41414D-page 276  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
24.6.5 I2C MASTER MODE REPEATED  
START CONDITION TIMING  
SSPxCON2 register will be automatically cleared and  
the Baud Rate Generator will not be reloaded, leaving  
the SDAx pin held low. As soon as a Start condition is  
detected on the SDAx and SCLx pins, the S bit of the  
SSPxSTAT register will be set. The SSPxIF bit will not  
be set until the Baud Rate Generator has timed out.  
A Repeated Start condition occurs when the RSEN bit  
of the SSPxCON2 register is programmed high and the  
Master state machine is no longer active. When the  
RSEN bit is set, the SCLx pin is asserted low. When the  
SCLx pin is sampled low, the Baud Rate Generator is  
loaded and begins counting. The SDAx pin is released  
(brought high) for one Baud Rate Generator count  
(TBRG). When the Baud Rate Generator times out, if  
SDAx is sampled high, the SCLx pin will be deasserted  
(brought high). When SCLx is sampled high, the Baud  
Rate Generator is reloaded and begins counting. SDAx  
and SCLx must be sampled high for one TBRG. This  
action is then followed by assertion of the SDAx pin  
(SDAx = 0) for one TBRG while SCLx is high. SCLx is  
asserted low. Following this, the RSEN bit of the  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated Start  
condition occurs if:  
SDAx is sampled low when SCLx  
goes from low-to-high.  
SCLx goes low before SDAx is  
asserted low. This may indicate  
that another master is attempting to  
transmit a data ‘1’.  
FIGURE 24-27:  
REPEAT START CONDITION WAVEFORM  
S bit set by hardware  
Write to SSPxCON2  
occurs here  
SDAx = 1,  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPxIF  
SDAx = 1,  
SCLx = 1  
SCLx (no change)  
TBRG  
TBRG  
TBRG  
1st bit  
SDAx  
SCLx  
Write to SSPxBUF occurs here  
TBRG  
Sr  
Repeated Start  
TBRG  
2010-2012 Microchip Technology Inc.  
DS41414D-page 277  
PIC16(L)F1946/47  
24.6.6 I2C MASTER MODE TRANSMISSION  
24.6.6.3  
ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit of the SSPxCON2  
register is cleared when the slave has sent an Acknowl-  
edge (ACK = 0) and is set when the slave does not  
Acknowledge (ACK = 1). A slave sends an Acknowl-  
edge when it has recognized its address (including a  
general call), or when the slave has properly received  
its data.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPxBUF register. This action will  
set the Buffer Full flag bit, BF, and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDAx pin after the falling edge of SCLx is  
asserted. SCLx is held low for one Baud Rate Genera-  
tor rollover count (TBRG). Data should be valid before  
SCLx is released high. When the SCLx pin is released  
high, it is held that way for TBRG. The data on the SDAx  
pin must remain stable for that duration and some hold  
time after the next falling edge of SCLx. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDAx.  
This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received prop-  
erly. The status of ACK is written into the ACKSTAT bit  
on the rising edge of the ninth clock. If the master  
receives an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPxIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPxBUF, leaving SCLx low and  
SDAx unchanged (Figure 24-27).  
24.6.6.4 Typical transmit sequence:  
1. The user generates a Start condition by setting  
the SEN bit of the SSPxCON2 register.  
2. SSPxIF is set by hardware on completion of the  
Start.  
3. SSPxIF is cleared by software.  
4. The MSSPx module will wait the required start  
time before any other operation takes place.  
5. The user loads the SSPxBUF with the slave  
address to transmit.  
6. Address is shifted out the SDAx pin until all 8 bits  
are transmitted. Transmission begins as soon  
as SSPxBUF is written to.  
7. The MSSPx module shifts in the ACK bit from  
the slave device and writes its value into the  
ACKSTAT bit of the SSPxCON2 register.  
8. The MSSPx module generates an interrupt at  
the end of the ninth clock cycle by setting the  
SSPxIF bit.  
After the write to the SSPxBUF, each bit of the address  
will be shifted out on the falling edge of SCLx until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
release the SDAx pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDAx pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT Status bit of the  
SSPxCON2 register. Following the falling edge of the  
ninth clock transmission of the address, the SSPxIF is  
set, the BF flag is cleared and the Baud Rate Generator  
is turned off until another write to the SSPxBUF takes  
place, holding SCLx low and allowing SDAx to float.  
9. The user loads the SSPxBUF with eight bits of  
data.  
10. Data is shifted out the SDAx pin until all 8 bits  
are transmitted.  
11. The MSSPx module shifts in the ACK bit from  
the slave device and writes its value into the  
ACKSTAT bit of the SSPxCON2 register.  
12. Steps 8-11 are repeated for all transmitted data  
bytes.  
13. The user generates a Stop or Restart condition  
by setting the PEN or RSEN bits of the  
SSPxCON2 register. Interrupt is generated once  
the Stop/Restart condition is complete.  
24.6.6.1  
BF Status Flag  
In Transmit mode, the BF bit of the SSPxSTAT register  
is set when the CPU writes to SSPxBUF and is cleared  
when all 8 bits are shifted out.  
24.6.6.2  
WCOL Status Flag  
If the user writes the SSPxBUF when a transmit is  
already in progress (i.e., SSPxSR is still shifting out a  
data byte), the WCOL bit is set and the contents of the  
buffer are unchanged (the write does not occur).  
WCOL must be cleared by software before the next  
transmission.  
DS41414D-page 278  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
2
FIGURE 24-28:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 279  
PIC16(L)F1946/47  
24.6.7  
I2C MASTER MODE RECEPTION  
24.6.7.4 Typical Receive Sequence:  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN bit of the SSPxCON2  
register.  
1. The user generates a Start condition by setting  
the SEN bit of the SSPxCON2 register.  
2. SSPxIF is set by hardware on completion of the  
Start.  
Note:  
The MSSPx module must be in an Idle  
state before the RCEN bit is set or the  
RCEN bit will be disregarded.  
3. SSPxIF is cleared by software.  
4. User writes SSPxBUF with the slave address to  
transmit and the R/W bit set.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCLx pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPxSR. After the falling edge of the eighth clock, the  
receive enable flag is automatically cleared, the con-  
tents of the SSPxSR are loaded into the SSPxBUF, the  
BF flag bit is set, the SSPxIF flag bit is set and the Baud  
Rate Generator is suspended from counting, holding  
SCLx low. The MSSPx is now in Idle state awaiting the  
next command. When the buffer is read by the CPU,  
the BF flag bit is automatically cleared. The user can  
then send an Acknowledge bit at the end of reception  
by setting the Acknowledge Sequence Enable, ACKEN  
bit of the SSPxCON2 register.  
5. Address is shifted out the SDAx pin until all 8 bits  
are transmitted. Transmission begins as soon  
as SSPxBUF is written to.  
6. The MSSPx module shifts in the ACK bit from  
the slave device and writes its value into the  
ACKSTAT bit of the SSPxCON2 register.  
7. The MSSPx module generates an interrupt at  
the end of the ninth clock cycle by setting the  
SSPxIF bit.  
8. User sets the RCEN bit of the SSPxCON2 regis-  
ter and the Master clocks in a byte from the slave.  
9. After the 8th falling edge of SCLx, SSPxIF and  
BF are set.  
10. Master clears SSPxIF and reads the received  
byte from SSPxUF, clears BF.  
24.6.7.1  
BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPxBUF from SSPxSR. It  
is cleared when the SSPxBUF register is read.  
11. Master sets ACK value sent to slave in ACKDT  
bit of the SSPxCON2 register and initiates the  
ACK by setting the ACKEN bit.  
24.6.7.2  
SSPOV Status Flag  
12. Masters ACK is clocked out to the Slave and  
SSPxIF is set.  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPxSR and the BF flag bit is  
already set from a previous reception.  
13. User clears SSPxIF.  
14. Steps 8-13 are repeated for each received byte  
from the slave.  
24.6.7.3  
WCOL Status Flag  
15. Master sends a not ACK or Stop to end  
communication.  
If the user writes the SSPxBUF when a receive is  
already in progress (i.e., SSPxSR is still shifting in a  
data byte), the WCOL bit is set and the contents of the  
buffer are unchanged (the write does not occur).  
DS41414D-page 280  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
2
FIGURE 24-29:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 281  
PIC16(L)F1946/47  
24.6.8  
ACKNOWLEDGE SEQUENCE  
TIMING  
24.6.9  
STOP CONDITION TIMING  
A Stop bit is asserted on the SDAx pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN bit of the SSPxCON2 register. At the end of a  
receive/transmit, the SCLx line is held low after the  
falling edge of the ninth clock. When the PEN bit is set,  
the master will assert the SDAx line low. When the  
SDAx line is sampled low, the Baud Rate Generator is  
reloaded and counts down to ‘0’. When the Baud Rate  
Generator times out, the SCLx pin will be brought high  
and one TBRG (Baud Rate Generator rollover count)  
later, the SDAx pin will be deasserted. When the SDAx  
pin is sampled high while SCLx is high, the P bit of the  
SSPxSTAT register is set. A TBRG later, the PEN bit is  
cleared and the SSPxIF bit is set (Figure 24-30).  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN bit of the  
SSPxCON2 register. When this bit is set, the SCLx pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDAx pin. If the user wishes to  
generate an Acknowledge, then the ACKDT bit should  
be cleared. If not, the user should set the ACKDT bit  
before starting an Acknowledge sequence. The Baud  
Rate Generator then counts for one rollover period  
(TBRG) and the SCLx pin is deasserted (pulled high).  
When the SCLx pin is sampled high (clock arbitration),  
the Baud Rate Generator counts for TBRG. The SCLx pin  
is then pulled low. Following this, the ACKEN bit is auto-  
matically cleared, the Baud Rate Generator is turned off  
and the MSSPx module then goes into Idle mode  
(Figure 24-29).  
24.6.9.1  
WCOL Status Flag  
If the user writes the SSPxBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write does  
not occur).  
24.6.8.1  
WCOL Status Flag  
If the user writes the SSPxBUF when an Acknowledge  
sequence is in progress, then the WCOL bit is set and  
the contents of the buffer are unchanged (the write  
does not occur).  
FIGURE 24-30:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPxCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDAx  
SCLx  
D0  
8
9
SSPxIF  
Cleared in  
SSPxIF set at  
the end of receive  
software  
Cleared in  
software  
SSPxIF set at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
DS41414D-page 282  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 24-31:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCLx = 1for TBRG, followed by SDAx = 1for TBRG  
after SDAx sampled high. P bit (SSPxSTAT<4>) is set.  
Write to SSPxCON2,  
set PEN  
PEN bit (SSPxCON2<2>) is cleared by  
hardware and the SSPxIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCLx  
ACK  
SDAx  
P
TBRG  
TBRG  
TBRG  
SCLx brought high after TBRG  
SDAx asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
24.6.10 SLEEP OPERATION  
24.6.13 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C Slave module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSPx interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDAx pin, arbitration takes place when the master  
outputs a ‘1’ on SDAx, by letting SDAx float high and  
another master asserts a ‘0’. When the SCLx pin floats  
high, data should be stable. If the expected data on  
SDAx is a ‘1’ and the data sampled on the SDAx pin is  
0’, then a bus collision has taken place. The master will  
set the Bus Collision Interrupt Flag, BCLxIF, and reset  
the I2C port to its Idle state (Figure 24-31).  
24.6.11 EFFECTS OF A RESET  
A Reset disables the MSSPx module and terminates  
the current transfer.  
24.6.12 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSPx module is disabled. Control of the I2C bus may  
be taken when the P bit of the SSPxSTAT register is  
set, or the bus is Idle, with both the S and P bits clear.  
When the bus is busy, enabling the SSPx interrupt will  
generate the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDAx and SCLx lines are deasserted and  
the SSPxBUF can be written to. When the user ser-  
vices the bus collision Interrupt Service Routine and if  
the I2C bus is free, the user can resume communica-  
tion by asserting a Start condition.  
In multi-master operation, the SDAx line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed by  
hardware with the result placed in the BCLxIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condi-  
tion was in progress when the bus collision occurred, the  
condition is aborted, the SDAx and SCLx lines are deas-  
serted and the respective control bits in the SSPxCON2  
register are cleared. When the user services the bus col-  
lision Interrupt Service Routine and if the I2C bus is free,  
the user can resume communication by asserting a Start  
condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDAx and SCLx  
pins. If a Stop condition occurs, the SSPxIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPxBUF will start the transmission of  
data at the first data bit, regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPxSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 283  
PIC16(L)F1946/47  
FIGURE 24-32:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDAx. While SCLx is high,  
data does not match what is driven  
by the master.  
Data changes  
while SCLx = 0  
SDAx line pulled low  
by another source  
Bus collision has occurred.  
SDAx released  
by master  
SDAx  
SCLx  
Set bus collision  
interrupt (BCLxIF)  
BCLxIF  
DS41414D-page 284  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
If the SDAx pin is sampled low during this count, the  
BRG is reset and the SDAx line is asserted early  
(Figure 24-34). If, however, a ‘1’ is sampled on the  
SDAx pin, the SDAx pin is asserted low at the end of  
the BRG count. The Baud Rate Generator is then  
reloaded and counts down to zero; if the SCLx pin is  
sampled as ‘0’ during this time, a bus collision does not  
occur. At the end of the BRG count, the SCLx pin is  
asserted low.  
24.6.13.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDAx or SCLx are sampled low at the beginning  
of the Start condition (Figure 24-32).  
b) SCLx is sampled low before SDAx is asserted  
low (Figure 24-33).  
During a Start condition, both the SDAx and the SCLx  
pins are monitored.  
Note:  
The reason that bus collision is not a fac-  
tor during a Start condition is that no two  
bus masters can assert a Start condition  
at the exact same time. Therefore, one  
master will always assert SDAx before the  
other. This condition does not cause a bus  
collision because the two masters must be  
allowed to arbitrate the first address fol-  
lowing the Start condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDAx pin is already low, or the SCLx pin is  
already low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLxIF flag is set and  
the MSSPx module is reset to its Idle state  
(Figure 24-32).  
The Start condition begins with the SDAx and SCLx  
pins deasserted. When the SDAx pin is sampled high,  
the Baud Rate Generator is loaded and counts down. If  
the SCLx pin is sampled low while SDAx is high, a bus  
collision occurs because it is assumed that another  
master is attempting to drive a data ‘1’ during the Start  
condition.  
FIGURE 24-33:  
BUS COLLISION DURING START CONDITION (SDAX ONLY)  
SDAx goes low before the SEN bit is set.  
Set BCLxIF,  
S bit and SSPxIF set because  
SDAx = 0, SCLx = 1.  
SDAx  
SCLx  
SEN  
Set SEN, enable Start  
condition if SDAx = 1, SCLx = 1  
SEN cleared automatically because of bus collision.  
SSPx module reset into Idle state.  
SDAx sampled low before  
Start condition. Set BCLxIF.  
S bit and SSPxIF set because  
SDAx = 0, SCLx = 1.  
BCLxIF  
SSPxIF and BCLxIF are  
cleared by software  
S
SSPxIF  
SSPxIF and BCLxIF are  
cleared by software  
2010-2012 Microchip Technology Inc.  
DS41414D-page 285  
PIC16(L)F1946/47  
FIGURE 24-34:  
BUS COLLISION DURING START CONDITION (SCLX = 0)  
SDAx = 0, SCLx = 1  
TBRG  
TBRG  
SDAx  
Set SEN, enable Start  
sequence if SDAx = 1, SCLx = 1  
SCLx  
SEN  
SCLx = 0before SDAx = 0,  
bus collision occurs. Set BCLxIF.  
SCLx = 0before BRG time-out,  
bus collision occurs. Set BCLxIF.  
BCLxIF  
Interrupt cleared  
by software  
S
0’  
0’  
0’  
0’  
SSPxIF  
FIGURE 24-35:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDAx = 0, SCLx = 1  
Set S  
Set SSPxIF  
Less than TBRG  
TBRG  
SDAx pulled low by other master.  
Reset BRG and assert SDAx.  
SDAx  
SCLx  
S
SCLx pulled low after BRG  
time-out  
SEN  
Set SEN, enable Start  
sequence if SDAx = 1, SCLx = 1  
0’  
BCLxIF  
S
SSPxIF  
Interrupts cleared  
by software  
SDAx = 0, SCLx = 1,  
set SSPxIF  
DS41414D-page 286  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
If SDAx is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, Figure 24-35).  
If SDAx is sampled high, the BRG is reloaded and  
begins counting. If SDAx goes from high-to-low before  
the BRG times out, no bus collision occurs because no  
two masters can assert SDAx at exactly the same time.  
24.6.13.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDAx when SCLx  
goes from low level to high level.  
If SCLx goes from high-to-low before the BRG times  
out and SDAx has not already been asserted, a bus  
collision occurs. In this case, another master is  
attempting to transmit a data ‘1’ during the Repeated  
Start condition, see Figure 24-36.  
b) SCLx goes low before SDAx is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
When the user releases SDAx and the pin is allowed to  
float high, the BRG is loaded with SSPxADD and  
counts down to zero. The SCLx pin is then deasserted  
and when sampled high, the SDAx pin is sampled.  
If, at the end of the BRG time-out, both SCLx and SDAx  
are still high, the SDAx pin is driven low and the BRG  
is reloaded and begins counting. At the end of the  
count, regardless of the status of the SCLx pin, the  
SCLx pin is driven low and the Repeated Start  
condition is complete.  
FIGURE 24-36:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDAx  
SCLx  
Sample SDAx when SCLx goes high.  
If SDAx = 0, set BCLxIF and release SDAx and SCLx.  
RSEN  
BCLxIF  
Cleared by software  
0’  
S
0’  
SSPxIF  
FIGURE 24-37:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDAx  
SCLx  
SCLx goes low before SDAx,  
BCLxIF  
RSEN  
set BCLxIF. Release SDAx and SCLx.  
Interrupt cleared  
by software  
0’  
S
SSPxIF  
2010-2012 Microchip Technology Inc.  
DS41414D-page 287  
PIC16(L)F1946/47  
The Stop condition begins with SDAx asserted low.  
When SDAx is sampled low, the SCLx pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPxADD and  
counts down to 0. After the BRG times out, SDAx is  
sampled. If SDAx is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 24-37). If the SCLx pin is  
sampled low before SDAx is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 24-38).  
24.6.13.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDAx pin has been deasserted and  
allowed to float high, SDAx is sampled low after  
the BRG has timed out.  
b) After the SCLx pin is deasserted, SCLx is  
sampled low before SDAx goes high.  
FIGURE 24-38:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDAx sampled  
low after TBRG,  
set BCLxIF  
TBRG  
TBRG  
TBRG  
SDAx  
SDAx asserted low  
SCLx  
PEN  
BCLxIF  
P
0’  
0’  
SSPxIF  
FIGURE 24-39:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDAx  
SCLx goes low before SDAx goes high,  
set BCLxIF  
Assert SDAx  
SCLx  
PEN  
BCLxIF  
P
0’  
0’  
SSPxIF  
DS41414D-page 288  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Reset  
Valueson  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
TMR1GIE  
OSFIE  
PEIE  
ADIE  
C2IE  
TMR0IE  
RCIE  
C1IE  
INTE  
TXIE  
EEIE  
TX2IE  
TXIF  
EEIF  
IOCIE  
SSPIE  
BCLIE  
TMR0IF  
CCP1IE  
LCDIE  
INTF  
TMR2IE  
C3IE  
IOCIF  
92  
93  
TMR1IE  
(1)  
PIE2  
CCP2IE  
SSP2IE  
TMR1IF  
94  
(1)  
BCL2IE  
TMR2IF  
C3IF  
PIE4  
RC2IE  
RCIF  
96  
TMR1GIF  
OSFIF  
ADIF  
C2IF  
SSPIF  
BCLIF  
CCP1IF  
LCDIF  
PIR1  
PIR2  
97  
(1)  
C1IF  
CCP2IF  
SSP2IF  
TRISA0  
TRISB0  
98  
(1)  
BCL2IF  
TRISA1  
TRISB1  
PIR4  
RC2IF  
TRISA5  
TRISB5  
TX2IF  
TRISA4  
TRISB4  
100  
131  
134  
296  
247*  
292  
294  
295  
296  
291  
296  
247*  
292  
294  
295  
296  
291  
TRISA  
TRISA7  
TRISB7  
TRISA6  
TRISB6  
TRISA3  
TRISB3  
TRISA2  
TRISB2  
TRISB  
SSP1ADD  
SSP1BUF  
SSP1CON1  
SSP1CON2  
SSP1CON3  
SSP1MSK  
SSP1STAT  
SSP2ADD  
SSP2BUF  
SSP2CON1  
SSP2CON2  
SSP2CON3  
SSP2MSK  
SSP2STAT  
ADD<7:0>  
MSSPx Receive Buffer/Transmit Register  
WCOL  
GCEN  
SSPOV  
ACKSTAT  
PCIE  
SSPEN  
ACKDT  
SCIE  
CKP  
ACKEN  
BOEN  
SSPM<3:0>  
RCEN  
PEN  
RSEN  
AHEN  
SEN  
ACKTIM  
SDAHT  
SBCDE  
DHEN  
MSK<7:0>  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
ADD<7:0>  
MSSP2 Receive Buffer/Transmit Register  
WCOL  
GCEN  
SSPOV  
ACKSTAT  
PCIE  
SSPEN  
ACKDT  
SCIE  
CKP  
ACKEN  
BOEN  
SSPM<3:0>  
RCEN  
PEN  
RSEN  
AHEN  
SEN  
ACKTIM  
SDAHT  
SBCDE  
DHEN  
MSK<7:0>  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
2
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP module in I C™ mode.  
*
Page provides register information.  
Note 1: PIC16F1947 only.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 289  
PIC16(L)F1946/47  
module clock line. The logic dictating when the reload  
signal is asserted depends on the mode the MSSPx is  
being operated in.  
24.7 BAUD RATE GENERATOR  
The MSSPx module has a Baud Rate Generator avail-  
able for clock generation in both I2C and SPI Master  
modes. The Baud Rate Generator (BRG) reload value  
is placed in the SSPxADD register (Register 24-6).  
When a write occurs to SSPxBUF, the Baud Rate Gen-  
erator will automatically begin counting down.  
Table 24-4 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPxADD.  
EQUATION 24-1:  
Once the given operation is complete, the internal clock  
will automatically stop counting and the clock pin will  
remain in its last state.  
FOSC  
FCLOCK = -------------------------------------------------  
SSPxADD + 14  
An internal signal “Reload” in Figure 24-39 triggers the  
value from SSPxADD to be loaded into the BRG  
counter. This occurs twice for each oscillation of the  
FIGURE 24-40:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM<3:0>  
SSPxADD<7:0>  
SSPM<3:0>  
SCLx  
Reload  
Control  
Reload  
BRG Down Counter  
SSPxCLK  
FOSC/2  
Note: Values of 0x00, 0x01 and 0x02 are not valid  
for SSPxADD when used as a Baud Rate  
Generator for I2C. This is an implementation  
limitation.  
TABLE 24-4: MSSPx CLOCK RATE W/BRG  
FCLOCK  
(2 Rollovers of BRG)  
FOSC  
FCY  
BRG Value  
32 MHz  
32 MHz  
32 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
8 MHz  
8 MHz  
8 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
13h  
19h  
4Fh  
09h  
0Ch  
27h  
09h  
400 kHz(1)  
308 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
100 kHz  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
DS41414D-page 290  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
24.8 Register Definitions: MSSP Control  
REGISTER 24-1: SSPxSTAT: SSPx STATUS REGISTER  
R/W-0/0  
SMP  
R/W-0/0  
CKE  
R-0/0  
D/A  
R-0/0  
P
R-0/0  
S
R-0/0  
R/W  
R-0/0  
UA  
R-0/0  
BF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
SMP: SPI Data Input Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
2
In I C Master or Slave mode:  
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select bit (SPI mode only)  
In SPI Master or Slave mode:  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
2
In I C™ mode only:  
1= Enable input logic so that thresholds are compliant with SMBus specification  
0= Disable SMBus specific inputs  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: Stop bit  
2
(I C mode only. This bit is cleared when the MSSPx module is disabled, SSPEN is cleared.)  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
bit 3  
bit 2  
S: Start bit  
2
(I C mode only. This bit is cleared when the MSSPx module is disabled, SSPEN is cleared.)  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match  
to the next Start bit, Stop bit, or not ACK bit.  
2
In I C Slave mode:  
1= Read  
0= Write  
2
In I C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Idle mode.  
2
bit 1  
bit 0  
UA: Update Address bit (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPxADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPxBUF is full  
0= Receive not complete, SSPxBUF is empty  
2
Transmit (I C mode only):  
1= Data transmit in progress (does not include the ACK and Stop bits), SSPxBUF is full  
0= Data transmit complete (does not include the ACK and Stop bits), SSPxBUF is empty  
2010-2012 Microchip Technology Inc.  
DS41414D-page 291  
PIC16(L)F1946/47  
REGISTER 24-2: SSPxCON1: SSPx CONTROL REGISTER 1  
R/C/HS-0/0  
WCOL  
R/C/HS-0/0  
SSPOV  
R/W-0/0  
SSPEN  
R/W-0/0  
CKP  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
SSPM<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
HS = Bit is set by hardware  
C = User cleared  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
2
1= A write to the SSPxBUF register was attempted while the I C conditions were not valid for a transmission to  
be started  
0= No collision  
Slave mode:  
1= The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software)  
0= No collision  
(1)  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPxBUF register is still holding the previous data. In case of overflow, the data  
in SSPxSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPxBUF, even  
if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new recep-  
tion (and transmission) is initiated by writing to the SSPxBUF register (must be cleared in software).  
0= No overflow  
2
In I C mode:  
1= A byte is received while the SSPxBUF register is still holding the previous byte. SSPOV is a “don’t care” in  
Transmit mode (must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output  
In SPI mode:  
1= Enables serial port and configures SCKx, SDOx, SDIx and SSx as the source of the serial port pins  
(2)  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
(3)  
1= Enables the serial port and configures the SDAx and SCLx pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
2
In I C Slave mode:  
SCLx release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
2
In I C Master mode:  
Unused in this mode  
DS41414D-page 292  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 24-2: SSPxCON1: SSPx CONTROL REGISTER 1 (CONTINUED)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCKx pin, SSx pin control enabled  
0101= SPI Slave mode, clock = SCKx pin, SSx pin control disabled, SSx can be used as I/O pin  
2
0110= I C Slave mode, 7-bit address  
2
0111= I C Slave mode, 10-bit address  
1000= I C Master mode, clock = FOSC / (4 * (SSPxADD+1))  
2
(4)  
1001= Reserved  
(5)  
1010= SPI Master mode, clock = FOSC/(4 * (SSPxADD+1))  
2
1011= I C firmware controlled Master mode (Slave idle)  
1100= Reserved  
1101= Reserved  
2
1110= I C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
2
1111= I C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the  
SSPxBUF register.  
2: When enabled, these pins must be properly configured as input or output.  
3: When enabled, the SDAx and SCLx pins must be configured as inputs.  
2
4: SSPxADD values of 0, 1 or 2 are not supported for I C Mode.  
5: SSPxADD value of ‘0’ is not supported. Use SSPM = 0000instead.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 293  
PIC16(L)F1946/47  
REGISTER 24-3: SSPxCON2: SSPx CONTROL REGISTER 2  
R/W-0/0  
GCEN  
R-0/0  
R/W-0/0  
ACKDT  
R/S/HS-0/0 R/S/HS-0/0  
ACKEN RCEN  
R/S/HS-0/0  
PEN  
R/S/HS-0/0 R/W/HS-0/0  
RSEN SEN  
bit 0  
ACKSTAT  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = Cleared by hardware S = User set  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (in I2C Slave mode only)  
1= Enable interrupt when a general call address (0x00 or 00h) is received in the SSPxSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (in I2C mode only)  
1= Acknowledge was not received  
0= Acknowledge was received  
ACKDT: Acknowledge Data bit (in I2C mode only)  
In Receive mode:  
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive  
1= Not Acknowledge  
0= Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (in I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDAx and SCLx pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (in I2C Master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: Stop Condition Enable bit (in I2C Master mode only)  
SCKx Release Control:  
1= Initiate Stop condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Stop condition Idle  
bit 1  
bit 0  
RSEN: Repeated Start Condition Enable bit (in I2C Master mode only)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enable bit  
In Master mode:  
1= Initiate Start condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, this bit may not be  
set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).  
DS41414D-page 294  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 24-4: SSPxCON3: SSPx CONTROL REGISTER 3  
R-0/0  
R/W-0/0  
PCIE  
R/W-0/0  
SCIE  
R/W-0/0  
BOEN  
R/W-0/0  
SDAHT  
R/W-0/0  
SBCDE  
R/W-0/0  
AHEN  
R/W-0/0  
DHEN  
ACKTIM  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
ACKTIM: Acknowledge Time Status bit (I2C mode only)(3)  
1= Indicates the I2C bus is in an Acknowledge sequence, set on 8TH falling edge of SCLx clock  
0= Not an Acknowledge sequence, cleared on 9TH rising edge of SCLx clock  
PCIE: Stop Condition Interrupt Enable bit (I2C mode only)  
1= Enable interrupt on detection of Stop condition  
0= Stop detection interrupts are disabled(2)  
SCIE: Start Condition Interrupt Enable bit (I2C mode only)  
1= Enable interrupt on detection of Start or Restart conditions  
0= Start detection interrupts are disabled(2)  
BOEN: Buffer Overwrite Enable bit  
In SPI Slave mode:(1)  
1= SSPxBUF updates every time that a new data byte is shifted in ignoring the BF bit  
0= If new byte is received with BF bit of the SSPxSTAT register already set, SSPOV bit of the  
SSPxCON1 register is set, and the buffer is not updated  
In I2C Master mode and SPI Master mode:  
This bit is ignored.  
In I2C Slave mode:  
1= SSPxBUF is updated and ACK is generated for a received address/data byte, ignoring the  
state of the SSPOV bit only if the BF bit = 0.  
0= SSPxBUF is only updated when SSPOV is clear  
bit 3  
bit 2  
SDAHT: SDAx Hold Time Selection bit (I2C mode only)  
1= Minimum of 300 ns hold time on SDAx after the falling edge of SCLx  
0= Minimum of 100 ns hold time on SDAx after the falling edge of SCLx  
SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only)  
If on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the  
BCLxIF bit of the PIR2 register is set, and bus goes idle  
1= Enable slave bus collision interrupts  
0= Slave bus collision interrupts are disabled  
bit 1  
bit 0  
AHEN: Address Hold Enable bit (I2C Slave mode only)  
1 = Following the 8th falling edge of SCLx for a matching received address byte; CKP bit of the  
SSPxCON1 register will be cleared and the SCLx will be held low.  
0= Address holding is disabled  
DHEN: Data Hold Enable bit (I2C Slave mode only)  
1= Following the 8th falling edge of SCLx for a received data byte; slave hardware clears the CKP bit  
of the SSPxCON1 register and SCLx is held low.  
0= Data holding is disabled  
Note 1: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set  
when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.  
2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.  
3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 295  
PIC16(L)F1946/47  
REGISTER 24-5: SSPxMSK: SSPx MASK REGISTER  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
MSK<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
1= The received address bit n is compared to SSPxADD<n> to detect I2C address match  
0= The received address bit n is not used to detect I2C address match  
MSK<0>: Mask bit for I2C Slave mode, 10-bit Address  
I2C Slave mode, 10-bit address (SSPM<3:0> = 0111or 1111):  
1= The received address bit 0 is compared to SSPxADD<0> to detect I2C address match  
0= The received address bit 0 is not used to detect I2C address match  
I2C Slave mode, 7-bit address, the bit is ignored  
REGISTER 24-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I2C MODE)  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
ADD<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
Master mode:  
bit 7-0  
ADD<7:0>: Baud Rate Clock Divider bits  
SCLx pin clock period = ((ADD<7:0> + 1) *4)/FOSC  
10-Bit Slave mode – Most Significant Address byte:  
bit 7-3  
Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit  
pattern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits  
are compared by hardware and are not affected by the value in this register.  
bit 2-1  
bit 0  
ADD<2:1>: Two Most Significant bits of 10-bit address  
Not used: Unused in this mode. Bit state is a “don’t care”.  
10-Bit Slave mode – Least Significant Address byte:  
bit 7-0  
ADD<7:0>: Eight Least Significant bits of 10-bit address  
7-Bit Slave mode:  
bit 7-1  
bit 0  
ADD<7:1>: 7-bit address  
Not used: Unused in this mode. Bit state is a “don’t care”.  
DS41414D-page 296  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
25.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
The EUSART module includes the following capabilities:  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
• One-character output buffer  
Note:  
The PIC16(L)F1946/47 devices have two  
EUSARTs. Therefore, all information in  
this section refers to both EUSART 1 and  
EUSART 2.  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer  
independent of device program execution. The  
EUSART, also known as a Serial Communications  
Interface (SCI), can be configured as a full-duplex  
asynchronous system or half-duplex synchronous  
• Programmable clock polarity in synchronous  
modes  
• Sleep operation  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
system.  
Full-Duplex  
mode  
is  
useful  
for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 25-1 and Figure 25-2.  
FIGURE 25-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXxIE  
Interrupt  
TXxIF  
TXxREG Register  
8
TXx/CKx pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
Baud Rate Generator  
BRG16  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4  
x16 x64  
TX9D  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
SPxBRGH SPxBRGL  
2010-2012 Microchip Technology Inc.  
DS41414D-page 297  
PIC16(L)F1946/47  
FIGURE 25-2:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
RCIDL  
RXx/DTx pin  
RSR Register  
MSb  
Stop (8)  
LSb  
0
START  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
BRG16  
n
+ 1  
Multiplier x4  
x16 x64  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
FIFO  
SPxBRGH SPxBRGL  
RX9D  
FERR  
RCxREG Register  
8
Data Bus  
RCxIF  
RCxIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
• Transmit Status and Control (TXxSTA)  
• Receive Status and Control (RCxSTA)  
• Baud Rate Control (BAUDxCON)  
These registers are detailed in Register 25-1,  
Register 25-2 and Register 25-3, respectively.  
For all modes of EUSART operation, the TRIS control  
bits corresponding to the RXx/DTx and TXx/CKx pins  
should be set to ‘1’. The EUSART control will  
automatically reconfigure the pin from input to output, as  
needed.  
When the receiver or transmitter section is not enabled  
then the corresponding RXx/DTx or TXx/CKx pin may be  
used for general purpose input and output.  
DS41414D-page 298  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
25.1.1.2  
Transmitting Data  
25.1 EUSART Asynchronous Mode  
A transmission is initiated by writing a character to the  
TXxREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXxREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXxREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXxREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXxREG.  
The EUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud  
Rate Generator is used to derive standard baud rate  
frequencies from the system oscillator. See Table 25-5  
for examples of baud rate configurations.  
25.1.1.3  
Transmit Data Polarity  
The polarity of the transmit data can be controlled with  
the CKTXP bit of the BAUDxCON register. The default  
state of this bit is ‘0’ which selects high true transmit  
idle and data bits. Setting the CKTXP bit to ‘1’ will invert  
the transmit data resulting in low true idle and data bits.  
The CKTXP bit controls transmit data polarity only in  
Asynchronous mode. In Synchronous mode the  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
CKTXP bit has  
a
different function. See  
Section 25.5.1.2 “Clock Polarity”.  
25.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
25.1.1.4  
Transmit Interrupt Flag  
The TXxIF interrupt flag bit of the PIR1/PIR3 register is  
set whenever the EUSART transmitter is enabled and  
no character is being held for transmission in the  
TXxREG. In other words, the TXxIF bit is only clear  
when the TSR is busy with a character and a new  
character has been queued for transmission in the  
TXxREG. The TXxIF flag bit is not cleared immediately  
upon writing TXxREG. TXxIF becomes valid in the  
second instruction cycle following the write execution.  
Polling TXxIF immediately following the TXxREG write  
will return invalid results. The TXxIF bit is read-only, it  
cannot be set or cleared by software.  
The EUSART transmitter block diagram is shown in  
Figure 25-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXxREG register.  
25.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXxIF interrupt can be enabled by setting the  
TXxIE interrupt enable bit of the PIE1/PIE4 register.  
However, the TXxIF flag bit will be set whenever the  
TXxREG is empty, regardless of the state of TXxIE  
enable bit.  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the TXEN bit of the TXxSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXxSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCxSTA register enables the EUSART. The program-  
mer must set the corresponding TRIS bit to configure the  
TXx/CKx I/O pin as an output. If the TXx/CKx pin is  
shared with an analog peripheral, the analog I/O function  
must be disabled by clearing the corresponding ANSEL  
bit.  
To use interrupts when transmitting data, set the TXxIE  
bit only when there is more data to send. Clear the  
TXxIE interrupt enable bit upon writing the last  
character of the transmission to the TXxREG.  
Note:  
The TXxIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 299  
PIC16(L)F1946/47  
25.1.1.5  
TSR Status  
25.1.1.7  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXxSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXxREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user needs to  
poll this bit to determine the TSR status.  
1. Initialize the SPxBRGH:SPxBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 25.4 “EUSART  
Baud Rate Generator (BRG)”).  
2. Set the RXx/DTx and TXx/CKx TRIS controls to  
1’.  
3. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. If 9-bit transmission is desired, set the TX9  
control bit. A set ninth data bit will indicate that  
the 8 Least Significant data bits are an address  
when the receiver is set for address detection.  
25.1.1.6  
Transmitting 9-Bit Characters  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXxSTA register is set the  
EUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXxSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXxREG. All nine  
bits of data will be transferred to the TSR shift register  
immediately after the TXxREG is written.  
5. Set the CKTXP control bit if inverted transmit  
data polarity is desired.  
6. Enable the transmission by setting the TXEN  
control bit. This will cause the TXxIF interrupt bit  
to be set.  
7. If interrupts are desired, set the TXxIE interrupt  
enable bit. An interrupt will occur immediately  
provided that the GIE and PEIE bits of the  
INTCON register are also set.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 25.1.2.8 “Address  
Detection” for more information on the Address mode.  
8. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
9. Load 8-bit data into the TXxREG register. This  
will start the transmission.  
FIGURE 25-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXxREG  
Word 1  
BRG Output  
(Shift Clock)  
TXx/CKx pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXxIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
DS41414D-page 300  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 25-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXxREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TXx/CKx  
pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
Word 2  
1 TCY  
Word 1  
TXxIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg  
Transmit Shift Reg  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 25-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON ABDOVF  
BAUD2CON ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
SSP1IE  
WUE  
WUE  
ABDEN  
ABDEN  
IOCIF  
309  
309  
92  
INTCON  
PIE1  
GIE  
TMR0IE  
RC1IE  
RC2IE  
RC1IF  
RC2IF  
SREN  
SREN  
TMR0IF  
CCP1IE  
INTF  
TX1IE  
TX2IE  
TX1IF  
TX2IF  
CREN  
CREN  
TMR2IE  
BCL2IE  
TMR2IF  
BCL2IF  
OERR  
OERR  
TMR1IE  
SSP2IE  
TMR1IF  
SSP2IF  
RX9D  
93  
PIE4  
96  
PIR1  
ADIF  
SSP1IF  
CCP1IF  
97  
PIR4  
100  
308  
308  
310*  
310*  
310*  
310*  
302*  
307  
302*  
307  
RC1STA  
RC2STA  
SP1BRGL  
SP1BRGH  
SP2BRGL  
SP2BRGH  
TX1REG  
TX1STA  
TX2REG  
TX2STA  
SPEN  
SPEN  
RX9  
RX9  
ADDEN  
ADDEN  
FERR  
FERR  
RX9D  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
EUSART1 Transmit Register  
CSRC  
CSRC  
TX9  
TX9  
TXEN  
SYNC  
EUSART2 Transmit Register  
SYNC SENDB  
SENDB  
BRGH  
TRMT  
TRMT  
TX9D  
TX9D  
TXEN  
BRGH  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for asynchronous transmission.  
Page provides register information.  
*
2010-2012 Microchip Technology Inc.  
DS41414D-page 301  
PIC16(L)F1946/47  
25.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
25.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 25.1.2.5 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode would typically be used in  
RS-232 systems. The receiver block diagram is shown  
in Figure 25-2. The data is received on the RXx/DTx  
pin and drives the data recovery block. The data  
recovery block is actually  
a high-speed shifter  
operating at 16 times the baud rate, whereas the serial  
Receive Shift Register (RSR) operates at the bit rate.  
When all 8 or 9 bits of the character have been shifted  
in, they are immediately transferred to a two character  
First-In-First-Out (FIFO) memory. The FIFO buffering  
allows reception of two complete characters and the  
start of a third character before software must start  
servicing the EUSART receiver. The FIFO and RSR  
registers are not directly accessible by software.  
Access to the received data is via the RCxREG  
register.  
25.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCxIF interrupt  
flag bit of the PIR1/PIR3 register is set. The top charac-  
ter in the FIFO is transferred out of the FIFO by reading  
the RCxREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 25.1.2.6  
“Receive Overrun Error” for more  
information on overrun errors.  
Setting the CREN bit of the RCxSTA register enables  
the receiver circuitry of the EUSART. Clearing the SYNC  
bit of the TXxSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCxSTA register enables the EUSART. The  
programmer must set the corresponding TRIS bit to  
configure the RXx/DTx I/O pin as an input.  
25.1.2.3  
Receive Data Polarity  
The polarity of the receive data can be controlled with  
the DTRXP bit of the BAUDxCON register. The default  
state of this bit is ‘0’ which selects high true receive idle  
and data bits. Setting the DTRXP bit to ‘1’ will invert the  
receive data resulting in low true idle and data bits. The  
DTRXP bit controls receive data polarity only in  
Asynchronous mode. In synchronous mode the  
DTRXP bit has a different function.  
Note 1: If the RX/DT function is on an analog pin,  
the corresponding ANSEL bit must be  
cleared for the receiver to function.  
If the RXx/DTx pin is shared with an analog peripheral  
the analog I/O function must be disabled by clearing the  
corresponding ANSEL bit.  
DS41414D-page 302  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
25.1.2.4  
Receive Interrupts  
25.1.2.7  
Receiving 9-bit Characters  
The RCxIF interrupt flag bit of the PIR1/PIR3 register is  
set whenever the EUSART receiver is enabled and  
there is an unread character in the receive FIFO. The  
RCxIF interrupt flag bit is read-only, it cannot be set or  
cleared by software.  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCxSTA register is set, the EUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCxSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCxREG.  
RCxIF interrupts are enabled by setting the following  
bits:  
• RCxIE interrupt enable bit of the PIE1/PIE4  
register  
25.1.2.8  
Address Detection  
• PEIE peripheral interrupt enable bit of the INTCON  
register  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCxSTA  
register.  
• GIE global interrupt enable bit of the INTCON  
register  
The RCxIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCxIF interrupt  
bit. All other characters will be ignored.  
25.1.2.5  
Receive Framing Error  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCxSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCxREG.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCxSTA register which resets the EUSART.  
Clearing the CREN bit of the RCxSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCxREG will not clear the FERR  
bit.  
25.1.2.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated If a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCxSTA register is  
set. The characters already in the FIFO buffer can be  
read but no additional characters will be received until  
the error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCxSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCxSTA register.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 303  
PIC16(L)F1946/47  
25.1.2.9  
Asynchronous Reception Set-up:  
25.1.2.10 9-bit Address Detection Mode Set-up  
1. Initialize the SPxBRGH:SPxBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 25.4 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPxBRGH, SPxBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 25.4 “EUSART  
Baud Rate Generator (BRG)”).  
2. Set the RXx/DTx and TXx/CKx TRIS controls to  
1’.  
3. Enable the serial port by setting the SPEN bit  
and the RXx/DTx pin TRIS bit. The SYNC bit  
must be clear for asynchronous operation.  
2. Set the RXx/DTx and TXx/CKx TRIS controls to  
1’.  
4. If interrupts are desired, set the RCxIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
3. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
5. If 9-bit reception is desired, set the RX9 bit.  
4. If interrupts are desired, set the RCxIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
6. Set the DTRXP if inverted receive polarity is  
desired.  
7. Enable reception by setting the CREN bit.  
5. Enable 9-bit reception by setting the RX9 bit.  
8. The RCxIF interrupt flag bit will be set when a  
character is transferred from the RSR to the  
receive buffer. An interrupt will be generated if  
the RCxIE interrupt enable bit was also set.  
6. Enable address detection by setting the ADDEN  
bit.  
7. Set the DTRXP if inverted receive polarity is  
desired.  
9. Read the RCxSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
8. Enable reception by setting the CREN bit.  
9. The RCxIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the RSR to the receive buffer. An interrupt  
will be generated if the RCxIE interrupt enable  
bit was also set.  
10. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCxREG  
register.  
11. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
10. Read the RCxSTA register to get the error flags.  
The ninth data bit will always be set.  
11. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCxREG  
register. Software determines if this is the  
device’s address.  
12. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
13. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
DS41414D-page 304  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 25-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RXx/DTx pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCxREG  
Word 1  
RCxREG  
RCIDL  
Read Rcv  
Buffer Reg  
RCxREG  
RCxIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RXx/DTx input. The RCxREG (receive buffer) is read after the third  
word, causing the OERR (overrun) bit to be set.  
TABLE 25-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
INTCON  
PIE1  
ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
SSP1IE  
WUE  
WUE  
ABDEN  
ABDEN  
IOCIF  
309  
309  
92  
ABDOVF  
GIE  
TMR0IE  
RC1IE  
RC2IE  
RC1IF  
RC2IF  
TMR0IF  
CCP1IE  
INTF  
TX1IE  
TX2IE  
TX1IF  
TX2IF  
TMR2IE  
BCL2IE  
TMR2IF  
BCL2IF  
TMR1IE  
SSP2IE  
TMR1IF  
SSP2IF  
93  
PIE4  
96  
PIR1  
ADIF  
SSP1IF  
CCP1IF  
97  
PIR4  
100  
302*  
308  
302*  
308  
310*  
310*  
310*  
310*  
137  
302  
307  
RC1REG  
RC1STA  
RC2REG  
RC2STA  
SP1BRGL  
SP1BRGH  
SP2BRGL  
SP2BRGH  
TRISC  
EUSART1 Receive Register  
SREN CREN ADDEN  
EUSART2 Receive Register  
SREN CREN ADDEN  
SPEN  
SPEN  
RX9  
RX9  
FERR  
FERR  
OERR  
OERR  
RX9D  
RX9D  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
TRISC7  
CSRC  
CSRC  
TRISC6  
TX9  
TRISC5 TRISC4 TRISC3  
TRISC2  
BRGH  
BRGH  
TRISC1  
TRMT  
TRMT  
TRISC0  
TX9D  
TX1STA  
TX2STA  
TXEN  
TXEN  
SYNC  
SYNC  
SENDB  
SENDB  
TX9  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for asynchronous reception.  
Page provides register information.  
*
2010-2012 Microchip Technology Inc.  
DS41414D-page 305  
PIC16(L)F1946/47  
25.2 Clock Accuracy with  
Asynchronous Operation  
The factory calibrates the internal oscillator block  
output (HFINTOSC). However, the HFINTOSC  
frequency may drift as VDD or temperature changes,  
and this directly affects the asynchronous baud rate.  
Two methods may be used to adjust the baud rate  
clock, but both require a reference clock source of  
some kind.  
The first (preferred) method uses the OSCTUNE  
register to adjust the HFINTOSC output. Adjusting the  
value in the OSCTUNE register allows for fine resolution  
changes to the system clock source. See Section 5.2  
“Clock Source Types” for more information.  
The other method adjusts the value in the Baud Rate  
Generator. This can be done automatically with the  
Auto-Baud Detect feature (see Section 25.4.1  
“Auto-Baud Detect”). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
DS41414D-page 306  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
25.3 Register Definitions: EUSART Control  
REGISTER 25-1: TXxSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
(1)  
TXEN  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
(1)  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 307  
PIC16(L)F1946/47  
REGISTER 25-2: RCxSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCxREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
DS41414D-page 308  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 25-3: BAUDxCON: BAUD RATE CONTROL REGISTER  
R-0/0  
R-1/1  
U-0  
R/W-0/0  
SCKP  
R/W-0/0  
BRG16  
U-0  
R/W-0/0  
WUE  
R/W-0/0  
ABDEN  
ABDOVF  
RCIDL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been received and the receiver is receiving  
Synchronous mode:  
Don’t care  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
1= Transmit inverted data to the TXx/CKx pin  
0= Transmit non-inverted data to the TXx/CKx pin  
Synchronous mode:  
1= Data is clocked on rising edge of the clock  
0= Data is clocked on falling edge of the clock  
bit 3  
BRG16: 16-bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used  
0= 8-bit Baud Rate Generator is used  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= Receiver is waiting for a falling edge. No character will be received, byte RCIF will be set. WUE  
will automatically clear after RCIF is set.  
0= Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care  
2010-2012 Microchip Technology Inc.  
DS41414D-page 309  
PIC16(L)F1946/47  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
make sure that the receive operation is Idle before  
changing the system clock.  
25.4 EUSART Baud Rate Generator  
(BRG)  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the  
asynchronous and synchronous EUSART operation.  
By default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDxCON register selects 16-bit  
mode.  
EXAMPLE 25-1:  
CALCULATING BAUD  
RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The SPxBRGH:SPxBRGL register pair determines the  
period of the free running baud rate timer. In  
Asynchronous mode the multiplier of the baud rate  
period is determined by both the BRGH bit of the  
TXxSTA register and the BRG16 bit of the BAUDxCON  
register. In Synchronous mode, the BRGH bit is ignored.  
FOSC  
Desired Baud Rate = -------------------------------------------------------------------------  
64[SPxBRGH:SPxBRG] + 1  
Solving for SPxBRGH:SPxBRGL:  
FOSC  
---------------------------------------------  
Example 25-1 provides a sample calculation for deter-  
mining the desired baud rate, actual baud rate, and  
baud rate % error.  
Desired Baud Rate  
SPxBRGH: SPxBRGL = --------------------------------------------- 1  
64  
16000000  
-----------------------  
9600  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 25-5. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
= ----------------------- 1  
64  
= 25.042= 25  
16000000  
ActualBaudRate = --------------------------  
6425 + 1  
= 9615  
Writing a new value to the SPxBRGH, SPxBRGL  
register pair causes the BRG timer to be reset (or  
cleared). This ensures that the BRG does not wait for a  
timer overflow before outputting the new baud rate.  
Calc. Baud Rate Desired Baud Rate  
Baud Rate % Error =--------------------------------------------------------------------------------------------  
Desired Baud Rate  
9615 9600  
= ---------------------------------- = 0 . 1 6 %  
9600  
TABLE 25-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPxBRGH, SPxBRGL register pair  
DS41414D-page 310  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 25-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Reset  
Valueson  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
RC1STA  
ABDOVF  
ABDOVF  
SPEN  
RCIDL  
RCIDL  
RX9  
SCKP  
SCKP  
CREN  
CREN  
BRG16  
BRG16  
ADDEN  
ADDEN  
WUE  
WUE  
ABDEN  
ABDEN  
RX9D  
309  
309  
SREN  
SREN  
FERR  
FERR  
OERR  
OERR  
308  
RC2STA  
SPEN  
RX9  
RX9D  
308  
SP1BRGL  
SP1BRGH  
SP2BRGL  
SP2BRGH  
TX1STA  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
310*  
310*  
310*  
310*  
302  
CSRC  
CSRC  
TX9  
TX9  
TXEN  
TXEN  
SYNC  
SYNC  
SENDB  
SENDB  
BRGH  
BRGH  
TRMT  
TRMT  
TX9D  
TX9D  
TX2STA  
307  
Legend:  
— = unimplemented, read as ‘0’. Shaded bits are not used by the BRG.  
*
Page provides register information.  
TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 32.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPxBRGL  
SPxBRGL  
SPxBRGL  
SPxBRGL  
value  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Error  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
239  
119  
29  
27  
14  
7
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
143  
71  
17  
16  
8
1200  
2400  
9600  
10286  
19.20k  
57.60k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
2400  
9600  
10165  
19.20k  
57.60k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2404  
9615  
10417  
19.23k  
55.55k  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
3
23  
12  
2
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPxBRGL  
SPxBRGL  
value  
SPxBRGL  
value  
SPxBRGL  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
0.00  
0.00  
0.00  
0.00  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
10417  
0.00  
2
19.20k  
57.60k  
0.00  
0.00  
0
2010-2012 Microchip Technology Inc.  
DS41414D-page 311  
PIC16(L)F1946/47  
TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 32.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPxBRGL  
SPxBRGL  
SPxBRGL  
SPxBRGL  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
71  
65  
35  
11  
5
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
9615  
10417  
19.23k  
57.14k  
117.64k  
0.16  
0.00  
0.16  
-0.79  
2.12  
207  
191  
103  
34  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9615  
10417  
19.23k  
58.82k  
111.1k  
0.16  
0.00  
0.16  
2.12  
-3.55  
103  
95  
51  
16  
8
9600  
10473  
19.20k  
57.60k  
115.2k  
0.00  
0.53  
0.00  
0.00  
0.00  
16  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPxBRGL  
SPxBRGL  
value  
SPxBRGL  
value  
SPxBRGL  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
2400  
9600  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 32.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPxBRGH:  
SPxBRGH:  
SPxBRGL  
(decimal)  
SPxBRGH:  
SPxBRGL  
(decimal)  
SPxBRGH:  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
300.0  
1200.1  
2401  
0.00  
0.02  
-0.04  
0.16  
0.00  
0.16  
-0.79  
2.12  
6666  
3332  
832  
207  
191  
103  
34  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.03  
1200.5  
2398  
0.01  
0.04  
-0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
2400  
2400  
9615  
9600  
9615  
9600  
10417  
19.23k  
57.14k  
117.6k  
10378  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
58.82k  
111.11k  
10473  
19.20k  
57.60k  
115.2k  
65  
51  
35  
19  
16  
11  
16  
9
8
5
DS41414D-page 312  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPxBRGH:  
SPxBRGH:  
SPxBRGL  
(decimal)  
SPxBRGH:  
SPxBRGL  
(decimal)  
SPxBRGH:  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2404  
9615  
10417  
19.23k  
55556  
2400  
9600  
47  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
25  
12  
8
1
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 32.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPxBRGH:  
SPxBRGH:  
SPxBRGH:  
SPxBRGH:  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
300  
1200  
0.00  
0.00  
0.01  
0.04  
0.00  
-0.08  
-0.08  
0.64  
26666  
6666  
3332  
832  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200.1  
2399.5  
9592  
0.00  
0.01  
-0.02  
-0.08  
0.00  
0.16  
0.64  
-0.79  
13332  
3332  
1666  
416  
383  
207  
68  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
2400  
2400  
2400  
9604  
9600  
9600  
10417  
19.18k  
57.55k  
115.9  
767  
10425  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
57.97k  
114.29k  
10433  
19.20k  
57.60k  
115.2k  
416  
138  
68  
39  
34  
23  
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPxBRGH:  
SPxBRGH:  
SPxBRGH:  
SPxBRGH:  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
SPxBRGL  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0.00  
0.16  
-0.79  
2.12  
6666  
1666  
832  
207  
191  
103  
34  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2401  
2398  
2400  
9615  
9615  
9600  
10417  
19.23k  
57.14k  
117.6k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
23  
51  
47  
12  
16  
15  
16  
8
7
2010-2012 Microchip Technology Inc.  
DS41414D-page 313  
PIC16(L)F1946/47  
1/8th the BRG base clock rate. The resulting byte mea-  
surement is the average bit time when clocked at full  
speed.  
25.4.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud detection will occur on the byte  
following the Break character (see  
Section 25.4.3 “Auto-Wake-up on  
Break”).  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RXx signal, the RXx signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”) which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges including the Stop bit edge.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible.  
Setting the ABDEN bit of the BAUDxCON register  
starts  
the  
auto-baud  
calibration  
sequence  
(Figure 25.4.2). While the ABD sequence takes place,  
the EUSART state machine is held in Idle. On the first  
rising edge of the receive line, after the Start bit, the  
SPxBRGL begins counting up using the BRG counter  
clock as shown in Table 25-6. The fifth rising edge will  
occur on the RXx/DTx pin at the end of the eighth bit  
period. At that time, an accumulated value totaling the  
proper BRG period is left in the SPxBRGH:SPxBRGL  
register pair, the ABDEN bit is automatically cleared,  
and the RCxIF interrupt flag is set. A read operation on  
the RCxREG needs to be performed to clear the RCxIF  
interrupt. RCxREG content should be discarded. When  
calibrating for modes that do not use the SPxBRGH  
register the user can verify that the SPxBRGL register  
did not overflow by checking for 00h in the SPxBRGH  
register.  
3: During the auto-baud process, the  
auto-baud counter starts counting at 1.  
Upon completion of the auto-baud  
sequence, to achieve maximum accu-  
racy, subtract 1 from the SPxBRGH:SPx-  
BRGL register pair.  
TABLE 25-6: BRG COUNTER CLOCK  
RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
BRG16 BRGH  
0
0
0
1
FOSC/64  
FOSC/16  
FOSC/512  
FOSC/128  
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits as shown in Table 25-6. During ABD,  
both the SPxBRGH and SPxBRGL registers are used  
as a 16-bit counter, independent of the BRG16 bit set-  
ting. While calibrating the baud rate period, the  
SPxBRGH and SPxBRGL registers are clocked at  
1
1
0
1
FOSC/16  
FOSC/4  
FOSC/128  
FOSC/32  
Note:  
During the ABD sequence, SPxBRGL and  
SPxBRGH registers are both used as a  
16-bit counter, independent of BRG16  
setting.  
FIGURE 25-6:  
AUTOMATIC BAUD RATE CALIBRATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #5  
Stop bit  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
Edge #4  
bit 7  
bit 6  
RXx/DTx pin  
BRG Clock  
Start  
bit 0  
bit 2  
bit 4  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCxIF bit  
(Interrupt)  
Read  
RCxREG  
XXh  
XXh  
1Ch  
00h  
SPxBRGL  
SPxBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.  
DS41414D-page 314  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
25.4.2  
AUTO-BAUD OVERFLOW  
25.4.3.1  
Special Considerations  
During the course of automatic baud detection, the  
ABDOVF bit of the BAUDxCON register will be set if the  
baud rate counter overflows before the fifth rising edge  
is detected on the RX pin. The ABDOVF bit indicates  
that the counter has exceeded the maximum count that  
can fit in the 16 bits of the SPxBRGH:SPxBRGL  
register pair. After the ABDOVF bit has been set, the  
counter continues to count until the fifth rising edge is  
detected on the RXx/DTx pin. Upon detecting the fifth  
RXx/DTx edge, the hardware will set the RCxIF inter-  
rupt flag and clear the ABDEN bit of the BAUDxCON  
register. The RCxIF flag can be subsequently cleared  
by reading the RCxREG. The ABDOVF flag can be  
cleared by software directly.  
Break Character  
To avoid character errors or character fragments during  
a wake-up event, the wake-up character must be all  
zeros.  
When the wake-up is enabled the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be 10 or more bit times, 13-bit  
times recommended for LIN bus, or any number of bit  
times for standard RS-232 devices.  
To terminate the auto-baud process before the RCxIF  
flag is set, clear the ABDEN bit then clear the ABDOVF  
bit. The ABDOVF bit will remain set if the ABDEN bit is  
not cleared first.  
Oscillator Startup Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS/PLL mode). The Sync  
Break (or wake-up signal) character must be of  
sufficient length, and be followed by a sufficient  
interval, to allow enough time for the selected oscillator  
to start and provide proper initialization of the EUSART.  
25.4.3  
AUTO-WAKE-UP ON BREAK  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The Auto-Wake-up feature allows the  
controller to wake-up due to activity on the RXx/DTx  
line. This feature is available only in Asynchronous  
mode.  
WUE Bit  
The wake-up event causes a receive interrupt by  
setting the RCxIF bit. The WUE bit is cleared by  
hardware by a rising edge on RXx/DTx. The interrupt  
condition is then cleared by software by reading the  
RCxREG register and discarding its contents.  
The Auto-Wake-up feature is enabled by setting the  
WUE bit of the BAUDxCON register. Once set, the  
normal receive sequence on RXx/DTx is disabled, and  
the EUSART remains in an Idle state, monitoring for a  
wake-up event independent of the CPU mode. A  
wake-up event consists of a high-to-low transition on the  
RXx/DTx line. (This coincides with the start of a Sync  
Break or a wake-up signal character for the LIN  
protocol.)  
To ensure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process  
before setting the WUE bit. If a receive operation is not  
occurring, the WUE bit may then be set just prior to  
entering the Sleep mode.  
The EUSART module generates an RCxIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 25-7), and asynchronously if  
the device is in Sleep mode (Figure 25-8). The interrupt  
condition is cleared by reading the RCxREG register.  
The WUE bit is automatically cleared by the low-to-high  
transition on the RXx line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 315  
PIC16(L)F1946/47  
FIGURE 25-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3Q4  
OSC1  
Auto Cleared  
Bit set by user  
WUE bit  
RXx/DTx Line  
RCxIF  
Cleared due to User Read of RCxREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 25-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3  
Q1  
Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RXx/DTx Line  
RCxIF  
Note 1  
Cleared due to User Read of RCxREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal is  
still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
DS41414D-page 316  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
When the TXxREG becomes empty, as indicated by  
the TXxIF, the next data byte can be written to TXxREG.  
25.4.4  
BREAK CHARACTER SEQUENCE  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by 12 ‘0’ bits and a Stop bit.  
25.4.5  
RECEIVING A BREAK CHARACTER  
The Enhanced EUSART module can receive a Break  
character in two ways.  
To send a Break character, set the SENDB and TXEN  
bits of the TXxSTA register. The Break character trans-  
mission is then initiated by a write to the TXxREG. The  
value of data written to TXxREG will be ignored and all  
0’s will be transmitted.  
The first method to detect a Break character uses the  
FERR bit of the RCxSTA register and the Received  
data as indicated by RCxREG. The Baud Rate  
Generator is assumed to have been initialized to the  
expected baud rate.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
A Break character has been received when;  
• RCxIF bit is set  
• FERR bit is set  
• RCxREG = 00h  
The TRMT bit of the TXxSTA register indicates when the  
transmit operation is active or Idle, just as it does during  
normal transmission. See Figure 25-9 for the timing of  
the Break character sequence.  
The second method uses the Auto-Wake-up feature  
described in Section 25.4.3 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RXx/DTx, cause an  
RCxIF interrupt, and receive the next data byte  
followed by another interrupt.  
25.4.4.1  
Break and Sync Transmit Sequence  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDxCON register before placing the EUSART in  
Sleep mode.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXxREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXxREG to load the Sync charac-  
ter into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
FIGURE 25-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXxREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TXx/CKx (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXxIF bit  
(Transmit  
interrupt Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 317  
PIC16(L)F1946/47  
25.5.1.2  
Clock Polarity  
25.5 EUSART Synchronous Mode  
A clock polarity option is provided for Microwire  
compatibility. Clock polarity is selected with the CKTXP  
bit of the BAUDxCON register. Setting the CKTXP bit  
sets the clock Idle state as high. When the CKTXP bit  
is set, the data changes on the falling edge of each  
clock and is sampled on the rising edge of each clock.  
Clearing the CKTXP bit sets the Idle state as low. When  
the CKTXP bit is cleared, the data changes on the  
rising edge of each clock and is sampled on the falling  
edge of each clock.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary  
circuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and  
transmit shift registers. Since the data line is  
bidirectional, synchronous operation is half-duplex  
only. Half-duplex refers to the fact that master and  
slave devices can receive and transmit data but not  
both simultaneously. The EUSART can operate as  
either a master or slave device.  
25.5.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RXx/DTx  
pin. The RXx/DTx and TXx/CKx pin output drivers are  
automatically enabled when the EUSART is configured  
for synchronous master transmit operation.  
A transmission is initiated by writing a character to the  
TXxREG register. If the TSR still contains all or part of  
a previous character the new character data is held in  
the TXxREG until the last bit of the previous character  
has been transmitted. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXxREG is immediately trans-  
ferred to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXxREG.  
Start and Stop bits are not used in synchronous  
transmissions.  
25.5.1  
SYNCHRONOUS MASTER MODE  
The following bits are used to configure the EUSART  
for Synchronous Master operation:  
• SYNC = 1  
• CSRC = 1  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
Setting the SYNC bit of the TXxSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXxSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the  
RCxSTA register ensures that the device is in the  
Transmit mode, otherwise the device will be configured  
to receive. Setting the SPEN bit of the RCxSTA register  
enables the EUSART. If the RXx/DTx or TXx/CKx pins  
are shared with an analog peripheral the analog I/O  
functions must be disabled by clearing the corresponding  
ANSEL bits.  
25.5.1.4  
Data Polarity  
The polarity of the transmit and receive data can be  
controlled with the DTRXP bit of the BAUDxCON  
register. The default state of this bit is ‘0’ which selects  
high true transmit and receive data. Setting the DTRXP  
bit to ‘1’ will invert the data resulting in low true transmit  
and receive data.  
The TRIS bits corresponding to the RXx/DTx and  
TXx/CKx pins should be set.  
25.5.1.1  
Master Clock  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a master transmits the clock on the TXx/CKx line. The  
TXx/CKx pin output driver is automatically enabled when  
the EUSART is configured for synchronous transmit or  
receive operation. Serial data bits change on the leading  
edge to ensure they are valid at the trailing edge of each  
clock. One clock cycle is generated for each data bit.  
Only as many clock cycles are generated as there are  
data bits.  
DS41414D-page 318  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
4. Disable Receive mode by clearing bits SREN  
and CREN.  
25.5.1.5  
Synchronous Master Transmission  
Set-up:  
5. Enable Transmit mode by setting the TXEN bit.  
6. If 9-bit transmission is desired, set the TX9 bit.  
1. Initialize the SPxBRGH, SPxBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 25.4 “EUSART  
Baud Rate Generator (BRG)”).  
7. If interrupts are desired, set the TXxIE, GIE and  
PEIE interrupt enable bits.  
2. Set the RXx/DTx and TXx/CKx TRIS controls to  
8. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
1’.  
3. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC. Set the  
TRIS bits corresponding to the RXx/DTx and  
TXx/CKx I/O pins.  
9. Start transmission by loading data to the  
TXxREG register.  
FIGURE 25-10:  
SYNCHRONOUS TRANSMISSION  
RXx/DTx  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TXx/CKx pin  
(SCKP = 0)  
TXx/CKx pin  
(SCKP = 1)  
Write to  
TXxREG Reg  
Write Word 1  
Write Word 2  
TXxIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPxBRGL = 0, continuous transmission of two 8-bit words.  
FIGURE 25-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RXx/DTx pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TXx/CKx pin  
Write to  
TXxREG reg  
TXxIF bit  
TRMT bit  
TXEN bit  
2010-2012 Microchip Technology Inc.  
DS41414D-page 319  
PIC16(L)F1946/47  
TABLE 25-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON ABDOVF  
BAUD2CON ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
SSP1IE  
WUE  
WUE  
INTF  
ABDEN  
ABDEN  
IOCIF  
309  
309  
92  
INTCON  
PIE1  
GIE  
TMR0IE  
RC1IE  
RC2IE  
RC1IF  
RC2IF  
SREN  
SREN  
TMR0IF  
CCP1IE  
TX1IE  
TX2IE  
TX1IF  
TX2IF  
CREN  
CREN  
TMR2IE TMR1IE  
93  
PIE4  
BCL2IE  
TMR2IF  
BCL2IF  
OERR  
SSP2IE  
TMR1IF  
SSP2IF  
RX9D  
96  
PIR1  
ADIF  
SSP1IF  
CCP1IF  
97  
PIR4  
100  
308  
308  
310*  
310*  
310*  
310*  
137  
302*  
307  
302*  
307  
RC1STA  
RC2STA  
SP1BRGL  
SP1BRGH  
SP2BRGL  
SP2BRGH  
TRISC  
SPEN  
SPEN  
RX9  
RX9  
ADDEN  
ADDEN  
FERR  
FERR  
OERR  
RX9D  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
TRISC7  
CSRC  
CSRC  
TRISC6  
TX9  
TRISC5  
EUSART1 Transmit Register  
TXEN SYNC SENDB  
EUSART2 Transmit Register  
TXEN SYNC SENDB  
TRISC4  
TRISC3  
TRISC2  
BRGH  
BRGH  
TRISC1  
TRMT  
TRMT  
TRISC0  
TX9D  
TX1REG  
TX1STA  
TX2REG  
TX2STA  
TX9  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous master transmission.  
Page provides register information.  
*
DS41414D-page 320  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
If the overrun occurred when the CREN bit is set then  
the error condition is cleared by either clearing the  
CREN bit of the RCxSTA register or by clearing the  
SPEN bit which resets the EUSART.  
25.5.1.6  
Synchronous Master Reception  
Data is received at the RXx/DTx pin. The RXx/DTx pin  
output driver must be disabled by setting the  
corresponding TRIS bits when the EUSART is  
configured for synchronous master receive operation.  
25.5.1.9  
Receiving 9-bit Characters  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCxSTA register) or the Continuous Receive Enable  
bit (CREN of the RCxSTA register).  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCxSTA register is set the EUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCxSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCxREG.  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
25.5.1.10 Synchronous Master Reception  
Set-up:  
1. Initialize the SPxBRGH, SPxBRGL register pair  
for the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RXx/DTx pin on the trailing edge of the  
TXx/CKx clock pin and is shifted into the Receive Shift  
2. Set the RXx/DTx and TXx/CKx TRIS controls to  
Register (RSR). When  
a complete character is  
1’.  
received into the RSR, the RCxIF bit is set and the  
character is automatically transferred to the two  
character receive FIFO. The Least Significant eight bits  
of the top character in the receive FIFO are available in  
RCxREG. The RCxIF bit remains set as long as there  
are un-read characters in the receive FIFO.  
3. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC. Disable  
RXx/DTx and TXx/CKx output drivers by setting  
the corresponding TRIS bits.  
4. Ensure bits CREN and SREN are clear.  
5. If using interrupts, set the GIE and PEIE bits of  
the INTCON register and set RCxIE.  
25.5.1.7  
Slave Clock  
6. If 9-bit reception is desired, set bit RX9.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TXx/CKx line. The  
TXx/CKx pin output driver must be disabled by setting  
the associated TRIS bit when the device is configured  
for synchronous slave transmit or receive operation.  
Serial data bits change on the leading edge to ensure  
they are valid at the trailing edge of each clock. One data  
bit is transferred for each clock cycle. Only as many  
clock cycles should be received as there are data bits.  
7. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
8. Interrupt flag bit RCxIF will be set when recep-  
tion of a character is complete. An interrupt will  
be generated if the enable bit RCxIE was set.  
9. Read the RCxSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. Read the 8-bit received data by reading the  
RCxREG register.  
25.5.1.8  
Receive Overrun Error  
11. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCxSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCxREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCxSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCxREG.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 321  
PIC16(L)F1946/47  
FIGURE 25-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RXx/DTx  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TXx/CKx pin  
(SCKP = 0)  
TXx/CKx pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCxIF bit  
(Interrupt)  
Read  
RCxREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 25-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
INTCON  
PIE1  
ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
SSP1IE  
WUE  
WUE  
ABDEN  
ABDEN  
IOCIF  
309  
309  
92  
ABDOVF  
GIE  
TMR0IE  
RC1IE  
RC2IE  
RC1IF  
RC2IF  
TMR0IF  
CCP1IE  
INTF  
TX1IE  
TX2IE  
TX1IF  
TX2IF  
TMR2IE  
BCL2IE  
TMR2IF  
BCL2IF  
TMR1IE  
SSP2IE  
TMR1IF  
SSP2IF  
93  
PIE4  
96  
PIR1  
ADIF  
SSP1IF  
CCP1IF  
97  
PIR4  
100  
302*  
308  
302*  
308  
310*  
310*  
310*  
310*  
302  
307  
RC1REG  
RC1STA  
RC2REG  
RC2STA  
SP1BRGL  
SP1BRGH  
SP2BRGL  
SP2BRGH  
TX1STA  
TX2STA  
EUSART1 Receive Register  
CREN ADDEN  
EUSART2 Receive Register  
CREN ADDEN  
SPEN  
SPEN  
RX9  
RX9  
SREN  
FERR  
OERR  
OERR  
RX9D  
RX9D  
SREN  
FERR  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
CSRC  
CSRC  
TX9  
TX9  
TXEN  
TXEN  
SYNC  
SYNC  
SENDB  
SENDB  
BRGH  
BRGH  
TRMT  
TRMT  
TX9D  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous master reception.  
Page provides register information.  
*
DS41414D-page 322  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
If two words are written to the TXxREG and then the  
SLEEPinstruction is executed, the following will occur:  
25.5.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXxREG  
register.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
3. The TXxIF bit will not be set.  
4. After the first character has been shifted out of  
TSR, the TXxREG register will transfer the  
second character to the TSR and the TXxIF bit  
will now be set.  
Setting the SYNC bit of the TXxSTA register configures  
the device for synchronous operation. Clearing the  
CSRC bit of the TXxSTA register configures the device as  
a slave. Clearing the SREN and CREN bits of the  
RCxSTA register ensures that the device is in the  
Transmit mode, otherwise the device will be configured to  
receive. Setting the SPEN bit of the RCxSTA register  
enables the EUSART. If the RXx/DTx or TXx/CKx pins  
are shared with an analog peripheral the analog I/O  
functions must be disabled by clearing the corresponding  
ANSEL bits.  
5. If the PEIE and TXxIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
25.5.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
RXx/DTx and TXx/CKx pin output drivers must be  
disabled by setting the corresponding TRIS bits.  
2. Set the RXx/DTx and TXx/CKx TRIS controls to  
1’.  
3. Clear the CREN and SREN bits.  
25.5.2.1  
EUSART Synchronous Slave  
Transmit  
4. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXxIE bit.  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 25.5.1.3  
“Synchronous Master Transmission”), except in the  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. Enable transmission by setting the TXEN bit.  
case of the Sleep mode.  
7. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
8. Start transmission by writing the Least  
Significant 8 bits to the TXxREG register.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 323  
PIC16(L)F1946/47  
TABLE 25-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON ABDOVF  
BAUD2CON ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
SSP1IE  
WUE  
WUE  
ABDEN  
ABDEN  
IOCIF  
309  
309  
92  
INTCON  
PIE1  
GIE  
TMR0IE  
RC1IE  
RC2IE  
RC1IF  
RC2IF  
SREN  
SREN  
TMR0IF  
CCP1IE  
INTF  
TX1IE  
TX2IE  
TX1IF  
TX2IF  
CREN  
CREN  
TMR2IE  
BCL2IE  
TMR2IF  
BCL2IF  
OERR  
OERR  
TMR1IE  
SSP2IE  
TMR1IF  
SSP2IF  
RX9D  
93  
PIE4  
96  
PIR1  
ADIF  
SSP1IF  
CCP1IF  
97  
PIR4  
100  
308  
308  
310*  
310*  
310*  
310*  
137  
302*  
307  
302*  
307  
RC1STA  
RC2STA  
SP1BRGL  
SP1BRGH  
SP2BRGL  
SP2BRGH  
TRISC  
SPEN  
SPEN  
RX9  
RX9  
ADDEN  
ADDEN  
FERR  
FERR  
RX9D  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
TRISC7  
CSRC  
CSRC  
TRISC6  
TX9  
TRISC5  
EUSART1 Transmit Register  
TXEN SYNC SENDB  
EUSART2 Transmit Register  
TXEN SYNC SENDB  
TRISC4 TRISC3  
TRISC2  
TRISC1  
TRMT  
TRMT  
TRISC0  
TX9D  
TX1REG  
TX1STA  
TX2REG  
TX2STA  
BRGH  
TX9  
BRGH  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous slave transmission.  
Page provides register information.  
*
DS41414D-page 324  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
25.5.2.3  
EUSART Synchronous Slave  
Reception  
25.5.2.4  
Synchronous Slave Reception  
Set-up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 25.5.1.6 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. Set the RXx/DTx and TXx/CKx TRIS controls to  
1’.  
• Sleep  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
RCxIE bit.  
• CREN bit is always set, therefore the receiver is  
never Idle  
• SREN bit, which is a “don’t care” in Slave mode  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Set the CREN bit to enable reception.  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCxREG register. If the RCxIE enable bit is set,  
the interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
6. The RCxIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCxIE bit was set.  
7. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCxSTA  
register.  
8. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCxREG register.  
9. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCxSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 25-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
INTCON  
PIE1  
ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
SSP1IE  
WUE  
WUE  
ABDEN  
ABDEN  
IOCIF  
309  
309  
92  
ABDOVF  
GIE  
TMR0IE  
RC1IE  
RC2IE  
RC1IF  
RC2IF  
TMR0IF  
CCP1IE  
INTF  
TX1IE  
TX2IE  
TX1IF  
TX2IF  
TMR2IE  
BCL2IE  
TMR2IF  
BCL2IF  
TMR1IE  
SSP2IE  
TMR1IF  
SSP2IF  
93  
PIE4  
96  
PIR1  
ADIF  
SSP1IF  
CCP1IF  
97  
PIR4  
100  
302*  
308  
302*  
308  
310*  
310*  
310*  
310*  
302  
307  
RC1REG  
RC1STA  
RC2REG  
RC2STA  
SP1BRGL  
SP1BRGH  
SP2BRGL  
SP2BRGH  
TX1STA  
TX2STA  
EUSART1 Receive Register  
CREN ADDEN  
EUSART2 Receive Register  
CREN ADDEN  
SPEN  
SPEN  
RX9  
RX9  
SREN  
FERR  
OERR  
OERR  
RX9D  
RX9D  
SREN  
FERR  
EUSART1 Baud Rate Generator, Low Byte  
EUSART1 Baud Rate Generator, High Byte  
EUSART2 Baud Rate Generator, Low Byte  
EUSART2 Baud Rate Generator, High Byte  
CSRC  
CSRC  
TX9  
TX9  
TXEN  
TXEN  
SYNC  
SYNC  
SENDB  
SENDB  
BRGH  
BRGH  
TRMT  
TRMT  
TX9D  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous slave reception.  
Page provides register information.  
*
2010-2012 Microchip Technology Inc.  
DS41414D-page 325  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 326  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
26.0 CAPACITIVE SENSING (CPS)  
MODULE  
The Capacitive Sensing (CPS) module allows for an  
interaction with an end user without a mechanical  
interface. In a typical application, the CPS module is  
attached to a pad on a Printed Circuit Board (PCB),  
which is electrically isolated from the end user. When the  
end user places their finger over the PCB pad, a  
capacitive load is added, causing a frequency shift in the  
CPS module. The CPS module requires software and at  
least one timer resource to determine the change in  
frequency. Key features of this module include:  
• Analog MUX for monitoring multiple inputs  
• Capacitive sensing oscillator  
• Multiple power modes  
• Multiple current ranges  
• Multiple voltage reference modes  
• Software control  
• Operation during Sleep  
FIGURE 26-1:  
CAPACITIVE SENSING BLOCK DIAGRAM  
Timer0 Module  
CPSCH<3:0>  
CPSON(1)  
Set  
TMR0CS  
TMR0IF  
T0XCS  
T0CKI  
CPS0  
CPS1  
CPS2  
CPS3  
CPS4  
CPS5  
CPS6  
CPS7  
CPS8  
CPS9  
CPS10  
CPS11  
CPS12  
CPS13  
CPS14  
CPS15  
CPS16  
FOSC/4  
0
Overflow  
TMR0  
0
1
1
CPSRNG<1:0>  
CPSON  
Capacitive  
Sensing  
Oscillator  
Timer1 Module  
TMR1CS<1:0>  
CPSOSC  
FOSC  
FOSC/4  
CPSCLK  
Int.  
Ref.  
0
1
TMR1H:TMR1L  
T1OSC/  
T1CKI  
Ref-  
EN  
DAC  
Output  
T1GSEL<1:0>  
T1G  
0
Ref+  
CPSOUT  
1
FVR  
Timer1 Gate  
Control Logic  
sync_C1OUT  
sync_C2OUT  
CPSRM  
Note 1: If CPSON = 0, disabling capacitive sensing, no channel is selected.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 327  
PIC16(L)F1946/47  
FIGURE 26-2:  
CAPACITIVE SENSING OSCILLATOR BLOCK DIAGRAM  
Oscillator Module  
VDD  
(1)  
(2)  
(2)  
+
-
S
R
Q
CPSCLK  
CPSx  
(1)  
Analog Pin  
-
+
Internal  
References  
0
1
0
Ref-  
Ref+  
FVR  
1
DAC  
CPSRM  
Note 1: Module Enable and Power mode selections are not shown.  
2: Comparators remain active in Noise Detection mode.  
DS41414D-page 328  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
26.2.1  
VOLTAGE REFERENCE MODES  
26.1 Analog MUX  
The capacitive sensing oscillator uses voltage refer-  
ences to provide two voltage thresholds for oscillation.  
The upper voltage threshold is referred to as Ref+ and  
the lower voltage threshold is referred to as Ref-.  
The CPS module can monitor up to 16 inputs. The  
capacitive sensing inputs are defined as CPS<15:0>.  
To determine if a frequency change has occurred the  
user must:  
The user can elect to use fixed voltage references,  
which are internal to the capacitive sensing oscillator,  
or variable voltage references, which are supplied by  
the Fixed Voltage Reference (FVR) module and the  
Digital-to-Analog Converter (DAC) module.  
• Select the appropriate CPS pin by setting the  
appropriate CPSCH bits of the CPSCON1 regis-  
ter.  
• Set the corresponding ANSEL bit.  
• Set the corresponding TRIS bit.  
• Run the software algorithm.  
When the fixed voltage references are used, the VSS  
voltage determines the lower threshold level (Ref-) and  
the VDD voltage determines the upper threshold level  
(Ref+).  
Selection of the CPSx pin while the module is enabled  
will cause the capacitive sensing oscillator to be on the  
CPSx pin. Failure to set the corresponding ANSEL and  
TRIS bits can cause the capacitive sensing oscillator to  
stop, leading to false frequency readings.  
When the variable voltage references are used, the  
DAC voltage determines the lower threshold level  
(Ref-) and the FVR voltage determines the upper  
threshold level (Ref+). An advantage of using these ref-  
erence sources is that oscillation frequency remains  
constant with changes in VDD.  
26.2 Capacitive Sensing Oscillator  
The capacitive sensing oscillator consists of a constant  
current source and a constant current sink, to produce  
Different oscillation frequencies can be obtained  
through the use of these variable voltage references.  
The more the upper voltage reference level is lowered  
and the more the lower voltage reference level is  
raised, the higher the capacitive sensing oscillator  
frequency becomes.  
a
triangle waveform. The CPSOUT bit of the  
CPSCON0 register shows the status of the capacitive  
sensing oscillator, whether it is a sinking or sourcing  
current. The oscillator is designed to drive a capacitive  
load (single PCB pad) and at the same time, be a clock  
source to either Timer0 or Timer1. The oscillator has  
three different current settings as defined by  
CPSRNG<1:0> of the CPSCON0 register. The different  
current settings for the oscillator serve two purposes:  
Selection between the voltage references is controlled  
by the CPSRM bit of the CPSCON0 register. Setting  
this bit selects the variable voltage references and  
clearing this bit selects the fixed voltage references.  
• Maximize the number of counts in a timer for a  
fixed time base.  
Please see Section 14.0 “Fixed Voltage Reference  
(FVR)” and Section 17.0 “Digital-to-Analog Converter  
(DAC) Module” for more information on configuring the  
variable voltage levels.  
• Maximize the count differential in the timer during  
a change in frequency.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 329  
PIC16(L)F1946/47  
The remaining mode is a Noise Detection mode that  
resides within the high range. The Noise Detection  
mode is unique in that it disables the sinking and sourc-  
ing of current on the analog pin but leaves the rest of  
the oscillator circuitry active. This reduces the oscilla-  
tion frequency on the analog pin to zero and also  
greatly reduces the current consumed by the oscillator  
module.  
26.2.2  
CURRENT RANGES  
The capacitive sensing oscillator can operate in one of  
seven different power modes. The power modes are  
separated into two ranges; the low range and the high  
range.  
When the oscillator’s low range is selected, the fixed  
internal voltage references of the capacitive sensing  
oscillator are being used. When the oscillator’s high  
range is selected, the variable voltage references  
supplied by the FVR and DAC modules are being used.  
Selection between the voltage references is controlled  
by the CPSRM bit of the CPSCON0 register. See  
Section 26.2.1 “Voltage Reference Modes” for more  
information.  
When noise is introduced onto the pin, the oscillator is  
driven at the frequency determined by the noise. This  
produces a detectable signal at the comparator output,  
indicating the presence of activity on the pin.  
Figure 26-2 shows a more detailed drawing of the  
current sources and comparators associated with the  
oscillator.  
Within each range there are three distinct Power modes;  
low, medium and high. Current consumption is dependent  
upon the range and mode selected. Selecting Power  
modes within each range is accomplished by configuring  
the CPSRNG <1:0> bits in the CPSCON0 register. See  
Table 26-1 for proper Power mode selection.  
TABLE 26-1: POWER MODE SELECTION  
CPSRM  
Range  
CPSRNG<1:0>  
Current Range  
Nominal Current(1)  
00  
01  
10  
11  
00  
01  
10  
11  
Noise Detection  
Low  
0.0 A  
9 A  
1
High  
Medium  
High  
30 A  
100 A  
0.0 A  
0.25 A  
1.5 A  
7.5 A  
Off  
Low  
0
Low  
Medium  
High  
Note 1: See Section 30.0 “Electrical Specifications” for more information.  
26.2.3 TIMER RESOURCES 26.2.4.1 Timer0  
To measure the change in frequency of the capacitive  
sensing oscillator, a fixed time base is required. For the  
period of the fixed time base, the capacitive sensing  
oscillator is used to clock either Timer0 or Timer1. The  
frequency of the capacitive sensing oscillator is equal  
to the number of counts in the timer divided by the  
period of the fixed time base.  
To select Timer0 as the timer resource for the CPS  
module:  
• Set the T0XCS bit of the CPSCON0 register.  
• Clear the TMR0CS bit of the OPTION_REG  
register.  
When Timer0 is chosen as the timer resource, the  
capacitive sensing oscillator will be the clock source for  
Timer0. Refer to Section 20.0 “Timer0 Module” for  
additional information.  
26.2.4  
FIXED TIME BASE  
To measure the frequency of the capacitive sensing  
oscillator, a fixed time base is required. Any timer  
resource or software loop can be used to establish the  
fixed time base. It is up to the end user to determine the  
method in which the fixed time base is generated.  
Note:  
The fixed time base can not be generated  
by the timer resource that the capacitive  
sensing oscillator is clocking.  
DS41414D-page 330  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
26.2.4.2  
Timer1  
26.2.5.2  
Reduced Frequency (additional  
capacitive load)  
To select Timer1 as the timer resource for the CPS  
module, set the TMR1CS<1:0> of the T1CON register  
to ‘11’. When Timer1 is chosen as the timer resource,  
the capacitive sensing oscillator will be the clock  
source for Timer1. Because the Timer1 module has a  
gate control, developing a time base for the frequency  
measurement can be simplified by using the Timer0  
overflow flag.  
The extra capacitive load will cause the frequency of the  
capacitive sensing oscillator to decrease. To determine  
the reduced frequency of the capacitive sensing  
oscillator:  
• Add a typical capacitive load on the selected  
CPSx pin.  
• Use the same fixed time base as the nominal  
frequency measurement.  
It is recommend that the Timer0 overflow flag, in  
conjunction with the Toggle mode of the Timer1 Gate, be  
used to develop the fixed time base required by the soft-  
ware portion of the CPS module. Refer to Section 21.11  
“Register Definitions: Timer1 Control” for additional  
information.  
• At the start of the fixed time base, clear the timer  
resource.  
• At the end of the fixed time base save the value in  
the timer resource.  
The value of the timer resource is the number of oscil-  
lations of the capacitive sensing oscillator with an addi-  
tional capacitive load. The frequency of the capacitive  
sensing oscillator is equal to the number of counts on  
in the timer divided by the period of the fixed time base.  
This frequency should be less than the value obtained  
during the nominal frequency measurement.  
TABLE 26-2: TIMER1 ENABLE FUNCTION  
TMR1ON  
TMR1GE  
Timer1 Operation  
0
0
1
0
1
0
Off  
Off  
On  
26.2.5.3  
Frequency Threshold  
1
1
Count Enabled by input  
The frequency threshold should be placed midway  
between the value of nominal frequency and the  
reduced frequency of the capacitive sensing oscillator.  
Refer to Application Note AN1103, “Software Handling  
for Capacitive Sensing” (DS01103) for more detailed  
information on the software required for CPS module.  
26.2.5  
SOFTWARE CONTROL  
The software portion of the CPS module is required to  
determine the change in frequency of the capacitive  
sensing oscillator. This is accomplished by the  
following:  
• Setting a fixed time base to acquire counts on  
Timer0 or Timer1.  
Note:  
For more information on general capacitive  
sensing refer to Application Notes:  
• Establishing the nominal frequency for the  
capacitive sensing oscillator.  
• AN1101, Introduction to Capacitive  
Sensing” (DS01101)  
• Establishing the reduced frequency for the capac-  
itive sensing oscillator due to an additional capac-  
itive load.  
• AN1102, Layout and Physical  
Design Guidelines for Capacitive  
Sensing” (DS01102)  
• Set the frequency threshold.  
26.2.5.1  
Nominal Frequency  
(No Capacitive Load)  
To determine the nominal frequency of the capacitive  
sensing oscillator:  
• Remove any extra capacitive load on the selected  
CPSx pin.  
• At the start of the fixed time base, clear the timer  
resource.  
• At the end of the fixed time base save the value in  
the timer resource.  
The value of the timer resource is the number of  
oscillations of the capacitive sensing oscillator for the  
given time base. The frequency of the capacitive  
sensing oscillator is equal to the number of counts on  
in the timer divided by the period of the fixed time base.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 331  
PIC16(L)F1946/47  
26.3 Operation during Sleep  
The capacitive sensing oscillator will continue to run as  
long as the module is enabled, independent of the part  
being in Sleep. In order for the software to determine if  
a frequency change has occurred, the part must be  
awake. However, the part does not have to be awake  
when the timer resource is acquiring counts.  
Note:  
Timer0 does not operate when in Sleep,  
and therefore cannot be used for  
capacitive sense measurements in Sleep.  
DS41414D-page 332  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
26.4 Register Definitions: Capacitive Sensing Control  
REGISTER 26-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0  
R/W-0/0  
CPSON  
R/W-0/0  
CPSRM  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R-0/0  
R/W-0/0  
T0XCS  
CPSRNG<1:0>  
CPSOUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7  
bit 6  
CPSON: CPS Module Enable bit  
1= CPS module is enabled  
0= CPS module is disabled  
CPSRM: Capacitive Sensing Reference Mode bit  
1= CPS module is in high range. DAC and FVR provide oscillator voltage references.  
0= CPS module is in the low range. Internal oscillator voltage references are used.  
bit 5-4  
bit 3-2  
Unimplemented: Read as ‘0’  
CPSRNG<1:0>: Capacitive Sensing Current Range bits  
If CPSRM = 0(low range):  
11= Oscillator is in High Range. Charge/Discharge Current is nominally 18 µA  
10= Oscillator is in Medium Range. Charge/Discharge Current is nominally 1.2 µA  
01= Oscillator is in Low Range. Charge/Discharge Current is nominally 0.1 µA  
00= Oscillator is off  
If CPSRM = 1(high range):  
11= Oscillator is in High Range. Charge/Discharge Current is nominally 100 µA  
10= Oscillator is in Medium Range. Charge/Discharge Current is nominally 30 µA  
01= Oscillator is in Low Range. Charge/Discharge Current is nominally 9 µA  
00= Oscillator is on. Noise Detection mode. No Charge/Discharge current is supplied.  
bit 1  
bit 0  
CPSOUT: Capacitive Sensing Oscillator Status bit  
1= Oscillator is sourcing current (Current flowing out of the pin)  
0= Oscillator is sinking current (Current flowing into the pin)  
T0XCS: Timer0 External Clock Source Select bit  
If TMR0CS = 1:  
The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0:  
1= Timer0 clock source is the capacitive sensing oscillator  
0= Timer0 clock source is the T0CKI pin  
If TMR0CS = 0:  
Timer0 clock source is controlled by the core/Timer0 module and is FOSC/4  
2010-2012 Microchip Technology Inc.  
DS41414D-page 333  
PIC16(L)F1946/47  
REGISTER 26-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CPSCH<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CPSCH<4:0>: Capacitive Sensing Channel Select bits  
If CPSON = 0:  
These bits are ignored. No channel is selected.  
If CPSON = 1:  
00000= channel 0, (CPS0)  
00001= channel 1, (CPS1)  
00010= channel 2, (CPS2)  
00011= channel 3, (CPS3)  
00100= channel 4, (CPS4)  
00101= channel 5, (CPS5)  
00110= channel 6, (CPS6)  
00111= channel 7, (CPS7)  
01000= channel 8, (CPS8)  
01001= channel 9, (CPS9)  
01010= channel 10, (CPS10)  
01011= channel 11, (CPS11)  
01100= channel 12, (CPS12)  
01101= channel 13, (CPS13)  
01110= channel 14, (CPS14)  
01111= channel 15, (CPS15)  
10000= channel 16, (CPS16)  
10001= Reserved. Do not use.  
.
.
.
11111= Reserved. Do not use.  
TABLE 26-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
on Page  
ANSELA  
CPSON  
CPSRM  
ANSA5  
ANSA4  
ANSA3  
ANSA2  
ANSA1  
ANSA0  
T0XCS  
132  
CPSRNG<1:0>  
CPSOUT  
CPSCON0  
CPSCON1  
333  
CPSCH<4:0>  
PS2  
334  
OPTION_REG WPUEN  
INTEDG  
TMR0CS  
TMR0SE  
PSA  
PS1  
PS0  
197  
T1CON  
TRISA  
TRISB  
TRISD  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN T1SYNC  
TMR1ON  
TRISA0  
TRISB0  
207  
TRISA7  
TRISB7  
TRISA6  
TRISB6  
TRISA5  
TRISB5  
TRISA4  
TRISB4  
TRISA3  
TRISB3  
TRISA2  
TRISB2  
TRISA1  
TRISB1  
131  
134  
TRISD<7:0>  
140  
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the CPS module.  
DS41414D-page 334  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
27.1 LCD Registers  
27.0 LIQUID CRYSTAL DISPLAY  
(LCD) DRIVER MODULE  
The module contains the following registers:  
The Liquid Crystal Display (LCD) driver module  
generates the timing control to drive a static or  
multiplexed LCD panel. In the PIC16(L)F1946/47  
device, the module drives the panels of up to four  
commons and up to 46 segments. The LCD module  
also provides control of the LCD pixel data.  
• LCD Control register (LCDCON)  
• LCD Phase register (LCDPS)  
• LCD Reference Ladder register (LCDRL)  
• LCD Contrast Control register (LCDCST)  
• LCD Reference Voltage Control register  
(LCDREF)  
The LCD driver module supports:  
• Up to 6 LCD Segment Enable registers (LCDSEn)  
• Up to 24 LCD data registers (LCDDATAn)  
• Direct driving of LCD panel  
• Three LCD clock sources with selectable prescaler  
• Up to four common pins:  
- Static (1 common)  
- 1/2 multiplex (2 commons)  
- 1/3 multiplex (3 commons)  
- 1/4 multiplex (4 commons)  
• Segment pins up to:  
- 64 (PIC16(L)F1946/47)  
• Static, 1/2 or 1/3 LCD Bias  
FIGURE 27-1:  
LCD DRIVER MODULE BLOCK DIAGRAM  
SEG<23:0>  
LCDDATAx  
Registers  
Data Bus  
(1)  
MUX  
To I/O Pads  
Timing Control  
LCDCON  
LCDPS  
COM<3:0>  
(1)  
To I/O Pads  
LCDSEn  
FOSC/256  
Clock Source  
Select and  
Prescaler  
T1OSC  
LFINTOSC  
Note 1: These are not directly connected to the I/O pads, but may be tri-stated, depending on the configuration of  
the LCD module.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 335  
PIC16(L)F1946/47  
TABLE 27-1: LCD SEGMENT AND DATA  
REGISTERS  
# of LCD Registers  
Device  
Segment  
Enable  
Data  
PIC16(L)F1946/47  
6
24  
The LCDCON register (Register 27-1) controls the  
operation of the LCD driver module. The LCDPS regis-  
ter (Register 27-2) configures the LCD clock source  
prescaler and the type of waveform; Type-A or Type-B.  
The LCDSEn registers (Register 27-5) configure the  
functions of the port pins.  
The following LCDSEn registers are available:  
• LCDSE0 SE<7:0>  
• LCDSE1 SE<15:8>  
LCDSE2 SE<23:16>(1)  
• LCDSE3 SE<31:24>  
• LCDSE4 SE<39:32>  
• LCDSE5 SE<45:40>  
Once the module is initialized for the LCD panel, the  
individual bits of the LCDDATAn registers are  
cleared/set to represent a clear/dark pixel, respectively:  
• LCDDATA0 SEG<7:0>COM0  
• LCDDATA1 SEG<15:8>COM0  
• LCDDATA2 SEG<23:16>COM0  
• LCDDATA3 SEG<7:0>COM1  
• LCDDATA4 SEG<15:8>COM1  
• LCDDATA5 SEG<23:16>COM1  
• LCDDATA6 SEG<7:0>COM2  
• LCDDATA7 SEG<15:8>COM2  
• LCDDATA8 SEG<23:16>COM2  
• LCDDATA9 SEG<7:0>COM3  
• LCDDATA10 SEG<15:8>COM3  
• LCDDATA11 SEG<23:16>COM3  
• LCDDATA12 SEG<31:24>COM0  
• LCDDATA13 SEG<39:32>COM0  
• LCDDATA14 SEG<45:40>COM0  
• LCDDATA15 SEG<31:24>COM1  
• LCDDATA16 SEG<39:32>COM1  
• LCDDATA17 SEG<45:40>COM1  
• LCDDATA18 SEG<31:24>COM2  
• LCDDATA19 SEG<39:32>COM2  
• LCDDATA20 SEG<45:40>COM2  
• LCDDATA21 SEG<31:24>COM3  
• LCDDATA22 SEG<39:32>COM3  
• LCDDATA23 SEG<45:40>COM3  
As an example, LCDDATAn is detailed in  
Register 27-6.  
Once the module is configured, the LCDEN bit of the  
LCDCON register is used to enable or disable the LCD  
module. The LCD panel can also operate during Sleep  
by clearing the SLPEN bit of the LCDCON register.  
DS41414D-page 336  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
27.2 Register Definitions: Liquid Crystal Display (LCD) Control  
REGISTER 27-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER  
R/W-0/0  
LCDEN  
R/W-0/0  
SLPEN  
R/C-0/0  
WERR  
U-0  
R/W-0/0  
R/W-0/0  
R/W-1/1  
R/W-1/1  
CS<1:0>  
LMUX<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
bit 5  
LCDEN: LCD Driver Enable bit  
1= LCD driver module is enabled  
0= LCD driver module is disabled  
SLPEN: LCD Driver Enable in Sleep Mode bit  
1= LCD driver module is disabled in Sleep mode  
0= LCD driver module is enabled in Sleep mode  
WERR: LCD Write Failed Error bit  
1 = LCDDATAn register written while the WA bit of the LCDPS register = 0 (must be cleared in  
software)  
0= No LCD write error  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
CS<1:0>: Clock Source Select bits  
00= FOSC/256  
01= T1OSC (Timer1)  
1x= LFINTOSC (31 kHz)  
bit 1-0  
LMUX<1:0>: Commons Select bits  
Maximum Number of Pixels  
LMUX<1:0>  
Multiplex  
Bias  
PIC16F1946/47/  
PIC16LF1946/47  
00  
01  
10  
11  
Static (COM0)  
1/2 (COM<1:0>)  
1/3 (COM<2:0>)  
1/4 (COM<3:0>)  
46  
92  
Static  
1/2 or 1/3  
1/2 or 1/3  
1/3  
138  
184  
2010-2012 Microchip Technology Inc.  
DS41414D-page 337  
PIC16(L)F1946/47  
REGISTER 27-2: LCDPS: LCD PHASE REGISTER  
R/W-0/0  
WFT  
R/W-0/0  
BIASMD  
R-0/0  
LCDA  
R-0/0  
WA  
R/W-0/0  
R/W-0/0  
R/W-1/1  
R/W-1/1  
bit 0  
LP<3:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
WFT: Waveform Type bit  
1= Type-B phase changes on each frame boundary  
0= Type-A phase changes within each common type  
BIASMD: Bias Mode Select bit  
When LMUX<1:0> = 00:  
0= Static Bias mode (do not set this bit to ‘1’)  
When LMUX<1:0> = 01:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 10:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 11:  
0= 1/3 Bias mode (do not set this bit to ‘1’)  
LCDA: LCD Active Status bit  
bit 5  
1= LCD driver module is active  
0= LCD driver module is inactive  
bit 4  
WA: LCD Write Allow Status bit  
1= Writing to the LCDDATAn registers is allowed  
0= Writing to the LCDDATAn registers is not allowed  
bit 3-0  
LP<3:0>: LCD Prescaler Selection bits  
1111= 1:16  
1110= 1:15  
1101= 1:14  
1100= 1:13  
1011= 1:12  
1010= 1:11  
1001= 1:10  
1000= 1:9  
0111= 1:8  
0110= 1:7  
0101= 1:6  
0100= 1:5  
0011= 1:4  
0010= 1:3  
0001= 1:2  
0000= 1:1  
DS41414D-page 338  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 27-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER  
R/W-0/0  
LCDIRE  
R/W-0/0  
LCDIRS  
R/W-0/0  
LCDIRI  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
VLCD3PE  
VLCD2PE  
VLCD1PE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
LCDIRE: LCD Internal Reference Enable bit  
1= Internal LCD Reference is enabled and connected to the Internal Contrast Control circuit  
0= Internal LCD Reference is disabled  
LCDIRS: LCD Internal Reference Source bit  
If LCDIRE = 1:  
0= Internal LCD Contrast Control is powered by VDD  
1= Internal LCD Contrast Control is powered by a 3.072V output of the FVR.  
If LCDIRE = 0:  
Internal LCD Contrast Control is unconnected. LCD bandgap buffer is disabled.  
bit 5  
LCDIRI: LCD Internal Reference Ladder Idle Enable bit  
Allows the Internal FVR buffer to shut down when the LCD Reference Ladder is in power mode ‘B’  
1= When the LCD Reference Ladder is in power mode ‘B’, the LCD Internal FVR buffer is disabled.  
0= The LCD Internal FVR Buffer ignores the LCD Reference Ladder Power mode.  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
VLCD3PE: VLCD3 Pin Enable bit  
1= The VLCD3 pin is connected to the internal bias voltage LCDBIAS3(1)  
0= The VLCD3 pin is not connected  
bit 2  
bit 1  
bit 0  
VLCD2PE: VLCD2 Pin Enable bit  
1= The VLCD2 pin is connected to the internal bias voltage LCDBIAS2(1)  
0= The VLCD2 pin is not connected  
VLCD1PE: VLCD1 Pin Enable bit  
1= The VLCD1 pin is connected to the internal bias voltage LCDBIAS1(1)  
0= The VLCD1 pin is not connected  
Unimplemented: Read as ‘0’  
Note 1: Normal pin controls of TRISx and ANSELx are unaffected.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 339  
PIC16(L)F1946/47  
REGISTER 27-4: LCDCST: LCD CONTRAST CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
LCDCST<2:0>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LCDCST<2:0>: LCD Contrast Control bits  
Selects the resistance of the LCD contrast control resistor ladder  
Bit Value = Resistor ladder  
000= Minimum resistance (maximum contrast). Resistor ladder is shorted.  
001= Resistor ladder is at 1/7th of maximum resistance  
010= Resistor ladder is at 2/7th of maximum resistance  
011= Resistor ladder is at 3/7th of maximum resistance  
100= Resistor ladder is at 4/7th of maximum resistance  
101= Resistor ladder is at 5/7th of maximum resistance  
110= Resistor ladder is at 6/7th of maximum resistance  
111= Resistor ladder is at maximum resistance (minimum contrast).  
DS41414D-page 340  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
REGISTER 27-5: LCDSEn: LCD SEGMENT ENABLE REGISTERS  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
SEn: Segment Enable bits  
1= Segment function of the pin is enabled  
0= I/O function of the pin is enabled  
REGISTER 27-6: LCDDATAn: LCD DATA REGISTERS  
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u  
SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
SEGx-COMy: Pixel On bits  
1= Pixel on (dark)  
0= Pixel off (clear)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 341  
PIC16(L)F1946/47  
Using bits CS<1:0> of the LCDCON register can select  
any of these clock sources.  
27.3 LCD Clock Source Selection  
The LCD module has 3 possible clock sources:  
27.3.1  
LCD PRESCALER  
• FOSC/256  
• T1OSC  
A 4-bit counter is available as a prescaler for the LCD  
clock. The prescaler is not directly readable or writable;  
its value is set by the LP<3:0> bits of the LCDPS register,  
which determine the prescaler assignment and prescale  
ratio.  
• LFINTOSC  
The first clock source is the system clock divided by  
256 (FOSC/256). This divider ratio is chosen to provide  
about 1 kHz output when the system clock is 8 MHz.  
The divider is not programmable. Instead, the LCD  
prescaler bits LP<3:0> of the LCDPS register are used  
to set the LCD frame clock rate.  
The prescale values are selectable from 1:1 through  
1:16.  
The second clock source is the T1OSC. This also gives  
about 1 kHz when a 32.768 kHz crystal is used with the  
Timer1 oscillator. To use the Timer1 oscillator as a  
clock source, the T1OSCEN bit of the T1CON register  
should be set.  
The third clock source is the 31 kHz LFINTOSC, which  
provides approximately 1 kHz output.  
The second and third clock sources may be used to  
continue running the LCD while the processor is in  
Sleep.  
FIGURE 27-2:  
LCD CLOCK GENERATION  
FOSC  
÷256  
To Ladder  
Power Control  
Static  
÷4  
÷2  
T1OSC 32 kHz  
Crystal Osc.  
Segment  
÷1, 2, 3, 4  
Ring Counter  
4-bit Prog  
Prescaler  
÷ 32  
Counter  
1/2  
Clock  
1/3,  
1/4  
LFINTOSC  
Nominal = 31 kHz  
LP<3:0>  
CS<1:0>  
LMUX<1:0>  
DS41414D-page 342  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 27-2: LCD BIAS VOLTAGES  
27.4 LCD Bias Voltage Generation  
Static Bias  
1/2 Bias  
1/3 Bias  
The LCD module can be configured for one of three  
bias types:  
LCD Bias 0  
LCD Bias 1  
LCD Bias 2  
LCD Bias 3  
VSS  
VSS  
VSS  
1/2 VDD  
1/2 VDD  
VLCD3  
1/3 VDD  
2/3 VDD  
VLCD3  
• Static Bias (2 voltage levels: VSS and VLCD)  
• 1/2 Bias (3 voltage levels: VSS, 1/2 VLCD and  
VLCD)  
VLCD3  
• 1/3 Bias (4 voltage levels: VSS, 1/3 VLCD,  
2/3 VLCD and VLCD)  
So that the user is not forced to place external compo-  
nents and use up to three pins for bias voltage generation,  
internal contrast control and an internal reference ladder  
are provided internally to the PIC16(L)F1946/47. Both of  
these features may be used in conjunction with the exter-  
nal VLCD<3:1> pins, to provide maximum flexibility. Refer  
to Figure 27-3.  
FIGURE 27-3:  
LCD BIAS VOLTAGE GENERATION BLOCK DIAGRAM  
LCDIRE  
LCDIRS  
LCDA  
VDD  
1.024V from  
FVR  
3.072V  
x 3  
Power Mode Switching  
(LRLAP or LRLBP)  
LCDIRE  
LCDIRS  
LCDA  
A
B
2
2
2
LCDCST<2:0>  
VLCD3PE  
LCDA  
VLCD3  
lcdbias3  
VLCD2PE  
VLCD2  
lcdbias2  
BIASMD  
VLCD1PE  
VLCD1  
lcdbias1  
lcdbias0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 343  
PIC16(L)F1946/47  
27.5.2  
POWER MODES  
27.5 LCD Bias Internal Reference  
Ladder  
The internal reference ladder may be operated in one of  
three power modes. This allows the user to trade off LCD  
contrast for power in the specific application. The larger  
the LCD glass, the more capacitance is present on a  
physical LCD segment, requiring more current to  
maintain the same contrast level.  
The internal reference ladder can be used to divide the  
LCD bias voltage two or three equally spaced voltages  
that will be supplied to the LCD segment pins. To create  
this, the reference ladder consists of three matched  
resistors. Refer to Figure 27-3.  
Three different power modes are available, LP, MP and  
HP. The internal reference ladder can also be turned off  
for applications that wish to provide an external ladder  
or to minimize power consumption. Disabling the  
internal reference ladder results in all of the ladders  
being disconnected, allowing external voltages to be  
supplied.  
27.5.1  
BIAS MODE INTERACTION  
When in 1/2 Bias mode (BIASMD = 1), then the middle  
resistor of the ladder is shorted out so that only two  
voltages are generated. The current consumption of the  
ladder is higher in this mode, with the one resistor  
removed.  
Whenever the LCD module is inactive (LCDA = 0), the  
internal reference ladder will be turned off.  
TABLE 27-3:  
LCD INTERNAL LADDER  
POWER MODES (1/3 BIAS)  
Power  
Mode  
Nominal Resistance of  
Entire Ladder  
Nominal  
IDD  
Low  
3 Mohm  
300 kohm  
30 kohm  
1 µA  
10 µA  
100 µA  
Medium  
High  
DS41414D-page 344  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
The LCDRL register allows switching between two  
power modes, designated ‘A’ and ‘B’. ‘A’ Power mode  
is active for a programmable time, beginning at the  
time when the LCD segments transition. ‘B’ Power  
mode is the remaining time before the segments or  
commons change again. The LRLAT<2:0> bits select  
how long, if any, that the ‘A’ Power mode is active.  
Refer to Figure 27-4.  
27.5.3  
AUTOMATIC POWER MODE  
SWITCHING  
As an LCD segment is electrically only a capacitor, cur-  
rent is drawn only during the interval where the voltage  
is switching. To minimize total device current, the LCD  
internal reference ladder can be operated in a different  
power mode for the transition portion of the duration.  
This is controlled by the LCDRL Register  
(Register 27-7).  
To implement this, the 5-bit prescaler used to divide  
the 32 kHz clock down to the LCD controller’s 1 kHz  
base rate is used to select the power mode.  
FIGURE 27-4:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM –  
TYPE A  
Single Segment Time  
32 kHz Clock  
Ladder Power  
Control  
‘H00 ‘H01 ‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H0E ‘H0F ‘H00 ‘H01  
Segment Clock  
LRLAT<2:0>  
‘H3  
Segment Data  
LRLAT<2:0>  
Power Mode  
COM0  
Power Mode A  
Power Mode B  
Mode A  
V1  
V0  
V1  
V0  
SEG0  
V1  
V0  
COM0-SEG0  
-V1  
2010-2012 Microchip Technology Inc.  
DS41414D-page 345  
FIGURE 27-5:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A WAVEFORM (1/2 MUX, 1/2 BIAS  
DRIVE)  
Single Segment Time  
Single Segment Time  
32 kHz Clock  
Ladder Power  
Control  
‘H00  
‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H0E ‘H0F  
‘H00 ‘H01 ‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H01  
‘H0E ‘H0F  
Segment Clock  
Segment Data  
Power Mode  
Power Mode A  
Power Mode B  
Power Mode A  
Power Mode B  
LRLAT<2:0> = 011  
LRLAT<2:0> = 011  
V
V
V
2
1
0
COM0-SEG0  
-V  
1
2
-V  
FIGURE 27-6:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE B WAVEFORM (1/2 MUX, 1/2 BIAS  
DRIVE)  
Single Segment Time  
Single Segment Time  
Single Segment Time  
Single Segment Time  
32 kHz Clock  
Ladder Power  
Control  
‘H00  
‘H02 ‘H03  
‘H0E ‘H0F ‘H10  
‘H12 ‘H13  
‘H1E ‘H1F ‘H00  
‘H02 ‘H03  
‘H0E ‘H0F ‘H10  
‘H12 ‘H13  
‘H11  
‘H1E ‘H1F  
‘H01  
‘H11  
‘H01  
Segment Clock  
Segment Data  
Power Mode  
Power Mode A  
LRLAT<2:0> 011  
Power Mode A  
LRLAT<2:0> 011  
Power  
Mode B  
Power  
Mode B  
Power  
Mode B  
Power  
Mode B  
Power Mode A  
LRLAT<2:0> 011  
Power Mode A  
LRLAT<2:0> 011  
=
=
=
=
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
PIC16(L)F1946/47  
27.6 Register Definitions: LCD Ladder Control  
REGISTER 27-7: LCDRL: LCD REFERENCE LADDER CONTROL REGISTERS  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
LRLAP<1:0>  
LRLBP<1:0>  
LRLAT<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-4  
LRLAP<1:0>: LCD Reference Ladder A Time Power Control bits  
During Time interval A (Refer to Figure 27-4):  
00= Internal LCD Reference Ladder is powered down and unconnected  
01= Internal LCD Reference Ladder is powered in Low-Power mode  
10= Internal LCD Reference Ladder is powered in Medium-Power mode  
11= Internal LCD Reference Ladder is powered in High-Power mode  
LRLBP<1:0>: LCD Reference Ladder B Time Power Control bits  
During Time interval B (Refer to Figure 27-4):  
00= Internal LCD Reference Ladder is powered down and unconnected  
01= Internal LCD Reference Ladder is powered in Low-Power mode  
10= Internal LCD Reference Ladder is powered in Medium-Power mode  
11= Internal LCD Reference Ladder is powered in High-Power mode  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
LRLAT<2:0>: LCD Reference Ladder A Time interval control bits  
Sets the number of 32 kHz clocks that the A Time interval power mode is active  
For type A waveforms (WFT = 0):  
000= Internal LCD Reference Ladder is always in ‘B’ Power mode  
001= Internal LCD Reference Ladder is in ‘A’ Power mode for 1 clock and ‘B’ Power mode for 15 clocks  
010= Internal LCD Reference Ladder is in ‘A’ Power mode for 2 clocks and ‘B’ Power mode for 14 clocks  
011= Internal LCD Reference Ladder is in ‘A’ Power mode for 3 clocks and ‘B’ Power mode for 13 clocks  
100= Internal LCD Reference Ladder is in ‘A’ Power mode for 4 clocks and ‘B’ Power mode for 12 clocks  
101= Internal LCD Reference Ladder is in ‘A’ Power mode for 5 clocks and ‘B’ Power mode for 11 clocks  
110= Internal LCD Reference Ladder is in ‘A’ Power mode for 6 clocks and ‘B’ Power mode for 10 clocks  
111= Internal LCD Reference Ladder is in ‘A’ Power mode for 7 clocks and ‘B’ Power mode for 9 clocks  
For type B waveforms (WFT = 1):  
000= Internal LCD Reference Ladder is always in ‘B’ Power mode.  
001= Internal LCD Reference Ladder is in ‘A’ Power mode for 1 clock and ‘B’ Power mode for 31 clocks  
010= Internal LCD Reference Ladder is in ‘A’ Power mode for 2 clocks and ‘B’ Power mode for 30 clocks  
011= Internal LCD Reference Ladder is in ‘A’ Power mode for 3 clocks and ‘B’ Power mode for 29 clocks  
100= Internal LCD Reference Ladder is in ‘A’ Power mode for 4 clocks and ‘B’ Power mode for 28 clocks  
101= Internal LCD Reference Ladder is in ‘A’ Power mode for 5 clocks and ‘B’ Power mode for 27 clocks  
110= Internal LCD Reference Ladder is in ‘A’ Power mode for 6 clocks and ‘B’ Power mode for 26 clocks  
111= Internal LCD Reference Ladder is in ‘A’ Power mode for 7 clocks and ‘B’ Power mode for 25 clocks  
DS41414D-page 348  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
The contrast control circuit is used to decrease the  
output voltage of the signal source by a total of  
approximately 10%, when LCDCST = 111.  
27.6.1  
CONTRAST CONTROL  
The LCD contrast control circuit consists of  
seven-tap resistor ladder, controlled by the LCDCST  
bits. Refer to Figure 27-7.  
a
Whenever the LCD module is inactive (LCDA = 0), the  
contrast control ladder will be turned off (open).  
FIGURE 27-7:  
INTERNAL REFERENCE AND CONTRAST CONTROL BLOCK DIAGRAM  
VDDIO  
7 Stages  
R
R
R
R
3.072V  
Analog  
MUX  
From FVR  
Buffer  
7
0
To top of  
Reference Ladder  
LCDCST<2:0>  
3
Internal Reference  
Contrast control  
27.6.2  
INTERNAL REFERENCE  
27.6.3  
VLCD<3:1> PINS  
Under firmware control, an internal reference for the  
LCD bias voltages can be enabled. When enabled, the  
source of this voltage can be either VDDIO or a voltage  
3 times the main fixed voltage reference (3.072V).  
When no internal reference is selected, the LCD con-  
trast control circuit is disabled and LCD bias must be  
provided externally.  
The VLCD<3:1> pins provide the ability for an external  
LCD bias network to be used instead of the internal lad-  
der. Use of the VLCD<3:1> pins does not prevent use  
of the internal ladder. Each VLCD pin has an indepen-  
dent control in the LCDREF register (Register 27-3),  
allowing access to any or all of the LCD Bias signals.  
This architecture allows for maximum flexibility in  
different applications  
Whenever the LCD module is inactive (LCDA = 0), the  
internal reference will be turned off.  
For example, the VLCD<3:1> pins may be used to add  
capacitors to the internal reference ladder, increasing  
the drive capacity.  
When the internal reference is enabled and the Fixed  
Voltage Reference is selected, the LCDIRI bit can be  
used to minimize power consumption by tieing into the  
LCD reference ladder automatic power mode switching.  
When LCDIRI = 1 and the LCD reference ladder is in  
Power mode ‘B’, the LCD internal FVR buffer is  
disabled.  
For applications where the internal contrast control is  
insufficient, the firmware can choose to only enable the  
VLCD3 pin, allowing an external contrast control circuit  
to use the internal reference divider.  
.
Note:  
The LCD module automatically turns on the  
Fixed Voltage Reference when needed.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 349  
PIC16(L)F1946/47  
27.7 LCD Multiplex Types  
27.9 Pixel Control  
The LCD driver module can be configured into one of  
four multiplex types:  
The LCDDATAx registers contain bits which define the  
state of each pixel. Each bit defines one unique pixel.  
• Static (only COM0 is used)  
Register 27-6 shows the correlation of each bit in the  
LCDDATAx registers to the respective common and  
segment signals.  
• 1/2 multiplex (COM<1:0> are used)  
• 1/3 multiplex (COM<2:0> are used)  
• 1/4 multiplex (COM<3:0> are used)  
Any LCD pixel location not being used for display can  
be used as general purpose RAM.  
The LMUX<1:0> bit setting of the LCDCON register  
decides which of the LCD common pins are used (see  
Table 27-4 for details).  
27.10 LCD Frame Frequency  
The rate at which the COM and SEG outputs change is  
called the LCD frame frequency.  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. If the pin is a COM drive,  
then the TRIS setting of that pin is overridden.  
TABLE 27-5: FRAME FREQUENCY  
TABLE 27-4: COMMON PIN USAGE  
FORMULAS  
(2)  
LMUX  
<1:0>  
Multiplex  
Frame Frequency  
=
Multiplex  
COM3  
COM2  
COM1  
COM0  
Static  
1/2  
Clock source/(4 x (LCD Prescaler) x 32 x 1))  
Clock source/(2 x (LCD Prescaler) x 32 x 2))  
Clock source/(1 x (LCD Prescaler) x 32 x 3))  
Clock source/(1 x (LCD Prescaler) x 32 x 4))  
Static  
1/2  
00  
01  
10  
11  
Unused Unused Unused Active  
Unused Unused Active  
Active  
Active  
Active  
1/3  
1/3  
Unused Active  
Active Active  
Active  
Active  
1/4  
1/4  
Note 1: Clock source is FOSC/256, T1OSC or  
LFINTOSC.  
27.8 Segment Enables  
2: See Figure 27-2.  
The LCDSEn registers are used to select the pin  
function for each segment pin. The selection allows  
each pin to operate as either an LCD segment driver or  
as one of the pin’s alternate functions. To configure the  
pin as a segment pin, the corresponding bits in the  
LCDSEn registers must be set to ‘1’.  
TABLE 27-6: APPROXIMATE FRAME  
FREQUENCY (IN Hz) USING  
FOSC @ 8 MHz, TIMER1 @  
32.768 kHz OR LFINTOSC  
LP<3:0>  
Static  
1/2  
1/3  
1/4  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. Any bit set in the LCDSEn  
registers overrides any bit settings in the corresponding  
TRIS register.  
2
3
4
5
6
7
122  
81  
61  
49  
41  
35  
122  
81  
61  
49  
41  
35  
162  
108  
81  
122  
81  
61  
49  
41  
35  
Note:  
On a Power-on Reset, these pins are  
configured as normal I/O, not LCD pins.  
65  
54  
47  
DS41414D-page 350  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 27-7: LCD SEGMENT MAPPING WORKSHEET  
LCD  
Function  
COM0  
COM1  
COM2  
LCDDATAx  
COM3  
LCDDATAx  
LCDDATAx  
LCD  
LCDDATAx  
LCD  
LCD  
LCD  
Address  
Segment  
Address  
Segment  
Address  
Segment  
Address  
Segment  
SEG0  
LCDDATA0, 0  
LCDDATA0, 1  
LCDDATA0, 2  
LCDDATA0, 3  
LCDDATA0, 4  
LCDDATA0, 5  
LCDDATA0, 6  
LCDDATA0, 7  
LCDDATA1, 0  
LCDDATA1, 1  
LCDDATA1, 2  
LCDDATA1, 3  
LCDDATA1, 4  
LCDDATA1, 5  
LCDDATA1, 6  
LCDDATA1, 7  
LCDDATA2, 0  
LCDDATA2, 1  
LCDDATA2, 2  
LCDDATA2, 3  
LCDDATA2, 4  
LCDDATA2, 5  
LCDDATA2, 6  
LCDDATA2, 7  
LCDDATA12, 0  
LCDDATA12, 1  
LCDDATA12, 2  
LCDDATA12, 3  
LCDDATA12, 4  
LCDDATA12, 5  
LCDDATA12, 6  
LCDDATA12, 7  
LCDDATA13, 0  
LCDDATA13, 1  
LCDDATA13, 2  
LCDDATA13, 3  
LCDDATA13, 4  
LCDDATA13, 5  
LCDDATA13, 6  
LCDDATA13, 7  
LCDDATA14, 0  
LCDDATA14, 1  
LCDDATA14, 2  
LCDDATA14, 3  
LCDDATA14, 4  
LCDDATA14, 5  
LCDDATA3, 0  
LCDDATA3, 1  
LCDDATA3, 2  
LCDDATA3, 3  
LCDDATA3, 4  
LCDDATA3, 5  
LCDDATA3, 6  
LCDDATA3, 7  
LCDDATA4, 0  
LCDDATA4, 1  
LCDDATA4, 2  
LCDDATA4, 3  
LCDDATA4, 4  
LCDDATA4, 5  
LCDDATA4, 6  
LCDDATA4, 7  
LCDDATA5, 0  
LCDDATA5, 1  
LCDDATA5, 2  
LCDDATA5, 3  
LCDDATA5, 4  
LCDDATA5, 5  
LCDDATA5, 6  
LCDDATA5, 7  
LCDDATA15, 0  
LCDDATA15, 1  
LCDDATA15, 2  
LCDDATA15, 3  
LCDDATA15, 4  
LCDDATA15, 5  
LCDDATA15, 6  
LCDDATA15, 7  
LCDDATA16, 0  
LCDDATA16, 1  
LCDDATA16, 2  
LCDDATA16, 3  
LCDDATA16, 4  
LCDDATA16, 5  
LCDDATA16, 6  
LCDDATA16, 7  
LCDDATA17, 0  
LCDDATA17, 1  
LCDDATA17, 2  
LCDDATA17, 3  
LCDDATA17, 4  
LCDDATA17, 5  
LCDDATA6, 0  
LCDDATA6, 1  
LCDDATA6, 2  
LCDDATA6, 3  
LCDDATA6, 4  
LCDDATA6, 5  
LCDDATA6, 6  
LCDDATA6, 7  
LCDDATA7, 0  
LCDDATA7, 1  
LCDDATA7, 2  
LCDDATA7, 3  
LCDDATA7, 4  
LCDDATA7, 5  
LCDDATA7, 6  
LCDDATA7, 7  
LCDDATA8, 0  
LCDDATA8, 1  
LCDDATA8, 2  
LCDDATA8, 3  
LCDDATA8, 4  
LCDDATA8, 5  
LCDDATA8, 6  
LCDDATA8, 7  
LCDDATA18, 0  
LCDDATA18, 1  
LCDDATA18, 2  
LCDDATA18, 3  
LCDDATA18, 4  
LCDDATA18, 5  
LCDDATA18, 6  
LCDDATA18, 7  
LCDDATA19, 0  
LCDDATA19, 1  
LCDDATA19, 2  
LCDDATA19, 3  
LCDDATA19, 4  
LCDDATA19, 5  
LCDDATA19, 6  
LCDDATA19, 7  
LCDDATA20, 0  
LCDDATA20, 1  
LCDDATA20, 2  
LCDDATA20, 3  
LCDDATA20, 4  
LCDDATA20, 5  
LCDDATA9, 0  
LCDDATA9, 1  
LCDDATA9, 2  
LCDDATA9, 3  
LCDDATA9, 4  
LCDDATA9, 5  
LCDDATA9, 6  
LCDDATA9, 7  
LCDDATA10, 0  
LCDDATA10, 1  
LCDDATA10, 2  
LCDDATA10, 3  
LCDDATA10, 4  
LCDDATA10, 5  
LCDDATA10, 6  
LCDDATA10, 7  
LCDDATA11, 0  
LCDDATA11, 1  
LCDDATA11, 2  
LCDDATA11, 3  
LCDDATA11, 4  
LCDDATA11, 5  
LCDDATA11, 6  
LCDDATA11, 7  
LCDDATA21, 0  
LCDDATA21, 1  
LCDDATA21, 2  
LCDDATA21, 3  
LCDDATA21, 4  
LCDDATA21, 5  
LCDDATA21, 6  
LCDDATA21, 7  
LCDDATA22, 0  
LCDDATA22, 1  
LCDDATA22, 2  
LCDDATA22, 3  
LCDDATA22, 4  
LCDDATA22, 5  
LCDDATA22, 6  
LCDDATA22, 7  
LCDDATA23, 0  
LCDDATA23, 1  
LCDDATA23, 2  
LCDDATA23, 3  
LCDDATA23, 4  
LCDDATA23, 5  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
2010-2012 Microchip Technology Inc.  
DS41414D-page 351  
PIC16(L)F1946/47  
The LCDs can be driven by two types of waveform:  
Type-A and Type-B. In Type-A waveform, the phase  
changes within each common type, whereas in Type-B  
waveform, the phase changes on each frame  
boundary. Thus, Type-A waveform maintains 0 VDC  
over a single frame, whereas Type-B waveform takes  
two frames.  
27.11 LCD Waveform Generation  
LCD waveforms are generated so that the net AC  
voltage across the dark pixel should be maximized and  
the net AC voltage across the clear pixel should be  
minimized. The net DC voltage across any pixel should  
be zero.  
The COM signal represents the time slice for each  
common, while the SEG contains the pixel data.  
Note 1: If Sleep has to be executed with LCD  
Sleep disabled (LCDCON<SLPEN> is  
1’), then care must be taken to execute  
Sleep only when VDC on all the pixels is  
0’.  
The pixel signal (COM-SEG) will have no DC  
component and it can take only one of the two RMS  
values. The higher RMS value will create a dark pixel  
and a lower RMS value will create a clear pixel.  
2: When the LCD clock source is FOSC/256,  
if Sleep is executed, irrespective of the  
LCDCON<SLPEN> setting, the LCD  
immediately goes into Sleep. Thus, take  
care to see that VDC on all pixels is ‘0’  
when Sleep is executed.  
As the number of commons increases, the delta  
between the two RMS values decreases. The delta  
represents the maximum contrast that the display can  
have.  
Figure 27-8 through Figure 27-18 provide waveforms  
for static, half-multiplex, 1/3-multiplex and 1/4-multiplex  
drives for Type-A and Type-B waveforms.  
FIGURE 27-8:  
TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE  
V1  
COM0 pin  
SEG0 pin  
SEG1 pin  
V0  
V1  
COM0  
V0  
V1  
V0  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
COM0-SEG1  
segment voltage  
(inactive)  
V0  
1 Frame  
DS41414D-page 352  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 27-9:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0 pin  
COM1 pin  
COM1  
V2  
V1  
V0  
COM0  
V2  
V1  
V0  
SEG0 pin  
SEG1 pin  
V2  
V1  
V0  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 353  
PIC16(L)F1946/47  
FIGURE 27-10:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM1  
COM0 pin  
COM0  
V2  
V1  
V0  
COM1 pin  
SEG0 pin  
V2  
V1  
V0  
V2  
V1  
V0  
SEG1 pin  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS41414D-page 354  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 27-11:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM1  
COM0 pin  
COM0  
COM1 pin  
SEG0 pin  
SEG1 pin  
V3  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
-V3  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 355  
PIC16(L)F1946/47  
FIGURE 27-12:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM1  
COM0 pin  
COM0  
COM1 pin  
SEG0 pin  
SEG1 pin  
V3  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
-V3  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS41414D-page 356  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 27-13:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0 pin  
V2  
V1  
V0  
COM2  
COM1 pin  
COM2 pin  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG0 and  
SEG2 pins  
V2  
V1  
V0  
SEG1 pin  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(inactive)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(active)  
-V1  
-V2  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 357  
PIC16(L)F1946/47  
FIGURE 27-14:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0 pin  
COM1 pin  
COM2 pin  
SEG0 pin  
SEG1 pin  
COM2  
V2  
V1  
V0  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(inactive)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(active)  
-V1  
-V2  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS41414D-page 358  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 27-15:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0 pin  
COM1 pin  
COM2 pin  
COM2  
COM1  
COM0  
SEG0 and  
SEG2 pins  
SEG1 pin  
COM0-SEG0  
segment voltage  
(inactive)  
COM0-SEG1  
segment voltage  
(active)  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 359  
PIC16(L)F1946/47  
FIGURE 27-16:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0 pin  
COM1 pin  
COM2 pin  
SEG0 pin  
SEG1 pin  
COM2  
COM1  
COM0  
COM0-SEG0  
segment voltage  
(inactive)  
COM0-SEG1  
segment voltage  
(active)  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS41414D-page 360  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 27-17:  
COM3  
TYPE-A WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
V
V
V
V
3
2
1
0
COM0 pin  
COM1 pin  
COM2  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2 pin  
COM3 pin  
SEG0 pin  
SEG1 pin  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
segment voltage  
(active)  
1
2
3
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG1  
segment voltage  
(inactive)  
1
2
3
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 361  
PIC16(L)F1946/47  
FIGURE 27-18:  
TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
COM3  
V
V
V
V
3
2
1
0
COM0 pin  
COM1 pin  
COM2  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2 pin  
COM3 pin  
SEG0 pin  
SEG1 pin  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
segment voltage  
(active)  
1
2
3
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG1  
segment voltage  
(inactive)  
1
2
3
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS41414D-page 362  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
27.12 LCD Interrupts  
The LCD module provides an interrupt in two cases. An  
interrupt when the LCD controller goes from active to  
inactive controller. An interrupt also provides unframe  
boundaries for Type B waveform. The LCD timing gen-  
eration provides an interrupt that defines the LCD  
frame timing.  
27.12.1 LCD INTERRUPT ON MODULE  
SHUTDOWN  
An LCD interrupt is generated when the module  
completes shutting down (LCDA goes from ‘1’ to ‘0’).  
27.12.2 LCD FRAME INTERRUPTS  
A new frame is defined to begin at the leading edge of  
the COM0 common signal. The interrupt will be set  
immediately after the LCD controller completes access-  
ing all pixel data required for a frame. This will occur at  
a fixed interval before the frame boundary (TFINT), as  
shown in Figure 27-19. The LCD controller will begin to  
access data for the next frame within the interval from  
the interrupt to when the controller begins to access  
data after the interrupt (TFWR). New data must be writ-  
ten within TFWR, as this is when the LCD controller will  
begin to access the data for the next frame.  
When the LCD driver is running with Type-B waveforms  
and the LMUX<1:0> bits are not equal to ‘00’ (static  
drive), there are some additional issues that must be  
addressed. Since the DC voltage on the pixel takes two  
frames to maintain zero volts, the pixel data must not  
change between subsequent frames. If the pixel data  
were allowed to change, the waveform for the odd  
frames would not necessarily be the complement of the  
waveform generated in the even frames and a DC  
component would be introduced into the panel.  
Therefore, when using Type-B waveforms, the user  
must synchronize the LCD pixel updates to occur within  
a subframe after the frame interrupt.  
To correctly sequence writing while in Type-B, the  
interrupt will only occur on complete phase intervals. If  
the user attempts to write when the write is disabled,  
the WERR bit of the LCDCON register is set and the  
write does not occur.  
Note: The LCD frame interrupt is not generated  
when the Type-A waveform is selected  
and when the Type-B with no multiplex  
(static) is selected.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 363  
PIC16(L)F1946/47  
FIGURE 27-19:  
WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE  
(EXAMPLE – TYPE-B, NON-STATIC)  
LCD  
Interrupt  
Occurs  
Controller Accesses  
Next Frame Data  
V
V
V
V
3
2
1
0
COM0  
COM1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
COM2  
COM3  
V
V
V
V
3
2
1
0
2 Frames  
TFINT  
TFWR  
Frame  
Frame  
Frame  
Boundary  
Boundary  
Boundary  
TFWR = TFRAME/2*(LMUX<1:0> + 1) + TCY/2  
TFINT = (TFWR/2 – (2 TCY + 40 ns)) minimum = 1.5(TFRAME/4) – (2 TCY + 40 ns)  
(TFWR/2 – (1 TCY + 40 ns)) maximum = 1.5(TFRAME/4) – (1 TCY + 40 ns)  
DS41414D-page 364  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
Table 27-8 shows the status of the LCD module during  
a Sleep while using each of the three available clock  
sources.  
27.13 Operation During Sleep  
The LCD module can operate during Sleep. The  
selection is controlled by bit SLPEN of the LCDCON  
register. Setting the SLPEN bit allows the LCD module  
to go to Sleep. Clearing the SLPEN bit allows the  
module to continue to operate during Sleep.  
Note:  
When the LCDEN bit is cleared, the LCD  
module will be disabled at the completion  
of frame. At this time, the port pins will  
revert to digital functionality. To minimize  
power consumption due to floating digital  
inputs, the LCD pins should be driven low  
using the PORT and TRIS registers.  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will cease all functions and go into a very  
low-current Consumption mode. The module will stop  
operation immediately and drive the minimum LCD  
voltage on both segment and common lines.  
Figure 27-20 shows this operation.  
If a SLEEPinstruction is executed and SLPEN = 0, the  
module will continue to display the current contents of  
the LCDDATA registers. To allow the module to  
continue operation while in Sleep, the clock source  
must be either the LFINTOSC or T1OSC external  
oscillator. While in Sleep, the LCD data cannot be  
changed. The LCD module current consumption will  
not decrease in this mode; however, the overall  
consumption of the device will be lower due to shut  
down of the core and other peripheral functions.  
The LCD module can be configured to operate during  
Sleep. The selection is controlled by bit SLPEN of the  
LCDCON register. Clearing SLPEN and correctly con-  
figuring the LCD module clock will allow the LCD mod-  
ule to operate during Sleep. Setting SLPEN and  
correctly executing the LCD module shutdown will  
disable the LCD module during Sleep and save power.  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will immediately cease all functions, drive  
the outputs to Vss and go into a very low-current mode.  
The SLEEP instruction should only be executed after  
the LCD module has been disabled and the current  
cycle completed, thus ensuring that there are no DC  
voltages on the glass. To disable the LCD module,  
clear the LCDEN bit. The LCD module will complete the  
disabling process after the current frame, clear the  
LCDA bit and optionally cause an interrupt.  
Table 27-8 shows the status of the LCD module during  
Sleep while using each of the three available clock  
sources:  
TABLE 27-8: LCD MODULE STATUS  
DURING SLEEP  
Operational  
During Sleep  
Clock Source  
T1OSC  
SLPEN  
0
1
0
1
0
1
Yes  
No  
Yes  
No  
No  
No  
The steps required to properly enter Sleep with the  
LCD disabled are:  
• Clear LCDEN  
LFINTOSC  
FOSC/4  
• Wait for LCDA = 0either by polling or by interrupt  
• Execute SLEEP  
If SLPEN = 0 and SLEEP is executed while the LCD  
module clock source is FOSC/4, then the LCD module  
will halt with the pin driving the last LCD voltage pat-  
tern. Prolonged exposure to a fixed LCD voltage pat-  
tern will cause damage to the LCD glass. To prevent  
LCD glass damage, either perform the proper LCD  
module shutdown prior to Sleep, or change the LCD  
module clock to allow the LCD module to continue  
operation during Sleep.  
Note:  
The LFINTOSC or external T1OSC  
oscillator must be used to operate the  
LCD module during Sleep.  
If LCD interrupts are being generated (Type-B wave-  
form with a multiplex mode not static) and LCDIE = 1,  
the device will awaken from Sleep on the next frame  
boundary.  
If a SLEEPinstruction is executed and SLPEN = 0and  
the LCD module clock is either T1OSC or LFINTOSC,  
the module will continue to display the current contents  
of the LCDDATA registers. While in Sleep, the LCD  
data cannot be changed. If the LCDIE bit is set, the  
device will wake from Sleep on the next LCD frame  
boundary. The LCD module current consumption will  
not decrease in this mode; however, the overall device  
power consumption will be lower due to the shutdown  
of the CPU and other peripherals.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 365  
PIC16(L)F1946/47  
FIGURE 27-20:  
SLEEP ENTRY/EXIT WHEN SLPEN = 1  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM2  
SEG0  
2 Frames  
Wake-up  
SLEEPInstruction Execution  
DS41414D-page 366  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
27.14 Configuring the LCD Module  
27.16 LCD Current Consumption  
The following is the sequence of steps to configure the  
LCD module.  
When using the LCD module the current consumption  
consists of the following three factors:  
1. Select the frame clock prescale using bits  
LP<3:0> of the LCDPS register.  
• Oscillator Selection  
• LCD Bias Source  
2. Configure the appropriate pins to function as  
segment drivers using the LCDSEn registers.  
• Capacitance of the LCD segments  
The current consumption of just the LCD module can  
be considered negligible compared to these other  
factors.  
3. Configure the LCD module for the following  
using the LCDCON register:  
- Multiplex and Bias mode, bits LMUX<1:0>  
- Timing source, bits CS<1:0>  
- Sleep mode, bit SLPEN  
27.16.1 OSCILLATOR SELECTION  
The current consumed by the clock source selected  
must be considered when using the LCD module. See  
Section 30.0 “Electrical Specifications” for oscillator  
current consumption information.  
4. Write initial values to pixel data registers,  
LCDDATA0 through LCDDATA23.  
5. Clear LCD Interrupt Flag, LCDIF bit of the PIR2  
register and if desired, enable the interrupt by  
setting bit LCDIE of the PIE2 register.  
27.16.2 LCD BIAS SOURCE  
The LCD bias source, internal or external, can contrib-  
ute significantly to the current consumption. Use the  
highest possible resistor values while maintaining  
contrast to minimize current.  
6. Configure bias voltages by setting the LCDRL,  
LCDREF and the associated ANSELx  
registers as needed.  
7. Enable the LCD module by setting bit LCDEN of  
the LCDCON register.  
27.16.3 CAPACITANCE OF THE LCD  
SEGMENTS  
27.15 Disabling the LCD Module  
The LCD segments which can be modeled as capaci-  
tors which must be both charged and discharged every  
frame. The size of the LCD segment and its technology  
determines the segment’s capacitance.  
To disable the LCD module, write all ‘0’s to the  
LCDCON register.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 367  
PIC16(L)F1946/47  
TABLE 27-9: SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION  
Register  
on Page  
Name  
INTCON  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GIE  
LCDEN  
PEIE  
SLPEN  
TMR0IE  
WERR  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
92  
LCDCON  
LCDCST  
CS<1:0>  
LMUX<1:0>  
337  
340  
341  
LCDCST<2:0>  
LCDDATA0  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
LCDDATA10  
LCDDATA11  
LCDDATA12  
LCDDATA13  
LCDDATA14  
LCDDATA15  
LCDDATA16  
LCDDATA17  
LCDDATA18  
LCDDATA19  
LCDDATA20  
LCDDATA21  
Legend:  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
SEG31  
COM0  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
SEG39  
COM0  
SEG38  
COM0  
SEG37  
COM0  
SEG36  
COM0  
SEG35  
COM0  
SEG34  
COM0  
SEG33  
COM0  
SEG32  
COM0  
SEG45  
COM0  
SEG44  
COM0  
SEG43  
COM0  
SEG42  
COM0  
SEG41  
COM0  
SEG40  
COM0  
SEG31  
COM1  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
SEG39  
COM1  
SEG38  
COM1  
SEG37  
COM1  
SEG36  
COM1  
SEG35  
COM1  
SEG34  
COM1  
SEG33  
COM1  
SEG32  
COM1  
SEG45  
COM1  
SEG44  
COM1  
SEG43  
COM1  
SEG42  
COM1  
SEG41  
COM1  
SEG40  
COM1  
SEG31  
COM2  
SEG30  
COM2  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
SEG39  
COM2  
SEG38  
COM2  
SEG37  
COM2  
SEG36  
COM2  
SEG35  
COM2  
SEG34  
COM2  
SEG33  
COM2  
SEG32  
COM2  
SEG45  
COM2  
SEG44  
COM2  
SEG43  
COM2  
SEG42  
COM2  
SEG41  
COM2  
SEG40  
COM2  
SEG31  
COM3  
SEG30  
COM3  
SEG29  
COM3  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
— = unimplemented location, read as ‘0’. Shaded cells are not used by the LCD module.  
DS41414D-page 368  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 27-9: SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION (CONTINUED)  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LCDDATA22  
SEG39  
COM3  
SEG38  
COM3  
SEG37  
COM3  
SEG36  
COM3  
SEG35  
COM3  
SEG34  
COM3  
SEG33  
COM3  
SEG32  
COM3  
341  
LCDDATA23  
SEG45  
COM3  
SEG44  
COM3  
SEG43  
COM3  
SEG42  
COM3  
SEG41  
COM3  
SEG40  
COM3  
341  
LCDPS  
LCDREF  
LCDRL  
LCDSE0  
LCDSE1  
LCDSE2  
LCDSE3  
LCDSE4  
LCDSE5  
PIE2  
WFT  
BIASMD  
LCDIRS  
LCDA  
WA  
LP<3:0>  
VLCD3PE VLCD2PE VLCD1PE  
338  
339  
348  
341  
341  
341  
341  
341  
341  
94  
LCDIRE  
LCDIRI  
LRLAP<1:0>  
LRLBP<1:0>  
LRLAT<2:0>  
SE<7:0>  
SE<15:8>  
SE<23:16>  
SE<31:24>  
SE<39:32>  
SE<45:40>  
OSFIE  
OSFIF  
C2IE  
C2IF  
C1IE  
C1IF  
EEIE  
EEIF  
BCLIE  
BCLIF  
LCDIE  
LCDIF  
C3IE  
C3IF  
CCP2IE  
CCP2IF  
TMR1ON  
PIR2  
98  
T1CON  
Legend:  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN T1SYNC  
207  
— = unimplemented location, read as ‘0’. Shaded cells are not used by the LCD module.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 369  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 370  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
28.0 IN-CIRCUIT SERIAL  
PROGRAMMING™ (ICSP™)  
ICSP™ programming allows customers to manufacture  
circuit boards with unprogrammed devices. Programming  
can be done after the assembly process allowing the  
device to be programmed with the most recent firmware  
or a custom firmware. Five pins are needed for ICSP™  
programming:  
• ICSPCLK  
• ICSPDAT  
• MCLR/VPP  
• VDD  
• VSS  
In Program/Verify mode the program memory, user IDs  
and the Configuration Words are programmed through  
serial communications. The ICSPDAT pin is  
a
bidirectional I/O used for transferring the serial data  
and the ICSPCLK pin is the clock input. For more  
information  
on  
ICSP™  
refer  
to  
the  
PIC16F193X/LF193X/PIC16F194X/LF194X Memory  
Programming Specification” (DS41397).  
28.1 High-Voltage Programming Entry  
Mode  
The device is placed into High-Voltage Programming  
Entry mode by holding the ICSPCLK and ICSPDAT  
pins low then raising the voltage on MCLR/VPP to VIHH.  
Some programmers produce VPP greater than VIHH  
(9.0V), an external circuit is required to limit the VPP  
voltage. See Figure 28-1 for example circuit.  
FIGURE 28-1:  
VPP LIMITER EXAMPLE CIRCUIT  
RJ11-6PIN  
6
5
4
3
2
1
1
VPP  
2
VDD  
3
VSS  
4
ICSP_DATA  
ICSP_CLOCK  
NC  
5
6
RJ11-6PIN  
To MPLAB® ICD 2  
R1  
To Target Board  
270 Ohm  
LM431BCMX  
1
2
A
A
A
A
K
U1  
3
6
7
4
5
NC  
NC  
VREF  
8
R2  
R3  
10k 1%  
24k 1%  
Note:  
The MPLAB® ICD 2 produces a VPP  
voltage greater than the maximum VPP  
specification of the PIC16(L)F1946/47.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 371  
PIC16(L)F1946/47  
FIGURE 28-2:  
ICD RJ-11 STYLE  
CONNECTOR INTERFACE  
28.2 Low-Voltage Programming Entry  
Mode  
The Low-Voltage Programming Entry mode allows the  
PIC® Flash MCUs to be programmed using VDD only,  
without high voltage. When the LVP bit of Configuration  
Words is set to ‘1’, the low-voltage ICSP programming  
entry is enabled. To disable the Low-Voltage ICSP  
mode, the LVP bit must be programmed to ‘0’.  
ICSPDAT  
NC  
2 4 6  
VDD  
ICSPCLK  
Entry into the Low-Voltage Programming Entry mode  
requires the following steps:  
1 3  
5
Target  
PC Board  
Bottom Side  
VPP/MCLR  
VSS  
1. MCLR is brought to VIL.  
2.  
A
32-bit key sequence is presented on  
ICSPDAT, while clocking ICSPCLK.  
Pin Description*  
Once the key sequence is complete, MCLR must be  
held at VIL for as long as Program/Verify mode is to be  
maintained.  
1 = VPP/MCLR  
2 = VDD Target  
3 = VSS (ground)  
4 = ICSPDAT  
If low-voltage programming is enabled (LVP = 1), the  
MCLR Reset function is automatically enabled and  
cannot be disabled. See Section 6.4 “MCLR” for more  
information.  
5 = ICSPCLK  
6 = No Connect  
The LVP bit can only be reprogrammed to ‘0’ by using  
the High-Voltage Programming mode.  
Another connector often found in use with the PICkit™  
programmers is a standard 6-pin header with 0.1 inch  
spacing. Refer to Figure 28-3.  
28.3 Common Programming Interfaces  
Connection to a target device is typically done through  
an ICSP™ header. A commonly found connector on  
development tools is the RJ-11 in the 6P6C (6-pin, 6  
connector) configuration. See Figure 28-2.  
FIGURE 28-3:  
PICKit™ PROGRAMMER STYLE CONNECTOR INTERFACE  
Pin 1 Indicator  
Pin Description*  
1 = VPP/MCLR  
2 = VDD Target  
3 = VSS (ground)  
4 = ICSPDAT  
1
2
3
4
5
6
5 = ICSPCLK  
6 = No Connect  
*
The 6-pin header (0.100" spacing) accepts 0.025" square pins.  
DS41414D-page 372  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
For additional interface recommendations, refer to your  
specific device programmer manual prior to PCB  
design.  
It is recommended that isolation devices be used to  
separate the programming pins from other circuitry.  
The type of isolation is highly dependent on the specific  
application and may include devices such as resistors,  
diodes, or even jumpers. See Figure 28-4 for more  
information.  
FIGURE 28-4:  
TYPICAL CONNECTION FOR ICSP™ PROGRAMMING  
External  
Programming  
Signals  
Device to be  
Programmed  
VDD  
VDD  
VDD  
VPP  
VSS  
MCLR/VPP  
VSS  
Data  
ICSPDAT  
ICSPCLK  
Clock  
*
*
*
To Normal Connections  
Isolation devices (as required).  
*
2010-2012 Microchip Technology Inc.  
DS41414D-page 373  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 374  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
29.1 Read-Modify-Write Operations  
29.0 INSTRUCTION SET SUMMARY  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
Each instruction is a 14-bit word containing the opera-  
tion code (opcode) and all required operands. The  
opcodes are broken into three broad categories.  
• Byte Oriented  
• Bit Oriented  
• Literal and Control  
The literal and control category contains the most var-  
ied instruction word format.  
TABLE 29-1: OPCODE FIELD  
DESCRIPTIONS  
<Link>Table 29-3 lists the instructions recognized by  
the MPASMTM assembler.  
Field  
Description  
All instructions are executed within a single instruction  
cycle, with the following exceptions, which may take  
two or three cycles:  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
• Subroutine takes two cycles (CALL, CALLW)  
• Returns from interrupts or subroutines take two  
cycles (RETURN, RETLW, RETFIE)  
k
x
Don’t care location (= 0or 1).  
• Program branching takes two cycles (GOTO, BRA,  
BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)  
• One additional instruction cycle will be used when  
any instruction references an indirect file register  
and the file select register is pointing to program  
memory.  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
One instruction cycle consists of 4 oscillator cycles; for  
an oscillator frequency of 4 MHz, this gives a nominal  
instruction execution rate of 1 MHz.  
n
FSR or INDF number. (0-1)  
mm  
Pre-post increment-decrement mode  
selection  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
TABLE 29-2: ABBREVIATION  
DESCRIPTIONS  
Field  
Description  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
PD  
Power-down bit  
2010-2012 Microchip Technology Inc.  
DS41414D-page 375  
PIC16(L)F1946/47  
FIGURE 29-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
7 6  
0
OPCODE  
b (BIT #)  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Literal and control operations  
General  
13  
8
7
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
0
k (literal)  
k = 11-bit immediate value  
MOVLPinstruction only  
13  
7
6
0
0
OPCODE  
k (literal)  
k = 7-bit immediate value  
MOVLBinstruction only  
13  
5 4  
OPCODE  
k (literal)  
k = 5-bit immediate value  
BRAinstruction only  
13  
9
8
0
OPCODE  
k (literal)  
k = 9-bit immediate value  
FSR Offset instructions  
13  
7
6
5
0
0
OPCODE  
n
k (literal)  
n = appropriate FSR  
k = 6-bit immediate value  
FSRIncrement instructions  
13  
3
2
n
1
OPCODE  
m (mode)  
n = appropriate FSR  
m = 2-bit mode value  
OPCODE only  
13  
0
OPCODE  
DS41414D-page 376  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 29-3: PIC16(L)F1946/47 INSTRUCTION SET  
14-Bit Opcode  
Status  
Mnemonic,  
Description  
Operands  
Cycles  
Notes  
Affected  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ADDWFC f, d  
ANDWF  
ASRF  
LSLF  
f, d  
Add W and f  
Add with Carry W and f  
AND W with f  
Arithmetic Right Shift  
Logical Left Shift  
Logical Right Shift  
Clear f  
Clear W  
Complement f  
Decrement f  
Increment f  
Inclusive OR W with f  
Move f  
Move W to f  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Subtract with Borrow W from f  
Swap nibbles in f  
Exclusive OR W with f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
11 1101 dfff ffff C, DC, Z  
00 0101 dfff ffff Z  
11 0111 dfff ffff C, Z  
11 0101 dfff ffff C, Z  
11 0110 dfff ffff C, Z  
2
2
2
2
2
2
2
f, d  
f, d  
f, d  
f, d  
f
LSRF  
CLRF  
CLRW  
COMF  
DECF  
INCF  
IORWF  
MOVF  
MOVWF  
RLF  
RRF  
SUBWF  
SUBWFB f, d  
SWAPF  
XORWF  
00 0001 lfff ffff  
00 0001 0000 00xx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1010 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 1fff ffff  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f
f, d  
f, d  
f, d  
2
2
2
2
2
2
2
2
2
2
2
2
C
C
00 0010 dfff ffff C, DC, Z  
11 1011 dfff ffff C, DC, Z  
00 1110 dfff ffff  
f, d  
f, d  
00 0110 dfff ffff  
Z
BYTE ORIENTED SKIP OPERATIONS  
f, d  
f, d  
Decrement f, Skip if 0  
Increment f, Skip if 0  
1(2)  
1(2)  
00  
00  
1011 dfff ffff  
1111 dfff ffff  
1, 2  
1, 2  
DECFSZ  
INCFSZ  
BIT-ORIENTED FILE REGISTER OPERATIONS  
f, b  
f, b  
Bit Clear f  
Bit Set f  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
2
2
BCF  
BSF  
BIT-ORIENTED SKIP OPERATIONS  
BTFSC  
BTFSS  
f, b  
f, b  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1 (2)  
1 (2)  
01  
01  
10bb bfff ffff  
11bb bfff ffff  
1, 2  
1, 2  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
MOVLB  
MOVLP  
MOVLW  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Inclusive OR literal with W  
Move literal to BSR  
Move literal to PCLATH  
Move literal to W  
1
1
1
1
1
1
1
1
11  
11  
11  
00  
11  
11  
11  
11  
1110 kkkk kkkk C, DC, Z  
1001 kkkk kkkk  
1000 kkkk kkkk  
0000 001k kkkk  
0001 1kkk kkkk  
0000 kkkk kkkk  
Z
Z
Subtract W from literal  
Exclusive OR literal with W  
1100 kkkk kkkk C, DC, Z  
1010 kkkk kkkk  
Z
Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one  
additional instruction cycle.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 377  
PIC16(L)F1946/47  
TABLE 29-3: PIC16(L)F1946/47 ENHANCED INSTRUCTION SET (CONTINUED)  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
CONTROL OPERATIONS  
BRA  
BRW  
CALL  
CALLW  
GOTO  
RETFIE  
RETLW  
RETURN  
k
k
k
k
k
Relative Branch  
Relative Branch with W  
Call Subroutine  
Call Subroutine with W  
Go to address  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
2
2
2
2
2
2
2
2
11  
00  
10  
00  
10  
00  
11  
00  
001k kkkk kkkk  
0000 0000 1011  
0kkk kkkk kkkk  
0000 0000 1010  
1kkk kkkk kkkk  
0000 0000 1001  
0100 kkkk kkkk  
0000 0000 1000  
INHERENT OPERATIONS  
CLRWDT  
NOP  
OPTION  
RESET  
SLEEP  
TRIS  
f
Clear Watchdog Timer  
No Operation  
Load OPTION_REG register with W  
Software device Reset  
Go into Standby mode  
Load TRIS register with W  
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
0000 0110 0100 TO, PD  
0000 0000 0000  
0000 0110 0010  
0000 0000 0001  
0000 0110 0011 TO, PD  
0000 0110 0fff  
C-COMPILER OPTIMIZED  
ADDFSR n, k  
Add Literal k to FSRn  
Move Indirect FSRn to W with pre/post inc/dec  
modifier, mm  
1
1
11 0001 0nkk kkkk  
00 0000 0001 0nmm  
MOVIW  
n mm  
Z
Z
2, 3  
k[n]  
n mm  
Move INDFn to W, Indexed Indirect.  
Move W to Indirect FSRn with pre/post inc/dec  
modifier, mm  
1
1
11 1111 0nkk kkkk  
00 0000 0001 1nmm  
2
2, 3  
MOVWI  
k[n]  
Move W to INDFn, Indexed Indirect.  
1
11 1111 1nkk kkkk  
2
Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require  
one additional instruction cycle.  
3: See Table in the MOVIW and MOVWI instruction descriptions.  
DS41414D-page 378  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
29.2 Instruction Descriptions  
ADDFSR  
Add Literal to FSRn  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDFSR FSRn, k  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
-32 k 31  
n [ 0, 1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
FSR(n) + k FSR(n)  
Z
Status Affected:  
Description:  
None  
The contents of W register are  
AND’ed with the eight-bit literal ‘k’.  
The result is placed in the W register.  
The signed 6-bit literal ‘k’ is added to  
the contents of the FSRnH:FSRnL  
register pair.  
FSRn is limited to the range 0000h -  
FFFFh. Moving beyond these bounds  
will cause the FSR to wrap around.  
ANDWF  
AND W with f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] ANDWF f,d  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
d 0,1  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
The contents of the W register are  
added to the eight-bit literal ‘k’ and the  
result is placed in the W register.  
AND the W register with register ‘f’. If  
‘d’ is ‘0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
ASRF  
Arithmetic Right Shift  
ADDWF  
Add W and f  
Syntax:  
[ label ] ASRF f {,d}  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d 0,1  
Operation:  
(f<7>)dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
C, DC, Z  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the result is  
stored in the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. The MSb remains unchanged. If  
‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in reg-  
ister ‘f’.  
ADDWFC  
ADD W and CARRY bit to f  
C
register f  
Syntax:  
[ label ] ADDWFC  
f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) + (f) + (C) dest  
Status Affected:  
Description:  
C, DC, Z  
Add W, the Carry flag and data mem-  
ory location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 379  
PIC16(L)F1946/47  
BTFSC  
Bit Test f, Skip if Clear  
BCF  
Bit Clear f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] BCF f,b  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
skip if (f<b>) = 0  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
Bit ‘b’ in register ‘f’ is cleared.  
If bit ‘b’, in register ‘f’, is ‘0’, the next  
instruction is discarded, and a NOPis  
executed instead, making this a  
2-cycle instruction.  
BTFSS  
Bit Test f, Skip if Set  
BRA  
Relative Branch  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] BRA label  
[ label ] BRA $+k  
Operands:  
0 f 127  
0 b < 7  
Operands:  
-256 label - PC + 1 255  
-256 k 255  
Operation:  
skip if (f<b>) = 1  
Operation:  
(PC) + 1 + k PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOPis  
executed instead, making this a  
2-cycle instruction.  
Add the signed 9-bit literal ‘k’ to the  
PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + k.  
This instruction is a two-cycle instruc-  
tion. This branch has a limited range.  
BRW  
Relative Branch with W  
Syntax:  
[ label ] BRW  
None  
Operands:  
Operation:  
Status Affected:  
Description:  
(PC) + (W) PC  
None  
Add the contents of W (unsigned) to  
the PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + (W).  
This instruction is a two-cycle instruc-  
tion.  
BSF  
Bit Set f  
Syntax:  
[ label ] BSF f,b  
Operands:  
0 f 127  
0 b 7  
Operation:  
1(f<b>)  
Status Affected:  
Description:  
None  
Bit ‘b’ in register ‘f’ is set.  
DS41414D-page 380  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<6:3>) PC<14:11>  
00h WDT  
0WDT prescaler,  
1TO  
1PD  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
TO, PD  
Call Subroutine. First, return address  
(PC + 1) is pushed onto the stack.  
The eleven-bit immediate address is  
loaded into PC bits <10:0>. The upper  
bits of the PC are loaded from  
PCLATH. CALLis a two-cycle instruc-  
tion.  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT.  
Status bits TO and PD are set.  
COMF  
Complement f  
CALLW  
Subroutine Call With W  
Syntax:  
[ label ] COMF f,d  
Syntax:  
[ label ] CALLW  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
(PC) +1 TOS,  
(W) PC<7:0>,  
Operation:  
(f) (destination)  
(PCLATH<6:0>) PC<14:8>  
Status Affected:  
Description:  
Z
The contents of register ‘f’ are com-  
plemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Status Affected:  
Description:  
None  
Subroutine call with W. First, the  
return address (PC + 1) is pushed  
onto the return stack. Then, the con-  
tents of W is loaded into PC<7:0>,  
and the contents of PCLATH into  
PC<14:8>. CALLWis a two-cycle  
instruction.  
DECF  
Decrement f  
CLRF  
Clear f  
Syntax:  
[ label ] DECF f,d  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W  
The contents of register ‘f’ are cleared  
and the Z bit is set.  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z) is  
set.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 381  
PIC16(L)F1946/47  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
The contents of register ‘f’ are decre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, then a  
NOPis executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, a NOPis  
executed instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO  
0 k 2047  
k
Syntax:  
[ label ] IORLW  
0 k 255  
(W) .OR. k (W)  
Z
k
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<6:3> PC<14:11>  
Status Affected:  
Description:  
None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’. The  
result is placed in the W register.  
GOTOis an unconditional branch. The  
eleven-bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
INCF  
Increment f  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) + 1 (destination)  
Operation:  
(W) .OR. (f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
Inclusive OR the W register with regis-  
ter ‘f’. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
DS41414D-page 382  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
LSLF  
Logical Left Shift  
MOVF  
Move f  
Syntax:  
[ label ] LSLF f {,d}  
Syntax:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<7>) C  
Operation:  
(f) (dest)  
(f<6:0>) dest<7:1>  
0 dest<0>  
Status Affected:  
Description:  
Z
The contents of register f is moved to  
a destination dependent upon the  
status of d. If d = 0,  
destination is W register. If d = 1, the  
destination is file register f itself. d = 1  
is useful to test a file register since  
status flag Z is affected.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the left through the Carry flag.  
A ‘0’ is shifted into the LSb. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Words:  
1
1
C
register f  
0
Cycles:  
Example:  
MOVF  
FSR, 0  
After Instruction  
LSRF  
Logical Right Shift  
W
Z
=
=
value in FSR register  
1
Syntax:  
[ label ] LSRF f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
0 dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. A ‘0’ is shifted into the MSb. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register ‘f’.  
0
C
register f  
2010-2012 Microchip Technology Inc.  
DS41414D-page 383  
PIC16(L)F1946/47  
MOVIW  
Move INDFn to W  
MOVLP  
Move literal to PCLATH  
Syntax:  
[ label ] MOVIW ++FSRn  
[ label ] MOVIW --FSRn  
[ label ] MOVIW FSRn++  
[ label ] MOVIW FSRn--  
[ label ] MOVIW k[FSRn]  
Syntax:  
[ label ] MOVLP  
0 k 127  
k PCLATH  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
n [0,1]  
mm [00,01, 10, 11]  
-32 k 31  
The seven-bit literal ‘k’ is loaded into the  
PCLATH register.  
INDFn W  
Effective address is determined by  
MOVLW  
Move literal to W  
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
Syntax:  
[ label ] MOVLW  
0 k 255  
k (W)  
k
Operands:  
Operation:  
Status Affected:  
Description:  
After the Move, the FSR value will be  
either:  
None  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Unchanged  
The eight-bit literal ‘k’ is loaded into W  
register. The “don’t cares” will assem-  
ble as ‘0’s.  
Status Affected:  
Z
Words:  
1
1
Cycles:  
Example:  
Mode  
Syntax  
mm  
00  
01  
10  
11  
MOVLW  
0x5A  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++FSRn  
--FSRn  
FSRn++  
FSRn--  
After Instruction  
W
=
0x5A  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
f
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
Move data from W register to register  
‘f’.  
Note: The INDFn registers are not  
physical registers. Any instruction that  
accesses an INDFn register actually  
accesses the register at the address  
specified by the FSRn.  
Words:  
1
1
Cycles:  
Example:  
MOVWF  
Before Instruction  
OPTION_REG = 0xFF  
W = 0x4F  
OPTION_REG  
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to wrap  
around.  
After Instruction  
OPTION_REG = 0x4F  
W = 0x4F  
MOVLB  
Move literal to BSR  
Syntax:  
[ label ] MOVLB  
0 k 15  
k BSR  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
The five-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR).  
DS41414D-page 384  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
NOP  
No Operation  
MOVWI  
Move W to INDFn  
Syntax:  
[ label ] NOP  
Syntax:  
[ label ] MOVWI ++FSRn  
[ label ] MOVWI --FSRn  
[ label ] MOVWI FSRn++  
[ label ] MOVWI FSRn--  
[ label ] MOVWI k[FSRn]  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
No operation  
None  
No operation.  
Operands:  
Operation:  
n [0,1]  
mm [00,01, 10, 11]  
-32 k 31  
1
Cycles:  
1
W INDFn  
Effective address is determined by  
Example:  
NOP  
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
After the Move, the FSR value will be  
either:  
Load OPTION_REG Register  
with W  
OPTION  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Syntax:  
[ label ] OPTION  
None  
Unchanged  
Operands:  
Operation:  
Status Affected:  
Description:  
Status Affected:  
None  
(W) OPTION_REG  
None  
Mode  
Syntax  
mm  
00  
01  
10  
11  
Move data from W register to  
OPTION_REG register.  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++FSRn  
--FSRn  
FSRn++  
FSRn--  
Words:  
1
Cycles:  
Example:  
1
OPTION  
Before Instruction  
OPTION_REG = 0xFF  
W = 0x4F  
After Instruction  
OPTION_REG = 0x4F  
W = 0x4F  
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
Note: The INDFn registers are not  
physical registers. Any instruction that  
accesses an INDFn register actually  
accesses the register at the address  
specified by the FSRn.  
RESET  
Software Reset  
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
None  
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to wrap  
around.  
Execute a device Reset. Resets the  
nRI flag of the PCON register.  
Status Affected:  
Description:  
None  
This instruction provides a way to  
execute a hardware Reset by soft-  
ware.  
The increment/decrement operation on  
FSRn WILL NOT affect any Status bits.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 385  
PIC16(L)F1946/47  
RETURN  
Return from Subroutine  
RETFIE  
Syntax:  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
TOS PC  
None  
TOS PC,  
1GIE  
Status Affected:  
Description:  
None  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two-cycle instruction.  
Return from Interrupt. Stack is POPed  
and Top-of-Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting Global  
Interrupt Enable bit, GIE  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
Cycles:  
Example:  
2
RETFIE  
After Interrupt  
PC  
=
TOS  
GIE =  
1
RLF  
Rotate Left f through Carry  
RETLW  
Syntax:  
Return with literal in W  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
[ label ] RETLW  
0 k 255  
k
0 f 127  
d [0,1]  
Operands:  
Operation:  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected:  
Description:  
Status Affected:  
Description:  
None  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
The W register is loaded with the eight  
bit literal ‘k’. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
C
Register f  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
1
CALL TABLE;W contains table  
;offset value  
Cycles:  
Example:  
;W now has table value  
RLF  
REG1,0  
TABLE  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
After Instruction  
RETLW k2  
;
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
DS41414D-page 386  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW  
0 k 255  
k
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d [0,1]  
k - (W) W)  
C, DC, Z  
Operation:  
See description below  
C
The W register is subtracted (2’s com-  
plement method) from the eight-bit  
literal ‘k’. The result is placed in the W  
register.  
Status Affected:  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
C = 0  
W k  
C = 1  
W k  
C
Register f  
DC = 0  
DC = 1  
W<3:0> k<3:0>  
W<3:0> k<3:0>  
SUBWF  
Subtract W from f  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
(f) - (W) destination)  
Status Affected:  
Description:  
C, DC, Z  
0PD  
Subtract (2’s complement method) W  
register from register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
C = 0  
W f  
The processor is put into Sleep mode  
with the oscillator stopped.  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> f<3:0>  
W<3:0> f<3:0>  
SUBWFB  
Subtract W from f with Borrow  
Syntax:  
SUBWFB f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) – (W) – (B) dest  
Status Affected:  
Description:  
C, DC, Z  
Subtract W and the BORROW flag  
(CARRY) from register ‘f’ (2’s comple-  
ment method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 387  
PIC16(L)F1946/47  
SWAPF  
Swap Nibbles in f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k W)  
Z
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
The contents of the W register are  
XOR’ed with the eight-bit  
literal ‘k’. The result is placed in the  
W register.  
Status Affected:  
Description:  
None  
The upper and lower nibbles of regis-  
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the  
result is placed in the W register. If ‘d’  
is ‘1’, the result is placed in register ‘f’.  
XORWF  
Exclusive OR W with f  
TRIS  
Load TRIS Register with W  
Syntax:  
[ label ] XORWF f,d  
Syntax:  
[ label ] TRIS f  
5 f 7  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) TRIS register ‘f’  
None  
Operation:  
(W) .XOR. (f) destination)  
Status Affected:  
Description:  
Z
Move data from W register to TRIS  
register.  
When ‘f’ = 5, TRISA is loaded.  
When ‘f’ = 6, TRISB is loaded.  
When ‘f’ = 7, TRISC is loaded.  
Exclusive OR the contents of the W  
register with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If ‘d’  
is ‘1’, the result is stored back in regis-  
ter ‘f’.  
DS41414D-page 388  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
30.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS, PIC16F1946/47 ........................................................................ -0.3V to +6.5V  
Voltage on VCAP pin with respect to VSS.............................................................................................. -0.3V to +4.0V  
Voltage on VDD with respect to VSS, PIC16LF1946/47 ...................................................................... -0.3V to +4.0V  
Voltage on MCLR with respect to Vss ................................................................................................. -0.3V to +9.0V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin, -40°C TA +85°C for industrial............................................................... 425 mA  
Maximum current out of VSS pin, -40°C TA +125°C for extended ............................................................ 175 mA  
Maximum current into VDD pin, -40°C TA +85°C for industrial.................................................................. 425 mA  
Maximum current into VDD pin, -40°C TA +125°C for extended............................................................... 175 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD)20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 389  
PIC16(L)F1946/47  
FIGURE 30-1:  
PIC16F1946/47 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
2.5  
1.8  
0
4
10  
16  
32  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 30-1 for each Oscillator mode’s supported frequencies.  
FIGURE 30-2:  
PIC16LF1946/47 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
3.6  
2.5  
1.8  
0
4
10  
16  
32  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 30-1 for each Oscillator mode’s supported frequencies.  
DS41414D-page 390  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 30-3:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
± 5%  
± 3%  
85  
60  
25  
± 2%  
0
-20  
± 5%  
-40  
1.8  
2.0  
2.5  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
3.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 391  
PIC16(L)F1946/47  
30.1 DC Characteristics: PIC16(L)F1946/47-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max.  
Units  
Conditions  
D001  
VDD  
Supply Voltage (VDDMIN, VDDMAX)  
PIC16LF1946/47  
1.8  
2.5  
3.6  
3.6  
V
V
FOSC 16 MHz:  
FOSC 32 MHz (NOTE 2)  
D001  
PIC16F1946/47  
1.8  
2.5  
5.5  
5.5  
V
V
FOSC 16 MHz:  
FOSC 32 MHz (NOTE 2)  
D002*  
VDR  
RAM Data Retention Voltage(1)  
PIC16LF1946/47  
1.5  
1.7  
V
V
Device in Sleep mode  
Device in Sleep mode  
PIC16F1946/47  
D002A* VPOR*  
D002B* VPORR*  
Power-on Reset Release Voltage  
PIC16LF1946/47  
1.6  
1.6  
V
V
PIC16F1946/47  
Power-on Reset Rearm Voltage  
PIC16LF1946/47  
-8  
0.8  
1.5  
6
V
V
Device in Sleep mode  
Device in Sleep mode  
PIC16F1946/47  
D003  
VADFVR  
Fixed Voltage Reference Voltage  
for ADC  
%
1.024V, VDD 2.5V  
2.048V, VDD 2.5V  
4.096V, VDD 4.75V  
D003A  
VCDAFVR  
Fixed Voltage Reference Voltage  
for Comparator and DAC  
-11  
7
%
1.024V, VDD 2.5V  
2.048V, VDD 2.5V  
4.096V, VDD 4.75V  
D003B  
D004*  
VLCDFVR  
SVDD  
Fixed Voltage Reference Voltage  
for LCD Bias, Initial Accuracy  
-11  
10  
%
3.072V, VDD 3.6V  
VDD Rise Rate to ensure internal  
Power-on Reset signal  
0.05  
V/ms  
See Section 6.1 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
2: PLL required for 32 MHz operation.  
DS41414D-page 392  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 30-4:  
POR AND POR REARM WITH SLOW RISING VDD  
VDD  
VPOR  
VPORR  
VSS  
NPOR  
POR REARM  
VSS  
(3)  
(2)  
TPOR  
TVLOW  
Note 1: When NPOR is low, the device is held in Reset.  
2: TPOR 1 s typical.  
3: TVLOW 2.7 s typical.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 393  
PIC16(L)F1946/47  
30.2 DC Characteristics: PIC16(L)F1946/47-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F1946/47  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Device  
Min.  
Typ†  
Max.  
Units  
No.  
Characteristics  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
LDO Regulator  
D009  
350  
A  
HS, EC OR HFINTOSC Clock modes with  
VCAP pin disabled  
30  
5
A  
A  
LP/LFINTOSC Clock mode or Sleep (requires  
FVR and BOR to be disabled)  
D010  
D010  
5.0  
6.0  
11  
13  
A  
A  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4),  
-40°C TA +85°C  
24  
30  
53  
58  
63  
23  
27  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4, 5),  
-40°C TA +85°C  
32  
D010A  
D010A  
7.0  
9.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4)  
-40°C TA +125°C  
24  
30  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
68  
FOSC = 32 kHz  
LP Oscillator mode (Note 4, 5)  
-40°C TA +125°C  
88  
32  
95  
D011  
D011  
60  
FOSC = 1 MHz  
XT Oscillator mode  
105  
190  
130  
220  
270  
300  
500  
330  
500  
650  
120  
95  
FOSC = 1 MHz  
XT Oscillator mode (Note 5)  
170  
190  
160  
300  
200  
300  
400  
D012  
D012  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode (Note 5)  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in k  
4: FVR and BOR are disabled.  
5: 0.1 F capacitor on VCAP (RF0).  
6: 8 MHz crystal oscillator with 4x PLL enabled.  
DS41414D-page 394  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
30.2 DC Characteristics: PIC16(L)F1946/47-I/E (Industrial, Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F1946/47  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Device  
Min.  
Typ†  
Max.  
Units  
No.  
Characteristics  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
D013  
D013  
15  
30  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
FOSC = 500 kHz  
EC Oscillator Low-Power mode  
40  
75  
30  
FOSC = 500 kHz  
EC Oscillator Low-Power mode (Note 5)  
60  
45  
85  
50  
90  
D014  
D014  
140  
270  
250  
400  
FOSC = 4 MHz  
EC Oscillator mode  
Medium-Power mode  
160  
270  
320  
2.0  
2.3  
2.0  
2.2  
3.0  
5.0  
24  
270  
430  
500  
3.2  
3.9  
3.2  
3.9  
11  
A  
A  
A  
mA  
mA  
mA  
mA  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
3.0  
3.6  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
FOSC = 4 MHz  
EC Oscillator mode (Note 5)  
Medium-Power mode  
D015  
D015  
D016  
D016  
FOSC = 32 MHz  
EC Oscillator High-Power mode  
FOSC = 32 MHz  
EC Oscillator High-Power mode (Note 5)  
FOSC = 32 kHz, LFINTOSC mode (Note 4)  
-40°C TA +85°C  
13  
FOSC = 32 kHz, LFINTOSC mode (Note 4, 5)  
-40°C TA +85°C  
40  
30  
48  
32  
58  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in k  
4: FVR and BOR are disabled.  
5: 0.1 F capacitor on VCAP (RF0).  
6: 8 MHz crystal oscillator with 4x PLL enabled.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 395  
PIC16(L)F1946/47  
30.2 DC Characteristics: PIC16(L)F1946/47-I/E (Industrial, Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F1946/47  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Device  
Min.  
Typ†  
Max.  
Units  
No.  
Characteristics  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
D017  
100  
120  
110  
120  
160  
0.5  
0.8  
0.5  
0.8  
0.9  
0.8  
1.2  
0.8  
1.2  
1.4  
2.1  
2.3  
2.1  
2.2  
150  
270  
170  
290  
320  
2.1  
2.3  
2.1  
2.2  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.0  
3.6  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.0  
3.6  
3.0  
5.0  
FOSC = 500 kHz  
MFINTOSC mode  
200  
230  
210  
240  
290  
1.1  
1.6  
1.2  
1.7  
1.8  
1.5  
2.3  
1.6  
2.4  
2.5  
3.6  
4.3  
3.7  
4.1  
300  
500  
330  
500  
650  
3.6  
4.3  
3.7  
4.1  
D017  
A  
FOSC = 500 kHz  
MFINTOSC mode (Note 5)  
A  
A  
D018  
D018  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 8 MHz  
HFINTOSC mode (Note 5)  
D019  
D019  
FOSC = 16 MHz  
HFINTOSC mode  
FOSC = 16 MHz  
HFINTOSC mode (Note 5)  
FOSC = 32 MHz  
HFINTOSC mode  
FOSC = 32 MHz  
HFINTOSC mode  
D020  
D020  
FOSC = 4 MHz  
EXTRC mode (Note 3)  
A  
A  
FOSC = 4 MHz  
EXTRC mode (Note 3, Note 5)  
A  
A  
D021  
D021  
mA  
mA  
mA  
mA  
FOSC = 32 MHz  
HS Oscillator mode (Note 6)  
FOSC = 32 MHz  
HS Oscillator mode (Note 5, Note 6)  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in k  
4: FVR and BOR are disabled.  
5: 0.1 F capacitor on VCAP (RF0).  
6: 8 MHz crystal oscillator with 4x PLL enabled.  
DS41414D-page 396  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
30.3 DC Characteristics: PIC16(L)F1946/47-I/E (Power-Down)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F1946/47  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D023  
0.06  
0.08  
21  
1.0  
2.0  
55  
8.0  
9.0  
63  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.0  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
D023  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
25  
58  
78  
27  
60  
88  
D024  
D024  
0.5  
0.8  
23  
6.0  
7.0  
57  
9.0  
10  
LPWDT Current (Note 1)  
LPWDT Current (Note 1)  
65  
26  
59  
80  
28  
61  
90  
D025  
D025  
15  
28  
30  
FVR current  
15  
30  
33  
38  
96  
100  
120  
155  
20  
FVR current (Note 4)  
45  
110  
140  
16  
90  
D026  
D026  
13  
BOR Current (Note 1)  
40  
110  
140  
6.0  
10  
120  
155  
9.0  
12  
BOR Current (Note 1, Note 4)  
87  
D027  
D027  
0.6  
1.8  
22  
T1OSC Current (Note 1)  
T1OSC Current (Note 1)  
57  
60  
29  
62  
70  
35  
66  
85  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: A/D oscillator source is FRC.  
4: 0.1 F capacitor on VCAP (RF0).  
2010-2012 Microchip Technology Inc.  
DS41414D-page 397  
PIC16(L)F1946/47  
30.3 DC Characteristics: PIC16(L)F1946/47-I/E (Power-Down) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F1946/47  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D028  
0.1  
0.1  
22  
5.0  
6.0  
56  
58  
61  
22  
23  
55  
58  
60  
8.0  
9.0  
63  
78  
88  
25  
27  
65  
80  
90  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.0  
3.0  
3.0  
5.0  
5.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
A/D Current (Note 1, Note 3), no  
conversion in progress  
D028  
A/D Current (Note 1, Note 3), no  
conversion in progress  
26  
27  
D029  
D029  
250  
250  
280  
280  
280  
1
A/D Current (Note 1, Note 3),  
conversion in progress  
A/D Current (Note 1, Note 3,  
Note 4), conversion in progress  
D030  
D030  
LCD Bias Ladder, Low-power  
LCD Bias Ladder, Medium-power  
LCD Bias Ladder, High-power  
LCD Bias Ladder, Low-power  
LCD Bias Ladder, Medium-power  
LCD Bias Ladder, High-power  
Comparator, Low-Power mode  
10  
75  
1
10  
75  
D031  
D031  
7.6  
8.0  
24  
Comparator, Low-Power mode  
26  
28  
D032A*  
D032A*  
2.0  
3.0  
23  
Cap Sense, Low-Power mode,  
CPSRM=0  
Cap Sense, Low-Power mode,  
CPSRM=0  
28  
30  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: A/D oscillator source is FRC.  
4: 0.1 F capacitor on VCAP (RF0).  
DS41414D-page 398  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
30.3 DC Characteristics: PIC16(L)F1946/47-I/E (Power-Down) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1946/47  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F1946/47  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D032B*  
80  
90  
A  
A  
1.8  
3.0  
Cap Sense, Low Power mode,  
CPSRM = 1, includes FVR and  
DAC current  
D032B*  
110  
120  
130  
4.0  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
Cap Sense, Low-Power mode,  
CPSRM = 1, includes FVR and  
DAC current  
D032C*  
D032C*  
Cap Sense, Medium-Power  
mode,  
CPSRM = 0  
6.0  
25  
30  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
Cap Sense, Medium-Power  
mode,  
CPSRM = 0  
32  
D032D*  
D032D*  
90  
Cap Sense, Medium-Power  
mode, CPSRM = 1, includes FVR  
and DAC current  
120  
120  
140  
150  
12  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
Cap Sense, Medium-Power  
mode, CPSRM = 1, includes FVR  
and DAC current  
D032E*  
D032E*  
Cap Sense, High-Power mode,  
CPSRM = 0  
31  
33  
Cap Sense, High-Power mode,  
CPSRM = 0  
52  
62  
D032F*  
D032F*  
120  
160  
Cap Sense, High-Power mode,  
CPSRM = 1, includes FVR and  
DAC current  
150  
180  
190  
A  
A  
A  
1.8  
3.0  
5.0  
Cap Sense, High-Power mode,  
CPSRM = 1, includes FVR and  
DAC current  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: A/D oscillator source is FRC.  
4: 0.1 F capacitor on VCAP (RF0).  
2010-2012 Microchip Technology Inc.  
DS41414D-page 399  
PIC16(L)F1946/47  
30.4 DC Characteristics: PIC16(L)F1946/47-I/E  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O PORT:  
D032  
D032A  
D033  
with TTL buffer  
0.8  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.3 VDD  
0.8  
1.8V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
with I2C™ levels  
with SMBus levels  
MCLR, OSC1 (RC mode)(1)  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
2.7V VDD 5.5V  
D034  
0.2 VDD  
0.3 VDD  
D034A  
VIH  
D040  
with TTL buffer  
2.0  
V
V
4.5V VDD 5.5V  
1.8V VDD 4.5V  
D040A  
0.25 VDD +  
0.8  
D041  
with Schmitt Trigger buffer  
with I2C™ levels  
with SMBus levels  
MCLR  
0.8 VDD  
0.7 VDD  
2.1  
V
V
V
V
V
V
2.0V VDD 5.5V  
2.7V VDD 5.5V  
D042  
0.8 VDD  
0.7 VDD  
0.9 VDD  
D043A  
D043B  
OSC1 (HS mode)  
OSC1 (RC mode)  
Input Leakage Current(2)  
I/O ports  
(Note 1) VDD 2.0V  
IIL  
D060  
± 5  
± 125  
nA  
VSS VPIN VDD, Pin at high-imped-  
ance @ 85°C  
125°C  
± 5  
± 1000  
± 200  
nA  
nA  
D061  
MCLR(3)  
± 50  
VSS VPIN VDD @ 85°C  
IPUR  
VOL  
Weak Pull-up Current  
D070*  
25  
25  
100  
140  
200  
300  
VDD = 3.3V, VPIN = VSS  
VDD = 5.0V, VPIN = VSS  
A  
Output Low Voltage(4)  
D080  
D090  
D101*  
I/O ports  
IOL = 8mA, VDD = 5V  
IOL = 6mA, VDD = 3.3V  
IOL = 1.8mA, VDD = 1.8V  
0.6  
V
VOH  
Output High Voltage(4)  
I/O ports  
IOH = 3.5mA, VDD = 5V  
IOH = 3mA, VDD = 3.3V  
IOH = 1mA, VDD = 1.8V  
VDD - 0.7  
V
Capacitive Loading Specs on Output Pins  
COSC2 OSC2 pin  
15  
50  
pF  
pF  
In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1  
D101A* CIO  
All I/O pins  
VCAP Capacitor Charging  
Charging current  
D102  
200  
0.0  
A  
D102A  
Source/sink capability when  
charging complete  
mA  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in  
RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal  
operating conditions. Higher leakage current may be measured at different input voltages.  
4: Including OSC2 in CLKOUT mode.  
DS41414D-page 400  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
30.5 Memory Programming Requirements  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
DC CHARACTERISTICS  
Param  
Sym.  
No.  
Characteristic  
Program Memory  
Min.  
Typ†  
Max.  
Units  
Conditions  
Programming Specifications  
D110  
D111  
VIHH  
IDDP  
Voltage on MCLR/VPP pin  
8.0  
9.0  
10  
V
(Note 3, Note 4)  
Supply Current during  
Programming  
mA  
VPBE  
VPEW  
VDD for Bulk Erase  
2.7  
VDDMAX  
VDDMAX  
V
V
D112  
D113  
VDD for Write or Row Erase  
VDDMIN  
IPPPGM Current on MCLR/VPP during Erase/  
Write  
1.0  
mA  
D114  
D115  
IDDPGM Current on VDD during Erase/Write  
5.0  
mA  
Data EEPROM Memory  
D116  
D117  
D118  
D119  
ED  
Byte Endurance  
100K  
VDDMIN  
VDDMAX  
5.0  
E/W -40C to +85C  
VDRW VDD for Read/Write  
V
TDEW Erase/Write Cycle Time  
TRETD Characteristic Retention  
4.0  
40  
ms  
Year -40°C to +55°C  
Provided no other  
specifications are violated  
D120  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C to +85°C  
(2)  
Program Flash Memory  
2
D121  
D122  
D123  
D124  
EP  
Cell Endurance  
10K  
VDDMIN  
VDDMAX  
2.5  
E/W -40C to +85C (Note 1)  
VPRW VDD for Read/Write  
V
TIW  
Self-timed Write Cycle Time  
ms  
TRETD Characteristic Retention  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Self-write and Block Erase.  
2: Refer to Section 11.2 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
3: Required only if single-supply programming is disabled.  
4: The MPLAB™ ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage  
must be placed between the MPLAB ICD 2 and target system when programming or debugging with the  
MPLAB ICD 2.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 401  
PIC16(L)F1946/47  
30.6 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Sym.  
JA  
Characteristic  
Typ.  
Units  
Conditions  
64-pin TQFP package  
48.3  
28  
C/W  
C/W  
C/W  
C/W  
C  
TH01  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
64-pin QFN package  
64-pin TQFP package  
64-pin QFN package  
TH02  
JC  
26.1  
0.24  
150  
TH03  
TH04  
TH05  
TH06  
TH07  
TJMAX  
PD  
Maximum Junction Temperature  
Power Dissipation  
W
PD = PINTERNAL + PI/O  
PINTERNAL = IDD x VDD  
(1)  
PINTERNAL Internal Power Dissipation  
W
PI/O  
I/O Power Dissipation  
Derated Power  
W
PI/O = (IOL * VOL) + (IOH * (VDD - VOH))  
(2),(3)  
PDER  
W
PDER = PDMAX (TJ - TA)/JA  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature  
3: TJ = Junction Temperature  
DS41414D-page 402  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
30.7  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 30-5:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins, 15 pF for  
OSC2 output  
2010-2012 Microchip Technology Inc.  
DS41414D-page 403  
PIC16(L)F1946/47  
30.8 AC Characteristics: PIC16(L)F1946/47-I/E  
FIGURE 30-6:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
(1)  
OS01  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
0.5  
4
MHz EC Oscillator mode (low)  
MHz EC Oscillator mode (medium)  
MHz EC Oscillator mode (high)  
20  
4
(1)  
Oscillator Frequency  
32.768  
kHz  
LP Oscillator mode  
0.1  
1
MHz XT Oscillator mode  
4
MHz HS Oscillator mode  
1
20  
4
MHz HS Oscillator mode, VDD > 2.7V  
MHz RC Oscillator mode, VDD > 2.0V  
DC  
27  
250  
50  
50  
(1)  
OS02  
External CLKIN Period  
s  
ns  
ns  
ns  
s  
ns  
ns  
ns  
ns  
s  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
10,000  
1,000  
DC  
250  
50  
250  
200  
2
(1)  
OS03  
Instruction Cycle Time  
TCY  
OS04*  
TosH,  
TosL  
External CLKIN High,  
External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05*  
TosR,  
TosF  
External CLKIN Rise,  
External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an external  
clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
DS41414D-page 404  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 30-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Freq.  
Tolerance  
Characteristic  
Min. Typ† Max. Units  
Conditions  
OS08  
HFOSC  
Internal Calibrated HFINTOSC  
Frequency  
2%  
3%  
5%  
2%  
3%  
5%  
16.0  
16.0  
16.0  
500  
500  
500  
31  
8
MHz 0°C TA +60°C, VDD 2.5V  
MHz 60°C TA +85°C, VDD 2.5V  
MHz -40°C TA +125°C  
kHz 0°C TA +60°C, VDD 2.5V  
kHz 60°C TA +85°C, VDD 2.5V  
kHz -40°C TA +125°C  
kHz -40°C TA +125°C  
s  
(1)  
OS08A MFOSC  
Internal Calibrated MFINTOSC  
(1)  
Frequency  
OS09  
LFOSC  
Internal LFINTOSC Frequency  
OS10* TIOSC ST HFINTOSC  
Wake-up from Sleep Start-up Time  
3.2  
MFINTOSC  
Wake-up from Sleep Start-up Time  
24  
35  
s  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
TABLE 30-3: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)  
Param  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
4
16  
8
32  
MHz  
MHz  
ms  
F11  
FSYS On-Chip VCO System Frequency  
F12  
F13*  
TRC  
PLL Start-up Time (Lock Time)  
2
CLK CLKOUT Stability (Jitter)  
-0.25%  
+0.25%  
%
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 30-7:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
2010-2012 Microchip Technology Inc.  
DS41414D-page 405  
PIC16(L)F1946/47  
TABLE 30-4: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
OS11 TosH2ckL FOSCto CLKOUT(1)  
OS12 TosH2ckH FOSCto CLKOUT(1)  
OS13 TckL2ioV CLKOUTto Port out valid(1)  
70  
72  
20  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
ns  
OS14 TioV2ckH Port input valid before CLKOUT(1)  
OS15 TosH2ioV Fosc(Q1 cycle) to Port out valid  
TOSC + 200 ns  
50  
70*  
ns  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
OS16 TosH2ioI  
Fosc(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)  
20  
ns  
(I/O in setup time)  
OS18 TioR  
OS19 TioF  
Port output rise time  
40  
15  
72  
32  
ns  
ns  
VDD = 1.8V  
VDD = 3.3-5.0V  
Port output fall time  
28  
15  
55  
30  
VDD = 1.8V  
VDD = 3.3-5.0V  
OS20* Tinp  
OS21* Tioc  
INT pin input high or low time  
25  
25  
ns  
ns  
Interrupt-on-change new input level  
time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
FIGURE 30-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
DS41414D-page 406  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 30-9:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR and VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(1)  
33  
(due to BOR)  
Note 1: 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
2 ms delay if PWRTE = 0and VREGEN = 1.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 407  
PIC16(L)F1946/47  
TABLE 30-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min. Typ† Max. Units  
Conditions  
30  
TMCL  
MCLR Pulse Width (low)  
2
s  
31  
TWDTLP Watchdog Timer Time-out Period  
10  
16  
27  
ms VDD = 3.3V-5V,  
1:16 Prescaler used  
32  
TOST  
Oscillator Start-up Timer Period(1)  
1024  
65  
140  
2.0  
Tosc  
ms  
33*  
34*  
TPWRT Power-up Timer Period, PWRTE = 0 40  
TIOZ  
I/O high-impedance from MCLR Low  
or Watchdog Timer Reset  
s  
35  
VBOR  
Brown-out Reset Voltage(2)  
2.55 2.70 2.85  
1.80 1.90 2.11  
V
V
BORV = 0  
BORV = 1  
36*  
37*  
VHYST  
Brown-out Reset Hysteresis  
0
1
25  
3
50  
35  
mV -40°C to +85°C  
TBORDC Brown-out Reset DC Response  
Time  
s VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.  
2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
FIGURE 30-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
DS41414D-page 408  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
TT0H  
Characteristic  
T0CKI High Pulse Width  
Min.  
Typ†  
Max.  
Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
TT1H  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
ns  
ns  
ns  
46*  
47*  
TT1L  
TT1P  
T1CKI Low Synchronous, No Prescaler  
0.5 TCY + 20  
Time  
Synchronous, with Prescaler  
Asynchronous  
15  
30  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
FT1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.4  
32.768  
33.1  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 30-11:  
CAPTURE/COMPARE/PWM TIMINGS (CCP)  
CCPx  
(Capture mode)  
CC01  
CC02  
CC03  
Note: Refer to Figure 30-5 for load conditions.  
TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
CC01* TccL CCPx Input Low Time  
CC02* TccH CCPx Input High Time  
CC03* TccP CCPx Input Period  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
20  
0.5TCY + 20  
20  
3TCY + 40  
N
N = prescale value (1, 4 or 16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 409  
PIC16(L)F1946/47  
TABLE 30-8: PIC16(L)F1946/47 A/D CONVERTER (ADC) CHARACTERISTICS(1,2,3)  
:
Standard Operating Conditions (unless otherwise stated)  
Operating temperature TA 25°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10  
±1.7  
±1  
bit  
Integral Error  
LSb VREF = 3.0V  
Differential Error  
LSb No missing codes  
VREF = 3.0V  
AD04 EOFF Offset Error  
±2.5  
±2.0  
VDD  
VREF  
10  
LSb VREF = 3.0V  
LSb VREF = 3.0V  
AD05 EGN Gain Error  
(4)  
AD06 VREF Reference Voltage  
AD07 VAIN Full-Scale Range  
1.8  
VSS  
V
V
VREF = (VREF+ minus VREF-)  
AD08 ZAIN Recommended Impedance of  
Analog Voltage Source  
kCan go higher if external 0.01F capacitor is  
present on input pin.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification  
includes any such leakage from the ADC module.  
4: ADC Reference Voltage (Ref+) is the selected reference input, VREF+ pin, VDD pin or the FVR Buffer1. When the FVR is  
selected as the reference input, the FVR Buffer1 output selection must be 2.048V or 4.096V, (ADFVR<1:0> = 1x).  
TABLE 30-9: PIC16(L)F1946/47 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD130* TAD  
A/D Clock Period  
1.0  
1.0  
9.0  
6.0  
s  
s  
TOSC-based  
ADCS<1:0> = 11(ADRC mode)  
A/D Internal RC Oscillator  
Period  
2.5  
AD131 TCNV Conversion Time (not including  
11  
TAD Set GO/DONE bit to conversion  
complete  
(1)  
Acquisition Time)  
AD132* TACQ Acquisition Time  
5.0  
s  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: The ADRES register may be read on the following TCY cycle.  
DS41414D-page 410  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 30-12:  
PIC16(L)F1946/47 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2  
AD134  
Q4  
)
AD131  
AD130  
A/D CLK  
7
6
5
4
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 30-13:  
PIC16(L)F1946/47 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
Q4  
(1)  
(TOSC/2 + TCY  
1 TCY  
)
AD131  
AD130  
A/D CLK  
A/D Data  
7
6
5
3
2
1
0
4
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 411  
PIC16(L)F1946/47  
TABLE 30-10: COMPARATOR SPECIFICATIONS  
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).  
Param  
No.  
Sym.  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Comments  
Input Offset Voltage(1)  
CM01  
VIOFF  
±7.5  
±60  
mV High-Power mode  
VICM = VDD/2  
CM02  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time Rising Edge  
Response Time Falling Edge  
Response Time Rising Edge  
Response Time Falling Edge  
0
50  
VDD  
V
CM03  
CMRR  
dB  
CM04A  
CM04B  
CM04C  
CM04D  
CM05  
400  
200  
1200  
550  
800  
400  
ns  
ns  
ns  
ns  
s  
High-Power mode  
High-Power mode  
Low-Power mode  
Low-Power mode  
TRESP  
TMC2OV Comparator Mode Change to  
Output Valid*  
10  
CM06  
CHYSTER Comparator Hysteresis(2)  
45  
mV CxHYS = 1  
*
These parameters are characterized but not tested.  
Note 1: High power only.  
2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.  
TABLE 30-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS  
Operating Conditions: 2.5V < VDD < 5.5V, -40°C < TA < +85°C (unless otherwise stated).  
Param  
No.  
Sym.  
Characteristics  
Step Size  
Min.  
Typ.  
Max.  
Units  
Comments  
DAC01*  
DAC02*  
DAC03*  
DAC04*  
*
CLSB  
VDD/32  
1/2  
V
LSb  
CACC  
CR  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
5K  
CST  
10  
s  
These parameters are characterized but not tested.  
Note 1: Settling time measured while DACR<4:0> transitions from ‘0000’ to ‘1111’.  
FIGURE 30-14:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
CK  
DT  
US121  
US121  
US122  
US120  
Refer to Figure 30-5 for load conditions.  
Note:  
DS41414D-page 412  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 30-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max.  
Units Conditions  
US120 TCKH2DTV SYNC XMIT (Master and Slave)  
Clock high to data-out valid  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
US121 TCKRF  
Clock out rise time and fall time  
(Master mode)  
50  
US122 TDTRF  
Data-out rise time and fall time  
45  
50  
FIGURE 30-15:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
CK  
DT  
US125  
US126  
Note: Refer to Figure 30-5 for load conditions.  
TABLE 30-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max. Units  
Conditions  
US125 TDTV2CKL SYNC RCV (Master and Slave)  
Data-hold before CK (DT hold time)  
10  
15  
ns  
ns  
US126 TCKL2DTL Data-hold after CK (DT hold time)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 413  
PIC16(L)F1946/47  
FIGURE 30-16:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP71  
SP72  
SP78  
SP79  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP80  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
LSb In  
SP74  
SP73  
Note: Refer to Figure 30-5 for load conditions.  
FIGURE 30-17:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
SP81  
SCK  
(CKP = 0)  
SP71  
SP73  
SP72  
SP79  
SCK  
(CKP = 1)  
SP80  
SP78  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
Note: Refer to Figure 30-5 for load conditions.  
LSb In  
DS41414D-page 414  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 30-18:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP83  
SP71  
SP72  
SP78  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP79  
SP80  
MSb  
SDO  
SDI  
bit 6 - - - - - -1  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
SP73  
LSb In  
Note: Refer to Figure 30-5 for load conditions.  
FIGURE 30-19:  
SPI SLAVE MODE TIMING (CKE = 1)  
SP82  
SP70  
SS  
SP83  
SCK  
(CKP = 0)  
SP72  
SP71  
SCK  
(CKP = 1)  
SP80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
LSb In  
Note: Refer to Figure 30-5 for load conditions.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 415  
PIC16(L)F1946/47  
TABLE 30-14: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ† Max. Units Conditions  
SP70* TSSL2SCH, SSto SCKor SCKinput  
TCY  
ns  
TSSL2SCL  
SP71* TSCH  
SP72* TSCL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
SP73* TDIV2SCH, Setup time of SDI data input to SCK edge  
TDIV2SCL  
SP74* TSCH2DIL, Hold time of SDI data input to SCK edge  
TSCL2DIL  
100  
ns  
SP75* TDOR  
SDO data output rise time  
3.0-5.5V  
1.8-5.5V  
10  
Tcy  
10  
25  
10  
10  
25  
10  
25  
50  
25  
50  
25  
50  
25  
50  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SP76* TDOF  
SDO data output fall time  
SP77* TSSH2DOZ SSto SDO output high-impedance  
SP78* TSCR  
SCK output rise time  
(Master mode)  
3.0-5.5V  
1.8-5.5V  
SP79* TSCF  
SCK output fall time (Master mode)  
SP80* TSCH2DOV, SDO data output valid after  
TSCL2DOV SCK edge  
3.0-5.5V  
1.8-5.5V  
SP81* TDOV2SCH, SDO data output setup to SCK edge  
TDOV2SCL  
SP82* TSSL2DOV SDO data output valid after SSedge  
50  
ns  
ns  
SP83* TSCH2SSH, SS after SCK edge  
1.5TCY + 40  
TSCL2SSH  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 30-20:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SP93  
SP91  
SP90  
SP92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 30-5 for load conditions.  
DS41414D-page 416  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 30-15: I2C™ BUS START/STOP BITS REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min. Typ Max. Units  
Conditions  
SP90* TSU:STA Start condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns Only relevant for Repeated  
Start condition  
SP91* THD:STA Start condition  
Hold time  
4000  
600  
ns After this period, the first  
clock pulse is generated  
SP92* TSU:STO Stop condition  
Setup time  
4700  
600  
ns  
SP93 THD:STO Stop condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
FIGURE 30-21:  
I2C™ BUS DATA TIMING  
SP100  
SP103  
SP102  
SP101  
SCL  
SP90  
SP106  
SP107  
SP92  
SP91  
SDA  
In  
SP110  
SP109  
SP109  
SDA  
Out  
Note: Refer to Figure 30-5 for load conditions.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 417  
PIC16(L)F1946/47  
TABLE 30-16: I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min.  
Max. Units  
Conditions  
SP100* THIGH  
Clock high time  
100 kHz mode  
4.0  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP module  
1.5TCY  
4.7  
SP101* TLOW  
Clock low time  
100 kHz mode  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
SSP module  
1.3  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
SP102* TR  
SP103* TF  
SDA and SCL rise 100 kHz mode  
time  
1000  
ns  
ns  
400 kHz mode  
20 + 0.1CB 300  
CB is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
250  
ns  
ns  
20 + 0.1CB 250  
CB is specified to be from  
10-400 pF  
SP106* THD:DAT Data input hold time 100 kHz mode  
400 kHz mode  
0
0.9  
ns  
s  
ns  
ns  
ns  
ns  
s  
s  
0
SP107* TSU:DAT Data input setup  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
250  
100  
(Note 2)  
(Note 1)  
SP109* TAA  
Output valid from  
clock  
3500  
SP110* TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
SP111 CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode (400 kHz) I2Cbus device can be used in a Standard mode (100 kHz) I2C bus system, but  
the requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does  
not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal,  
it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to  
the Standard mode I2C bus specification), before the SCL line is released.  
DS41414D-page 418  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
TABLE 30-17: CAP SENSE OSCILLATOR SPECIFICATIONS  
Param.  
Symbol  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
No.  
CS01* ISRC  
Current Source  
High  
A  
A  
A  
A  
A  
A  
V
-8  
-1.5  
-0.3  
7.5  
Medium  
Low  
CS02* ISNK  
Current Sink  
High  
Medium  
Low  
1.5  
0.25  
0.8  
CS03* VCTH  
CS04* VCTL  
Cap Threshold  
Cap Threshold  
0.4  
V
CS05* VCHYST Cap Hysteresis  
(VCTH-VCTL)  
High  
Medium  
Low  
525  
375  
300  
mV  
mV  
mV  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 30-22:  
CAP SENSE OSCILLATOR  
VCTH  
VCTL  
ISRC  
Enabled  
ISNK  
Enabled  
2010-2012 Microchip Technology Inc.  
DS41414D-page 419  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 420  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are ensured to operate properly only within the specified range.  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25C. “MAXIMUM”, “Max.”, “MINIMUM” or “Min.”  
represents (mean + 3) or (mean - 3) respectively, where is a standard deviation, over each  
temperature range.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 421  
PIC16(L)F1946/47  
FIGURE 31-1:  
IDD, LP OSCILLATOR MODE, FOSC = 32 kHz, PIC16LF1946/47 ONLY  
14  
12  
10  
8
Max.  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Typical  
6
4
2
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-2:  
IDD, LP OSCILLATOR MODE, FOSC = 32 kHz, PIC16F1946/47 ONLY  
60  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
50  
40  
30  
20  
10  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 422  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-3:  
IDD TYPICAL, XT AND EXTRC OSCILLATOR, PIC16LF1946/47 ONLY  
450  
400  
350  
300  
250  
200  
150  
100  
50  
4 MHz XT  
Typical: 25°C  
4 MHz EXTRC  
1 MHz XT  
1 MHz EXTRC  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-4:  
IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16LF1946/47 ONLY  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Max: 85°C + 3ꢀ  
4 MHz XT  
4 MHz EXTRC  
1 MHz XT  
1 MHz EXTRC  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 423  
PIC16(L)F1946/47  
FIGURE 31-5:  
IDD TYPICAL, XT AND EXTRC OSCILLATOR, PIC16F1946/47 ONLY  
500  
Typical: 25°C  
4 MHz XT  
4 MHz EXTRC  
400  
300  
200  
100  
1 MHz XT  
1 MHz EXTRC  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
FIGURE 31-6:  
IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1946/47 ONLY  
600  
4 MHz XT  
Max: 85°C + 3ꢀ  
500  
400  
300  
200  
100  
4 MHz EXTRC  
1 MHz XT  
1 MHz EXTRC  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 424  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-7:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz,  
PIC16LF1946/47 ONLY  
12  
10  
8
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
6
Typical  
4
2
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-8:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz, PIC16F1946/47 ONLY  
50  
Max: 85°C + 3ꢀ  
Typical: 25°C  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max.  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 425  
PIC16(L)F1946/47  
FIGURE 31-9:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz,  
PIC16LF1946/47 ONLY  
60  
50  
40  
30  
20  
10  
Max.  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-10:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz, PIC16F1946/47 ONLY  
90  
80  
Max.  
Max: 85°C + 3ꢀ  
Typical: 25°C  
70  
60  
50  
40  
30  
20  
10  
0
Typical  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 426  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-11:  
IDD TYPICAL, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16LF1946/47 ONLY  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Typical: 25°C  
4 MHz  
1 MHz  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-12:  
IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16LF1946/47 ONLY  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Max: 85°C + 3ꢀ  
4 MHz  
1 MHz  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 427  
PIC16(L)F1946/47  
FIGURE 31-13:  
IDD TYPICAL, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16F1946/47 ONLY  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Typical: 25°C  
4 MHz  
1 MHz  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
FIGURE 31-14:  
IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16F1946/47 ONLY  
500  
Max: 85°C + 3ꢀ  
450  
400  
350  
300  
250  
200  
150  
100  
50  
4 MHz  
1 MHz  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 428  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-15:  
IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE, PIC16LF1946/47 ONLY  
3.5  
Typical: 25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
32 MHz (PLL)  
16 MHz  
8 MHz  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-16:  
IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16LF1946/47 ONLY  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max: 85°C + 3ꢀ  
32 MHz (PLL)  
16 MHz  
8 MHz  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 429  
PIC16(L)F1946/47  
FIGURE 31-17:  
IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE, PIC16F1946/47 ONLY  
3.5  
Typical: 25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
32 MHz (PLL)  
16 MHz  
8 MHz  
0.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
FIGURE 31-18:  
IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16F1946/47 ONLY  
3.5  
Max: 85°C + 3ꢀ  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
32 MHz (PLL)  
16 MHz  
8 MHz  
0.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 430  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-19:  
IDD, LFINTOSC MODE, FOSC = 32 kHz, PIC16LF1946/47 ONLY  
12  
Max: 85°C + 3ꢀ  
Typical: 25°C  
10  
8
Max.  
6
Typical  
4
2
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-20:  
IDD, LFINTOSC MODE, FOSC = 32 kHz, PIC16F1946/47 ONLY  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 431  
PIC16(L)F1946/47  
FIGURE 31-21:  
IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16LF1946/47 ONLY  
180  
160  
140  
120  
100  
80  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
60  
40  
20  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-22:  
IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16F1946/47 ONLY  
300  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
250  
200  
150  
100  
50  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 432  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-23:  
IDD TYPICAL, HFINTOSC MODE, PIC16LF1946/47 ONLY  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Typical: 25°C  
32 MHz (PLL)  
16 MHz  
8 MHz  
4 MHz  
2.2  
0
1.6  
1.8  
2.0  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-24:  
IDD MAXIMUM, HFINTOSC MODE, PIC16LF1946/47 ONLY  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Max: 85°C + 3ꢀ  
32 MHz (PLL)  
16 MHz  
8 MHz  
4 MHz  
2.2 2.4  
0
1.6  
1.8  
2.0  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 433  
PIC16(L)F1946/47  
FIGURE 31-25:  
IDD TYPICAL, HFINTOSC MODE, PIC16F1946/47 ONLY  
3500  
Typical: 25°C  
32 MHz (PLL)  
3000  
2500  
2000  
1500  
1000  
500  
16 MHz  
8 MHz  
4 MHz  
3.5  
0
1.5  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
FIGURE 31-26:  
IDD MAXIMUM, HFINTOSC MODE, PIC16F1946/47 ONLY  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
32 MHz (PLL)  
Max: 85°C + 3ꢀ  
16 MHz  
8 MHz  
4 MHz  
3.5  
0
1.5  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
DS41414D-page 434  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-27:  
IDD TYPICAL, HS OSCILLATOR, PIC16LF1946/47 ONLY  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Max: 85°C + 3ꢀ  
Typical: 25°C  
32 MHz (PLL)  
20 MHz  
8 MHz  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-28:  
IDD MAXIMUM, HS OSCILLATOR, PIC16LF1946/47 ONLY  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Max: 85°C + 3ꢀ  
Typical: 25°C  
32 MHz (PLL)  
20 MHz  
8 MHz  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 435  
PIC16(L)F1946/47  
FIGURE 31-29:  
IDD TYPICAL, HS OSCILLATOR, PIC16F1946/47 ONLY  
3500  
Typical: 25°C  
3000  
2500  
2000  
1500  
1000  
500  
32 MHz (PLL)  
20 MHz  
8 MHz  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
FIGURE 31-30:  
3500  
IDD MAXIMUM, HS OSCILLATOR, PIC16F1946/47 ONLY  
Max: 85°C + 3ꢀ  
32 MHz (PLL)  
3000  
2500  
20 MHz  
2000  
1500  
8 MHz  
1000  
500  
0
1.5  
2.0  
2.5  
3.0  
3.5  
VDD (V)  
4.0  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 436  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-31:  
IPD BASE, PIC16LF1946/47 ONLY  
1200  
Max.  
Max: 85°C + 3ꢀ  
Typical: 25°C  
1000  
800  
600  
400  
200  
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-32:  
IPD BASE, PIC16F1946/47 ONLY  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max.  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 437  
PIC16(L)F1946/47  
FIGURE 31-33:  
IPD, WATCHDOG TIMER (WDT), PIC16LF1946/47 ONLY  
2500  
Max: 85°C + 3ꢀ  
Typical: 25°C  
2000  
1500  
1000  
500  
Max.  
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-34:  
IPD, WATCHDOG TIMER (WDT), PIC16F1946/47 ONLY  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 438  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-35:  
IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16LF1946/47 ONLY  
14  
13  
12  
11  
10  
9
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
8
7
6
5
4
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-36:  
IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16F1946/47 ONLY  
120  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
100  
80  
60  
40  
20  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 439  
PIC16(L)F1946/47  
FIGURE 31-37:  
IPD, BROWN-OUT RESET (BOR), PIC16LF1946/47 ONLY  
12  
11  
10  
9
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
8
7
6
5
4
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-38:  
IPD, BROWN-OUT RESET (BOR), PIC16F1946/47 ONLY  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 440  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-39:  
IPD, TIMER1 OSCILLATOR, FOSC = 32 kHz, PIC16LF1946/47 ONLY  
14  
Max: 85°C + 3ꢀ  
Typical: 25°C  
12  
10  
8
Max.  
6
4
Typical  
2.6  
2
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.8  
DD (V)  
3.0  
3.2  
3.4  
3.6  
3.8  
V
FIGURE 31-40:  
IPD, TIMER1 OSCILLATOR, FOSC = 32 kHz, PIC16F1946/47 ONLY  
60  
Max: 85°C + 3ꢀ  
Typical: 25°C  
50  
40  
30  
20  
10  
Max.  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 441  
PIC16(L)F1946/47  
FIGURE 31-41:  
IPD, CAPACITIVE SENSING (CPS) MODULE, LOW-CURRENT RANGE,  
CPSRM = 0, PIC16LF1946/47 ONLY  
8
Max.  
Max: 85°C + 3ꢀ  
Typical: 25°C  
7
6
5
4
3
2
1
0
Typical  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
VDD (V)  
3.0  
3.2  
3.4  
3.6  
3.8  
FIGURE 31-42:  
IPD, CAPACITIVE SENSING (CPS) MODULE, LOW-CURRENT RANGE,  
CPSRM = 0, PIC16F1946/47 ONLY  
45  
Max: 85°C + 3ꢀ  
Typical: 25°C  
40  
35  
30  
25  
20  
15  
10  
5
Max.  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 442  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-43:  
IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE,  
CPSRM = 0, PIC16LF1946/47 ONLY  
14  
12  
10  
8
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
6
4
2
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-44:  
IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE,  
CPSRM = 0, PIC16F1946/47 ONLY  
60  
50  
40  
30  
20  
10  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 443  
PIC16(L)F1946/47  
FIGURE 31-45:  
IPD, CAPACITIVE SENSING (CPS) MODULE, HIGH-CURRENT RANGE,  
CPSRM = 0, PIC16LF1946/47 ONLY  
70  
60  
50  
40  
30  
20  
10  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-46:  
IPD, CAPACITIVE SENSING (CPS) MODULE, HIGH-CURRENT RANGE,  
CPSRM = 0, PIC16F1946/47 ONLY  
140  
120  
100  
80  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
Typical  
60  
40  
20  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 444  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-47:  
IPD, COMPARATOR, LOW-POWER MODE, PIC16LF1946/47 ONLY  
30  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
25  
20  
15  
10  
5
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-48:  
IPD, COMPARATOR, LOW-POWER MODE, PIC16F1946/47 ONLY  
60  
Max: 85°C + 3ꢀ  
Typical: 25°C  
50  
Max.  
40  
30  
20  
10  
0
Typical  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2010-2012 Microchip Technology Inc.  
DS41414D-page 445  
PIC16(L)F1946/47  
FIGURE 31-49:  
IPD, COMPARATOR, HIGH-POWER MODE, PIC16LF1946/47 ONLY  
60  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
50  
40  
30  
20  
10  
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 31-50:  
IPD, COMPARATOR, HIGH-POWER MODE, PIC16F1946/47 ONLY  
80  
Max: 85°C + 3ꢀ  
Typical: 25°C  
Max.  
70  
60  
50  
40  
30  
20  
10  
0
Typical  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
DS41414D-page 446  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-51:  
VOH VS. IOH OVER TEMPERATURE, VDD = 5.0V, PIC16F1946/47 ONLY  
6
Graph represents  
3ꢀ Limits  
5
4
3
2
1
-40°C  
125°C  
Typical  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
IOH (mA)  
FIGURE 31-52:  
VOL VS. IOL OVER TEMPERATURE, VDD = 5.0V, PIC16F1946/47 ONLY  
5
Graph represents  
3ꢀ Limits  
4
3
2
1
-40°C  
Typical  
125°C  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
IOL (mA)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 447  
PIC16(L)F1946/47  
FIGURE 31-53:  
VOH VS. IOH OVER TEMPERATURE, VDD = 3.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Graph represents  
3ꢀ Limits  
125°C  
Typical  
-40°C  
0.0  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IOH (mA)  
FIGURE 31-54:  
VOL VS. IOL OVER TEMPERATURE, VDD = 3.0V  
3.0  
Graph represents  
3ꢀ Limits  
2.5  
2.0  
1.5  
1.0  
0.5  
-40°C  
Typical  
125°C  
0.0  
0
5
10  
15  
20  
25  
30  
IOL (mA)  
DS41414D-page 448  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-55:  
VOH VS. IOH OVER TEMPERATURE, VDD = 1.8V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Graph represents  
3ꢀ Limits  
125°C  
Typical  
-40°C  
0.0  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
IOH (mA)  
FIGURE 31-56:  
VOL VS. IOL OVER TEMPERATURE, VDD = 1.8V  
1.8  
1.6  
1.4  
1.2  
1
Graph represents  
3ꢀ Limits  
125°C  
Typical  
0.8  
0.6  
0.4  
0.2  
-40°C  
0
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 449  
PIC16(L)F1946/47  
FIGURE 31-57:  
BROWN-OUT RESET VOLTAGE, BORV = 1  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
Max: Typical + 3ꢀ  
Min: Typical - 3ꢀ  
Max.  
Min.  
1.70  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
FIGURE 31-58:  
BROWN-OUT RESET HYSTERESIS, BORV = 1  
70  
60  
50  
40  
30  
20  
10  
Max.  
Typical  
Min.  
Max: Typical + 3ꢀ  
Typical: 25°C  
Min: Typical - 3ꢀ  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
DS41414D-page 450  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-59:  
BROWN-OUT RESET VOLTAGE, BORV = 0  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
Max: Typical + 3ꢀ  
Min: Typical - 3ꢀ  
Max.  
Min.  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
FIGURE 31-60:  
BROWN-OUT RESET HYSTERESIS, BORV = 0  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Max.  
Typical  
Max: Typical + 3ꢀ  
Typical: 25°C  
Min: Typical - 3ꢀ  
Min.  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 451  
PIC16(L)F1946/47  
FIGURE 31-61:  
COMPARATOR HYSTERESIS, HIGH-POWER MODE  
120  
100  
80  
Max: Typical + 3ꢀ  
Typical: 25°C  
Min: Typical - 3ꢀ  
Max.  
Typical  
60  
40  
Min.  
4
20  
0
1.5  
2
2.5  
3
3.5  
VDD (V)  
4.5  
5
5.5  
6
FIGURE 31-62:  
COMPARATOR HYSTERESIS, LOW-POWER MODE  
25  
Max: Typical + 3ꢀ  
Typical: 25°C  
Min: Typical - 3ꢀ  
20  
15  
10  
5
Max.  
Typical  
Min.  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
DS41414D-page 452  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
FIGURE 31-63:  
COMPARATOR RESPONSE TIME, HIGH-POWER MODE  
390  
Max: Typical + 3ꢀ  
Typical: 25°C  
340  
290  
240  
190  
140  
Max.  
Typical  
90  
1.5  
2
2.5  
3
3.5  
VDD (V)  
4
4.5  
5
5.5  
6
FIGURE 31-64:  
COMPARATOR RESPONSE TIME OVER TEMPERATURE, HIGH-POWER MODE  
260  
Graph represents  
3ꢀ Limits  
240  
220  
200  
180  
160  
125°C  
Typical  
-40°C  
140  
1.5  
2
2.5  
3
3.5  
VDD (V)  
4
4.5  
5
5.5  
6
2010-2012 Microchip Technology Inc.  
DS41414D-page 453  
PIC16(L)F1946/47  
FIGURE 31-65:  
COMPARATOR INPUT OFFSET AT 25°C, HIGH-POWER MODE,  
PIC16F1946/47 ONLY  
60  
40  
20  
0
Max.  
Typical  
Min.  
-20  
-40  
Max: Typical + 3ꢀ  
Typical: 25°C  
Min: Typical - 3ꢀ  
-60  
0
1
2
3
4
5
Common Mode Voltage (V)  
DS41414D-page 454  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
32.1 MPLAB Integrated Development  
Environment Software  
32.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 455  
PIC16(L)F1946/47  
32.2 MPLAB C Compilers for Various  
Device Families  
32.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
32.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
32.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
32.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS41414D-page 456  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
32.7 MPLAB SIM Software Simulator  
32.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
32.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
32.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 457  
PIC16(L)F1946/47  
32.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
32.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
32.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41414D-page 458  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
33.0 PACKAGING INFORMATION  
33.1 Package Marking Information  
64-Lead QFN (9x9x0.9 mm)  
Example  
PIN 1  
PIN 1  
PIC16F1947  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
e
3
-I/MR  
1110017  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F1947  
-I/PT  
1110017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro® device marking consists of Microchip part number, year code, week code and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 459  
PIC16(L)F1946/47  
33.2 Package Details  
The following sections give the technical details of the packages.  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS41414D-page 460  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2012 Microchip Technology Inc.  
DS41414D-page 461  
PIC16(L)F1946/47  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
DS41414D-page 462  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
2010-2012 Microchip Technology Inc.  
DS41414D-page 463  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 464  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A (3/2010)  
This shows a comparison of features in the migration  
from the PIC16F917 device to the PIC16F1946 family  
of devices.  
Original release.  
Revision B (9/2010)  
B.1  
TABLE B-1:  
Feature  
PIC16F917 to PIC16F1946  
Updated with current electrical specifications; Added  
Temperature Indicator Module section; Other minor  
corrections.  
FEATURE COMPARISON  
PIC16F917 PIC16F1946  
Max. Operating Speed  
20 MHz  
8K  
32 MHz  
8K  
Revision C (5/2011)  
Max. Program  
Memory (Words)  
Updated the EUSART section; Updated the Electrical  
Specifications section; Updated Table 3-8, Figure 13-1  
and Equation 16-1.  
Max. SRAM (Bytes)  
A/D Resolution  
368  
512  
10-bit  
10-bit  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
Interrupt-on-change  
Comparator  
2/1  
4/1  
Revision D (02/2012)  
4
8
Updated Electrical Specifications and added  
Characterization Graphs.  
Y
Y
RB<7:0>  
RB<7:0>  
RB<7:4>  
RB<7:0>  
2
1/0  
Y
2
0/2  
Y
AUSART/EUSART  
Extended WDT  
Software Control  
N
Y
Option of WDT/BOR  
INTOSC Frequencies  
30 kHz -  
8 MHz  
31 kHz -  
16 MHz  
Clock Switching  
Capacitive Sensing  
CCP/ECCP  
Y
N
Y
Y
2/0  
N
2/3  
Y
Enhanced PIC16 CPU  
MSSP/SSP  
0/1  
Y
2/0  
Y
LCD  
2010-2012 Microchip Technology Inc.  
DS41414D-page 465  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 466  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
INDEX  
Crystal Operation.................................................. 64, 65  
Digital-to-Analog Converter (DAC) ........................... 176  
EUSART Receive..................................................... 298  
EUSART Transmit.................................................... 297  
External RC Mode ...................................................... 65  
Fail-Safe Clock Monitor (FSCM)................................. 73  
Generic I/O Port........................................................ 127  
Interrupt Logic............................................................. 87  
LCD Bias Voltage Generation .................................. 343  
LCD Clock Generation.............................................. 342  
On-Chip Reset Circuit................................................. 79  
PIC16F/LF1946/47 ..................................................... 12  
PWM (Enhanced) ..................................................... 224  
Resonator Operation .................................................. 64  
Timer0 ...................................................................... 195  
Timer1 ...................................................................... 199  
Timer1 Gate.............................................. 204, 205, 206  
Timer2/4/6 ................................................................ 211  
Voltage Reference.................................................... 157  
Voltage Reference Output Buffer Example .............. 176  
BORCON Register.............................................................. 81  
BRA .................................................................................. 380  
Break Character (12-bit) Transmit and Receive ............... 317  
Brown-out Reset (BOR)...................................................... 81  
Specifications ........................................................... 408  
Timing and Characteristics....................................... 407  
A
A/D  
Specifications............................................................ 410  
Absolute Maximum Ratings (PIC16F/LF1946/47) ............ 389  
AC Characteristics  
Industrial and Extended ............................................ 404  
Load Conditions........................................................ 403  
ACKSTAT ......................................................................... 278  
ACKSTAT Status Flag ...................................................... 278  
ADC .................................................................................. 161  
Acquisition Requirements ......................................... 172  
Associated registers.................................................. 174  
Block Diagram........................................................... 162  
Calculating Acquisition Time..................................... 172  
Channel Selection..................................................... 163  
Configuration............................................................. 163  
Configuring Interrupt ................................................. 167  
Conversion Clock...................................................... 163  
Conversion Procedure .............................................. 167  
Internal Sampling Switch (RSS) Impedance.............. 172  
Interrupts................................................................... 165  
Operation .................................................................. 166  
Operation During Sleep ............................................ 166  
Port Configuration..................................................... 163  
Reference Voltage (VREF)......................................... 163  
Source Impedance.................................................... 172  
Special Event Trigger................................................ 166  
Starting an A/D Conversion ...................................... 165  
ADCON0 Register....................................................... 34, 168  
ADCON1 Register....................................................... 34, 169  
ADDFSR ........................................................................... 379  
ADDWFC .......................................................................... 379  
ADRESH Register............................................................... 34  
ADRESH Register (ADFM = 0)......................................... 170  
ADRESH Register (ADFM = 1)......................................... 171  
ADRESL Register (ADFM = 0).......................................... 170  
ADRESL Register (ADFM = 1).......................................... 171  
Alternate Pin Function....................................................... 128  
Analog-to-Digital Converter. See ADC  
C
C Compilers  
MPLAB C18.............................................................. 456  
CALL................................................................................. 381  
CALLW ............................................................................. 381  
Capacitive Sensing........................................................... 327  
Associated registers w/ Capacitive Sensing............. 334  
Specifications ........................................................... 419  
Capture Module. See Enhanced Capture/Compare/PWM  
(ECCP)  
Capture/Compare/PWM ................................................... 215  
Capture/Compare/PWM (CCP)  
Associated Registers w/ Capture ............................. 217  
Associated Registers w/ Compare ........................... 219  
Associated Registers w/ PWM ......................... 223, 237  
Capture Mode........................................................... 216  
CCPx Pin Configuration............................................ 216  
Compare Mode......................................................... 218  
CCPx Pin Configuration.................................... 218  
Software Interrupt Mode........................... 216, 218  
Special Event Trigger....................................... 218  
Timer1 Mode Resource............................ 216, 218  
Prescaler .................................................................. 216  
PWM Mode  
ANSELA Register ............................................................. 132  
ANSELE Register ............................................................. 144  
ANSELF Register.............................................................. 147  
APFCON Register............................................................. 129  
Assembler  
MPASM Assembler................................................... 456  
Automatic Context Saving................................................... 91  
B
BAUDxCON Register........................................................ 309  
BF ............................................................................. 278, 280  
BF Status Flag .......................................................... 278, 280  
Block Diagram  
Capacitive Sensing ........................................... 327, 328  
Block Diagrams  
Duty Cycle ........................................................ 221  
Effects of Reset................................................ 223  
Example PWM Frequencies and  
Resolutions, 20 MHZ................................ 222  
Example PWM Frequencies and  
(CCP) Capture Mode Operation ............................... 216  
ADC .......................................................................... 162  
ADC Transfer Function ............................................. 173  
Analog Input Model........................................... 173, 184  
CCP PWM................................................................. 220  
Clock Source............................................................... 62  
Comparator............................................................... 180  
Compare ................................................................... 218  
Core ............................................................................ 20  
Resolutions, 32 MHZ................................ 222  
Example PWM Frequencies and  
Resolutions, 8 MHz .................................. 222  
Operation in Sleep Mode.................................. 223  
Resolution ........................................................ 222  
System Clock Frequency Changes .................. 223  
PWM Operation........................................................ 220  
PWM Overview......................................................... 220  
2010-2012 Microchip Technology Inc.  
DS41414D-page 467  
PIC16(L)F1946/47  
PWM Period..............................................................221  
PWM Setup...............................................................221  
CCP1CON Register ...................................................... 38, 39  
CCPR1H Register......................................................... 38, 39  
CCPR1L Register.......................................................... 38, 39  
CCPTMRS0 Register........................................................239  
CCPTMRS1 Register........................................................239  
CCPxAS Register..............................................................240  
CCPxCON (ECCPx) Register ...........................................238  
Clock Accuracy with Asynchronous Operation .................306  
Clock Sources  
External Modes...........................................................63  
EC.......................................................................63  
HS.......................................................................63  
LP........................................................................63  
OST.....................................................................64  
RC.......................................................................65  
XT .......................................................................63  
Internal Modes ............................................................66  
HFINTOSC..........................................................66  
Internal Oscillator Clock Switch Timing...............68  
LFINTOSC ..........................................................67  
MFINTOSC .........................................................66  
Clock Switching...................................................................70  
CMOUT Register...............................................................186  
CMxCON0 Register ..........................................................185  
CMxCON1 Register ..........................................................186  
Code Examples  
Extended and Industrial (PIC16F/LF1946/47-I/E)..... 400  
Industrial and Extended (PIC16F/LF1946/47).......... 392  
Development Support....................................................... 455  
Device Configuration .......................................................... 55  
Code Protection.......................................................... 59  
Configuration Word..................................................... 55  
User ID ................................................................. 59, 60  
Device ID Register.............................................................. 60  
Device Overview......................................................... 11, 107  
Digital-to-Analog Converter (DAC) ................................... 175  
Associated Registers................................................ 178  
Effects of a Reset ..................................................... 176  
Specifications ........................................................... 412  
E
ECCP/CCP. See Enhanced Capture/Compare/PWM  
EEADR Registers ............................................................. 111  
EEADRH Registers........................................................... 111  
EEADRL Register............................................................. 123  
EEADRL Registers ........................................................... 111  
EECON1 Register..................................................... 111, 124  
EECON2 Register..................................................... 111, 125  
EEDATH Register..................................................... 122, 123  
EEDATL Register ............................................................. 122  
EEPROM Data Memory  
Avoiding Spurious Write ........................................... 112  
Write Verify............................................................... 121  
Effects of Reset  
PWM mode............................................................... 223  
Electrical Specifications (PIC16F/LF1946/47) .................. 389  
Enhanced Capture/Compare/PWM (ECCP)..................... 215  
Enhanced PWM Mode.............................................. 224  
Auto-Restart ..................................................... 233  
Auto-shutdown.................................................. 232  
Direction Change in Full-Bridge Output Mode.. 230  
Full-Bridge Application...................................... 228  
Full-Bridge Mode .............................................. 228  
Half-Bridge Application..................................... 227  
Half-Bridge Application Examples .................... 234  
Half-Bridge Mode.............................................. 227  
Output Relationships (Active-High and  
A/D Conversion.........................................................167  
Changing Between Capture Prescalers....................216  
Initializing PORTA.....................................................127  
Write Verify ...............................................................121  
Writing to Flash Program Memory ............................119  
Comparator  
Associated Registers ................................................187  
Operation ..................................................................179  
Comparator Module ..........................................................179  
Cx Output State Versus Input Conditions .................181  
Comparator Specifications................................................412  
Comparators  
C2OUT as T1 Gate ...................................................201  
Compare Module. See Enhanced Capture/Compare/  
PWM (ECCP)  
Active-Low)............................................... 225  
Output Relationships Diagram.......................... 226  
Programmable Dead Band Delay..................... 234  
Shoot-through Current...................................... 234  
Start-up Considerations.................................... 236  
Specifications ........................................................... 409  
Enhanced Mid-range CPU.................................................. 19  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) .............................. 297  
Errata.................................................................................... 9  
EUSART ........................................................................... 297  
Asynchronous Mode................................................. 299  
12-bit Break Transmit and Receive .................. 317  
Associated Registers, Receive......................... 305  
Associated Registers, Transmit........................ 301  
Auto-Wake-up on Break ................................... 315  
Baud Rate Generator (BRG) ............................ 310  
Clock Accuracy................................................. 306  
Receiver ........................................................... 302  
Setting up 9-bit Mode with Address Detect ...... 304  
Transmitter ....................................................... 299  
Baud Rate Generator (BRG)  
CONFIG1 Register..............................................................56  
CONFIG2 Register..............................................................58  
Core Registers ....................................................................33  
CPSCON0 Register ..........................................................333  
CPSCON1 Register ..........................................................334  
Customer Change Notification Service .............................475  
Customer Notification Service...........................................475  
Customer Support.............................................................475  
D
DACCON0 (Digital-to-Analog Converter Control 0)  
Register.....................................................................178  
DACCON1 (Digital-to-Analog Converter Control 1)  
Register.....................................................................178  
Data EEPROM Memory....................................................111  
Associated Registers ................................................125  
Code Protection ........................................................112  
Reading.....................................................................112  
Writing.......................................................................112  
Data Memory................................................................. 24, 27  
DC and AC Characteristics ...............................................421  
Graphs and Tables ...................................................421  
DC Characteristics  
Associated Registers........................................ 311  
Auto Baud Rate Detect..................................... 314  
Baud Rate Error, Calculating............................ 310  
DS41414D-page 468  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
Baud Rates, Asynchronous Modes .................. 311  
Formulas........................................................... 310  
High Baud Rate Select (BRGH Bit) .................. 310  
Instruction Format............................................................. 376  
Instruction Set................................................................... 375  
ADDLW..................................................................... 379  
ADDWF .................................................................... 379  
ADDWFC.................................................................. 379  
ANDLW..................................................................... 379  
ANDWF .................................................................... 379  
BRA .......................................................................... 380  
CALL......................................................................... 381  
CALLW ..................................................................... 381  
LSLF......................................................................... 383  
LSRF ........................................................................ 383  
MOVF ....................................................................... 383  
MOVIW..................................................................... 384  
MOVLB..................................................................... 384  
MOVWI..................................................................... 385  
OPTION.................................................................... 385  
RESET...................................................................... 385  
SUBWFB .................................................................. 387  
TRIS ......................................................................... 388  
BCF .......................................................................... 380  
BSF........................................................................... 380  
BTFSC...................................................................... 380  
BTFSS...................................................................... 380  
CALL......................................................................... 381  
CLRF ........................................................................ 381  
CLRW....................................................................... 381  
CLRWDT .................................................................. 381  
COMF....................................................................... 381  
DECF........................................................................ 381  
DECFSZ ................................................................... 382  
GOTO....................................................................... 382  
INCF ......................................................................... 382  
INCFSZ..................................................................... 382  
IORLW...................................................................... 382  
IORWF...................................................................... 382  
MOVLW.................................................................... 384  
MOVWF.................................................................... 384  
NOP.......................................................................... 385  
RETFIE..................................................................... 386  
RETLW..................................................................... 386  
RETURN................................................................... 386  
RLF........................................................................... 386  
RRF .......................................................................... 387  
SLEEP...................................................................... 387  
SUBLW..................................................................... 387  
SUBWF..................................................................... 387  
SWAPF..................................................................... 388  
XORLW .................................................................... 388  
XORWF .................................................................... 388  
INTCON Register................................................................ 92  
Internal Oscillator Block  
Clock polarity  
Synchronous Mode........................................... 318  
Data Polarity  
Asynchronous Receive ..................................... 302  
Data polarity  
Asynchronous Transmit .................................... 299  
Synchronous Mode........................................... 318  
Interrupts  
Asynchronous Receive ..................................... 303  
Asynchronous Transmit .................................... 299  
Synchronous Master Mode............................... 318, 323  
Associated Registers, Receive ......................... 322  
Associated Registers, Transmit ................ 319, 324  
Reception.......................................................... 321  
Transmission .................................................... 318  
Synchronous Slave Mode  
Associated Registers, Receive ......................... 325  
Reception.......................................................... 325  
Transmission .................................................... 323  
Extended Instruction Set  
ADDFSR ................................................................... 379  
F
Fail-Safe Clock Monitor....................................................... 73  
Fail-Safe Condition Clearing....................................... 73  
Fail-Safe Detection ..................................................... 73  
Fail-Safe Operation..................................................... 73  
Reset or Wake-up from Sleep..................................... 73  
Firmware Instructions........................................................ 375  
Fixed Voltage Reference (FVR)  
Associated Registers ................................................ 158  
Flash Program Memory .................................................... 111  
Erasing...................................................................... 116  
Modifying................................................................... 120  
Writing....................................................................... 116  
FSR Register33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46,  
47  
FVRCON (Fixed Voltage Reference Control) Register..... 158  
I
2
I C Mode (MSSPx)  
Acknowledge Sequence Timing................................ 282  
Bus Collision  
During a Repeated Start Condition................... 287  
During a Stop Condition.................................... 288  
Effects of a Reset...................................................... 283  
2
I C Clock Rate w/BRG.............................................. 290  
Master Mode  
Operation .......................................................... 274  
Reception.......................................................... 280  
Start Condition Timing .............................. 276, 277  
Transmission .................................................... 278  
Multi-Master Communication, Bus Collision and  
Arbitration ......................................................... 283  
Multi-Master Mode .................................................... 283  
Read/Write Bit Information (R/W Bit) ........................ 259  
Slave Mode  
INTOSC  
Specifications ................................................... 405  
Internal Sampling Switch (RSS) Impedance ..................... 172  
Internet Address ............................................................... 475  
Interrupt-On-Change......................................................... 153  
Associated Registers................................................ 156  
Interrupts ............................................................................ 87  
ADC.......................................................................... 167  
Associated registers w/ Interrupts ............................ 101  
Configuration Word Associated w/ PORTF .............. 147  
Configuration Word w/ Clock Sources........................ 77  
Configuration Word w/ LDO...................................... 103  
TMR1........................................................................ 203  
Transmission .................................................... 264  
Sleep Operation........................................................ 283  
Stop Condition Timing............................................... 282  
INDF Register33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46,  
47  
Indirect Addressing ............................................................. 51  
2010-2012 Microchip Technology Inc.  
DS41414D-page 469  
PIC16(L)F1946/47  
INTOSC Specifications .....................................................405  
IOCBF Register.................................................................155  
IOCBN Register ................................................................155  
IOCBP Register.................................................................155  
O
OPCODE Field Descriptions............................................. 375  
OPTION............................................................................ 385  
OPTION Register.............................................................. 197  
OSCCON Register.............................................................. 75  
Oscillator  
L
LATA Register...................................................................131  
LATB Register...................................................................134  
LATC Register...................................................................137  
LATD Register...................................................................140  
LATE Register...................................................................144  
LATF Register...................................................................146  
LATG Register ..................................................................149  
LCD  
Associated Registers.................................................. 77  
Oscillator Module................................................................ 61  
ECH ............................................................................ 61  
ECL............................................................................. 61  
ECM............................................................................ 61  
HS............................................................................... 61  
INTOSC ...................................................................... 61  
LP ............................................................................... 61  
RC .............................................................................. 61  
XT ............................................................................... 61  
Oscillator Parameters ....................................................... 405  
Oscillator Specifications.................................................... 404  
Oscillator Start-up Timer (OST)  
Specifications ........................................................... 408  
Oscillator Switching  
Fail-Safe Clock Monitor .............................................. 73  
Two-Speed Clock Start-up.......................................... 71  
OSCSTAT Register ............................................................ 76  
OSCTUNE Register............................................................ 77  
Associated Registers ................................................368  
Bias Voltage Generation ................................... 343, 344  
Clock Source Selection.............................................342  
Configuring the Module.............................................367  
Disabling the Module ................................................367  
Frame Frequency......................................................350  
Interrupts...................................................................363  
LCDCON Register ....................................................335  
LCDPS Register........................................................335  
Multiplex Types.........................................................350  
Operation During Sleep ............................................365  
Pixel Control..............................................................350  
Prescaler...................................................................342  
Segment Enables......................................................350  
Waveform Generation...............................................352  
LCDCON Register..................................................... 335, 337  
LCDCST Register .............................................................340  
LCDDATAx Registers ............................................... 341, 348  
LCDPS Register........................................................ 335, 338  
LP Bits.......................................................................342  
LCDREF Register .............................................................339  
LCDRL Register................................................................348  
LCDSEn Registers............................................................341  
Liquid Crystal Display (LCD) Driver ..................................335  
Load Conditions ................................................................403  
LSLF..................................................................................383  
LSRF.................................................................................383  
P
P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/  
PWM (ECCP)............................................................ 224  
Packaging......................................................................... 459  
Marking............................................................. 459, 460  
PDIP Details ............................................................. 460  
PCL and PCLATH............................................................... 20  
PCL Register33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46,  
47  
PCLATH Register33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,  
46, 47  
PCON Register............................................................. 34, 85  
PIE1 Register................................................................ 34, 93  
PIE2 Register................................................................ 34, 94  
PIE3 Register................................................................ 34, 95  
PIE4 Register...................................................................... 34  
Pin Diagram  
M
Master Synchronous Serial Port. See MSSPx  
PIC16F/LF1946/47, 64-pin TQFP/QFN ........................ 5  
Pinout Descriptions  
MCLR..................................................................................82  
Internal ........................................................................82  
Memory Organization  
PIC16F/LF1946/47 ..................................................... 13  
PIR1 Register ............................................................... 33, 97  
PIR2 Register ............................................................... 33, 98  
PIR3 Register ............................................................... 33, 99  
PIR4 Register ....................................................... 33, 96, 100  
PORTA ............................................................................. 130  
ANSELA Register ..................................................... 130  
Associated Registers................................................ 132  
Configuration Word w/ PORTA................................. 132  
LATA Register ............................................................ 35  
PORTA Register......................................................... 33  
Specifications ........................................................... 406  
PORTA Register............................................................... 131  
PORTB  
Associated Registers................................................ 135  
Interrupt-on-Change ................................................. 133  
LATB Register ............................................................ 35  
Pin Functions and Output Priorities .......................... 133  
PORTB Register......................................................... 33  
PORTB Register............................................................... 134  
Data ...................................................................... 24, 27  
Program ......................................................................21  
Microchip Internet Web Site..............................................475  
Migrating from other PIC Microcontroller Devices.............465  
MOVIW..............................................................................384  
MOVLB..............................................................................384  
MOVWI..............................................................................385  
MPLAB ASM30 Assembler, Linker, Librarian ...................456  
MPLAB Integrated Development Environment Software ..455  
MPLAB PM3 Device Programmer.....................................458  
MPLAB REAL ICE In-Circuit Emulator System.................457  
MPLINK Object Linker/MPLIB Object Librarian ................456  
MSSPx ..............................................................................243  
2
I C Mode...................................................................254  
2
I C Mode Operation ..................................................255  
SPI Mode ..................................................................246  
SSPxBUF Register ...................................................249  
SSPxSR Register......................................................249  
DS41414D-page 470  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
PORTC  
Associated Registers ................................................ 138  
Register  
RCxREG Register .................................................... 314  
Registers  
LATC Register ............................................................ 35  
Pin Functions and Output Priorities .......................... 136  
PORTC Register......................................................... 33  
Specifications............................................................ 406  
PORTC Register............................................................... 137  
PORTD ............................................................................. 139  
Associated Registers ................................................ 141  
LATD Register ............................................................ 35  
P1B/P1C/P1D.See Enhanced Capture/Compare/  
ADCON0 (ADC Control 0)........................................ 168  
ADCON1 (ADC Control 1)........................................ 169  
ADRESH (ADC Result High) with ADFM = 0) .......... 170  
ADRESH (ADC Result High) with ADFM = 1) .......... 171  
ADRESL (ADC Result Low) with ADFM = 0)............ 170  
ADRESL (ADC Result Low) with ADFM = 1)............ 171  
ANSELA (PORTA Analog Select) ............................ 132  
ANSELE (PORTE Analog Select) ............................ 144  
ANSELF (PORTF Analog Select)............................. 147  
APFCON (Alternate Pin Function Control) ............... 129  
BAUDxCON (Baud Rate Control)............................. 309  
BORCON Brown-out Reset Control) .......................... 81  
CCPTMRS0 (PWM Timer Selection Control 0)........ 239  
CCPTMRS1 (PWM Timer Selection Control 1)........ 239  
CCPxAS (CCPx Auto-Shutdown Control) ................ 240  
CCPxCON (ECCPx Control) .................................... 238  
CMOUT (Comparator Output) .................................. 186  
CMxCON0 (Cx Control)............................................ 185  
CMxCON1 (Cx Control 1)......................................... 186  
Configuration Word 1.................................................. 56  
Configuration Word 2.................................................. 58  
CPSCON0 (Capacitive Sensing Control Register 0) 333  
CPSCON1 (Capacitive Sensing Control Register 1) 334  
DACCON0................................................................ 178  
DACCON1................................................................ 178  
Device ID.................................................................... 60  
EEADRL (EEPROM Address).................................. 123  
EECON1 (EEPROM Control 1) ................................ 124  
EECON2 (EEPROM Control 2) ................................ 125  
EEDATH (EEPROM Data) ............................... 122, 123  
EEDATL (EEPROM Data)........................................ 122  
FVRCON .................................................................. 158  
INTCON (Interrupt Control) ........................................ 92  
IOCBF (Interrupt-on-Change Flag)........................... 155  
IOCBN (Interrupt-on-Change Negative Edge).......... 155  
IOCBP (Interrupt-on-Change Positive Edge)............ 155  
LATA (Data Latch PORTA) ...................................... 131  
LATB (Data Latch PORTB) ...................................... 134  
LATC (Data Latch PORTC)...................................... 137  
LATD (Data Latch PORTD)...................................... 140  
LATE (Data Latch PORTE) ...................................... 144  
LATF (Data Latch PORTF)....................................... 146  
LATG (Data Latch PORTG)...................................... 149  
LCDCON (LCD Control) ........................................... 337  
LCDCST (LCD Contrast Control) ............................. 340  
LCDDATAx (LCD Data).................................... 341, 348  
LCDPS (LCD Phase)................................................ 338  
LCDREF (LCD Reference Voltage Control) ............. 339  
LCDRL (LCD Reference Voltage Control)................ 348  
LCDSEn (LCD Segment Enable) ............................. 341  
OPTION_REG (OPTION)......................................... 197  
OSCCON (Oscillator Control)..................................... 75  
OSCSTAT (Oscillator Status)..................................... 76  
OSCTUNE (Oscillator Tuning).................................... 77  
PCON (Power Control Register)................................. 85  
PCON (Power Control)............................................... 85  
PIE1 (Peripheral Interrupt Enable 1) .......................... 93  
PIE2 (Peripheral Interrupt Enable 2) .......................... 94  
PIE3 (Peripheral Interrupt Enable 3) .......................... 95  
PIR1 (Peripheral Interrupt Register 1)........................ 97  
PIR2 (Peripheral Interrupt Request 2)........................ 98  
PIR3 (Peripheral Interrupt Request 3)........................ 99  
PWM+ (ECCP+) ............................................... 139  
Pin Functions and Output Priorities .......................... 139  
PORTD Register......................................................... 33  
PORTD Register............................................................... 140  
PORTE.............................................................................. 142  
ANSELE Register ..................................................... 142  
Associated Registers ................................................ 144  
LATE Register............................................................. 35  
Pin Functions and Output Priorities .................. 142, 145  
PORTE Register ......................................................... 33  
PORTE Register ............................................................... 143  
PORTF.............................................................................. 145  
ANSELF Register...................................................... 145  
Associated Registers ................................................ 147  
LATF Register............................................................. 40  
PORTF Register ......................................................... 38  
PORTF Register ............................................................... 146  
PORTG ............................................................................. 148  
ANSELG Register..................................................... 148  
Associated Registers ................................................ 151  
LATG Register ............................................................ 40  
Pin Descriptions and Output Priorities ...................... 148  
PORTG Register......................................................... 38  
PORTG Register............................................................... 149  
Power-Down Mode (Sleep)............................................... 105  
Associated Registers ................................................ 106  
Power-on Reset .................................................................. 80  
Power-up Timer (PWRT) .................................................... 80  
Specifications............................................................ 408  
PR2 Register................................................................. 33, 41  
Precision Internal Oscillator Parameters........................... 405  
Program Memory ................................................................ 21  
Map and Stack............................................................ 27  
Map and Stack (PIC16F/LF1946/47) .................... 22, 27  
Map and Stack (PIC16F1946) .................................... 22  
Map and Stack (PIC16F1947) .................................... 22  
Map and Stack PIC16F/LF1946/47) ........................... 21  
Programming Mode Exit ..................................................... 82  
Programming, Device Instructions .................................... 375  
PSTRxCON Register ........................................................ 242  
PWM (ECCP Module)  
PWM Steering........................................................... 235  
Steering Synchronization.......................................... 236  
PWM Mode. See Enhanced Capture/Compare/PWM ...... 224  
PWM Steering................................................................... 235  
PWMxCON Register ......................................................... 241  
R
RC2REG Register............................................................... 42  
RC2STA Register ............................................................... 42  
RCxREG ........................................................................... 304  
RCxREG Register............................................................... 36  
RCxSTA Register........................................................ 36, 308  
Reader Response............................................................. 476  
Read-Modify-Write Operations ......................................... 375  
2010-2012 Microchip Technology Inc.  
DS41414D-page 471  
PIC16(L)F1946/47  
PIR4 (Peripheral Interrupt Request 4) ................ 96, 100  
PORTA......................................................................131  
PORTB......................................................................134  
PORTC .....................................................................137  
PORTD .....................................................................140  
PORTE......................................................................143  
PORTF......................................................................146  
PORTG .....................................................................149  
PSTRxCON (PWM Steering Control) .......................242  
PWMxCON (Enhanced PWM Control) .....................241  
RCxSTA (Receive Status and Control).....................308  
Special Function, Summary........................................33  
SRCON0 (SR Latch Control 0) .................................192  
SRCON1 (SR Latch Control 1) .................................193  
SSPxADD (MSSPx Address and Baud Rate,  
SSP2ADD Register............................................................. 37  
SSP2BUF Register............................................................. 37  
SSP2CON1 Register .......................................................... 37  
SSP2CON2 Register .......................................................... 37  
SSP2CON3 Register .......................................................... 37  
SSP2MSK Register ............................................................ 37  
SSP2STAT Register........................................................... 37  
SSPxADD Register........................................................... 296  
SSPxCON1 Register ........................................................ 292  
SSPxCON2 Register ........................................................ 294  
SSPxCON3 Register ........................................................ 295  
SSPxMSK Register........................................................... 296  
SSPxOV............................................................................ 280  
SSPxOV Status Flag ........................................................ 280  
SSPxSTAT Register ......................................................... 291  
R/W Bit ..................................................................... 259  
Stack................................................................................... 49  
Accessing ................................................................... 49  
Reset .......................................................................... 51  
Stack Overflow/Underflow .................................................. 82  
STATUS Register ............................................................... 25  
SUBWFB .......................................................................... 387  
2
I C Mode)..........................................................296  
SSPxCON1 (MSSPx Control 1)................................292  
SSPxCON2 (SSPx Control 2)...................................294  
SSPxCON3 (SSPx Control 3)...................................295  
SSPxMSK (SSPx Mask) ...........................................296  
SSPxSTAT (SSPx Status) ........................................291  
STATUS......................................................................25  
T1CON (Timer1 Control)...........................................207  
T1GCON (Timer1 Gate Control)...............................208  
TRISA (Tri-State PORTA).........................................131  
TRISB (Tri-State PORTB).........................................134  
TRISC (Tri-State PORTC) ........................................137  
TRISD (Tri-State PORTD) ........................................140  
TRISE (Tri-State PORTE).........................................143  
TRISF (Tri-State PORTF) .........................................146  
TRISG (Tri-State PORTG)........................................149  
TXCON .....................................................................213  
TXxSTA (Transmit Status and Control) ....................307  
WDTCON (Watchdog Timer Control)........................109  
WPUB (Weak Pull-up PORTB).................................135  
WPUG (Weak Pull-up PORTG) ................................150  
RESET ..............................................................................385  
Reset Instruction .................................................................82  
Resets.................................................................................79  
Associated Registers ..................................................86  
Revision History ................................................................465  
T
T1CON Register ......................................................... 33, 207  
T1GCON Register ............................................................ 208  
T2CON Register ........................................................... 33, 41  
Temperature Indicator  
Associated Registers................................................ 160  
Temperature Indicator Module.......................................... 159  
Thermal Considerations (PIC16F/LF1946/47).................. 402  
Timer0............................................................................... 195  
Associated Registers................................................ 197  
Operation.................................................................. 195  
Specifications ........................................................... 409  
Timer1............................................................................... 199  
Associated registers ................................................. 209  
Asynchronous Counter Mode ................................... 201  
Reading and Writing......................................... 201  
Clock Source Selection............................................. 200  
Interrupt .................................................................... 203  
Operation.................................................................. 200  
Operation During Sleep ............................................ 203  
Oscillator................................................................... 201  
Prescaler .................................................................. 201  
Specifications ........................................................... 409  
Timer1 Gate  
Selecting Source .............................................. 201  
TMR1H Register....................................................... 199  
TMR1L Register........................................................ 199  
Timer2  
Associated registers ................................................. 214  
Timer2/4/6......................................................................... 211  
Associated registers ................................................. 214  
Timers  
S
Shoot-through Current ......................................................234  
Software Simulator (MPLAB SIM).....................................457  
SP2BRGH Register.............................................................42  
SP2BRGL Register .............................................................42  
SPBRG..............................................................................310  
SPBRG Register ........................................................... 35, 36  
SPBRGH...........................................................................310  
Special Event Trigger........................................................166  
Special Function Registers (SFRs).....................................33  
SPI Mode (MSSPx)  
Associated Registers ................................................253  
SPI Clock ..................................................................249  
SR Latch ...........................................................................189  
Associated registers w/ SR Latch .............................193  
SRCON0 Register.............................................................192  
SRCON1 Register.............................................................193  
SSP1ADD Register.............................................................37  
SSP1BUF Register .............................................................37  
SSP1CON1 Register...........................................................37  
SSP1CON2 Register...........................................................37  
SSP1CON3 Register...........................................................37  
SSP1MSK Register.............................................................37  
SSP1STAT Register ...........................................................37  
Timer1  
T1CON ............................................................. 207  
T1GCON........................................................... 208  
Timer2/4/6  
TXCON............................................................. 213  
Timing Diagrams  
A/D Conversion......................................................... 411  
A/D Conversion (Sleep Mode).................................. 411  
Acknowledge Sequence ........................................... 282  
Asynchronous Reception.......................................... 305  
Asynchronous Transmission..................................... 300  
DS41414D-page 472  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
Asynchronous Transmission (Back to Back) ............ 301  
Auto Wake-up Bit (WUE) During Normal Operation . 316  
Auto Wake-up Bit (WUE) During Sleep .................... 316  
Automatic Baud Rate Calculator............................... 315  
Baud Rate Generator with Clock Arbitration............. 275  
BRG Reset Due to SDA Arbitration During Start  
Type-B in 1/3 MUX, 1/3 Bias Drive........................... 360  
Type-B in 1/4 MUX, 1/3 Bias Drive........................... 362  
USART Synchronous Receive (Master/Slave)......... 413  
USART Synchronous Transmission (Master/Slave). 412  
Wake-up from Interrupt............................................. 106  
Timing Diagrams and Specifications  
Condition........................................................... 286  
Brown-out Reset (BOR)............................................ 407  
Brown-out Reset Situations ........................................ 81  
Bus Collision During a Repeated Start Condition  
PLL Clock ................................................................. 405  
Timing Parameter Symbology .......................................... 403  
Timing Requirements  
2
I C Bus Data............................................................. 418  
(Case 1) ............................................................ 287  
Bus Collision During a Repeated Start Condition  
I2C Bus Start/Stop Bits............................................. 417  
SPI Mode.................................................................. 416  
TMR0 Register.................................................................... 33  
TMR1H Register................................................................. 33  
TMR1L Register.................................................................. 33  
TMR2 Register.............................................................. 33, 41  
TRIS ................................................................................. 388  
TRISA Register........................................................... 34, 131  
TRISB Register........................................................... 34, 134  
TRISC............................................................................... 136  
TRISC Register........................................................... 34, 137  
TRISD............................................................................... 139  
TRISD Register........................................................... 34, 140  
TRISE ............................................................................... 142  
TRISE Register........................................................... 34, 143  
TRISF ............................................................................... 145  
TRISF Register........................................................... 39, 146  
TRISG............................................................................... 148  
TRISG Register .......................................................... 39, 149  
Two-Speed Clock Start-up Mode........................................ 71  
TX2REG Register............................................................... 42  
TX2STA Register................................................................ 42  
TXCON (Timer2/4/6) Register .......................................... 213  
TXxREG ........................................................................... 299  
TXxREG Register ............................................................... 36  
TXxSTA Register........................................................ 36, 307  
BRGH Bit.................................................................. 310  
(Case 2) ............................................................ 287  
Bus Collision During a Start Condition (SCL = 0) ..... 286  
Bus Collision During a Stop Condition (Case 1) ....... 288  
Bus Collision During a Stop Condition (Case 2) ....... 288  
Bus Collision During Start Condition (SDA only) ...... 285  
Bus Collision for Transmit and Acknowledge............ 284  
CLKOUT and I/O....................................................... 405  
Clock Synchronization .............................................. 272  
Clock Timing ............................................................. 404  
Comparator Output ................................................... 179  
Enhanced Capture/Compare/PWM (ECCP)............. 409  
Fail-Safe Clock Monitor (FSCM)................................. 74  
First Start Bit Timing ................................................. 276  
Full-Bridge PWM Output........................................... 229  
Half-Bridge PWM Output .................................. 227, 234  
2
I C Bus Data............................................................. 417  
2
I C Bus Start/Stop Bits.............................................. 416  
2
I C Master Mode (7 or 10-Bit Transmission) ............ 279  
2
I C Master Mode (7-Bit Reception)........................... 281  
2
I C Stop Condition Receive or Transmit Mode......... 283  
INT Pin Interrupt.......................................................... 90  
Internal Oscillator Switch Timing................................. 69  
LCD Interrupt Timing in Quarter-Duty Cycle Drive.... 364  
LCD Sleep Entry/Exit when SLPEN = 1 or CS = 00 . 366  
PWM Auto-shutdown ................................................ 233  
Firmware Restart .............................................. 233  
PWM Direction Change ............................................ 230  
PWM Direction Change at Near 100% Duty Cycle... 231  
PWM Output (Active-High)........................................ 225  
PWM Output (Active-Low) ........................................ 226  
Repeat Start Condition.............................................. 277  
Reset Start-up Sequence............................................ 83  
Reset, WDT, OST and Power-up Timer ................... 406  
Send Break Character Sequence ............................. 317  
SPI Master Mode (CKE = 1, SMP = 1) ..................... 414  
SPI Mode (Master Mode).......................................... 249  
SPI Slave Mode (CKE = 0) ....................................... 415  
SPI Slave Mode (CKE = 1) ....................................... 415  
Synchronous Reception (Master Mode, SREN) ....... 322  
Synchronous Transmission....................................... 319  
Synchronous Transmission (Through TXEN) ........... 319  
Timer0 and Timer1 External Clock ........................... 408  
Timer1 Incrementing Edge........................................ 203  
Two-Speed Start-up.................................................... 72  
Type-A in 1/2 MUX, 1/2 Bias Drive ........................... 353  
Type-A in 1/2 MUX, 1/3 Bias Drive ........................... 355  
Type-A in 1/3 MUX, 1/2 Bias Drive ........................... 357  
Type-A in 1/3 MUX, 1/3 Bias Drive ........................... 359  
Type-A in 1/4 MUX, 1/3 Bias Drive ........................... 361  
Type-A/Type-B in Static Drive................................... 352  
Type-B in 1/2 MUX, 1/2 Bias Drive ........................... 354  
Type-B in 1/2 MUX, 1/3 Bias Drive ........................... 356  
Type-B in 1/3 MUX, 1/2 Bias Drive ........................... 358  
U
USART  
Synchronous Master Mode  
Requirements, Synchronous Receive .............. 413  
Requirements, Synchronous Transmission...... 413  
Timing Diagram, Synchronous Receive ........... 413  
Timing Diagram, Synchronous Transmission... 412  
V
VREF. SEE ADC Reference Voltage  
W
Wake-up on Break............................................................ 315  
Wake-up Using Interrupts................................................. 106  
Watchdog Timer (WDT)...................................................... 82  
Associated Registers................................................ 110  
Configuration Word w/ Watchdog Timer................... 110  
Modes....................................................................... 108  
Specifications ........................................................... 408  
WCOL....................................................... 275, 278, 280, 282  
WCOL Status Flag.................................... 275, 278, 280, 282  
WDTCON Register ........................................................... 109  
WPUB Register................................................................. 135  
WPUG Register ................................................................ 150  
Write Protection .................................................................. 59  
WWW Address ................................................................. 475  
WWW, On-Line Support ....................................................... 9  
2010-2012 Microchip Technology Inc.  
DS41414D-page 473  
PIC16(L)F1946/47  
NOTES:  
DS41414D-page 474  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2010-2012 Microchip Technology Inc.  
DS41414D-page 475  
PIC16(L)F1946/47  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS41414D  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC16(L)F1946/47  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41414D-page 476  
2010-2012 Microchip Technology Inc.  
PIC16(L)F1946/47  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
[X]  
PART NO.  
X
/XX  
XXX  
-
Examples:  
Device Tape and Reel  
Option  
Temperature  
Range  
Package  
Pattern  
a)  
b)  
PIC16LF1946 - E/MR = Extended temp., QFN  
package  
PIC16F1947 - I/PT = Industrial temp., TQFP  
package  
c)  
PIC16LF1947T - I/MR 301 = Tape and Reel,  
Industrial temp., QFN package, QTP pattern  
#301  
Device:  
PIC16F1946, PIC16LF1946,  
PIC16F1947, PIC16LF1947  
Tape and Reel  
Option:  
Blank = Standard packaging (tube or tray)  
T
= Tape and Reel(1)  
Temperature  
Range:  
I
E
= -40C to +85C (Industrial)  
= -40C to +125C (Extended)  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and is  
not printed on the device package. Check  
with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
Package:  
Pattern:  
MR  
PT  
= Micro Lead Frame (QFN)  
= TQFP (Thin Quad Flatpack)  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2010-2012 Microchip Technology Inc.  
DS41414D-page 477  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS41414D-page 478  
2010-2012 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY