TC1226EUA [MICROCHIP]

Inverting Dual (-VIN, -2VIN) Charge Pump Voltage Converters; 反向双( -VIN , -2VIN )电荷泵电压转换器
TC1226EUA
型号: TC1226EUA
厂家: MICROCHIP    MICROCHIP
描述:

Inverting Dual (-VIN, -2VIN) Charge Pump Voltage Converters
反向双( -VIN , -2VIN )电荷泵电压转换器

转换器 光电二极管 泵
文件: 总10页 (文件大小:1198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1225  
TC1226  
TC1227  
Inverting Dual (–VIN, –2VIN) Charge Pump Voltage Converters  
FEATURES  
GENERAL DESCRIPTION  
Small 8-Pin MSOP Package  
Operates from 1.8V to 5.5V  
Up to 5mA Output Current at –VIN Pin  
Up to 1mA Output Current at –2VIN Pin  
–VIN and –2VIN Outputs Available  
Low Supply Current  
TheTC1225/1226/1227areCMOS dualinvertingcharge  
pump voltage converters in 8-Pin MSOP packages. An on-  
board oscillator provides the clock, and only four external  
capacitorsarerequiredforfullcircuitimplementation.Switch-  
ing frequencies are 12kHz for the TC1225, 35kHz for the  
TC1226, and 125kHz for the TC1227.  
.......................................... 120µA (MAX) for TC1225  
.......................................... 360µA (MAX) for TC1226  
.......................................... 1.5mA (MAX) for TC1227  
Thesedevicesprovidebothanegativevoltageinversion  
(available at the –VIN output) and a negative doubling  
voltage inversion (available at the –2 VIN output), with a low  
output impedance capable of providing output currents up to  
5mA for the –VIN output and 1mA for the –2VIN output. The  
input voltage can range from +1.8V to +5.5V.  
TYPICAL APPLICATIONS  
LCD Panel Bias  
Cellular Phones PA Bias  
Pagers  
ORDERING INFORMATION  
PDAs, Portable Data loggers  
Battery Powered Devices  
Part No.  
Package Osc Freq (kHz) Temp Range  
TC1225EUA 8-Pin MSOP  
TC1226EUA 8-Pin MSOP  
TC1227EUA 8-Pin MSOP  
12  
35  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
TYPICAL OPERATING CIRCUIT  
125  
C1+  
VIN  
+
INPUT  
PIN CONFIGURATION  
C1  
C1–  
8-Pin MSOP  
VIN  
OUTPUT 1  
OUT1  
C
C2+  
VIN  
C1–  
1
2
3
4
8
7
6
5
+
+
TC1225  
TC1226  
TC1227  
C2  
C1+  
C2+  
C2–  
TC1225  
TC1226  
TC1227  
VIN  
C2–  
GND  
2 VIN  
OUTPUT 2  
2VIN  
GND  
C
OUT2  
+
Notes: 1) C1 and COUT1 must have a voltage rating greater  
than or equal to VIN  
2) C2 and COUT2 must have a voltage rating greater  
than or equal to 2VIN  
© 2001 Microchip Technology Inc. DS21369A  
TC1225/6/7-1 3/24/00  
Inverting Dual (VIN, 2VIN)  
Charge Pump Voltage Converters  
TC1225  
TC1226  
TC1227  
Power Dissipation (TA 70°C) MSOP-8 ...............320mW  
Storage Temperature (Unbiased) ......... – 65°C to +150°C  
Lead Temperature (Soldering, 10sec) .................. +260°C  
*This is a stress rating only and functional operation of the device at these  
or any other conditions above those indicated in the operational sections  
of the specifications is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
ABSOLUTE MAXIMUM RATINGS*  
Input Voltage (VIN to GND)......................... +6.0V, – 0.3V  
Output Voltage (–VIN, –2VIN to GND)........ –12.0V, + 0.3V  
Current at –VIN, –2VIN Pins ......................................10mA  
Short-Circuit Duration –VIN, –2VIN to GND ........ Indefinite  
Operating Temperature Range ............... – 40°C to +85°C  
ELECTRICAL CHARACTERISTICS: TA = –40°C to +85°C, VIN = +5V, C1 = 3.3µF, C2 = 1µF (TC1225); C1 = 1µF,  
C2 = 0.33µF (TC1226); C1 = 0.33µF, C2 = 0.1µF (TC1227) unless otherwise noted. Typical values are at TA = +25°C.  
Symbol Parameter  
Device  
Test Conditions  
Min  
Typ  
Max  
Unit  
IDD  
Supply Current  
TC1225  
TC1226  
TC1227  
75  
200  
625  
120  
360  
1500  
µA  
VMIN  
VMAX  
FOSC  
Minimum Supply Voltage All  
RLOAD = 1kfor –VIN output  
RLOAD = 10kfor –2VIN output  
1.8  
V
V
Maximum Supply Voltage All  
RLOAD = 1kfor –VIN output  
RLOAD = 10kfor –2VIN output  
5.5  
Oscillator Frequency  
TC1225  
8.4  
24.5  
65  
12  
35  
125  
15.6  
45.5  
170  
kHz  
TC1226  
TC1227  
VEFF1  
VEFF2  
ROUT1  
ROUT2  
Voltage Conversion  
Efficiency (Stage 1)  
All  
All  
All  
All  
RLOAD = for –VIN output  
RLOAD = for –2VIN output  
96  
94  
99.5  
99  
%
%
Voltage Conversion  
Efficiency (Stage 2)  
RLOAD = for –VIN output  
RLOAD = for –2VIN output  
Output Resistance  
for –VIN output (Note 1)  
ILOAD = 0.5mA to 5mA  
No Load at -2VIN Output  
45  
80  
Output Resistance  
for –2VIN output (Note 1)  
ILOAD = 0.1mA to 1mA  
No Load at -VIN Output  
135  
420  
NOTES: 1. Capacitor contribution is approximately 20% of the output impedance [ESR = 1/ pump frequency x capacitance)].  
PIN DESCRIPTION  
Pin Number  
Name  
Description  
1
2
3
4
5
6
7
8
C1–  
C2+  
C2–  
–2VIN  
GND  
VIN  
C1 Commutation Capacitor Negative Terminal.  
C2 Commutation Capacitor Positive Terminal.  
C2 Commutation Capacitor Negative Terminal.  
Doubling Inverting Charge Pump Output (–2 x VIN).  
Ground.  
Positive Power Supply Input.  
C1+  
–VIN  
C1 Commutation Capacitor Positive Terminal.  
Inverting Charge Pump Output (–1 x VIN).  
© 2001 Microchip Technology Inc. DS21369A  
2
TC1225/6/7-1 3/24/00  
Inverting Dual (VIN, 2VIN)  
Charge Pump Voltage Converters  
TC1225  
TC1226  
TC1227  
nominal at +25°C and VIN = +5V. The value of the ‘-2VIN’  
outputandisapproximately140nominalat+25°CandVIN  
= +5V. In this particular case, ‘-VIN’ is approximately – 5V  
and ‘–2VIN’ is approximately –10V at very light loads, and  
each stage will droop according to the equation below:  
DETAILED DESCRIPTION  
TheTC1225/1226/1227dualchargepumpconvert-  
ers perform both a –1x and –2x multiply of the voltage  
applied to the VIN pin. Output ‘– VIN’ provides a negative  
voltage inversion of the VIN supply, while output ‘-2 VIN’  
provides a negative doubling inversion of VIN. Conversion  
is performed using two synchronous switching matrices  
and four external capacitors.  
VDROOP = IOUT x ROUT  
[-VIN OUTPUT] = VOUT1 = – (VIN – VDROOP1  
)
[-2VIN OUTPUT] = VOUT2 = VOUT1 – (VIN – VDROOP2  
)
Figure1(below)isablockdiagramrepresentationofthe  
TC1225/1226/1227 architecture. The first switching stage  
invertsthevoltagepresentatVIN andthesecondstageuses  
the ‘–VIN’ output generated from the first stage to produce  
the ‘–2VIN’ output function from the second stage switching  
matrix.  
where VDROOP1 is the output voltage droop contributed from  
stage 1 loading , and VDROOP2 is the output voltage droop  
from stage 2 loading.  
Charge Pump Efficiency  
Each device contains an on-board oscillator that syn-  
chronouslycontrolstheoperationofthechargepumpswitch-  
ingmatrices. TheTC1225synchronouslyswitchesat12KHz,  
the TC1226 synchronously switches at 35KHz, and the  
TC1227 synchronously switches at 125KHz. The different  
oscillator frequencies for this device family allow the user to  
trade-off capacitor size versus supply current. Faster oscil-  
lators can use smaller external capacitors but will consume  
moresupplycurrent(seeElectricalCharacteristicsTable).  
The overall power efficiency of the two charge pump  
stages is affected by four factors:  
(1) Losses from power consumed by the internal oscil-  
lator, switch drive, etc. (which vary with input voltage,  
temperature and oscillator frequency).  
(2) I2R losses due to the on-resistance of the MOSFET  
switches on-board each charge pump.  
V
IN  
(3) Charge pump capacitor losses due to effective  
series resistance (ESR).  
+
V  
IN  
C1  
SWITCH MATRIX  
(1st STAGE)  
C
OUT1  
(4) Losses that occur during charge transfer (from the  
commutation capacitor to the output capacitor) when a  
voltage difference between the two capacitors exists.  
+
OSCILLATOR  
Most of the conversion losses are due to factor (2), (3)  
and (4) above. The losses for the first stage are given by  
Equation 1a and the losses for the second stage are given  
by Equation 1b.  
+
2V  
IN  
C2  
SWITCH MATRIX  
(2nd STAGE)  
C
OUT2  
+
P1LOSS (2, 3, 4) = IOUT1 2 x ROUT1  
where ROUT1 = [ 1 / [ fOSC (C1) ] + 8RSWITCH1  
+
4ESRC1 + ESRCOUT1  
]
Figure 1. Functional Block Diagram  
Equation 1a.  
P2LOSS (2, 3, 4) = IOUT2 2 x ROUT2  
where ROUT2 = [ 1 / [fOSC(C2) ] + 8RSWITCH2  
APPLICATIONS INFORMATION  
+
Output Voltage Considerations  
4ESRC2 + ESRCOUT2  
]
The TC1225/1226/1227 performs voltage conversions  
but does not provide any type of regulation. The two output  
voltage stages will droop in a linear manner with respect to  
their respective load currents. The value of the equivalent  
output resistance of the ‘-VIN’ output is approximately 50Ω  
Equation 1b.  
© 2001 Microchip Technology Inc. DS21369A  
TC1225/6/7-1 3/24/00  
3
Inverting Dual (VIN, 2VIN)  
Charge Pump Voltage Converters  
TC1225  
TC1226  
TC1227  
The internal switch resistance for the first stage (i.e.  
RSWITCH1) is approximately 3 and the switch resistance for  
the second stage (i.e. RSWITCH2) is approximately 7  
values of COUT1 and Table 2b shows the output voltage  
ripple for various values of COUT2 (again assuming VIN=5V  
@ +25oC). The VRIPPLE1 values assume a 3mA output load  
.  
current for stage 1 and a 0.1  
values assume a 200uA output load current for stage 2 and  
a 0.1 ESRCOUT1  
ESRCOUT1. The VRIPPLE2  
The losses in the circuit due to factor (4) above are also  
shown in Equation 2a for stage 1 and Equation 2b for stage  
2. The output voltage ripple for stage 1 is given by Equation  
3a and the output voltage ripple for stage 2 is given by  
Equation 3b.  
.
Table 1a. Output Resistance vs. C1 (ESR = 0.1  
). For Stage 1  
C1 (  
µ
F)  
TC1225 ROUT  
(
)
TC1226 ROUT  
(
)
TC1227 ROUT ()  
PLOSS1 (4) = [ (0.5)(C1)(VIN 2 – VOUT12 ) + (0.5)  
(COUT1) (VRIPPLE1 - 2VOUT1 VRIPPLE1) ] x fOSC  
2
0.47  
1
202  
108  
50  
85  
53  
33  
42  
33  
27  
3.3  
Equation 2a.  
PLOSS2 (4) = [ (0.5) (C2) (VIN 2 – VOUT22 ) + (0.5)  
(COUT2) (VRIPPLE2 - 2VOUT2 VRIPPLE2) ] x fOSC  
Table 1b. Output Resistance vs. C2 (ESR = 0.1  
). For Stage 2  
2
C2 (  
µ
F)  
TC1225 ROUT  
(
)
TC1226 ROUT  
(
)
TC1227 ROUT ()  
0.1  
0.47  
1
890  
239  
140  
342  
117  
85  
137  
74  
Equation 2b.  
VRIPPLE1 = [ IOUT1 / (fOSC) (COUT1) ] + 2 (IOUT1  
(ESRCOUT1  
)
)
65  
)
Table 2a. Output Voltage Ripple vs. COUT1 (ESR = 0.1  
) For Stage 1  
Equation 3a.  
(IOUT1 = 3mA)  
VRIPPLE2 = [ IOUT2 / (fOSC) (COUT2) ] + 2 (IOUT2  
COUT1  
F)  
TC1225 VRIPPLE1  
TC1226 VRIPPLE1  
TC1227 VRIPPLE1  
(mV)  
(ESRCOUT2  
)
(
µ
(mV)  
(mV)  
0.47  
1
533  
251  
76  
183  
86  
52  
25  
8
Equation 3b.  
Capacitor Selection  
3.3  
27  
In order to maintain the lowest output resistance and  
output ripple voltage, it is recommended that low ESR  
capacitorsbeused. Additionally, largervaluesofC1andC2  
will lower the output resistance and larger values of COUT1  
and COUT2 will reduce output ripple. (See Equations 1a, 1b,  
3a, and 3b). NOTE: For proper charge pump operation,  
C1 and COUT1 must have a voltage rating greater than or  
equal to VIN, while C2 and COUT2 must have a voltage  
rating greater than or equal to 2VIN.  
Table 2b. Output Voltage Ripple vs. COUT2 (ESR = 0.1) For Stage 2  
(IOUT2 = 200µA)  
COUT2  
F)  
TC1225 VRIPPLE2  
(mV)  
TC1226 VRIPPLE2  
(mV)  
TC1227 VRIPPLE2  
(mV)  
(
µ
0.1  
0.47  
1
167  
36  
57  
12  
16  
3.4  
1.6  
17  
5.8  
Input Supply Bypassing  
Table 1a shows various values of C1 and the corre-  
sponding output resistance values for VIN=5V @ +25°C for  
stage 1 and Table 1b shows various values of C2 and the  
correspondingoutputresistancevaluesforVIN=5V@+25°C  
TheVIN inputshouldbecapacitivelybypassedtoreduce  
ACimpedanceandminimizenoiseeffectsduetotheswitch-  
ing internal to the device. It is recommended that a large  
value capacitor (at least equal to C1) be connected from VIN  
to GND for optimal circuit performance.  
for stage 2. It assumes a 0.1  
RSWITCH1, and a 7 RSWITCH2  
Table 2a shows the output voltage ripple for various  
ESRC1, a 0.1ESRC2, a 3Ω  
.
© 2001 Microchip Technology Inc. DS21369A  
4
TC1225/6/7-1 3/24/00  
Inverting Dual (VIN, 2VIN)  
Charge Pump Voltage Converters  
TC1225  
TC1226  
TC1227  
Figure 3 is a schematic of the TC1225 DEMO Card, and  
Figure 4 shows the assembly drawing and artwork for the  
board. Table 3 lists the voltages that are monitored by the  
test points and Table 4 lists the currents that can be  
measured using the jumpers.  
Dual Voltage Inverter  
The most common application for the TC1225/1226/  
1227 devices is the dual voltage inverter (Figure 2). This  
application uses four external capacitors: C1, C2, COUT1  
,
and COUT2 (NOTE: a power supply bypass capacitor is  
recommended). The outputs are equal to – VIN and –2VIN  
plus any voltage drops due to loading. Refer to Tables 1a,  
1b, 2a, and 2b for capacitor selection guidelines.  
Table 3. TC1225 DEMO Card Test Points  
TEST POINT VOLTAGE MEASUREMENT  
TP1  
TP2  
TP3  
TP4  
TP5  
TP6  
TP7  
VIN [+5V]  
GROUND  
Device  
TC1225  
TC1226  
TC1227  
CIN  
3.3µF 3.3µF  
1µF  
C1  
C2  
COUT1  
COUT2  
GROUND  
1µF  
3.3µF  
1µF  
TCM828 U1 OUTPUT [-5V(1)]  
TCM828 U2 OUTPUT [-10V(1)]  
TC1225 STAGE 1 OUTPUT [-5V(2)]  
TC1225 STAGE 2 OUTPUT [-10V(2)]  
1µF 0.33µF  
1µF 0.33µF  
0.33µF 0.33µF 0.1µF 0.33µF  
0.1µF  
V
IN  
C
IN  
6
Table 4. TC1225 DEMO Card Jumpers  
V
7
IN  
+
C1  
JUMPER  
CURRENT MEASUREMNT  
8
V  
IN  
V
C1  
C2  
OUT1  
J1  
J2  
J3  
J4  
J5  
J6  
DUAL TCM828 QUIESCENT CURRENT  
TC1225 QUIESCENT CURRENT  
C
OUT1  
1
2
R
R
C1  
L1  
TC1225  
TC1226  
TC1227  
+
TCM828 U1 [-5V(1)] LOAD CURRENT  
TCM828 U2 [-10V(1)] LOAD CURRENT  
TC1225 STAGE 1 [-5V(2)] LOAD CURRENT  
TC1225 STAGE 2 [-10V(2)] LOAD CURRENT  
C2  
4
V
2V  
OUT2  
IN  
C
3
OUT2  
C2  
GND  
5
L2  
Figure 2. Dual Voltage Inverter Test Circuit  
Layout Considerations  
As with any switching power supply circuit good layout  
practice is recommended. Mount components as close  
together as possible to minimize stray inductance and  
capacitance. Also use a large ground plane to minimize  
noise leakage into other circuitry.  
TC1225 DEMO CARD  
The TC1225 DEMO Card is a 2.0” x 2.0” card containing  
both a TC1225 and two cascaded TCM828s that allow the  
user to compare the operation of each approach for gener-  
atinga1Xand2Xfunction. Eachcircuitisfullyassembled  
with the required external capacitors along with variable  
load resistors that allow the user to vary the output load  
current of each stage. For convenience, several test points  
and jumpers are available for measuring various voltages  
and currents on the demo board.  
© 2001 Microchip Technology Inc. DS21369A  
TC1225/6/7-1 3/24/00  
5
Inverting Dual (VIN, 2VIN)  
Charge Pump Voltage Converters  
TC1225  
TC1226  
TC1227  
Figure 3. TC1225 DEMO Card Schematic  
Figure 4. TC1225 DEMO Card Assembly Drawing and Artwork  
© 2001 Microchip Technology Inc. DS21369A  
6
TC1225/6/7-1 3/24/00  
Inverting Dual (VIN, 2VIN)  
Charge Pump Voltage Converters  
TC1225  
TC1226  
TC1227  
TYPICAL RIPPLE WAVEFORMS  
© 2001 Microchip Technology Inc. DS21369A  
TC1225/6/7-1 3/24/00  
7
Inverting Dual (VIN, 2VIN)  
Charge Pump Voltage Converters  
TC1225  
TC1226  
TC1227  
TAPING FORM  
Component Taping Orientation for 8-Pin MSOP Devices  
User Direction of Feed  
User Direction of Feed  
PIN 1  
W
PIN 1  
P
Standard Reel Component Orientation  
for TR Suffix Device  
Reverse Reel Component Orientation  
for RT Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
8-Pin MSOP  
12 mm  
8 mm  
2500  
13 in  
PACKAGE DIMENSIONS  
8-Pin MSOP  
PIN 1  
.197 (5.00)  
.189 (4.80)  
.122 (3.10)  
.114 (2.90)  
.026 (0.65) TYP.  
.122 (3.10)  
.114 (2.90)  
.043 (1.10)  
MAX.  
.008 (0.20)  
.005 (0.13)  
6° MAX.  
.016 (0.40)  
.010 (0.25)  
.006 (0.15)  
.002 (0.05)  
.028 (0.70)  
.016 (0.40)  
Dimensions: inches (mm)  
© 2001 Microchip Technology Inc. DS21369A  
8
TC1225/6/7-1 3/24/00  
WORLDWIDE  
SALES AND  
S
ERVICE  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
ASIA/PACIFIC (continued)  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Rocky Mountain  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 408-436-7950 Fax: 408-436-7955  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Austin  
Analog Product Sales  
8303 MoPac Expressway North  
Suite A-201  
ASIA/PACIFIC  
China - Beijing  
Microchip Technology Beijing Office  
Unit 915  
New China Hong Kong Manhattan Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
EUROPE  
Australia  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Austin, TX 78759  
Tel: 512-345-2030 Fax: 512-345-6085  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
China - Shanghai  
Microchip Technology Shanghai Office  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Boston  
Analog Product Sales  
Unit A-8-1 Millbrook Tarry Condominium  
97 Lowell Road  
Concord, MA 01742  
France  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Arizona Microchip Technology SARL  
Parc díActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Hong Kong  
Microchip Asia Pacific  
RM 2101, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Tel: 978-371-6400 Fax: 978-371-0050  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
India  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
1 Floor, Wing A (A3/A4)  
No. 11, OíShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Dayton  
Germany  
Analog Product Sales  
Lochhamer Strasse 13  
D-82152 Martinsried, Germany  
Tel: 49-89-895650-0 Fax: 49-89-895650-22  
Two Prestige Place, Suite 130  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Japan  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Italy  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 949-263-1888 Fax: 949-263-1338  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Mountain View  
Analog Product Sales  
1300 Terra Bella Avenue  
Mountain View, CA 94043-1836  
Tel: 650-968-9241 Fax: 650-967-1590  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
01/09/01  
All rights reserved.  
©
2001 Microchip Technology Incorporated. Printed in the USA. 1/01  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by  
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual  
property rights arising from such use or otherwise. Use of Microchipís products as critical components in life support systems is not authorized except with  
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-  
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights  
reserved. All other trademarks mentioned herein are the property of their respective companies.  
© 2001 Microchip Technology Inc. DS21369A  
TC1225/6/7-1 3/24/00  
9
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

TC1227

Inverting Dual (-VIN, -2VIN) Charge Pump Voltage Converters
MICROCHIP

TC1227EUA

Inverting Dual (-VIN, -2VIN) Charge Pump Voltage Converters
MICROCHIP

TC1232

MICROPROCESSOR MONITOR
TELCOM

TC1232

Microprocessor Monitor
MICROCHIP

TC1232COA

MICROPROCESSOR MONITOR
TELCOM

TC1232COA

Microprocessor Monitor
MICROCHIP

TC1232COA713

Microprocessor Monitor
MICROCHIP

TC1232COA713G

暂无描述
MICROCHIP

TC1232COART

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8
MICROCHIP

TC1232COE

MICROPROCESSOR MONITOR
TELCOM

TC1232COE

Microprocessor Monitor
MICROCHIP

TC1232COE713

Microprocessor Monitor
MICROCHIP