TC7106CLW [MICROCHIP]

3-1/2 Digit Analog-to-Digital Converters;
TC7106CLW
型号: TC7106CLW
厂家: MICROCHIP    MICROCHIP
描述:

3-1/2 Digit Analog-to-Digital Converters

转换器
文件: 总34页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7106/A/TC7107/A  
3-1/2 Digit Analog-to-Digital Converters  
Features:  
General Description:  
• Internal Reference with Low Temperature Drift:  
- TC7106/TC7107: 80 ppm/°C (Typical)  
- TC7106A/TC7107A: 20 ppm/°C (Typical)  
The TC7106A and TC7107A 3-1/2 digit direct display  
drive Analog-to-Digital Converters allow existing  
TC7106/TC7107 based systems to be upgraded. Each  
device has a precision reference with a 20 ppm/°C  
maximum temperature coefficient. This represents a 4  
to 7 times improvement over similar 3-1/2 digit  
converters. Existing TC7106 and TC7107 based  
systems may be upgraded without changing external  
passive component values. The TC7107A drives  
common anode light emitting diode (LED) displays  
directly with 8 mA per segment. A low cost, high  
resolution indicating meter requires only a display, four  
resistors, and four capacitors. The TC7106A low-power  
drain and 9V battery operation make it suitable for por-  
table applications.  
• Drives LCD (TC7106) or LED (TC7107)  
Display Directly  
• Zero Reading with Zero Input  
• Low Noise for Stable Display  
• Auto-Zero Cycle Eliminates Need for Zero  
Adjustment  
• True Polarity Indication for Precision Null  
Applications  
• Convenient 9V Battery Operation (TC7106A)  
• High-Impedance CMOS Differential Inputs: 1012Ω  
• Differential Reference Inputs Simplify Ratiometric  
Measurements  
The TC7106A/TC7107A reduces linearity error to less  
than 1 count. Rollover error – the difference in readings  
for equal magnitude, but opposite polarity input signals,  
is below ±1 count. High-impedance differential inputs  
• Low-Power Operation: 10 mW  
offer 1 pA leakage current and  
a
1012Ω input  
Applications:  
impedance. The differential reference input allows  
ratiometric measurements for ohms or bridge  
transducer measurements. The 15 µVP–P noise  
performance ensures a “rock solid” reading. The auto-  
zero cycle ensures a zero display reading with a zero  
volts input.  
• Thermometry  
• Bridge Readouts: Strain Gauges, Load Cells, Null  
Detectors  
• Digital Meters: Voltage/Current/Ohms/Power, pH  
• Digital Scales, Process Monitors  
• Portable Instrumentation  
© 2008 Microchip Technology Inc.  
DS21455D-page 1  
TC7106/A/TC7107/A  
Package Type  
40-Pin PDIP  
44-Pin PLCC  
V+  
1
2
40 OSC1  
Normal Pin  
Configuration  
D
1
39  
38  
OSC2  
OSC3  
6
5
4
3
2
1
44 43 42 41 40  
C
1
3
B
1
4
37 TEST  
7
REF LO  
F
G
E
39  
38  
37  
A
1
1
1
1
5
36  
35  
1s  
'
V
V
+
-
REF  
F
1
8
C
6
REF  
REF  
G
1
34 CREF  
-
7
9
C
REF  
E
1
33  
C
-
8
REF  
D
C
10  
11  
12  
13  
14  
15  
16  
17  
36 COMMON  
2
2
TC7106ACPL  
TC7107AIPL  
9
32 ANALOG  
COMMON  
31  
D
C
2
2
2
2
IN HI  
NC  
35  
34  
33  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
+
-
IN  
TC7106ACLW  
TC7107ACLW  
B
A
30 V  
IN  
10s  
'
B
IN LO  
29 C  
AZ  
2
2
2
2
F
E
28  
27  
26  
25  
24  
V
V
2
A
F
E
32 A/Z  
31 BUFF  
30 INT  
29 V-  
BUFF  
INT  
2
D
V-  
G
3
B
3
2
100s  
'
D
2
F
E
C
3
3
3
100s  
'
23 A  
22  
3
AB  
18 19 20 21 22 23 24 25 26 27 28  
1000s  
'
G
4
3
21  
POL  
(Minus Sign)  
BP/GND  
(7106A/7107A)  
44-Pin MQFP  
44 43 42 41 40 39 38 37 36 35 34  
1
2
NC  
NC  
NC  
33  
32  
31  
30  
29  
28  
27  
G
2
TEST  
OSC3  
NC  
3
C
3
4
A
3
5
G
3
TC7106ACKW  
TC7107ACKW  
OSC2  
OSC1  
V+  
6
BP/GND  
POL  
7
8
26 AB  
4
D
C
B
9
25  
24  
23  
E
1
1
1
3
3
10  
11  
F
B
3
12 13 14 15 16 17 18 19 20 21 22  
DS21455D-page 2  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
Typical Application  
0.1 µF  
33  
LCD Display (TC7106/A) or  
Common Node with LED  
Display (TC7107/A)  
34  
C
+
C
-
REF  
REF  
1 MΩ  
31  
Segment  
Drive  
2 - 19  
+
V
+
IN  
22 - 25  
Analog  
0.01 µF  
Input  
20  
30  
32  
POL  
V
-
IN  
Minus Sign  
Backplane  
Drive  
21  
1
BP  
V+  
ANALOG  
COMMON  
TC7106/A  
24 kΩ  
1 kΩ  
TC7107/A  
28  
+
V
BUFF  
9V  
V
47 kΩ  
REF  
36  
+
V
0.47 µF  
29  
REF  
C
V
AZ  
100 mV  
35  
26  
V
-
REF  
0.22 µF  
27  
INT  
V-  
OSC2 OSC3 OSC1  
To Analog  
Common (Pin 32)  
C
39  
38  
40  
OSC  
R
100 pF  
3 Conversions/Sec  
200 mV Full Scale  
OSC  
100 kΩ  
© 2008 Microchip Technology Inc.  
DS21455D-page 3  
TC7106/A/TC7107/A  
TC7107A  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Supply Voltage (V+)..........................................................+6V  
Supply Voltage (V-)............................................................-9V  
Analog Input Voltage (either Input) (Note 1).............. V+ to V-  
Absolute Maximum Ratings†  
TC7106A  
Reference Input Voltage (either Input)....................... V+ to V-  
Clock Input.............................................................GND to V+  
Package Power Dissipation (TA 70°C) (Note 2):  
Supply Voltage (V+ to V-)..................................................15V  
40-Pin PDIP......................................................1.23W  
44-Pin PLCC ....................................................1.23W  
44-Pin MQFP....................................................1.00W  
Analog Input Voltage (either Input) (Note 1) .............. V+ to V-  
Reference Input Voltage (either Input) ....................... V+ to V-  
Clock Input ..............................................................Test to V+  
Package Power Dissipation (TA 70°C) (Note 2):  
Operating Temperature Range:  
C (Commercial) Devices ....................... 0°C to +70°C  
I (Industrial) Devices..........................-25°C to +85°C  
40-Pin PDIP......................................................1.23W  
44-Pin PLCC.....................................................1.23W  
44-Pin MQFP....................................................1.00W  
Storage Temperature Range.........................-65°C to +150°C  
Notice: Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at these or  
any other conditions above those indicated in the operation sections of  
the specifications is not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect device reliability.  
Operating Temperature Range:  
C (Commercial) Devices........................0°C to +70°C  
I (Industrial) Devices..........................-25°C to +85°C  
Storage Temperature Range.........................-65°C to +150°C  
TC7106/A AND TC7107/A ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, specifications apply to both the TC7106/TC7106A and TC7107/TC7107A at  
TA = +25°C, fCLOCK = 48 kHz. Parts are tested in the circuit of the Typical Operating Circuit.  
Parameter  
Zero Input Reading  
Symbol  
ZIR  
Min  
Typ  
Max  
Unit  
Test Conditions  
-000.0  
±000.0  
+000.0  
Digital VIN = 0.0V  
Reading Full Scale = 200.0 mV  
Ratiometric Reading  
999  
-1  
999/1000  
±0.2  
1000  
+1  
Digital  
Reading VREF = 100 mV  
Counts IN- = + VIN+ 200 mV  
VIN = VREF  
Rollover Error (Difference in Reading for R/O  
Equal Positive and Negative Reading  
Near Full Scale)  
V
Linearity (Maximum Deviation from Best  
Straight Line Fit)  
-1  
±0.2  
50  
+1  
Counts Full Scale = 200 mV or  
Full Scale = 2.000V  
Common Mode Rejection Ratio (Note 3) CMRR  
µV/V  
VCM = ±1V, VIN = 0V,  
Full Scale = 200.0 mV  
Noise (Peak to Peak Value not  
Exceeded 95% of Time)  
eN  
IL  
15  
µV  
VIN = 0V  
Full Scale - 200.0 mV  
Leakage Current at Input  
Zero Reading Drift  
1
10  
1
pA  
VIN = 0V  
0.2  
µV/°C VIN = 0V  
“C” Device = 0°C to +70°C  
IN = 0V  
“I” Device = -25°C to +85°C  
ppm/°C VIN = 199.0 mV,  
“C” Device = 0°C to +70°C (Ext.  
Ref = 0 ppm°C)  
IN = 199.0 mV  
1.0  
1
2
5
µV/°C  
V
Scale Factor Temperature Coefficient  
TCSF  
0.8  
20  
1.8  
ppm/°C  
mA  
V
“I” Device = -25°C to +85°C  
Supply Current (Does not include LED  
Current For TC7107/A)  
IDD  
VIN = 0.8  
Analog Common Voltage (with Respect VC  
to Positive Supply)  
2.7  
3.05  
3.35  
V
25 kΩ Between Common and  
Positive Supply  
Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to ±100 µA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is 20  
times the conversion rate. Average DC component is less than 50 mV.  
DS21455D-page 4  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
TC7106/A AND TC7107/A ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, specifications apply to both the TC7106/TC7106A and TC7107/TC7107A at  
TA = +25°C, fCLOCK = 48 kHz. Parts are tested in the circuit of the Typical Operating Circuit.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
Temperature Coefficient of Analog  
Common (with Respect to Positive  
Supply)  
VCTC  
25 kΩ Between Common and  
Positive Supply  
7106/7/A  
7106/7  
20  
80  
50  
ppm/°C 0°C TA +70°C  
ppm/°C (“C” Commercial Temperature  
Range Devices)  
Temperature Coefficient of Analog  
Common (with Respect to Positive  
Supply)  
VCTC  
75  
ppm/°C 0°C TA +70°C  
(“I” Industrial Temperature  
Range Devices)  
TC7106A ONLY Peak to Peak  
Segment Drive Voltage  
VSD  
VBD  
4
4
5
5
6
6
V
V+ to V- = 9V  
(Note 4)  
TC7106A ONLY Peak to Peak  
Backplane Drive Voltage  
V
V+ to V- = 9V  
(Note 4)  
TC7107A ONLY Segment Sinking  
Current (Except Pin 19)  
5
8.0  
16  
mA  
mA  
V+ = 5.0V  
Segment Voltage = 3V  
TC7107A ONLY Segment Sinking  
Current (Pin 19)  
10  
V+ = 5.0V  
Segment Voltage = 3V  
Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to ±100 µA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is 20  
times the conversion rate. Average DC component is less than 50 mV.  
© 2008 Microchip Technology Inc.  
DS21455D-page 5  
TC7106/A/TC7107/A  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
Pin No.  
(40-Pin PDIP) (40-Pin PDIP)  
Symbol  
Description  
Normal  
(Reversed  
1
(40)  
(39)  
(38)  
(37)  
(36)  
(35)  
(34)  
(33)  
(32)  
(31)  
(30)  
(29)  
(28)  
(27)  
(26)  
(25)  
(24)  
(23)  
(22)  
(21)  
(20)  
(19)  
(18)  
(17)  
(16)  
(15)  
(14)  
V+  
D1  
C1  
B1  
Positive supply voltage.  
2
Activates the D section of the units display.  
Activates the C section of the units display.  
Activates the B section of the units display.  
Activates the A section of the units display.  
Activates the F section of the units display.  
Activates the G section of the units display.  
Activates the E section of the units display.  
Activates the D section of the tens display.  
Activates the C section of the tens display.  
Activates the B section of the tens display.  
Activates the A section of the tens display.  
Activates the F section of the tens display.  
Activates the E section of the tens display.  
Activates the D section of the hundreds display.  
Activates the B section of the hundreds display.  
Activates the F section of the hundreds display.  
Activates the E section of the hundreds display.  
Activates both halves of the 1 in the thousands display.  
Activates the negative polarity display.  
3
4
5
A1  
6
F1  
7
G1  
E1  
8
9
D2  
C2  
B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
A2  
F2  
E2  
D3  
B3  
F3  
E3  
AB4  
POL  
BP/GND LCD Backplane drive output (TC7106A). Digital Ground (TC7107A).  
G3  
A3  
Activates the G section of the hundreds display.  
Activates the A section of the hundreds display.  
Activates the C section of the hundreds display.  
Activates the G section of the tens display.  
Negative power supply voltage.  
C3  
G2  
V-  
VINT  
Integrator output. Connection point for integration capacitor. See INTEGRATING  
CAPACITOR section for more details.  
28  
29  
(13)  
(12)  
VBUFF  
CAZ  
Integration resistor connection. Use a 47 kΩ resistor for a 200 mV full scale range  
and a 47 kΩ resistor for 2V full scale range.  
The size of the auto-zero capacitor influences system noise. Use a 0.47 µF capacitor  
for 200 mV full scale, and a 0.047 µF capacitor for 2V full scale. See Section 7.1  
“Auto-Zero Capacitor (CAZ)” on Auto-Zero Capacitor for more details.  
30  
31  
32  
(11)  
(10)  
(9)  
VIN  
VIN  
-
The analog LOW input is connected to this pin.  
+
The analog HIGH input signal is connected to this pin.  
ANALOG This pin is primarily used to set the Analog Common mode voltage for battery  
COMMON operation or in systems where the input signal is referenced to the power supply. It  
also acts as a reference voltage source. See Section 8.3 “Analog Common (Pin  
32)” on ANALOG COMMON for more details.  
33  
34  
(8)  
(7)  
CREF  
CREF  
-
See Pin 34.  
+
A 0.1 µF capacitor is used in most applications. If a large Common mode voltage  
exists (for example, the VIN- pin is not at analog common), and a 200 mV scale is  
used, a 1 µF capacitor is recommended and will hold the rollover error to 0.5 count.  
35  
(6)  
VREF  
-
See Pin 36.  
DS21455D-page 6  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
TABLE 2-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin Number  
Pin No.  
(40-Pin PDIP) (40-Pin PDIP)  
Symbol  
Description  
Normal  
(Reversed  
36  
(5)  
VREF  
+
The analog input required to generate a full scale output (1999 counts). Place  
100 mV between Pins 35 and 36 for 199.9 mV full scale. Place 1V between Pins 35  
and 36 for 2V full scale. See paragraph on Reference Voltage.  
37  
(4)  
TEST  
Lamp test. When pulled HIGH (to V+) all segments will be turned on and the display  
should read -1888. It may also be used as a negative supply for externally generated  
decimal points. See paragraph under TEST for additional information.  
38  
39  
40  
(3)  
(2)  
(1)  
OSC3  
OSC2  
OSC1  
See Pin 40.  
See Pin 40.  
Pins 40, 39, 38 make up the oscillator section. For a 48 kHz clock (3 readings per  
section), connect Pin 40 to the junction of a 100 kΩ resistor and a 100 pF capacitor.  
The 100 kΩ resistor is tied to Pin 39 and the 100 pF capacitor is tied to Pin 38.  
© 2008 Microchip Technology Inc.  
DS21455D-page 7  
TC7106/A/TC7107/A  
For a constant VIN:  
3.0  
DETAILED DESCRIPTION  
(All Pin designations refer to 40-Pin PDIP.)  
EQUATION 3-2:  
TRI  
TSI  
3.1  
Dual Slope Conversion Principles  
VIN = VR  
The TC7106A and TC7107A are dual slope, integrating  
Analog-to-Digital Converters. An understanding of the  
dual slope conversion technique will aid in following the  
detailed operation theory.  
The dual slope converter accuracy is unrelated to the  
integrating resistor and capacitor values as long as  
they are stable during a measurement cycle. An  
inherent benefit is noise immunity. Noise spikes are  
integrated or averaged to zero during the integration  
periods. Integrating ADCs are immune to the large  
The conventional dual slope converter measurement  
cycle has two distinct phases:  
• Input Signal Integration  
conversion  
errors  
that  
plague  
successive  
• Reference Voltage Integration (De-integration)  
approximation converters in high noise environments.  
Interfering signals with frequency components at  
multiples of the averaging period will be attenuated.  
Integrating ADCs commonly operate with the signal  
integration period set to a multiple of the 50/60Hz  
power line period (see Figure 3-2).  
The input signal being converted is integrated for a  
fixed time period (TSI). Time is measured by counting  
clock pulses. An opposite polarity constant reference  
voltage is then integrated until the integrator output  
voltage returns to zero. The reference integration time  
is directly proportional to the input signal (TRI). See  
Figure 3-1.  
30  
C
Analog  
Input  
Integrator  
Signal  
Comparator  
20  
+
+
+/–  
Switch  
Driver  
10  
Phase  
Control  
Polarity Control  
REF  
Voltage  
Control  
Logic  
T = Measured Period  
0
0.1/T  
1/T  
10/T  
Counter  
DISPLAY  
Input Frequency  
V
V
µ V  
µ
IN  
REF  
1/2  
V
REF  
IN  
FIGURE 3-2:  
Normal Mode Rejection of  
Dual Slope Converter.  
Fixed Variable  
Signal Reference  
Integrate Integrate  
Time Time  
VFS  
1
⎞ ⎛  
------------ -----------  
(4000)  
⎠ ⎝  
FOSC RINT  
FIGURE 3-1:  
Basic Dual Slope Converter.  
complete  
CINT = -----------------------------------------------------  
VINT  
In simple dual slope converter,  
a
a
Where:  
FOSC  
VFS  
conversion requires the integrator output to “ramp-up”  
and “ramp-down.” A simple mathematical equation  
relates the input signal, reference voltage and  
integration time.  
=
Clock Frequency at Pin 38  
Full Scale Input Voltage  
Integrating Resistor  
=
=
=
RINT  
VINT  
Desired Full Scale Integrator Output  
Swing  
EQUATION 3-1:  
TSI  
VRTRI  
VIN(t)dt = --------------  
RC  
1
RC  
-------  
0
Where:  
VR  
=
=
=
Reference voltage  
TSI  
Signal integration time (fixed)  
TRI  
Reference voltage integration time  
(variable).  
DS21455D-page 8  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
4.3  
Reference Integrate Phase  
4.0  
ANALOG SECTION  
The third phase is reference integrate or de-integrate.  
VIN- is internally connected to analog common and  
VIN+ is connected across the previously charged  
reference capacitor. Circuitry within the chip ensures  
that the capacitor will be connected with the correct  
polarity to cause the integrator output to return to zero.  
In addition to the basic signal integrate and de-  
integrate cycles discussed, the circuit incorporates an  
auto-zero cycle. This cycle removes buffer amplifier,  
integrator, and comparator offset voltage error terms  
from the conversion. A true digital zero reading results  
without adjusting external potentiometers. A complete  
conversion consists of three cycles: an auto-zero,  
signal integrate, and reference integrate cycle.  
The time required for the output to return to zero is  
proportional to the input signal and is between 0 and  
2000 counts.  
4.1  
Auto-Zero Cycle  
The digital reading displayed is:  
During the auto-zero cycle, the differential input signal  
is disconnected from the circuit by opening internal  
analog gates. The internal nodes are shorted to analog  
common (ground) to establish a zero input condition.  
Additional analog gates close a feedback loop around  
the integrator and comparator. This loop permits  
comparator offset voltage error compensation. The  
voltage level established on CAZ compensates for  
device offset voltages. The offset error referred to the  
input is less than 10 µV.  
EQUATION 4-2:  
VIN  
1000 = ------------  
VREF  
The auto-zero cycle length is 1000 to 3000 counts.  
4.2  
Signal Integrate Cycle  
The auto-zero loop is entered and the internal  
differential inputs connect to VIN+ and VIN-. The  
differential input signal is integrated for a fixed time  
period. The TC7106/TC7106A signal integration period  
is 1000 clock periods or counts. The externally set  
clock frequency is divided by four before clocking the  
internal counters.  
The integration time period is:  
EQUATION 4-1:  
4
------------  
TSI  
=
× 1000  
FOSC  
Where:  
FOSC  
=
Externally set clock frequency  
The differential input voltage must be within the device  
Common mode range when the converter and  
measured system share the same power supply  
common (ground). If the converter and measured  
system do not share the same power supply common,  
VIN- should be tied to analog common.  
Polarity is determined at the end of signal integrate  
phase. The sign bit is a true polarity indication, in that  
signals less than 1 LSB are correctly determined. This  
allows precision null detection limited only by device  
noise and auto-zero residual offsets.  
© 2008 Microchip Technology Inc.  
DS21455D-page 9  
TC7106/A/TC7107/A  
5.0  
DIGITAL SECTION (TC7106A)  
The TC7106A (Figure 5-2) contains all the segment  
drivers necessary to directly drive a 3-1/2 digit liquid  
crystal display (LCD). An LCD backplane driver is  
included. The backplane frequency is the external  
clock frequency divided by 800. For three  
conversions per second, the backplane frequency is  
60Hz with a 5V nominal amplitude. When a segment  
driver is in phase with the backplane signal, the  
segment is “OFF.” An out of phase segment drive  
signal causes the segment to be “ON” or visible. This  
AC drive configuration results in negligible DC voltage  
across each LCD segment. This insures long LCD  
display life. The polarity segment driver is “ON” for  
negative analog inputs. If VIN+ and VIN- are reversed,  
this indicator will reverse.  
When the TEST pin on the TC7106A is pulled to V+, all  
segments are turned “ON.” The display reads -1888.  
During this mode, the LCD segments have a constant  
DC voltage impressed. DO NOT LEAVE THE  
DISPLAY IN THIS MODE FOR MORE THAN  
SEVERAL MINUTES! LCD displays may be destroyed  
if operated with DC levels for extended periods.  
The display font and the segment drive assignment are  
shown in Figure 5-1.  
Display Font  
1000s' 100s'  
10s'  
1s'  
FIGURE 5-1:  
Display Font and Segment  
Assignment  
In the TC7106A, an internal digital ground is generated  
from a 6-volt zener diode and a large P channel source  
follower. This supply is designed to absorb the large  
capacitive currents when the backplane voltage is  
switched.  
DS21455D-page 10  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
FIGURE 5-2:  
TC7106A Block Diagram.  
© 2008 Microchip Technology Inc.  
DS21455D-page 11  
TC7106/A/TC7107/A  
6.2  
Clock Circuit  
6.0  
DIGITAL SECTION (TC7107A)  
Three clocking methods may be used (see Figure 6-1):  
Figure 6-2 shows a TC7106A block diagram. It is  
designed to drive common anode LEDs. It is identical  
to the TC7106A, except that the regulated supply and  
backplane drive have been eliminated and the segment  
drive is typically 8 mA. The 1000’s output (Pin 19) sinks  
current from two LED segments, and has a 16 mA drive  
capability.  
1. An external oscillator connected to Pin 40.  
2. A crystal between Pins 39 and 40.  
3. An RC oscillator using all three pins.  
TC7106A  
TC7107A  
In both devices, the polarity indication is “ON” for  
negative analog inputs. If VIN- and VIN+ are reversed,  
this indication can be reversed also, if desired.  
To  
Counter  
µ
4
The display font is the same as the TC7106A.  
40  
Crystal  
39  
38  
6.1  
System Timing  
EXT  
OSC  
The oscillator frequency is divided by 4 prior to clocking  
the internal decade counters. The four-phase  
measurement cycle takes a total of 4000 counts, or  
16,000 clock pulses. The 4000-count cycle is indepen-  
dent of input signal magnitude.  
RC Network  
To TEST Pin on TSC7106A  
To GND Pin on TSC7107A  
FIGURE 6-1:  
Clock Circuits.  
Each phase of the measurement cycle has the  
following length:  
1. Auto-zero phase: 1000 to 3000 counts (4000 to  
12000 clock pulses).  
For signals less than full scale, the auto-zero phase is  
assigned the unused reference integrate time period:  
2. Signal integrate: 1000 counts (4000 clock  
pulses).  
This time period is fixed. The integration period is:  
EQUATION 6-1:  
4
------------  
TSI  
=
× 1000  
FOSC  
Where:  
FOSC  
=
Externally set clock frequency  
3. Reference Integrate: 0 to 2000 counts (0 to 8000  
clock pulses).  
The TC7106A/TC7107A are drop-in replacements for  
the TC7106/TC7107 parts. External component value  
changes are not required to benefit from the low drift  
internal reference.  
DS21455D-page 12  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
FIGURE 6-2:  
TC7107A Block Diagram.  
© 2008 Microchip Technology Inc.  
DS21455D-page 13  
TC7106/A/TC7107/A  
7.4  
Integrating Resistor (RINT)  
7.0  
COMPONENT VALUE  
SELECTION  
The input buffer amplifier and integrator are designed  
with class A output stages. The output stage idling  
current is 100 µA. The integrator and buffer can supply  
20 µA drive currents with negligible linearity errors.  
RINT is chosen to remain in the output stage linear drive  
region, but not so large that printed circuit board  
leakage currents induce errors. For a 200 mV full scale,  
RINT is 47 kΩ. 2.0V full scale requires 470 kΩ.  
7.1  
Auto-Zero Capacitor (CAZ)  
The CAZ capacitor size has some influence on system  
noise. A 0.47 µF capacitor is recommended for 200 mV  
full scale applications where 1LSB is 100 µV. A  
0.047 µF capacitor is adequate for 2.0V full scale  
applications. A mylar type dielectric capacitor is  
adequate.  
TABLE 7-1:  
COMPONENT VALUES AND  
NOMINAL FULL SCALE  
VOLTAGE  
7.2  
Reference Voltage Capacitor  
(CREF  
)
Nominal Full Scale Voltage  
Component  
Value  
The reference voltage used to ramp the integrator out-  
put voltage back to zero during the reference integrate  
cycle is stored on CREF. A 0.1 µF capacitor is  
acceptable when VIN- is tied to analog common. If a  
large Common mode voltage exists (VREF- – analog  
common) and the application requires 200 mV full  
scale, increase CREF to 1.0 µF. Rollover error will be  
held to less than 1/2 count. A mylar dielectric capacitor  
is adequate.  
200.0 mV  
2.000V  
CAZ  
RINT  
CINT  
0.47 µF  
47 kΩ  
0.047 µF  
470 kΩ  
0.22 µF  
0.22 µF  
Note:  
FOSC = 48 kHz (3 readings per sec).  
7.5  
Oscillator Components  
ROSC (Pin 40 to Pin 39) should be 100 kΩ. COSC is  
selected using the equation:  
7.3  
Integrating Capacitor (CINT)  
CINT should be selected to maximize the integrator  
output voltage swing without causing output saturation.  
Due to the TC7106A/TC7107A superior temperature  
coefficient specification, analog common will normally  
supply the differential voltage reference. For this case,  
a ±2V full scale integrator output swing is satisfactory.  
For 3 readings/second (FOSC = 48 kHz), a 0.22 µF  
value is suggested. If a different oscillator frequency is  
used, CINT must be changed in inverse proportion to  
maintain the nominal ±2V integrator swing.  
EQUATION 7-2:  
0.45  
RC  
FOSC = ---------  
Where:  
FOSC  
COSC  
=
=
48 kHz  
100 pF  
Note that FOSC is divided by four to generate the  
TC7106A internal control clock. The backplane drive  
signal is derived by dividing FOSC by 800.  
An exact expression for CINT is:  
EQUATION 7-1:  
To achieve maximum rejection of 60 Hz noise pickup,  
the signal integrate period should be a multiple of  
60 Hz. Oscillator frequencies of 240 kHz, 120 kHz,  
80 kHz, 60 kHz, 48 kHz, 40 kHz, etc. should be  
selected. For 50 Hz rejection, oscillator frequencies of  
200 kHz, 100 kHz, 66-2/3 kHz, 50 kHz, 40 kHz, etc.  
would be suitable. Note that 40 kHz (2.5 readings/  
second) will reject both 50 Hz and 60 Hz.  
VFS  
1
⎞ ⎛  
------------ -----------  
(4000)  
⎠ ⎝  
FOSC RINT  
CINT = -----------------------------------------------------  
VINT  
Where:  
FOSC  
VFS  
=
Clock Frequency at Pin 38  
Full Scale Input Voltage  
Integrating Resistor  
=
=
=
RINT  
7.6  
Reference Voltage Selection  
VINT  
Desired Full Scale Integrator Output  
Swing  
A full scale reading (2000 counts) requires the input  
signal be twice the reference voltage.  
CINT must have low dielectric absorption to minimize  
Required Full Scale Voltage*  
VREF  
rollover error.  
recommended.  
A
polypropylene capacitor is  
200.0 mV  
2.000V  
100.0 mV  
1.000V  
* VFS = 2VREF  
DS21455D-page 14  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
In some applications, a scale factor other than unity  
may exist between a transducer output voltage and the  
required digital reading. Assume, for example, a  
pressure transducer output is 400 mV for 2000 lb/in2.  
Rather than dividing the input voltage by two, the  
reference voltage should be set to 200 mV. This  
permits the transducer input to be used directly.  
V+  
V+  
V+  
V+  
6.8V  
Zener  
V
+
-
REF  
6.8 kΩ  
V
TC7106A  
TC7107A  
REF  
20 k  
Ω
TC7106A  
TC7107A  
I
The differential reference can also be used when a  
digital zero reading is required when VIN is not equal to  
zero. This is common in temperature measuring  
instrumentation. A compensating offset voltage can be  
applied between analog common and VIN-. The  
transducer output is connected between VIN+ and  
analog common.  
Z
V
+
REF  
1.2V  
Ref  
V
-
REF  
Common  
(b)  
(a)  
FIGURE 7-1:  
External Reference.  
The internal voltage reference potential available at  
analog common will normally be used to supply the  
converter’s reference. This potential is stable  
whenever the supply potential is greater than  
approximately 7V. In applications where an externally  
generated reference voltage is desired, refer to  
Figure 7-1.  
© 2008 Microchip Technology Inc.  
DS21455D-page 15  
TC7106/A/TC7107/A  
8.2  
Differential Reference  
REF+ (Pin 36), VREF- (Pin 35)  
8.0  
DEVICE PIN FUNCTIONAL  
DESCRIPTION  
V
The reference voltage can be generated anywhere  
within the V+ to V- power supply range.  
8.1  
Differential Signal Inputs  
VIN+ (Pin 31), VIN- (Pin 30)  
To prevent rollover type errors being induced by large  
Common mode voltages, CREF should be large  
compared to stray node capacitance.  
The TC7106A/TC7107A is designed with true  
differential inputs and accepts input signals within the  
input stage common mode voltage range (VCM). The  
typical range is V+ – 1.0 to V+ + 1V. Common mode  
voltages are removed from the system when the  
TC7106A/TC7107A operates from a battery or floating  
power source (isolated from measured system) and  
VIN- is connected to analog common (VCOM) (see  
Figure 8-2).  
The TC7106A/TC7107A circuits have a significantly  
lower analog common temperature coefficient. This  
gives a very stable voltage suitable for use as a  
reference. The temperature coefficient of analog  
common is 20 ppm/°C typically.  
8.3  
Analog Common (Pin 32)  
In systems where Common mode voltages exist, the  
86 dB Common mode rejection ratio minimizes error.  
Common mode voltages do, however, affect the  
integrator output level. Integrator output saturation  
must be prevented. A worst-case condition exists if a  
large positive VCM exists in conjunction with a full scale  
negative differential signal. The negative signal drives  
the integrator output positive along with VCM (see  
Figure 8-1). For such applications the integrator output  
swing can be reduced below the recommended 2.0V  
full scale swing. The integrator output will swing within  
0.3V of V+ or V- without increasing linearity errors.  
The analog common pin is set at a voltage potential  
approximately 3.0V below V+. The potential is between  
2.7V and 3.35V below V+. Analog common is tied  
internally to the N channel FET capable of sinking  
20 mA. This FET will hold the common line at 3.0V  
should an external load attempt to pull the common line  
toward V+. Analog common source current is limited to  
10 µA. Analog common is, therefore, easily pulled to a  
more negative voltage (i.e., below V+ – 3.0V).  
The TC7106A connects the internal VIN+ and VIN-  
inputs to analog common during the auto-zero cycle.  
During the reference integrate phase, VIN- is  
connected to analog common. If VIN- is not externally  
connected to analog common, a Common mode  
voltage exists. This is rejected by the converter’s 86 dB  
Common mode rejection ratio. In battery operation,  
analog common and VIN- are usually connected,  
removing Common mode voltage concerns. In systems  
where V- is connected to the power supply ground, or  
to a given voltage, analog common should be  
connected to VIN-.  
C
I
Input Buffer  
R
+
+
I
V
I
V
IN  
+
Integrator  
T
I
V =  
VCM – VIN  
[
I
[
R
C
I
I
V
CM  
Where:  
4000  
=
T = Integration Time  
I
F
OSC  
C = Integration Capacitor  
I
R = Integration Resistor  
I
FIGURE 8-1:  
Common Mode Voltage  
Reduces Available Integrator Swing (VCOM VIN).  
DS21455D-page 16  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
Segment  
Drive  
LCD Display  
Measured  
System  
V
C
V
INT  
POL BP  
OSC1  
BUF  
+
AZ  
V
V
IN  
IN  
TC7106A  
V+  
V-  
OSC3  
-
OSC2  
V-  
GND  
Analog  
Common  
V
V
REF  
+
-
REF  
V+  
V+  
V-  
GND  
Power  
Source  
+
9V  
FIGURE 8-2:  
Common Mode Voltage Removed in Battery Operation with V - = Analog Common.  
IN  
The analog common pin serves to set the analog section  
reference or common point. The TC7106A is specifically  
designed to operate from a battery, or in any  
measurement system where input signals are not  
referenced (float), with respect to the TC7106A power  
source. The analog common potential of V+ – 3.0V gives  
a 6V end of battery life voltage. The common potential  
has a 0.001% voltage coefficient and a 15Ω output  
impedance.  
external voltage references. External R and C values  
do not need to be changed. Figure 8-4 shows analog  
common supplying the necessary voltage reference for  
the TC7106A/TC7107A.  
200  
180  
No Maximum Specified  
No  
Maximum  
Specified  
160  
140  
120  
100  
With sufficiently high total supply voltage (V+ – V- >  
7.0V), analog common is a very stable potential with  
excellent temperature stability, typically 20 ppm/°C.  
This potential can be used to generate the reference  
voltage. An external voltage reference will be  
unnecessary in most cases because of the 50 ppm/°C  
maximum temperature coefficient. See Section 8.5  
“Internal Voltage Reference”.  
Typical  
No  
Maximum  
Specified  
Maximum  
Limit  
80  
60  
40  
20  
Typical  
Typical  
TC  
ICL7106  
ICL7136  
7106A  
8.4  
TEST (Pin 37)  
0
The TEST pin potential is 5V less than V+. TEST may  
be used as the negative power supply connection for  
external CMOS logic. The TEST pin is tied to the  
internally generated negative logic supply (Internal  
FIGURE 8-3:  
Temperature Coefficient.  
Analog Common  
Logic Ground) through  
a 500Ω resistor in the  
TC7106A. The TEST pin load should be no more than  
1 mA.  
1
24k  
Ω
V-  
V+  
If TEST is pulled to V+ all segments plus the minus sign  
will be activated. Do not operate in this mode for more  
than several minutes with the TC7106A. With  
TEST = V+, the LCD segments are impressed with a  
DC voltage which will destroy the LCD.  
TC7106A  
TC7107A  
36  
V
1kΩ  
+
REF  
V
REF  
The TEST pin will sink about 10 mA when pulled to V+.  
35  
V
-
REF  
32  
Analog  
Common  
8.5  
Internal Voltage Reference  
Set V  
= 1/2 V  
FULL SCALE  
The analog common voltage temperature stability has  
been significantly improved (Figure 8-3). The “A”  
version of the industry standard circuits allow users to  
upgrade old systems and design new systems without  
REF  
FIGURE 8-4:  
Connection.  
Internal Voltage Reference  
© 2008 Microchip Technology Inc.  
DS21455D-page 17  
TC7106/A/TC7107/A  
9.1  
TC7107 Power Dissipation  
Reduction  
9.0  
POWER SUPPLIES  
The TC7107A is designed to work from ±5V supplies.  
However, if a negative supply is not available, it can be  
generated from the clock output with two diodes, two  
capacitors, and an inexpensive IC (Figure 9-1).  
The TC7107A sinks the LED display current and this  
causes heat to build up in the IC package. If the internal  
voltage reference is used, the changing chip  
temperature can cause the display to change reading.  
By reducing the LED common anode voltage, the  
TC7107A package power dissipation is reduced.  
V+  
CD4009  
Figure 9-3 is a curve tracer display showing the  
relationship between output current and output voltage  
for a typical TC7107CPL. Since a typical LED has 1.8  
volts across it at 7 mA, and its common anode is  
connected to +5V, the TC7107A output is at 3.2V (point  
A on Figure 9-3). Maximum power dissipation is  
8.1 mA x 3.2V x 24 segments = 622 mW.  
V+  
OSC1  
OSC2  
0.047  
µF  
1N914  
+
OSC3  
10  
µF  
TC7107A  
1N914  
GND  
V-  
10.000  
V- = -3.3V  
9.000  
FIGURE 9-1:  
Generating Negative Supply  
A
From +5V.  
8.000  
7.000  
6.000  
B
In selected applications a negative supply is not  
required. The conditions to use a single +5V supply  
are:  
C
• The input signal can be referenced to the center  
of the Common mode range of the converter.  
2.00  
2.50  
3.00  
3.50  
4.00  
Output Voltage (V)  
• The signal is less than ±1.5V.  
• An external reference is used.  
FIGURE 9-3:  
Output Voltage.  
TC7107 Output Current vs.  
The TSC7660 DC-to-DC converter may be used to  
generate -5V from +5V (Figure 9-2).  
Notice, however, that once the TC7107A output voltage  
is above two volts, the LED current is essentially  
constant as output voltage increases. Reducing the  
output voltage by 0.7V (point B in Figure 9-3) results in  
7.7 mA of LED current, only a 5 percent reduction.  
Maximum power dissipation is only 7.7 mA x 2.5V x 24  
= 462 mW, a reduction of 26%. An output voltage  
reduction of 1 volt (point C) reduces LED current by  
10% (7.3 mA) but power dissipation by 38% (7.3 mA x  
2.2V x 24 = 385 mW).  
+5V  
1
36  
V+  
V
+
REF  
35  
32  
V
-
REF  
LED  
DRIVE  
Reduced power dissipation is very easy to obtain.  
Figure 9-4 shows two ways: either a 5.1Ω, 1/4W  
resistor, or a 1A diode placed in series with the display  
(but not in series with the TC7107A). The resistor will  
reduce the TC7107A output voltage, when all 24  
segments are “ON,” to point “C” of Figure 9-4. When  
segments turn off, the output voltage will increase. The  
diode, on the other hand, will result in a relatively  
steady output voltage, around point “B”.  
COM  
TC7107A  
31  
V
+
IN  
V
IN  
30  
21  
V
-
IN  
GND  
V-  
26  
8
TC7660  
2
4
+
(-5V)  
5
10 µF  
3
+
10 µF  
FIGURE 9-2:  
Negative Power Supply  
Generation with TC7660.  
DS21455D-page 18  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
In addition to limiting maximum power dissipation, the  
resistor reduces the change in power dissipation as the  
display changes. This effect is caused by the fact that,  
as fewer segments are “ON,” each “ON” output drops  
more voltage and current. For the best case of six  
segments (a “111” display) to worst-case (a “1888”  
display), the resistor will change about 230 mW, while  
a circuit without the resistor will change about 470 mW.  
Therefore, the resistor will reduce the effect of display  
dissipation on reference voltage drift by about 50%.  
The change in LED brightness caused by the resistor is  
almost unnoticeable as more segments turn off. If  
display brightness remaining steady is very important  
to the designer, a diode may be used instead of the  
resistor.  
IN  
-5V  
+5V  
+
1 MΩ  
24 kΩ  
150  
Ω
TP3  
1 kΩ  
0.47  
µF  
0.22  
µF  
100 pF  
0.01  
µ
F
TP5  
100  
kΩ  
Display  
TP2  
TP1  
0.1  
47  
µ
F
k
Ω
40  
1
30  
TP  
4
21  
20  
TC7107A  
10  
Display  
5.1 1/4W  
Ω
1N4001  
FIGURE 9-4:  
Diode or Resistor Limits  
Package Power Dissipation.  
© 2008 Microchip Technology Inc.  
DS21455D-page 19  
TC7106/A/TC7107/A  
input and the voltage across the known resistor is  
applied to the reference input. If the unknown equals  
the standard, the display will read 1000.  
10.0 TYPICAL APPLICATIONS  
10.1 Decimal Point and Annunciator  
Drive  
The displayed reading can be determined from the  
following expression:  
The TEST pin is connected to the internally generated  
digital logic supply ground through a 500Ω resistor. The  
TEST pin may be used as the negative supply for  
external CMOS gate segment drivers. LCD display  
annunciators for decimal points, low battery indication,  
or function indication may be added without adding an  
additional supply. No more than 1 mA should be  
supplied by the TEST pin; its potential is approximately  
5V below V+ (see Figure 10-1).  
EQUATION 10-1:  
RUNKNOWN  
-----------------------------  
Displayed (Reading) =  
× 1000  
RSTANDARD  
The display will over range for:  
RUNKNOWN 2 x RSTANDARD  
V+  
V
+
-
REF  
VREF  
R
V+  
STANDARD  
V+  
LCD Display  
V
+
INTC7106A  
4049  
R
UNKNOWN  
TC7106A  
To LCD  
Decimal  
Point  
21  
BP  
V -  
IN  
Analog  
Common  
GND  
37  
TEST  
To LCD  
Backplane  
FIGURE 10-2:  
Low Parts Count  
Ratiometric Resistance Measurement.  
V+  
+
9V  
V+  
BP  
160 k  
Ω
300 k  
Ω
300kΩ  
To LCD  
Decimal  
Point  
V+  
-
V-  
Decimal  
Point  
Select  
TC7106A  
V
IN  
R
50 k  
1N4148  
Sensor  
V
+
1
Ω
IN  
TC7106A  
V
= 2V  
4030  
GND  
TEST  
FS  
R
V
+
2
REF  
50 k  
Ω
V
-
REF  
Common  
FIGURE 10-1:  
Decimal Point Drive Using  
Test as Logic Ground.  
FIGURE 10-3:  
Temperature Sensor.  
10.2 Ratiometric Resistance  
Measurements  
The true differential input and differential reference  
make ratiometric reading possible. Typically in a  
ratiometric operation, an unknown resistance is  
measured, with respect to  
a
known standard  
resistance. No accurately defined reference voltage is  
needed.  
The unknown resistance is put in series with a known  
standard and a current passed through the pair. The  
voltage developed across the unknown is applied to the  
DS21455D-page 20  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
To Pin 1  
+
9V  
Set V  
= 100 mV  
REF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100 k  
Ω
5.6 k  
Ω
160 kΩ  
V+  
V-  
100 pF  
R
V
-
1
Ω
1N914  
IN  
20 k  
+5V  
1 k  
Ω
22 k  
1 M  
Ω
V
+
0.1 µF  
IN  
Ω
+
TC7106A  
0.7%/×C  
PTC  
TC7107A  
R
20 k  
R
3
2
Ω
V
+
IN  
0.01 µF  
47 k  
REF  
0.47 µF  
Ω
V
-
REF  
0.22µF  
Common  
-5V  
To Display  
FIGURE 10-4:  
Positive Temperature  
Coefficient Resistor Temperature Sensor.  
FIGURE 10-6:  
TC7107 Internal Reference:  
200 mV Full Scale, 3RPS, VIN- Tied to GND for  
Single Ended Inputs.  
To Pin 1  
Set V  
= 100 mV  
REF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100 k  
Ω
100 pF  
V+  
1
40  
1 k  
Ω
22 k  
1M  
Ω
Ω
0.1 µF  
To Logic  
+
V
CC  
TC7106A  
IN  
0.01 µF  
47 k  
To Logic  
V
TC7106A  
CC  
+
0.47 µF  
Ω
9V  
0.22 µF  
V-  
O/R  
U/R  
To Display  
To Backplane  
20  
21  
CD4023  
OR 74C10  
CD4077 O/R = Over Range  
U/R = Under Range  
FIGURE 10-5:  
Reference: 200 mV Full Scale, 3 Readings-Per-  
Second (RPS).  
TC7106A, Using the Internal  
FIGURE 10-7:  
Circuit for Developing Under  
Range and Over Range Signals from TC7106A  
Outputs.  
© 2008 Microchip Technology Inc.  
DS21455D-page 21  
TC7106/A/TC7107/A  
To Pin 1  
To PIn 1  
Set V  
= 1V  
REF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100 k  
Ω
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100k  
Ω
Set V  
= 100mV  
REF  
100 pF  
100pF  
24 k  
Ω
10kΩ  
10k  
Ω
V+  
V+  
25 k  
Ω
1k  
Ω
0.1 µF  
0.1µF  
1 M  
0.01 µF  
470 k  
Ω
+
+
1.2V  
0.01µF  
TC7106A  
TC7107A  
TC7107A  
IN  
IN  
1MΩ  
0.047 µF  
0.47µ  
F
Ω
47k  
Ω
0.22µF  
0.22 µF  
V-  
To Display  
To Display  
FIGURE 10-8:  
TC7106/TC7107:  
FIGURE 10-9:  
TC7107 Operated from  
Recommended Component Values for 2.00V Full  
Scale.  
Single +5V Supply.  
+
9V  
+
IN4148  
200 mV  
1 mF  
26  
V
27  
29  
28  
1
IN  
V-  
V+  
V
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
10 k  
1 M  
Ω
9 M  
Ω
24 k  
Ω
2V  
0.02  
mF  
Ω
TC7106A  
900 k  
Ω
1 M  
Ω
36  
+
20V  
200V  
1 k  
Ω
REF  
AD636  
47 k  
1W  
10%  
Ω
35  
32  
31  
V
-
REF  
90 k  
10 k  
Ω
Ω
6.8µF  
+
Analog Common  
V +  
1 MΩ 10%  
40  
8
IN  
0.01  
µF  
20 k  
Ω
2.2µF  
10%  
30  
26  
38  
39  
V
-
COM  
IN  
C1 = 3 - 10 pF Variable  
C2 = 132 pF Variable  
V-  
BP  
SEG  
DRIVE  
LCD Display  
FIGURE 10-10:  
3-1/2 Digit True RMS AC DMM.  
DS21455D-page 22  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
9V  
2
1
Constant 5V  
V+  
V+  
V
V
+
REF  
TC7106A  
REF02  
51 k  
Ω
5.1 k  
Ω
TC911  
50 k  
Ω
Ω
6
V
R
-
2
OUT  
REF  
R
R
5
4
V
= 2.00V  
FS  
5
3
2
8
1
ADJ  
NC  
V
V
-
IN  
3
+
TEMP  
V
=
OUT  
4
+
1.86V @  
25×C  
IN  
Temperature  
Dependent  
Output  
50 k  
1.3k  
R
1
Common  
V-  
GND  
4
26  
FIGURE 10-11:  
Integrated Circuit Temperature Sensor.  
© 2008 Microchip Technology Inc.  
DS21455D-page 23  
TC7106/A/TC7107/A  
11.0 PACKAGING INFORMATION  
11.1 Package Marking Information  
40-Pin PDIP  
Example:  
XXXXXXXXXXXXXXXXXX  
TC7106CPL
e3  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
*h  
0743256  
*h  
44-Pin MQFP  
Example:  
M
M
0743256  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
TC106CKW  
e
3
44-Pin PLCC  
Example:  
1
M
M
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
TC7106CLW  
e
3
0743256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21455D-page 24  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢃꢓꢇMꢇꢔꢁꢁꢇꢕꢌꢉꢇꢖꢗꢆꢘꢇꢙꢈꢎꢐꢈꢚ  
ꢛꢗꢋꢄꢜ .ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅ#ꢉꢖ/ꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅ#ꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃ#ꢅꢂꢉꢖ/ꢉꢛꢃꢄꢛꢅꢚ#ꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏ#,00ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃ#ꢁꢖꢕꢑ0#ꢉꢖ/ꢉꢛꢃꢄꢛ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
1ꢄꢃꢏꢇ  
23ꢜ4ꢝꢚ  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ5ꢃꢑꢃꢏꢇ  
$23  
36$  
$(7  
3ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
3
'%  
ꢁꢀ%%ꢅ+ꢚꢜ  
-#ꢅꢏꢕꢅꢚꢌꢉꢏꢃꢄꢛꢅꢂꢊꢉꢄꢌ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ-ꢘꢃꢖ/ꢄꢌꢇꢇ  
+ꢉꢇꢌꢅꢏꢕꢅꢚꢌꢉꢏꢃꢄꢛꢅꢂꢊꢉꢄꢌ  
ꢚꢘꢕꢈꢊꢋꢌꢐꢅꢏꢕꢅꢚꢘꢕꢈꢊꢋꢌꢐꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ:ꢃꢋꢏꢘ  
6ꢆꢌꢐꢉꢊꢊꢅ5ꢌꢄꢛꢏꢘ  
-ꢃ#ꢅꢏꢕꢅꢚꢌꢉꢏꢃꢄꢛꢅꢂꢊꢉꢄꢌ  
5ꢌꢉꢋꢅ-ꢘꢃꢖ/ꢄꢌꢇꢇ  
1##ꢌꢐꢅ5ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
(
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢙ*%  
ꢁꢀ9*  
M
(ꢙ  
(ꢀ  
ꢝꢀ  
!
5
ꢔꢀ  
ꢌ+  
ꢁꢀꢙ*  
ꢁ%ꢀ*  
ꢁ*9%  
ꢁ'<*  
ꢀꢁ9<%  
ꢁꢀꢀ*  
ꢁ%%<  
ꢁ% %  
ꢁ%ꢀ'  
M
ꢁ;ꢙ*  
ꢁ*<%  
ꢙꢁ%9*  
ꢁꢙ%%  
ꢁ%ꢀ*  
ꢁ%=%  
ꢁ%ꢙ  
ꢁ=%%  
5ꢕꢗꢌꢐꢅ5ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
6ꢆꢌꢐꢉꢊꢊꢅ>ꢕꢗꢅꢚ#ꢉꢖꢃꢄꢛꢅꢅ"  
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ "ꢅꢚꢃꢛꢄꢃꢎꢃꢖꢉꢄꢏꢅꢜꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
 ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢅꢉꢄꢋꢅꢝꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁ%ꢀ%&ꢅ#ꢌꢐꢅꢇꢃꢋꢌꢁ  
'ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅ#ꢌꢐꢅ(ꢚ$ꢝꢅ)ꢀ'ꢁ*$ꢁ  
+ꢚꢜ, +ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ-ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
$ꢃꢖꢐꢕꢖꢘꢃ# -ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ ꢜ%'?%ꢀ;+  
© 2008 Microchip Technology Inc.  
DS21455D-page 25  
TC7106/A/TC7107/A  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ ꢄꢋ!ꢌꢍꢇ"ꢏꢅꢆꢇ#ꢉꢅꢋ$ꢅꢍ%ꢇꢒ&'ꢓꢇMꢇ(ꢁ)(ꢁ)*ꢇꢕꢕꢇꢖꢗꢆꢘ+ꢇ,-*ꢁꢇꢕꢕꢇꢙ "#ꢈꢚ  
ꢛꢗꢋꢄꢜ .ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅ#ꢉꢖ/ꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅ#ꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃ#ꢅꢂꢉꢖ/ꢉꢛꢃꢄꢛꢅꢚ#ꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏ#,00ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃ#ꢁꢖꢕꢑ0#ꢉꢖ/ꢉꢛꢃꢄꢛ  
D
D1  
E
e
E1  
N
b
NOTE 1  
α
1
2 3  
NOTE 2  
c
φ
A1  
A
L1  
L
A2  
β
1ꢄꢃꢏꢇ  
$2552$ꢝ-ꢝ>ꢚ  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ5ꢃꢑꢃꢏꢇ  
$23  
36$  
$(7  
3ꢈꢑꢔꢌꢐꢅꢕꢎꢅ5ꢌꢉꢋꢇ  
5ꢌꢉꢋꢅꢂꢃꢏꢖꢘ  
3
''  
%ꢁ<%ꢅ+ꢚꢜ  
6ꢆꢌꢐꢉꢊꢊꢅ4ꢌꢃꢛꢘꢏ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ-ꢘꢃꢖ/ꢄꢌꢇꢇ  
ꢚꢏꢉꢄꢋꢕꢎꢎꢅꢅ"  
(
M
M
ꢙꢁ%%  
M
%ꢁ<<  
ꢙꢁ'*  
ꢙꢁꢙ%  
%ꢁꢙ*  
ꢀꢁ%  
(ꢙ  
(ꢀ  
5
ꢀꢁ<%  
%ꢁ%%  
%ꢁ=  
.ꢕꢕꢏꢅ5ꢌꢄꢛꢏꢘ  
.ꢕꢕꢏ#ꢐꢃꢄꢏ  
.ꢕꢕꢏꢅ(ꢄꢛꢊꢌ  
5ꢀ  
ꢀꢁ;%ꢅ>ꢝ.  
%ꢞ  
M
=ꢞ  
6ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
ꢀ ꢁꢙ%ꢅ+ꢚꢜ  
6ꢆꢌꢐꢉꢊꢊꢅ5ꢌꢄꢛꢏꢘ  
!
ꢀ ꢁꢙ%ꢅ+ꢚꢜ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ5ꢌꢄꢛꢏꢘ  
5ꢌꢉꢋꢅ-ꢘꢃꢖ/ꢄꢌꢇꢇ  
5ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢅ!ꢐꢉꢎꢏꢅ(ꢄꢛꢊꢌꢅ-#  
$ꢕꢊꢋꢅ!ꢐꢉꢎꢏꢅ(ꢄꢛꢊꢌꢅ+ꢕꢏꢏꢕꢑ  
ꢝꢀ  
!ꢀ  
ꢀ%ꢁ%%ꢅ+ꢚꢜ  
ꢀ%ꢁ%%ꢅ+ꢚꢜ  
%ꢁꢀꢀ  
%ꢁꢙ9  
*ꢞ  
M
M
M
M
%ꢁꢙ  
%ꢁ'*  
ꢀ;ꢞ  
*ꢞ  
ꢀ;ꢞ  
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢜꢘꢉꢑꢎꢌꢐꢇꢅꢉꢏꢅꢖꢕꢐꢄꢌꢐꢇꢅꢉꢐꢌꢅꢕ#ꢏꢃꢕꢄꢉꢊ@ꢅꢇꢃAꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢁ  
 ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢀꢅꢉꢄꢋꢅꢝꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅ%ꢁꢙ*ꢅꢑꢑꢅ#ꢌꢐꢅꢇꢃꢋꢌꢁ  
'ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅ#ꢌꢐꢅ(ꢚ$ꢝꢅ)ꢀ'ꢁ*$ꢁ  
+ꢚꢜ, +ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ-ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
>ꢝ., >ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅ#ꢈꢐ#ꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
*ꢁ "ꢅꢚꢃꢛꢄꢃꢎꢃꢖꢉꢄꢏꢅꢜꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
$ꢃꢖꢐꢕꢖꢘꢃ# -ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ ꢜ%'?%=ꢀ+  
DS21455D-page 26  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢃꢄꢅꢆꢄꢆꢇ./ꢌ$ꢇ.ꢅ!!ꢌꢄ!ꢇꢒꢃ'ꢓꢇMꢇ01ꢏꢅ!ꢄꢇꢙꢈꢃ..ꢚ  
ꢛꢗꢋꢄꢜ .ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅ#ꢉꢖ/ꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅ#ꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃ#ꢅꢂꢉꢖ/ꢉꢛꢃꢄꢛꢅꢚ#ꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏ#,00ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃ#ꢁꢖꢕꢑ0#ꢉꢖ/ꢉꢛꢃꢄꢛ  
D
D1  
CH2 x 45°  
E
E1  
N 1 2 3  
NOTE 1  
CH1 x 45°  
CH3 x 45°  
A
c
A2  
A1  
b1  
b
A3  
e
D2  
E2  
1ꢄꢃꢏꢇ  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ5ꢃꢑꢃꢏꢇ  
23ꢜ4ꢝꢚ  
36$  
''  
ꢁ%*%  
ꢁꢀ=ꢙ  
ꢁꢀ%*  
M
M
M
M
M
ꢁ;9%  
ꢁ;9%  
ꢁ;*  
ꢁ;*  
ꢁ;ꢀ%  
ꢁ;ꢀ%  
M
$23  
$(7  
3ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
3
(
(ꢀ  
(ꢙ  
(  
ꢜ4ꢀ  
ꢜ4ꢙ  
ꢜ4  
6ꢆꢌꢐꢉꢊꢊꢅ4ꢌꢃꢛꢘꢏ  
ꢜꢕꢄꢏꢉꢖꢏꢅ4ꢌꢃꢛꢘꢏ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅꢏꢕꢅꢜꢕꢄꢏꢉꢖꢏ  
ꢚꢏꢉꢄꢋꢕꢎꢎꢅꢅ"  
ꢁꢀ;*  
ꢁ%9%  
ꢁ%;ꢙ  
ꢁ%ꢙ%  
ꢁ%'ꢙ  
M
ꢁ%'ꢙ  
ꢁ;<*  
ꢁ;<*  
ꢁ;*%  
ꢁ;*%  
ꢁ*<ꢙ  
ꢁ*<ꢙ  
ꢁ%%=*  
ꢁ%ꢙ;  
ꢁ%ꢀ  
ꢁꢀ<%  
ꢁꢀꢙ%  
ꢁ%<  
M
ꢜꢕꢐꢄꢌꢐꢅꢜꢘꢉꢑꢎꢌꢐ  
ꢜꢘꢉꢑꢎꢌꢐꢇ  
ꢚꢃꢋꢌꢅꢜꢘꢉꢑꢎꢌꢐ  
6ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
6ꢆꢌꢐꢉꢊꢊꢅ5ꢌꢄꢛꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ5ꢌꢄꢛꢏꢘ  
.ꢕꢕꢏ#ꢐꢃꢄꢏꢅ:ꢃꢋꢏꢘ  
.ꢕꢕꢏ#ꢐꢃꢄꢏꢅ5ꢌꢄꢛꢏꢘ  
5ꢌꢉꢋꢅ-ꢘꢃꢖ/ꢄꢌꢇꢇ  
1##ꢌꢐꢅ5ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
5ꢕꢗꢌꢐꢅ5ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
ꢁ%'<  
ꢁ%ꢙ%  
ꢁ%*;  
ꢁ;9*  
ꢁ;9*  
ꢁ;*;  
ꢁ;*;  
ꢁ; <  
ꢁ; <  
ꢁ%ꢀꢙ*  
ꢁ% ꢙ  
ꢁ%ꢙꢀ  
!
ꢝꢀ  
!ꢀ  
ꢝꢙ  
!ꢙ  
ꢔꢀ  
M
M
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ "ꢅꢚꢃꢛꢄꢃꢎꢃꢖꢉꢄꢏꢅꢜꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
 ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢀꢅꢉꢄꢋꢅꢝꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁ%ꢀ%&ꢅ#ꢌꢐꢅꢇꢃꢋꢌꢁ  
'ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅ#ꢌꢐꢅ(ꢚ$ꢝꢅ)ꢀ'ꢁ*$ꢁ  
$ꢃꢖꢐꢕꢖꢘꢃ# -ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ ꢜ%'?%'<+  
© 2008 Microchip Technology Inc.  
DS21455D-page 27  
TC7106/A/TC7107/A  
NOTES:  
DS21455D-page 28  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
APPENDIX A: REVISION HISTORY  
Revision D (February 2008)  
The following is the list of modifications.  
1. Updated Section 11.0 “Packaging Informa-  
tion”.  
2.  
3. Added Appendix A.  
4. Updated the Product Identification System  
page.  
Revision C (April 2006)  
The following is the list of modifications:  
• Undocumented Changes.  
Revision B (May 2002)  
The following is the list of modifications:  
• Undocumented Changes.  
Revision A (April 2002)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS21455D-page 29  
TC7106/A/TC7107/A  
NOTES:  
DS21455D-page 30  
© 2008 Microchip Technology Inc.  
TC7106/A/TC7107/A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
XXX  
a)  
b)  
c)  
TC7106CLW:  
3-3/4 A/D Converter,  
44LD PLCC package.  
3-3/4 A/D Converter,  
40LD PDIP package.  
3-3/4 A/D Converter,  
44LD MQFP package,  
Tape and Reel.  
Temperature  
Range  
Package Tape &  
Reel  
TC7106CPL:  
TC7106CKW713:  
Device:  
TC7106: 3-3/4 Digit A/D, with Frequency Counter and Probe  
TC7106A: 3-3/4 Digit A/D, with Frequency Counter and Probe  
TC7106: 3-3/4 Digit A/D, with Frequency Counter and Probe  
TC7107A: 3-3/4 Digit A/D, with Frequency Counter and Probe  
a)  
b)  
c)  
TC7106ACLW:  
TC7106ACPL:  
3-3/4 A/D Converter,  
44LD PLCC package.  
3-3/4 A/D Converter,  
40LD PDIP package.  
3-3/4 A/D Converter,  
44LD MQFP package,  
Tape and Reel  
Temperature Range:  
Package:  
C
I
=
=
0°C to +70°C  
-25°C to +85°C  
TC7106ACKW713:  
LW  
PL  
KW  
=
=
=
Plastic Leaded Chip Carrier (PLCC), 44-lead  
Plastic DIP, (600 mil Body), 40-lead  
Plastic Metric Quad Flatpack, (MQFP), 44-lead  
a)  
b)  
c)  
TC7107CLW:  
TC7107CLP:  
3-3/4 A/D Converter,  
44LD PLCC package.  
3-3/4 A/D Converter,  
40LD PDIP package.  
3-3/4 A/D Converter,  
44LD MQFP package  
Tape and Reel.  
Tape & Reel:  
713  
=
Tape and Reel  
TC7107CKW713:  
a)  
b)  
c)  
TC7107ACLW:  
TC7107ACLP:  
TC7107ACKW:  
3-3/4 A/D Converter,  
44LD PLCC package.  
3-3/4 A/D Converter,  
40LD PDIP package.  
3-3/4 A/D Converter,  
44LD MQFP package.  
© 2008 Microchip Technology Inc.  
DS21455D-page 31  
TC7106/A/TC7107/A  
NOTES:  
DS21455D-page 32  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, rfPIC and SmartShunt are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS21455D-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS21455D-page 34  
© 2008 Microchip Technology Inc.  

相关型号:

TC7106CLW723

1-CH 13-BIT DUAL-SLOPE ADC, PQCC44, PLASTIC, LCC-44
MICROCHIP

TC7106CLWTR

暂无描述
MICROCHIP

TC7106CPL

3-1/2 DIGIT A/D CONVERTERS
TELCOM

TC7106CPL

3-1/2 Digit Analog-to-Digital Converters
MICROCHIP

TC7106CPLG

1-CH DUAL-SLOPE ADC, PDIP40, 0.600 INCH, PLASTIC, DIP-40
MICROCHIP

TC7106CPLIJL

ADC, Dual-Slope, 1 Func, 1 Channel, PDIP40, CERDIP-40
MICROCHIP

TC7106CPT713

ADC, Dual-Slope, 1 Func, 1 Channel, PQFP44
MICROCHIP

TC7106IJL

3-1/2 DIGIT A/D CONVERTERS
TELCOM

TC7106IKW

IC,A/D CONVERTER,SINGLE,3 1/2-DIGIT,CMOS,QFP,44PIN
MICROCHIP

TC7106IKW713

1-CH DUAL-SLOPE ADC, PQFP44, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-44
MICROCHIP

TC7106ILW

IC,A/D CONVERTER,SINGLE,3 1/2-DIGIT,CMOS,LDCC,44PIN
MICROCHIP

TC7106IPL

3-1/2 DIGIT A/D CONVERTERS
TELCOM