SY89468UMYTR [MICROCHIP]

89468 SERIES, LOW SKEW CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP64, LEAD FREE, TQFP-64;
SY89468UMYTR
型号: SY89468UMYTR
厂家: MICROCHIP    MICROCHIP
描述:

89468 SERIES, LOW SKEW CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP64, LEAD FREE, TQFP-64

驱动 输出元件
文件: 总15页 (文件大小:560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SY89468U  
Precision LVDS 1:20 Fanout with 2:1 MUX  
and Internal Termination with Fail-Safe Input  
General Description  
Precision Edge®  
The SY89468U is a 2.5V, 1:20 LVDS fanout buffer  
with a 2:1 differential input multiplexer (MUX). A  
unique Fail-Safe Input (FSI) protection prevents  
metastable output conditions when the selected  
input clock fails to a DC voltage (voltage between  
the pins of the differential input drops significantly  
below 100mV).  
Features  
Selects between two inputs, and provides 20  
precision LVDS copies  
Fail-Safe Input  
– Prevents outputs from oscillating when input is  
invalid  
The differential input includes Micrel’s unique, 3-pin  
internal termination architecture that can interface to  
any differential signal (AC- or DC-coupled) as small  
as 100mV (200mVPP) without any level shifting or  
termination resistor networks in the signal path. The  
outputs are LVDS compatible with very fast rise/fall  
times guaranteed to be less than 270ps.  
Guaranteed AC performance over temperature and  
supply voltage:  
– DC to >1.5GHz throughput  
– < 1200ps Propagation Delay (In-to-Q)  
– < 270ps Rise/Fall times  
Ultra-low jitter design:  
The SY89468U operates from a 2.5V ±5% supply  
and is guaranteed over the full industrial  
temperature range of –40°C to +85°C. The  
SY89468U is part of Micrel’s high-speed, Precision  
Edge® product line.  
– <1psRMS random jitter  
– <1psRMS cycle-to-cycle jitter  
– <10psPP total jitter (clock)  
– <0.7psRMS MUX crosstalk induced jitter  
Unique, patented MUX input isolation design  
All support documentation can be found on Micrel’s  
web site at: www.micrel.com.  
minimizes adjacent channel crosstalk  
Unique, patented internal termination and VT pin  
accepts DC- and AC-coupled inputs (CML, PECL,  
LVDS)  
Functional Block Diagram  
Wide input voltage range VCC to GND  
2.5V ±5% supply voltage  
-40°C to +85°C industrial temperature range  
Available in 64-pin TQFP package  
Applications  
Fail-safe clock protection  
Ultra-low jitter LVDS clock or data distribution  
Rack-based Telecom/Datacom  
Markets  
LAN/WAN  
Enterprise servers  
ATE  
Test and measurement  
Precision Edge is a registered trademark of Micrel, Inc.  
MicroLeadFrame and MLF are registered trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
January 2008  
Micrel, Inc.  
SY89468U  
Ordering Information(1)  
Part Number  
Package  
Type  
Operating  
Range  
Package Marking  
Lead  
Finish  
SY89468UMY with  
Pb-Free bar-line Indicator  
Matte-Sn  
Pb-Free  
SY89468UMY  
T64-1  
Industrial  
Industrial  
SY89468UMY with  
Pb-Free bar-line Indicator  
Matte-Sn  
Pb-Free  
SY89468UMYTR(2)  
T64-1  
Notes:  
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals Only.  
2. Tape and Reel.  
Pin Configuration  
64-Pin EPAD-TQFP (T64-1)  
January 2008  
2
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
Positive Power Supply: Bypass with 0.1µF||0.01µF low ESR capacitors as close to the VCC  
pins as possible.  
1, 16, 23, 33  
41, 48, 58  
VCC  
64, 63  
62, 61  
60, 59  
57, 56  
55, 54  
53, 52  
51, 50  
47, 46  
45, 44  
43, 42  
39, 38  
37, 36  
35, 34  
31, 30  
29, 28  
27, 26  
25, 24  
22, 21  
20, 19  
18, 17  
Q0, /Q0  
Q1, /Q1  
Q2, /Q2  
Q3, /Q3  
Q4, /Q4  
Q5, /Q5  
Q6, /Q6  
Q7, /Q7  
Q8, /Q8  
Differential Output Pairs: The output swing is typically 325mV. Used and unused outputs  
must be terminated with 100across the pair (Q, /Q). These differential LVDS outputs are a  
logic function of the IN0, IN1, and SEL inputs. See “Truth Table” below.  
Q9, /Q9  
Q10, /Q10  
Q11, /Q11  
Q12, /Q12  
Q13, /Q13  
Q14, /Q14  
Q15, /Q15  
Q16, /Q16  
Q17, /Q17  
Q18, /Q18  
Q19, /Q19  
Reference Voltage: These outputs bias to VCC–1.2V. They are used for AC-coupling inputs  
IN and /IN. Connect VREF-AC directly to the corresponding VT pin. Bypass with 0.01µF low  
ESR capacitor to VCC. Due to limited drive capability, each VREF-AC pin is only intended to  
drive its respective VT pin. Maximum sink/source current is ±0.5mA. See “Input Interface  
Applications” subsection.  
VREF-AC0  
VREF-AC1  
4, 13  
5, 12  
Input Termination Center-Tap: Each side of a differential input pair terminates to the VT pin.  
The VT pin provides a center-tap for each input (IN, /IN) to a termination network for  
maximum interface flexibility. See “Input Interface Applications” subsection.  
VT0, VT1  
Differential Inputs: These input pairs are the differential signal inputs to the device. These  
inputs accept AC- or DC-coupled signals as small as 100mV. The input pairs internally  
terminate to a VT pin through 50. Each input has level shifting resistors of 3.72kto VCC.  
This allows a wide input voltage range from VCC to GND. See Figure 3, Simplified  
Differential Input Stage for details. Note that when these inputs are left in an open state, the  
FSI feature will override this input state and provide a valid state at the output. See  
“Functional Description” subsection.  
6, 7  
10, 11  
IN0, /IN0  
IN1, /IN1  
2, 3, 14, 15,  
32, 40, 49  
GND,  
Ground. Exposed pad must be connected to a ground plane that is the same potential as  
Exposed Pad the ground pins.  
Single-Ended Input: This TTL/CMOS input disables and enables the Q0-Q19 outputs. It is  
internally connected to a 25kpull-up resistor and will default to a logic HIGH state if left  
open. When disabled, Q goes LOW and /Q goes HIGH. OE being synchronous, outputs will  
be enabled/disabled following a rising and a falling edge of the input clock. VTH = VCC/2.  
9
OE  
Single-Ended Input: This single-ended TTL/CMOS-compatible input selects the inputs to the  
multiplexer. Note that this input is internally connected to a 25kpull-up resistor and will  
default to logic HIGH state if left open. VTH = VCC/2.  
8
SEL  
Truth Table  
Inputs  
Outputs  
IN0  
0
/IN0  
1
IN1  
X
/IN1  
X
SEL  
Q
/Q  
1
0
0
1
1
0
1
0
1
1
0
X
X
0
X
X
0
1
1
X
X
1
0
0
January 2008  
3
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VCC) ..........................–0.5V to +4.0V  
Input Voltage (VIN) ..................................–0.5V to VCC  
LVDS Output Current (IOUT)…………………….±10mA  
Current (VT)  
Source or sink on VT pin........................ ±100mA  
Input Current  
Supply Voltage (VCC).................. +2.375V to +2.625V  
Ambient Temperature (TA)……………-40°C to +85°C  
(3)  
Package Thermal Resistance  
TQFP (θ JA)  
Still-Air ..................................................... 35°C/W  
TQFP (ψ JB)  
Source or sink current on (IN, /IN) ........... ±50mA  
Junction-to-Board.................................... 21°C/W  
Current (VREF  
)
(4)  
Source/Sink Current on VREF-AC ........... ±0.5mA  
Maximum operating Junction Temperature….. 125°C  
Lead Temperature (soldering, 20 sec.) ..........+260°C  
Storage Temperature (Ts)..................–65°C to 150°C  
DC Electrical Characteristics(5)  
TA = –40°C to +85°C, unless otherwise stated.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
VCC  
Power Supply  
2.375  
2.5  
2.625  
V
ICC  
Power Supply Current  
No load, max VCC  
260  
50  
365  
55  
mA  
RIN  
Input Resistance  
(IN-to-VT)  
45  
90  
0.1  
0
RDIFF_IN  
VIH  
Differential Input Resistance  
(IN-to-/IN)  
100  
110  
VCC  
V
Input High Voltage  
(IN, /IN)  
VIL  
Input Low Voltage  
(IN, /IN)  
VIH–0.1  
1.0  
V
VIN  
Input Voltage Swing  
(IN, /IN)  
See Figure 2a. Note 6.  
See Figure 2b.  
0.1  
0.2  
V
VDIFF_IN  
VIN_FSI  
Differential Input Voltage Swing  
|IN-/IN|  
V
Input Voltage Threshold that  
Triggers FSI  
30  
100  
mV  
VREF-AC  
VT_IN  
Output Reference Voltage  
Voltage from Input to VT  
IVREF-AC = + 0.5mA  
VCC–1.3  
VCC–1.2  
VCC–1.1  
1.28  
V
V
Notes:  
1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is  
not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.  
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θJA and  
ψJB values are determined for a 4-layer board in still air unless otherwise stated.  
4. Due to limited drive capability use for input of the same package only.  
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.  
6.  
VIN (max) is specified when VT is floating.  
January 2008  
4
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
LVDS Outputs DC Electrical Characteristics(7)  
VCC = +2.5V ±5%, RL = 100across the outputs; TA = –40°C to +85°C, unless otherwise stated.  
Symbol  
VOUT  
Parameter  
Condition  
Min  
250  
Typ  
325  
650  
1.20  
Max  
Units  
mV  
Output Voltage Swing (Q, /Q)  
Differential Output Voltage Swing |Q – /Q|  
Output Common Mode Voltage (Q, /Q)  
See Figure 2a  
See Figure 2b  
See Figure 5a  
VDIFF_OUT  
VOCM  
500  
mV  
1.125  
–50  
1.275  
+50  
V
Change in Common Mode Voltage (Q, /Q) See Figure 5b  
mV  
VOCM  
LVTTL/CMOS DC Electrical Characteristics(7)  
VCC = 2.5V ±5%; TA = –40°C to + 85°C, unless otherwise stated.  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
V
Input HIGH Voltage  
Input LOW Voltage  
Input HIGH Current  
Input LOW Current  
2.0  
VIL  
0.8  
30  
V
IIH  
-125  
-300  
µA  
µA  
IIL  
Note:  
7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.  
January 2008  
5
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
AC Electrical Characteristics(8)  
VCC = +2.5V ±5%, RL = 100across the outputs; TA = –40°C to +85°C, unless otherwise stated.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOUT 200mV  
1.0  
1.5  
GHz  
tpd  
Differential Propagation Delay  
IN-to-Q  
100mV VIN 200mV, Note 9  
200mV VIN 800mV, Note 9  
VTH = VCC/2  
600  
500  
350  
300  
800  
810  
720  
580  
1200  
1100  
850  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
IN-to-Q  
SEL-to-Q  
tS OE  
tH OE  
tSKEW  
Set-up Time  
OE-to-IN Note 10  
Hold Time  
IN-to-OE Note 10  
Note 11  
Output-to-Output Skew  
Input-to-Input Skew  
Part-to-Part Skew  
Clock  
15  
5
40  
25  
Note 12  
Note 13  
300  
tJITTER  
Random Jitter  
Cycle-to-Cycle Jitter  
Total Jitter  
Note 14  
Note 15  
Note 16  
Note 17  
1
1
psRMS  
psRMS  
psPP  
psRMS  
ps  
10  
0.7  
270  
53  
55  
Crosstalk-Induced Jitter  
tr, tf  
Output Rise/Fall Time (20% to 80%)  
Duty Cycle  
At full output swing.  
VIN > 200mV  
90  
47  
45  
%
100mV VIN 200mV  
%
Notes:  
8. High-frequency AC-parameters are guaranteed by design and characterization.  
9. Propagation delay is measured with input tr, tf 300ps (20% to 80%). The propagation delay is a function of the rise and fall times at IN.  
See “Typical Operating Characteristics” for details.  
10. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous  
applications, set-up and hold do not apply.  
11. Output-to-Output skew is measured between two different outputs under identical transitions.  
12. Input-to-Input skew is the time difference between the two inputs to one output, under identical input transitions.  
13. Part-to-Part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at  
the respective inputs.  
14. Random Jitter is measured with a K28.7 character pattern, measured at <fMAX  
.
15. Cycle-to-Cycle Jitter definition: the variation of periods between adjacent cycles, Tn – Tn-1 where T is the time between rising edges of the  
output signal.  
16. Total Jitter definition: with an ideal clock input of frequency <fMAX, no more than one output edge in 1012 output edges will deviate by more  
than the specified peak-to-peak jitter value.  
17. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each  
other at the inputs.  
January 2008  
6
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Functional Description  
Clock Select (SEL)  
SEL is an asynchronous TTL/CMOS compatible input  
that selects one of the two input signals. An internal  
25kpull-up resistor defaults the input to logic HIGH if  
left open. Input switching threshold is VCC/2. Refer to  
Figure 1a.  
function will eliminate a metastable condition and latch  
the outputs to the last valid state. No ringing and no  
undetermined state will occur at the output under  
these conditions. The output recovers to normal  
operation once the input signal returns to a valid state  
with a typical swing greater than 30mV.  
Fail-Safe Input (FSI)  
Note that the FSI function will not prevent duty cycle  
distortion in case of a slowly deteriorating (but still  
toggling) input signal. Due to the FSI function, the  
propagation delay will depend on the rise and fall time  
of the input signal and on its amplitude.  
The input includes a special fail-safe circuit to sense  
the amplitude of the input signal and to latch the  
outputs when there is no input signal present or when  
the amplitude of the input signal drops sufficiently  
below 100mVPK, typically 30mVPK. Refer to Figure 1b.  
Output Enable (OE)  
Input Clock Failure Case  
OE is a synchronous TTL/CMOS-compatible input  
that enables/disables the outputs based upon the  
input to this pin. The enable function is synchronous  
so that the clock outputs will be enabled or disabled  
following a rising and a falling edge of the input clock.  
Refer to Figure 1c. Internal 25kpull-up resistor  
defaults the input to logic HIGH if left open. Input  
switching threshold is VCC/2.  
If the input clock fails to a floating, static, or extremely  
low signal swing such that the voltage across the input  
pair is significantly less than 100mV, FSI  
January 2008  
7
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Timing Diagrams  
Figure 1a. SEL-to-Q Delay  
Figure 1b. Fail-Safe Feature  
January 2008  
8
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Figure 1c. Enable Output Timing Diagram  
Figure 1d. Propagation Delay  
Figure 1e. Setup and Hold Time  
January 2008  
9
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Typical Operating Characteristics  
VCC = 2.5V, GND = 0V, VIN = 200mV, RL = 100across the outputs; TA = 25°C, unless otherwise stated.  
January 2008  
10  
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Functional Characteristics  
VCC = 2.5V, GND = 0V, VIN = 200mV, RL = 100across the outputs; TA = 25°C, unless otherwise stated.  
January 2008  
11  
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Single-Ended and Differential Swings  
Figure 2b. Differential Voltage Swing  
Figure 2a. Single-Ended Voltage Swing  
Input Stage  
Figure 3. Simplified Differential Input Stage  
January 2008  
12  
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Input Interface Applications  
Option: may connect VT to VCC  
Figure 4b. LVPECL Interface  
(AC-Coupled)  
Figure 4c. CML Interface  
(DC-Coupled)  
Figure 4a. LVPECL Interface  
(DC-Coupled)  
Figure 4d. CML Interface  
(AC-Coupled)  
Figure 4e. LVDS Interface  
(DC-Coupled)  
January 2008  
13  
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
LVDS Output Interface Applications  
LVDS specifies a small swing of 325mV typical, on a  
nominal 1.2V common mode above ground. The  
common mode voltage has tight limits to permit large  
variations in the ground between an LVDS driver and  
receiver. Also, change in common mode voltage, as a  
function of data input, is kept to a minimum, to keep  
EMI low.  
Figure 5b. LVDS Common Mode Measurement  
Figure 5a. LVDS Differential Measurement  
Related Product and Support Documentation  
Part Number  
Function  
Data Sheet Link  
SY89467U  
Precision LVPECL 1:20 Fanout MUX with 2:1  
MUX and internal termination with Fail Safe  
Input  
http://www.micrel.com/_PDF/HBW/sy89467u.pdf  
MLF® Application Note  
www.amkor.com/products/notes_papers/MLFAppNote.pdf  
www.micrel.com/product-info/products/solutions.shtml  
HBW  
Solutions  
New Products and Applications  
January 2008  
14  
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89468U  
Package Information  
64-Pin EPAD-TQFP (T64-1)  
Packages Notes:  
1. Package meets Level 2 Moisture Sensitivity Classification.  
2. All parts are dry-packed before shipment.  
3. Exposed pad must be soldered to a ground for proper thermal management.  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel  
for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended  
for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant  
injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk  
and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2007 Micrel, Inc.  
January 2008  
15  
M9999-012208-B  
hbwhelp@micrel.com or (408) 955-1690  

相关型号:

SY89473U

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
MICREL

SY89473UMG

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
MICREL

SY89473UMG

89473 SERIES, 2 LINE TO 1 LINE MULTIPLEXER, COMPLEMENTARY OUTPUT, QCC24
MICROCHIP

SY89473UMG-TR

89473 SERIES, 2 LINE TO 1 LINE MULTIPLEXER, COMPLEMENTARY OUTPUT, QCC24
MICROCHIP

SY89473UMGTR

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
MICREL

SY89473U_07

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
MICREL

SY89473U_10

Precision LVPECL 2:1 Multiplexer with 1:2
MICREL

SY89474U

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
MICREL

SY89474UMG-TR

89474 SERIES, 2 LINE TO 1 LINE MULTIPLEXER, COMPLEMENTARY OUTPUT, QCC24
MICROCHIP

SY89474UMGTR

Precision LVDS 2:1 Multiplexer with 1:2
MICREL

SY89474U_10

Precision LVDS 2:1 Multiplexer with 1:2
MICREL

SY89475U

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
MICREL